1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SPECIAL_INSNS_H #define _ASM_X86_SPECIAL_INSNS_H #ifdef __KERNEL__ #include <asm/nops.h> #include <asm/processor-flags.h> #include <linux/irqflags.h> #include <linux/jump_label.h> /* * The compiler should not reorder volatile asm statements with respect to each * other: they should execute in program order. However GCC 4.9.x and 5.x have * a bug (which was fixed in 8.1, 7.3 and 6.5) where they might reorder * volatile asm. The write functions are not affected since they have memory * clobbers preventing reordering. To prevent reads from being reordered with * respect to writes, use a dummy memory operand. */ #define __FORCE_ORDER "m"(*(unsigned int *)0x1000UL) void native_write_cr0(unsigned long val); static inline unsigned long native_read_cr0(void) { unsigned long val; asm volatile("mov %%cr0,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline unsigned long native_read_cr2(void) { unsigned long val; asm volatile("mov %%cr2,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline void native_write_cr2(unsigned long val) { asm volatile("mov %0,%%cr2": : "r" (val) : "memory"); } static inline unsigned long __native_read_cr3(void) { unsigned long val; asm volatile("mov %%cr3,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static inline void native_write_cr3(unsigned long val) { asm volatile("mov %0,%%cr3": : "r" (val) : "memory"); } static inline unsigned long native_read_cr4(void) { unsigned long val; #ifdef CONFIG_X86_32 /* * This could fault if CR4 does not exist. Non-existent CR4 * is functionally equivalent to CR4 == 0. Keep it simple and pretend * that CR4 == 0 on CPUs that don't have CR4. */ asm volatile("1: mov %%cr4, %0\n" "2:\n" _ASM_EXTABLE(1b, 2b) : "=r" (val) : "0" (0), __FORCE_ORDER); #else /* CR4 always exists on x86_64. */ asm volatile("mov %%cr4,%0\n\t" : "=r" (val) : __FORCE_ORDER); #endif return val; } void native_write_cr4(unsigned long val); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static inline u32 rdpkru(void) { u32 ecx = 0; u32 edx, pkru; /* * "rdpkru" instruction. Places PKRU contents in to EAX, * clears EDX and requires that ecx=0. */ asm volatile(".byte 0x0f,0x01,0xee\n\t" : "=a" (pkru), "=d" (edx) : "c" (ecx)); return pkru; } static inline void wrpkru(u32 pkru) { u32 ecx = 0, edx = 0; /* * "wrpkru" instruction. Loads contents in EAX to PKRU, * requires that ecx = edx = 0. */ asm volatile(".byte 0x0f,0x01,0xef\n\t" : : "a" (pkru), "c"(ecx), "d"(edx)); } static inline void __write_pkru(u32 pkru) { /* * WRPKRU is relatively expensive compared to RDPKRU. * Avoid WRPKRU when it would not change the value. */ if (pkru == rdpkru()) return; wrpkru(pkru); } #else static inline u32 rdpkru(void) { return 0; } static inline void __write_pkru(u32 pkru) { } #endif static inline void native_wbinvd(void) { asm volatile("wbinvd": : :"memory"); } extern asmlinkage void asm_load_gs_index(unsigned int selector); static inline void native_load_gs_index(unsigned int selector) { unsigned long flags; local_irq_save(flags); asm_load_gs_index(selector); local_irq_restore(flags); } static inline unsigned long __read_cr4(void) { return native_read_cr4(); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else static inline unsigned long read_cr0(void) { return native_read_cr0(); } static inline void write_cr0(unsigned long x) { native_write_cr0(x); } static __always_inline unsigned long read_cr2(void) { return native_read_cr2(); } static __always_inline void write_cr2(unsigned long x) { native_write_cr2(x); } /* * Careful! CR3 contains more than just an address. You probably want * read_cr3_pa() instead. */ static inline unsigned long __read_cr3(void) { return __native_read_cr3(); } static inline void write_cr3(unsigned long x) { native_write_cr3(x); } static inline void __write_cr4(unsigned long x) { native_write_cr4(x); } static inline void wbinvd(void) { native_wbinvd(); } #ifdef CONFIG_X86_64 static inline void load_gs_index(unsigned int selector) { native_load_gs_index(selector); } #endif #endif /* CONFIG_PARAVIRT_XXL */ static inline void clflush(volatile void *__p) { asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p)); } static inline void clflushopt(volatile void *__p) { alternative_io(".byte " __stringify(NOP_DS_PREFIX) "; clflush %P0", ".byte 0x66; clflush %P0", X86_FEATURE_CLFLUSHOPT, "+m" (*(volatile char __force *)__p)); } static inline void clwb(volatile void *__p) { volatile struct { char x[64]; } *p = __p; asm volatile(ALTERNATIVE_2( ".byte " __stringify(NOP_DS_PREFIX) "; clflush (%[pax])", ".byte 0x66; clflush (%[pax])", /* clflushopt (%%rax) */ X86_FEATURE_CLFLUSHOPT, ".byte 0x66, 0x0f, 0xae, 0x30", /* clwb (%%rax) */ X86_FEATURE_CLWB) : [p] "+m" (*p) : [pax] "a" (p)); } #define nop() asm volatile ("nop") static inline void serialize(void) { /* Instruction opcode for SERIALIZE; supported in binutils >= 2.35. */ asm volatile(".byte 0xf, 0x1, 0xe8" ::: "memory"); } /* The dst parameter must be 64-bytes aligned */ static inline void movdir64b(void *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } *__dst = dst; /* * MOVDIR64B %(rdx), rax. * * Both __src and __dst must be memory constraints in order to tell the * compiler that no other memory accesses should be reordered around * this one. * * Also, both must be supplied as lvalues because this tells * the compiler what the object is (its size) the instruction accesses. * I.e., not the pointers but what they point to, thus the deref'ing '*'. */ asm volatile(".byte 0x66, 0x0f, 0x38, 0xf8, 0x02" : "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); } /** * enqcmds - Enqueue a command in supervisor (CPL0) mode * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: 512 bits memory operand * * The ENQCMDS instruction allows software to write a 512-bit command to * a 512-bit-aligned special MMIO region that supports the instruction. * A return status is loaded into the ZF flag in the RFLAGS register. * ZF = 0 equates to success, and ZF = 1 indicates retry or error. * * This function issues the ENQCMDS instruction to submit data from * kernel space to MMIO space, in a unit of 512 bits. Order of data access * is not guaranteed, nor is a memory barrier performed afterwards. It * returns 0 on success and -EAGAIN on failure. * * Warning: Do not use this helper unless your driver has checked that the * ENQCMDS instruction is supported on the platform and the device accepts * ENQCMDS. */ static inline int enqcmds(void __iomem *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } __iomem *__dst = dst; bool zf; /* * ENQCMDS %(rdx), rax * * See movdir64b()'s comment on operand specification. */ asm volatile(".byte 0xf3, 0x0f, 0x38, 0xf8, 0x02, 0x66, 0x90" CC_SET(z) : CC_OUT(z) (zf), "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); /* Submission failure is indicated via EFLAGS.ZF=1 */ if (zf) return -EAGAIN; return 0; } #endif /* __KERNEL__ */ #endif /* _ASM_X86_SPECIAL_INSNS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_H #define _LINUX_SCHED_H /* * Define 'struct task_struct' and provide the main scheduler * APIs (schedule(), wakeup variants, etc.) */ #include <uapi/linux/sched.h> #include <asm/current.h> #include <linux/pid.h> #include <linux/sem.h> #include <linux/shm.h> #include <linux/kcov.h> #include <linux/mutex.h> #include <linux/plist.h> #include <linux/hrtimer.h> #include <linux/irqflags.h> #include <linux/seccomp.h> #include <linux/nodemask.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <linux/resource.h> #include <linux/latencytop.h> #include <linux/sched/prio.h> #include <linux/sched/types.h> #include <linux/signal_types.h> #include <linux/mm_types_task.h> #include <linux/task_io_accounting.h> #include <linux/posix-timers.h> #include <linux/rseq.h> #include <linux/seqlock.h> #include <linux/kcsan.h> /* task_struct member predeclarations (sorted alphabetically): */ struct audit_context; struct backing_dev_info; struct bio_list; struct blk_plug; struct capture_control; struct cfs_rq; struct fs_struct; struct futex_pi_state; struct io_context; struct mempolicy; struct nameidata; struct nsproxy; struct perf_event_context; struct pid_namespace; struct pipe_inode_info; struct rcu_node; struct reclaim_state; struct robust_list_head; struct root_domain; struct rq; struct sched_attr; struct sched_param; struct seq_file; struct sighand_struct; struct signal_struct; struct task_delay_info; struct task_group; struct io_uring_task; /* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */ /* Used in tsk->state: */ #define TASK_RUNNING 0x0000 #define TASK_INTERRUPTIBLE 0x0001 #define TASK_UNINTERRUPTIBLE 0x0002 #define __TASK_STOPPED 0x0004 #define __TASK_TRACED 0x0008 /* Used in tsk->exit_state: */ #define EXIT_DEAD 0x0010 #define EXIT_ZOMBIE 0x0020 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) /* Used in tsk->state again: */ #define TASK_PARKED 0x0040 #define TASK_DEAD 0x0080 #define TASK_WAKEKILL 0x0100 #define TASK_WAKING 0x0200 #define TASK_NOLOAD 0x0400 #define TASK_NEW 0x0800 #define TASK_STATE_MAX 0x1000 /* Convenience macros for the sake of set_current_state: */ #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) /* Convenience macros for the sake of wake_up(): */ #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) /* get_task_state(): */ #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ TASK_PARKED) #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) #ifdef CONFIG_DEBUG_ATOMIC_SLEEP /* * Special states are those that do not use the normal wait-loop pattern. See * the comment with set_special_state(). */ #define is_special_task_state(state) \ ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) #define __set_current_state(state_value) \ do { \ WARN_ON_ONCE(is_special_task_state(state_value));\ current->task_state_change = _THIS_IP_; \ current->state = (state_value); \ } while (0) #define set_current_state(state_value) \ do { \ WARN_ON_ONCE(is_special_task_state(state_value));\ current->task_state_change = _THIS_IP_; \ smp_store_mb(current->state, (state_value)); \ } while (0) #define set_special_state(state_value) \ do { \ unsigned long flags; /* may shadow */ \ WARN_ON_ONCE(!is_special_task_state(state_value)); \ raw_spin_lock_irqsave(&current->pi_lock, flags); \ current->task_state_change = _THIS_IP_; \ current->state = (state_value); \ raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ } while (0) #else /* * set_current_state() includes a barrier so that the write of current->state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * for (;;) { * set_current_state(TASK_UNINTERRUPTIBLE); * if (CONDITION) * break; * * schedule(); * } * __set_current_state(TASK_RUNNING); * * If the caller does not need such serialisation (because, for instance, the * CONDITION test and condition change and wakeup are under the same lock) then * use __set_current_state(). * * The above is typically ordered against the wakeup, which does: * * CONDITION = 1; * wake_up_state(p, TASK_UNINTERRUPTIBLE); * * where wake_up_state()/try_to_wake_up() executes a full memory barrier before * accessing p->state. * * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). * * However, with slightly different timing the wakeup TASK_RUNNING store can * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not * a problem either because that will result in one extra go around the loop * and our @cond test will save the day. * * Also see the comments of try_to_wake_up(). */ #define __set_current_state(state_value) \ current->state = (state_value) #define set_current_state(state_value) \ smp_store_mb(current->state, (state_value)) /* * set_special_state() should be used for those states when the blocking task * can not use the regular condition based wait-loop. In that case we must * serialize against wakeups such that any possible in-flight TASK_RUNNING stores * will not collide with our state change. */ #define set_special_state(state_value) \ do { \ unsigned long flags; /* may shadow */ \ raw_spin_lock_irqsave(&current->pi_lock, flags); \ current->state = (state_value); \ raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ } while (0) #endif /* Task command name length: */ #define TASK_COMM_LEN 16 extern void scheduler_tick(void); #define MAX_SCHEDULE_TIMEOUT LONG_MAX extern long schedule_timeout(long timeout); extern long schedule_timeout_interruptible(long timeout); extern long schedule_timeout_killable(long timeout); extern long schedule_timeout_uninterruptible(long timeout); extern long schedule_timeout_idle(long timeout); asmlinkage void schedule(void); extern void schedule_preempt_disabled(void); asmlinkage void preempt_schedule_irq(void); extern int __must_check io_schedule_prepare(void); extern void io_schedule_finish(int token); extern long io_schedule_timeout(long timeout); extern void io_schedule(void); /** * struct prev_cputime - snapshot of system and user cputime * @utime: time spent in user mode * @stime: time spent in system mode * @lock: protects the above two fields * * Stores previous user/system time values such that we can guarantee * monotonicity. */ struct prev_cputime { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE u64 utime; u64 stime; raw_spinlock_t lock; #endif }; enum vtime_state { /* Task is sleeping or running in a CPU with VTIME inactive: */ VTIME_INACTIVE = 0, /* Task is idle */ VTIME_IDLE, /* Task runs in kernelspace in a CPU with VTIME active: */ VTIME_SYS, /* Task runs in userspace in a CPU with VTIME active: */ VTIME_USER, /* Task runs as guests in a CPU with VTIME active: */ VTIME_GUEST, }; struct vtime { seqcount_t seqcount; unsigned long long starttime; enum vtime_state state; unsigned int cpu; u64 utime; u64 stime; u64 gtime; }; /* * Utilization clamp constraints. * @UCLAMP_MIN: Minimum utilization * @UCLAMP_MAX: Maximum utilization * @UCLAMP_CNT: Utilization clamp constraints count */ enum uclamp_id { UCLAMP_MIN = 0, UCLAMP_MAX, UCLAMP_CNT }; #ifdef CONFIG_SMP extern struct root_domain def_root_domain; extern struct mutex sched_domains_mutex; #endif struct sched_info { #ifdef CONFIG_SCHED_INFO /* Cumulative counters: */ /* # of times we have run on this CPU: */ unsigned long pcount; /* Time spent waiting on a runqueue: */ unsigned long long run_delay; /* Timestamps: */ /* When did we last run on a CPU? */ unsigned long long last_arrival; /* When were we last queued to run? */ unsigned long long last_queued; #endif /* CONFIG_SCHED_INFO */ }; /* * Integer metrics need fixed point arithmetic, e.g., sched/fair * has a few: load, load_avg, util_avg, freq, and capacity. * * We define a basic fixed point arithmetic range, and then formalize * all these metrics based on that basic range. */ # define SCHED_FIXEDPOINT_SHIFT 10 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) /* Increase resolution of cpu_capacity calculations */ # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) struct load_weight { unsigned long weight; u32 inv_weight; }; /** * struct util_est - Estimation utilization of FAIR tasks * @enqueued: instantaneous estimated utilization of a task/cpu * @ewma: the Exponential Weighted Moving Average (EWMA) * utilization of a task * * Support data structure to track an Exponential Weighted Moving Average * (EWMA) of a FAIR task's utilization. New samples are added to the moving * average each time a task completes an activation. Sample's weight is chosen * so that the EWMA will be relatively insensitive to transient changes to the * task's workload. * * The enqueued attribute has a slightly different meaning for tasks and cpus: * - task: the task's util_avg at last task dequeue time * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU * Thus, the util_est.enqueued of a task represents the contribution on the * estimated utilization of the CPU where that task is currently enqueued. * * Only for tasks we track a moving average of the past instantaneous * estimated utilization. This allows to absorb sporadic drops in utilization * of an otherwise almost periodic task. * * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg * updates. When a task is dequeued, its util_est should not be updated if its * util_avg has not been updated in the meantime. * This information is mapped into the MSB bit of util_est.enqueued at dequeue * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg * for a task) it is safe to use MSB. */ struct util_est { unsigned int enqueued; unsigned int ewma; #define UTIL_EST_WEIGHT_SHIFT 2 #define UTIL_AVG_UNCHANGED 0x80000000 } __attribute__((__aligned__(sizeof(u64)))); /* * The load/runnable/util_avg accumulates an infinite geometric series * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). * * [load_avg definition] * * load_avg = runnable% * scale_load_down(load) * * [runnable_avg definition] * * runnable_avg = runnable% * SCHED_CAPACITY_SCALE * * [util_avg definition] * * util_avg = running% * SCHED_CAPACITY_SCALE * * where runnable% is the time ratio that a sched_entity is runnable and * running% the time ratio that a sched_entity is running. * * For cfs_rq, they are the aggregated values of all runnable and blocked * sched_entities. * * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU * capacity scaling. The scaling is done through the rq_clock_pelt that is used * for computing those signals (see update_rq_clock_pelt()) * * N.B., the above ratios (runnable% and running%) themselves are in the * range of [0, 1]. To do fixed point arithmetics, we therefore scale them * to as large a range as necessary. This is for example reflected by * util_avg's SCHED_CAPACITY_SCALE. * * [Overflow issue] * * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities * with the highest load (=88761), always runnable on a single cfs_rq, * and should not overflow as the number already hits PID_MAX_LIMIT. * * For all other cases (including 32-bit kernels), struct load_weight's * weight will overflow first before we do, because: * * Max(load_avg) <= Max(load.weight) * * Then it is the load_weight's responsibility to consider overflow * issues. */ struct sched_avg { u64 last_update_time; u64 load_sum; u64 runnable_sum; u32 util_sum; u32 period_contrib; unsigned long load_avg; unsigned long runnable_avg; unsigned long util_avg; struct util_est util_est; } ____cacheline_aligned; struct sched_statistics { #ifdef CONFIG_SCHEDSTATS u64 wait_start; u64 wait_max; u64 wait_count; u64 wait_sum; u64 iowait_count; u64 iowait_sum; u64 sleep_start; u64 sleep_max; s64 sum_sleep_runtime; u64 block_start; u64 block_max; u64 exec_max; u64 slice_max; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; u64 nr_failed_migrations_hot; u64 nr_forced_migrations; u64 nr_wakeups; u64 nr_wakeups_sync; u64 nr_wakeups_migrate; u64 nr_wakeups_local; u64 nr_wakeups_remote; u64 nr_wakeups_affine; u64 nr_wakeups_affine_attempts; u64 nr_wakeups_passive; u64 nr_wakeups_idle; #endif }; struct sched_entity { /* For load-balancing: */ struct load_weight load; struct rb_node run_node; struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; u64 vruntime; u64 prev_sum_exec_runtime; u64 nr_migrations; struct sched_statistics statistics; #ifdef CONFIG_FAIR_GROUP_SCHED int depth; struct sched_entity *parent; /* rq on which this entity is (to be) queued: */ struct cfs_rq *cfs_rq; /* rq "owned" by this entity/group: */ struct cfs_rq *my_q; /* cached value of my_q->h_nr_running */ unsigned long runnable_weight; #endif #ifdef CONFIG_SMP /* * Per entity load average tracking. * * Put into separate cache line so it does not * collide with read-mostly values above. */ struct sched_avg avg; #endif }; struct sched_rt_entity { struct list_head run_list; unsigned long timeout; unsigned long watchdog_stamp; unsigned int time_slice; unsigned short on_rq; unsigned short on_list; struct sched_rt_entity *back; #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity *parent; /* rq on which this entity is (to be) queued: */ struct rt_rq *rt_rq; /* rq "owned" by this entity/group: */ struct rt_rq *my_q; #endif } __randomize_layout; struct sched_dl_entity { struct rb_node rb_node; /* * Original scheduling parameters. Copied here from sched_attr * during sched_setattr(), they will remain the same until * the next sched_setattr(). */ u64 dl_runtime; /* Maximum runtime for each instance */ u64 dl_deadline; /* Relative deadline of each instance */ u64 dl_period; /* Separation of two instances (period) */ u64 dl_bw; /* dl_runtime / dl_period */ u64 dl_density; /* dl_runtime / dl_deadline */ /* * Actual scheduling parameters. Initialized with the values above, * they are continuously updated during task execution. Note that * the remaining runtime could be < 0 in case we are in overrun. */ s64 runtime; /* Remaining runtime for this instance */ u64 deadline; /* Absolute deadline for this instance */ unsigned int flags; /* Specifying the scheduler behaviour */ /* * Some bool flags: * * @dl_throttled tells if we exhausted the runtime. If so, the * task has to wait for a replenishment to be performed at the * next firing of dl_timer. * * @dl_boosted tells if we are boosted due to DI. If so we are * outside bandwidth enforcement mechanism (but only until we * exit the critical section); * * @dl_yielded tells if task gave up the CPU before consuming * all its available runtime during the last job. * * @dl_non_contending tells if the task is inactive while still * contributing to the active utilization. In other words, it * indicates if the inactive timer has been armed and its handler * has not been executed yet. This flag is useful to avoid race * conditions between the inactive timer handler and the wakeup * code. * * @dl_overrun tells if the task asked to be informed about runtime * overruns. */ unsigned int dl_throttled : 1; unsigned int dl_yielded : 1; unsigned int dl_non_contending : 1; unsigned int dl_overrun : 1; /* * Bandwidth enforcement timer. Each -deadline task has its * own bandwidth to be enforced, thus we need one timer per task. */ struct hrtimer dl_timer; /* * Inactive timer, responsible for decreasing the active utilization * at the "0-lag time". When a -deadline task blocks, it contributes * to GRUB's active utilization until the "0-lag time", hence a * timer is needed to decrease the active utilization at the correct * time. */ struct hrtimer inactive_timer; #ifdef CONFIG_RT_MUTEXES /* * Priority Inheritance. When a DEADLINE scheduling entity is boosted * pi_se points to the donor, otherwise points to the dl_se it belongs * to (the original one/itself). */ struct sched_dl_entity *pi_se; #endif }; #ifdef CONFIG_UCLAMP_TASK /* Number of utilization clamp buckets (shorter alias) */ #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT /* * Utilization clamp for a scheduling entity * @value: clamp value "assigned" to a se * @bucket_id: bucket index corresponding to the "assigned" value * @active: the se is currently refcounted in a rq's bucket * @user_defined: the requested clamp value comes from user-space * * The bucket_id is the index of the clamp bucket matching the clamp value * which is pre-computed and stored to avoid expensive integer divisions from * the fast path. * * The active bit is set whenever a task has got an "effective" value assigned, * which can be different from the clamp value "requested" from user-space. * This allows to know a task is refcounted in the rq's bucket corresponding * to the "effective" bucket_id. * * The user_defined bit is set whenever a task has got a task-specific clamp * value requested from userspace, i.e. the system defaults apply to this task * just as a restriction. This allows to relax default clamps when a less * restrictive task-specific value has been requested, thus allowing to * implement a "nice" semantic. For example, a task running with a 20% * default boost can still drop its own boosting to 0%. */ struct uclamp_se { unsigned int value : bits_per(SCHED_CAPACITY_SCALE); unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); unsigned int active : 1; unsigned int user_defined : 1; }; #endif /* CONFIG_UCLAMP_TASK */ union rcu_special { struct { u8 blocked; u8 need_qs; u8 exp_hint; /* Hint for performance. */ u8 need_mb; /* Readers need smp_mb(). */ } b; /* Bits. */ u32 s; /* Set of bits. */ }; enum perf_event_task_context { perf_invalid_context = -1, perf_hw_context = 0, perf_sw_context, perf_nr_task_contexts, }; struct wake_q_node { struct wake_q_node *next; }; struct task_struct { #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For reasons of header soup (see current_thread_info()), this * must be the first element of task_struct. */ struct thread_info thread_info; #endif /* -1 unrunnable, 0 runnable, >0 stopped: */ volatile long state; /* * This begins the randomizable portion of task_struct. Only * scheduling-critical items should be added above here. */ randomized_struct_fields_start void *stack; refcount_t usage; /* Per task flags (PF_*), defined further below: */ unsigned int flags; unsigned int ptrace; #ifdef CONFIG_SMP int on_cpu; struct __call_single_node wake_entry; #ifdef CONFIG_THREAD_INFO_IN_TASK /* Current CPU: */ unsigned int cpu; #endif unsigned int wakee_flips; unsigned long wakee_flip_decay_ts; struct task_struct *last_wakee; /* * recent_used_cpu is initially set as the last CPU used by a task * that wakes affine another task. Waker/wakee relationships can * push tasks around a CPU where each wakeup moves to the next one. * Tracking a recently used CPU allows a quick search for a recently * used CPU that may be idle. */ int recent_used_cpu; int wake_cpu; #endif int on_rq; int prio; int static_prio; int normal_prio; unsigned int rt_priority; const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; #ifdef CONFIG_CGROUP_SCHED struct task_group *sched_task_group; #endif struct sched_dl_entity dl; #ifdef CONFIG_UCLAMP_TASK /* * Clamp values requested for a scheduling entity. * Must be updated with task_rq_lock() held. */ struct uclamp_se uclamp_req[UCLAMP_CNT]; /* * Effective clamp values used for a scheduling entity. * Must be updated with task_rq_lock() held. */ struct uclamp_se uclamp[UCLAMP_CNT]; #endif #ifdef CONFIG_PREEMPT_NOTIFIERS /* List of struct preempt_notifier: */ struct hlist_head preempt_notifiers; #endif #ifdef CONFIG_BLK_DEV_IO_TRACE unsigned int btrace_seq; #endif unsigned int policy; int nr_cpus_allowed; const cpumask_t *cpus_ptr; cpumask_t cpus_mask; #ifdef CONFIG_PREEMPT_RCU int rcu_read_lock_nesting; union rcu_special rcu_read_unlock_special; struct list_head rcu_node_entry; struct rcu_node *rcu_blocked_node; #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TASKS_RCU unsigned long rcu_tasks_nvcsw; u8 rcu_tasks_holdout; u8 rcu_tasks_idx; int rcu_tasks_idle_cpu; struct list_head rcu_tasks_holdout_list; #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_TRACE_RCU int trc_reader_nesting; int trc_ipi_to_cpu; union rcu_special trc_reader_special; bool trc_reader_checked; struct list_head trc_holdout_list; #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ struct sched_info sched_info; struct list_head tasks; #ifdef CONFIG_SMP struct plist_node pushable_tasks; struct rb_node pushable_dl_tasks; #endif struct mm_struct *mm; struct mm_struct *active_mm; /* Per-thread vma caching: */ struct vmacache vmacache; #ifdef SPLIT_RSS_COUNTING struct task_rss_stat rss_stat; #endif int exit_state; int exit_code; int exit_signal; /* The signal sent when the parent dies: */ int pdeath_signal; /* JOBCTL_*, siglock protected: */ unsigned long jobctl; /* Used for emulating ABI behavior of previous Linux versions: */ unsigned int personality; /* Scheduler bits, serialized by scheduler locks: */ unsigned sched_reset_on_fork:1; unsigned sched_contributes_to_load:1; unsigned sched_migrated:1; #ifdef CONFIG_PSI unsigned sched_psi_wake_requeue:1; #endif /* Force alignment to the next boundary: */ unsigned :0; /* Unserialized, strictly 'current' */ /* * This field must not be in the scheduler word above due to wakelist * queueing no longer being serialized by p->on_cpu. However: * * p->XXX = X; ttwu() * schedule() if (p->on_rq && ..) // false * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true * deactivate_task() ttwu_queue_wakelist()) * p->on_rq = 0; p->sched_remote_wakeup = Y; * * guarantees all stores of 'current' are visible before * ->sched_remote_wakeup gets used, so it can be in this word. */ unsigned sched_remote_wakeup:1; /* Bit to tell LSMs we're in execve(): */ unsigned in_execve:1; unsigned in_iowait:1; #ifndef TIF_RESTORE_SIGMASK unsigned restore_sigmask:1; #endif #ifdef CONFIG_MEMCG unsigned in_user_fault:1; #endif #ifdef CONFIG_COMPAT_BRK unsigned brk_randomized:1; #endif #ifdef CONFIG_CGROUPS /* disallow userland-initiated cgroup migration */ unsigned no_cgroup_migration:1; /* task is frozen/stopped (used by the cgroup freezer) */ unsigned frozen:1; #endif #ifdef CONFIG_BLK_CGROUP unsigned use_memdelay:1; #endif #ifdef CONFIG_PSI /* Stalled due to lack of memory */ unsigned in_memstall:1; #endif unsigned long atomic_flags; /* Flags requiring atomic access. */ struct restart_block restart_block; pid_t pid; pid_t tgid; #ifdef CONFIG_STACKPROTECTOR /* Canary value for the -fstack-protector GCC feature: */ unsigned long stack_canary; #endif /* * Pointers to the (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */ /* Real parent process: */ struct task_struct __rcu *real_parent; /* Recipient of SIGCHLD, wait4() reports: */ struct task_struct __rcu *parent; /* * Children/sibling form the list of natural children: */ struct list_head children; struct list_head sibling; struct task_struct *group_leader; /* * 'ptraced' is the list of tasks this task is using ptrace() on. * * This includes both natural children and PTRACE_ATTACH targets. * 'ptrace_entry' is this task's link on the p->parent->ptraced list. */ struct list_head ptraced; struct list_head ptrace_entry; /* PID/PID hash table linkage. */ struct pid *thread_pid; struct hlist_node pid_links[PIDTYPE_MAX]; struct list_head thread_group; struct list_head thread_node; struct completion *vfork_done; /* CLONE_CHILD_SETTID: */ int __user *set_child_tid; /* CLONE_CHILD_CLEARTID: */ int __user *clear_child_tid; u64 utime; u64 stime; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME u64 utimescaled; u64 stimescaled; #endif u64 gtime; struct prev_cputime prev_cputime; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN struct vtime vtime; #endif #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif /* Context switch counts: */ unsigned long nvcsw; unsigned long nivcsw; /* Monotonic time in nsecs: */ u64 start_time; /* Boot based time in nsecs: */ u64 start_boottime; /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ unsigned long min_flt; unsigned long maj_flt; /* Empty if CONFIG_POSIX_CPUTIMERS=n */ struct posix_cputimers posix_cputimers; #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK struct posix_cputimers_work posix_cputimers_work; #endif /* Process credentials: */ /* Tracer's credentials at attach: */ const struct cred __rcu *ptracer_cred; /* Objective and real subjective task credentials (COW): */ const struct cred __rcu *real_cred; /* Effective (overridable) subjective task credentials (COW): */ const struct cred __rcu *cred; #ifdef CONFIG_KEYS /* Cached requested key. */ struct key *cached_requested_key; #endif /* * executable name, excluding path. * * - normally initialized setup_new_exec() * - access it with [gs]et_task_comm() * - lock it with task_lock() */ char comm[TASK_COMM_LEN]; struct nameidata *nameidata; #ifdef CONFIG_SYSVIPC struct sysv_sem sysvsem; struct sysv_shm sysvshm; #endif #ifdef CONFIG_DETECT_HUNG_TASK unsigned long last_switch_count; unsigned long last_switch_time; #endif /* Filesystem information: */ struct fs_struct *fs; /* Open file information: */ struct files_struct *files; #ifdef CONFIG_IO_URING struct io_uring_task *io_uring; #endif /* Namespaces: */ struct nsproxy *nsproxy; /* Signal handlers: */ struct signal_struct *signal; struct sighand_struct __rcu *sighand; sigset_t blocked; sigset_t real_blocked; /* Restored if set_restore_sigmask() was used: */ sigset_t saved_sigmask; struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; unsigned int sas_ss_flags; struct callback_head *task_works; #ifdef CONFIG_AUDIT #ifdef CONFIG_AUDITSYSCALL struct audit_context *audit_context; #endif kuid_t loginuid; unsigned int sessionid; #endif struct seccomp seccomp; /* Thread group tracking: */ u64 parent_exec_id; u64 self_exec_id; /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ spinlock_t alloc_lock; /* Protection of the PI data structures: */ raw_spinlock_t pi_lock; struct wake_q_node wake_q; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task: */ struct rb_root_cached pi_waiters; /* Updated under owner's pi_lock and rq lock */ struct task_struct *pi_top_task; /* Deadlock detection and priority inheritance handling: */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* Mutex deadlock detection: */ struct mutex_waiter *blocked_on; #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP int non_block_count; #endif #ifdef CONFIG_TRACE_IRQFLAGS struct irqtrace_events irqtrace; unsigned int hardirq_threaded; u64 hardirq_chain_key; int softirqs_enabled; int softirq_context; int irq_config; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[MAX_LOCK_DEPTH]; #endif #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) unsigned int in_ubsan; #endif /* Journalling filesystem info: */ void *journal_info; /* Stacked block device info: */ struct bio_list *bio_list; #ifdef CONFIG_BLOCK /* Stack plugging: */ struct blk_plug *plug; #endif /* VM state: */ struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; #ifdef CONFIG_COMPACTION struct capture_control *capture_control; #endif /* Ptrace state: */ unsigned long ptrace_message; kernel_siginfo_t *last_siginfo; struct task_io_accounting ioac; #ifdef CONFIG_PSI /* Pressure stall state */ unsigned int psi_flags; #endif #ifdef CONFIG_TASK_XACCT /* Accumulated RSS usage: */ u64 acct_rss_mem1; /* Accumulated virtual memory usage: */ u64 acct_vm_mem1; /* stime + utime since last update: */ u64 acct_timexpd; #endif #ifdef CONFIG_CPUSETS /* Protected by ->alloc_lock: */ nodemask_t mems_allowed; /* Seqence number to catch updates: */ seqcount_spinlock_t mems_allowed_seq; int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; #endif #ifdef CONFIG_CGROUPS /* Control Group info protected by css_set_lock: */ struct css_set __rcu *cgroups; /* cg_list protected by css_set_lock and tsk->alloc_lock: */ struct list_head cg_list; #endif #ifdef CONFIG_X86_CPU_RESCTRL u32 closid; u32 rmid; #endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; struct mutex futex_exit_mutex; unsigned int futex_state; #endif #ifdef CONFIG_PERF_EVENTS struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; struct mutex perf_event_mutex; struct list_head perf_event_list; #endif #ifdef CONFIG_DEBUG_PREEMPT unsigned long preempt_disable_ip; #endif #ifdef CONFIG_NUMA /* Protected by alloc_lock: */ struct mempolicy *mempolicy; short il_prev; short pref_node_fork; #endif #ifdef CONFIG_NUMA_BALANCING int numa_scan_seq; unsigned int numa_scan_period; unsigned int numa_scan_period_max; int numa_preferred_nid; unsigned long numa_migrate_retry; /* Migration stamp: */ u64 node_stamp; u64 last_task_numa_placement; u64 last_sum_exec_runtime; struct callback_head numa_work; /* * This pointer is only modified for current in syscall and * pagefault context (and for tasks being destroyed), so it can be read * from any of the following contexts: * - RCU read-side critical section * - current->numa_group from everywhere * - task's runqueue locked, task not running */ struct numa_group __rcu *numa_group; /* * numa_faults is an array split into four regions: * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer * in this precise order. * * faults_memory: Exponential decaying average of faults on a per-node * basis. Scheduling placement decisions are made based on these * counts. The values remain static for the duration of a PTE scan. * faults_cpu: Track the nodes the process was running on when a NUMA * hinting fault was incurred. * faults_memory_buffer and faults_cpu_buffer: Record faults per node * during the current scan window. When the scan completes, the counts * in faults_memory and faults_cpu decay and these values are copied. */ unsigned long *numa_faults; unsigned long total_numa_faults; /* * numa_faults_locality tracks if faults recorded during the last * scan window were remote/local or failed to migrate. The task scan * period is adapted based on the locality of the faults with different * weights depending on whether they were shared or private faults */ unsigned long numa_faults_locality[3]; unsigned long numa_pages_migrated; #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_RSEQ struct rseq __user *rseq; u32 rseq_sig; /* * RmW on rseq_event_mask must be performed atomically * with respect to preemption. */ unsigned long rseq_event_mask; #endif struct tlbflush_unmap_batch tlb_ubc; union { refcount_t rcu_users; struct rcu_head rcu; }; /* Cache last used pipe for splice(): */ struct pipe_inode_info *splice_pipe; struct page_frag task_frag; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; unsigned int fail_nth; #endif /* * When (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for a dirty throttling pause: */ int nr_dirtied; int nr_dirtied_pause; /* Start of a write-and-pause period: */ unsigned long dirty_paused_when; #ifdef CONFIG_LATENCYTOP int latency_record_count; struct latency_record latency_record[LT_SAVECOUNT]; #endif /* * Time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */ u64 timer_slack_ns; u64 default_timer_slack_ns; #ifdef CONFIG_KASAN unsigned int kasan_depth; #endif #ifdef CONFIG_KCSAN struct kcsan_ctx kcsan_ctx; #ifdef CONFIG_TRACE_IRQFLAGS struct irqtrace_events kcsan_save_irqtrace; #endif #endif #if IS_ENABLED(CONFIG_KUNIT) struct kunit *kunit_test; #endif #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Index of current stored address in ret_stack: */ int curr_ret_stack; int curr_ret_depth; /* Stack of return addresses for return function tracing: */ struct ftrace_ret_stack *ret_stack; /* Timestamp for last schedule: */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun: */ atomic_t trace_overrun; /* Pause tracing: */ atomic_t tracing_graph_pause; #endif #ifdef CONFIG_TRACING /* State flags for use by tracers: */ unsigned long trace; /* Bitmask and counter of trace recursion: */ unsigned long trace_recursion; #endif /* CONFIG_TRACING */ #ifdef CONFIG_KCOV /* See kernel/kcov.c for more details. */ /* Coverage collection mode enabled for this task (0 if disabled): */ unsigned int kcov_mode; /* Size of the kcov_area: */ unsigned int kcov_size; /* Buffer for coverage collection: */ void *kcov_area; /* KCOV descriptor wired with this task or NULL: */ struct kcov *kcov; /* KCOV common handle for remote coverage collection: */ u64 kcov_handle; /* KCOV sequence number: */ int kcov_sequence; /* Collect coverage from softirq context: */ unsigned int kcov_softirq; #endif #ifdef CONFIG_MEMCG struct mem_cgroup *memcg_in_oom; gfp_t memcg_oom_gfp_mask; int memcg_oom_order; /* Number of pages to reclaim on returning to userland: */ unsigned int memcg_nr_pages_over_high; /* Used by memcontrol for targeted memcg charge: */ struct mem_cgroup *active_memcg; #endif #ifdef CONFIG_BLK_CGROUP struct request_queue *throttle_queue; #endif #ifdef CONFIG_UPROBES struct uprobe_task *utask; #endif #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) unsigned int sequential_io; unsigned int sequential_io_avg; #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP unsigned long task_state_change; #endif int pagefault_disabled; #ifdef CONFIG_MMU struct task_struct *oom_reaper_list; #endif #ifdef CONFIG_VMAP_STACK struct vm_struct *stack_vm_area; #endif #ifdef CONFIG_THREAD_INFO_IN_TASK /* A live task holds one reference: */ refcount_t stack_refcount; #endif #ifdef CONFIG_LIVEPATCH int patch_state; #endif #ifdef CONFIG_SECURITY /* Used by LSM modules for access restriction: */ void *security; #endif #ifdef CONFIG_GCC_PLUGIN_STACKLEAK unsigned long lowest_stack; unsigned long prev_lowest_stack; #endif #ifdef CONFIG_X86_MCE void __user *mce_vaddr; __u64 mce_kflags; u64 mce_addr; __u64 mce_ripv : 1, mce_whole_page : 1, __mce_reserved : 62; struct callback_head mce_kill_me; int mce_count; #endif /* * New fields for task_struct should be added above here, so that * they are included in the randomized portion of task_struct. */ randomized_struct_fields_end /* CPU-specific state of this task: */ struct thread_struct thread; /* * WARNING: on x86, 'thread_struct' contains a variable-sized * structure. It *MUST* be at the end of 'task_struct'. * * Do not put anything below here! */ }; static inline struct pid *task_pid(struct task_struct *task) { return task->thread_pid; } /* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * see also pid_nr() etc in include/linux/pid.h */ pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); static inline pid_t task_pid_nr(struct task_struct *tsk) { return tsk->pid; } static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); } static inline pid_t task_pid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); } static inline pid_t task_tgid_nr(struct task_struct *tsk) { return tsk->tgid; } /** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. * * Return: 1 if the process is alive. 0 otherwise. */ static inline int pid_alive(const struct task_struct *p) { return p->thread_pid != NULL; } static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); } static inline pid_t task_pgrp_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); } static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); } static inline pid_t task_session_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); } static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); } static inline pid_t task_tgid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); } static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) { pid_t pid = 0; rcu_read_lock(); if (pid_alive(tsk)) pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); rcu_read_unlock(); return pid; } static inline pid_t task_ppid_nr(const struct task_struct *tsk) { return task_ppid_nr_ns(tsk, &init_pid_ns); } /* Obsolete, do not use: */ static inline pid_t task_pgrp_nr(struct task_struct *tsk) { return task_pgrp_nr_ns(tsk, &init_pid_ns); } #define TASK_REPORT_IDLE (TASK_REPORT + 1) #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) static inline unsigned int task_state_index(struct task_struct *tsk) { unsigned int tsk_state = READ_ONCE(tsk->state); unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); if (tsk_state == TASK_IDLE) state = TASK_REPORT_IDLE; return fls(state); } static inline char task_index_to_char(unsigned int state) { static const char state_char[] = "RSDTtXZPI"; BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); return state_char[state]; } static inline char task_state_to_char(struct task_struct *tsk) { return task_index_to_char(task_state_index(tsk)); } /** * is_global_init - check if a task structure is init. Since init * is free to have sub-threads we need to check tgid. * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. * * Return: 1 if the task structure is init. 0 otherwise. */ static inline int is_global_init(struct task_struct *tsk) { return task_tgid_nr(tsk) == 1; } extern struct pid *cad_pid; /* * Per process flags */ #define PF_VCPU 0x00000001 /* I'm a virtual CPU */ #define PF_IDLE 0x00000002 /* I am an IDLE thread */ #define PF_EXITING 0x00000004 /* Getting shut down */ #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ #define PF_DUMPCORE 0x00000200 /* Dumped core */ #define PF_SIGNALED 0x00000400 /* Killed by a signal */ #define PF_MEMALLOC 0x00000800 /* Allocating memory */ #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ #define PF_KSWAPD 0x00020000 /* I am kswapd */ #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, * I am cleaning dirty pages from some other bdi. */ #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ /* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */ #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) #define clear_used_math() clear_stopped_child_used_math(current) #define set_used_math() set_stopped_child_used_math(current) #define conditional_stopped_child_used_math(condition, child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) #define copy_to_stopped_child_used_math(child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) #define used_math() tsk_used_math(current) static __always_inline bool is_percpu_thread(void) { #ifdef CONFIG_SMP return (current->flags & PF_NO_SETAFFINITY) && (current->nr_cpus_allowed == 1); #else return true; #endif } /* Per-process atomic flags. */ #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ #define TASK_PFA_TEST(name, func) \ static inline bool task_##func(struct task_struct *p) \ { return test_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_SET(name, func) \ static inline void task_set_##func(struct task_struct *p) \ { set_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_CLEAR(name, func) \ static inline void task_clear_##func(struct task_struct *p) \ { clear_bit(PFA_##name, &p->atomic_flags); } TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) TASK_PFA_TEST(SPREAD_PAGE, spread_page) TASK_PFA_SET(SPREAD_PAGE, spread_page) TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) TASK_PFA_TEST(SPREAD_SLAB, spread_slab) TASK_PFA_SET(SPREAD_SLAB, spread_slab) TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) static inline void current_restore_flags(unsigned long orig_flags, unsigned long flags) { current->flags &= ~flags; current->flags |= orig_flags & flags; } extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); #ifdef CONFIG_SMP extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); #else static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) { } static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { if (!cpumask_test_cpu(0, new_mask)) return -EINVAL; return 0; } #endif extern int yield_to(struct task_struct *p, bool preempt); extern void set_user_nice(struct task_struct *p, long nice); extern int task_prio(const struct task_struct *p); /** * task_nice - return the nice value of a given task. * @p: the task in question. * * Return: The nice value [ -20 ... 0 ... 19 ]. */ static inline int task_nice(const struct task_struct *p) { return PRIO_TO_NICE((p)->static_prio); } extern int can_nice(const struct task_struct *p, const int nice); extern int task_curr(const struct task_struct *p); extern int idle_cpu(int cpu); extern int available_idle_cpu(int cpu); extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); extern void sched_set_fifo(struct task_struct *p); extern void sched_set_fifo_low(struct task_struct *p); extern void sched_set_normal(struct task_struct *p, int nice); extern int sched_setattr(struct task_struct *, const struct sched_attr *); extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); extern struct task_struct *idle_task(int cpu); /** * is_idle_task - is the specified task an idle task? * @p: the task in question. * * Return: 1 if @p is an idle task. 0 otherwise. */ static __always_inline bool is_idle_task(const struct task_struct *p) { return !!(p->flags & PF_IDLE); } extern struct task_struct *curr_task(int cpu); extern void ia64_set_curr_task(int cpu, struct task_struct *p); void yield(void); union thread_union { #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK struct task_struct task; #endif #ifndef CONFIG_THREAD_INFO_IN_TASK struct thread_info thread_info; #endif unsigned long stack[THREAD_SIZE/sizeof(long)]; }; #ifndef CONFIG_THREAD_INFO_IN_TASK extern struct thread_info init_thread_info; #endif extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; #ifdef CONFIG_THREAD_INFO_IN_TASK static inline struct thread_info *task_thread_info(struct task_struct *task) { return &task->thread_info; } #elif !defined(__HAVE_THREAD_FUNCTIONS) # define task_thread_info(task) ((struct thread_info *)(task)->stack) #endif /* * find a task by one of its numerical ids * * find_task_by_pid_ns(): * finds a task by its pid in the specified namespace * find_task_by_vpid(): * finds a task by its virtual pid * * see also find_vpid() etc in include/linux/pid.h */ extern struct task_struct *find_task_by_vpid(pid_t nr); extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); /* * find a task by its virtual pid and get the task struct */ extern struct task_struct *find_get_task_by_vpid(pid_t nr); extern int wake_up_state(struct task_struct *tsk, unsigned int state); extern int wake_up_process(struct task_struct *tsk); extern void wake_up_new_task(struct task_struct *tsk); #ifdef CONFIG_SMP extern void kick_process(struct task_struct *tsk); #else static inline void kick_process(struct task_struct *tsk) { } #endif extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); static inline void set_task_comm(struct task_struct *tsk, const char *from) { __set_task_comm(tsk, from, false); } extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); #define get_task_comm(buf, tsk) ({ \ BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ __get_task_comm(buf, sizeof(buf), tsk); \ }) #ifdef CONFIG_SMP static __always_inline void scheduler_ipi(void) { /* * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting * TIF_NEED_RESCHED remotely (for the first time) will also send * this IPI. */ preempt_fold_need_resched(); } extern unsigned long wait_task_inactive(struct task_struct *, long match_state); #else static inline void scheduler_ipi(void) { } static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) { return 1; } #endif /* * Set thread flags in other task's structures. * See asm/thread_info.h for TIF_xxxx flags available: */ static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) { set_ti_thread_flag(task_thread_info(tsk), flag); } static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) { clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, bool value) { update_ti_thread_flag(task_thread_info(tsk), flag, value); } static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_ti_thread_flag(task_thread_info(tsk), flag); } static inline void set_tsk_need_resched(struct task_struct *tsk) { set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline void clear_tsk_need_resched(struct task_struct *tsk) { clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline int test_tsk_need_resched(struct task_struct *tsk) { return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); } /* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, */ #ifndef CONFIG_PREEMPTION extern int _cond_resched(void); #else static inline int _cond_resched(void) { return 0; } #endif #define cond_resched() ({ \ ___might_sleep(__FILE__, __LINE__, 0); \ _cond_resched(); \ }) extern int __cond_resched_lock(spinlock_t *lock); #define cond_resched_lock(lock) ({ \ ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ __cond_resched_lock(lock); \ }) static inline void cond_resched_rcu(void) { #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) rcu_read_unlock(); cond_resched(); rcu_read_lock(); #endif } /* * Does a critical section need to be broken due to another * task waiting?: (technically does not depend on CONFIG_PREEMPTION, * but a general need for low latency) */ static inline int spin_needbreak(spinlock_t *lock) { #ifdef CONFIG_PREEMPTION return spin_is_contended(lock); #else return 0; #endif } static __always_inline bool need_resched(void) { return unlikely(tif_need_resched()); } /* * Wrappers for p->thread_info->cpu access. No-op on UP. */ #ifdef CONFIG_SMP static inline unsigned int task_cpu(const struct task_struct *p) { #ifdef CONFIG_THREAD_INFO_IN_TASK return READ_ONCE(p->cpu); #else return READ_ONCE(task_thread_info(p)->cpu); #endif } extern void set_task_cpu(struct task_struct *p, unsigned int cpu); #else static inline unsigned int task_cpu(const struct task_struct *p) { return 0; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } #endif /* CONFIG_SMP */ /* * In order to reduce various lock holder preemption latencies provide an * interface to see if a vCPU is currently running or not. * * This allows us to terminate optimistic spin loops and block, analogous to * the native optimistic spin heuristic of testing if the lock owner task is * running or not. */ #ifndef vcpu_is_preempted static inline bool vcpu_is_preempted(int cpu) { return false; } #endif extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); extern long sched_getaffinity(pid_t pid, struct cpumask *mask); #ifndef TASK_SIZE_OF #define TASK_SIZE_OF(tsk) TASK_SIZE #endif #ifdef CONFIG_RSEQ /* * Map the event mask on the user-space ABI enum rseq_cs_flags * for direct mask checks. */ enum rseq_event_mask_bits { RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, }; enum rseq_event_mask { RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), }; static inline void rseq_set_notify_resume(struct task_struct *t) { if (t->rseq) set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); } void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); static inline void rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) { if (current->rseq) __rseq_handle_notify_resume(ksig, regs); } static inline void rseq_signal_deliver(struct ksignal *ksig, struct pt_regs *regs) { preempt_disable(); __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); preempt_enable(); rseq_handle_notify_resume(ksig, regs); } /* rseq_preempt() requires preemption to be disabled. */ static inline void rseq_preempt(struct task_struct *t) { __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); rseq_set_notify_resume(t); } /* rseq_migrate() requires preemption to be disabled. */ static inline void rseq_migrate(struct task_struct *t) { __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); rseq_set_notify_resume(t); } /* * If parent process has a registered restartable sequences area, the * child inherits. Unregister rseq for a clone with CLONE_VM set. */ static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) { if (clone_flags & CLONE_VM) { t->rseq = NULL; t->rseq_sig = 0; t->rseq_event_mask = 0; } else { t->rseq = current->rseq; t->rseq_sig = current->rseq_sig; t->rseq_event_mask = current->rseq_event_mask; } } static inline void rseq_execve(struct task_struct *t) { t->rseq = NULL; t->rseq_sig = 0; t->rseq_event_mask = 0; } #else static inline void rseq_set_notify_resume(struct task_struct *t) { } static inline void rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) { } static inline void rseq_signal_deliver(struct ksignal *ksig, struct pt_regs *regs) { } static inline void rseq_preempt(struct task_struct *t) { } static inline void rseq_migrate(struct task_struct *t) { } static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) { } static inline void rseq_execve(struct task_struct *t) { } #endif #ifdef CONFIG_DEBUG_RSEQ void rseq_syscall(struct pt_regs *regs); #else static inline void rseq_syscall(struct pt_regs *regs) { } #endif const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); int sched_trace_rq_cpu(struct rq *rq); int sched_trace_rq_cpu_capacity(struct rq *rq); int sched_trace_rq_nr_running(struct rq *rq); const struct cpumask *sched_trace_rd_span(struct root_domain *rd); #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 // SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include <linux/sched/cputime.h> static DEFINE_SPINLOCK(cgroup_rstat_lock); static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) { return per_cpu_ptr(cgrp->rstat_cpu, cpu); } /** * cgroup_rstat_updated - keep track of updated rstat_cpu * @cgrp: target cgroup * @cpu: cpu on which rstat_cpu was updated * * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching * rstat_cpu->updated_children list. See the comment on top of * cgroup_rstat_cpu definition for details. */ void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *parent; unsigned long flags; /* nothing to do for root */ if (!cgroup_parent(cgrp)) return; /* * Speculative already-on-list test. This may race leading to * temporary inaccuracies, which is fine. * * Because @parent's updated_children is terminated with @parent * instead of NULL, we can tell whether @cgrp is on the list by * testing the next pointer for NULL. */ if (cgroup_rstat_cpu(cgrp, cpu)->updated_next) return; raw_spin_lock_irqsave(cpu_lock, flags); /* put @cgrp and all ancestors on the corresponding updated lists */ for (parent = cgroup_parent(cgrp); parent; cgrp = parent, parent = cgroup_parent(cgrp)) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); /* * Both additions and removals are bottom-up. If a cgroup * is already in the tree, all ancestors are. */ if (rstatc->updated_next) break; rstatc->updated_next = prstatc->updated_children; prstatc->updated_children = cgrp; } raw_spin_unlock_irqrestore(cpu_lock, flags); } /** * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree * @pos: current position * @root: root of the tree to traversal * @cpu: target cpu * * Walks the udpated rstat_cpu tree on @cpu from @root. %NULL @pos starts * the traversal and %NULL return indicates the end. During traversal, * each returned cgroup is unlinked from the tree. Must be called with the * matching cgroup_rstat_cpu_lock held. * * The only ordering guarantee is that, for a parent and a child pair * covered by a given traversal, if a child is visited, its parent is * guaranteed to be visited afterwards. */ static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, struct cgroup *root, int cpu) { struct cgroup_rstat_cpu *rstatc; if (pos == root) return NULL; /* * We're gonna walk down to the first leaf and visit/remove it. We * can pick whatever unvisited node as the starting point. */ if (!pos) pos = root; else pos = cgroup_parent(pos); /* walk down to the first leaf */ while (true) { rstatc = cgroup_rstat_cpu(pos, cpu); if (rstatc->updated_children == pos) break; pos = rstatc->updated_children; } /* * Unlink @pos from the tree. As the updated_children list is * singly linked, we have to walk it to find the removal point. * However, due to the way we traverse, @pos will be the first * child in most cases. The only exception is @root. */ if (rstatc->updated_next) { struct cgroup *parent = cgroup_parent(pos); struct cgroup_rstat_cpu *prstatc = cgroup_rstat_cpu(parent, cpu); struct cgroup_rstat_cpu *nrstatc; struct cgroup **nextp; nextp = &prstatc->updated_children; while (true) { nrstatc = cgroup_rstat_cpu(*nextp, cpu); if (*nextp == pos) break; WARN_ON_ONCE(*nextp == parent); nextp = &nrstatc->updated_next; } *nextp = rstatc->updated_next; rstatc->updated_next = NULL; return pos; } /* only happens for @root */ return NULL; } /* see cgroup_rstat_flush() */ static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) { int cpu; lockdep_assert_held(&cgroup_rstat_lock); for_each_possible_cpu(cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup *pos = NULL; raw_spin_lock(cpu_lock); while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { struct cgroup_subsys_state *css; cgroup_base_stat_flush(pos, cpu); rcu_read_lock(); list_for_each_entry_rcu(css, &pos->rstat_css_list, rstat_css_node) css->ss->css_rstat_flush(css, cpu); rcu_read_unlock(); } raw_spin_unlock(cpu_lock); /* if @may_sleep, play nice and yield if necessary */ if (may_sleep && (need_resched() || spin_needbreak(&cgroup_rstat_lock))) { spin_unlock_irq(&cgroup_rstat_lock); if (!cond_resched()) cpu_relax(); spin_lock_irq(&cgroup_rstat_lock); } } } /** * cgroup_rstat_flush - flush stats in @cgrp's subtree * @cgrp: target cgroup * * Collect all per-cpu stats in @cgrp's subtree into the global counters * and propagate them upwards. After this function returns, all cgroups in * the subtree have up-to-date ->stat. * * This also gets all cgroups in the subtree including @cgrp off the * ->updated_children lists. * * This function may block. */ void cgroup_rstat_flush(struct cgroup *cgrp) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); spin_unlock_irq(&cgroup_rstat_lock); } /** * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() * @cgrp: target cgroup * * This function can be called from any context. */ void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) { unsigned long flags; spin_lock_irqsave(&cgroup_rstat_lock, flags); cgroup_rstat_flush_locked(cgrp, false); spin_unlock_irqrestore(&cgroup_rstat_lock, flags); } /** * cgroup_rstat_flush_begin - flush stats in @cgrp's subtree and hold * @cgrp: target cgroup * * Flush stats in @cgrp's subtree and prevent further flushes. Must be * paired with cgroup_rstat_flush_release(). * * This function may block. */ void cgroup_rstat_flush_hold(struct cgroup *cgrp) __acquires(&cgroup_rstat_lock) { might_sleep(); spin_lock_irq(&cgroup_rstat_lock); cgroup_rstat_flush_locked(cgrp, true); } /** * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() */ void cgroup_rstat_flush_release(void) __releases(&cgroup_rstat_lock) { spin_unlock_irq(&cgroup_rstat_lock); } int cgroup_rstat_init(struct cgroup *cgrp) { int cpu; /* the root cgrp has rstat_cpu preallocated */ if (!cgrp->rstat_cpu) { cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); if (!cgrp->rstat_cpu) return -ENOMEM; } /* ->updated_children list is self terminated */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); rstatc->updated_children = cgrp; u64_stats_init(&rstatc->bsync); } return 0; } void cgroup_rstat_exit(struct cgroup *cgrp) { int cpu; cgroup_rstat_flush(cgrp); /* sanity check */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || WARN_ON_ONCE(rstatc->updated_next)) return; } free_percpu(cgrp->rstat_cpu); cgrp->rstat_cpu = NULL; } void __init cgroup_rstat_boot(void) { int cpu; for_each_possible_cpu(cpu) raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); BUG_ON(cgroup_rstat_init(&cgrp_dfl_root.cgrp)); } /* * Functions for cgroup basic resource statistics implemented on top of * rstat. */ static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime += src_bstat->cputime.utime; dst_bstat->cputime.stime += src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime -= src_bstat->cputime.utime; dst_bstat->cputime.stime -= src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; } static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) { struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup_base_stat cur, delta; unsigned seq; /* fetch the current per-cpu values */ do { seq = __u64_stats_fetch_begin(&rstatc->bsync); cur.cputime = rstatc->bstat.cputime; } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); /* propagate percpu delta to global */ delta = cur; cgroup_base_stat_sub(&delta, &rstatc->last_bstat); cgroup_base_stat_add(&cgrp->bstat, &delta); cgroup_base_stat_add(&rstatc->last_bstat, &delta); /* propagate global delta to parent */ if (parent) { delta = cgrp->bstat; cgroup_base_stat_sub(&delta, &cgrp->last_bstat); cgroup_base_stat_add(&parent->bstat, &delta); cgroup_base_stat_add(&cgrp->last_bstat, &delta); } } static struct cgroup_rstat_cpu * cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp) { struct cgroup_rstat_cpu *rstatc; rstatc = get_cpu_ptr(cgrp->rstat_cpu); u64_stats_update_begin(&rstatc->bsync); return rstatc; } static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, struct cgroup_rstat_cpu *rstatc) { u64_stats_update_end(&rstatc->bsync); cgroup_rstat_updated(cgrp, smp_processor_id()); put_cpu_ptr(rstatc); } void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); rstatc->bstat.cputime.sum_exec_runtime += delta_exec; cgroup_base_stat_cputime_account_end(cgrp, rstatc); } void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; rstatc = cgroup_base_stat_cputime_account_begin(cgrp); switch (index) { case CPUTIME_USER: case CPUTIME_NICE: rstatc->bstat.cputime.utime += delta_exec; break; case CPUTIME_SYSTEM: case CPUTIME_IRQ: case CPUTIME_SOFTIRQ: rstatc->bstat.cputime.stime += delta_exec; break; default: break; } cgroup_base_stat_cputime_account_end(cgrp, rstatc); } /* * compute the cputime for the root cgroup by getting the per cpu data * at a global level, then categorizing the fields in a manner consistent * with how it is done by __cgroup_account_cputime_field for each bit of * cpu time attributed to a cgroup. */ static void root_cgroup_cputime(struct task_cputime *cputime) { int i; cputime->stime = 0; cputime->utime = 0; cputime->sum_exec_runtime = 0; for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; u64 *cpustat = kcpustat.cpustat; u64 user = 0; u64 sys = 0; kcpustat_cpu_fetch(&kcpustat, i); user += cpustat[CPUTIME_USER]; user += cpustat[CPUTIME_NICE]; cputime->utime += user; sys += cpustat[CPUTIME_SYSTEM]; sys += cpustat[CPUTIME_IRQ]; sys += cpustat[CPUTIME_SOFTIRQ]; cputime->stime += sys; cputime->sum_exec_runtime += user; cputime->sum_exec_runtime += sys; cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; } } void cgroup_base_stat_cputime_show(struct seq_file *seq) { struct cgroup *cgrp = seq_css(seq)->cgroup; u64 usage, utime, stime; struct task_cputime cputime; if (cgroup_parent(cgrp)) { cgroup_rstat_flush_hold(cgrp); usage = cgrp->bstat.cputime.sum_exec_runtime; cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, &utime, &stime); cgroup_rstat_flush_release(); } else { root_cgroup_cputime(&cputime); usage = cputime.sum_exec_runtime; utime = cputime.utime; stime = cputime.stime; } do_div(usage, NSEC_PER_USEC); do_div(utime, NSEC_PER_USEC); do_div(stime, NSEC_PER_USEC); seq_printf(seq, "usage_usec %llu\n" "user_usec %llu\n" "system_usec %llu\n", usage, utime, stime); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KDEV_T_H #define _LINUX_KDEV_T_H #include <uapi/linux/kdev_t.h> #define MINORBITS 20 #define MINORMASK ((1U << MINORBITS) - 1) #define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS)) #define MINOR(dev) ((unsigned int) ((dev) & MINORMASK)) #define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi)) #define print_dev_t(buffer, dev) \ sprintf((buffer), "%u:%u\n", MAJOR(dev), MINOR(dev)) #define format_dev_t(buffer, dev) \ ({ \ sprintf(buffer, "%u:%u", MAJOR(dev), MINOR(dev)); \ buffer; \ }) /* acceptable for old filesystems */ static __always_inline bool old_valid_dev(dev_t dev) { return MAJOR(dev) < 256 && MINOR(dev) < 256; } static __always_inline u16 old_encode_dev(dev_t dev) { return (MAJOR(dev) << 8) | MINOR(dev); } static __always_inline dev_t old_decode_dev(u16 val) { return MKDEV((val >> 8) & 255, val & 255); } static __always_inline u32 new_encode_dev(dev_t dev) { unsigned major = MAJOR(dev); unsigned minor = MINOR(dev); return (minor & 0xff) | (major << 8) | ((minor & ~0xff) << 12); } static __always_inline dev_t new_decode_dev(u32 dev) { unsigned major = (dev & 0xfff00) >> 8; unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00); return MKDEV(major, minor); } static __always_inline u64 huge_encode_dev(dev_t dev) { return new_encode_dev(dev); } static __always_inline dev_t huge_decode_dev(u64 dev) { return new_decode_dev(dev); } static __always_inline int sysv_valid_dev(dev_t dev) { return MAJOR(dev) < (1<<14) && MINOR(dev) < (1<<18); } static __always_inline u32 sysv_encode_dev(dev_t dev) { return MINOR(dev) | (MAJOR(dev) << 18); } static __always_inline unsigned sysv_major(u32 dev) { return (dev >> 18) & 0x3fff; } static __always_inline unsigned sysv_minor(u32 dev) { return dev & 0x3ffff; } #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BITOPS_H #define _ASM_X86_BITOPS_H /* * Copyright 1992, Linus Torvalds. * * Note: inlines with more than a single statement should be marked * __always_inline to avoid problems with older gcc's inlining heuristics. */ #ifndef _LINUX_BITOPS_H #error only <linux/bitops.h> can be included directly #endif #include <linux/compiler.h> #include <asm/alternative.h> #include <asm/rmwcc.h> #include <asm/barrier.h> #if BITS_PER_LONG == 32 # define _BITOPS_LONG_SHIFT 5 #elif BITS_PER_LONG == 64 # define _BITOPS_LONG_SHIFT 6 #else # error "Unexpected BITS_PER_LONG" #endif #define BIT_64(n) (U64_C(1) << (n)) /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #define RLONG_ADDR(x) "m" (*(volatile long *) (x)) #define WBYTE_ADDR(x) "+m" (*(volatile char *) (x)) #define ADDR RLONG_ADDR(addr) /* * We do the locked ops that don't return the old value as * a mask operation on a byte. */ #define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3)) #define CONST_MASK(nr) (1 << ((nr) & 7)) static __always_inline void arch_set_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "orb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr)) : "memory"); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch___set_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_clear_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "andb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (~CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline void arch_clear_bit_unlock(long nr, volatile unsigned long *addr) { barrier(); arch_clear_bit(nr, addr); } static __always_inline void arch___clear_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline bool arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr) { bool negative; asm volatile(LOCK_PREFIX "andb %2,%1" CC_SET(s) : CC_OUT(s) (negative), WBYTE_ADDR(addr) : "ir" ((char) ~(1 << nr)) : "memory"); return negative; } #define arch_clear_bit_unlock_is_negative_byte \ arch_clear_bit_unlock_is_negative_byte static __always_inline void arch___clear_bit_unlock(long nr, volatile unsigned long *addr) { arch___clear_bit(nr, addr); } static __always_inline void arch___change_bit(long nr, volatile unsigned long *addr) { asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory"); } static __always_inline void arch_change_bit(long nr, volatile unsigned long *addr) { if (__builtin_constant_p(nr)) { asm volatile(LOCK_PREFIX "xorb %b1,%0" : CONST_MASK_ADDR(nr, addr) : "iq" (CONST_MASK(nr))); } else { asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0" : : RLONG_ADDR(addr), "Ir" (nr) : "memory"); } } static __always_inline bool arch_test_and_set_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr); } static __always_inline bool arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr) { return arch_test_and_set_bit(nr, addr); } static __always_inline bool arch___test_and_set_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm(__ASM_SIZE(bts) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_clear_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr); } /* * Note: the operation is performed atomically with respect to * the local CPU, but not other CPUs. Portable code should not * rely on this behaviour. * KVM relies on this behaviour on x86 for modifying memory that is also * accessed from a hypervisor on the same CPU if running in a VM: don't change * this without also updating arch/x86/kernel/kvm.c */ static __always_inline bool arch___test_and_clear_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btr) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch___test_and_change_bit(long nr, volatile unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(btc) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : ADDR, "Ir" (nr) : "memory"); return oldbit; } static __always_inline bool arch_test_and_change_bit(long nr, volatile unsigned long *addr) { return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr); } static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr) { return ((1UL << (nr & (BITS_PER_LONG-1))) & (addr[nr >> _BITOPS_LONG_SHIFT])) != 0; } static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr) { bool oldbit; asm volatile(__ASM_SIZE(bt) " %2,%1" CC_SET(c) : CC_OUT(c) (oldbit) : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory"); return oldbit; } #define arch_test_bit(nr, addr) \ (__builtin_constant_p((nr)) \ ? constant_test_bit((nr), (addr)) \ : variable_test_bit((nr), (addr))) /** * __ffs - find first set bit in word * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static __always_inline unsigned long __ffs(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "rm" (word)); return word; } /** * ffz - find first zero bit in word * @word: The word to search * * Undefined if no zero exists, so code should check against ~0UL first. */ static __always_inline unsigned long ffz(unsigned long word) { asm("rep; bsf %1,%0" : "=r" (word) : "r" (~word)); return word; } /* * __fls: find last set bit in word * @word: The word to search * * Undefined if no set bit exists, so code should check against 0 first. */ static __always_inline unsigned long __fls(unsigned long word) { asm("bsr %1,%0" : "=r" (word) : "rm" (word)); return word; } #undef ADDR #ifdef __KERNEL__ /** * ffs - find first set bit in word * @x: the word to search * * This is defined the same way as the libc and compiler builtin ffs * routines, therefore differs in spirit from the other bitops. * * ffs(value) returns 0 if value is 0 or the position of the first * set bit if value is nonzero. The first (least significant) bit * is at position 1. */ static __always_inline int ffs(int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsfl %1,%0" : "=r" (r) : "rm" (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsfl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "r" (-1)); #else asm("bsfl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls - find last set bit in word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffs, but returns the position of the most significant set bit. * * fls(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 32. */ static __always_inline int fls(unsigned int x) { int r; #ifdef CONFIG_X86_64 /* * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before, except that the * top 32 bits will be cleared. * * We cannot do this on 32 bits because at the very least some * 486 CPUs did not behave this way. */ asm("bsrl %1,%0" : "=r" (r) : "rm" (x), "0" (-1)); #elif defined(CONFIG_X86_CMOV) asm("bsrl %1,%0\n\t" "cmovzl %2,%0" : "=&r" (r) : "rm" (x), "rm" (-1)); #else asm("bsrl %1,%0\n\t" "jnz 1f\n\t" "movl $-1,%0\n" "1:" : "=r" (r) : "rm" (x)); #endif return r + 1; } /** * fls64 - find last set bit in a 64-bit word * @x: the word to search * * This is defined in a similar way as the libc and compiler builtin * ffsll, but returns the position of the most significant set bit. * * fls64(value) returns 0 if value is 0 or the position of the last * set bit if value is nonzero. The last (most significant) bit is * at position 64. */ #ifdef CONFIG_X86_64 static __always_inline int fls64(__u64 x) { int bitpos = -1; /* * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the * dest reg is undefined if x==0, but their CPU architect says its * value is written to set it to the same as before. */ asm("bsrq %1,%q0" : "+r" (bitpos) : "rm" (x)); return bitpos + 1; } #else #include <asm-generic/bitops/fls64.h> #endif #include <asm-generic/bitops/find.h> #include <asm-generic/bitops/sched.h> #include <asm/arch_hweight.h> #include <asm-generic/bitops/const_hweight.h> #include <asm-generic/bitops/instrumented-atomic.h> #include <asm-generic/bitops/instrumented-non-atomic.h> #include <asm-generic/bitops/instrumented-lock.h> #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic-setbit.h> #endif /* __KERNEL__ */ #endif /* _ASM_X86_BITOPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 /* SPDX-License-Identifier: GPL-2.0 */ /* * Dynamic queue limits (dql) - Definitions * * Copyright (c) 2011, Tom Herbert <therbert@google.com> * * This header file contains the definitions for dynamic queue limits (dql). * dql would be used in conjunction with a producer/consumer type queue * (possibly a HW queue). Such a queue would have these general properties: * * 1) Objects are queued up to some limit specified as number of objects. * 2) Periodically a completion process executes which retires consumed * objects. * 3) Starvation occurs when limit has been reached, all queued data has * actually been consumed, but completion processing has not yet run * so queuing new data is blocked. * 4) Minimizing the amount of queued data is desirable. * * The goal of dql is to calculate the limit as the minimum number of objects * needed to prevent starvation. * * The primary functions of dql are: * dql_queued - called when objects are enqueued to record number of objects * dql_avail - returns how many objects are available to be queued based * on the object limit and how many objects are already enqueued * dql_completed - called at completion time to indicate how many objects * were retired from the queue * * The dql implementation does not implement any locking for the dql data * structures, the higher layer should provide this. dql_queued should * be serialized to prevent concurrent execution of the function; this * is also true for dql_completed. However, dql_queued and dlq_completed can * be executed concurrently (i.e. they can be protected by different locks). */ #ifndef _LINUX_DQL_H #define _LINUX_DQL_H #ifdef __KERNEL__ #include <asm/bug.h> struct dql { /* Fields accessed in enqueue path (dql_queued) */ unsigned int num_queued; /* Total ever queued */ unsigned int adj_limit; /* limit + num_completed */ unsigned int last_obj_cnt; /* Count at last queuing */ /* Fields accessed only by completion path (dql_completed) */ unsigned int limit ____cacheline_aligned_in_smp; /* Current limit */ unsigned int num_completed; /* Total ever completed */ unsigned int prev_ovlimit; /* Previous over limit */ unsigned int prev_num_queued; /* Previous queue total */ unsigned int prev_last_obj_cnt; /* Previous queuing cnt */ unsigned int lowest_slack; /* Lowest slack found */ unsigned long slack_start_time; /* Time slacks seen */ /* Configuration */ unsigned int max_limit; /* Max limit */ unsigned int min_limit; /* Minimum limit */ unsigned int slack_hold_time; /* Time to measure slack */ }; /* Set some static maximums */ #define DQL_MAX_OBJECT (UINT_MAX / 16) #define DQL_MAX_LIMIT ((UINT_MAX / 2) - DQL_MAX_OBJECT) /* * Record number of objects queued. Assumes that caller has already checked * availability in the queue with dql_avail. */ static inline void dql_queued(struct dql *dql, unsigned int count) { BUG_ON(count > DQL_MAX_OBJECT); dql->last_obj_cnt = count; /* We want to force a write first, so that cpu do not attempt * to get cache line containing last_obj_cnt, num_queued, adj_limit * in Shared state, but directly does a Request For Ownership * It is only a hint, we use barrier() only. */ barrier(); dql->num_queued += count; } /* Returns how many objects can be queued, < 0 indicates over limit. */ static inline int dql_avail(const struct dql *dql) { return READ_ONCE(dql->adj_limit) - READ_ONCE(dql->num_queued); } /* Record number of completed objects and recalculate the limit. */ void dql_completed(struct dql *dql, unsigned int count); /* Reset dql state */ void dql_reset(struct dql *dql); /* Initialize dql state */ void dql_init(struct dql *dql, unsigned int hold_time); #endif /* _KERNEL_ */ #endif /* _LINUX_DQL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _INET_ECN_H_ #define _INET_ECN_H_ #include <linux/ip.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <net/inet_sock.h> #include <net/dsfield.h> enum { INET_ECN_NOT_ECT = 0, INET_ECN_ECT_1 = 1, INET_ECN_ECT_0 = 2, INET_ECN_CE = 3, INET_ECN_MASK = 3, }; extern int sysctl_tunnel_ecn_log; static inline int INET_ECN_is_ce(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_CE; } static inline int INET_ECN_is_not_ect(__u8 dsfield) { return (dsfield & INET_ECN_MASK) == INET_ECN_NOT_ECT; } static inline int INET_ECN_is_capable(__u8 dsfield) { return dsfield & INET_ECN_ECT_0; } /* * RFC 3168 9.1.1 * The full-functionality option for ECN encapsulation is to copy the * ECN codepoint of the inside header to the outside header on * encapsulation if the inside header is not-ECT or ECT, and to set the * ECN codepoint of the outside header to ECT(0) if the ECN codepoint of * the inside header is CE. */ static inline __u8 INET_ECN_encapsulate(__u8 outer, __u8 inner) { outer &= ~INET_ECN_MASK; outer |= !INET_ECN_is_ce(inner) ? (inner & INET_ECN_MASK) : INET_ECN_ECT_0; return outer; } static inline void INET_ECN_xmit(struct sock *sk) { inet_sk(sk)->tos |= INET_ECN_ECT_0; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass |= INET_ECN_ECT_0; } static inline void INET_ECN_dontxmit(struct sock *sk) { inet_sk(sk)->tos &= ~INET_ECN_MASK; if (inet6_sk(sk) != NULL) inet6_sk(sk)->tclass &= ~INET_ECN_MASK; } #define IP6_ECN_flow_init(label) do { \ (label) &= ~htonl(INET_ECN_MASK << 20); \ } while (0) #define IP6_ECN_flow_xmit(sk, label) do { \ if (INET_ECN_is_capable(inet6_sk(sk)->tclass)) \ (label) |= htonl(INET_ECN_ECT_0 << 20); \ } while (0) static inline int IP_ECN_set_ce(struct iphdr *iph) { u32 check = (__force u32)iph->check; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; /* * After the last operation we have (in binary): * INET_ECN_NOT_ECT => 01 * INET_ECN_ECT_1 => 10 * INET_ECN_ECT_0 => 11 * INET_ECN_CE => 00 */ if (!(ecn & 2)) return !ecn; /* * The following gives us: * INET_ECN_ECT_1 => check += htons(0xFFFD) * INET_ECN_ECT_0 => check += htons(0xFFFE) */ check += (__force u16)htons(0xFFFB) + (__force u16)htons(ecn); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos |= INET_ECN_CE; return 1; } static inline int IP_ECN_set_ect1(struct iphdr *iph) { u32 check = (__force u32)iph->check; if ((iph->tos & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; check += (__force u16)htons(0x1); iph->check = (__force __sum16)(check + (check>=0xFFFF)); iph->tos ^= INET_ECN_MASK; return 1; } static inline void IP_ECN_clear(struct iphdr *iph) { iph->tos &= ~INET_ECN_MASK; } static inline void ipv4_copy_dscp(unsigned int dscp, struct iphdr *inner) { dscp &= ~INET_ECN_MASK; ipv4_change_dsfield(inner, INET_ECN_MASK, dscp); } struct ipv6hdr; /* Note: * IP_ECN_set_ce() has to tweak IPV4 checksum when setting CE, * meaning both changes have no effect on skb->csum if/when CHECKSUM_COMPLETE * In IPv6 case, no checksum compensates the change in IPv6 header, * so we have to update skb->csum. */ static inline int IP6_ECN_set_ce(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) return 0; from = *(__be32 *)iph; to = from | htonl(INET_ECN_CE << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline int IP6_ECN_set_ect1(struct sk_buff *skb, struct ipv6hdr *iph) { __be32 from, to; if ((ipv6_get_dsfield(iph) & INET_ECN_MASK) != INET_ECN_ECT_0) return 0; from = *(__be32 *)iph; to = from ^ htonl(INET_ECN_MASK << 20); *(__be32 *)iph = to; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(csum_sub(skb->csum, (__force __wsum)from), (__force __wsum)to); return 1; } static inline void ipv6_copy_dscp(unsigned int dscp, struct ipv6hdr *inner) { dscp &= ~INET_ECN_MASK; ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); } static inline int INET_ECN_set_ce(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ce(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ce(skb, ipv6_hdr(skb)); break; } return 0; } static inline int INET_ECN_set_ect1(struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): if (skb_network_header(skb) + sizeof(struct iphdr) <= skb_tail_pointer(skb)) return IP_ECN_set_ect1(ip_hdr(skb)); break; case cpu_to_be16(ETH_P_IPV6): if (skb_network_header(skb) + sizeof(struct ipv6hdr) <= skb_tail_pointer(skb)) return IP6_ECN_set_ect1(skb, ipv6_hdr(skb)); break; } return 0; } /* * RFC 6040 4.2 * To decapsulate the inner header at the tunnel egress, a compliant * tunnel egress MUST set the outgoing ECN field to the codepoint at the * intersection of the appropriate arriving inner header (row) and outer * header (column) in Figure 4 * * +---------+------------------------------------------------+ * |Arriving | Arriving Outer Header | * | Inner +---------+------------+------------+------------+ * | Header | Not-ECT | ECT(0) | ECT(1) | CE | * +---------+---------+------------+------------+------------+ * | Not-ECT | Not-ECT |Not-ECT(!!!)|Not-ECT(!!!)| <drop>(!!!)| * | ECT(0) | ECT(0) | ECT(0) | ECT(1) | CE | * | ECT(1) | ECT(1) | ECT(1) (!) | ECT(1) | CE | * | CE | CE | CE | CE(!!!)| CE | * +---------+---------+------------+------------+------------+ * * Figure 4: New IP in IP Decapsulation Behaviour * * returns 0 on success * 1 if something is broken and should be logged (!!! above) * 2 if packet should be dropped */ static inline int __INET_ECN_decapsulate(__u8 outer, __u8 inner, bool *set_ce) { if (INET_ECN_is_not_ect(inner)) { switch (outer & INET_ECN_MASK) { case INET_ECN_NOT_ECT: return 0; case INET_ECN_ECT_0: case INET_ECN_ECT_1: return 1; case INET_ECN_CE: return 2; } } *set_ce = INET_ECN_is_ce(outer); return 0; } static inline int INET_ECN_decapsulate(struct sk_buff *skb, __u8 outer, __u8 inner) { bool set_ce = false; int rc; rc = __INET_ECN_decapsulate(outer, inner, &set_ce); if (!rc) { if (set_ce) INET_ECN_set_ce(skb); else if ((outer & INET_ECN_MASK) == INET_ECN_ECT_1) INET_ECN_set_ect1(skb); } return rc; } static inline int IP_ECN_decapsulate(const struct iphdr *oiph, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, oiph->tos, inner); } static inline int IP6_ECN_decapsulate(const struct ipv6hdr *oipv6h, struct sk_buff *skb) { __u8 inner; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): inner = ip_hdr(skb)->tos; break; case htons(ETH_P_IPV6): inner = ipv6_get_dsfield(ipv6_hdr(skb)); break; default: return 0; } return INET_ECN_decapsulate(skb, ipv6_get_dsfield(oipv6h), inner); } #endif
1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMZONE_H #define _LINUX_MMZONE_H #ifndef __ASSEMBLY__ #ifndef __GENERATING_BOUNDS_H #include <linux/spinlock.h> #include <linux/list.h> #include <linux/wait.h> #include <linux/bitops.h> #include <linux/cache.h> #include <linux/threads.h> #include <linux/numa.h> #include <linux/init.h> #include <linux/seqlock.h> #include <linux/nodemask.h> #include <linux/pageblock-flags.h> #include <linux/page-flags-layout.h> #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/page-flags.h> #include <asm/page.h> /* Free memory management - zoned buddy allocator. */ #ifndef CONFIG_FORCE_MAX_ZONEORDER #define MAX_ORDER 11 #else #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER #endif #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) /* * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed * costly to service. That is between allocation orders which should * coalesce naturally under reasonable reclaim pressure and those which * will not. */ #define PAGE_ALLOC_COSTLY_ORDER 3 enum migratetype { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RECLAIMABLE, MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, #ifdef CONFIG_CMA /* * MIGRATE_CMA migration type is designed to mimic the way * ZONE_MOVABLE works. Only movable pages can be allocated * from MIGRATE_CMA pageblocks and page allocator never * implicitly change migration type of MIGRATE_CMA pageblock. * * The way to use it is to change migratetype of a range of * pageblocks to MIGRATE_CMA which can be done by * __free_pageblock_cma() function. What is important though * is that a range of pageblocks must be aligned to * MAX_ORDER_NR_PAGES should biggest page be bigger then * a single pageblock. */ MIGRATE_CMA, #endif #ifdef CONFIG_MEMORY_ISOLATION MIGRATE_ISOLATE, /* can't allocate from here */ #endif MIGRATE_TYPES }; /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ extern const char * const migratetype_names[MIGRATE_TYPES]; #ifdef CONFIG_CMA # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) #else # define is_migrate_cma(migratetype) false # define is_migrate_cma_page(_page) false #endif static inline bool is_migrate_movable(int mt) { return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; } #define for_each_migratetype_order(order, type) \ for (order = 0; order < MAX_ORDER; order++) \ for (type = 0; type < MIGRATE_TYPES; type++) extern int page_group_by_mobility_disabled; #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) #define get_pageblock_migratetype(page) \ get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) struct free_area { struct list_head free_list[MIGRATE_TYPES]; unsigned long nr_free; }; static inline struct page *get_page_from_free_area(struct free_area *area, int migratetype) { return list_first_entry_or_null(&area->free_list[migratetype], struct page, lru); } static inline bool free_area_empty(struct free_area *area, int migratetype) { return list_empty(&area->free_list[migratetype]); } struct pglist_data; /* * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. * So add a wild amount of padding here to ensure that they fall into separate * cachelines. There are very few zone structures in the machine, so space * consumption is not a concern here. */ #if defined(CONFIG_SMP) struct zone_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define ZONE_PADDING(name) struct zone_padding name; #else #define ZONE_PADDING(name) #endif #ifdef CONFIG_NUMA enum numa_stat_item { NUMA_HIT, /* allocated in intended node */ NUMA_MISS, /* allocated in non intended node */ NUMA_FOREIGN, /* was intended here, hit elsewhere */ NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ NUMA_LOCAL, /* allocation from local node */ NUMA_OTHER, /* allocation from other node */ NR_VM_NUMA_STAT_ITEMS }; #else #define NR_VM_NUMA_STAT_ITEMS 0 #endif enum zone_stat_item { /* First 128 byte cacheline (assuming 64 bit words) */ NR_FREE_PAGES, NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, NR_ZONE_ACTIVE_ANON, NR_ZONE_INACTIVE_FILE, NR_ZONE_ACTIVE_FILE, NR_ZONE_UNEVICTABLE, NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ NR_MLOCK, /* mlock()ed pages found and moved off LRU */ NR_PAGETABLE, /* used for pagetables */ /* Second 128 byte cacheline */ NR_BOUNCE, #if IS_ENABLED(CONFIG_ZSMALLOC) NR_ZSPAGES, /* allocated in zsmalloc */ #endif NR_FREE_CMA_PAGES, NR_VM_ZONE_STAT_ITEMS }; enum node_stat_item { NR_LRU_BASE, NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ NR_ACTIVE_ANON, /* " " " " " */ NR_INACTIVE_FILE, /* " " " " " */ NR_ACTIVE_FILE, /* " " " " " */ NR_UNEVICTABLE, /* " " " " " */ NR_SLAB_RECLAIMABLE_B, NR_SLAB_UNRECLAIMABLE_B, NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ WORKINGSET_NODES, WORKINGSET_REFAULT_BASE, WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, WORKINGSET_REFAULT_FILE, WORKINGSET_ACTIVATE_BASE, WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, WORKINGSET_ACTIVATE_FILE, WORKINGSET_RESTORE_BASE, WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, WORKINGSET_RESTORE_FILE, WORKINGSET_NODERECLAIM, NR_ANON_MAPPED, /* Mapped anonymous pages */ NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. only modified from process context */ NR_FILE_PAGES, NR_FILE_DIRTY, NR_WRITEBACK, NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ NR_SHMEM_THPS, NR_SHMEM_PMDMAPPED, NR_FILE_THPS, NR_FILE_PMDMAPPED, NR_ANON_THPS, NR_VMSCAN_WRITE, NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ NR_DIRTIED, /* page dirtyings since bootup */ NR_WRITTEN, /* page writings since bootup */ NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ NR_KERNEL_STACK_KB, /* measured in KiB */ #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) NR_KERNEL_SCS_KB, /* measured in KiB */ #endif NR_VM_NODE_STAT_ITEMS }; /* * Returns true if the value is measured in bytes (most vmstat values are * measured in pages). This defines the API part, the internal representation * might be different. */ static __always_inline bool vmstat_item_in_bytes(int idx) { /* * Global and per-node slab counters track slab pages. * It's expected that changes are multiples of PAGE_SIZE. * Internally values are stored in pages. * * Per-memcg and per-lruvec counters track memory, consumed * by individual slab objects. These counters are actually * byte-precise. */ return (idx == NR_SLAB_RECLAIMABLE_B || idx == NR_SLAB_UNRECLAIMABLE_B); } /* * We do arithmetic on the LRU lists in various places in the code, * so it is important to keep the active lists LRU_ACTIVE higher in * the array than the corresponding inactive lists, and to keep * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. * * This has to be kept in sync with the statistics in zone_stat_item * above and the descriptions in vmstat_text in mm/vmstat.c */ #define LRU_BASE 0 #define LRU_ACTIVE 1 #define LRU_FILE 2 enum lru_list { LRU_INACTIVE_ANON = LRU_BASE, LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, LRU_UNEVICTABLE, NR_LRU_LISTS }; #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) static inline bool is_file_lru(enum lru_list lru) { return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); } static inline bool is_active_lru(enum lru_list lru) { return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); } #define ANON_AND_FILE 2 enum lruvec_flags { LRUVEC_CONGESTED, /* lruvec has many dirty pages * backed by a congested BDI */ }; struct lruvec { struct list_head lists[NR_LRU_LISTS]; /* * These track the cost of reclaiming one LRU - file or anon - * over the other. As the observed cost of reclaiming one LRU * increases, the reclaim scan balance tips toward the other. */ unsigned long anon_cost; unsigned long file_cost; /* Non-resident age, driven by LRU movement */ atomic_long_t nonresident_age; /* Refaults at the time of last reclaim cycle */ unsigned long refaults[ANON_AND_FILE]; /* Various lruvec state flags (enum lruvec_flags) */ unsigned long flags; #ifdef CONFIG_MEMCG struct pglist_data *pgdat; #endif }; /* Isolate unmapped pages */ #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) /* Isolate for asynchronous migration */ #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) /* Isolate unevictable pages */ #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) /* LRU Isolation modes. */ typedef unsigned __bitwise isolate_mode_t; enum zone_watermarks { WMARK_MIN, WMARK_LOW, WMARK_HIGH, NR_WMARK }; #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) struct per_cpu_pages { int count; /* number of pages in the list */ int high; /* high watermark, emptying needed */ int batch; /* chunk size for buddy add/remove */ /* Lists of pages, one per migrate type stored on the pcp-lists */ struct list_head lists[MIGRATE_PCPTYPES]; }; struct per_cpu_pageset { struct per_cpu_pages pcp; #ifdef CONFIG_NUMA s8 expire; u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; #endif #ifdef CONFIG_SMP s8 stat_threshold; s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; #endif }; struct per_cpu_nodestat { s8 stat_threshold; s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; }; #endif /* !__GENERATING_BOUNDS.H */ enum zone_type { /* * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able * to DMA to all of the addressable memory (ZONE_NORMAL). * On architectures where this area covers the whole 32 bit address * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller * DMA addressing constraints. This distinction is important as a 32bit * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit * platforms may need both zones as they support peripherals with * different DMA addressing limitations. */ #ifdef CONFIG_ZONE_DMA ZONE_DMA, #endif #ifdef CONFIG_ZONE_DMA32 ZONE_DMA32, #endif /* * Normal addressable memory is in ZONE_NORMAL. DMA operations can be * performed on pages in ZONE_NORMAL if the DMA devices support * transfers to all addressable memory. */ ZONE_NORMAL, #ifdef CONFIG_HIGHMEM /* * A memory area that is only addressable by the kernel through * mapping portions into its own address space. This is for example * used by i386 to allow the kernel to address the memory beyond * 900MB. The kernel will set up special mappings (page * table entries on i386) for each page that the kernel needs to * access. */ ZONE_HIGHMEM, #endif /* * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains * movable pages with few exceptional cases described below. Main use * cases for ZONE_MOVABLE are to make memory offlining/unplug more * likely to succeed, and to locally limit unmovable allocations - e.g., * to increase the number of THP/huge pages. Notable special cases are: * * 1. Pinned pages: (long-term) pinning of movable pages might * essentially turn such pages unmovable. Memory offlining might * retry a long time. * 2. memblock allocations: kernelcore/movablecore setups might create * situations where ZONE_MOVABLE contains unmovable allocations * after boot. Memory offlining and allocations fail early. * 3. Memory holes: kernelcore/movablecore setups might create very rare * situations where ZONE_MOVABLE contains memory holes after boot, * for example, if we have sections that are only partially * populated. Memory offlining and allocations fail early. * 4. PG_hwpoison pages: while poisoned pages can be skipped during * memory offlining, such pages cannot be allocated. * 5. Unmovable PG_offline pages: in paravirtualized environments, * hotplugged memory blocks might only partially be managed by the * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The * parts not manged by the buddy are unmovable PG_offline pages. In * some cases (virtio-mem), such pages can be skipped during * memory offlining, however, cannot be moved/allocated. These * techniques might use alloc_contig_range() to hide previously * exposed pages from the buddy again (e.g., to implement some sort * of memory unplug in virtio-mem). * * In general, no unmovable allocations that degrade memory offlining * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) * have to expect that migrating pages in ZONE_MOVABLE can fail (even * if has_unmovable_pages() states that there are no unmovable pages, * there can be false negatives). */ ZONE_MOVABLE, #ifdef CONFIG_ZONE_DEVICE ZONE_DEVICE, #endif __MAX_NR_ZONES }; #ifndef __GENERATING_BOUNDS_H #define ASYNC_AND_SYNC 2 struct zone { /* Read-mostly fields */ /* zone watermarks, access with *_wmark_pages(zone) macros */ unsigned long _watermark[NR_WMARK]; unsigned long watermark_boost; unsigned long nr_reserved_highatomic; /* * We don't know if the memory that we're going to allocate will be * freeable or/and it will be released eventually, so to avoid totally * wasting several GB of ram we must reserve some of the lower zone * memory (otherwise we risk to run OOM on the lower zones despite * there being tons of freeable ram on the higher zones). This array is * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl * changes. */ long lowmem_reserve[MAX_NR_ZONES]; #ifdef CONFIG_NEED_MULTIPLE_NODES int node; #endif struct pglist_data *zone_pgdat; struct per_cpu_pageset __percpu *pageset; #ifndef CONFIG_SPARSEMEM /* * Flags for a pageblock_nr_pages block. See pageblock-flags.h. * In SPARSEMEM, this map is stored in struct mem_section */ unsigned long *pageblock_flags; #endif /* CONFIG_SPARSEMEM */ /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ unsigned long zone_start_pfn; /* * spanned_pages is the total pages spanned by the zone, including * holes, which is calculated as: * spanned_pages = zone_end_pfn - zone_start_pfn; * * present_pages is physical pages existing within the zone, which * is calculated as: * present_pages = spanned_pages - absent_pages(pages in holes); * * managed_pages is present pages managed by the buddy system, which * is calculated as (reserved_pages includes pages allocated by the * bootmem allocator): * managed_pages = present_pages - reserved_pages; * * So present_pages may be used by memory hotplug or memory power * management logic to figure out unmanaged pages by checking * (present_pages - managed_pages). And managed_pages should be used * by page allocator and vm scanner to calculate all kinds of watermarks * and thresholds. * * Locking rules: * * zone_start_pfn and spanned_pages are protected by span_seqlock. * It is a seqlock because it has to be read outside of zone->lock, * and it is done in the main allocator path. But, it is written * quite infrequently. * * The span_seq lock is declared along with zone->lock because it is * frequently read in proximity to zone->lock. It's good to * give them a chance of being in the same cacheline. * * Write access to present_pages at runtime should be protected by * mem_hotplug_begin/end(). Any reader who can't tolerant drift of * present_pages should get_online_mems() to get a stable value. */ atomic_long_t managed_pages; unsigned long spanned_pages; unsigned long present_pages; const char *name; #ifdef CONFIG_MEMORY_ISOLATION /* * Number of isolated pageblock. It is used to solve incorrect * freepage counting problem due to racy retrieving migratetype * of pageblock. Protected by zone->lock. */ unsigned long nr_isolate_pageblock; #endif #ifdef CONFIG_MEMORY_HOTPLUG /* see spanned/present_pages for more description */ seqlock_t span_seqlock; #endif int initialized; /* Write-intensive fields used from the page allocator */ ZONE_PADDING(_pad1_) /* free areas of different sizes */ struct free_area free_area[MAX_ORDER]; /* zone flags, see below */ unsigned long flags; /* Primarily protects free_area */ spinlock_t lock; /* Write-intensive fields used by compaction and vmstats. */ ZONE_PADDING(_pad2_) /* * When free pages are below this point, additional steps are taken * when reading the number of free pages to avoid per-cpu counter * drift allowing watermarks to be breached */ unsigned long percpu_drift_mark; #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* pfn where compaction free scanner should start */ unsigned long compact_cached_free_pfn; /* pfn where compaction migration scanner should start */ unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; unsigned long compact_init_migrate_pfn; unsigned long compact_init_free_pfn; #endif #ifdef CONFIG_COMPACTION /* * On compaction failure, 1<<compact_defer_shift compactions * are skipped before trying again. The number attempted since * last failure is tracked with compact_considered. * compact_order_failed is the minimum compaction failed order. */ unsigned int compact_considered; unsigned int compact_defer_shift; int compact_order_failed; #endif #if defined CONFIG_COMPACTION || defined CONFIG_CMA /* Set to true when the PG_migrate_skip bits should be cleared */ bool compact_blockskip_flush; #endif bool contiguous; ZONE_PADDING(_pad3_) /* Zone statistics */ atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; } ____cacheline_internodealigned_in_smp; enum pgdat_flags { PGDAT_DIRTY, /* reclaim scanning has recently found * many dirty file pages at the tail * of the LRU. */ PGDAT_WRITEBACK, /* reclaim scanning has recently found * many pages under writeback */ PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ }; enum zone_flags { ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. * Cleared when kswapd is woken. */ }; static inline unsigned long zone_managed_pages(struct zone *zone) { return (unsigned long)atomic_long_read(&zone->managed_pages); } static inline unsigned long zone_end_pfn(const struct zone *zone) { return zone->zone_start_pfn + zone->spanned_pages; } static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) { return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); } static inline bool zone_is_initialized(struct zone *zone) { return zone->initialized; } static inline bool zone_is_empty(struct zone *zone) { return zone->spanned_pages == 0; } /* * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty * intersection with the given zone */ static inline bool zone_intersects(struct zone *zone, unsigned long start_pfn, unsigned long nr_pages) { if (zone_is_empty(zone)) return false; if (start_pfn >= zone_end_pfn(zone) || start_pfn + nr_pages <= zone->zone_start_pfn) return false; return true; } /* * The "priority" of VM scanning is how much of the queues we will scan in one * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the * queues ("queue_length >> 12") during an aging round. */ #define DEF_PRIORITY 12 /* Maximum number of zones on a zonelist */ #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) enum { ZONELIST_FALLBACK, /* zonelist with fallback */ #ifdef CONFIG_NUMA /* * The NUMA zonelists are doubled because we need zonelists that * restrict the allocations to a single node for __GFP_THISNODE. */ ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ #endif MAX_ZONELISTS }; /* * This struct contains information about a zone in a zonelist. It is stored * here to avoid dereferences into large structures and lookups of tables */ struct zoneref { struct zone *zone; /* Pointer to actual zone */ int zone_idx; /* zone_idx(zoneref->zone) */ }; /* * One allocation request operates on a zonelist. A zonelist * is a list of zones, the first one is the 'goal' of the * allocation, the other zones are fallback zones, in decreasing * priority. * * To speed the reading of the zonelist, the zonerefs contain the zone index * of the entry being read. Helper functions to access information given * a struct zoneref are * * zonelist_zone() - Return the struct zone * for an entry in _zonerefs * zonelist_zone_idx() - Return the index of the zone for an entry * zonelist_node_idx() - Return the index of the node for an entry */ struct zonelist { struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; }; #ifndef CONFIG_DISCONTIGMEM /* The array of struct pages - for discontigmem use pgdat->lmem_map */ extern struct page *mem_map; #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split { spinlock_t split_queue_lock; struct list_head split_queue; unsigned long split_queue_len; }; #endif /* * On NUMA machines, each NUMA node would have a pg_data_t to describe * it's memory layout. On UMA machines there is a single pglist_data which * describes the whole memory. * * Memory statistics and page replacement data structures are maintained on a * per-zone basis. */ typedef struct pglist_data { /* * node_zones contains just the zones for THIS node. Not all of the * zones may be populated, but it is the full list. It is referenced by * this node's node_zonelists as well as other node's node_zonelists. */ struct zone node_zones[MAX_NR_ZONES]; /* * node_zonelists contains references to all zones in all nodes. * Generally the first zones will be references to this node's * node_zones. */ struct zonelist node_zonelists[MAX_ZONELISTS]; int nr_zones; /* number of populated zones in this node */ #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ struct page *node_mem_map; #ifdef CONFIG_PAGE_EXTENSION struct page_ext *node_page_ext; #endif #endif #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) /* * Must be held any time you expect node_start_pfn, * node_present_pages, node_spanned_pages or nr_zones to stay constant. * Also synchronizes pgdat->first_deferred_pfn during deferred page * init. * * pgdat_resize_lock() and pgdat_resize_unlock() are provided to * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. * * Nests above zone->lock and zone->span_seqlock */ spinlock_t node_size_lock; #endif unsigned long node_start_pfn; unsigned long node_present_pages; /* total number of physical pages */ unsigned long node_spanned_pages; /* total size of physical page range, including holes */ int node_id; wait_queue_head_t kswapd_wait; wait_queue_head_t pfmemalloc_wait; struct task_struct *kswapd; /* Protected by mem_hotplug_begin/end() */ int kswapd_order; enum zone_type kswapd_highest_zoneidx; int kswapd_failures; /* Number of 'reclaimed == 0' runs */ #ifdef CONFIG_COMPACTION int kcompactd_max_order; enum zone_type kcompactd_highest_zoneidx; wait_queue_head_t kcompactd_wait; struct task_struct *kcompactd; #endif /* * This is a per-node reserve of pages that are not available * to userspace allocations. */ unsigned long totalreserve_pages; #ifdef CONFIG_NUMA /* * node reclaim becomes active if more unmapped pages exist. */ unsigned long min_unmapped_pages; unsigned long min_slab_pages; #endif /* CONFIG_NUMA */ /* Write-intensive fields used by page reclaim */ ZONE_PADDING(_pad1_) spinlock_t lru_lock; #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT /* * If memory initialisation on large machines is deferred then this * is the first PFN that needs to be initialised. */ unsigned long first_deferred_pfn; #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif /* Fields commonly accessed by the page reclaim scanner */ /* * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. * * Use mem_cgroup_lruvec() to look up lruvecs. */ struct lruvec __lruvec; unsigned long flags; ZONE_PADDING(_pad2_) /* Per-node vmstats */ struct per_cpu_nodestat __percpu *per_cpu_nodestats; atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; } pg_data_t; #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) #ifdef CONFIG_FLAT_NODE_MEM_MAP #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) #else #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) #endif #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) { return pgdat->node_start_pfn + pgdat->node_spanned_pages; } static inline bool pgdat_is_empty(pg_data_t *pgdat) { return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; } #include <linux/memory_hotplug.h> void build_all_zonelists(pg_data_t *pgdat); void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, enum zone_type highest_zoneidx); bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags, long free_pages); bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags); bool zone_watermark_ok_safe(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx); /* * Memory initialization context, use to differentiate memory added by * the platform statically or via memory hotplug interface. */ enum meminit_context { MEMINIT_EARLY, MEMINIT_HOTPLUG, }; extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, unsigned long size); extern void lruvec_init(struct lruvec *lruvec); static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) { #ifdef CONFIG_MEMCG return lruvec->pgdat; #else return container_of(lruvec, struct pglist_data, __lruvec); #endif } extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); #ifdef CONFIG_HAVE_MEMORYLESS_NODES int local_memory_node(int node_id); #else static inline int local_memory_node(int node_id) { return node_id; }; #endif /* * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. */ #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) /* * Returns true if a zone has pages managed by the buddy allocator. * All the reclaim decisions have to use this function rather than * populated_zone(). If the whole zone is reserved then we can easily * end up with populated_zone() && !managed_zone(). */ static inline bool managed_zone(struct zone *zone) { return zone_managed_pages(zone); } /* Returns true if a zone has memory */ static inline bool populated_zone(struct zone *zone) { return zone->present_pages; } #ifdef CONFIG_NEED_MULTIPLE_NODES static inline int zone_to_nid(struct zone *zone) { return zone->node; } static inline void zone_set_nid(struct zone *zone, int nid) { zone->node = nid; } #else static inline int zone_to_nid(struct zone *zone) { return 0; } static inline void zone_set_nid(struct zone *zone, int nid) {} #endif extern int movable_zone; #ifdef CONFIG_HIGHMEM static inline int zone_movable_is_highmem(void) { #ifdef CONFIG_NEED_MULTIPLE_NODES return movable_zone == ZONE_HIGHMEM; #else return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; #endif } #endif static inline int is_highmem_idx(enum zone_type idx) { #ifdef CONFIG_HIGHMEM return (idx == ZONE_HIGHMEM || (idx == ZONE_MOVABLE && zone_movable_is_highmem())); #else return 0; #endif } /** * is_highmem - helper function to quickly check if a struct zone is a * highmem zone or not. This is an attempt to keep references * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. * @zone - pointer to struct zone variable */ static inline int is_highmem(struct zone *zone) { #ifdef CONFIG_HIGHMEM return is_highmem_idx(zone_idx(zone)); #else return 0; #endif } /* These two functions are used to setup the per zone pages min values */ struct ctl_table; int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int numa_zonelist_order_handler(struct ctl_table *, int, void *, size_t *, loff_t *); extern int percpu_pagelist_fraction; extern char numa_zonelist_order[]; #define NUMA_ZONELIST_ORDER_LEN 16 #ifndef CONFIG_NEED_MULTIPLE_NODES extern struct pglist_data contig_page_data; #define NODE_DATA(nid) (&contig_page_data) #define NODE_MEM_MAP(nid) mem_map #else /* CONFIG_NEED_MULTIPLE_NODES */ #include <asm/mmzone.h> #endif /* !CONFIG_NEED_MULTIPLE_NODES */ extern struct pglist_data *first_online_pgdat(void); extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); extern struct zone *next_zone(struct zone *zone); /** * for_each_online_pgdat - helper macro to iterate over all online nodes * @pgdat - pointer to a pg_data_t variable */ #define for_each_online_pgdat(pgdat) \ for (pgdat = first_online_pgdat(); \ pgdat; \ pgdat = next_online_pgdat(pgdat)) /** * for_each_zone - helper macro to iterate over all memory zones * @zone - pointer to struct zone variable * * The user only needs to declare the zone variable, for_each_zone * fills it in. */ #define for_each_zone(zone) \ for (zone = (first_online_pgdat())->node_zones; \ zone; \ zone = next_zone(zone)) #define for_each_populated_zone(zone) \ for (zone = (first_online_pgdat())->node_zones; \ zone; \ zone = next_zone(zone)) \ if (!populated_zone(zone)) \ ; /* do nothing */ \ else static inline struct zone *zonelist_zone(struct zoneref *zoneref) { return zoneref->zone; } static inline int zonelist_zone_idx(struct zoneref *zoneref) { return zoneref->zone_idx; } static inline int zonelist_node_idx(struct zoneref *zoneref) { return zone_to_nid(zoneref->zone); } struct zoneref *__next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, nodemask_t *nodes); /** * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point * @z - The cursor used as a starting point for the search * @highest_zoneidx - The zone index of the highest zone to return * @nodes - An optional nodemask to filter the zonelist with * * This function returns the next zone at or below a given zone index that is * within the allowed nodemask using a cursor as the starting point for the * search. The zoneref returned is a cursor that represents the current zone * being examined. It should be advanced by one before calling * next_zones_zonelist again. */ static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, nodemask_t *nodes) { if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) return z; return __next_zones_zonelist(z, highest_zoneidx, nodes); } /** * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist * @zonelist - The zonelist to search for a suitable zone * @highest_zoneidx - The zone index of the highest zone to return * @nodes - An optional nodemask to filter the zonelist with * @return - Zoneref pointer for the first suitable zone found (see below) * * This function returns the first zone at or below a given zone index that is * within the allowed nodemask. The zoneref returned is a cursor that can be * used to iterate the zonelist with next_zones_zonelist by advancing it by * one before calling. * * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is * never NULL). This may happen either genuinely, or due to concurrent nodemask * update due to cpuset modification. */ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, enum zone_type highest_zoneidx, nodemask_t *nodes) { return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes); } /** * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask * @zone - The current zone in the iterator * @z - The current pointer within zonelist->_zonerefs being iterated * @zlist - The zonelist being iterated * @highidx - The zone index of the highest zone to return * @nodemask - Nodemask allowed by the allocator * * This iterator iterates though all zones at or below a given zone index and * within a given nodemask */ #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ zone; \ z = next_zones_zonelist(++z, highidx, nodemask), \ zone = zonelist_zone(z)) #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ for (zone = z->zone; \ zone; \ z = next_zones_zonelist(++z, highidx, nodemask), \ zone = zonelist_zone(z)) /** * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index * @zone - The current zone in the iterator * @z - The current pointer within zonelist->zones being iterated * @zlist - The zonelist being iterated * @highidx - The zone index of the highest zone to return * * This iterator iterates though all zones at or below a given zone index. */ #define for_each_zone_zonelist(zone, z, zlist, highidx) \ for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) #ifdef CONFIG_SPARSEMEM #include <asm/sparsemem.h> #endif #ifdef CONFIG_FLATMEM #define pfn_to_nid(pfn) (0) #endif #ifdef CONFIG_SPARSEMEM /* * SECTION_SHIFT #bits space required to store a section # * * PA_SECTION_SHIFT physical address to/from section number * PFN_SECTION_SHIFT pfn to/from section number */ #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) #define SECTION_BLOCKFLAGS_BITS \ ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS #error Allocator MAX_ORDER exceeds SECTION_SIZE #endif static inline unsigned long pfn_to_section_nr(unsigned long pfn) { return pfn >> PFN_SECTION_SHIFT; } static inline unsigned long section_nr_to_pfn(unsigned long sec) { return sec << PFN_SECTION_SHIFT; } #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) #define SUBSECTION_SHIFT 21 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) #if SUBSECTION_SHIFT > SECTION_SIZE_BITS #error Subsection size exceeds section size #else #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) #endif #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) struct mem_section_usage { #ifdef CONFIG_SPARSEMEM_VMEMMAP DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); #endif /* See declaration of similar field in struct zone */ unsigned long pageblock_flags[0]; }; void subsection_map_init(unsigned long pfn, unsigned long nr_pages); struct page; struct page_ext; struct mem_section { /* * This is, logically, a pointer to an array of struct * pages. However, it is stored with some other magic. * (see sparse.c::sparse_init_one_section()) * * Additionally during early boot we encode node id of * the location of the section here to guide allocation. * (see sparse.c::memory_present()) * * Making it a UL at least makes someone do a cast * before using it wrong. */ unsigned long section_mem_map; struct mem_section_usage *usage; #ifdef CONFIG_PAGE_EXTENSION /* * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use * section. (see page_ext.h about this.) */ struct page_ext *page_ext; unsigned long pad; #endif /* * WARNING: mem_section must be a power-of-2 in size for the * calculation and use of SECTION_ROOT_MASK to make sense. */ }; #ifdef CONFIG_SPARSEMEM_EXTREME #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) #else #define SECTIONS_PER_ROOT 1 #endif #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) #ifdef CONFIG_SPARSEMEM_EXTREME extern struct mem_section **mem_section; #else extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; #endif static inline unsigned long *section_to_usemap(struct mem_section *ms) { return ms->usage->pageblock_flags; } static inline struct mem_section *__nr_to_section(unsigned long nr) { #ifdef CONFIG_SPARSEMEM_EXTREME if (!mem_section) return NULL; #endif if (!mem_section[SECTION_NR_TO_ROOT(nr)]) return NULL; return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; } extern unsigned long __section_nr(struct mem_section *ms); extern size_t mem_section_usage_size(void); /* * We use the lower bits of the mem_map pointer to store * a little bit of information. The pointer is calculated * as mem_map - section_nr_to_pfn(pnum). The result is * aligned to the minimum alignment of the two values: * 1. All mem_map arrays are page-aligned. * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT * lowest bits. PFN_SECTION_SHIFT is arch-specific * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the * worst combination is powerpc with 256k pages, * which results in PFN_SECTION_SHIFT equal 6. * To sum it up, at least 6 bits are available. */ #define SECTION_MARKED_PRESENT (1UL<<0) #define SECTION_HAS_MEM_MAP (1UL<<1) #define SECTION_IS_ONLINE (1UL<<2) #define SECTION_IS_EARLY (1UL<<3) #define SECTION_MAP_LAST_BIT (1UL<<4) #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) #define SECTION_NID_SHIFT 3 static inline struct page *__section_mem_map_addr(struct mem_section *section) { unsigned long map = section->section_mem_map; map &= SECTION_MAP_MASK; return (struct page *)map; } static inline int present_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); } static inline int present_section_nr(unsigned long nr) { return present_section(__nr_to_section(nr)); } static inline int valid_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); } static inline int early_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_IS_EARLY)); } static inline int valid_section_nr(unsigned long nr) { return valid_section(__nr_to_section(nr)); } static inline int online_section(struct mem_section *section) { return (section && (section->section_mem_map & SECTION_IS_ONLINE)); } static inline int online_section_nr(unsigned long nr) { return online_section(__nr_to_section(nr)); } #ifdef CONFIG_MEMORY_HOTPLUG void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); #ifdef CONFIG_MEMORY_HOTREMOVE void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); #endif #endif static inline struct mem_section *__pfn_to_section(unsigned long pfn) { return __nr_to_section(pfn_to_section_nr(pfn)); } extern unsigned long __highest_present_section_nr; static inline int subsection_map_index(unsigned long pfn) { return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; } #ifdef CONFIG_SPARSEMEM_VMEMMAP static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { int idx = subsection_map_index(pfn); return test_bit(idx, ms->usage->subsection_map); } #else static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { return 1; } #endif #ifndef CONFIG_HAVE_ARCH_PFN_VALID static inline int pfn_valid(unsigned long pfn) { struct mem_section *ms; if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; ms = __nr_to_section(pfn_to_section_nr(pfn)); if (!valid_section(ms)) return 0; /* * Traditionally early sections always returned pfn_valid() for * the entire section-sized span. */ return early_section(ms) || pfn_section_valid(ms, pfn); } #endif static inline int pfn_in_present_section(unsigned long pfn) { if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; return present_section(__nr_to_section(pfn_to_section_nr(pfn))); } static inline unsigned long next_present_section_nr(unsigned long section_nr) { while (++section_nr <= __highest_present_section_nr) { if (present_section_nr(section_nr)) return section_nr; } return -1; } /* * These are _only_ used during initialisation, therefore they * can use __initdata ... They could have names to indicate * this restriction. */ #ifdef CONFIG_NUMA #define pfn_to_nid(pfn) \ ({ \ unsigned long __pfn_to_nid_pfn = (pfn); \ page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ }) #else #define pfn_to_nid(pfn) (0) #endif void sparse_init(void); #else #define sparse_init() do {} while (0) #define sparse_index_init(_sec, _nid) do {} while (0) #define pfn_in_present_section pfn_valid #define subsection_map_init(_pfn, _nr_pages) do {} while (0) #endif /* CONFIG_SPARSEMEM */ /* * During memory init memblocks map pfns to nids. The search is expensive and * this caches recent lookups. The implementation of __early_pfn_to_nid * may treat start/end as pfns or sections. */ struct mminit_pfnnid_cache { unsigned long last_start; unsigned long last_end; int last_nid; }; /* * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we * need to check pfn validity within that MAX_ORDER_NR_PAGES block. * pfn_valid_within() should be used in this case; we optimise this away * when we have no holes within a MAX_ORDER_NR_PAGES block. */ #ifdef CONFIG_HOLES_IN_ZONE #define pfn_valid_within(pfn) pfn_valid(pfn) #else #define pfn_valid_within(pfn) (1) #endif #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL /* * pfn_valid() is meant to be able to tell if a given PFN has valid memmap * associated with it or not. This means that a struct page exists for this * pfn. The caller cannot assume the page is fully initialized in general. * Hotplugable pages might not have been onlined yet. pfn_to_online_page() * will ensure the struct page is fully online and initialized. Special pages * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. * * In FLATMEM, it is expected that holes always have valid memmap as long as * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed * that a valid section has a memmap for the entire section. * * However, an ARM, and maybe other embedded architectures in the future * free memmap backing holes to save memory on the assumption the memmap is * never used. The page_zone linkages are then broken even though pfn_valid() * returns true. A walker of the full memmap must then do this additional * check to ensure the memmap they are looking at is sane by making sure * the zone and PFN linkages are still valid. This is expensive, but walkers * of the full memmap are extremely rare. */ bool memmap_valid_within(unsigned long pfn, struct page *page, struct zone *zone); #else static inline bool memmap_valid_within(unsigned long pfn, struct page *page, struct zone *zone) { return true; } #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ #endif /* !__GENERATING_BOUNDS.H */ #endif /* !__ASSEMBLY__ */ #endif /* _LINUX_MMZONE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_DEFS_H #define _ASM_X86_PGTABLE_DEFS_H #include <linux/const.h> #include <linux/mem_encrypt.h> #include <asm/page_types.h> #define FIRST_USER_ADDRESS 0UL #define _PAGE_BIT_PRESENT 0 /* is present */ #define _PAGE_BIT_RW 1 /* writeable */ #define _PAGE_BIT_USER 2 /* userspace addressable */ #define _PAGE_BIT_PWT 3 /* page write through */ #define _PAGE_BIT_PCD 4 /* page cache disabled */ #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */ #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */ #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ #define _PAGE_BIT_PAT 7 /* on 4KB pages */ #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ #define _PAGE_BIT_SOFTW1 9 /* available for programmer */ #define _PAGE_BIT_SOFTW2 10 /* " */ #define _PAGE_BIT_SOFTW3 11 /* " */ #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */ #define _PAGE_BIT_SOFTW4 58 /* available for programmer */ #define _PAGE_BIT_PKEY_BIT0 59 /* Protection Keys, bit 1/4 */ #define _PAGE_BIT_PKEY_BIT1 60 /* Protection Keys, bit 2/4 */ #define _PAGE_BIT_PKEY_BIT2 61 /* Protection Keys, bit 3/4 */ #define _PAGE_BIT_PKEY_BIT3 62 /* Protection Keys, bit 4/4 */ #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ #define _PAGE_BIT_SPECIAL _PAGE_BIT_SOFTW1 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_SOFTW1 #define _PAGE_BIT_UFFD_WP _PAGE_BIT_SOFTW2 /* userfaultfd wrprotected */ #define _PAGE_BIT_SOFT_DIRTY _PAGE_BIT_SOFTW3 /* software dirty tracking */ #define _PAGE_BIT_DEVMAP _PAGE_BIT_SOFTW4 /* If _PAGE_BIT_PRESENT is clear, we use these: */ /* - if the user mapped it with PROT_NONE; pte_present gives true */ #define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT) #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW) #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER) #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT) #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD) #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED) #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY) #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE) #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL) #define _PAGE_SOFTW1 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW1) #define _PAGE_SOFTW2 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW2) #define _PAGE_SOFTW3 (_AT(pteval_t, 1) << _PAGE_BIT_SOFTW3) #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT) #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL) #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST) #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS #define _PAGE_PKEY_BIT0 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT0) #define _PAGE_PKEY_BIT1 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT1) #define _PAGE_PKEY_BIT2 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT2) #define _PAGE_PKEY_BIT3 (_AT(pteval_t, 1) << _PAGE_BIT_PKEY_BIT3) #else #define _PAGE_PKEY_BIT0 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT1 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT2 (_AT(pteval_t, 0)) #define _PAGE_PKEY_BIT3 (_AT(pteval_t, 0)) #endif #define _PAGE_PKEY_MASK (_PAGE_PKEY_BIT0 | \ _PAGE_PKEY_BIT1 | \ _PAGE_PKEY_BIT2 | \ _PAGE_PKEY_BIT3) #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_KNL_ERRATUM_MASK (_PAGE_DIRTY | _PAGE_ACCESSED) #else #define _PAGE_KNL_ERRATUM_MASK 0 #endif #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SOFT_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_SOFT_DIRTY) #else #define _PAGE_SOFT_DIRTY (_AT(pteval_t, 0)) #endif /* * Tracking soft dirty bit when a page goes to a swap is tricky. * We need a bit which can be stored in pte _and_ not conflict * with swap entry format. On x86 bits 1-4 are *not* involved * into swap entry computation, but bit 7 is used for thp migration, * so we borrow bit 1 for soft dirty tracking. * * Please note that this bit must be treated as swap dirty page * mark if and only if the PTE/PMD has present bit clear! */ #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SWP_SOFT_DIRTY _PAGE_RW #else #define _PAGE_SWP_SOFT_DIRTY (_AT(pteval_t, 0)) #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP #define _PAGE_UFFD_WP (_AT(pteval_t, 1) << _PAGE_BIT_UFFD_WP) #define _PAGE_SWP_UFFD_WP _PAGE_USER #else #define _PAGE_UFFD_WP (_AT(pteval_t, 0)) #define _PAGE_SWP_UFFD_WP (_AT(pteval_t, 0)) #endif #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX) #define _PAGE_DEVMAP (_AT(u64, 1) << _PAGE_BIT_DEVMAP) #else #define _PAGE_NX (_AT(pteval_t, 0)) #define _PAGE_DEVMAP (_AT(pteval_t, 0)) #endif #define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE) /* * Set of bits not changed in pte_modify. The pte's * protection key is treated like _PAGE_RW, for * instance, and is *not* included in this mask since * pte_modify() does modify it. */ #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \ _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY | \ _PAGE_SOFT_DIRTY | _PAGE_DEVMAP | _PAGE_ENC | \ _PAGE_UFFD_WP) #define _HPAGE_CHG_MASK (_PAGE_CHG_MASK | _PAGE_PSE) /* * The cache modes defined here are used to translate between pure SW usage * and the HW defined cache mode bits and/or PAT entries. * * The resulting bits for PWT, PCD and PAT should be chosen in a way * to have the WB mode at index 0 (all bits clear). This is the default * right now and likely would break too much if changed. */ #ifndef __ASSEMBLY__ enum page_cache_mode { _PAGE_CACHE_MODE_WB = 0, _PAGE_CACHE_MODE_WC = 1, _PAGE_CACHE_MODE_UC_MINUS = 2, _PAGE_CACHE_MODE_UC = 3, _PAGE_CACHE_MODE_WT = 4, _PAGE_CACHE_MODE_WP = 5, _PAGE_CACHE_MODE_NUM = 8 }; #endif #define _PAGE_ENC (_AT(pteval_t, sme_me_mask)) #define _PAGE_CACHE_MASK (_PAGE_PWT | _PAGE_PCD | _PAGE_PAT) #define _PAGE_LARGE_CACHE_MASK (_PAGE_PWT | _PAGE_PCD | _PAGE_PAT_LARGE) #define _PAGE_NOCACHE (cachemode2protval(_PAGE_CACHE_MODE_UC)) #define _PAGE_CACHE_WP (cachemode2protval(_PAGE_CACHE_MODE_WP)) #define __PP _PAGE_PRESENT #define __RW _PAGE_RW #define _USR _PAGE_USER #define ___A _PAGE_ACCESSED #define ___D _PAGE_DIRTY #define ___G _PAGE_GLOBAL #define __NX _PAGE_NX #define _ENC _PAGE_ENC #define __WP _PAGE_CACHE_WP #define __NC _PAGE_NOCACHE #define _PSE _PAGE_PSE #define pgprot_val(x) ((x).pgprot) #define __pgprot(x) ((pgprot_t) { (x) } ) #define __pg(x) __pgprot(x) #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) #define PAGE_NONE __pg( 0| 0| 0|___A| 0| 0| 0|___G) #define PAGE_SHARED __pg(__PP|__RW|_USR|___A|__NX| 0| 0| 0) #define PAGE_SHARED_EXEC __pg(__PP|__RW|_USR|___A| 0| 0| 0| 0) #define PAGE_COPY_NOEXEC __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_COPY_EXEC __pg(__PP| 0|_USR|___A| 0| 0| 0| 0) #define PAGE_COPY __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_READONLY __pg(__PP| 0|_USR|___A|__NX| 0| 0| 0) #define PAGE_READONLY_EXEC __pg(__PP| 0|_USR|___A| 0| 0| 0| 0) #define __PAGE_KERNEL (__PP|__RW| 0|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_EXEC (__PP|__RW| 0|___A| 0|___D| 0|___G) #define _KERNPG_TABLE_NOENC (__PP|__RW| 0|___A| 0|___D| 0| 0) #define _KERNPG_TABLE (__PP|__RW| 0|___A| 0|___D| 0| 0| _ENC) #define _PAGE_TABLE_NOENC (__PP|__RW|_USR|___A| 0|___D| 0| 0) #define _PAGE_TABLE (__PP|__RW|_USR|___A| 0|___D| 0| 0| _ENC) #define __PAGE_KERNEL_RO (__PP| 0| 0|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_ROX (__PP| 0| 0|___A| 0|___D| 0|___G) #define __PAGE_KERNEL_NOCACHE (__PP|__RW| 0|___A|__NX|___D| 0|___G| __NC) #define __PAGE_KERNEL_VVAR (__PP| 0|_USR|___A|__NX|___D| 0|___G) #define __PAGE_KERNEL_LARGE (__PP|__RW| 0|___A|__NX|___D|_PSE|___G) #define __PAGE_KERNEL_LARGE_EXEC (__PP|__RW| 0|___A| 0|___D|_PSE|___G) #define __PAGE_KERNEL_WP (__PP|__RW| 0|___A|__NX|___D| 0|___G| __WP) #define __PAGE_KERNEL_IO __PAGE_KERNEL #define __PAGE_KERNEL_IO_NOCACHE __PAGE_KERNEL_NOCACHE #ifndef __ASSEMBLY__ #define __PAGE_KERNEL_ENC (__PAGE_KERNEL | _ENC) #define __PAGE_KERNEL_ENC_WP (__PAGE_KERNEL_WP | _ENC) #define __PAGE_KERNEL_NOENC (__PAGE_KERNEL | 0) #define __PAGE_KERNEL_NOENC_WP (__PAGE_KERNEL_WP | 0) #define __pgprot_mask(x) __pgprot((x) & __default_kernel_pte_mask) #define PAGE_KERNEL __pgprot_mask(__PAGE_KERNEL | _ENC) #define PAGE_KERNEL_NOENC __pgprot_mask(__PAGE_KERNEL | 0) #define PAGE_KERNEL_RO __pgprot_mask(__PAGE_KERNEL_RO | _ENC) #define PAGE_KERNEL_EXEC __pgprot_mask(__PAGE_KERNEL_EXEC | _ENC) #define PAGE_KERNEL_EXEC_NOENC __pgprot_mask(__PAGE_KERNEL_EXEC | 0) #define PAGE_KERNEL_ROX __pgprot_mask(__PAGE_KERNEL_ROX | _ENC) #define PAGE_KERNEL_NOCACHE __pgprot_mask(__PAGE_KERNEL_NOCACHE | _ENC) #define PAGE_KERNEL_LARGE __pgprot_mask(__PAGE_KERNEL_LARGE | _ENC) #define PAGE_KERNEL_LARGE_EXEC __pgprot_mask(__PAGE_KERNEL_LARGE_EXEC | _ENC) #define PAGE_KERNEL_VVAR __pgprot_mask(__PAGE_KERNEL_VVAR | _ENC) #define PAGE_KERNEL_IO __pgprot_mask(__PAGE_KERNEL_IO) #define PAGE_KERNEL_IO_NOCACHE __pgprot_mask(__PAGE_KERNEL_IO_NOCACHE) #endif /* __ASSEMBLY__ */ /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_EXEC #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_EXEC #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED_EXEC #define __S111 PAGE_SHARED_EXEC /* * early identity mapping pte attrib macros. */ #ifdef CONFIG_X86_64 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC #else #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */ #define PDE_IDENT_ATTR 0x063 /* PRESENT+RW+DIRTY+ACCESSED */ #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */ #endif #ifdef CONFIG_X86_32 # include <asm/pgtable_32_types.h> #else # include <asm/pgtable_64_types.h> #endif #ifndef __ASSEMBLY__ #include <linux/types.h> /* Extracts the PFN from a (pte|pmd|pud|pgd)val_t of a 4KB page */ #define PTE_PFN_MASK ((pteval_t)PHYSICAL_PAGE_MASK) /* * Extracts the flags from a (pte|pmd|pud|pgd)val_t * This includes the protection key value. */ #define PTE_FLAGS_MASK (~PTE_PFN_MASK) typedef struct pgprot { pgprotval_t pgprot; } pgprot_t; typedef struct { pgdval_t pgd; } pgd_t; static inline pgprot_t pgprot_nx(pgprot_t prot) { return __pgprot(pgprot_val(prot) | _PAGE_NX); } #define pgprot_nx pgprot_nx #ifdef CONFIG_X86_PAE /* * PHYSICAL_PAGE_MASK might be non-constant when SME is compiled in, so we can't * use it here. */ #define PGD_PAE_PAGE_MASK ((signed long)PAGE_MASK) #define PGD_PAE_PHYS_MASK (((1ULL << __PHYSICAL_MASK_SHIFT)-1) & PGD_PAE_PAGE_MASK) /* * PAE allows Base Address, P, PWT, PCD and AVL bits to be set in PGD entries. * All other bits are Reserved MBZ */ #define PGD_ALLOWED_BITS (PGD_PAE_PHYS_MASK | _PAGE_PRESENT | \ _PAGE_PWT | _PAGE_PCD | \ _PAGE_SOFTW1 | _PAGE_SOFTW2 | _PAGE_SOFTW3) #else /* No need to mask any bits for !PAE */ #define PGD_ALLOWED_BITS (~0ULL) #endif static inline pgd_t native_make_pgd(pgdval_t val) { return (pgd_t) { val & PGD_ALLOWED_BITS }; } static inline pgdval_t native_pgd_val(pgd_t pgd) { return pgd.pgd & PGD_ALLOWED_BITS; } static inline pgdval_t pgd_flags(pgd_t pgd) { return native_pgd_val(pgd) & PTE_FLAGS_MASK; } #if CONFIG_PGTABLE_LEVELS > 4 typedef struct { p4dval_t p4d; } p4d_t; static inline p4d_t native_make_p4d(pudval_t val) { return (p4d_t) { val }; } static inline p4dval_t native_p4d_val(p4d_t p4d) { return p4d.p4d; } #else #include <asm-generic/pgtable-nop4d.h> static inline p4d_t native_make_p4d(pudval_t val) { return (p4d_t) { .pgd = native_make_pgd((pgdval_t)val) }; } static inline p4dval_t native_p4d_val(p4d_t p4d) { return native_pgd_val(p4d.pgd); } #endif #if CONFIG_PGTABLE_LEVELS > 3 typedef struct { pudval_t pud; } pud_t; static inline pud_t native_make_pud(pmdval_t val) { return (pud_t) { val }; } static inline pudval_t native_pud_val(pud_t pud) { return pud.pud; } #else #include <asm-generic/pgtable-nopud.h> static inline pud_t native_make_pud(pudval_t val) { return (pud_t) { .p4d.pgd = native_make_pgd(val) }; } static inline pudval_t native_pud_val(pud_t pud) { return native_pgd_val(pud.p4d.pgd); } #endif #if CONFIG_PGTABLE_LEVELS > 2 typedef struct { pmdval_t pmd; } pmd_t; static inline pmd_t native_make_pmd(pmdval_t val) { return (pmd_t) { val }; } static inline pmdval_t native_pmd_val(pmd_t pmd) { return pmd.pmd; } #else #include <asm-generic/pgtable-nopmd.h> static inline pmd_t native_make_pmd(pmdval_t val) { return (pmd_t) { .pud.p4d.pgd = native_make_pgd(val) }; } static inline pmdval_t native_pmd_val(pmd_t pmd) { return native_pgd_val(pmd.pud.p4d.pgd); } #endif static inline p4dval_t p4d_pfn_mask(p4d_t p4d) { /* No 512 GiB huge pages yet */ return PTE_PFN_MASK; } static inline p4dval_t p4d_flags_mask(p4d_t p4d) { return ~p4d_pfn_mask(p4d); } static inline p4dval_t p4d_flags(p4d_t p4d) { return native_p4d_val(p4d) & p4d_flags_mask(p4d); } static inline pudval_t pud_pfn_mask(pud_t pud) { if (native_pud_val(pud) & _PAGE_PSE) return PHYSICAL_PUD_PAGE_MASK; else return PTE_PFN_MASK; } static inline pudval_t pud_flags_mask(pud_t pud) { return ~pud_pfn_mask(pud); } static inline pudval_t pud_flags(pud_t pud) { return native_pud_val(pud) & pud_flags_mask(pud); } static inline pmdval_t pmd_pfn_mask(pmd_t pmd) { if (native_pmd_val(pmd) & _PAGE_PSE) return PHYSICAL_PMD_PAGE_MASK; else return PTE_PFN_MASK; } static inline pmdval_t pmd_flags_mask(pmd_t pmd) { return ~pmd_pfn_mask(pmd); } static inline pmdval_t pmd_flags(pmd_t pmd) { return native_pmd_val(pmd) & pmd_flags_mask(pmd); } static inline pte_t native_make_pte(pteval_t val) { return (pte_t) { .pte = val }; } static inline pteval_t native_pte_val(pte_t pte) { return pte.pte; } static inline pteval_t pte_flags(pte_t pte) { return native_pte_val(pte) & PTE_FLAGS_MASK; } #define __pte2cm_idx(cb) \ ((((cb) >> (_PAGE_BIT_PAT - 2)) & 4) | \ (((cb) >> (_PAGE_BIT_PCD - 1)) & 2) | \ (((cb) >> _PAGE_BIT_PWT) & 1)) #define __cm_idx2pte(i) \ ((((i) & 4) << (_PAGE_BIT_PAT - 2)) | \ (((i) & 2) << (_PAGE_BIT_PCD - 1)) | \ (((i) & 1) << _PAGE_BIT_PWT)) unsigned long cachemode2protval(enum page_cache_mode pcm); static inline pgprotval_t protval_4k_2_large(pgprotval_t val) { return (val & ~(_PAGE_PAT | _PAGE_PAT_LARGE)) | ((val & _PAGE_PAT) << (_PAGE_BIT_PAT_LARGE - _PAGE_BIT_PAT)); } static inline pgprot_t pgprot_4k_2_large(pgprot_t pgprot) { return __pgprot(protval_4k_2_large(pgprot_val(pgprot))); } static inline pgprotval_t protval_large_2_4k(pgprotval_t val) { return (val & ~(_PAGE_PAT | _PAGE_PAT_LARGE)) | ((val & _PAGE_PAT_LARGE) >> (_PAGE_BIT_PAT_LARGE - _PAGE_BIT_PAT)); } static inline pgprot_t pgprot_large_2_4k(pgprot_t pgprot) { return __pgprot(protval_large_2_4k(pgprot_val(pgprot))); } typedef struct page *pgtable_t; extern pteval_t __supported_pte_mask; extern pteval_t __default_kernel_pte_mask; extern void set_nx(void); extern int nx_enabled; #define pgprot_writecombine pgprot_writecombine extern pgprot_t pgprot_writecombine(pgprot_t prot); #define pgprot_writethrough pgprot_writethrough extern pgprot_t pgprot_writethrough(pgprot_t prot); /* Indicate that x86 has its own track and untrack pfn vma functions */ #define __HAVE_PFNMAP_TRACKING #define __HAVE_PHYS_MEM_ACCESS_PROT struct file; pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); /* Install a pte for a particular vaddr in kernel space. */ void set_pte_vaddr(unsigned long vaddr, pte_t pte); #ifdef CONFIG_X86_32 extern void native_pagetable_init(void); #else #define native_pagetable_init paging_init #endif struct seq_file; extern void arch_report_meminfo(struct seq_file *m); enum pg_level { PG_LEVEL_NONE, PG_LEVEL_4K, PG_LEVEL_2M, PG_LEVEL_1G, PG_LEVEL_512G, PG_LEVEL_NUM }; #ifdef CONFIG_PROC_FS extern void update_page_count(int level, unsigned long pages); #else static inline void update_page_count(int level, unsigned long pages) { } #endif /* * Helper function that returns the kernel pagetable entry controlling * the virtual address 'address'. NULL means no pagetable entry present. * NOTE: the return type is pte_t but if the pmd is PSE then we return it * as a pte too. */ extern pte_t *lookup_address(unsigned long address, unsigned int *level); extern pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, unsigned int *level); struct mm_struct; extern pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address, unsigned int *level); extern pmd_t *lookup_pmd_address(unsigned long address); extern phys_addr_t slow_virt_to_phys(void *__address); extern int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, unsigned numpages, unsigned long page_flags); extern int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address, unsigned long numpages); #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_DEFS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_64_H #define _ASM_X86_PGTABLE_64_H #include <linux/const.h> #include <asm/pgtable_64_types.h> #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. */ #include <asm/processor.h> #include <linux/bitops.h> #include <linux/threads.h> #include <asm/fixmap.h> extern p4d_t level4_kernel_pgt[512]; extern p4d_t level4_ident_pgt[512]; extern pud_t level3_kernel_pgt[512]; extern pud_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pmd_t level2_fixmap_pgt[512]; extern pmd_t level2_ident_pgt[512]; extern pte_t level1_fixmap_pgt[512 * FIXMAP_PMD_NUM]; extern pgd_t init_top_pgt[]; #define swapper_pg_dir init_top_pgt extern void paging_init(void); static inline void sync_initial_page_table(void) { } #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pud_val(e)) #if CONFIG_PGTABLE_LEVELS >= 5 #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %p(%016lx)\n", \ __FILE__, __LINE__, &(e), p4d_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pgd_val(e)) struct mm_struct; #define mm_p4d_folded mm_p4d_folded static inline bool mm_p4d_folded(struct mm_struct *mm) { return !pgtable_l5_enabled(); } void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte); void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte); static inline void native_set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { native_set_pte(ptep, native_make_pte(0)); } static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void native_pmd_clear(pmd_t *pmd) { native_set_pmd(pmd, native_make_pmd(0)); } static inline pte_t native_ptep_get_and_clear(pte_t *xp) { #ifdef CONFIG_SMP return native_make_pte(xchg(&xp->pte, 0)); #else /* native_local_ptep_get_and_clear, but duplicated because of cyclic dependency */ pte_t ret = *xp; native_pte_clear(NULL, 0, xp); return ret; #endif } static inline pmd_t native_pmdp_get_and_clear(pmd_t *xp) { #ifdef CONFIG_SMP return native_make_pmd(xchg(&xp->pmd, 0)); #else /* native_local_pmdp_get_and_clear, but duplicated because of cyclic dependency */ pmd_t ret = *xp; native_pmd_clear(xp); return ret; #endif } static inline void native_set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void native_pud_clear(pud_t *pud) { native_set_pud(pud, native_make_pud(0)); } static inline pud_t native_pudp_get_and_clear(pud_t *xp) { #ifdef CONFIG_SMP return native_make_pud(xchg(&xp->pud, 0)); #else /* native_local_pudp_get_and_clear, * but duplicated because of cyclic dependency */ pud_t ret = *xp; native_pud_clear(xp); return ret; #endif } static inline void native_set_p4d(p4d_t *p4dp, p4d_t p4d) { pgd_t pgd; if (pgtable_l5_enabled() || !IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) { WRITE_ONCE(*p4dp, p4d); return; } pgd = native_make_pgd(native_p4d_val(p4d)); pgd = pti_set_user_pgtbl((pgd_t *)p4dp, pgd); WRITE_ONCE(*p4dp, native_make_p4d(native_pgd_val(pgd))); } static inline void native_p4d_clear(p4d_t *p4d) { native_set_p4d(p4d, native_make_p4d(0)); } static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd)); } static inline void native_pgd_clear(pgd_t *pgd) { native_set_pgd(pgd, native_make_pgd(0)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* PGD - Level 4 access */ /* PUD - Level 3 access */ /* PMD - Level 2 access */ /* PTE - Level 1 access */ /* * Encode and de-code a swap entry * * | ... | 11| 10| 9|8|7|6|5| 4| 3|2| 1|0| <- bit number * | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U| W|P| <- bit names * | TYPE (59-63) | ~OFFSET (9-58) |0|0|X|X| X| X|F|SD|0| <- swp entry * * G (8) is aliased and used as a PROT_NONE indicator for * !present ptes. We need to start storing swap entries above * there. We also need to avoid using A and D because of an * erratum where they can be incorrectly set by hardware on * non-present PTEs. * * SD Bits 1-4 are not used in non-present format and available for * special use described below: * * SD (1) in swp entry is used to store soft dirty bit, which helps us * remember soft dirty over page migration * * F (2) in swp entry is used to record when a pagetable is * writeprotected by userfaultfd WP support. * * Bit 7 in swp entry should be 0 because pmd_present checks not only P, * but also L and G. * * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define SWP_TYPE_BITS 5 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) /* We always extract/encode the offset by shifting it all the way up, and then down again */ #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT+SWP_TYPE_BITS) #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) /* Extract the high bits for type */ #define __swp_type(x) ((x).val >> (64 - SWP_TYPE_BITS)) /* Shift up (to get rid of type), then down to get value */ #define __swp_offset(x) (~(x).val << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT) /* * Shift the offset up "too far" by TYPE bits, then down again * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define __swp_entry(type, offset) ((swp_entry_t) { \ (~(unsigned long)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ | ((unsigned long)(type) << (64-SWP_TYPE_BITS)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val((pmd)) }) #define __swp_entry_to_pte(x) ((pte_t) { .pte = (x).val }) #define __swp_entry_to_pmd(x) ((pmd_t) { .pmd = (x).val }) extern int kern_addr_valid(unsigned long addr); extern void cleanup_highmap(void); #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define PAGE_AGP PAGE_KERNEL_NOCACHE #define HAVE_PAGE_AGP 1 /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK) #define kc_offset_to_vaddr(o) ((o) | ~__VIRTUAL_MASK) #define __HAVE_ARCH_PTE_SAME #define vmemmap ((struct page *)VMEMMAP_START) extern void init_extra_mapping_uc(unsigned long phys, unsigned long size); extern void init_extra_mapping_wb(unsigned long phys, unsigned long size); #define gup_fast_permitted gup_fast_permitted static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { if (end >> __VIRTUAL_MASK_SHIFT) return false; return true; } #include <asm/pgtable-invert.h> #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/prandom.h * * Include file for the fast pseudo-random 32-bit * generation. */ #ifndef _LINUX_PRANDOM_H #define _LINUX_PRANDOM_H #include <linux/types.h> #include <linux/percpu.h> u32 prandom_u32(void); void prandom_bytes(void *buf, size_t nbytes); void prandom_seed(u32 seed); void prandom_reseed_late(void); DECLARE_PER_CPU(unsigned long, net_rand_noise); #define PRANDOM_ADD_NOISE(a, b, c, d) \ prandom_u32_add_noise((unsigned long)(a), (unsigned long)(b), \ (unsigned long)(c), (unsigned long)(d)) #if BITS_PER_LONG == 64 /* * The core SipHash round function. Each line can be executed in * parallel given enough CPU resources. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \ v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \ v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \ v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \ ) #define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261) #define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573) #elif BITS_PER_LONG == 32 /* * On 32-bit machines, we use HSipHash, a reduced-width version of SipHash. * This is weaker, but 32-bit machines are not used for high-traffic * applications, so there is less output for an attacker to analyze. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \ v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \ v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \ v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \ ) #define PRND_K0 0x6c796765 #define PRND_K1 0x74656462 #else #error Unsupported BITS_PER_LONG #endif static inline void prandom_u32_add_noise(unsigned long a, unsigned long b, unsigned long c, unsigned long d) { /* * This is not used cryptographically; it's just * a convenient 4-word hash function. (3 xor, 2 add, 2 rol) */ a ^= raw_cpu_read(net_rand_noise); PRND_SIPROUND(a, b, c, d); raw_cpu_write(net_rand_noise, d); } struct rnd_state { __u32 s1, s2, s3, s4; }; u32 prandom_u32_state(struct rnd_state *state); void prandom_bytes_state(struct rnd_state *state, void *buf, size_t nbytes); void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state); #define prandom_init_once(pcpu_state) \ DO_ONCE(prandom_seed_full_state, (pcpu_state)) /** * prandom_u32_max - returns a pseudo-random number in interval [0, ep_ro) * @ep_ro: right open interval endpoint * * Returns a pseudo-random number that is in interval [0, ep_ro). Note * that the result depends on PRNG being well distributed in [0, ~0U] * u32 space. Here we use maximally equidistributed combined Tausworthe * generator, that is, prandom_u32(). This is useful when requesting a * random index of an array containing ep_ro elements, for example. * * Returns: pseudo-random number in interval [0, ep_ro) */ static inline u32 prandom_u32_max(u32 ep_ro) { return (u32)(((u64) prandom_u32() * ep_ro) >> 32); } /* * Handle minimum values for seeds */ static inline u32 __seed(u32 x, u32 m) { return (x < m) ? x + m : x; } /** * prandom_seed_state - set seed for prandom_u32_state(). * @state: pointer to state structure to receive the seed. * @seed: arbitrary 64-bit value to use as a seed. */ static inline void prandom_seed_state(struct rnd_state *state, u64 seed) { u32 i = ((seed >> 32) ^ (seed << 10) ^ seed) & 0xffffffffUL; state->s1 = __seed(i, 2U); state->s2 = __seed(i, 8U); state->s3 = __seed(i, 16U); state->s4 = __seed(i, 128U); PRANDOM_ADD_NOISE(state, i, 0, 0); } /* Pseudo random number generator from numerical recipes. */ static inline u32 next_pseudo_random32(u32 seed) { return seed * 1664525 + 1013904223; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright(c) 2016 Intel Deutschland GmbH * Copyright (C) 2018 - 2019 Intel Corporation */ #ifndef __MAC80211_DRIVER_OPS #define __MAC80211_DRIVER_OPS #include <net/mac80211.h> #include "ieee80211_i.h" #include "trace.h" #define check_sdata_in_driver(sdata) ({ \ !WARN_ONCE(!(sdata->flags & IEEE80211_SDATA_IN_DRIVER), \ "%s: Failed check-sdata-in-driver check, flags: 0x%x\n", \ sdata->dev ? sdata->dev->name : sdata->name, sdata->flags); \ }) static inline struct ieee80211_sub_if_data * get_bss_sdata(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); return sdata; } static inline void drv_tx(struct ieee80211_local *local, struct ieee80211_tx_control *control, struct sk_buff *skb) { local->ops->tx(&local->hw, control, skb); } static inline void drv_sync_rx_queues(struct ieee80211_local *local, struct sta_info *sta) { if (local->ops->sync_rx_queues) { trace_drv_sync_rx_queues(local, sta->sdata, &sta->sta); local->ops->sync_rx_queues(&local->hw); trace_drv_return_void(local); } } static inline void drv_get_et_strings(struct ieee80211_sub_if_data *sdata, u32 sset, u8 *data) { struct ieee80211_local *local = sdata->local; if (local->ops->get_et_strings) { trace_drv_get_et_strings(local, sset); local->ops->get_et_strings(&local->hw, &sdata->vif, sset, data); trace_drv_return_void(local); } } static inline void drv_get_et_stats(struct ieee80211_sub_if_data *sdata, struct ethtool_stats *stats, u64 *data) { struct ieee80211_local *local = sdata->local; if (local->ops->get_et_stats) { trace_drv_get_et_stats(local); local->ops->get_et_stats(&local->hw, &sdata->vif, stats, data); trace_drv_return_void(local); } } static inline int drv_get_et_sset_count(struct ieee80211_sub_if_data *sdata, int sset) { struct ieee80211_local *local = sdata->local; int rv = 0; if (local->ops->get_et_sset_count) { trace_drv_get_et_sset_count(local, sset); rv = local->ops->get_et_sset_count(&local->hw, &sdata->vif, sset); trace_drv_return_int(local, rv); } return rv; } int drv_start(struct ieee80211_local *local); void drv_stop(struct ieee80211_local *local); #ifdef CONFIG_PM static inline int drv_suspend(struct ieee80211_local *local, struct cfg80211_wowlan *wowlan) { int ret; might_sleep(); trace_drv_suspend(local); ret = local->ops->suspend(&local->hw, wowlan); trace_drv_return_int(local, ret); return ret; } static inline int drv_resume(struct ieee80211_local *local) { int ret; might_sleep(); trace_drv_resume(local); ret = local->ops->resume(&local->hw); trace_drv_return_int(local, ret); return ret; } static inline void drv_set_wakeup(struct ieee80211_local *local, bool enabled) { might_sleep(); if (!local->ops->set_wakeup) return; trace_drv_set_wakeup(local, enabled); local->ops->set_wakeup(&local->hw, enabled); trace_drv_return_void(local); } #endif int drv_add_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int drv_change_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type, bool p2p); void drv_remove_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); static inline int drv_config(struct ieee80211_local *local, u32 changed) { int ret; might_sleep(); trace_drv_config(local, changed); ret = local->ops->config(&local->hw, changed); trace_drv_return_int(local, ret); return ret; } static inline void drv_bss_info_changed(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info, u32 changed) { might_sleep(); if (WARN_ON_ONCE(changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED) && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_OCB)) return; if (WARN_ON_ONCE(sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE || sdata->vif.type == NL80211_IFTYPE_NAN || (sdata->vif.type == NL80211_IFTYPE_MONITOR && !sdata->vif.mu_mimo_owner && !(changed & BSS_CHANGED_TXPOWER)))) return; if (!check_sdata_in_driver(sdata)) return; trace_drv_bss_info_changed(local, sdata, info, changed); if (local->ops->bss_info_changed) local->ops->bss_info_changed(&local->hw, &sdata->vif, info, changed); trace_drv_return_void(local); } static inline u64 drv_prepare_multicast(struct ieee80211_local *local, struct netdev_hw_addr_list *mc_list) { u64 ret = 0; trace_drv_prepare_multicast(local, mc_list->count); if (local->ops->prepare_multicast) ret = local->ops->prepare_multicast(&local->hw, mc_list); trace_drv_return_u64(local, ret); return ret; } static inline void drv_configure_filter(struct ieee80211_local *local, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { might_sleep(); trace_drv_configure_filter(local, changed_flags, total_flags, multicast); local->ops->configure_filter(&local->hw, changed_flags, total_flags, multicast); trace_drv_return_void(local); } static inline void drv_config_iface_filter(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int filter_flags, unsigned int changed_flags) { might_sleep(); trace_drv_config_iface_filter(local, sdata, filter_flags, changed_flags); if (local->ops->config_iface_filter) local->ops->config_iface_filter(&local->hw, &sdata->vif, filter_flags, changed_flags); trace_drv_return_void(local); } static inline int drv_set_tim(struct ieee80211_local *local, struct ieee80211_sta *sta, bool set) { int ret = 0; trace_drv_set_tim(local, sta, set); if (local->ops->set_tim) ret = local->ops->set_tim(&local->hw, sta, set); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_key(struct ieee80211_local *local, enum set_key_cmd cmd, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { int ret; might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_set_key(local, cmd, sdata, sta, key); ret = local->ops->set_key(&local->hw, cmd, &sdata->vif, sta, key); trace_drv_return_int(local, ret); return ret; } static inline void drv_update_tkip_key(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_key_conf *conf, struct sta_info *sta, u32 iv32, u16 *phase1key) { struct ieee80211_sta *ista = NULL; if (sta) ista = &sta->sta; sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_update_tkip_key(local, sdata, conf, ista, iv32); if (local->ops->update_tkip_key) local->ops->update_tkip_key(&local->hw, &sdata->vif, conf, ista, iv32, phase1key); trace_drv_return_void(local); } static inline int drv_hw_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_scan_request *req) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_hw_scan(local, sdata); ret = local->ops->hw_scan(&local->hw, &sdata->vif, req); trace_drv_return_int(local, ret); return ret; } static inline void drv_cancel_hw_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_cancel_hw_scan(local, sdata); local->ops->cancel_hw_scan(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_sched_scan_start(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req, struct ieee80211_scan_ies *ies) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sched_scan_start(local, sdata); ret = local->ops->sched_scan_start(&local->hw, &sdata->vif, req, ies); trace_drv_return_int(local, ret); return ret; } static inline int drv_sched_scan_stop(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sched_scan_stop(local, sdata); ret = local->ops->sched_scan_stop(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline void drv_sw_scan_start(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const u8 *mac_addr) { might_sleep(); trace_drv_sw_scan_start(local, sdata, mac_addr); if (local->ops->sw_scan_start) local->ops->sw_scan_start(&local->hw, &sdata->vif, mac_addr); trace_drv_return_void(local); } static inline void drv_sw_scan_complete(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); trace_drv_sw_scan_complete(local, sdata); if (local->ops->sw_scan_complete) local->ops->sw_scan_complete(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_get_stats(struct ieee80211_local *local, struct ieee80211_low_level_stats *stats) { int ret = -EOPNOTSUPP; might_sleep(); if (local->ops->get_stats) ret = local->ops->get_stats(&local->hw, stats); trace_drv_get_stats(local, stats, ret); return ret; } static inline void drv_get_key_seq(struct ieee80211_local *local, struct ieee80211_key *key, struct ieee80211_key_seq *seq) { if (local->ops->get_key_seq) local->ops->get_key_seq(&local->hw, &key->conf, seq); trace_drv_get_key_seq(local, &key->conf); } static inline int drv_set_frag_threshold(struct ieee80211_local *local, u32 value) { int ret = 0; might_sleep(); trace_drv_set_frag_threshold(local, value); if (local->ops->set_frag_threshold) ret = local->ops->set_frag_threshold(&local->hw, value); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_rts_threshold(struct ieee80211_local *local, u32 value) { int ret = 0; might_sleep(); trace_drv_set_rts_threshold(local, value); if (local->ops->set_rts_threshold) ret = local->ops->set_rts_threshold(&local->hw, value); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_coverage_class(struct ieee80211_local *local, s16 value) { int ret = 0; might_sleep(); trace_drv_set_coverage_class(local, value); if (local->ops->set_coverage_class) local->ops->set_coverage_class(&local->hw, value); else ret = -EOPNOTSUPP; trace_drv_return_int(local, ret); return ret; } static inline void drv_sta_notify(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_notify(local, sdata, cmd, sta); if (local->ops->sta_notify) local->ops->sta_notify(&local->hw, &sdata->vif, cmd, sta); trace_drv_return_void(local); } static inline int drv_sta_add(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { int ret = 0; might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sta_add(local, sdata, sta); if (local->ops->sta_add) ret = local->ops->sta_add(&local->hw, &sdata->vif, sta); trace_drv_return_int(local, ret); return ret; } static inline void drv_sta_remove(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_remove(local, sdata, sta); if (local->ops->sta_remove) local->ops->sta_remove(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } #ifdef CONFIG_MAC80211_DEBUGFS static inline void drv_sta_add_debugfs(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct dentry *dir) { might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; if (local->ops->sta_add_debugfs) local->ops->sta_add_debugfs(&local->hw, &sdata->vif, sta, dir); } #endif static inline void drv_sta_pre_rcu_remove(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_pre_rcu_remove(local, sdata, &sta->sta); if (local->ops->sta_pre_rcu_remove) local->ops->sta_pre_rcu_remove(&local->hw, &sdata->vif, &sta->sta); trace_drv_return_void(local); } __must_check int drv_sta_state(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state); __must_check int drv_sta_set_txpwr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta); void drv_sta_rc_update(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u32 changed); static inline void drv_sta_rate_tbl_update(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_rate_tbl_update(local, sdata, sta); if (local->ops->sta_rate_tbl_update) local->ops->sta_rate_tbl_update(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } static inline void drv_sta_statistics(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct station_info *sinfo) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_statistics(local, sdata, sta); if (local->ops->sta_statistics) local->ops->sta_statistics(&local->hw, &sdata->vif, sta, sinfo); trace_drv_return_void(local); } int drv_conf_tx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 ac, const struct ieee80211_tx_queue_params *params); u64 drv_get_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void drv_set_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 tsf); void drv_offset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, s64 offset); void drv_reset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); static inline int drv_tx_last_beacon(struct ieee80211_local *local) { int ret = 0; /* default unsupported op for less congestion */ might_sleep(); trace_drv_tx_last_beacon(local); if (local->ops->tx_last_beacon) ret = local->ops->tx_last_beacon(&local->hw); trace_drv_return_int(local, ret); return ret; } int drv_ampdu_action(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_ampdu_params *params); static inline int drv_get_survey(struct ieee80211_local *local, int idx, struct survey_info *survey) { int ret = -EOPNOTSUPP; trace_drv_get_survey(local, idx, survey); if (local->ops->get_survey) ret = local->ops->get_survey(&local->hw, idx, survey); trace_drv_return_int(local, ret); return ret; } static inline void drv_rfkill_poll(struct ieee80211_local *local) { might_sleep(); if (local->ops->rfkill_poll) local->ops->rfkill_poll(&local->hw); } static inline void drv_flush(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u32 queues, bool drop) { struct ieee80211_vif *vif = sdata ? &sdata->vif : NULL; might_sleep(); if (sdata && !check_sdata_in_driver(sdata)) return; trace_drv_flush(local, queues, drop); if (local->ops->flush) local->ops->flush(&local->hw, vif, queues, drop); trace_drv_return_void(local); } static inline void drv_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch) { might_sleep(); trace_drv_channel_switch(local, sdata, ch_switch); local->ops->channel_switch(&local->hw, &sdata->vif, ch_switch); trace_drv_return_void(local); } static inline int drv_set_antenna(struct ieee80211_local *local, u32 tx_ant, u32 rx_ant) { int ret = -EOPNOTSUPP; might_sleep(); if (local->ops->set_antenna) ret = local->ops->set_antenna(&local->hw, tx_ant, rx_ant); trace_drv_set_antenna(local, tx_ant, rx_ant, ret); return ret; } static inline int drv_get_antenna(struct ieee80211_local *local, u32 *tx_ant, u32 *rx_ant) { int ret = -EOPNOTSUPP; might_sleep(); if (local->ops->get_antenna) ret = local->ops->get_antenna(&local->hw, tx_ant, rx_ant); trace_drv_get_antenna(local, *tx_ant, *rx_ant, ret); return ret; } static inline int drv_remain_on_channel(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *chan, unsigned int duration, enum ieee80211_roc_type type) { int ret; might_sleep(); trace_drv_remain_on_channel(local, sdata, chan, duration, type); ret = local->ops->remain_on_channel(&local->hw, &sdata->vif, chan, duration, type); trace_drv_return_int(local, ret); return ret; } static inline int drv_cancel_remain_on_channel(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret; might_sleep(); trace_drv_cancel_remain_on_channel(local, sdata); ret = local->ops->cancel_remain_on_channel(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_ringparam(struct ieee80211_local *local, u32 tx, u32 rx) { int ret = -ENOTSUPP; might_sleep(); trace_drv_set_ringparam(local, tx, rx); if (local->ops->set_ringparam) ret = local->ops->set_ringparam(&local->hw, tx, rx); trace_drv_return_int(local, ret); return ret; } static inline void drv_get_ringparam(struct ieee80211_local *local, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max) { might_sleep(); trace_drv_get_ringparam(local, tx, tx_max, rx, rx_max); if (local->ops->get_ringparam) local->ops->get_ringparam(&local->hw, tx, tx_max, rx, rx_max); trace_drv_return_void(local); } static inline bool drv_tx_frames_pending(struct ieee80211_local *local) { bool ret = false; might_sleep(); trace_drv_tx_frames_pending(local); if (local->ops->tx_frames_pending) ret = local->ops->tx_frames_pending(&local->hw); trace_drv_return_bool(local, ret); return ret; } static inline int drv_set_bitrate_mask(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_bitrate_mask *mask) { int ret = -EOPNOTSUPP; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_set_bitrate_mask(local, sdata, mask); if (local->ops->set_bitrate_mask) ret = local->ops->set_bitrate_mask(&local->hw, &sdata->vif, mask); trace_drv_return_int(local, ret); return ret; } static inline void drv_set_rekey_data(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_gtk_rekey_data *data) { if (!check_sdata_in_driver(sdata)) return; trace_drv_set_rekey_data(local, sdata, data); if (local->ops->set_rekey_data) local->ops->set_rekey_data(&local->hw, &sdata->vif, data); trace_drv_return_void(local); } static inline void drv_event_callback(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct ieee80211_event *event) { trace_drv_event_callback(local, sdata, event); if (local->ops->event_callback) local->ops->event_callback(&local->hw, &sdata->vif, event); trace_drv_return_void(local); } static inline void drv_release_buffered_frames(struct ieee80211_local *local, struct sta_info *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data) { trace_drv_release_buffered_frames(local, &sta->sta, tids, num_frames, reason, more_data); if (local->ops->release_buffered_frames) local->ops->release_buffered_frames(&local->hw, &sta->sta, tids, num_frames, reason, more_data); trace_drv_return_void(local); } static inline void drv_allow_buffered_frames(struct ieee80211_local *local, struct sta_info *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data) { trace_drv_allow_buffered_frames(local, &sta->sta, tids, num_frames, reason, more_data); if (local->ops->allow_buffered_frames) local->ops->allow_buffered_frames(&local->hw, &sta->sta, tids, num_frames, reason, more_data); trace_drv_return_void(local); } static inline void drv_mgd_prepare_tx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 duration) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION); trace_drv_mgd_prepare_tx(local, sdata, duration); if (local->ops->mgd_prepare_tx) local->ops->mgd_prepare_tx(&local->hw, &sdata->vif, duration); trace_drv_return_void(local); } static inline void drv_mgd_protect_tdls_discover(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION); trace_drv_mgd_protect_tdls_discover(local, sdata); if (local->ops->mgd_protect_tdls_discover) local->ops->mgd_protect_tdls_discover(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_add_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { int ret = -EOPNOTSUPP; might_sleep(); trace_drv_add_chanctx(local, ctx); if (local->ops->add_chanctx) ret = local->ops->add_chanctx(&local->hw, &ctx->conf); trace_drv_return_int(local, ret); if (!ret) ctx->driver_present = true; return ret; } static inline void drv_remove_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { might_sleep(); if (WARN_ON(!ctx->driver_present)) return; trace_drv_remove_chanctx(local, ctx); if (local->ops->remove_chanctx) local->ops->remove_chanctx(&local->hw, &ctx->conf); trace_drv_return_void(local); ctx->driver_present = false; } static inline void drv_change_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, u32 changed) { might_sleep(); trace_drv_change_chanctx(local, ctx, changed); if (local->ops->change_chanctx) { WARN_ON_ONCE(!ctx->driver_present); local->ops->change_chanctx(&local->hw, &ctx->conf, changed); } trace_drv_return_void(local); } static inline int drv_assign_vif_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_chanctx *ctx) { int ret = 0; if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_assign_vif_chanctx(local, sdata, ctx); if (local->ops->assign_vif_chanctx) { WARN_ON_ONCE(!ctx->driver_present); ret = local->ops->assign_vif_chanctx(&local->hw, &sdata->vif, &ctx->conf); } trace_drv_return_int(local, ret); return ret; } static inline void drv_unassign_vif_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_chanctx *ctx) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_unassign_vif_chanctx(local, sdata, ctx); if (local->ops->unassign_vif_chanctx) { WARN_ON_ONCE(!ctx->driver_present); local->ops->unassign_vif_chanctx(&local->hw, &sdata->vif, &ctx->conf); } trace_drv_return_void(local); } int drv_switch_vif_chanctx(struct ieee80211_local *local, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode); static inline int drv_start_ap(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret = 0; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_start_ap(local, sdata, &sdata->vif.bss_conf); if (local->ops->start_ap) ret = local->ops->start_ap(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline void drv_stop_ap(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { if (!check_sdata_in_driver(sdata)) return; trace_drv_stop_ap(local, sdata); if (local->ops->stop_ap) local->ops->stop_ap(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline void drv_reconfig_complete(struct ieee80211_local *local, enum ieee80211_reconfig_type reconfig_type) { might_sleep(); trace_drv_reconfig_complete(local, reconfig_type); if (local->ops->reconfig_complete) local->ops->reconfig_complete(&local->hw, reconfig_type); trace_drv_return_void(local); } static inline void drv_set_default_unicast_key(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int key_idx) { if (!check_sdata_in_driver(sdata)) return; WARN_ON_ONCE(key_idx < -1 || key_idx > 3); trace_drv_set_default_unicast_key(local, sdata, key_idx); if (local->ops->set_default_unicast_key) local->ops->set_default_unicast_key(&local->hw, &sdata->vif, key_idx); trace_drv_return_void(local); } #if IS_ENABLED(CONFIG_IPV6) static inline void drv_ipv6_addr_change(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct inet6_dev *idev) { trace_drv_ipv6_addr_change(local, sdata); if (local->ops->ipv6_addr_change) local->ops->ipv6_addr_change(&local->hw, &sdata->vif, idev); trace_drv_return_void(local); } #endif static inline void drv_channel_switch_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = sdata->local; if (local->ops->channel_switch_beacon) { trace_drv_channel_switch_beacon(local, sdata, chandef); local->ops->channel_switch_beacon(&local->hw, &sdata->vif, chandef); } } static inline int drv_pre_channel_switch(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch) { struct ieee80211_local *local = sdata->local; int ret = 0; if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_pre_channel_switch(local, sdata, ch_switch); if (local->ops->pre_channel_switch) ret = local->ops->pre_channel_switch(&local->hw, &sdata->vif, ch_switch); trace_drv_return_int(local, ret); return ret; } static inline int drv_post_channel_switch(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; int ret = 0; if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_post_channel_switch(local, sdata); if (local->ops->post_channel_switch) ret = local->ops->post_channel_switch(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline void drv_abort_channel_switch(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; if (!check_sdata_in_driver(sdata)) return; trace_drv_abort_channel_switch(local, sdata); if (local->ops->abort_channel_switch) local->ops->abort_channel_switch(&local->hw, &sdata->vif); } static inline void drv_channel_switch_rx_beacon(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch) { struct ieee80211_local *local = sdata->local; if (!check_sdata_in_driver(sdata)) return; trace_drv_channel_switch_rx_beacon(local, sdata, ch_switch); if (local->ops->channel_switch_rx_beacon) local->ops->channel_switch_rx_beacon(&local->hw, &sdata->vif, ch_switch); } static inline int drv_join_ibss(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret = 0; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_join_ibss(local, sdata, &sdata->vif.bss_conf); if (local->ops->join_ibss) ret = local->ops->join_ibss(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline void drv_leave_ibss(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_leave_ibss(local, sdata); if (local->ops->leave_ibss) local->ops->leave_ibss(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline u32 drv_get_expected_throughput(struct ieee80211_local *local, struct sta_info *sta) { u32 ret = 0; trace_drv_get_expected_throughput(&sta->sta); if (local->ops->get_expected_throughput && sta->uploaded) ret = local->ops->get_expected_throughput(&local->hw, &sta->sta); trace_drv_return_u32(local, ret); return ret; } static inline int drv_get_txpower(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int *dbm) { int ret; if (!local->ops->get_txpower) return -EOPNOTSUPP; ret = local->ops->get_txpower(&local->hw, &sdata->vif, dbm); trace_drv_get_txpower(local, sdata, *dbm, ret); return ret; } static inline int drv_tdls_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u8 oper_class, struct cfg80211_chan_def *chandef, struct sk_buff *tmpl_skb, u32 ch_sw_tm_ie) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; if (!local->ops->tdls_channel_switch) return -EOPNOTSUPP; trace_drv_tdls_channel_switch(local, sdata, sta, oper_class, chandef); ret = local->ops->tdls_channel_switch(&local->hw, &sdata->vif, sta, oper_class, chandef, tmpl_skb, ch_sw_tm_ie); trace_drv_return_int(local, ret); return ret; } static inline void drv_tdls_cancel_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; if (!local->ops->tdls_cancel_channel_switch) return; trace_drv_tdls_cancel_channel_switch(local, sdata, sta); local->ops->tdls_cancel_channel_switch(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } static inline void drv_tdls_recv_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_tdls_ch_sw_params *params) { trace_drv_tdls_recv_channel_switch(local, sdata, params); if (local->ops->tdls_recv_channel_switch) local->ops->tdls_recv_channel_switch(&local->hw, &sdata->vif, params); trace_drv_return_void(local); } static inline void drv_wake_tx_queue(struct ieee80211_local *local, struct txq_info *txq) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->txq.vif); /* In reconfig don't transmit now, but mark for waking later */ if (local->in_reconfig) { set_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txq->flags); return; } if (!check_sdata_in_driver(sdata)) return; trace_drv_wake_tx_queue(local, sdata, txq); local->ops->wake_tx_queue(&local->hw, &txq->txq); } static inline void schedule_and_wake_txq(struct ieee80211_local *local, struct txq_info *txqi) { ieee80211_schedule_txq(&local->hw, &txqi->txq); drv_wake_tx_queue(local, txqi); } static inline int drv_can_aggregate_in_amsdu(struct ieee80211_local *local, struct sk_buff *head, struct sk_buff *skb) { if (!local->ops->can_aggregate_in_amsdu) return true; return local->ops->can_aggregate_in_amsdu(&local->hw, head, skb); } static inline int drv_get_ftm_responder_stats(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_ftm_responder_stats *ftm_stats) { u32 ret = -EOPNOTSUPP; if (local->ops->get_ftm_responder_stats) ret = local->ops->get_ftm_responder_stats(&local->hw, &sdata->vif, ftm_stats); trace_drv_get_ftm_responder_stats(local, sdata, ftm_stats); return ret; } static inline int drv_start_pmsr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_start_pmsr(local, sdata); if (local->ops->start_pmsr) ret = local->ops->start_pmsr(&local->hw, &sdata->vif, request); trace_drv_return_int(local, ret); return ret; } static inline void drv_abort_pmsr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_pmsr_request *request) { trace_drv_abort_pmsr(local, sdata); might_sleep(); if (!check_sdata_in_driver(sdata)) return; if (local->ops->abort_pmsr) local->ops->abort_pmsr(&local->hw, &sdata->vif, request); trace_drv_return_void(local); } static inline int drv_start_nan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf) { int ret; might_sleep(); check_sdata_in_driver(sdata); trace_drv_start_nan(local, sdata, conf); ret = local->ops->start_nan(&local->hw, &sdata->vif, conf); trace_drv_return_int(local, ret); return ret; } static inline void drv_stop_nan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); check_sdata_in_driver(sdata); trace_drv_stop_nan(local, sdata); local->ops->stop_nan(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_nan_change_conf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf, u32 changes) { int ret; might_sleep(); check_sdata_in_driver(sdata); if (!local->ops->nan_change_conf) return -EOPNOTSUPP; trace_drv_nan_change_conf(local, sdata, conf, changes); ret = local->ops->nan_change_conf(&local->hw, &sdata->vif, conf, changes); trace_drv_return_int(local, ret); return ret; } static inline int drv_add_nan_func(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_nan_func *nan_func) { int ret; might_sleep(); check_sdata_in_driver(sdata); if (!local->ops->add_nan_func) return -EOPNOTSUPP; trace_drv_add_nan_func(local, sdata, nan_func); ret = local->ops->add_nan_func(&local->hw, &sdata->vif, nan_func); trace_drv_return_int(local, ret); return ret; } static inline void drv_del_nan_func(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u8 instance_id) { might_sleep(); check_sdata_in_driver(sdata); trace_drv_del_nan_func(local, sdata, instance_id); if (local->ops->del_nan_func) local->ops->del_nan_func(&local->hw, &sdata->vif, instance_id); trace_drv_return_void(local); } static inline int drv_set_tid_config(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct cfg80211_tid_config *tid_conf) { int ret; might_sleep(); ret = local->ops->set_tid_config(&local->hw, &sdata->vif, sta, tid_conf); trace_drv_return_int(local, ret); return ret; } static inline int drv_reset_tid_config(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u8 tids) { int ret; might_sleep(); ret = local->ops->reset_tid_config(&local->hw, &sdata->vif, sta, tids); trace_drv_return_int(local, ret); return ret; } static inline void drv_update_vif_offload(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); check_sdata_in_driver(sdata); if (!local->ops->update_vif_offload) return; trace_drv_update_vif_offload(local, sdata); local->ops->update_vif_offload(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline void drv_sta_set_4addr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, bool enabled) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_set_4addr(local, sdata, sta, enabled); if (local->ops->sta_set_4addr) local->ops->sta_set_4addr(&local->hw, &sdata->vif, sta, enabled); trace_drv_return_void(local); } #endif /* __MAC80211_DRIVER_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #include <linux/mem_encrypt.h> #include <asm/page.h> #include <asm/pgtable_types.h> /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | \ cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \ : (prot)) /* * Macros to add or remove encryption attribute */ #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot))) #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot))) #ifndef __ASSEMBLY__ #include <asm/x86_init.h> #include <asm/fpu/xstate.h> #include <asm/fpu/api.h> #include <asm-generic/pgtable_uffd.h> extern pgd_t early_top_pgt[PTRS_PER_PGD]; bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd); void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm); void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm, bool user); void ptdump_walk_pgd_level_checkwx(void); void ptdump_walk_user_pgd_level_checkwx(void); #ifdef CONFIG_DEBUG_WX #define debug_checkwx() ptdump_walk_pgd_level_checkwx() #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx() #else #define debug_checkwx() do { } while (0) #define debug_checkwx_user() do { } while (0) #endif /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __visible; #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; extern struct mm_struct *pgd_page_get_mm(struct page *page); extern pmdval_t early_pmd_flags; #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else /* !CONFIG_PARAVIRT_XXL */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_P4D_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0) #endif #ifndef set_p4d # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d) #endif #ifndef __PAGETABLE_PUD_FOLDED #define p4d_clear(p4d) native_p4d_clear(p4d) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pgd_val(x) native_pgd_val(x) #define __pgd(x) native_make_pgd(x) #ifndef __PAGETABLE_P4D_FOLDED #define p4d_val(x) native_p4d_val(x) #define __p4d(x) native_make_p4d(x) #endif #ifndef __PAGETABLE_PUD_FOLDED #define pud_val(x) native_pud_val(x) #define __pud(x) native_make_pud(x) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pmd_val(x) native_pmd_val(x) #define __pmd(x) native_make_pmd(x) #endif #define pte_val(x) native_pte_val(x) #define __pte(x) native_make_pte(x) #define arch_end_context_switch(prev) do {} while(0) #endif /* CONFIG_PARAVIRT_XXL */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY; } static inline u32 read_pkru(void) { if (boot_cpu_has(X86_FEATURE_OSPKE)) return rdpkru(); return 0; } static inline void write_pkru(u32 pkru) { struct pkru_state *pk; if (!boot_cpu_has(X86_FEATURE_OSPKE)) return; pk = get_xsave_addr(&current->thread.fpu.state.xsave, XFEATURE_PKRU); /* * The PKRU value in xstate needs to be in sync with the value that is * written to the CPU. The FPU restore on return to userland would * otherwise load the previous value again. */ fpregs_lock(); if (pk) pk->pkru = pkru; __write_pkru(pkru); fpregs_unlock(); } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline int pmd_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_DIRTY; } static inline int pmd_young(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_ACCESSED; } static inline int pud_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_DIRTY; } static inline int pud_young(pud_t pud) { return pud_flags(pud) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_flags(pte) & _PAGE_RW; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } /* Entries that were set to PROT_NONE are inverted */ static inline u64 protnone_mask(u64 val); static inline unsigned long pte_pfn(pte_t pte) { phys_addr_t pfn = pte_val(pte); pfn ^= protnone_mask(pfn); return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT; } static inline unsigned long pmd_pfn(pmd_t pmd) { phys_addr_t pfn = pmd_val(pmd); pfn ^= protnone_mask(pfn); return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT; } static inline unsigned long pud_pfn(pud_t pud) { phys_addr_t pfn = pud_val(pud); pfn ^= protnone_mask(pfn); return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT; } static inline unsigned long p4d_pfn(p4d_t p4d) { return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT; } static inline unsigned long pgd_pfn(pgd_t pgd) { return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define p4d_leaf p4d_large static inline int p4d_large(p4d_t p4d) { /* No 512 GiB pages yet */ return 0; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) #define pmd_leaf pmd_large static inline int pmd_large(pmd_t pte) { return pmd_flags(pte) & _PAGE_PSE; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */ static inline int pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_trans_huge(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE; } #endif #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_hugepage(void) { return boot_cpu_has(X86_FEATURE_PSE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pmd_devmap(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_DEVMAP); } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline int pud_devmap(pud_t pud) { return !!(pud_val(pud) & _PAGE_DEVMAP); } #else static inline int pud_devmap(pud_t pud) { return 0; } #endif static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pte_t pte_set_flags(pte_t pte, pteval_t set) { pteval_t v = native_pte_val(pte); return native_make_pte(v | set); } static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear) { pteval_t v = native_pte_val(pte); return native_make_pte(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pte_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_UFFD_WP; } static inline pte_t pte_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_UFFD_WP); } static inline pte_t pte_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pte_t pte_mkclean(pte_t pte) { return pte_clear_flags(pte, _PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return pte_clear_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return pte_clear_flags(pte, _PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return pte_clear_flags(pte, _PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return pte_set_flags(pte, _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return pte_set_flags(pte, _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return pte_set_flags(pte, _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return pte_clear_flags(pte, _PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return pte_set_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return pte_clear_flags(pte, _PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL); } static inline pte_t pte_mkdevmap(pte_t pte) { return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP); } static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v | set); } static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear) { pmdval_t v = native_pmd_val(pmd); return native_make_pmd(v & ~clear); } #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline int pmd_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_UFFD_WP; } static inline pmd_t pmd_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_UFFD_WP); } static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ static inline pmd_t pmd_mkold(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_DIRTY); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_RW); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mkdevmap(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_DEVMAP); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_PSE); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_ACCESSED); } static inline pmd_t pmd_mkwrite(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_RW); } static inline pud_t pud_set_flags(pud_t pud, pudval_t set) { pudval_t v = native_pud_val(pud); return native_make_pud(v | set); } static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear) { pudval_t v = native_pud_val(pud); return native_make_pud(v & ~clear); } static inline pud_t pud_mkold(pud_t pud) { return pud_clear_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkclean(pud_t pud) { return pud_clear_flags(pud, _PAGE_DIRTY); } static inline pud_t pud_wrprotect(pud_t pud) { return pud_clear_flags(pud, _PAGE_RW); } static inline pud_t pud_mkdirty(pud_t pud) { return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pud_t pud_mkdevmap(pud_t pud) { return pud_set_flags(pud, _PAGE_DEVMAP); } static inline pud_t pud_mkhuge(pud_t pud) { return pud_set_flags(pud, _PAGE_PSE); } static inline pud_t pud_mkyoung(pud_t pud) { return pud_set_flags(pud, _PAGE_ACCESSED); } static inline pud_t pud_mkwrite(pud_t pud) { return pud_set_flags(pud, _PAGE_RW); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SOFT_DIRTY; } static inline int pmd_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SOFT_DIRTY; } static inline int pud_soft_dirty(pud_t pud) { return pud_flags(pud) & _PAGE_SOFT_DIRTY; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_mksoft_dirty(pud_t pud) { return pud_set_flags(pud, _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY); } static inline pud_t pud_clear_soft_dirty(pud_t pud) { return pud_clear_flags(pud, _PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* * Mask out unsupported bits in a present pgprot. Non-present pgprots * can use those bits for other purposes, so leave them be. */ static inline pgprotval_t massage_pgprot(pgprot_t pgprot) { pgprotval_t protval = pgprot_val(pgprot); if (protval & _PAGE_PRESENT) protval &= __supported_pte_mask; return protval; } static inline pgprotval_t check_pgprot(pgprot_t pgprot) { pgprotval_t massaged_val = massage_pgprot(pgprot); /* mmdebug.h can not be included here because of dependencies */ #ifdef CONFIG_DEBUG_VM WARN_ONCE(pgprot_val(pgprot) != massaged_val, "attempted to set unsupported pgprot: %016llx " "bits: %016llx supported: %016llx\n", (u64)pgprot_val(pgprot), (u64)pgprot_val(pgprot) ^ massaged_val, (u64)__supported_pte_mask); #endif return massaged_val; } static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PTE_PFN_MASK; return __pte(pfn | check_pgprot(pgprot)); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PMD_PAGE_MASK; return __pmd(pfn | check_pgprot(pgprot)); } static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot) { phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT; pfn ^= protnone_mask(pgprot_val(pgprot)); pfn &= PHYSICAL_PUD_PAGE_MASK; return __pud(pfn | check_pgprot(pgprot)); } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return pfn_pmd(pmd_pfn(pmd), __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE))); } static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask); static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte), oldval = val; /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PTE_PFN_MASK); return __pte(val); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmdval_t val = pmd_val(pmd), oldval = val; val &= _HPAGE_CHG_MASK; val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK; val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK); return __pmd(val); } /* * mprotect needs to preserve PAT and encryption bits when updating * vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK; return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x)) #define pmd_pgprot(x) __pgprot(pmd_flags(x)) #define pud_pgprot(x) __pgprot(pud_flags(x)) #define p4d_pgprot(x) __pgprot(p4d_flags(x)) #define canon_pgprot(p) __pgprot(massage_pgprot(p)) static inline pgprot_t arch_filter_pgprot(pgprot_t prot) { return canon_pgprot(prot); } static inline int is_new_memtype_allowed(u64 paddr, unsigned long size, enum page_cache_mode pcm, enum page_cache_mode new_pcm) { /* * PAT type is always WB for untracked ranges, so no need to check. */ if (x86_platform.is_untracked_pat_range(paddr, paddr + size)) return 1; /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back * - request is write-through, return cannot be write-back * - request is write-through, return cannot be write-combine */ if ((pcm == _PAGE_CACHE_MODE_UC_MINUS && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WC && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WB) || (pcm == _PAGE_CACHE_MODE_WT && new_pcm == _PAGE_CACHE_MODE_WC)) { return 0; } return 1; } pmd_t *populate_extra_pmd(unsigned long vaddr); pte_t *populate_extra_pte(unsigned long vaddr); #ifdef CONFIG_PAGE_TABLE_ISOLATION pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd); /* * Take a PGD location (pgdp) and a pgd value that needs to be set there. * Populates the user and returns the resulting PGD that must be set in * the kernel copy of the page tables. */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { if (!static_cpu_has(X86_FEATURE_PTI)) return pgd; return __pti_set_user_pgtbl(pgdp, pgd); } #else /* CONFIG_PAGE_TABLE_ISOLATION */ static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd) { return pgd; } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include <asm/pgtable_32.h> #else # include <asm/pgtable_64.h> #endif #ifndef __ASSEMBLY__ #include <linux/mm_types.h> #include <linux/mmdebug.h> #include <linux/log2.h> #include <asm/fixmap.h> static inline int pte_none(pte_t pte) { return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK)); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t a) { return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP; } #endif #define pte_accessible pte_accessible static inline bool pte_accessible(struct mm_struct *mm, pte_t a) { if (pte_flags(a) & _PAGE_PRESENT) return true; if ((pte_flags(a) & _PAGE_PROTNONE) && mm_tlb_flush_pending(mm)) return true; return false; } static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_PSE is needed too because * split_huge_page will temporarily clear the present bit (but * the _PAGE_PSE flag will remain set at all times while the * _PAGE_PRESENT bit is clear). */ return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE); } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } static inline int pmd_protnone(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT)) == _PAGE_PROTNONE; } #endif /* CONFIG_NUMA_BALANCING */ static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ unsigned long val = native_pmd_val(pmd); return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline int pmd_bad(pmd_t pmd) { return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE; } static inline unsigned long pages_to_mb(unsigned long npg) { return npg >> (20 - PAGE_SHIFT); } #if CONFIG_PGTABLE_LEVELS > 2 static inline int pud_none(pud_t pud) { return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int pud_present(pud_t pud) { return pud_flags(pud) & _PAGE_PRESENT; } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pud_page(pud) pfn_to_page(pud_pfn(pud)) #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } static inline int pud_bad(pud_t pud) { return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0; } #else #define pud_leaf pud_large static inline int pud_large(pud_t pud) { return 0; } #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #if CONFIG_PGTABLE_LEVELS > 3 static inline int p4d_none(p4d_t p4d) { return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0; } static inline int p4d_present(p4d_t p4d) { return p4d_flags(p4d) & _PAGE_PRESENT; } static inline unsigned long p4d_page_vaddr(p4d_t p4d) { return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d)); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) static inline int p4d_bad(p4d_t p4d) { unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (p4d_flags(p4d) & ~ignore_flags) != 0; } #endif /* CONFIG_PGTABLE_LEVELS > 3 */ static inline unsigned long p4d_index(unsigned long address) { return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1); } #if CONFIG_PGTABLE_LEVELS > 4 static inline int pgd_present(pgd_t pgd) { if (!pgtable_l5_enabled()) return 1; return pgd_flags(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } /* * Currently stuck as a macro due to indirect forward reference to * linux/mmzone.h's __section_mem_map_addr() definition: */ #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) /* to find an entry in a page-table-directory. */ static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (!pgtable_l5_enabled()) return (p4d_t *)pgd; return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address); } static inline int pgd_bad(pgd_t pgd) { unsigned long ignore_flags = _PAGE_USER; if (!pgtable_l5_enabled()) return 0; if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) ignore_flags |= _PAGE_NX; return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE; } static inline int pgd_none(pgd_t pgd) { if (!pgtable_l5_enabled()) return 0; /* * There is no need to do a workaround for the KNL stray * A/D bit erratum here. PGDs only point to page tables * except on 32-bit non-PAE which is not supported on * KNL. */ return !native_pgd_val(pgd); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* __ASSEMBLY__ */ #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ extern int direct_gbpages; void init_mem_mapping(void); void early_alloc_pgt_buf(void); extern void memblock_find_dma_reserve(void); void __init poking_init(void); unsigned long init_memory_mapping(unsigned long start, unsigned long end, pgprot_t prot); #ifdef CONFIG_X86_64 extern pgd_t trampoline_pgd_entry; #endif /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp) { pmd_t res = *pmdp; native_pmd_clear(pmdp); return res; } static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp) { pud_t res = *pudp; native_pud_clear(pudp); return res; } static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { set_pmd(pmdp, pmd); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { native_set_pud(pudp, pud); } /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); } #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp); extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp); #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_RW; } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { return native_pmdp_get_and_clear(pmdp); } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { return native_pudp_get_and_clear(pudp); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pud_flags(pud) & _PAGE_RW; } #ifndef pmdp_establish #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { if (IS_ENABLED(CONFIG_SMP)) { return xchg(pmdp, pmd); } else { pmd_t old = *pmdp; WRITE_ONCE(*pmdp, pmd); return old; } } #endif /* * Page table pages are page-aligned. The lower half of the top * level is used for userspace and the top half for the kernel. * * Returns true for parts of the PGD that map userspace and * false for the parts that map the kernel. */ static inline bool pgdp_maps_userspace(void *__ptr) { unsigned long ptr = (unsigned long)__ptr; return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START); } #define pgd_leaf pgd_large static inline int pgd_large(pgd_t pgd) { return 0; } #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and * the user one is in the last 4k. To switch between them, you * just need to flip the 12th bit in their addresses. */ #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT /* * This generates better code than the inline assembly in * __set_bit(). */ static inline void *ptr_set_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr |= BIT(bit); return (void *)__ptr; } static inline void *ptr_clear_bit(void *ptr, int bit) { unsigned long __ptr = (unsigned long)ptr; __ptr &= ~BIT(bit); return (void *)__ptr; } static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp) { return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp) { return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp) { return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp) { return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT); } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); #ifdef CONFIG_PAGE_TABLE_ISOLATION if (!static_cpu_has(X86_FEATURE_PTI)) return; /* Clone the user space pgd as well */ memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src), count * sizeof(pgd_t)); #endif } #define PTE_SHIFT ilog2(PTRS_PER_PTE) static inline int page_level_shift(enum pg_level level) { return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT; } static inline unsigned long page_level_size(enum pg_level level) { return 1UL << page_level_shift(level); } static inline unsigned long page_level_mask(enum pg_level level) { return ~(page_level_size(level) - 1); } /* * The x86 doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { } static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY); } static inline int pte_swp_soft_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY); } #endif #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP static inline pte_t pte_swp_mkuffd_wp(pte_t pte) { return pte_set_flags(pte, _PAGE_SWP_UFFD_WP); } static inline int pte_swp_uffd_wp(pte_t pte) { return pte_flags(pte) & _PAGE_SWP_UFFD_WP; } static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) { return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP); } static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd) { return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP); } static inline int pmd_swp_uffd_wp(pmd_t pmd) { return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP; } static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd) { return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP); } #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ #define PKRU_AD_BIT 0x1u #define PKRU_WD_BIT 0x2u #define PKRU_BITS_PER_PKEY 2 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS extern u32 init_pkru_value; #else #define init_pkru_value 0 #endif static inline bool __pkru_allows_read(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits)); } static inline bool __pkru_allows_write(u32 pkru, u16 pkey) { int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY; /* * Access-disable disables writes too so we need to check * both bits here. */ return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits)); } static inline u16 pte_flags_pkey(unsigned long pte_flags) { #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS /* ifdef to avoid doing 59-bit shift on 32-bit values */ return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0; #else return 0; #endif } static inline bool __pkru_allows_pkey(u16 pkey, bool write) { u32 pkru = read_pkru(); if (!__pkru_allows_read(pkru, pkey)) return false; if (write && !__pkru_allows_write(pkru, pkey)) return false; return true; } /* * 'pteval' can come from a PTE, PMD or PUD. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline bool __pte_access_permitted(unsigned long pteval, bool write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; return __pkru_allows_pkey(pte_flags_pkey(pteval), write); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { return __pte_access_permitted(pte_val(pte), write); } #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { return __pte_access_permitted(pmd_val(pmd), write); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return __pte_access_permitted(pud_val(pud), write); } #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot); static inline bool arch_has_pfn_modify_check(void) { return boot_cpu_has_bug(X86_BUG_L1TF); } #define arch_faults_on_old_pte arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { return false; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KERNEL_PRINTK__ #define __KERNEL_PRINTK__ #include <stdarg.h> #include <linux/init.h> #include <linux/kern_levels.h> #include <linux/linkage.h> #include <linux/cache.h> #include <linux/ratelimit_types.h> extern const char linux_banner[]; extern const char linux_proc_banner[]; extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ #define PRINTK_MAX_SINGLE_HEADER_LEN 2 static inline int printk_get_level(const char *buffer) { if (buffer[0] == KERN_SOH_ASCII && buffer[1]) { switch (buffer[1]) { case '0' ... '7': case 'c': /* KERN_CONT */ return buffer[1]; } } return 0; } static inline const char *printk_skip_level(const char *buffer) { if (printk_get_level(buffer)) return buffer + 2; return buffer; } static inline const char *printk_skip_headers(const char *buffer) { while (printk_get_level(buffer)) buffer = printk_skip_level(buffer); return buffer; } #define CONSOLE_EXT_LOG_MAX 8192 /* printk's without a loglevel use this.. */ #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT /* We show everything that is MORE important than this.. */ #define CONSOLE_LOGLEVEL_SILENT 0 /* Mum's the word */ #define CONSOLE_LOGLEVEL_MIN 1 /* Minimum loglevel we let people use */ #define CONSOLE_LOGLEVEL_DEBUG 10 /* issue debug messages */ #define CONSOLE_LOGLEVEL_MOTORMOUTH 15 /* You can't shut this one up */ /* * Default used to be hard-coded at 7, quiet used to be hardcoded at 4, * we're now allowing both to be set from kernel config. */ #define CONSOLE_LOGLEVEL_DEFAULT CONFIG_CONSOLE_LOGLEVEL_DEFAULT #define CONSOLE_LOGLEVEL_QUIET CONFIG_CONSOLE_LOGLEVEL_QUIET extern int console_printk[]; #define console_loglevel (console_printk[0]) #define default_message_loglevel (console_printk[1]) #define minimum_console_loglevel (console_printk[2]) #define default_console_loglevel (console_printk[3]) static inline void console_silent(void) { console_loglevel = CONSOLE_LOGLEVEL_SILENT; } static inline void console_verbose(void) { if (console_loglevel) console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; } /* strlen("ratelimit") + 1 */ #define DEVKMSG_STR_MAX_SIZE 10 extern char devkmsg_log_str[]; struct ctl_table; extern int suppress_printk; struct va_format { const char *fmt; va_list *va; }; /* * FW_BUG * Add this to a message where you are sure the firmware is buggy or behaves * really stupid or out of spec. Be aware that the responsible BIOS developer * should be able to fix this issue or at least get a concrete idea of the * problem by reading your message without the need of looking at the kernel * code. * * Use it for definite and high priority BIOS bugs. * * FW_WARN * Use it for not that clear (e.g. could the kernel messed up things already?) * and medium priority BIOS bugs. * * FW_INFO * Use this one if you want to tell the user or vendor about something * suspicious, but generally harmless related to the firmware. * * Use it for information or very low priority BIOS bugs. */ #define FW_BUG "[Firmware Bug]: " #define FW_WARN "[Firmware Warn]: " #define FW_INFO "[Firmware Info]: " /* * HW_ERR * Add this to a message for hardware errors, so that user can report * it to hardware vendor instead of LKML or software vendor. */ #define HW_ERR "[Hardware Error]: " /* * DEPRECATED * Add this to a message whenever you want to warn user space about the use * of a deprecated aspect of an API so they can stop using it */ #define DEPRECATED "[Deprecated]: " /* * Dummy printk for disabled debugging statements to use whilst maintaining * gcc's format checking. */ #define no_printk(fmt, ...) \ ({ \ if (0) \ printk(fmt, ##__VA_ARGS__); \ 0; \ }) #ifdef CONFIG_EARLY_PRINTK extern asmlinkage __printf(1, 2) void early_printk(const char *fmt, ...); #else static inline __printf(1, 2) __cold void early_printk(const char *s, ...) { } #endif #ifdef CONFIG_PRINTK_NMI extern void printk_nmi_enter(void); extern void printk_nmi_exit(void); extern void printk_nmi_direct_enter(void); extern void printk_nmi_direct_exit(void); #else static inline void printk_nmi_enter(void) { } static inline void printk_nmi_exit(void) { } static inline void printk_nmi_direct_enter(void) { } static inline void printk_nmi_direct_exit(void) { } #endif /* PRINTK_NMI */ struct dev_printk_info; #ifdef CONFIG_PRINTK asmlinkage __printf(4, 0) int vprintk_emit(int facility, int level, const struct dev_printk_info *dev_info, const char *fmt, va_list args); asmlinkage __printf(1, 0) int vprintk(const char *fmt, va_list args); asmlinkage __printf(1, 2) __cold int printk(const char *fmt, ...); /* * Special printk facility for scheduler/timekeeping use only, _DO_NOT_USE_ ! */ __printf(1, 2) __cold int printk_deferred(const char *fmt, ...); /* * Please don't use printk_ratelimit(), because it shares ratelimiting state * with all other unrelated printk_ratelimit() callsites. Instead use * printk_ratelimited() or plain old __ratelimit(). */ extern int __printk_ratelimit(const char *func); #define printk_ratelimit() __printk_ratelimit(__func__) extern bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec); extern int printk_delay_msec; extern int dmesg_restrict; extern int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, void *buf, size_t *lenp, loff_t *ppos); extern void wake_up_klogd(void); char *log_buf_addr_get(void); u32 log_buf_len_get(void); void log_buf_vmcoreinfo_setup(void); void __init setup_log_buf(int early); __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...); void dump_stack_print_info(const char *log_lvl); void show_regs_print_info(const char *log_lvl); extern asmlinkage void dump_stack(void) __cold; extern void printk_safe_flush(void); extern void printk_safe_flush_on_panic(void); #else static inline __printf(1, 0) int vprintk(const char *s, va_list args) { return 0; } static inline __printf(1, 2) __cold int printk(const char *s, ...) { return 0; } static inline __printf(1, 2) __cold int printk_deferred(const char *s, ...) { return 0; } static inline int printk_ratelimit(void) { return 0; } static inline bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec) { return false; } static inline void wake_up_klogd(void) { } static inline char *log_buf_addr_get(void) { return NULL; } static inline u32 log_buf_len_get(void) { return 0; } static inline void log_buf_vmcoreinfo_setup(void) { } static inline void setup_log_buf(int early) { } static inline __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...) { } static inline void dump_stack_print_info(const char *log_lvl) { } static inline void show_regs_print_info(const char *log_lvl) { } static inline void dump_stack(void) { } static inline void printk_safe_flush(void) { } static inline void printk_safe_flush_on_panic(void) { } #endif extern int kptr_restrict; /** * pr_fmt - used by the pr_*() macros to generate the printk format string * @fmt: format string passed from a pr_*() macro * * This macro can be used to generate a unified format string for pr_*() * macros. A common use is to prefix all pr_*() messages in a file with a common * string. For example, defining this at the top of a source file: * * #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt * * would prefix all pr_info, pr_emerg... messages in the file with the module * name. */ #ifndef pr_fmt #define pr_fmt(fmt) fmt #endif /** * pr_emerg - Print an emergency-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_EMERG loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_emerg(fmt, ...) \ printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) /** * pr_alert - Print an alert-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ALERT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_alert(fmt, ...) \ printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_crit - Print a critical-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CRIT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_crit(fmt, ...) \ printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_err - Print an error-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ERR loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_err(fmt, ...) \ printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) /** * pr_warn - Print a warning-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt() * to generate the format string. */ #define pr_warn(fmt, ...) \ printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) /** * pr_notice - Print a notice-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_NOTICE loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_notice(fmt, ...) \ printk(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) /** * pr_info - Print an info-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_INFO loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_info(fmt, ...) \ printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /** * pr_cont - Continues a previous log message in the same line. * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CONT loglevel. It should only be * used when continuing a log message with no newline ('\n') enclosed. Otherwise * it defaults back to KERN_DEFAULT loglevel. */ #define pr_cont(fmt, ...) \ printk(KERN_CONT fmt, ##__VA_ARGS__) /** * pr_devel - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_DEBUG loglevel if DEBUG is * defined. Otherwise it does nothing. * * It uses pr_fmt() to generate the format string. */ #ifdef DEBUG #define pr_devel(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #include <linux/dynamic_debug.h> /** * pr_debug - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to dynamic_pr_debug() if CONFIG_DYNAMIC_DEBUG is * set. Otherwise, if DEBUG is defined, it's equivalent to a printk with * KERN_DEBUG loglevel. If DEBUG is not defined it does nothing. * * It uses pr_fmt() to generate the format string (dynamic_pr_debug() uses * pr_fmt() internally). */ #define pr_debug(fmt, ...) \ dynamic_pr_debug(fmt, ##__VA_ARGS__) #elif defined(DEBUG) #define pr_debug(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * Print a one-time message (analogous to WARN_ONCE() et al): */ #ifdef CONFIG_PRINTK #define printk_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #define printk_deferred_once(fmt, ...) \ ({ \ static bool __section(".data.once") __print_once; \ bool __ret_print_once = !__print_once; \ \ if (!__print_once) { \ __print_once = true; \ printk_deferred(fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_print_once); \ }) #else #define printk_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define printk_deferred_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_once(fmt, ...) \ printk_once(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_once(fmt, ...) \ printk_once(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_once(fmt, ...) \ printk_once(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_once(fmt, ...) \ printk_once(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_once(fmt, ...) \ printk_once(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_once(fmt, ...) \ printk_once(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_once(fmt, ...) \ printk_once(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_once, don't do that... */ #if defined(DEBUG) #define pr_devel_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(DEBUG) #define pr_debug_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * ratelimited messages with local ratelimit_state, * no local ratelimit_state used in the !PRINTK case */ #ifdef CONFIG_PRINTK #define printk_ratelimited(fmt, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ \ if (__ratelimit(&_rs)) \ printk(fmt, ##__VA_ARGS__); \ }) #else #define printk_ratelimited(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_ratelimited(fmt, ...) \ printk_ratelimited(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_ratelimited(fmt, ...) \ printk_ratelimited(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_ratelimited(fmt, ...) \ printk_ratelimited(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_ratelimited(fmt, ...) \ printk_ratelimited(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_ratelimited(fmt, ...) \ printk_ratelimited(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_ratelimited, don't do that... */ #if defined(DEBUG) #define pr_devel_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) /* descriptor check is first to prevent flooding with "callbacks suppressed" */ #define pr_debug_ratelimited(fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, pr_fmt(fmt)); \ if (DYNAMIC_DEBUG_BRANCH(descriptor) && \ __ratelimit(&_rs)) \ __dynamic_pr_debug(&descriptor, pr_fmt(fmt), ##__VA_ARGS__); \ } while (0) #elif defined(DEBUG) #define pr_debug_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif extern const struct file_operations kmsg_fops; enum { DUMP_PREFIX_NONE, DUMP_PREFIX_ADDRESS, DUMP_PREFIX_OFFSET }; extern int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii); #ifdef CONFIG_PRINTK extern void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); #else static inline void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } static inline void print_hex_dump_bytes(const char *prefix_str, int prefix_type, const void *buf, size_t len) { } #endif #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ dynamic_hex_dump(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #elif defined(DEBUG) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #else static inline void print_hex_dump_debug(const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } #endif /** * print_hex_dump_bytes - shorthand form of print_hex_dump() with default params * @prefix_str: string to prefix each line with; * caller supplies trailing spaces for alignment if desired * @prefix_type: controls whether prefix of an offset, address, or none * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE) * @buf: data blob to dump * @len: number of bytes in the @buf * * Calls print_hex_dump(), with log level of KERN_DEBUG, * rowsize of 16, groupsize of 1, and ASCII output included. */ #define print_hex_dump_bytes(prefix_str, prefix_type, buf, len) \ print_hex_dump_debug(prefix_str, prefix_type, 16, 1, buf, len, true) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIMERQUEUE_H #define _LINUX_TIMERQUEUE_H #include <linux/rbtree.h> #include <linux/ktime.h> struct timerqueue_node { struct rb_node node; ktime_t expires; }; struct timerqueue_head { struct rb_root_cached rb_root; }; extern bool timerqueue_add(struct timerqueue_head *head, struct timerqueue_node *node); extern bool timerqueue_del(struct timerqueue_head *head, struct timerqueue_node *node); extern struct timerqueue_node *timerqueue_iterate_next( struct timerqueue_node *node); /** * timerqueue_getnext - Returns the timer with the earliest expiration time * * @head: head of timerqueue * * Returns a pointer to the timer node that has the earliest expiration time. */ static inline struct timerqueue_node *timerqueue_getnext(struct timerqueue_head *head) { struct rb_node *leftmost = rb_first_cached(&head->rb_root); return rb_entry(leftmost, struct timerqueue_node, node); } static inline void timerqueue_init(struct timerqueue_node *node) { RB_CLEAR_NODE(&node->node); } static inline bool timerqueue_node_queued(struct timerqueue_node *node) { return !RB_EMPTY_NODE(&node->node); } static inline bool timerqueue_node_expires(struct timerqueue_node *node) { return node->expires; } static inline void timerqueue_init_head(struct timerqueue_head *head) { head->rb_root = RB_ROOT_CACHED; } #endif /* _LINUX_TIMERQUEUE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMAN_H #define _LINUX_MMAN_H #include <linux/mm.h> #include <linux/percpu_counter.h> #include <linux/atomic.h> #include <uapi/linux/mman.h> /* * Arrange for legacy / undefined architecture specific flags to be * ignored by mmap handling code. */ #ifndef MAP_32BIT #define MAP_32BIT 0 #endif #ifndef MAP_HUGE_2MB #define MAP_HUGE_2MB 0 #endif #ifndef MAP_HUGE_1GB #define MAP_HUGE_1GB 0 #endif #ifndef MAP_UNINITIALIZED #define MAP_UNINITIALIZED 0 #endif #ifndef MAP_SYNC #define MAP_SYNC 0 #endif /* * The historical set of flags that all mmap implementations implicitly * support when a ->mmap_validate() op is not provided in file_operations. */ #define LEGACY_MAP_MASK (MAP_SHARED \ | MAP_PRIVATE \ | MAP_FIXED \ | MAP_ANONYMOUS \ | MAP_DENYWRITE \ | MAP_EXECUTABLE \ | MAP_UNINITIALIZED \ | MAP_GROWSDOWN \ | MAP_LOCKED \ | MAP_NORESERVE \ | MAP_POPULATE \ | MAP_NONBLOCK \ | MAP_STACK \ | MAP_HUGETLB \ | MAP_32BIT \ | MAP_HUGE_2MB \ | MAP_HUGE_1GB) extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; extern struct percpu_counter vm_committed_as; #ifdef CONFIG_SMP extern s32 vm_committed_as_batch; extern void mm_compute_batch(int overcommit_policy); #else #define vm_committed_as_batch 0 static inline void mm_compute_batch(int overcommit_policy) { } #endif unsigned long vm_memory_committed(void); static inline void vm_acct_memory(long pages) { percpu_counter_add_batch(&vm_committed_as, pages, vm_committed_as_batch); } static inline void vm_unacct_memory(long pages) { vm_acct_memory(-pages); } /* * Allow architectures to handle additional protection and flag bits. The * overriding macros must be defined in the arch-specific asm/mman.h file. */ #ifndef arch_calc_vm_prot_bits #define arch_calc_vm_prot_bits(prot, pkey) 0 #endif #ifndef arch_calc_vm_flag_bits #define arch_calc_vm_flag_bits(flags) 0 #endif #ifndef arch_vm_get_page_prot #define arch_vm_get_page_prot(vm_flags) __pgprot(0) #endif #ifndef arch_validate_prot /* * This is called from mprotect(). PROT_GROWSDOWN and PROT_GROWSUP have * already been masked out. * * Returns true if the prot flags are valid */ static inline bool arch_validate_prot(unsigned long prot, unsigned long addr) { return (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM)) == 0; } #define arch_validate_prot arch_validate_prot #endif #ifndef arch_validate_flags /* * This is called from mmap() and mprotect() with the updated vma->vm_flags. * * Returns true if the VM_* flags are valid. */ static inline bool arch_validate_flags(unsigned long flags) { return true; } #define arch_validate_flags arch_validate_flags #endif /* * Optimisation macro. It is equivalent to: * (x & bit1) ? bit2 : 0 * but this version is faster. * ("bit1" and "bit2" must be single bits) */ #define _calc_vm_trans(x, bit1, bit2) \ ((!(bit1) || !(bit2)) ? 0 : \ ((bit1) <= (bit2) ? ((x) & (bit1)) * ((bit2) / (bit1)) \ : ((x) & (bit1)) / ((bit1) / (bit2)))) /* * Combine the mmap "prot" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_prot_bits(unsigned long prot, unsigned long pkey) { return _calc_vm_trans(prot, PROT_READ, VM_READ ) | _calc_vm_trans(prot, PROT_WRITE, VM_WRITE) | _calc_vm_trans(prot, PROT_EXEC, VM_EXEC) | arch_calc_vm_prot_bits(prot, pkey); } /* * Combine the mmap "flags" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_flag_bits(unsigned long flags) { return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN ) | _calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE ) | _calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED ) | _calc_vm_trans(flags, MAP_SYNC, VM_SYNC ) | arch_calc_vm_flag_bits(flags); } unsigned long vm_commit_limit(void); #endif /* _LINUX_MMAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_ATOMIC64_64_H #define _ASM_X86_ATOMIC64_64_H #include <linux/types.h> #include <asm/alternative.h> #include <asm/cmpxchg.h> /* The 64-bit atomic type */ #define ATOMIC64_INIT(i) { (i) } /** * arch_atomic64_read - read atomic64 variable * @v: pointer of type atomic64_t * * Atomically reads the value of @v. * Doesn't imply a read memory barrier. */ static inline s64 arch_atomic64_read(const atomic64_t *v) { return __READ_ONCE((v)->counter); } /** * arch_atomic64_set - set atomic64 variable * @v: pointer to type atomic64_t * @i: required value * * Atomically sets the value of @v to @i. */ static inline void arch_atomic64_set(atomic64_t *v, s64 i) { __WRITE_ONCE(v->counter, i); } /** * arch_atomic64_add - add integer to atomic64 variable * @i: integer value to add * @v: pointer to type atomic64_t * * Atomically adds @i to @v. */ static __always_inline void arch_atomic64_add(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "addq %1,%0" : "=m" (v->counter) : "er" (i), "m" (v->counter) : "memory"); } /** * arch_atomic64_sub - subtract the atomic64 variable * @i: integer value to subtract * @v: pointer to type atomic64_t * * Atomically subtracts @i from @v. */ static inline void arch_atomic64_sub(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "subq %1,%0" : "=m" (v->counter) : "er" (i), "m" (v->counter) : "memory"); } /** * arch_atomic64_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer to type atomic64_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static inline bool arch_atomic64_sub_and_test(s64 i, atomic64_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "subq", v->counter, e, "er", i); } #define arch_atomic64_sub_and_test arch_atomic64_sub_and_test /** * arch_atomic64_inc - increment atomic64 variable * @v: pointer to type atomic64_t * * Atomically increments @v by 1. */ static __always_inline void arch_atomic64_inc(atomic64_t *v) { asm volatile(LOCK_PREFIX "incq %0" : "=m" (v->counter) : "m" (v->counter) : "memory"); } #define arch_atomic64_inc arch_atomic64_inc /** * arch_atomic64_dec - decrement atomic64 variable * @v: pointer to type atomic64_t * * Atomically decrements @v by 1. */ static __always_inline void arch_atomic64_dec(atomic64_t *v) { asm volatile(LOCK_PREFIX "decq %0" : "=m" (v->counter) : "m" (v->counter) : "memory"); } #define arch_atomic64_dec arch_atomic64_dec /** * arch_atomic64_dec_and_test - decrement and test * @v: pointer to type atomic64_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static inline bool arch_atomic64_dec_and_test(atomic64_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "decq", v->counter, e); } #define arch_atomic64_dec_and_test arch_atomic64_dec_and_test /** * arch_atomic64_inc_and_test - increment and test * @v: pointer to type atomic64_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static inline bool arch_atomic64_inc_and_test(atomic64_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "incq", v->counter, e); } #define arch_atomic64_inc_and_test arch_atomic64_inc_and_test /** * arch_atomic64_add_negative - add and test if negative * @i: integer value to add * @v: pointer to type atomic64_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static inline bool arch_atomic64_add_negative(s64 i, atomic64_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "addq", v->counter, s, "er", i); } #define arch_atomic64_add_negative arch_atomic64_add_negative /** * arch_atomic64_add_return - add and return * @i: integer value to add * @v: pointer to type atomic64_t * * Atomically adds @i to @v and returns @i + @v */ static __always_inline s64 arch_atomic64_add_return(s64 i, atomic64_t *v) { return i + xadd(&v->counter, i); } #define arch_atomic64_add_return arch_atomic64_add_return static inline s64 arch_atomic64_sub_return(s64 i, atomic64_t *v) { return arch_atomic64_add_return(-i, v); } #define arch_atomic64_sub_return arch_atomic64_sub_return static inline s64 arch_atomic64_fetch_add(s64 i, atomic64_t *v) { return xadd(&v->counter, i); } #define arch_atomic64_fetch_add arch_atomic64_fetch_add static inline s64 arch_atomic64_fetch_sub(s64 i, atomic64_t *v) { return xadd(&v->counter, -i); } #define arch_atomic64_fetch_sub arch_atomic64_fetch_sub static inline s64 arch_atomic64_cmpxchg(atomic64_t *v, s64 old, s64 new) { return arch_cmpxchg(&v->counter, old, new); } #define arch_atomic64_cmpxchg arch_atomic64_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { return try_cmpxchg(&v->counter, old, new); } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg static inline s64 arch_atomic64_xchg(atomic64_t *v, s64 new) { return arch_xchg(&v->counter, new); } #define arch_atomic64_xchg arch_atomic64_xchg static inline void arch_atomic64_and(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "andq %1,%0" : "+m" (v->counter) : "er" (i) : "memory"); } static inline s64 arch_atomic64_fetch_and(s64 i, atomic64_t *v) { s64 val = arch_atomic64_read(v); do { } while (!arch_atomic64_try_cmpxchg(v, &val, val & i)); return val; } #define arch_atomic64_fetch_and arch_atomic64_fetch_and static inline void arch_atomic64_or(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "orq %1,%0" : "+m" (v->counter) : "er" (i) : "memory"); } static inline s64 arch_atomic64_fetch_or(s64 i, atomic64_t *v) { s64 val = arch_atomic64_read(v); do { } while (!arch_atomic64_try_cmpxchg(v, &val, val | i)); return val; } #define arch_atomic64_fetch_or arch_atomic64_fetch_or static inline void arch_atomic64_xor(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "xorq %1,%0" : "+m" (v->counter) : "er" (i) : "memory"); } static inline s64 arch_atomic64_fetch_xor(s64 i, atomic64_t *v) { s64 val = arch_atomic64_read(v); do { } while (!arch_atomic64_try_cmpxchg(v, &val, val ^ i)); return val; } #define arch_atomic64_fetch_xor arch_atomic64_fetch_xor #endif /* _ASM_X86_ATOMIC64_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAPOPS_H #define _LINUX_SWAPOPS_H #include <linux/radix-tree.h> #include <linux/bug.h> #include <linux/mm_types.h> #ifdef CONFIG_MMU /* * swapcache pages are stored in the swapper_space radix tree. We want to * get good packing density in that tree, so the index should be dense in * the low-order bits. * * We arrange the `type' and `offset' fields so that `type' is at the seven * high-order bits of the swp_entry_t and `offset' is right-aligned in the * remaining bits. Although `type' itself needs only five bits, we allow for * shmem/tmpfs to shift it all up a further two bits: see swp_to_radix_entry(). * * swp_entry_t's are *never* stored anywhere in their arch-dependent format. */ #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) /* Clear all flags but only keep swp_entry_t related information */ static inline pte_t pte_swp_clear_flags(pte_t pte) { if (pte_swp_soft_dirty(pte)) pte = pte_swp_clear_soft_dirty(pte); if (pte_swp_uffd_wp(pte)) pte = pte_swp_clear_uffd_wp(pte); return pte; } /* * Store a type+offset into a swp_entry_t in an arch-independent format */ static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) { swp_entry_t ret; ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); return ret; } /* * Extract the `type' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline unsigned swp_type(swp_entry_t entry) { return (entry.val >> SWP_TYPE_SHIFT); } /* * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline pgoff_t swp_offset(swp_entry_t entry) { return entry.val & SWP_OFFSET_MASK; } /* check whether a pte points to a swap entry */ static inline int is_swap_pte(pte_t pte) { return !pte_none(pte) && !pte_present(pte); } /* * Convert the arch-dependent pte representation of a swp_entry_t into an * arch-independent swp_entry_t. */ static inline swp_entry_t pte_to_swp_entry(pte_t pte) { swp_entry_t arch_entry; pte = pte_swp_clear_flags(pte); arch_entry = __pte_to_swp_entry(pte); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } /* * Convert the arch-independent representation of a swp_entry_t into the * arch-dependent pte representation. */ static inline pte_t swp_entry_to_pte(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pte(arch_entry); } static inline swp_entry_t radix_to_swp_entry(void *arg) { swp_entry_t entry; entry.val = xa_to_value(arg); return entry; } static inline void *swp_to_radix_entry(swp_entry_t entry) { return xa_mk_value(entry.val); } #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(write ? SWP_DEVICE_WRITE : SWP_DEVICE_READ, page_to_pfn(page)); } static inline bool is_device_private_entry(swp_entry_t entry) { int type = swp_type(entry); return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; } static inline void make_device_private_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_DEVICE_READ, swp_offset(*entry)); } static inline bool is_write_device_private_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return pfn_to_page(swp_offset(entry)); } #else /* CONFIG_DEVICE_PRIVATE */ static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(0, 0); } static inline void make_device_private_entry_read(swp_entry_t *entry) { } static inline bool is_device_private_entry(swp_entry_t entry) { return false; } static inline bool is_write_device_private_entry(swp_entry_t entry) { return false; } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return NULL; } #endif /* CONFIG_DEVICE_PRIVATE */ #ifdef CONFIG_MIGRATION static inline swp_entry_t make_migration_entry(struct page *page, int write) { BUG_ON(!PageLocked(compound_head(page))); return swp_entry(write ? SWP_MIGRATION_WRITE : SWP_MIGRATION_READ, page_to_pfn(page)); } static inline int is_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_READ || swp_type(entry) == SWP_MIGRATION_WRITE); } static inline int is_write_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *migration_entry_to_page(swp_entry_t entry) { struct page *p = pfn_to_page(swp_offset(entry)); /* * Any use of migration entries may only occur while the * corresponding page is locked */ BUG_ON(!PageLocked(compound_head(p))); return p; } static inline void make_migration_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_MIGRATION_READ, swp_offset(*entry)); } extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl); extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address); extern void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte); #else #define make_migration_entry(page, write) swp_entry(0, 0) static inline int is_migration_entry(swp_entry_t swp) { return 0; } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *migration_entry_to_page(swp_entry_t entry) { return NULL; } static inline void make_migration_entry_read(swp_entry_t *entryp) { } static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl) { } static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { } static inline void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte) { } static inline int is_write_migration_entry(swp_entry_t entry) { return 0; } #endif struct page_vma_mapped_walk; #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION extern void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page); extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new); extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { swp_entry_t arch_entry; if (pmd_swp_soft_dirty(pmd)) pmd = pmd_swp_clear_soft_dirty(pmd); if (pmd_swp_uffd_wp(pmd)) pmd = pmd_swp_clear_uffd_wp(pmd); arch_entry = __pmd_to_swp_entry(pmd); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pmd(arch_entry); } static inline int is_pmd_migration_entry(pmd_t pmd) { return !pmd_present(pmd) && is_migration_entry(pmd_to_swp_entry(pmd)); } #else static inline void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page) { BUILD_BUG(); } static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) { BUILD_BUG(); } static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { return swp_entry(0, 0); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { return __pmd(0); } static inline int is_pmd_migration_entry(pmd_t pmd) { return 0; } #endif #ifdef CONFIG_MEMORY_FAILURE extern atomic_long_t num_poisoned_pages __read_mostly; /* * Support for hardware poisoned pages */ static inline swp_entry_t make_hwpoison_entry(struct page *page) { BUG_ON(!PageLocked(page)); return swp_entry(SWP_HWPOISON, page_to_pfn(page)); } static inline int is_hwpoison_entry(swp_entry_t entry) { return swp_type(entry) == SWP_HWPOISON; } static inline void num_poisoned_pages_inc(void) { atomic_long_inc(&num_poisoned_pages); } static inline void num_poisoned_pages_dec(void) { atomic_long_dec(&num_poisoned_pages); } #else static inline swp_entry_t make_hwpoison_entry(struct page *page) { return swp_entry(0, 0); } static inline int is_hwpoison_entry(swp_entry_t swp) { return 0; } static inline void num_poisoned_pages_inc(void) { } #endif #if defined(CONFIG_MEMORY_FAILURE) || defined(CONFIG_MIGRATION) || \ defined(CONFIG_DEVICE_PRIVATE) static inline int non_swap_entry(swp_entry_t entry) { return swp_type(entry) >= MAX_SWAPFILES; } #else static inline int non_swap_entry(swp_entry_t entry) { return 0; } #endif #endif /* CONFIG_MMU */ #endif /* _LINUX_SWAPOPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _LINUX_IO_URING_H #define _LINUX_IO_URING_H #include <linux/sched.h> #include <linux/xarray.h> struct io_identity { struct files_struct *files; struct mm_struct *mm; #ifdef CONFIG_BLK_CGROUP struct cgroup_subsys_state *blkcg_css; #endif const struct cred *creds; struct nsproxy *nsproxy; struct fs_struct *fs; unsigned long fsize; #ifdef CONFIG_AUDIT kuid_t loginuid; unsigned int sessionid; #endif refcount_t count; }; struct io_uring_task { /* submission side */ struct xarray xa; struct wait_queue_head wait; struct file *last; struct percpu_counter inflight; struct io_identity __identity; struct io_identity *identity; atomic_t in_idle; bool sqpoll; }; #if defined(CONFIG_IO_URING) struct sock *io_uring_get_socket(struct file *file); void __io_uring_task_cancel(void); void __io_uring_files_cancel(struct files_struct *files); void __io_uring_free(struct task_struct *tsk); static inline void io_uring_task_cancel(void) { if (current->io_uring && !xa_empty(&current->io_uring->xa)) __io_uring_task_cancel(); } static inline void io_uring_files_cancel(struct files_struct *files) { if (current->io_uring && !xa_empty(&current->io_uring->xa)) __io_uring_files_cancel(files); } static inline void io_uring_free(struct task_struct *tsk) { if (tsk->io_uring) __io_uring_free(tsk); } #else static inline struct sock *io_uring_get_socket(struct file *file) { return NULL; } static inline void io_uring_task_cancel(void) { } static inline void io_uring_files_cancel(struct files_struct *files) { } static inline void io_uring_free(struct task_struct *tsk) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi.h - ACPI Interface * * Copyright (C) 2001 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef _LINUX_ACPI_H #define _LINUX_ACPI_H #include <linux/errno.h> #include <linux/ioport.h> /* for struct resource */ #include <linux/irqdomain.h> #include <linux/resource_ext.h> #include <linux/device.h> #include <linux/property.h> #include <linux/uuid.h> #ifndef _LINUX #define _LINUX #endif #include <acpi/acpi.h> #ifdef CONFIG_ACPI #include <linux/list.h> #include <linux/mod_devicetable.h> #include <linux/dynamic_debug.h> #include <linux/module.h> #include <linux/mutex.h> #include <acpi/acpi_bus.h> #include <acpi/acpi_drivers.h> #include <acpi/acpi_numa.h> #include <acpi/acpi_io.h> #include <asm/acpi.h> static inline acpi_handle acpi_device_handle(struct acpi_device *adev) { return adev ? adev->handle : NULL; } #define ACPI_COMPANION(dev) to_acpi_device_node((dev)->fwnode) #define ACPI_COMPANION_SET(dev, adev) set_primary_fwnode(dev, (adev) ? \ acpi_fwnode_handle(adev) : NULL) #define ACPI_HANDLE(dev) acpi_device_handle(ACPI_COMPANION(dev)) #define ACPI_HANDLE_FWNODE(fwnode) \ acpi_device_handle(to_acpi_device_node(fwnode)) static inline struct fwnode_handle *acpi_alloc_fwnode_static(void) { struct fwnode_handle *fwnode; fwnode = kzalloc(sizeof(struct fwnode_handle), GFP_KERNEL); if (!fwnode) return NULL; fwnode->ops = &acpi_static_fwnode_ops; return fwnode; } static inline void acpi_free_fwnode_static(struct fwnode_handle *fwnode) { if (WARN_ON(!is_acpi_static_node(fwnode))) return; kfree(fwnode); } /** * ACPI_DEVICE_CLASS - macro used to describe an ACPI device with * the PCI-defined class-code information * * @_cls : the class, subclass, prog-if triple for this device * @_msk : the class mask for this device * * This macro is used to create a struct acpi_device_id that matches a * specific PCI class. The .id and .driver_data fields will be left * initialized with the default value. */ #define ACPI_DEVICE_CLASS(_cls, _msk) .cls = (_cls), .cls_msk = (_msk), static inline bool has_acpi_companion(struct device *dev) { return is_acpi_device_node(dev->fwnode); } static inline void acpi_preset_companion(struct device *dev, struct acpi_device *parent, u64 addr) { ACPI_COMPANION_SET(dev, acpi_find_child_device(parent, addr, false)); } static inline const char *acpi_dev_name(struct acpi_device *adev) { return dev_name(&adev->dev); } struct device *acpi_get_first_physical_node(struct acpi_device *adev); enum acpi_irq_model_id { ACPI_IRQ_MODEL_PIC = 0, ACPI_IRQ_MODEL_IOAPIC, ACPI_IRQ_MODEL_IOSAPIC, ACPI_IRQ_MODEL_PLATFORM, ACPI_IRQ_MODEL_GIC, ACPI_IRQ_MODEL_COUNT }; extern enum acpi_irq_model_id acpi_irq_model; enum acpi_interrupt_id { ACPI_INTERRUPT_PMI = 1, ACPI_INTERRUPT_INIT, ACPI_INTERRUPT_CPEI, ACPI_INTERRUPT_COUNT }; #define ACPI_SPACE_MEM 0 enum acpi_address_range_id { ACPI_ADDRESS_RANGE_MEMORY = 1, ACPI_ADDRESS_RANGE_RESERVED = 2, ACPI_ADDRESS_RANGE_ACPI = 3, ACPI_ADDRESS_RANGE_NVS = 4, ACPI_ADDRESS_RANGE_COUNT }; /* Table Handlers */ union acpi_subtable_headers { struct acpi_subtable_header common; struct acpi_hmat_structure hmat; }; typedef int (*acpi_tbl_table_handler)(struct acpi_table_header *table); typedef int (*acpi_tbl_entry_handler)(union acpi_subtable_headers *header, const unsigned long end); /* Debugger support */ struct acpi_debugger_ops { int (*create_thread)(acpi_osd_exec_callback function, void *context); ssize_t (*write_log)(const char *msg); ssize_t (*read_cmd)(char *buffer, size_t length); int (*wait_command_ready)(bool single_step, char *buffer, size_t length); int (*notify_command_complete)(void); }; struct acpi_debugger { const struct acpi_debugger_ops *ops; struct module *owner; struct mutex lock; }; #ifdef CONFIG_ACPI_DEBUGGER int __init acpi_debugger_init(void); int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops); void acpi_unregister_debugger(const struct acpi_debugger_ops *ops); int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context); ssize_t acpi_debugger_write_log(const char *msg); ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length); int acpi_debugger_wait_command_ready(void); int acpi_debugger_notify_command_complete(void); #else static inline int acpi_debugger_init(void) { return -ENODEV; } static inline int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops) { return -ENODEV; } static inline void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) { } static inline int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) { return -ENODEV; } static inline int acpi_debugger_write_log(const char *msg) { return -ENODEV; } static inline int acpi_debugger_read_cmd(char *buffer, u32 buffer_length) { return -ENODEV; } static inline int acpi_debugger_wait_command_ready(void) { return -ENODEV; } static inline int acpi_debugger_notify_command_complete(void) { return -ENODEV; } #endif #define BAD_MADT_ENTRY(entry, end) ( \ (!entry) || (unsigned long)entry + sizeof(*entry) > end || \ ((struct acpi_subtable_header *)entry)->length < sizeof(*entry)) struct acpi_subtable_proc { int id; acpi_tbl_entry_handler handler; int count; }; void __iomem *__acpi_map_table(unsigned long phys, unsigned long size); void __acpi_unmap_table(void __iomem *map, unsigned long size); int early_acpi_boot_init(void); int acpi_boot_init (void); void acpi_boot_table_prepare (void); void acpi_boot_table_init (void); int acpi_mps_check (void); int acpi_numa_init (void); int acpi_locate_initial_tables (void); void acpi_reserve_initial_tables (void); void acpi_table_init_complete (void); int acpi_table_init (void); int acpi_table_parse(char *id, acpi_tbl_table_handler handler); int __init acpi_table_parse_entries(char *id, unsigned long table_size, int entry_id, acpi_tbl_entry_handler handler, unsigned int max_entries); int __init acpi_table_parse_entries_array(char *id, unsigned long table_size, struct acpi_subtable_proc *proc, int proc_num, unsigned int max_entries); int acpi_table_parse_madt(enum acpi_madt_type id, acpi_tbl_entry_handler handler, unsigned int max_entries); int acpi_parse_mcfg (struct acpi_table_header *header); void acpi_table_print_madt_entry (struct acpi_subtable_header *madt); /* the following numa functions are architecture-dependent */ void acpi_numa_slit_init (struct acpi_table_slit *slit); #if defined(CONFIG_X86) || defined(CONFIG_IA64) void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity *pa); #else static inline void acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) { } #endif void acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa); #ifdef CONFIG_ARM64 void acpi_numa_gicc_affinity_init(struct acpi_srat_gicc_affinity *pa); #else static inline void acpi_numa_gicc_affinity_init(struct acpi_srat_gicc_affinity *pa) { } #endif int acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity *ma); #ifndef PHYS_CPUID_INVALID typedef u32 phys_cpuid_t; #define PHYS_CPUID_INVALID (phys_cpuid_t)(-1) #endif static inline bool invalid_logical_cpuid(u32 cpuid) { return (int)cpuid < 0; } static inline bool invalid_phys_cpuid(phys_cpuid_t phys_id) { return phys_id == PHYS_CPUID_INVALID; } /* Validate the processor object's proc_id */ bool acpi_duplicate_processor_id(int proc_id); /* Processor _CTS control */ struct acpi_processor_power; #ifdef CONFIG_ACPI_PROCESSOR_CSTATE bool acpi_processor_claim_cst_control(void); int acpi_processor_evaluate_cst(acpi_handle handle, u32 cpu, struct acpi_processor_power *info); #else static inline bool acpi_processor_claim_cst_control(void) { return false; } static inline int acpi_processor_evaluate_cst(acpi_handle handle, u32 cpu, struct acpi_processor_power *info) { return -ENODEV; } #endif #ifdef CONFIG_ACPI_HOTPLUG_CPU /* Arch dependent functions for cpu hotplug support */ int acpi_map_cpu(acpi_handle handle, phys_cpuid_t physid, u32 acpi_id, int *pcpu); int acpi_unmap_cpu(int cpu); #endif /* CONFIG_ACPI_HOTPLUG_CPU */ #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC int acpi_get_ioapic_id(acpi_handle handle, u32 gsi_base, u64 *phys_addr); #endif int acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base); int acpi_unregister_ioapic(acpi_handle handle, u32 gsi_base); int acpi_ioapic_registered(acpi_handle handle, u32 gsi_base); void acpi_irq_stats_init(void); extern u32 acpi_irq_handled; extern u32 acpi_irq_not_handled; extern unsigned int acpi_sci_irq; extern bool acpi_no_s5; #define INVALID_ACPI_IRQ ((unsigned)-1) static inline bool acpi_sci_irq_valid(void) { return acpi_sci_irq != INVALID_ACPI_IRQ; } extern int sbf_port; extern unsigned long acpi_realmode_flags; int acpi_register_gsi (struct device *dev, u32 gsi, int triggering, int polarity); int acpi_gsi_to_irq (u32 gsi, unsigned int *irq); int acpi_isa_irq_to_gsi (unsigned isa_irq, u32 *gsi); void acpi_set_irq_model(enum acpi_irq_model_id model, struct fwnode_handle *fwnode); struct irq_domain *acpi_irq_create_hierarchy(unsigned int flags, unsigned int size, struct fwnode_handle *fwnode, const struct irq_domain_ops *ops, void *host_data); #ifdef CONFIG_X86_IO_APIC extern int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity); #else static inline int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity) { return -1; } #endif /* * This function undoes the effect of one call to acpi_register_gsi(). * If this matches the last registration, any IRQ resources for gsi * are freed. */ void acpi_unregister_gsi (u32 gsi); struct pci_dev; int acpi_pci_irq_enable (struct pci_dev *dev); void acpi_penalize_isa_irq(int irq, int active); bool acpi_isa_irq_available(int irq); #ifdef CONFIG_PCI void acpi_penalize_sci_irq(int irq, int trigger, int polarity); #else static inline void acpi_penalize_sci_irq(int irq, int trigger, int polarity) { } #endif void acpi_pci_irq_disable (struct pci_dev *dev); extern int ec_read(u8 addr, u8 *val); extern int ec_write(u8 addr, u8 val); extern int ec_transaction(u8 command, const u8 *wdata, unsigned wdata_len, u8 *rdata, unsigned rdata_len); extern acpi_handle ec_get_handle(void); extern bool acpi_is_pnp_device(struct acpi_device *); #if defined(CONFIG_ACPI_WMI) || defined(CONFIG_ACPI_WMI_MODULE) typedef void (*wmi_notify_handler) (u32 value, void *context); extern acpi_status wmi_evaluate_method(const char *guid, u8 instance, u32 method_id, const struct acpi_buffer *in, struct acpi_buffer *out); extern acpi_status wmi_query_block(const char *guid, u8 instance, struct acpi_buffer *out); extern acpi_status wmi_set_block(const char *guid, u8 instance, const struct acpi_buffer *in); extern acpi_status wmi_install_notify_handler(const char *guid, wmi_notify_handler handler, void *data); extern acpi_status wmi_remove_notify_handler(const char *guid); extern acpi_status wmi_get_event_data(u32 event, struct acpi_buffer *out); extern bool wmi_has_guid(const char *guid); extern char *wmi_get_acpi_device_uid(const char *guid); #endif /* CONFIG_ACPI_WMI */ #define ACPI_VIDEO_OUTPUT_SWITCHING 0x0001 #define ACPI_VIDEO_DEVICE_POSTING 0x0002 #define ACPI_VIDEO_ROM_AVAILABLE 0x0004 #define ACPI_VIDEO_BACKLIGHT 0x0008 #define ACPI_VIDEO_BACKLIGHT_FORCE_VENDOR 0x0010 #define ACPI_VIDEO_BACKLIGHT_FORCE_VIDEO 0x0020 #define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VENDOR 0x0040 #define ACPI_VIDEO_OUTPUT_SWITCHING_FORCE_VIDEO 0x0080 #define ACPI_VIDEO_BACKLIGHT_DMI_VENDOR 0x0100 #define ACPI_VIDEO_BACKLIGHT_DMI_VIDEO 0x0200 #define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VENDOR 0x0400 #define ACPI_VIDEO_OUTPUT_SWITCHING_DMI_VIDEO 0x0800 extern char acpi_video_backlight_string[]; extern long acpi_is_video_device(acpi_handle handle); extern int acpi_blacklisted(void); extern void acpi_osi_setup(char *str); extern bool acpi_osi_is_win8(void); #ifdef CONFIG_ACPI_NUMA int acpi_map_pxm_to_node(int pxm); int acpi_get_node(acpi_handle handle); /** * pxm_to_online_node - Map proximity ID to online node * @pxm: ACPI proximity ID * * This is similar to pxm_to_node(), but always returns an online * node. When the mapped node from a given proximity ID is offline, it * looks up the node distance table and returns the nearest online node. * * ACPI device drivers, which are called after the NUMA initialization has * completed in the kernel, can call this interface to obtain their device * NUMA topology from ACPI tables. Such drivers do not have to deal with * offline nodes. A node may be offline when SRAT memory entry does not exist, * or NUMA is disabled, ex. "numa=off" on x86. */ static inline int pxm_to_online_node(int pxm) { int node = pxm_to_node(pxm); return numa_map_to_online_node(node); } #else static inline int pxm_to_online_node(int pxm) { return 0; } static inline int acpi_map_pxm_to_node(int pxm) { return 0; } static inline int acpi_get_node(acpi_handle handle) { return 0; } #endif extern int acpi_paddr_to_node(u64 start_addr, u64 size); extern int pnpacpi_disabled; #define PXM_INVAL (-1) bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res); bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res); bool acpi_dev_resource_address_space(struct acpi_resource *ares, struct resource_win *win); bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, struct resource_win *win); unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable); unsigned int acpi_dev_get_irq_type(int triggering, int polarity); bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, struct resource *res); void acpi_dev_free_resource_list(struct list_head *list); int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, int (*preproc)(struct acpi_resource *, void *), void *preproc_data); int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list); int acpi_dev_filter_resource_type(struct acpi_resource *ares, unsigned long types); static inline int acpi_dev_filter_resource_type_cb(struct acpi_resource *ares, void *arg) { return acpi_dev_filter_resource_type(ares, (unsigned long)arg); } struct acpi_device *acpi_resource_consumer(struct resource *res); int acpi_check_resource_conflict(const struct resource *res); int acpi_check_region(resource_size_t start, resource_size_t n, const char *name); acpi_status acpi_release_memory(acpi_handle handle, struct resource *res, u32 level); int acpi_resources_are_enforced(void); #ifdef CONFIG_HIBERNATION void __init acpi_no_s4_hw_signature(void); #endif #ifdef CONFIG_PM_SLEEP void __init acpi_old_suspend_ordering(void); void __init acpi_nvs_nosave(void); void __init acpi_nvs_nosave_s3(void); void __init acpi_sleep_no_blacklist(void); #endif /* CONFIG_PM_SLEEP */ int acpi_register_wakeup_handler( int wake_irq, bool (*wakeup)(void *context), void *context); void acpi_unregister_wakeup_handler( bool (*wakeup)(void *context), void *context); struct acpi_osc_context { char *uuid_str; /* UUID string */ int rev; struct acpi_buffer cap; /* list of DWORD capabilities */ struct acpi_buffer ret; /* free by caller if success */ }; acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context); /* Indexes into _OSC Capabilities Buffer (DWORDs 2 & 3 are device-specific) */ #define OSC_QUERY_DWORD 0 /* DWORD 1 */ #define OSC_SUPPORT_DWORD 1 /* DWORD 2 */ #define OSC_CONTROL_DWORD 2 /* DWORD 3 */ /* _OSC Capabilities DWORD 1: Query/Control and Error Returns (generic) */ #define OSC_QUERY_ENABLE 0x00000001 /* input */ #define OSC_REQUEST_ERROR 0x00000002 /* return */ #define OSC_INVALID_UUID_ERROR 0x00000004 /* return */ #define OSC_INVALID_REVISION_ERROR 0x00000008 /* return */ #define OSC_CAPABILITIES_MASK_ERROR 0x00000010 /* return */ /* Platform-Wide Capabilities _OSC: Capabilities DWORD 2: Support Field */ #define OSC_SB_PAD_SUPPORT 0x00000001 #define OSC_SB_PPC_OST_SUPPORT 0x00000002 #define OSC_SB_PR3_SUPPORT 0x00000004 #define OSC_SB_HOTPLUG_OST_SUPPORT 0x00000008 #define OSC_SB_APEI_SUPPORT 0x00000010 #define OSC_SB_CPC_SUPPORT 0x00000020 #define OSC_SB_CPCV2_SUPPORT 0x00000040 #define OSC_SB_PCLPI_SUPPORT 0x00000080 #define OSC_SB_OSLPI_SUPPORT 0x00000100 #define OSC_SB_CPC_DIVERSE_HIGH_SUPPORT 0x00001000 #define OSC_SB_GENERIC_INITIATOR_SUPPORT 0x00002000 extern bool osc_sb_apei_support_acked; extern bool osc_pc_lpi_support_confirmed; /* PCI Host Bridge _OSC: Capabilities DWORD 2: Support Field */ #define OSC_PCI_EXT_CONFIG_SUPPORT 0x00000001 #define OSC_PCI_ASPM_SUPPORT 0x00000002 #define OSC_PCI_CLOCK_PM_SUPPORT 0x00000004 #define OSC_PCI_SEGMENT_GROUPS_SUPPORT 0x00000008 #define OSC_PCI_MSI_SUPPORT 0x00000010 #define OSC_PCI_EDR_SUPPORT 0x00000080 #define OSC_PCI_HPX_TYPE_3_SUPPORT 0x00000100 #define OSC_PCI_SUPPORT_MASKS 0x0000019f /* PCI Host Bridge _OSC: Capabilities DWORD 3: Control Field */ #define OSC_PCI_EXPRESS_NATIVE_HP_CONTROL 0x00000001 #define OSC_PCI_SHPC_NATIVE_HP_CONTROL 0x00000002 #define OSC_PCI_EXPRESS_PME_CONTROL 0x00000004 #define OSC_PCI_EXPRESS_AER_CONTROL 0x00000008 #define OSC_PCI_EXPRESS_CAPABILITY_CONTROL 0x00000010 #define OSC_PCI_EXPRESS_LTR_CONTROL 0x00000020 #define OSC_PCI_EXPRESS_DPC_CONTROL 0x00000080 #define OSC_PCI_CONTROL_MASKS 0x000000bf #define ACPI_GSB_ACCESS_ATTRIB_QUICK 0x00000002 #define ACPI_GSB_ACCESS_ATTRIB_SEND_RCV 0x00000004 #define ACPI_GSB_ACCESS_ATTRIB_BYTE 0x00000006 #define ACPI_GSB_ACCESS_ATTRIB_WORD 0x00000008 #define ACPI_GSB_ACCESS_ATTRIB_BLOCK 0x0000000A #define ACPI_GSB_ACCESS_ATTRIB_MULTIBYTE 0x0000000B #define ACPI_GSB_ACCESS_ATTRIB_WORD_CALL 0x0000000C #define ACPI_GSB_ACCESS_ATTRIB_BLOCK_CALL 0x0000000D #define ACPI_GSB_ACCESS_ATTRIB_RAW_BYTES 0x0000000E #define ACPI_GSB_ACCESS_ATTRIB_RAW_PROCESS 0x0000000F extern acpi_status acpi_pci_osc_control_set(acpi_handle handle, u32 *mask, u32 req); /* Enable _OST when all relevant hotplug operations are enabled */ #if defined(CONFIG_ACPI_HOTPLUG_CPU) && \ defined(CONFIG_ACPI_HOTPLUG_MEMORY) && \ defined(CONFIG_ACPI_CONTAINER) #define ACPI_HOTPLUG_OST #endif /* _OST Source Event Code (OSPM Action) */ #define ACPI_OST_EC_OSPM_SHUTDOWN 0x100 #define ACPI_OST_EC_OSPM_EJECT 0x103 #define ACPI_OST_EC_OSPM_INSERTION 0x200 /* _OST General Processing Status Code */ #define ACPI_OST_SC_SUCCESS 0x0 #define ACPI_OST_SC_NON_SPECIFIC_FAILURE 0x1 #define ACPI_OST_SC_UNRECOGNIZED_NOTIFY 0x2 /* _OST OS Shutdown Processing (0x100) Status Code */ #define ACPI_OST_SC_OS_SHUTDOWN_DENIED 0x80 #define ACPI_OST_SC_OS_SHUTDOWN_IN_PROGRESS 0x81 #define ACPI_OST_SC_OS_SHUTDOWN_COMPLETED 0x82 #define ACPI_OST_SC_OS_SHUTDOWN_NOT_SUPPORTED 0x83 /* _OST Ejection Request (0x3, 0x103) Status Code */ #define ACPI_OST_SC_EJECT_NOT_SUPPORTED 0x80 #define ACPI_OST_SC_DEVICE_IN_USE 0x81 #define ACPI_OST_SC_DEVICE_BUSY 0x82 #define ACPI_OST_SC_EJECT_DEPENDENCY_BUSY 0x83 #define ACPI_OST_SC_EJECT_IN_PROGRESS 0x84 /* _OST Insertion Request (0x200) Status Code */ #define ACPI_OST_SC_INSERT_IN_PROGRESS 0x80 #define ACPI_OST_SC_DRIVER_LOAD_FAILURE 0x81 #define ACPI_OST_SC_INSERT_NOT_SUPPORTED 0x82 enum acpi_predicate { all_versions, less_than_or_equal, equal, greater_than_or_equal, }; /* Table must be terminted by a NULL entry */ struct acpi_platform_list { char oem_id[ACPI_OEM_ID_SIZE+1]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE+1]; u32 oem_revision; char *table; enum acpi_predicate pred; char *reason; u32 data; }; int acpi_match_platform_list(const struct acpi_platform_list *plat); extern void acpi_early_init(void); extern void acpi_subsystem_init(void); extern void arch_post_acpi_subsys_init(void); extern int acpi_nvs_register(__u64 start, __u64 size); extern int acpi_nvs_for_each_region(int (*func)(__u64, __u64, void *), void *data); const struct acpi_device_id *acpi_match_device(const struct acpi_device_id *ids, const struct device *dev); const void *acpi_device_get_match_data(const struct device *dev); extern bool acpi_driver_match_device(struct device *dev, const struct device_driver *drv); int acpi_device_uevent_modalias(struct device *, struct kobj_uevent_env *); int acpi_device_modalias(struct device *, char *, int); void acpi_walk_dep_device_list(acpi_handle handle); struct platform_device *acpi_create_platform_device(struct acpi_device *, struct property_entry *); #define ACPI_PTR(_ptr) (_ptr) static inline void acpi_device_set_enumerated(struct acpi_device *adev) { adev->flags.visited = true; } static inline void acpi_device_clear_enumerated(struct acpi_device *adev) { adev->flags.visited = false; } enum acpi_reconfig_event { ACPI_RECONFIG_DEVICE_ADD = 0, ACPI_RECONFIG_DEVICE_REMOVE, }; int acpi_reconfig_notifier_register(struct notifier_block *nb); int acpi_reconfig_notifier_unregister(struct notifier_block *nb); #ifdef CONFIG_ACPI_GTDT int acpi_gtdt_init(struct acpi_table_header *table, int *platform_timer_count); int acpi_gtdt_map_ppi(int type); bool acpi_gtdt_c3stop(int type); int acpi_arch_timer_mem_init(struct arch_timer_mem *timer_mem, int *timer_count); #endif #ifndef ACPI_HAVE_ARCH_SET_ROOT_POINTER static inline void acpi_arch_set_root_pointer(u64 addr) { } #endif #ifndef ACPI_HAVE_ARCH_GET_ROOT_POINTER static inline u64 acpi_arch_get_root_pointer(void) { return 0; } #endif #else /* !CONFIG_ACPI */ #define acpi_disabled 1 #define ACPI_COMPANION(dev) (NULL) #define ACPI_COMPANION_SET(dev, adev) do { } while (0) #define ACPI_HANDLE(dev) (NULL) #define ACPI_HANDLE_FWNODE(fwnode) (NULL) #define ACPI_DEVICE_CLASS(_cls, _msk) .cls = (0), .cls_msk = (0), #include <acpi/acpi_numa.h> struct fwnode_handle; static inline bool acpi_dev_found(const char *hid) { return false; } static inline bool acpi_dev_present(const char *hid, const char *uid, s64 hrv) { return false; } struct acpi_device; static inline bool acpi_dev_hid_uid_match(struct acpi_device *adev, const char *hid2, const char *uid2) { return false; } static inline struct acpi_device * acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv) { return NULL; } static inline void acpi_dev_put(struct acpi_device *adev) {} static inline bool is_acpi_node(struct fwnode_handle *fwnode) { return false; } static inline bool is_acpi_device_node(struct fwnode_handle *fwnode) { return false; } static inline struct acpi_device *to_acpi_device_node(struct fwnode_handle *fwnode) { return NULL; } static inline bool is_acpi_data_node(struct fwnode_handle *fwnode) { return false; } static inline struct acpi_data_node *to_acpi_data_node(struct fwnode_handle *fwnode) { return NULL; } static inline bool acpi_data_node_match(struct fwnode_handle *fwnode, const char *name) { return false; } static inline struct fwnode_handle *acpi_fwnode_handle(struct acpi_device *adev) { return NULL; } static inline bool has_acpi_companion(struct device *dev) { return false; } static inline void acpi_preset_companion(struct device *dev, struct acpi_device *parent, u64 addr) { } static inline const char *acpi_dev_name(struct acpi_device *adev) { return NULL; } static inline struct device *acpi_get_first_physical_node(struct acpi_device *adev) { return NULL; } static inline void acpi_early_init(void) { } static inline void acpi_subsystem_init(void) { } static inline int early_acpi_boot_init(void) { return 0; } static inline int acpi_boot_init(void) { return 0; } static inline void acpi_boot_table_prepare(void) { } static inline void acpi_boot_table_init(void) { } static inline int acpi_mps_check(void) { return 0; } static inline int acpi_check_resource_conflict(struct resource *res) { return 0; } static inline int acpi_check_region(resource_size_t start, resource_size_t n, const char *name) { return 0; } struct acpi_table_header; static inline int acpi_table_parse(char *id, int (*handler)(struct acpi_table_header *)) { return -ENODEV; } static inline int acpi_nvs_register(__u64 start, __u64 size) { return 0; } static inline int acpi_nvs_for_each_region(int (*func)(__u64, __u64, void *), void *data) { return 0; } struct acpi_device_id; static inline const struct acpi_device_id *acpi_match_device( const struct acpi_device_id *ids, const struct device *dev) { return NULL; } static inline const void *acpi_device_get_match_data(const struct device *dev) { return NULL; } static inline bool acpi_driver_match_device(struct device *dev, const struct device_driver *drv) { return false; } static inline union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4) { return NULL; } static inline int acpi_device_uevent_modalias(struct device *dev, struct kobj_uevent_env *env) { return -ENODEV; } static inline int acpi_device_modalias(struct device *dev, char *buf, int size) { return -ENODEV; } static inline struct platform_device * acpi_create_platform_device(struct acpi_device *adev, struct property_entry *properties) { return NULL; } static inline bool acpi_dma_supported(struct acpi_device *adev) { return false; } static inline enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) { return DEV_DMA_NOT_SUPPORTED; } static inline int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, u64 *size) { return -ENODEV; } static inline int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr) { return 0; } static inline int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, const u32 *input_id) { return 0; } #define ACPI_PTR(_ptr) (NULL) static inline void acpi_device_set_enumerated(struct acpi_device *adev) { } static inline void acpi_device_clear_enumerated(struct acpi_device *adev) { } static inline int acpi_reconfig_notifier_register(struct notifier_block *nb) { return -EINVAL; } static inline int acpi_reconfig_notifier_unregister(struct notifier_block *nb) { return -EINVAL; } static inline struct acpi_device *acpi_resource_consumer(struct resource *res) { return NULL; } static inline int acpi_register_wakeup_handler(int wake_irq, bool (*wakeup)(void *context), void *context) { return -ENXIO; } static inline void acpi_unregister_wakeup_handler( bool (*wakeup)(void *context), void *context) { } #endif /* !CONFIG_ACPI */ #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC int acpi_ioapic_add(acpi_handle root); #else static inline int acpi_ioapic_add(acpi_handle root) { return 0; } #endif #ifdef CONFIG_ACPI void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, u32 pm1a_ctrl, u32 pm1b_ctrl)); acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, u32 pm1b_control); void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, u32 val_a, u32 val_b)); acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, u32 val_b); #ifndef CONFIG_IA64 void arch_reserve_mem_area(acpi_physical_address addr, size_t size); #else static inline void arch_reserve_mem_area(acpi_physical_address addr, size_t size) { } #endif /* CONFIG_X86 */ #else #define acpi_os_set_prepare_sleep(func, pm1a_ctrl, pm1b_ctrl) do { } while (0) #endif #if defined(CONFIG_ACPI) && defined(CONFIG_PM) int acpi_dev_suspend(struct device *dev, bool wakeup); int acpi_dev_resume(struct device *dev); int acpi_subsys_runtime_suspend(struct device *dev); int acpi_subsys_runtime_resume(struct device *dev); int acpi_dev_pm_attach(struct device *dev, bool power_on); #else static inline int acpi_subsys_runtime_suspend(struct device *dev) { return 0; } static inline int acpi_subsys_runtime_resume(struct device *dev) { return 0; } static inline int acpi_dev_pm_attach(struct device *dev, bool power_on) { return 0; } #endif #if defined(CONFIG_ACPI) && defined(CONFIG_PM_SLEEP) int acpi_subsys_prepare(struct device *dev); void acpi_subsys_complete(struct device *dev); int acpi_subsys_suspend_late(struct device *dev); int acpi_subsys_suspend_noirq(struct device *dev); int acpi_subsys_suspend(struct device *dev); int acpi_subsys_freeze(struct device *dev); int acpi_subsys_poweroff(struct device *dev); void acpi_ec_mark_gpe_for_wake(void); void acpi_ec_set_gpe_wake_mask(u8 action); #else static inline int acpi_subsys_prepare(struct device *dev) { return 0; } static inline void acpi_subsys_complete(struct device *dev) {} static inline int acpi_subsys_suspend_late(struct device *dev) { return 0; } static inline int acpi_subsys_suspend_noirq(struct device *dev) { return 0; } static inline int acpi_subsys_suspend(struct device *dev) { return 0; } static inline int acpi_subsys_freeze(struct device *dev) { return 0; } static inline int acpi_subsys_poweroff(struct device *dev) { return 0; } static inline void acpi_ec_mark_gpe_for_wake(void) {} static inline void acpi_ec_set_gpe_wake_mask(u8 action) {} #endif #ifdef CONFIG_ACPI __printf(3, 4) void acpi_handle_printk(const char *level, acpi_handle handle, const char *fmt, ...); #else /* !CONFIG_ACPI */ static inline __printf(3, 4) void acpi_handle_printk(const char *level, void *handle, const char *fmt, ...) {} #endif /* !CONFIG_ACPI */ #if defined(CONFIG_ACPI) && defined(CONFIG_DYNAMIC_DEBUG) __printf(3, 4) void __acpi_handle_debug(struct _ddebug *descriptor, acpi_handle handle, const char *fmt, ...); #endif /* * acpi_handle_<level>: Print message with ACPI prefix and object path * * These interfaces acquire the global namespace mutex to obtain an object * path. In interrupt context, it shows the object path as <n/a>. */ #define acpi_handle_emerg(handle, fmt, ...) \ acpi_handle_printk(KERN_EMERG, handle, fmt, ##__VA_ARGS__) #define acpi_handle_alert(handle, fmt, ...) \ acpi_handle_printk(KERN_ALERT, handle, fmt, ##__VA_ARGS__) #define acpi_handle_crit(handle, fmt, ...) \ acpi_handle_printk(KERN_CRIT, handle, fmt, ##__VA_ARGS__) #define acpi_handle_err(handle, fmt, ...) \ acpi_handle_printk(KERN_ERR, handle, fmt, ##__VA_ARGS__) #define acpi_handle_warn(handle, fmt, ...) \ acpi_handle_printk(KERN_WARNING, handle, fmt, ##__VA_ARGS__) #define acpi_handle_notice(handle, fmt, ...) \ acpi_handle_printk(KERN_NOTICE, handle, fmt, ##__VA_ARGS__) #define acpi_handle_info(handle, fmt, ...) \ acpi_handle_printk(KERN_INFO, handle, fmt, ##__VA_ARGS__) #if defined(DEBUG) #define acpi_handle_debug(handle, fmt, ...) \ acpi_handle_printk(KERN_DEBUG, handle, fmt, ##__VA_ARGS__) #else #if defined(CONFIG_DYNAMIC_DEBUG) #define acpi_handle_debug(handle, fmt, ...) \ _dynamic_func_call(fmt, __acpi_handle_debug, \ handle, pr_fmt(fmt), ##__VA_ARGS__) #else #define acpi_handle_debug(handle, fmt, ...) \ ({ \ if (0) \ acpi_handle_printk(KERN_DEBUG, handle, fmt, ##__VA_ARGS__); \ 0; \ }) #endif #endif #if defined(CONFIG_ACPI) && defined(CONFIG_GPIOLIB) bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio); int acpi_dev_gpio_irq_get_by(struct acpi_device *adev, const char *name, int index); #else static inline bool acpi_gpio_get_irq_resource(struct acpi_resource *ares, struct acpi_resource_gpio **agpio) { return false; } static inline int acpi_dev_gpio_irq_get_by(struct acpi_device *adev, const char *name, int index) { return -ENXIO; } #endif static inline int acpi_dev_gpio_irq_get(struct acpi_device *adev, int index) { return acpi_dev_gpio_irq_get_by(adev, NULL, index); } /* Device properties */ #ifdef CONFIG_ACPI int acpi_dev_get_property(const struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj); int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, size_t num_args, struct fwnode_reference_args *args); static inline int acpi_node_get_property_reference( const struct fwnode_handle *fwnode, const char *name, size_t index, struct fwnode_reference_args *args) { return __acpi_node_get_property_reference(fwnode, name, index, NR_FWNODE_REFERENCE_ARGS, args); } static inline bool acpi_dev_has_props(const struct acpi_device *adev) { return !list_empty(&adev->data.properties); } struct acpi_device_properties * acpi_data_add_props(struct acpi_device_data *data, const guid_t *guid, const union acpi_object *properties); int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr); int acpi_dev_prop_read_single(struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val); int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval); int acpi_dev_prop_read(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val, size_t nval); struct fwnode_handle *acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child); struct fwnode_handle *acpi_node_get_parent(const struct fwnode_handle *fwnode); struct acpi_probe_entry; typedef bool (*acpi_probe_entry_validate_subtbl)(struct acpi_subtable_header *, struct acpi_probe_entry *); #define ACPI_TABLE_ID_LEN 5 /** * struct acpi_probe_entry - boot-time probing entry * @id: ACPI table name * @type: Optional subtable type to match * (if @id contains subtables) * @subtable_valid: Optional callback to check the validity of * the subtable * @probe_table: Callback to the driver being probed when table * match is successful * @probe_subtbl: Callback to the driver being probed when table and * subtable match (and optional callback is successful) * @driver_data: Sideband data provided back to the driver */ struct acpi_probe_entry { __u8 id[ACPI_TABLE_ID_LEN]; __u8 type; acpi_probe_entry_validate_subtbl subtable_valid; union { acpi_tbl_table_handler probe_table; acpi_tbl_entry_handler probe_subtbl; }; kernel_ulong_t driver_data; }; #define ACPI_DECLARE_PROBE_ENTRY(table, name, table_id, subtable, \ valid, data, fn) \ static const struct acpi_probe_entry __acpi_probe_##name \ __used __section("__" #table "_acpi_probe_table") = { \ .id = table_id, \ .type = subtable, \ .subtable_valid = valid, \ .probe_table = fn, \ .driver_data = data, \ } #define ACPI_DECLARE_SUBTABLE_PROBE_ENTRY(table, name, table_id, \ subtable, valid, data, fn) \ static const struct acpi_probe_entry __acpi_probe_##name \ __used __section("__" #table "_acpi_probe_table") = { \ .id = table_id, \ .type = subtable, \ .subtable_valid = valid, \ .probe_subtbl = fn, \ .driver_data = data, \ } #define ACPI_PROBE_TABLE(name) __##name##_acpi_probe_table #define ACPI_PROBE_TABLE_END(name) __##name##_acpi_probe_table_end int __acpi_probe_device_table(struct acpi_probe_entry *start, int nr); #define acpi_probe_device_table(t) \ ({ \ extern struct acpi_probe_entry ACPI_PROBE_TABLE(t), \ ACPI_PROBE_TABLE_END(t); \ __acpi_probe_device_table(&ACPI_PROBE_TABLE(t), \ (&ACPI_PROBE_TABLE_END(t) - \ &ACPI_PROBE_TABLE(t))); \ }) #else static inline int acpi_dev_get_property(struct acpi_device *adev, const char *name, acpi_object_type type, const union acpi_object **obj) { return -ENXIO; } static inline int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, size_t num_args, struct fwnode_reference_args *args) { return -ENXIO; } static inline int acpi_node_get_property_reference(const struct fwnode_handle *fwnode, const char *name, size_t index, struct fwnode_reference_args *args) { return -ENXIO; } static inline int acpi_node_prop_get(const struct fwnode_handle *fwnode, const char *propname, void **valptr) { return -ENXIO; } static inline int acpi_dev_prop_read_single(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val) { return -ENXIO; } static inline int acpi_node_prop_read(const struct fwnode_handle *fwnode, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return -ENXIO; } static inline int acpi_dev_prop_read(const struct acpi_device *adev, const char *propname, enum dev_prop_type proptype, void *val, size_t nval) { return -ENXIO; } static inline struct fwnode_handle * acpi_get_next_subnode(const struct fwnode_handle *fwnode, struct fwnode_handle *child) { return NULL; } static inline struct fwnode_handle * acpi_node_get_parent(const struct fwnode_handle *fwnode) { return NULL; } static inline struct fwnode_handle * acpi_graph_get_next_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle *prev) { return ERR_PTR(-ENXIO); } static inline int acpi_graph_get_remote_endpoint(const struct fwnode_handle *fwnode, struct fwnode_handle **remote, struct fwnode_handle **port, struct fwnode_handle **endpoint) { return -ENXIO; } #define ACPI_DECLARE_PROBE_ENTRY(table, name, table_id, subtable, valid, data, fn) \ static const void * __acpi_table_##name[] \ __attribute__((unused)) \ = { (void *) table_id, \ (void *) subtable, \ (void *) valid, \ (void *) fn, \ (void *) data } #define acpi_probe_device_table(t) ({ int __r = 0; __r;}) #endif #ifdef CONFIG_ACPI_TABLE_UPGRADE void acpi_table_upgrade(void); #else static inline void acpi_table_upgrade(void) { } #endif #if defined(CONFIG_ACPI) && defined(CONFIG_ACPI_WATCHDOG) extern bool acpi_has_watchdog(void); #else static inline bool acpi_has_watchdog(void) { return false; } #endif #ifdef CONFIG_ACPI_SPCR_TABLE extern bool qdf2400_e44_present; int acpi_parse_spcr(bool enable_earlycon, bool enable_console); #else static inline int acpi_parse_spcr(bool enable_earlycon, bool enable_console) { return 0; } #endif #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) int acpi_irq_get(acpi_handle handle, unsigned int index, struct resource *res); #else static inline int acpi_irq_get(acpi_handle handle, unsigned int index, struct resource *res) { return -EINVAL; } #endif #ifdef CONFIG_ACPI_LPIT int lpit_read_residency_count_address(u64 *address); #else static inline int lpit_read_residency_count_address(u64 *address) { return -EINVAL; } #endif #ifdef CONFIG_ACPI_PPTT int acpi_pptt_cpu_is_thread(unsigned int cpu); int find_acpi_cpu_topology(unsigned int cpu, int level); int find_acpi_cpu_topology_package(unsigned int cpu); int find_acpi_cpu_topology_hetero_id(unsigned int cpu); int find_acpi_cpu_cache_topology(unsigned int cpu, int level); #else static inline int acpi_pptt_cpu_is_thread(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_topology(unsigned int cpu, int level) { return -EINVAL; } static inline int find_acpi_cpu_topology_package(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_topology_hetero_id(unsigned int cpu) { return -EINVAL; } static inline int find_acpi_cpu_cache_topology(unsigned int cpu, int level) { return -EINVAL; } #endif #ifdef CONFIG_ACPI extern int acpi_platform_notify(struct device *dev, enum kobject_action action); #else static inline int acpi_platform_notify(struct device *dev, enum kobject_action action) { return 0; } #endif #endif /*_LINUX_ACPI_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _linux_POSIX_TIMERS_H #define _linux_POSIX_TIMERS_H #include <linux/spinlock.h> #include <linux/list.h> #include <linux/alarmtimer.h> #include <linux/timerqueue.h> #include <linux/task_work.h> struct kernel_siginfo; struct task_struct; /* * Bit fields within a clockid: * * The most significant 29 bits hold either a pid or a file descriptor. * * Bit 2 indicates whether a cpu clock refers to a thread or a process. * * Bits 1 and 0 give the type: PROF=0, VIRT=1, SCHED=2, or FD=3. * * A clockid is invalid if bits 2, 1, and 0 are all set. */ #define CPUCLOCK_PID(clock) ((pid_t) ~((clock) >> 3)) #define CPUCLOCK_PERTHREAD(clock) \ (((clock) & (clockid_t) CPUCLOCK_PERTHREAD_MASK) != 0) #define CPUCLOCK_PERTHREAD_MASK 4 #define CPUCLOCK_WHICH(clock) ((clock) & (clockid_t) CPUCLOCK_CLOCK_MASK) #define CPUCLOCK_CLOCK_MASK 3 #define CPUCLOCK_PROF 0 #define CPUCLOCK_VIRT 1 #define CPUCLOCK_SCHED 2 #define CPUCLOCK_MAX 3 #define CLOCKFD CPUCLOCK_MAX #define CLOCKFD_MASK (CPUCLOCK_PERTHREAD_MASK|CPUCLOCK_CLOCK_MASK) static inline clockid_t make_process_cpuclock(const unsigned int pid, const clockid_t clock) { return ((~pid) << 3) | clock; } static inline clockid_t make_thread_cpuclock(const unsigned int tid, const clockid_t clock) { return make_process_cpuclock(tid, clock | CPUCLOCK_PERTHREAD_MASK); } static inline clockid_t fd_to_clockid(const int fd) { return make_process_cpuclock((unsigned int) fd, CLOCKFD); } static inline int clockid_to_fd(const clockid_t clk) { return ~(clk >> 3); } #ifdef CONFIG_POSIX_TIMERS /** * cpu_timer - Posix CPU timer representation for k_itimer * @node: timerqueue node to queue in the task/sig * @head: timerqueue head on which this timer is queued * @task: Pointer to target task * @elist: List head for the expiry list * @firing: Timer is currently firing */ struct cpu_timer { struct timerqueue_node node; struct timerqueue_head *head; struct pid *pid; struct list_head elist; int firing; }; static inline bool cpu_timer_enqueue(struct timerqueue_head *head, struct cpu_timer *ctmr) { ctmr->head = head; return timerqueue_add(head, &ctmr->node); } static inline void cpu_timer_dequeue(struct cpu_timer *ctmr) { if (ctmr->head) { timerqueue_del(ctmr->head, &ctmr->node); ctmr->head = NULL; } } static inline u64 cpu_timer_getexpires(struct cpu_timer *ctmr) { return ctmr->node.expires; } static inline void cpu_timer_setexpires(struct cpu_timer *ctmr, u64 exp) { ctmr->node.expires = exp; } /** * posix_cputimer_base - Container per posix CPU clock * @nextevt: Earliest-expiration cache * @tqhead: timerqueue head for cpu_timers */ struct posix_cputimer_base { u64 nextevt; struct timerqueue_head tqhead; }; /** * posix_cputimers - Container for posix CPU timer related data * @bases: Base container for posix CPU clocks * @timers_active: Timers are queued. * @expiry_active: Timer expiry is active. Used for * process wide timers to avoid multiple * task trying to handle expiry concurrently * * Used in task_struct and signal_struct */ struct posix_cputimers { struct posix_cputimer_base bases[CPUCLOCK_MAX]; unsigned int timers_active; unsigned int expiry_active; }; /** * posix_cputimers_work - Container for task work based posix CPU timer expiry * @work: The task work to be scheduled * @scheduled: @work has been scheduled already, no further processing */ struct posix_cputimers_work { struct callback_head work; unsigned int scheduled; }; static inline void posix_cputimers_init(struct posix_cputimers *pct) { memset(pct, 0, sizeof(*pct)); pct->bases[0].nextevt = U64_MAX; pct->bases[1].nextevt = U64_MAX; pct->bases[2].nextevt = U64_MAX; } void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit); static inline void posix_cputimers_rt_watchdog(struct posix_cputimers *pct, u64 runtime) { pct->bases[CPUCLOCK_SCHED].nextevt = runtime; } /* Init task static initializer */ #define INIT_CPU_TIMERBASE(b) { \ .nextevt = U64_MAX, \ } #define INIT_CPU_TIMERBASES(b) { \ INIT_CPU_TIMERBASE(b[0]), \ INIT_CPU_TIMERBASE(b[1]), \ INIT_CPU_TIMERBASE(b[2]), \ } #define INIT_CPU_TIMERS(s) \ .posix_cputimers = { \ .bases = INIT_CPU_TIMERBASES(s.posix_cputimers.bases), \ }, #else struct posix_cputimers { }; struct cpu_timer { }; #define INIT_CPU_TIMERS(s) static inline void posix_cputimers_init(struct posix_cputimers *pct) { } static inline void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) { } #endif #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK void clear_posix_cputimers_work(struct task_struct *p); void posix_cputimers_init_work(void); #else static inline void clear_posix_cputimers_work(struct task_struct *p) { } static inline void posix_cputimers_init_work(void) { } #endif #define REQUEUE_PENDING 1 /** * struct k_itimer - POSIX.1b interval timer structure. * @list: List head for binding the timer to signals->posix_timers * @t_hash: Entry in the posix timer hash table * @it_lock: Lock protecting the timer * @kclock: Pointer to the k_clock struct handling this timer * @it_clock: The posix timer clock id * @it_id: The posix timer id for identifying the timer * @it_active: Marker that timer is active * @it_overrun: The overrun counter for pending signals * @it_overrun_last: The overrun at the time of the last delivered signal * @it_requeue_pending: Indicator that timer waits for being requeued on * signal delivery * @it_sigev_notify: The notify word of sigevent struct for signal delivery * @it_interval: The interval for periodic timers * @it_signal: Pointer to the creators signal struct * @it_pid: The pid of the process/task targeted by the signal * @it_process: The task to wakeup on clock_nanosleep (CPU timers) * @sigq: Pointer to preallocated sigqueue * @it: Union representing the various posix timer type * internals. * @rcu: RCU head for freeing the timer. */ struct k_itimer { struct list_head list; struct hlist_node t_hash; spinlock_t it_lock; const struct k_clock *kclock; clockid_t it_clock; timer_t it_id; int it_active; s64 it_overrun; s64 it_overrun_last; int it_requeue_pending; int it_sigev_notify; ktime_t it_interval; struct signal_struct *it_signal; union { struct pid *it_pid; struct task_struct *it_process; }; struct sigqueue *sigq; union { struct { struct hrtimer timer; } real; struct cpu_timer cpu; struct { struct alarm alarmtimer; } alarm; } it; struct rcu_head rcu; }; void run_posix_cpu_timers(void); void posix_cpu_timers_exit(struct task_struct *task); void posix_cpu_timers_exit_group(struct task_struct *task); void set_process_cpu_timer(struct task_struct *task, unsigned int clock_idx, u64 *newval, u64 *oldval); void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new); void posixtimer_rearm(struct kernel_siginfo *info); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIME64_H #define _LINUX_TIME64_H #include <linux/math64.h> #include <vdso/time64.h> typedef __s64 time64_t; typedef __u64 timeu64_t; #include <uapi/linux/time.h> struct timespec64 { time64_t tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; struct itimerspec64 { struct timespec64 it_interval; struct timespec64 it_value; }; /* Located here for timespec[64]_valid_strict */ #define TIME64_MAX ((s64)~((u64)1 << 63)) #define TIME64_MIN (-TIME64_MAX - 1) #define KTIME_MAX ((s64)~((u64)1 << 63)) #define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC) /* * Limits for settimeofday(): * * To prevent setting the time close to the wraparound point time setting * is limited so a reasonable uptime can be accomodated. Uptime of 30 years * should be really sufficient, which means the cutoff is 2232. At that * point the cutoff is just a small part of the larger problem. */ #define TIME_UPTIME_SEC_MAX (30LL * 365 * 24 *3600) #define TIME_SETTOD_SEC_MAX (KTIME_SEC_MAX - TIME_UPTIME_SEC_MAX) static inline int timespec64_equal(const struct timespec64 *a, const struct timespec64 *b) { return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec); } /* * lhs < rhs: return <0 * lhs == rhs: return 0 * lhs > rhs: return >0 */ static inline int timespec64_compare(const struct timespec64 *lhs, const struct timespec64 *rhs) { if (lhs->tv_sec < rhs->tv_sec) return -1; if (lhs->tv_sec > rhs->tv_sec) return 1; return lhs->tv_nsec - rhs->tv_nsec; } extern void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec); static inline struct timespec64 timespec64_add(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec + rhs.tv_sec, lhs.tv_nsec + rhs.tv_nsec); return ts_delta; } /* * sub = lhs - rhs, in normalized form */ static inline struct timespec64 timespec64_sub(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec - rhs.tv_sec, lhs.tv_nsec - rhs.tv_nsec); return ts_delta; } /* * Returns true if the timespec64 is norm, false if denorm: */ static inline bool timespec64_valid(const struct timespec64 *ts) { /* Dates before 1970 are bogus */ if (ts->tv_sec < 0) return false; /* Can't have more nanoseconds then a second */ if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) return false; return true; } static inline bool timespec64_valid_strict(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values that could overflow ktime_t */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return false; return true; } static inline bool timespec64_valid_settod(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values which cause overflow issues vs. CLOCK_REALTIME */ if ((unsigned long long)ts->tv_sec >= TIME_SETTOD_SEC_MAX) return false; return true; } /** * timespec64_to_ns - Convert timespec64 to nanoseconds * @ts: pointer to the timespec64 variable to be converted * * Returns the scalar nanosecond representation of the timespec64 * parameter. */ static inline s64 timespec64_to_ns(const struct timespec64 *ts) { /* Prevent multiplication overflow */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return KTIME_MAX; return ((s64) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; } /** * ns_to_timespec64 - Convert nanoseconds to timespec64 * @nsec: the nanoseconds value to be converted * * Returns the timespec64 representation of the nsec parameter. */ extern struct timespec64 ns_to_timespec64(const s64 nsec); /** * timespec64_add_ns - Adds nanoseconds to a timespec64 * @a: pointer to timespec64 to be incremented * @ns: unsigned nanoseconds value to be added * * This must always be inlined because its used from the x86-64 vdso, * which cannot call other kernel functions. */ static __always_inline void timespec64_add_ns(struct timespec64 *a, u64 ns) { a->tv_sec += __iter_div_u64_rem(a->tv_nsec + ns, NSEC_PER_SEC, &ns); a->tv_nsec = ns; } /* * timespec64_add_safe assumes both values are positive and checks for * overflow. It will return TIME64_MAX in case of overflow. */ extern struct timespec64 timespec64_add_safe(const struct timespec64 lhs, const struct timespec64 rhs); #endif /* _LINUX_TIME64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BLKDEV_H #define _LINUX_BLKDEV_H #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/major.h> #include <linux/genhd.h> #include <linux/list.h> #include <linux/llist.h> #include <linux/minmax.h> #include <linux/timer.h> #include <linux/workqueue.h> #include <linux/pagemap.h> #include <linux/backing-dev-defs.h> #include <linux/wait.h> #include <linux/mempool.h> #include <linux/pfn.h> #include <linux/bio.h> #include <linux/stringify.h> #include <linux/gfp.h> #include <linux/bsg.h> #include <linux/smp.h> #include <linux/rcupdate.h> #include <linux/percpu-refcount.h> #include <linux/scatterlist.h> #include <linux/blkzoned.h> #include <linux/pm.h> struct module; struct scsi_ioctl_command; struct request_queue; struct elevator_queue; struct blk_trace; struct request; struct sg_io_hdr; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; struct pr_ops; struct rq_qos; struct blk_queue_stats; struct blk_stat_callback; struct blk_keyslot_manager; #define BLKDEV_MIN_RQ 4 #define BLKDEV_MAX_RQ 128 /* Default maximum */ /* Must be consistent with blk_mq_poll_stats_bkt() */ #define BLK_MQ_POLL_STATS_BKTS 16 /* Doing classic polling */ #define BLK_MQ_POLL_CLASSIC -1 /* * Maximum number of blkcg policies allowed to be registered concurrently. * Defined here to simplify include dependency. */ #define BLKCG_MAX_POLS 5 static inline int blk_validate_block_size(unsigned int bsize) { if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) return -EINVAL; return 0; } typedef void (rq_end_io_fn)(struct request *, blk_status_t); /* * request flags */ typedef __u32 __bitwise req_flags_t; /* elevator knows about this request */ #define RQF_SORTED ((__force req_flags_t)(1 << 0)) /* drive already may have started this one */ #define RQF_STARTED ((__force req_flags_t)(1 << 1)) /* may not be passed by ioscheduler */ #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) /* request for flush sequence */ #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) /* merge of different types, fail separately */ #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) /* track inflight for MQ */ #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) /* don't call prep for this one */ #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) /* vaguely specified driver internal error. Ignored by the block layer */ #define RQF_FAILED ((__force req_flags_t)(1 << 10)) /* don't warn about errors */ #define RQF_QUIET ((__force req_flags_t)(1 << 11)) /* elevator private data attached */ #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) /* account into disk and partition IO statistics */ #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) /* request came from our alloc pool */ #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) /* runtime pm request */ #define RQF_PM ((__force req_flags_t)(1 << 15)) /* on IO scheduler merge hash */ #define RQF_HASHED ((__force req_flags_t)(1 << 16)) /* track IO completion time */ #define RQF_STATS ((__force req_flags_t)(1 << 17)) /* Look at ->special_vec for the actual data payload instead of the bio chain. */ #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) /* The per-zone write lock is held for this request */ #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) /* already slept for hybrid poll */ #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) /* ->timeout has been called, don't expire again */ #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) /* flags that prevent us from merging requests: */ #define RQF_NOMERGE_FLAGS \ (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) /* * Request state for blk-mq. */ enum mq_rq_state { MQ_RQ_IDLE = 0, MQ_RQ_IN_FLIGHT = 1, MQ_RQ_COMPLETE = 2, }; /* * Try to put the fields that are referenced together in the same cacheline. * * If you modify this structure, make sure to update blk_rq_init() and * especially blk_mq_rq_ctx_init() to take care of the added fields. */ struct request { struct request_queue *q; struct blk_mq_ctx *mq_ctx; struct blk_mq_hw_ctx *mq_hctx; unsigned int cmd_flags; /* op and common flags */ req_flags_t rq_flags; int tag; int internal_tag; /* the following two fields are internal, NEVER access directly */ unsigned int __data_len; /* total data len */ sector_t __sector; /* sector cursor */ struct bio *bio; struct bio *biotail; struct list_head queuelist; /* * The hash is used inside the scheduler, and killed once the * request reaches the dispatch list. The ipi_list is only used * to queue the request for softirq completion, which is long * after the request has been unhashed (and even removed from * the dispatch list). */ union { struct hlist_node hash; /* merge hash */ struct list_head ipi_list; }; /* * The rb_node is only used inside the io scheduler, requests * are pruned when moved to the dispatch queue. So let the * completion_data share space with the rb_node. */ union { struct rb_node rb_node; /* sort/lookup */ struct bio_vec special_vec; void *completion_data; int error_count; /* for legacy drivers, don't use */ }; /* * Three pointers are available for the IO schedulers, if they need * more they have to dynamically allocate it. Flush requests are * never put on the IO scheduler. So let the flush fields share * space with the elevator data. */ union { struct { struct io_cq *icq; void *priv[2]; } elv; struct { unsigned int seq; struct list_head list; rq_end_io_fn *saved_end_io; } flush; }; struct gendisk *rq_disk; struct hd_struct *part; #ifdef CONFIG_BLK_RQ_ALLOC_TIME /* Time that the first bio started allocating this request. */ u64 alloc_time_ns; #endif /* Time that this request was allocated for this IO. */ u64 start_time_ns; /* Time that I/O was submitted to the device. */ u64 io_start_time_ns; #ifdef CONFIG_BLK_WBT unsigned short wbt_flags; #endif /* * rq sectors used for blk stats. It has the same value * with blk_rq_sectors(rq), except that it never be zeroed * by completion. */ unsigned short stats_sectors; /* * Number of scatter-gather DMA addr+len pairs after * physical address coalescing is performed. */ unsigned short nr_phys_segments; #if defined(CONFIG_BLK_DEV_INTEGRITY) unsigned short nr_integrity_segments; #endif #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct bio_crypt_ctx *crypt_ctx; struct blk_ksm_keyslot *crypt_keyslot; #endif unsigned short write_hint; unsigned short ioprio; enum mq_rq_state state; refcount_t ref; unsigned int timeout; unsigned long deadline; union { struct __call_single_data csd; u64 fifo_time; }; /* * completion callback. */ rq_end_io_fn *end_io; void *end_io_data; }; static inline bool blk_op_is_scsi(unsigned int op) { return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; } static inline bool blk_op_is_private(unsigned int op) { return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; } static inline bool blk_rq_is_scsi(struct request *rq) { return blk_op_is_scsi(req_op(rq)); } static inline bool blk_rq_is_private(struct request *rq) { return blk_op_is_private(req_op(rq)); } static inline bool blk_rq_is_passthrough(struct request *rq) { return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); } static inline bool bio_is_passthrough(struct bio *bio) { unsigned op = bio_op(bio); return blk_op_is_scsi(op) || blk_op_is_private(op); } static inline unsigned short req_get_ioprio(struct request *req) { return req->ioprio; } #include <linux/elevator.h> struct blk_queue_ctx; struct bio_vec; enum blk_eh_timer_return { BLK_EH_DONE, /* drivers has completed the command */ BLK_EH_RESET_TIMER, /* reset timer and try again */ }; enum blk_queue_state { Queue_down, Queue_up, }; #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ #define BLK_SCSI_MAX_CMDS (256) #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) /* * Zoned block device models (zoned limit). * * Note: This needs to be ordered from the least to the most severe * restrictions for the inheritance in blk_stack_limits() to work. */ enum blk_zoned_model { BLK_ZONED_NONE = 0, /* Regular block device */ BLK_ZONED_HA, /* Host-aware zoned block device */ BLK_ZONED_HM, /* Host-managed zoned block device */ }; struct queue_limits { unsigned long bounce_pfn; unsigned long seg_boundary_mask; unsigned long virt_boundary_mask; unsigned int max_hw_sectors; unsigned int max_dev_sectors; unsigned int chunk_sectors; unsigned int max_sectors; unsigned int max_segment_size; unsigned int physical_block_size; unsigned int logical_block_size; unsigned int alignment_offset; unsigned int io_min; unsigned int io_opt; unsigned int max_discard_sectors; unsigned int max_hw_discard_sectors; unsigned int max_write_same_sectors; unsigned int max_write_zeroes_sectors; unsigned int max_zone_append_sectors; unsigned int discard_granularity; unsigned int discard_alignment; unsigned short max_segments; unsigned short max_integrity_segments; unsigned short max_discard_segments; unsigned char misaligned; unsigned char discard_misaligned; unsigned char raid_partial_stripes_expensive; enum blk_zoned_model zoned; }; typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, void *data); void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); #ifdef CONFIG_BLK_DEV_ZONED #define BLK_ALL_ZONES ((unsigned int)-1) int blkdev_report_zones(struct block_device *bdev, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); unsigned int blkdev_nr_zones(struct gendisk *disk); extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, sector_t sectors, sector_t nr_sectors, gfp_t gfp_mask); int blk_revalidate_disk_zones(struct gendisk *disk, void (*update_driver_data)(struct gendisk *disk)); extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int blkdev_nr_zones(struct gendisk *disk) { return 0; } static inline int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } #endif /* CONFIG_BLK_DEV_ZONED */ struct request_queue { struct request *last_merge; struct elevator_queue *elevator; struct percpu_ref q_usage_counter; struct blk_queue_stats *stats; struct rq_qos *rq_qos; const struct blk_mq_ops *mq_ops; /* sw queues */ struct blk_mq_ctx __percpu *queue_ctx; unsigned int queue_depth; /* hw dispatch queues */ struct blk_mq_hw_ctx **queue_hw_ctx; unsigned int nr_hw_queues; struct backing_dev_info *backing_dev_info; /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void *queuedata; /* * various queue flags, see QUEUE_* below */ unsigned long queue_flags; /* * Number of contexts that have called blk_set_pm_only(). If this * counter is above zero then only RQF_PM requests are processed. */ atomic_t pm_only; /* * ida allocated id for this queue. Used to index queues from * ioctx. */ int id; /* * queue needs bounce pages for pages above this limit */ gfp_t bounce_gfp; spinlock_t queue_lock; /* * queue kobject */ struct kobject kobj; /* * mq queue kobject */ struct kobject *mq_kobj; #ifdef CONFIG_BLK_DEV_INTEGRITY struct blk_integrity integrity; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_PM struct device *dev; enum rpm_status rpm_status; unsigned int nr_pending; #endif /* * queue settings */ unsigned long nr_requests; /* Max # of requests */ unsigned int dma_pad_mask; unsigned int dma_alignment; #ifdef CONFIG_BLK_INLINE_ENCRYPTION /* Inline crypto capabilities */ struct blk_keyslot_manager *ksm; #endif unsigned int rq_timeout; int poll_nsec; struct blk_stat_callback *poll_cb; struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; struct timer_list timeout; struct work_struct timeout_work; atomic_t nr_active_requests_shared_sbitmap; struct list_head icq_list; #ifdef CONFIG_BLK_CGROUP DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); struct blkcg_gq *root_blkg; struct list_head blkg_list; #endif struct queue_limits limits; unsigned int required_elevator_features; #ifdef CONFIG_BLK_DEV_ZONED /* * Zoned block device information for request dispatch control. * nr_zones is the total number of zones of the device. This is always * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones * bits which indicates if a zone is conventional (bit set) or * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones * bits which indicates if a zone is write locked, that is, if a write * request targeting the zone was dispatched. All three fields are * initialized by the low level device driver (e.g. scsi/sd.c). * Stacking drivers (device mappers) may or may not initialize * these fields. * * Reads of this information must be protected with blk_queue_enter() / * blk_queue_exit(). Modifying this information is only allowed while * no requests are being processed. See also blk_mq_freeze_queue() and * blk_mq_unfreeze_queue(). */ unsigned int nr_zones; unsigned long *conv_zones_bitmap; unsigned long *seq_zones_wlock; unsigned int max_open_zones; unsigned int max_active_zones; #endif /* CONFIG_BLK_DEV_ZONED */ /* * sg stuff */ unsigned int sg_timeout; unsigned int sg_reserved_size; int node; struct mutex debugfs_mutex; #ifdef CONFIG_BLK_DEV_IO_TRACE struct blk_trace __rcu *blk_trace; #endif /* * for flush operations */ struct blk_flush_queue *fq; struct list_head requeue_list; spinlock_t requeue_lock; struct delayed_work requeue_work; struct mutex sysfs_lock; struct mutex sysfs_dir_lock; /* * for reusing dead hctx instance in case of updating * nr_hw_queues */ struct list_head unused_hctx_list; spinlock_t unused_hctx_lock; int mq_freeze_depth; #if defined(CONFIG_BLK_DEV_BSG) struct bsg_class_device bsg_dev; #endif #ifdef CONFIG_BLK_DEV_THROTTLING /* Throttle data */ struct throtl_data *td; #endif struct rcu_head rcu_head; wait_queue_head_t mq_freeze_wq; /* * Protect concurrent access to q_usage_counter by * percpu_ref_kill() and percpu_ref_reinit(). */ struct mutex mq_freeze_lock; struct blk_mq_tag_set *tag_set; struct list_head tag_set_list; struct bio_set bio_split; struct dentry *debugfs_dir; #ifdef CONFIG_BLK_DEBUG_FS struct dentry *sched_debugfs_dir; struct dentry *rqos_debugfs_dir; #endif bool mq_sysfs_init_done; size_t cmd_size; #define BLK_MAX_WRITE_HINTS 5 u64 write_hints[BLK_MAX_WRITE_HINTS]; }; /* Keep blk_queue_flag_name[] in sync with the definitions below */ #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ #define QUEUE_FLAG_DYING 1 /* queue being torn down */ #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ #define QUEUE_FLAG_WC 17 /* Write back caching */ #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ #define QUEUE_FLAG_DAX 19 /* device supports DAX */ #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ (1 << QUEUE_FLAG_SAME_COMP) | \ (1 << QUEUE_FLAG_NOWAIT)) void blk_queue_flag_set(unsigned int flag, struct request_queue *q); void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) #define blk_queue_noxmerges(q) \ test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) #define blk_queue_stable_writes(q) \ test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) #define blk_queue_zone_resetall(q) \ test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) #define blk_queue_secure_erase(q) \ (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) #define blk_queue_scsi_passthrough(q) \ test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) #define blk_queue_pci_p2pdma(q) \ test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) #ifdef CONFIG_BLK_RQ_ALLOC_TIME #define blk_queue_rq_alloc_time(q) \ test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) #else #define blk_queue_rq_alloc_time(q) false #endif #define blk_noretry_request(rq) \ ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ REQ_FAILFAST_DRIVER)) #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) extern void blk_set_pm_only(struct request_queue *q); extern void blk_clear_pm_only(struct request_queue *q); static inline bool blk_account_rq(struct request *rq) { return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); } #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) #define rq_dma_dir(rq) \ (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) #define dma_map_bvec(dev, bv, dir, attrs) \ dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ (dir), (attrs)) static inline bool queue_is_mq(struct request_queue *q) { return q->mq_ops; } #ifdef CONFIG_PM static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return q->rpm_status; } #else static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return RPM_ACTIVE; } #endif static inline enum blk_zoned_model blk_queue_zoned_model(struct request_queue *q) { if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) return q->limits.zoned; return BLK_ZONED_NONE; } static inline bool blk_queue_is_zoned(struct request_queue *q) { switch (blk_queue_zoned_model(q)) { case BLK_ZONED_HA: case BLK_ZONED_HM: return true; default: return false; } } static inline sector_t blk_queue_zone_sectors(struct request_queue *q) { return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; } #ifdef CONFIG_BLK_DEV_ZONED static inline unsigned int blk_queue_nr_zones(struct request_queue *q) { return blk_queue_is_zoned(q) ? q->nr_zones : 0; } static inline unsigned int blk_queue_zone_no(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q)) return 0; return sector >> ilog2(q->limits.chunk_sectors); } static inline bool blk_queue_zone_is_seq(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q)) return false; if (!q->conv_zones_bitmap) return true; return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); } static inline void blk_queue_max_open_zones(struct request_queue *q, unsigned int max_open_zones) { q->max_open_zones = max_open_zones; } static inline unsigned int queue_max_open_zones(const struct request_queue *q) { return q->max_open_zones; } static inline void blk_queue_max_active_zones(struct request_queue *q, unsigned int max_active_zones) { q->max_active_zones = max_active_zones; } static inline unsigned int queue_max_active_zones(const struct request_queue *q) { return q->max_active_zones; } #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int blk_queue_nr_zones(struct request_queue *q) { return 0; } static inline bool blk_queue_zone_is_seq(struct request_queue *q, sector_t sector) { return false; } static inline unsigned int blk_queue_zone_no(struct request_queue *q, sector_t sector) { return 0; } static inline unsigned int queue_max_open_zones(const struct request_queue *q) { return 0; } static inline unsigned int queue_max_active_zones(const struct request_queue *q) { return 0; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline bool rq_is_sync(struct request *rq) { return op_is_sync(rq->cmd_flags); } static inline bool rq_mergeable(struct request *rq) { if (blk_rq_is_passthrough(rq)) return false; if (req_op(rq) == REQ_OP_FLUSH) return false; if (req_op(rq) == REQ_OP_WRITE_ZEROES) return false; if (req_op(rq) == REQ_OP_ZONE_APPEND) return false; if (rq->cmd_flags & REQ_NOMERGE_FLAGS) return false; if (rq->rq_flags & RQF_NOMERGE_FLAGS) return false; return true; } static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) { if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b)) return true; return false; } static inline unsigned int blk_queue_depth(struct request_queue *q) { if (q->queue_depth) return q->queue_depth; return q->nr_requests; } extern unsigned long blk_max_low_pfn, blk_max_pfn; /* * standard bounce addresses: * * BLK_BOUNCE_HIGH : bounce all highmem pages * BLK_BOUNCE_ANY : don't bounce anything * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary */ #if BITS_PER_LONG == 32 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) #else #define BLK_BOUNCE_HIGH -1ULL #endif #define BLK_BOUNCE_ANY (-1ULL) #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) /* * default timeout for SG_IO if none specified */ #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) #define BLK_MIN_SG_TIMEOUT (7 * HZ) struct rq_map_data { struct page **pages; int page_order; int nr_entries; unsigned long offset; int null_mapped; int from_user; }; struct req_iterator { struct bvec_iter iter; struct bio *bio; }; /* This should not be used directly - use rq_for_each_segment */ #define for_each_bio(_bio) \ for (; _bio; _bio = _bio->bi_next) #define __rq_for_each_bio(_bio, rq) \ if ((rq->bio)) \ for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) #define rq_for_each_segment(bvl, _rq, _iter) \ __rq_for_each_bio(_iter.bio, _rq) \ bio_for_each_segment(bvl, _iter.bio, _iter.iter) #define rq_for_each_bvec(bvl, _rq, _iter) \ __rq_for_each_bio(_iter.bio, _rq) \ bio_for_each_bvec(bvl, _iter.bio, _iter.iter) #define rq_iter_last(bvec, _iter) \ (_iter.bio->bi_next == NULL && \ bio_iter_last(bvec, _iter.iter)) #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" #endif #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE extern void rq_flush_dcache_pages(struct request *rq); #else static inline void rq_flush_dcache_pages(struct request *rq) { } #endif extern int blk_register_queue(struct gendisk *disk); extern void blk_unregister_queue(struct gendisk *disk); blk_qc_t submit_bio_noacct(struct bio *bio); extern void blk_rq_init(struct request_queue *q, struct request *rq); extern void blk_put_request(struct request *); extern struct request *blk_get_request(struct request_queue *, unsigned int op, blk_mq_req_flags_t flags); extern int blk_lld_busy(struct request_queue *q); extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); extern void blk_rq_unprep_clone(struct request *rq); extern blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq); extern int blk_rq_append_bio(struct request *rq, struct bio **bio); extern void blk_queue_split(struct bio **); extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, unsigned int, void __user *); extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, unsigned int, void __user *); extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, struct scsi_ioctl_command __user *); extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); extern void blk_queue_exit(struct request_queue *q); extern void blk_sync_queue(struct request_queue *q); extern int blk_rq_map_user(struct request_queue *, struct request *, struct rq_map_data *, void __user *, unsigned long, gfp_t); extern int blk_rq_unmap_user(struct bio *); extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); extern int blk_rq_map_user_iov(struct request_queue *, struct request *, struct rq_map_data *, const struct iov_iter *, gfp_t); extern void blk_execute_rq(struct request_queue *, struct gendisk *, struct request *, int); extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, struct request *, int, rq_end_io_fn *); /* Helper to convert REQ_OP_XXX to its string format XXX */ extern const char *blk_op_str(unsigned int op); int blk_status_to_errno(blk_status_t status); blk_status_t errno_to_blk_status(int errno); int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); static inline struct request_queue *bdev_get_queue(struct block_device *bdev) { return bdev->bd_disk->queue; /* this is never NULL */ } /* * The basic unit of block I/O is a sector. It is used in a number of contexts * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 * bytes. Variables of type sector_t represent an offset or size that is a * multiple of 512 bytes. Hence these two constants. */ #ifndef SECTOR_SHIFT #define SECTOR_SHIFT 9 #endif #ifndef SECTOR_SIZE #define SECTOR_SIZE (1 << SECTOR_SHIFT) #endif /* * blk_rq_pos() : the current sector * blk_rq_bytes() : bytes left in the entire request * blk_rq_cur_bytes() : bytes left in the current segment * blk_rq_err_bytes() : bytes left till the next error boundary * blk_rq_sectors() : sectors left in the entire request * blk_rq_cur_sectors() : sectors left in the current segment * blk_rq_stats_sectors() : sectors of the entire request used for stats */ static inline sector_t blk_rq_pos(const struct request *rq) { return rq->__sector; } static inline unsigned int blk_rq_bytes(const struct request *rq) { return rq->__data_len; } static inline int blk_rq_cur_bytes(const struct request *rq) { return rq->bio ? bio_cur_bytes(rq->bio) : 0; } extern unsigned int blk_rq_err_bytes(const struct request *rq); static inline unsigned int blk_rq_sectors(const struct request *rq) { return blk_rq_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_cur_sectors(const struct request *rq) { return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_stats_sectors(const struct request *rq) { return rq->stats_sectors; } #ifdef CONFIG_BLK_DEV_ZONED /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); static inline unsigned int blk_rq_zone_no(struct request *rq) { return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); } static inline unsigned int blk_rq_zone_is_seq(struct request *rq) { return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); } #endif /* CONFIG_BLK_DEV_ZONED */ /* * Some commands like WRITE SAME have a payload or data transfer size which * is different from the size of the request. Any driver that supports such * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to * calculate the data transfer size. */ static inline unsigned int blk_rq_payload_bytes(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec.bv_len; return blk_rq_bytes(rq); } /* * Return the first full biovec in the request. The caller needs to check that * there are any bvecs before calling this helper. */ static inline struct bio_vec req_bvec(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec; return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); } static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, int op) { if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) return min(q->limits.max_discard_sectors, UINT_MAX >> SECTOR_SHIFT); if (unlikely(op == REQ_OP_WRITE_SAME)) return q->limits.max_write_same_sectors; if (unlikely(op == REQ_OP_WRITE_ZEROES)) return q->limits.max_write_zeroes_sectors; return q->limits.max_sectors; } /* * Return maximum size of a request at given offset. Only valid for * file system requests. */ static inline unsigned int blk_max_size_offset(struct request_queue *q, sector_t offset, unsigned int chunk_sectors) { if (!chunk_sectors) { if (q->limits.chunk_sectors) chunk_sectors = q->limits.chunk_sectors; else return q->limits.max_sectors; } if (likely(is_power_of_2(chunk_sectors))) chunk_sectors -= offset & (chunk_sectors - 1); else chunk_sectors -= sector_div(offset, chunk_sectors); return min(q->limits.max_sectors, chunk_sectors); } static inline unsigned int blk_rq_get_max_sectors(struct request *rq, sector_t offset) { struct request_queue *q = rq->q; if (blk_rq_is_passthrough(rq)) return q->limits.max_hw_sectors; if (!q->limits.chunk_sectors || req_op(rq) == REQ_OP_DISCARD || req_op(rq) == REQ_OP_SECURE_ERASE) return blk_queue_get_max_sectors(q, req_op(rq)); return min(blk_max_size_offset(q, offset, 0), blk_queue_get_max_sectors(q, req_op(rq))); } static inline unsigned int blk_rq_count_bios(struct request *rq) { unsigned int nr_bios = 0; struct bio *bio; __rq_for_each_bio(bio, rq) nr_bios++; return nr_bios; } void blk_steal_bios(struct bio_list *list, struct request *rq); /* * Request completion related functions. * * blk_update_request() completes given number of bytes and updates * the request without completing it. */ extern bool blk_update_request(struct request *rq, blk_status_t error, unsigned int nr_bytes); extern void blk_abort_request(struct request *); /* * Access functions for manipulating queue properties */ extern void blk_cleanup_queue(struct request_queue *); extern void blk_queue_bounce_limit(struct request_queue *, u64); extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); extern void blk_queue_max_segments(struct request_queue *, unsigned short); extern void blk_queue_max_discard_segments(struct request_queue *, unsigned short); extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); extern void blk_queue_max_discard_sectors(struct request_queue *q, unsigned int max_discard_sectors); extern void blk_queue_max_write_same_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); extern void blk_queue_max_zone_append_sectors(struct request_queue *q, unsigned int max_zone_append_sectors); extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); extern void blk_queue_alignment_offset(struct request_queue *q, unsigned int alignment); void blk_queue_update_readahead(struct request_queue *q); extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); extern void blk_queue_io_min(struct request_queue *q, unsigned int min); extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); extern void blk_set_default_limits(struct queue_limits *lim); extern void blk_set_stacking_limits(struct queue_limits *lim); extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t offset); extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, sector_t offset); extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); extern void blk_queue_dma_alignment(struct request_queue *, int); extern void blk_queue_update_dma_alignment(struct request_queue *, int); extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); extern void blk_queue_required_elevator_features(struct request_queue *q, unsigned int features); extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, struct device *dev); /* * Number of physical segments as sent to the device. * * Normally this is the number of discontiguous data segments sent by the * submitter. But for data-less command like discard we might have no * actual data segments submitted, but the driver might have to add it's * own special payload. In that case we still return 1 here so that this * special payload will be mapped. */ static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return 1; return rq->nr_phys_segments; } /* * Number of discard segments (or ranges) the driver needs to fill in. * Each discard bio merged into a request is counted as one segment. */ static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) { return max_t(unsigned short, rq->nr_phys_segments, 1); } int __blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist, struct scatterlist **last_sg); static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, struct scatterlist *sglist) { struct scatterlist *last_sg = NULL; return __blk_rq_map_sg(q, rq, sglist, &last_sg); } extern void blk_dump_rq_flags(struct request *, char *); bool __must_check blk_get_queue(struct request_queue *); struct request_queue *blk_alloc_queue(int node_id); extern void blk_put_queue(struct request_queue *); extern void blk_set_queue_dying(struct request_queue *); #ifdef CONFIG_BLOCK /* * blk_plug permits building a queue of related requests by holding the I/O * fragments for a short period. This allows merging of sequential requests * into single larger request. As the requests are moved from a per-task list to * the device's request_queue in a batch, this results in improved scalability * as the lock contention for request_queue lock is reduced. * * It is ok not to disable preemption when adding the request to the plug list * or when attempting a merge, because blk_schedule_flush_list() will only flush * the plug list when the task sleeps by itself. For details, please see * schedule() where blk_schedule_flush_plug() is called. */ struct blk_plug { struct list_head mq_list; /* blk-mq requests */ struct list_head cb_list; /* md requires an unplug callback */ unsigned short rq_count; bool multiple_queues; bool nowait; }; struct blk_plug_cb; typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); struct blk_plug_cb { struct list_head list; blk_plug_cb_fn callback; void *data; }; extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, int size); extern void blk_start_plug(struct blk_plug *); extern void blk_finish_plug(struct blk_plug *); extern void blk_flush_plug_list(struct blk_plug *, bool); static inline void blk_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, false); } static inline void blk_schedule_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, true); } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; return plug && (!list_empty(&plug->mq_list) || !list_empty(&plug->cb_list)); } int blkdev_issue_flush(struct block_device *, gfp_t); long nr_blockdev_pages(void); #else /* CONFIG_BLOCK */ struct blk_plug { }; static inline void blk_start_plug(struct blk_plug *plug) { } static inline void blk_finish_plug(struct blk_plug *plug) { } static inline void blk_flush_plug(struct task_struct *task) { } static inline void blk_schedule_flush_plug(struct task_struct *task) { } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { return false; } static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) { return 0; } static inline long nr_blockdev_pages(void) { return 0; } #endif /* CONFIG_BLOCK */ extern void blk_io_schedule(void); extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct page *page); #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, int flags, struct bio **biop); #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, unsigned flags); extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned flags); static inline int sb_issue_discard(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) { return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, flags); } static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask) { return blkdev_issue_zeroout(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, 0); } extern int blk_verify_command(unsigned char *cmd, fmode_t mode); static inline bool bdev_is_partition(struct block_device *bdev) { return bdev->bd_partno; } enum blk_default_limits { BLK_MAX_SEGMENTS = 128, BLK_SAFE_MAX_SECTORS = 255, BLK_DEF_MAX_SECTORS = 2560, BLK_MAX_SEGMENT_SIZE = 65536, BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, }; static inline unsigned long queue_segment_boundary(const struct request_queue *q) { return q->limits.seg_boundary_mask; } static inline unsigned long queue_virt_boundary(const struct request_queue *q) { return q->limits.virt_boundary_mask; } static inline unsigned int queue_max_sectors(const struct request_queue *q) { return q->limits.max_sectors; } static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) { return q->limits.max_hw_sectors; } static inline unsigned short queue_max_segments(const struct request_queue *q) { return q->limits.max_segments; } static inline unsigned short queue_max_discard_segments(const struct request_queue *q) { return q->limits.max_discard_segments; } static inline unsigned int queue_max_segment_size(const struct request_queue *q) { return q->limits.max_segment_size; } static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) { const struct queue_limits *l = &q->limits; return min(l->max_zone_append_sectors, l->max_sectors); } static inline unsigned queue_logical_block_size(const struct request_queue *q) { int retval = 512; if (q && q->limits.logical_block_size) retval = q->limits.logical_block_size; return retval; } static inline unsigned int bdev_logical_block_size(struct block_device *bdev) { return queue_logical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_physical_block_size(const struct request_queue *q) { return q->limits.physical_block_size; } static inline unsigned int bdev_physical_block_size(struct block_device *bdev) { return queue_physical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_io_min(const struct request_queue *q) { return q->limits.io_min; } static inline int bdev_io_min(struct block_device *bdev) { return queue_io_min(bdev_get_queue(bdev)); } static inline unsigned int queue_io_opt(const struct request_queue *q) { return q->limits.io_opt; } static inline int bdev_io_opt(struct block_device *bdev) { return queue_io_opt(bdev_get_queue(bdev)); } static inline int queue_alignment_offset(const struct request_queue *q) { if (q->limits.misaligned) return -1; return q->limits.alignment_offset; } static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) { unsigned int granularity = max(lim->physical_block_size, lim->io_min); unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) << SECTOR_SHIFT; return (granularity + lim->alignment_offset - alignment) % granularity; } static inline int bdev_alignment_offset(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q->limits.misaligned) return -1; if (bdev_is_partition(bdev)) return queue_limit_alignment_offset(&q->limits, bdev->bd_part->start_sect); return q->limits.alignment_offset; } static inline int queue_discard_alignment(const struct request_queue *q) { if (q->limits.discard_misaligned) return -1; return q->limits.discard_alignment; } static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) { unsigned int alignment, granularity, offset; if (!lim->max_discard_sectors) return 0; /* Why are these in bytes, not sectors? */ alignment = lim->discard_alignment >> SECTOR_SHIFT; granularity = lim->discard_granularity >> SECTOR_SHIFT; if (!granularity) return 0; /* Offset of the partition start in 'granularity' sectors */ offset = sector_div(sector, granularity); /* And why do we do this modulus *again* in blkdev_issue_discard()? */ offset = (granularity + alignment - offset) % granularity; /* Turn it back into bytes, gaah */ return offset << SECTOR_SHIFT; } /* * Two cases of handling DISCARD merge: * If max_discard_segments > 1, the driver takes every bio * as a range and send them to controller together. The ranges * needn't to be contiguous. * Otherwise, the bios/requests will be handled as same as * others which should be contiguous. */ static inline bool blk_discard_mergable(struct request *req) { if (req_op(req) == REQ_OP_DISCARD && queue_max_discard_segments(req->q) > 1) return true; return false; } static inline int bdev_discard_alignment(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (bdev_is_partition(bdev)) return queue_limit_discard_alignment(&q->limits, bdev->bd_part->start_sect); return q->limits.discard_alignment; } static inline unsigned int bdev_write_same(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_same_sectors; return 0; } static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_zeroes_sectors; return 0; } static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zoned_model(q); return BLK_ZONED_NONE; } static inline bool bdev_is_zoned(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_is_zoned(q); return false; } static inline sector_t bdev_zone_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zone_sectors(q); return 0; } static inline unsigned int bdev_max_open_zones(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return queue_max_open_zones(q); return 0; } static inline unsigned int bdev_max_active_zones(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return queue_max_active_zones(q); return 0; } static inline int queue_dma_alignment(const struct request_queue *q) { return q ? q->dma_alignment : 511; } static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, unsigned int len) { unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; return !(addr & alignment) && !(len & alignment); } /* assumes size > 256 */ static inline unsigned int blksize_bits(unsigned int size) { unsigned int bits = 8; do { bits++; size >>= 1; } while (size > 256); return bits; } static inline unsigned int block_size(struct block_device *bdev) { return 1 << bdev->bd_inode->i_blkbits; } int kblockd_schedule_work(struct work_struct *work); int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); #define MODULE_ALIAS_BLOCKDEV(major,minor) \ MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ MODULE_ALIAS("block-major-" __stringify(major) "-*") #if defined(CONFIG_BLK_DEV_INTEGRITY) enum blk_integrity_flags { BLK_INTEGRITY_VERIFY = 1 << 0, BLK_INTEGRITY_GENERATE = 1 << 1, BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, }; struct blk_integrity_iter { void *prot_buf; void *data_buf; sector_t seed; unsigned int data_size; unsigned short interval; const char *disk_name; }; typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); typedef void (integrity_prepare_fn) (struct request *); typedef void (integrity_complete_fn) (struct request *, unsigned int); struct blk_integrity_profile { integrity_processing_fn *generate_fn; integrity_processing_fn *verify_fn; integrity_prepare_fn *prepare_fn; integrity_complete_fn *complete_fn; const char *name; }; extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); extern void blk_integrity_unregister(struct gendisk *); extern int blk_integrity_compare(struct gendisk *, struct gendisk *); extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, struct scatterlist *); extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { struct blk_integrity *bi = &disk->queue->integrity; if (!bi->profile) return NULL; return bi; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *bdev) { return blk_get_integrity(bdev->bd_disk); } static inline bool blk_integrity_queue_supports_integrity(struct request_queue *q) { return q->integrity.profile; } static inline bool blk_integrity_rq(struct request *rq) { return rq->cmd_flags & REQ_INTEGRITY; } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { q->limits.max_integrity_segments = segs; } static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) { return q->limits.max_integrity_segments; } /** * bio_integrity_intervals - Return number of integrity intervals for a bio * @bi: blk_integrity profile for device * @sectors: Size of the bio in 512-byte sectors * * Description: The block layer calculates everything in 512 byte * sectors but integrity metadata is done in terms of the data integrity * interval size of the storage device. Convert the block layer sectors * to the appropriate number of integrity intervals. */ static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return sectors >> (bi->interval_exp - 9); } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return bio_integrity_intervals(bi, sectors) * bi->tuple_size; } /* * Return the first bvec that contains integrity data. Only drivers that are * limited to a single integrity segment should use this helper. */ static inline struct bio_vec *rq_integrity_vec(struct request *rq) { if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) return NULL; return rq->bio->bi_integrity->bip_vec; } #else /* CONFIG_BLK_DEV_INTEGRITY */ struct bio; struct block_device; struct gendisk; struct blk_integrity; static inline int blk_integrity_rq(struct request *rq) { return 0; } static inline int blk_rq_count_integrity_sg(struct request_queue *q, struct bio *b) { return 0; } static inline int blk_rq_map_integrity_sg(struct request_queue *q, struct bio *b, struct scatterlist *s) { return 0; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) { return NULL; } static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { return NULL; } static inline bool blk_integrity_queue_supports_integrity(struct request_queue *q) { return false; } static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) { return 0; } static inline void blk_integrity_register(struct gendisk *d, struct blk_integrity *b) { } static inline void blk_integrity_unregister(struct gendisk *d) { } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { } static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) { return 0; } static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline struct bio_vec *rq_integrity_vec(struct request *rq) { return NULL; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_BLK_INLINE_ENCRYPTION bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); void blk_ksm_unregister(struct request_queue *q); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) { return true; } static inline void blk_ksm_unregister(struct request_queue *q) { } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ struct block_device_operations { blk_qc_t (*submit_bio) (struct bio *bio); int (*open) (struct block_device *, fmode_t); void (*release) (struct gendisk *, fmode_t); int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); unsigned int (*check_events) (struct gendisk *disk, unsigned int clearing); void (*unlock_native_capacity) (struct gendisk *); int (*revalidate_disk) (struct gendisk *); int (*getgeo)(struct block_device *, struct hd_geometry *); /* this callback is with swap_lock and sometimes page table lock held */ void (*swap_slot_free_notify) (struct block_device *, unsigned long); int (*report_zones)(struct gendisk *, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); char *(*devnode)(struct gendisk *disk, umode_t *mode); struct module *owner; const struct pr_ops *pr_ops; }; #ifdef CONFIG_COMPAT extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); #else #define blkdev_compat_ptr_ioctl NULL #endif extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); extern int bdev_read_page(struct block_device *, sector_t, struct page *); extern int bdev_write_page(struct block_device *, sector_t, struct page *, struct writeback_control *); #ifdef CONFIG_BLK_DEV_ZONED bool blk_req_needs_zone_write_lock(struct request *rq); bool blk_req_zone_write_trylock(struct request *rq); void __blk_req_zone_write_lock(struct request *rq); void __blk_req_zone_write_unlock(struct request *rq); static inline void blk_req_zone_write_lock(struct request *rq) { if (blk_req_needs_zone_write_lock(rq)) __blk_req_zone_write_lock(rq); } static inline void blk_req_zone_write_unlock(struct request *rq) { if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) __blk_req_zone_write_unlock(rq); } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return rq->q->seq_zones_wlock && test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { if (!blk_req_needs_zone_write_lock(rq)) return true; return !blk_req_zone_is_write_locked(rq); } #else static inline bool blk_req_needs_zone_write_lock(struct request *rq) { return false; } static inline void blk_req_zone_write_lock(struct request *rq) { } static inline void blk_req_zone_write_unlock(struct request *rq) { } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return false; } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { return true; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline void blk_wake_io_task(struct task_struct *waiter) { /* * If we're polling, the task itself is doing the completions. For * that case, we don't need to signal a wakeup, it's enough to just * mark us as RUNNING. */ if (waiter == current) __set_current_state(TASK_RUNNING); else wake_up_process(waiter); } unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, unsigned int op); void disk_end_io_acct(struct gendisk *disk, unsigned int op, unsigned long start_time); unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, struct bio *bio); void part_end_io_acct(struct hd_struct *part, struct bio *bio, unsigned long start_time); /** * bio_start_io_acct - start I/O accounting for bio based drivers * @bio: bio to start account for * * Returns the start time that should be passed back to bio_end_io_acct(). */ static inline unsigned long bio_start_io_acct(