1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Filesystem parameter description and parser * * Copyright (C) 2018 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_FS_PARSER_H #define _LINUX_FS_PARSER_H #include <linux/fs_context.h> struct path; struct constant_table { const char *name; int value; }; struct fs_parameter_spec; struct fs_parse_result; typedef int fs_param_type(struct p_log *, const struct fs_parameter_spec *, struct fs_parameter *, struct fs_parse_result *); /* * The type of parameter expected. */ fs_param_type fs_param_is_bool, fs_param_is_u32, fs_param_is_s32, fs_param_is_u64, fs_param_is_enum, fs_param_is_string, fs_param_is_blob, fs_param_is_blockdev, fs_param_is_path, fs_param_is_fd; /* * Specification of the type of value a parameter wants. * * Note that the fsparam_flag(), fsparam_string(), fsparam_u32(), ... macros * should be used to generate elements of this type. */ struct fs_parameter_spec { const char *name; fs_param_type *type; /* The desired parameter type */ u8 opt; /* Option number (returned by fs_parse()) */ unsigned short flags; #define fs_param_neg_with_no 0x0002 /* "noxxx" is negative param */ #define fs_param_neg_with_empty 0x0004 /* "xxx=" is negative param */ #define fs_param_deprecated 0x0008 /* The param is deprecated */ const void *data; }; /* * Result of parse. */ struct fs_parse_result { bool negated; /* T if param was "noxxx" */ union { bool boolean; /* For spec_bool */ int int_32; /* For spec_s32/spec_enum */ unsigned int uint_32; /* For spec_u32{,_octal,_hex}/spec_enum */ u64 uint_64; /* For spec_u64 */ }; }; extern int __fs_parse(struct p_log *log, const struct fs_parameter_spec *desc, struct fs_parameter *value, struct fs_parse_result *result); static inline int fs_parse(struct fs_context *fc, const struct fs_parameter_spec *desc, struct fs_parameter *param, struct fs_parse_result *result) { return __fs_parse(&fc->log, desc, param, result); } extern int fs_lookup_param(struct fs_context *fc, struct fs_parameter *param, bool want_bdev, struct path *_path); extern int lookup_constant(const struct constant_table tbl[], const char *name, int not_found); #ifdef CONFIG_VALIDATE_FS_PARSER extern bool validate_constant_table(const struct constant_table *tbl, size_t tbl_size, int low, int high, int special); extern bool fs_validate_description(const char *name, const struct fs_parameter_spec *desc); #else static inline bool validate_constant_table(const struct constant_table *tbl, size_t tbl_size, int low, int high, int special) { return true; } static inline bool fs_validate_description(const char *name, const struct fs_parameter_spec *desc) { return true; } #endif /* * Parameter type, name, index and flags element constructors. Use as: * * fsparam_xxxx("foo", Opt_foo) * * If existing helpers are not enough, direct use of __fsparam() would * work, but any such case is probably a sign that new helper is needed. * Helpers will remain stable; low-level implementation may change. */ #define __fsparam(TYPE, NAME, OPT, FLAGS, DATA) \ { \ .name = NAME, \ .opt = OPT, \ .type = TYPE, \ .flags = FLAGS, \ .data = DATA \ } #define fsparam_flag(NAME, OPT) __fsparam(NULL, NAME, OPT, 0, NULL) #define fsparam_flag_no(NAME, OPT) \ __fsparam(NULL, NAME, OPT, fs_param_neg_with_no, NULL) #define fsparam_bool(NAME, OPT) __fsparam(fs_param_is_bool, NAME, OPT, 0, NULL) #define fsparam_u32(NAME, OPT) __fsparam(fs_param_is_u32, NAME, OPT, 0, NULL) #define fsparam_u32oct(NAME, OPT) \ __fsparam(fs_param_is_u32, NAME, OPT, 0, (void *)8) #define fsparam_u32hex(NAME, OPT) \ __fsparam(fs_param_is_u32_hex, NAME, OPT, 0, (void *)16) #define fsparam_s32(NAME, OPT) __fsparam(fs_param_is_s32, NAME, OPT, 0, NULL) #define fsparam_u64(NAME, OPT) __fsparam(fs_param_is_u64, NAME, OPT, 0, NULL) #define fsparam_enum(NAME, OPT, array) __fsparam(fs_param_is_enum, NAME, OPT, 0, array) #define fsparam_string(NAME, OPT) \ __fsparam(fs_param_is_string, NAME, OPT, 0, NULL) #define fsparam_blob(NAME, OPT) __fsparam(fs_param_is_blob, NAME, OPT, 0, NULL) #define fsparam_bdev(NAME, OPT) __fsparam(fs_param_is_blockdev, NAME, OPT, 0, NULL) #define fsparam_path(NAME, OPT) __fsparam(fs_param_is_path, NAME, OPT, 0, NULL) #define fsparam_fd(NAME, OPT) __fsparam(fs_param_is_fd, NAME, OPT, 0, NULL) #endif /* _LINUX_FS_PARSER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * PTP 1588 clock support - private declarations for the core module. * * Copyright (C) 2010 OMICRON electronics GmbH */ #ifndef _PTP_PRIVATE_H_ #define _PTP_PRIVATE_H_ #include <linux/cdev.h> #include <linux/device.h> #include <linux/kthread.h> #include <linux/mutex.h> #include <linux/posix-clock.h> #include <linux/ptp_clock.h> #include <linux/ptp_clock_kernel.h> #include <linux/time.h> #define PTP_MAX_TIMESTAMPS 128 #define PTP_BUF_TIMESTAMPS 30 struct timestamp_event_queue { struct ptp_extts_event buf[PTP_MAX_TIMESTAMPS]; int head; int tail; spinlock_t lock; }; struct ptp_clock { struct posix_clock clock; struct device dev; struct ptp_clock_info *info; dev_t devid; int index; /* index into clocks.map */ struct pps_device *pps_source; long dialed_frequency; /* remembers the frequency adjustment */ struct timestamp_event_queue tsevq; /* simple fifo for time stamps */ struct mutex tsevq_mux; /* one process at a time reading the fifo */ struct mutex pincfg_mux; /* protect concurrent info->pin_config access */ wait_queue_head_t tsev_wq; int defunct; /* tells readers to go away when clock is being removed */ struct device_attribute *pin_dev_attr; struct attribute **pin_attr; struct attribute_group pin_attr_group; /* 1st entry is a pointer to the real group, 2nd is NULL terminator */ const struct attribute_group *pin_attr_groups[2]; struct kthread_worker *kworker; struct kthread_delayed_work aux_work; }; /* * The function queue_cnt() is safe for readers to call without * holding q->lock. Readers use this function to verify that the queue * is nonempty before proceeding with a dequeue operation. The fact * that a writer might concurrently increment the tail does not * matter, since the queue remains nonempty nonetheless. */ static inline int queue_cnt(struct timestamp_event_queue *q) { int cnt = q->tail - q->head; return cnt < 0 ? PTP_MAX_TIMESTAMPS + cnt : cnt; } /* * see ptp_chardev.c */ /* caller must hold pincfg_mux */ int ptp_set_pinfunc(struct ptp_clock *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan); long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long arg); int ptp_open(struct posix_clock *pc, fmode_t fmode); ssize_t ptp_read(struct posix_clock *pc, uint flags, char __user *buf, size_t cnt); __poll_t ptp_poll(struct posix_clock *pc, struct file *fp, poll_table *wait); /* * see ptp_sysfs.c */ extern const struct attribute_group *ptp_groups[]; int ptp_populate_pin_groups(struct ptp_clock *ptp); void ptp_cleanup_pin_groups(struct ptp_clock *ptp); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #define _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H #ifndef __LITTLE_ENDIAN #define __LITTLE_ENDIAN 1234 #endif #ifndef __LITTLE_ENDIAN_BITFIELD #define __LITTLE_ENDIAN_BITFIELD #endif #include <linux/types.h> #include <linux/swab.h> #define __constant_htonl(x) ((__force __be32)___constant_swab32((x))) #define __constant_ntohl(x) ___constant_swab32((__force __be32)(x)) #define __constant_htons(x) ((__force __be16)___constant_swab16((x))) #define __constant_ntohs(x) ___constant_swab16((__force __be16)(x)) #define __constant_cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __constant_le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __constant_cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __constant_le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __constant_cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __constant_le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __constant_cpu_to_be64(x) ((__force __be64)___constant_swab64((x))) #define __constant_be64_to_cpu(x) ___constant_swab64((__force __u64)(__be64)(x)) #define __constant_cpu_to_be32(x) ((__force __be32)___constant_swab32((x))) #define __constant_be32_to_cpu(x) ___constant_swab32((__force __u32)(__be32)(x)) #define __constant_cpu_to_be16(x) ((__force __be16)___constant_swab16((x))) #define __constant_be16_to_cpu(x) ___constant_swab16((__force __u16)(__be16)(x)) #define __cpu_to_le64(x) ((__force __le64)(__u64)(x)) #define __le64_to_cpu(x) ((__force __u64)(__le64)(x)) #define __cpu_to_le32(x) ((__force __le32)(__u32)(x)) #define __le32_to_cpu(x) ((__force __u32)(__le32)(x)) #define __cpu_to_le16(x) ((__force __le16)(__u16)(x)) #define __le16_to_cpu(x) ((__force __u16)(__le16)(x)) #define __cpu_to_be64(x) ((__force __be64)__swab64((x))) #define __be64_to_cpu(x) __swab64((__force __u64)(__be64)(x)) #define __cpu_to_be32(x) ((__force __be32)__swab32((x))) #define __be32_to_cpu(x) __swab32((__force __u32)(__be32)(x)) #define __cpu_to_be16(x) ((__force __be16)__swab16((x))) #define __be16_to_cpu(x) __swab16((__force __u16)(__be16)(x)) static __always_inline __le64 __cpu_to_le64p(const __u64 *p) { return (__force __le64)*p; } static __always_inline __u64 __le64_to_cpup(const __le64 *p) { return (__force __u64)*p; } static __always_inline __le32 __cpu_to_le32p(const __u32 *p) { return (__force __le32)*p; } static __always_inline __u32 __le32_to_cpup(const __le32 *p) { return (__force __u32)*p; } static __always_inline __le16 __cpu_to_le16p(const __u16 *p) { return (__force __le16)*p; } static __always_inline __u16 __le16_to_cpup(const __le16 *p) { return (__force __u16)*p; } static __always_inline __be64 __cpu_to_be64p(const __u64 *p) { return (__force __be64)__swab64p(p); } static __always_inline __u64 __be64_to_cpup(const __be64 *p) { return __swab64p((__u64 *)p); } static __always_inline __be32 __cpu_to_be32p(const __u32 *p) { return (__force __be32)__swab32p(p); } static __always_inline __u32 __be32_to_cpup(const __be32 *p) { return __swab32p((__u32 *)p); } static __always_inline __be16 __cpu_to_be16p(const __u16 *p) { return (__force __be16)__swab16p(p); } static __always_inline __u16 __be16_to_cpup(const __be16 *p) { return __swab16p((__u16 *)p); } #define __cpu_to_le64s(x) do { (void)(x); } while (0) #define __le64_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le32s(x) do { (void)(x); } while (0) #define __le32_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_le16s(x) do { (void)(x); } while (0) #define __le16_to_cpus(x) do { (void)(x); } while (0) #define __cpu_to_be64s(x) __swab64s((x)) #define __be64_to_cpus(x) __swab64s((x)) #define __cpu_to_be32s(x) __swab32s((x)) #define __be32_to_cpus(x) __swab32s((x)) #define __cpu_to_be16s(x) __swab16s((x)) #define __be16_to_cpus(x) __swab16s((x)) #endif /* _UAPI_LINUX_BYTEORDER_LITTLE_ENDIAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Devicescape Software, Inc. * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2015-2017 Intel Deutschland GmbH * Copyright(c) 2020-2021 Intel Corporation */ #ifndef STA_INFO_H #define STA_INFO_H #include <linux/list.h> #include <linux/types.h> #include <linux/if_ether.h> #include <linux/workqueue.h> #include <linux/average.h> #include <linux/bitfield.h> #include <linux/etherdevice.h> #include <linux/rhashtable.h> #include <linux/u64_stats_sync.h> #include "key.h" /** * enum ieee80211_sta_info_flags - Stations flags * * These flags are used with &struct sta_info's @flags member, but * only indirectly with set_sta_flag() and friends. * * @WLAN_STA_AUTH: Station is authenticated. * @WLAN_STA_ASSOC: Station is associated. * @WLAN_STA_PS_STA: Station is in power-save mode * @WLAN_STA_AUTHORIZED: Station is authorized to send/receive traffic. * This bit is always checked so needs to be enabled for all stations * when virtual port control is not in use. * @WLAN_STA_SHORT_PREAMBLE: Station is capable of receiving short-preamble * frames. * @WLAN_STA_WDS: Station is one of our WDS peers. * @WLAN_STA_CLEAR_PS_FILT: Clear PS filter in hardware (using the * IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when the next * frame to this station is transmitted. * @WLAN_STA_MFP: Management frame protection is used with this STA. * @WLAN_STA_BLOCK_BA: Used to deny ADDBA requests (both TX and RX) * during suspend/resume and station removal. * @WLAN_STA_PS_DRIVER: driver requires keeping this station in * power-save mode logically to flush frames that might still * be in the queues * @WLAN_STA_PSPOLL: Station sent PS-poll while driver was keeping * station in power-save mode, reply when the driver unblocks. * @WLAN_STA_TDLS_PEER: Station is a TDLS peer. * @WLAN_STA_TDLS_PEER_AUTH: This TDLS peer is authorized to send direct * packets. This means the link is enabled. * @WLAN_STA_TDLS_INITIATOR: We are the initiator of the TDLS link with this * station. * @WLAN_STA_TDLS_CHAN_SWITCH: This TDLS peer supports TDLS channel-switching * @WLAN_STA_TDLS_OFF_CHANNEL: The local STA is currently off-channel with this * TDLS peer * @WLAN_STA_TDLS_WIDER_BW: This TDLS peer supports working on a wider bw on * the BSS base channel. * @WLAN_STA_UAPSD: Station requested unscheduled SP while driver was * keeping station in power-save mode, reply when the driver * unblocks the station. * @WLAN_STA_SP: Station is in a service period, so don't try to * reply to other uAPSD trigger frames or PS-Poll. * @WLAN_STA_4ADDR_EVENT: 4-addr event was already sent for this frame. * @WLAN_STA_INSERTED: This station is inserted into the hash table. * @WLAN_STA_RATE_CONTROL: rate control was initialized for this station. * @WLAN_STA_TOFFSET_KNOWN: toffset calculated for this station is valid. * @WLAN_STA_MPSP_OWNER: local STA is owner of a mesh Peer Service Period. * @WLAN_STA_MPSP_RECIPIENT: local STA is recipient of a MPSP. * @WLAN_STA_PS_DELIVER: station woke up, but we're still blocking TX * until pending frames are delivered * @WLAN_STA_USES_ENCRYPTION: This station was configured for encryption, * so drop all packets without a key later. * * @NUM_WLAN_STA_FLAGS: number of defined flags */ enum ieee80211_sta_info_flags { WLAN_STA_AUTH, WLAN_STA_ASSOC, WLAN_STA_PS_STA, WLAN_STA_AUTHORIZED, WLAN_STA_SHORT_PREAMBLE, WLAN_STA_WDS, WLAN_STA_CLEAR_PS_FILT, WLAN_STA_MFP, WLAN_STA_BLOCK_BA, WLAN_STA_PS_DRIVER, WLAN_STA_PSPOLL, WLAN_STA_TDLS_PEER, WLAN_STA_TDLS_PEER_AUTH, WLAN_STA_TDLS_INITIATOR, WLAN_STA_TDLS_CHAN_SWITCH, WLAN_STA_TDLS_OFF_CHANNEL, WLAN_STA_TDLS_WIDER_BW, WLAN_STA_UAPSD, WLAN_STA_SP, WLAN_STA_4ADDR_EVENT, WLAN_STA_INSERTED, WLAN_STA_RATE_CONTROL, WLAN_STA_TOFFSET_KNOWN, WLAN_STA_MPSP_OWNER, WLAN_STA_MPSP_RECIPIENT, WLAN_STA_PS_DELIVER, WLAN_STA_USES_ENCRYPTION, NUM_WLAN_STA_FLAGS, }; #define ADDBA_RESP_INTERVAL HZ #define HT_AGG_MAX_RETRIES 15 #define HT_AGG_BURST_RETRIES 3 #define HT_AGG_RETRIES_PERIOD (15 * HZ) #define HT_AGG_STATE_DRV_READY 0 #define HT_AGG_STATE_RESPONSE_RECEIVED 1 #define HT_AGG_STATE_OPERATIONAL 2 #define HT_AGG_STATE_STOPPING 3 #define HT_AGG_STATE_WANT_START 4 #define HT_AGG_STATE_WANT_STOP 5 #define HT_AGG_STATE_START_CB 6 #define HT_AGG_STATE_STOP_CB 7 #define HT_AGG_STATE_SENT_ADDBA 8 DECLARE_EWMA(avg_signal, 10, 8) enum ieee80211_agg_stop_reason { AGG_STOP_DECLINED, AGG_STOP_LOCAL_REQUEST, AGG_STOP_PEER_REQUEST, AGG_STOP_DESTROY_STA, }; /* Debugfs flags to enable/disable use of RX/TX airtime in scheduler */ #define AIRTIME_USE_TX BIT(0) #define AIRTIME_USE_RX BIT(1) struct airtime_info { u64 rx_airtime; u64 tx_airtime; s64 deficit; atomic_t aql_tx_pending; /* Estimated airtime for frames pending */ u32 aql_limit_low; u32 aql_limit_high; }; void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, struct sta_info *sta, u8 ac, u16 tx_airtime, bool tx_completed); struct sta_info; /** * struct tid_ampdu_tx - TID aggregation information (Tx). * * @rcu_head: rcu head for freeing structure * @session_timer: check if we keep Tx-ing on the TID (by timeout value) * @addba_resp_timer: timer for peer's response to addba request * @pending: pending frames queue -- use sta's spinlock to protect * @sta: station we are attached to * @dialog_token: dialog token for aggregation session * @timeout: session timeout value to be filled in ADDBA requests * @tid: TID number * @state: session state (see above) * @last_tx: jiffies of last tx activity * @stop_initiator: initiator of a session stop * @tx_stop: TX DelBA frame when stopping * @buf_size: reorder buffer size at receiver * @failed_bar_ssn: ssn of the last failed BAR tx attempt * @bar_pending: BAR needs to be re-sent * @amsdu: support A-MSDU withing A-MDPU * * This structure's lifetime is managed by RCU, assignments to * the array holding it must hold the aggregation mutex. * * The TX path can access it under RCU lock-free if, and * only if, the state has the flag %HT_AGG_STATE_OPERATIONAL * set. Otherwise, the TX path must also acquire the spinlock * and re-check the state, see comments in the tx code * touching it. */ struct tid_ampdu_tx { struct rcu_head rcu_head; struct timer_list session_timer; struct timer_list addba_resp_timer; struct sk_buff_head pending; struct sta_info *sta; unsigned long state; unsigned long last_tx; u16 timeout; u8 dialog_token; u8 stop_initiator; bool tx_stop; u16 buf_size; u16 ssn; u16 failed_bar_ssn; bool bar_pending; bool amsdu; u8 tid; }; /** * struct tid_ampdu_rx - TID aggregation information (Rx). * * @reorder_buf: buffer to reorder incoming aggregated MPDUs. An MPDU may be an * A-MSDU with individually reported subframes. * @reorder_buf_filtered: bitmap indicating where there are filtered frames in * the reorder buffer that should be ignored when releasing frames * @reorder_time: jiffies when skb was added * @session_timer: check if peer keeps Tx-ing on the TID (by timeout value) * @reorder_timer: releases expired frames from the reorder buffer. * @sta: station we are attached to * @last_rx: jiffies of last rx activity * @head_seq_num: head sequence number in reordering buffer. * @stored_mpdu_num: number of MPDUs in reordering buffer * @ssn: Starting Sequence Number expected to be aggregated. * @buf_size: buffer size for incoming A-MPDUs * @timeout: reset timer value (in TUs). * @tid: TID number * @rcu_head: RCU head used for freeing this struct * @reorder_lock: serializes access to reorder buffer, see below. * @auto_seq: used for offloaded BA sessions to automatically pick head_seq_and * and ssn. * @removed: this session is removed (but might have been found due to RCU) * @started: this session has started (head ssn or higher was received) * * This structure's lifetime is managed by RCU, assignments to * the array holding it must hold the aggregation mutex. * * The @reorder_lock is used to protect the members of this * struct, except for @timeout, @buf_size and @dialog_token, * which are constant across the lifetime of the struct (the * dialog token being used only for debugging). */ struct tid_ampdu_rx { struct rcu_head rcu_head; spinlock_t reorder_lock; u64 reorder_buf_filtered; struct sk_buff_head *reorder_buf; unsigned long *reorder_time; struct sta_info *sta; struct timer_list session_timer; struct timer_list reorder_timer; unsigned long last_rx; u16 head_seq_num; u16 stored_mpdu_num; u16 ssn; u16 buf_size; u16 timeout; u8 tid; u8 auto_seq:1, removed:1, started:1; }; /** * struct sta_ampdu_mlme - STA aggregation information. * * @mtx: mutex to protect all TX data (except non-NULL assignments * to tid_tx[idx], which are protected by the sta spinlock) * tid_start_tx is also protected by sta->lock. * @tid_rx: aggregation info for Rx per TID -- RCU protected * @tid_rx_token: dialog tokens for valid aggregation sessions * @tid_rx_timer_expired: bitmap indicating on which TIDs the * RX timer expired until the work for it runs * @tid_rx_stop_requested: bitmap indicating which BA sessions per TID the * driver requested to close until the work for it runs * @tid_rx_manage_offl: bitmap indicating which BA sessions were requested * to be treated as started/stopped due to offloading * @agg_session_valid: bitmap indicating which TID has a rx BA session open on * @unexpected_agg: bitmap indicating which TID already sent a delBA due to * unexpected aggregation related frames outside a session * @work: work struct for starting/stopping aggregation * @tid_tx: aggregation info for Tx per TID * @tid_start_tx: sessions where start was requested * @last_addba_req_time: timestamp of the last addBA request. * @addba_req_num: number of times addBA request has been sent. * @dialog_token_allocator: dialog token enumerator for each new session; */ struct sta_ampdu_mlme { struct mutex mtx; /* rx */ struct tid_ampdu_rx __rcu *tid_rx[IEEE80211_NUM_TIDS]; u8 tid_rx_token[IEEE80211_NUM_TIDS]; unsigned long tid_rx_timer_expired[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long tid_rx_stop_requested[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long tid_rx_manage_offl[BITS_TO_LONGS(2 * IEEE80211_NUM_TIDS)]; unsigned long agg_session_valid[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; unsigned long unexpected_agg[BITS_TO_LONGS(IEEE80211_NUM_TIDS)]; /* tx */ struct work_struct work; struct tid_ampdu_tx __rcu *tid_tx[IEEE80211_NUM_TIDS]; struct tid_ampdu_tx *tid_start_tx[IEEE80211_NUM_TIDS]; unsigned long last_addba_req_time[IEEE80211_NUM_TIDS]; u8 addba_req_num[IEEE80211_NUM_TIDS]; u8 dialog_token_allocator; }; /* Value to indicate no TID reservation */ #define IEEE80211_TID_UNRESERVED 0xff #define IEEE80211_FAST_XMIT_MAX_IV 18 /** * struct ieee80211_fast_tx - TX fastpath information * @key: key to use for hw crypto * @hdr: the 802.11 header to put with the frame * @hdr_len: actual 802.11 header length * @sa_offs: offset of the SA * @da_offs: offset of the DA * @pn_offs: offset where to put PN for crypto (or 0 if not needed) * @band: band this will be transmitted on, for tx_info * @rcu_head: RCU head to free this struct * * This struct is small enough so that the common case (maximum crypto * header length of 8 like for CCMP/GCMP) fits into a single 64-byte * cache line. */ struct ieee80211_fast_tx { struct ieee80211_key *key; u8 hdr_len; u8 sa_offs, da_offs, pn_offs; u8 band; u8 hdr[30 + 2 + IEEE80211_FAST_XMIT_MAX_IV + sizeof(rfc1042_header)] __aligned(2); struct rcu_head rcu_head; }; /** * struct ieee80211_fast_rx - RX fastpath information * @dev: netdevice for reporting the SKB * @vif_type: (P2P-less) interface type of the original sdata (sdata->vif.type) * @vif_addr: interface address * @rfc1042_hdr: copy of the RFC 1042 SNAP header (to have in cache) * @control_port_protocol: control port protocol copied from sdata * @expected_ds_bits: from/to DS bits expected * @icv_len: length of the MIC if present * @key: bool indicating encryption is expected (key is set) * @internal_forward: forward froms internally on AP/VLAN type interfaces * @uses_rss: copy of USES_RSS hw flag * @da_offs: offset of the DA in the header (for header conversion) * @sa_offs: offset of the SA in the header (for header conversion) * @rcu_head: RCU head for freeing this structure */ struct ieee80211_fast_rx { struct net_device *dev; enum nl80211_iftype vif_type; u8 vif_addr[ETH_ALEN] __aligned(2); u8 rfc1042_hdr[6] __aligned(2); __be16 control_port_protocol; __le16 expected_ds_bits; u8 icv_len; u8 key:1, internal_forward:1, uses_rss:1; u8 da_offs, sa_offs; struct rcu_head rcu_head; }; /* we use only values in the range 0-100, so pick a large precision */ DECLARE_EWMA(mesh_fail_avg, 20, 8) DECLARE_EWMA(mesh_tx_rate_avg, 8, 16) /** * struct mesh_sta - mesh STA information * @plink_lock: serialize access to plink fields * @llid: Local link ID * @plid: Peer link ID * @aid: local aid supplied by peer * @reason: Cancel reason on PLINK_HOLDING state * @plink_retries: Retries in establishment * @plink_state: peer link state * @plink_timeout: timeout of peer link * @plink_timer: peer link watch timer * @plink_sta: peer link watch timer's sta_info * @t_offset: timing offset relative to this host * @t_offset_setpoint: reference timing offset of this sta to be used when * calculating clockdrift * @local_pm: local link-specific power save mode * @peer_pm: peer-specific power save mode towards local STA * @nonpeer_pm: STA power save mode towards non-peer neighbors * @processed_beacon: set to true after peer rates and capabilities are * processed * @connected_to_gate: true if mesh STA has a path to a mesh gate * @connected_to_as: true if mesh STA has a path to a authentication server * @fail_avg: moving percentage of failed MSDUs * @tx_rate_avg: moving average of tx bitrate */ struct mesh_sta { struct timer_list plink_timer; struct sta_info *plink_sta; s64 t_offset; s64 t_offset_setpoint; spinlock_t plink_lock; u16 llid; u16 plid; u16 aid; u16 reason; u8 plink_retries; bool processed_beacon; bool connected_to_gate; bool connected_to_as; enum nl80211_plink_state plink_state; u32 plink_timeout; /* mesh power save */ enum nl80211_mesh_power_mode local_pm; enum nl80211_mesh_power_mode peer_pm; enum nl80211_mesh_power_mode nonpeer_pm; /* moving percentage of failed MSDUs */ struct ewma_mesh_fail_avg fail_avg; /* moving average of tx bitrate */ struct ewma_mesh_tx_rate_avg tx_rate_avg; }; DECLARE_EWMA(signal, 10, 8) struct ieee80211_sta_rx_stats { unsigned long packets; unsigned long last_rx; unsigned long num_duplicates; unsigned long fragments; unsigned long dropped; int last_signal; u8 chains; s8 chain_signal_last[IEEE80211_MAX_CHAINS]; u32 last_rate; struct u64_stats_sync syncp; u64 bytes; u64 msdu[IEEE80211_NUM_TIDS + 1]; }; /* * IEEE 802.11-2016 (10.6 "Defragmentation") recommends support for "concurrent * reception of at least one MSDU per access category per associated STA" * on APs, or "at least one MSDU per access category" on other interface types. * * This limit can be increased by changing this define, at the cost of slower * frame reassembly and increased memory use while fragments are pending. */ #define IEEE80211_FRAGMENT_MAX 4 struct ieee80211_fragment_entry { struct sk_buff_head skb_list; unsigned long first_frag_time; u16 seq; u16 extra_len; u16 last_frag; u8 rx_queue; u8 check_sequential_pn:1, /* needed for CCMP/GCMP */ is_protected:1; u8 last_pn[6]; /* PN of the last fragment if CCMP was used */ unsigned int key_color; }; struct ieee80211_fragment_cache { struct ieee80211_fragment_entry entries[IEEE80211_FRAGMENT_MAX]; unsigned int next; }; /* * The bandwidth threshold below which the per-station CoDel parameters will be * scaled to be more lenient (to prevent starvation of slow stations). This * value will be scaled by the number of active stations when it is being * applied. */ #define STA_SLOW_THRESHOLD 6000 /* 6 Mbps */ /** * struct sta_info - STA information * * This structure collects information about a station that * mac80211 is communicating with. * * @list: global linked list entry * @free_list: list entry for keeping track of stations to free * @hash_node: hash node for rhashtable * @addr: station's MAC address - duplicated from public part to * let the hash table work with just a single cacheline * @local: pointer to the global information * @sdata: virtual interface this station belongs to * @ptk: peer keys negotiated with this station, if any * @ptk_idx: last installed peer key index * @gtk: group keys negotiated with this station, if any * @rate_ctrl: rate control algorithm reference * @rate_ctrl_lock: spinlock used to protect rate control data * (data inside the algorithm, so serializes calls there) * @rate_ctrl_priv: rate control private per-STA pointer * @lock: used for locking all fields that require locking, see comments * in the header file. * @drv_deliver_wk: used for delivering frames after driver PS unblocking * @listen_interval: listen interval of this station, when we're acting as AP * @_flags: STA flags, see &enum ieee80211_sta_info_flags, do not use directly * @ps_lock: used for powersave (when mac80211 is the AP) related locking * @ps_tx_buf: buffers (per AC) of frames to transmit to this station * when it leaves power saving state or polls * @tx_filtered: buffers (per AC) of frames we already tried to * transmit but were filtered by hardware due to STA having * entered power saving state, these are also delivered to * the station when it leaves powersave or polls for frames * @driver_buffered_tids: bitmap of TIDs the driver has data buffered on * @txq_buffered_tids: bitmap of TIDs that mac80211 has txq data buffered on * @assoc_at: clock boottime (in ns) of last association * @last_connected: time (in seconds) when a station got connected * @last_seq_ctrl: last received seq/frag number from this STA (per TID * plus one for non-QoS frames) * @tid_seq: per-TID sequence numbers for sending to this STA * @airtime: per-AC struct airtime_info describing airtime statistics for this * station * @airtime_weight: station weight for airtime fairness calculation purposes * @ampdu_mlme: A-MPDU state machine state * @mesh: mesh STA information * @debugfs_dir: debug filesystem directory dentry * @dead: set to true when sta is unlinked * @removed: set to true when sta is being removed from sta_list * @uploaded: set to true when sta is uploaded to the driver * @sta: station information we share with the driver * @sta_state: duplicates information about station state (for debug) * @rcu_head: RCU head used for freeing this station struct * @cur_max_bandwidth: maximum bandwidth to use for TX to the station, * taken from HT/VHT capabilities or VHT operating mode notification * @known_smps_mode: the smps_mode the client thinks we are in. Relevant for * AP only. * @cipher_scheme: optional cipher scheme for this station * @cparams: CoDel parameters for this station. * @reserved_tid: reserved TID (if any, otherwise IEEE80211_TID_UNRESERVED) * @fast_tx: TX fastpath information * @fast_rx: RX fastpath information * @tdls_chandef: a TDLS peer can have a wider chandef that is compatible to * the BSS one. * @tx_stats: TX statistics * @tx_stats.packets: # of packets transmitted * @tx_stats.bytes: # of bytes in all packets transmitted * @tx_stats.last_rate: last TX rate * @tx_stats.msdu: # of transmitted MSDUs per TID * @rx_stats: RX statistics * @rx_stats_avg: averaged RX statistics * @rx_stats_avg.signal: averaged signal * @rx_stats_avg.chain_signal: averaged per-chain signal * @pcpu_rx_stats: per-CPU RX statistics, assigned only if the driver needs * this (by advertising the USES_RSS hw flag) * @status_stats: TX status statistics * @status_stats.filtered: # of filtered frames * @status_stats.retry_failed: # of frames that failed after retry * @status_stats.retry_count: # of retries attempted * @status_stats.lost_packets: # of lost packets * @status_stats.last_pkt_time: timestamp of last ACKed packet * @status_stats.msdu_retries: # of MSDU retries * @status_stats.msdu_failed: # of failed MSDUs * @status_stats.last_ack: last ack timestamp (jiffies) * @status_stats.last_ack_signal: last ACK signal * @status_stats.ack_signal_filled: last ACK signal validity * @status_stats.avg_ack_signal: average ACK signal * @frags: fragment cache */ struct sta_info { /* General information, mostly static */ struct list_head list, free_list; struct rcu_head rcu_head; struct rhlist_head hash_node; u8 addr[ETH_ALEN]; struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; struct ieee80211_key __rcu *gtk[NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + NUM_DEFAULT_BEACON_KEYS]; struct ieee80211_key __rcu *ptk[NUM_DEFAULT_KEYS]; u8 ptk_idx; struct rate_control_ref *rate_ctrl; void *rate_ctrl_priv; spinlock_t rate_ctrl_lock; spinlock_t lock; struct ieee80211_fast_tx __rcu *fast_tx; struct ieee80211_fast_rx __rcu *fast_rx; struct ieee80211_sta_rx_stats __percpu *pcpu_rx_stats; #ifdef CONFIG_MAC80211_MESH struct mesh_sta *mesh; #endif struct work_struct drv_deliver_wk; u16 listen_interval; bool dead; bool removed; bool uploaded; enum ieee80211_sta_state sta_state; /* use the accessors defined below */ unsigned long _flags; /* STA powersave lock and frame queues */ spinlock_t ps_lock; struct sk_buff_head ps_tx_buf[IEEE80211_NUM_ACS]; struct sk_buff_head tx_filtered[IEEE80211_NUM_ACS]; unsigned long driver_buffered_tids; unsigned long txq_buffered_tids; u64 assoc_at; long last_connected; /* Updated from RX path only, no locking requirements */ struct ieee80211_sta_rx_stats rx_stats; struct { struct ewma_signal signal; struct ewma_signal chain_signal[IEEE80211_MAX_CHAINS]; } rx_stats_avg; /* Plus 1 for non-QoS frames */ __le16 last_seq_ctrl[IEEE80211_NUM_TIDS + 1]; /* Updated from TX status path only, no locking requirements */ struct { unsigned long filtered; unsigned long retry_failed, retry_count; unsigned int lost_packets; unsigned long last_pkt_time; u64 msdu_retries[IEEE80211_NUM_TIDS + 1]; u64 msdu_failed[IEEE80211_NUM_TIDS + 1]; unsigned long last_ack; s8 last_ack_signal; bool ack_signal_filled; struct ewma_avg_signal avg_ack_signal; } status_stats; /* Updated from TX path only, no locking requirements */ struct { u64 packets[IEEE80211_NUM_ACS]; u64 bytes[IEEE80211_NUM_ACS]; struct ieee80211_tx_rate last_rate; struct rate_info last_rate_info; u64 msdu[IEEE80211_NUM_TIDS + 1]; } tx_stats; u16 tid_seq[IEEE80211_QOS_CTL_TID_MASK + 1]; struct airtime_info airtime[IEEE80211_NUM_ACS]; u16 airtime_weight; /* * Aggregation information, locked with lock. */ struct sta_ampdu_mlme ampdu_mlme; #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfs_dir; #endif enum ieee80211_sta_rx_bandwidth cur_max_bandwidth; enum ieee80211_smps_mode known_smps_mode; const struct ieee80211_cipher_scheme *cipher_scheme; struct codel_params cparams; u8 reserved_tid; struct cfg80211_chan_def tdls_chandef; struct ieee80211_fragment_cache frags; /* keep last! */ struct ieee80211_sta sta; }; static inline enum nl80211_plink_state sta_plink_state(struct sta_info *sta) { #ifdef CONFIG_MAC80211_MESH return sta->mesh->plink_state; #endif return NL80211_PLINK_LISTEN; } static inline void set_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); set_bit(flag, &sta->_flags); } static inline void clear_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); clear_bit(flag, &sta->_flags); } static inline int test_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { return test_bit(flag, &sta->_flags); } static inline int test_and_clear_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); return test_and_clear_bit(flag, &sta->_flags); } static inline int test_and_set_sta_flag(struct sta_info *sta, enum ieee80211_sta_info_flags flag) { WARN_ON(flag == WLAN_STA_AUTH || flag == WLAN_STA_ASSOC || flag == WLAN_STA_AUTHORIZED); return test_and_set_bit(flag, &sta->_flags); } int sta_info_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state); static inline void sta_info_pre_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state) { int ret; WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); ret = sta_info_move_state(sta, new_state); WARN_ON_ONCE(ret); } void ieee80211_assign_tid_tx(struct sta_info *sta, int tid, struct tid_ampdu_tx *tid_tx); static inline struct tid_ampdu_tx * rcu_dereference_protected_tid_tx(struct sta_info *sta, int tid) { return rcu_dereference_protected(sta->ampdu_mlme.tid_tx[tid], lockdep_is_held(&sta->lock) || lockdep_is_held(&sta->ampdu_mlme.mtx)); } /* Maximum number of frames to buffer per power saving station per AC */ #define STA_MAX_TX_BUFFER 64 /* Minimum buffered frame expiry time. If STA uses listen interval that is * smaller than this value, the minimum value here is used instead. */ #define STA_TX_BUFFER_EXPIRE (10 * HZ) /* How often station data is cleaned up (e.g., expiration of buffered frames) */ #define STA_INFO_CLEANUP_INTERVAL (10 * HZ) struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, const u8 *addr); /* * Get a STA info, must be under RCU read lock. */ struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr); struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr); /* user must hold sta_mtx or be in RCU critical section */ struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, const u8 *sta_addr, const u8 *vif_addr); #define for_each_sta_info(local, _addr, _sta, _tmp) \ rhl_for_each_entry_rcu(_sta, _tmp, \ sta_info_hash_lookup(local, _addr), hash_node) /* * Get STA info by index, BROKEN! */ struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, int idx); /* * Create a new STA info, caller owns returned structure * until sta_info_insert(). */ struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, const u8 *addr, gfp_t gfp); void sta_info_free(struct ieee80211_local *local, struct sta_info *sta); /* * Insert STA info into hash table/list, returns zero or a * -EEXIST if (if the same MAC address is already present). * * Calling the non-rcu version makes the caller relinquish, * the _rcu version calls read_lock_rcu() and must be called * without it held. */ int sta_info_insert(struct sta_info *sta); int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU); int __must_check __sta_info_destroy(struct sta_info *sta); int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr); int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr); void sta_info_recalc_tim(struct sta_info *sta); int sta_info_init(struct ieee80211_local *local); void sta_info_stop(struct ieee80211_local *local); /** * __sta_info_flush - flush matching STA entries from the STA table * * Returns the number of removed STA entries. * * @sdata: sdata to remove all stations from * @vlans: if the given interface is an AP interface, also flush VLANs */ int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans); /** * sta_info_flush - flush matching STA entries from the STA table * * Returns the number of removed STA entries. * * @sdata: sdata to remove all stations from */ static inline int sta_info_flush(struct ieee80211_sub_if_data *sdata) { return __sta_info_flush(sdata, false); } void sta_set_rate_info_tx(struct sta_info *sta, const struct ieee80211_tx_rate *rate, struct rate_info *rinfo); void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, bool tidstats); u32 sta_get_expected_throughput(struct sta_info *sta); void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, unsigned long exp_time); u8 sta_info_tx_streams(struct sta_info *sta); void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta); void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta); void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta); unsigned long ieee80211_sta_last_active(struct sta_info *sta); enum sta_stats_type { STA_STATS_RATE_TYPE_INVALID = 0, STA_STATS_RATE_TYPE_LEGACY, STA_STATS_RATE_TYPE_HT, STA_STATS_RATE_TYPE_VHT, STA_STATS_RATE_TYPE_HE, STA_STATS_RATE_TYPE_S1G, }; #define STA_STATS_FIELD_HT_MCS GENMASK( 7, 0) #define STA_STATS_FIELD_LEGACY_IDX GENMASK( 3, 0) #define STA_STATS_FIELD_LEGACY_BAND GENMASK( 7, 4) #define STA_STATS_FIELD_VHT_MCS GENMASK( 3, 0) #define STA_STATS_FIELD_VHT_NSS GENMASK( 7, 4) #define STA_STATS_FIELD_HE_MCS GENMASK( 3, 0) #define STA_STATS_FIELD_HE_NSS GENMASK( 7, 4) #define STA_STATS_FIELD_BW GENMASK(11, 8) #define STA_STATS_FIELD_SGI GENMASK(12, 12) #define STA_STATS_FIELD_TYPE GENMASK(15, 13) #define STA_STATS_FIELD_HE_RU GENMASK(18, 16) #define STA_STATS_FIELD_HE_GI GENMASK(20, 19) #define STA_STATS_FIELD_HE_DCM GENMASK(21, 21) #define STA_STATS_FIELD(_n, _v) FIELD_PREP(STA_STATS_FIELD_ ## _n, _v) #define STA_STATS_GET(_n, _v) FIELD_GET(STA_STATS_FIELD_ ## _n, _v) #define STA_STATS_RATE_INVALID 0 static inline u32 sta_stats_encode_rate(struct ieee80211_rx_status *s) { u32 r; r = STA_STATS_FIELD(BW, s->bw); if (s->enc_flags & RX_ENC_FLAG_SHORT_GI) r |= STA_STATS_FIELD(SGI, 1); switch (s->encoding) { case RX_ENC_VHT: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_VHT); r |= STA_STATS_FIELD(VHT_NSS, s->nss); r |= STA_STATS_FIELD(VHT_MCS, s->rate_idx); break; case RX_ENC_HT: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_HT); r |= STA_STATS_FIELD(HT_MCS, s->rate_idx); break; case RX_ENC_LEGACY: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_LEGACY); r |= STA_STATS_FIELD(LEGACY_BAND, s->band); r |= STA_STATS_FIELD(LEGACY_IDX, s->rate_idx); break; case RX_ENC_HE: r |= STA_STATS_FIELD(TYPE, STA_STATS_RATE_TYPE_HE); r |= STA_STATS_FIELD(HE_NSS, s->nss); r |= STA_STATS_FIELD(HE_MCS, s->rate_idx); r |= STA_STATS_FIELD(HE_GI, s->he_gi); r |= STA_STATS_FIELD(HE_RU, s->he_ru); r |= STA_STATS_FIELD(HE_DCM, s->he_dcm); break; default: WARN_ON(1); return STA_STATS_RATE_INVALID; } return r; } #endif /* STA_INFO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef LLIST_H #define LLIST_H /* * Lock-less NULL terminated single linked list * * Cases where locking is not needed: * If there are multiple producers and multiple consumers, llist_add can be * used in producers and llist_del_all can be used in consumers simultaneously * without locking. Also a single consumer can use llist_del_first while * multiple producers simultaneously use llist_add, without any locking. * * Cases where locking is needed: * If we have multiple consumers with llist_del_first used in one consumer, and * llist_del_first or llist_del_all used in other consumers, then a lock is * needed. This is because llist_del_first depends on list->first->next not * changing, but without lock protection, there's no way to be sure about that * if a preemption happens in the middle of the delete operation and on being * preempted back, the list->first is the same as before causing the cmpxchg in * llist_del_first to succeed. For example, while a llist_del_first operation * is in progress in one consumer, then a llist_del_first, llist_add, * llist_add (or llist_del_all, llist_add, llist_add) sequence in another * consumer may cause violations. * * This can be summarized as follows: * * | add | del_first | del_all * add | - | - | - * del_first | | L | L * del_all | | | - * * Where, a particular row's operation can happen concurrently with a column's * operation, with "-" being no lock needed, while "L" being lock is needed. * * The list entries deleted via llist_del_all can be traversed with * traversing function such as llist_for_each etc. But the list * entries can not be traversed safely before deleted from the list. * The order of deleted entries is from the newest to the oldest added * one. If you want to traverse from the oldest to the newest, you * must reverse the order by yourself before traversing. * * The basic atomic operation of this list is cmpxchg on long. On * architectures that don't have NMI-safe cmpxchg implementation, the * list can NOT be used in NMI handlers. So code that uses the list in * an NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. * * Copyright 2010,2011 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> */ #include <linux/atomic.h> #include <linux/kernel.h> struct llist_head { struct llist_node *first; }; struct llist_node { struct llist_node *next; }; #define LLIST_HEAD_INIT(name) { NULL } #define LLIST_HEAD(name) struct llist_head name = LLIST_HEAD_INIT(name) /** * init_llist_head - initialize lock-less list head * @head: the head for your lock-less list */ static inline void init_llist_head(struct llist_head *list) { list->first = NULL; } /** * llist_entry - get the struct of this entry * @ptr: the &struct llist_node pointer. * @type: the type of the struct this is embedded in. * @member: the name of the llist_node within the struct. */ #define llist_entry(ptr, type, member) \ container_of(ptr, type, member) /** * member_address_is_nonnull - check whether the member address is not NULL * @ptr: the object pointer (struct type * that contains the llist_node) * @member: the name of the llist_node within the struct. * * This macro is conceptually the same as * &ptr->member != NULL * but it works around the fact that compilers can decide that taking a member * address is never a NULL pointer. * * Real objects that start at a high address and have a member at NULL are * unlikely to exist, but such pointers may be returned e.g. by the * container_of() macro. */ #define member_address_is_nonnull(ptr, member) \ ((uintptr_t)(ptr) + offsetof(typeof(*(ptr)), member) != 0) /** * llist_for_each - iterate over some deleted entries of a lock-less list * @pos: the &struct llist_node to use as a loop cursor * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each(pos, node) \ for ((pos) = (node); pos; (pos) = (pos)->next) /** * llist_for_each_safe - iterate over some deleted entries of a lock-less list * safe against removal of list entry * @pos: the &struct llist_node to use as a loop cursor * @n: another &struct llist_node to use as temporary storage * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_safe(pos, n, node) \ for ((pos) = (node); (pos) && ((n) = (pos)->next, true); (pos) = (n)) /** * llist_for_each_entry - iterate over some deleted entries of lock-less list of given type * @pos: the type * to use as a loop cursor. * @node: the fist entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry(pos, node, member) \ for ((pos) = llist_entry((node), typeof(*(pos)), member); \ member_address_is_nonnull(pos, member); \ (pos) = llist_entry((pos)->member.next, typeof(*(pos)), member)) /** * llist_for_each_entry_safe - iterate over some deleted entries of lock-less list of given type * safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @node: the first entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry_safe(pos, n, node, member) \ for (pos = llist_entry((node), typeof(*pos), member); \ member_address_is_nonnull(pos, member) && \ (n = llist_entry(pos->member.next, typeof(*n), member), true); \ pos = n) /** * llist_empty - tests whether a lock-less list is empty * @head: the list to test * * Not guaranteed to be accurate or up to date. Just a quick way to * test whether the list is empty without deleting something from the * list. */ static inline bool llist_empty(const struct llist_head *head) { return READ_ONCE(head->first) == NULL; } static inline struct llist_node *llist_next(struct llist_node *node) { return node->next; } extern bool llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, struct llist_head *head); /** * llist_add - add a new entry * @new: new entry to be added * @head: the head for your lock-less list * * Returns true if the list was empty prior to adding this entry. */ static inline bool llist_add(struct llist_node *new, struct llist_head *head) { return llist_add_batch(new, new, head); } /** * llist_del_all - delete all entries from lock-less list * @head: the head of lock-less list to delete all entries * * If list is empty, return NULL, otherwise, delete all entries and * return the pointer to the first entry. The order of entries * deleted is from the newest to the oldest added one. */ static inline struct llist_node *llist_del_all(struct llist_head *head) { return xchg(&head->first, NULL); } extern struct llist_node *llist_del_first(struct llist_head *head); struct llist_node *llist_reverse_order(struct llist_node *head); #endif /* LLIST_H */
1 2 3 4 5 6 7 8 9 10 11 /* SPDX-License-Identifier: GPL-2.0 */ #include <asm/processor.h> static inline int phys_addr_valid(resource_size_t addr) { #ifdef CONFIG_PHYS_ADDR_T_64BIT return !(addr >> boot_cpu_data.x86_phys_bits); #else return 1; #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PIPE_FS_I_H #define _LINUX_PIPE_FS_I_H #define PIPE_DEF_BUFFERS 16 #define PIPE_BUF_FLAG_LRU 0x01 /* page is on the LRU */ #define PIPE_BUF_FLAG_ATOMIC 0x02 /* was atomically mapped */ #define PIPE_BUF_FLAG_GIFT 0x04 /* page is a gift */ #define PIPE_BUF_FLAG_PACKET 0x08 /* read() as a packet */ #define PIPE_BUF_FLAG_CAN_MERGE 0x10 /* can merge buffers */ #define PIPE_BUF_FLAG_WHOLE 0x20 /* read() must return entire buffer or error */ #ifdef CONFIG_WATCH_QUEUE #define PIPE_BUF_FLAG_LOSS 0x40 /* Message loss happened after this buffer */ #endif /** * struct pipe_buffer - a linux kernel pipe buffer * @page: the page containing the data for the pipe buffer * @offset: offset of data inside the @page * @len: length of data inside the @page * @ops: operations associated with this buffer. See @pipe_buf_operations. * @flags: pipe buffer flags. See above. * @private: private data owned by the ops. **/ struct pipe_buffer { struct page *page; unsigned int offset, len; const struct pipe_buf_operations *ops; unsigned int flags; unsigned long private; }; /** * struct pipe_inode_info - a linux kernel pipe * @mutex: mutex protecting the whole thing * @rd_wait: reader wait point in case of empty pipe * @wr_wait: writer wait point in case of full pipe * @head: The point of buffer production * @tail: The point of buffer consumption * @note_loss: The next read() should insert a data-lost message * @max_usage: The maximum number of slots that may be used in the ring * @ring_size: total number of buffers (should be a power of 2) * @nr_accounted: The amount this pipe accounts for in user->pipe_bufs * @tmp_page: cached released page * @readers: number of current readers of this pipe * @writers: number of current writers of this pipe * @files: number of struct file referring this pipe (protected by ->i_lock) * @r_counter: reader counter * @w_counter: writer counter * @poll_usage: is this pipe used for epoll, which has crazy wakeups? * @fasync_readers: reader side fasync * @fasync_writers: writer side fasync * @bufs: the circular array of pipe buffers * @user: the user who created this pipe * @watch_queue: If this pipe is a watch_queue, this is the stuff for that **/ struct pipe_inode_info { struct mutex mutex; wait_queue_head_t rd_wait, wr_wait; unsigned int head; unsigned int tail; unsigned int max_usage; unsigned int ring_size; #ifdef CONFIG_WATCH_QUEUE bool note_loss; #endif unsigned int nr_accounted; unsigned int readers; unsigned int writers; unsigned int files; unsigned int r_counter; unsigned int w_counter; unsigned int poll_usage; struct page *tmp_page; struct fasync_struct *fasync_readers; struct fasync_struct *fasync_writers; struct pipe_buffer *bufs; struct user_struct *user; #ifdef CONFIG_WATCH_QUEUE struct watch_queue *watch_queue; #endif }; /* * Note on the nesting of these functions: * * ->confirm() * ->try_steal() * * That is, ->try_steal() must be called on a confirmed buffer. See below for * the meaning of each operation. Also see the kerneldoc in fs/pipe.c for the * pipe and generic variants of these hooks. */ struct pipe_buf_operations { /* * ->confirm() verifies that the data in the pipe buffer is there * and that the contents are good. If the pages in the pipe belong * to a file system, we may need to wait for IO completion in this * hook. Returns 0 for good, or a negative error value in case of * error. If not present all pages are considered good. */ int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *); /* * When the contents of this pipe buffer has been completely * consumed by a reader, ->release() is called. */ void (*release)(struct pipe_inode_info *, struct pipe_buffer *); /* * Attempt to take ownership of the pipe buffer and its contents. * ->try_steal() returns %true for success, in which case the contents * of the pipe (the buf->page) is locked and now completely owned by the * caller. The page may then be transferred to a different mapping, the * most often used case is insertion into different file address space * cache. */ bool (*try_steal)(struct pipe_inode_info *, struct pipe_buffer *); /* * Get a reference to the pipe buffer. */ bool (*get)(struct pipe_inode_info *, struct pipe_buffer *); }; /** * pipe_empty - Return true if the pipe is empty * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline bool pipe_empty(unsigned int head, unsigned int tail) { return head == tail; } /** * pipe_occupancy - Return number of slots used in the pipe * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline unsigned int pipe_occupancy(unsigned int head, unsigned int tail) { return head - tail; } /** * pipe_full - Return true if the pipe is full * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @limit: The maximum amount of slots available. */ static inline bool pipe_full(unsigned int head, unsigned int tail, unsigned int limit) { return pipe_occupancy(head, tail) >= limit; } /** * pipe_space_for_user - Return number of slots available to userspace * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @pipe: The pipe info structure */ static inline unsigned int pipe_space_for_user(unsigned int head, unsigned int tail, struct pipe_inode_info *pipe) { unsigned int p_occupancy, p_space; p_occupancy = pipe_occupancy(head, tail); if (p_occupancy >= pipe->max_usage) return 0; p_space = pipe->ring_size - p_occupancy; if (p_space > pipe->max_usage) p_space = pipe->max_usage; return p_space; } /** * pipe_buf_get - get a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to get a reference to * * Return: %true if the reference was successfully obtained. */ static inline __must_check bool pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { return buf->ops->get(pipe, buf); } /** * pipe_buf_release - put a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to put a reference to */ static inline void pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { const struct pipe_buf_operations *ops = buf->ops; buf->ops = NULL; ops->release(pipe, buf); } /** * pipe_buf_confirm - verify contents of the pipe buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to confirm */ static inline int pipe_buf_confirm(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->confirm) return 0; return buf->ops->confirm(pipe, buf); } /** * pipe_buf_try_steal - attempt to take ownership of a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to attempt to steal */ static inline bool pipe_buf_try_steal(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->try_steal) return false; return buf->ops->try_steal(pipe, buf); } /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual memory allocation, whereas PIPE_BUF makes atomicity guarantees. */ #define PIPE_SIZE PAGE_SIZE /* Pipe lock and unlock operations */ void pipe_lock(struct pipe_inode_info *); void pipe_unlock(struct pipe_inode_info *); void pipe_double_lock(struct pipe_inode_info *, struct pipe_inode_info *); extern unsigned int pipe_max_size; extern unsigned long pipe_user_pages_hard; extern unsigned long pipe_user_pages_soft; /* Wait for a pipe to be readable/writable while dropping the pipe lock */ void pipe_wait_readable(struct pipe_inode_info *); void pipe_wait_writable(struct pipe_inode_info *); struct pipe_inode_info *alloc_pipe_info(void); void free_pipe_info(struct pipe_inode_info *); /* Generic pipe buffer ops functions */ bool generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *); bool generic_pipe_buf_try_steal(struct pipe_inode_info *, struct pipe_buffer *); void generic_pipe_buf_release(struct pipe_inode_info *, struct pipe_buffer *); extern const struct pipe_buf_operations nosteal_pipe_buf_ops; #ifdef CONFIG_WATCH_QUEUE unsigned long account_pipe_buffers(struct user_struct *user, unsigned long old, unsigned long new); bool too_many_pipe_buffers_soft(unsigned long user_bufs); bool too_many_pipe_buffers_hard(unsigned long user_bufs); bool pipe_is_unprivileged_user(void); #endif /* for F_SETPIPE_SZ and F_GETPIPE_SZ */ #ifdef CONFIG_WATCH_QUEUE int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots); #endif long pipe_fcntl(struct file *, unsigned int, unsigned long arg); struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice); int create_pipe_files(struct file **, int); unsigned int round_pipe_size(unsigned long size); #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 // SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 output functions * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Based on linux/net/ipv4/ip_output.c * * Changes: * A.N.Kuznetsov : airthmetics in fragmentation. * extension headers are implemented. * route changes now work. * ip6_forward does not confuse sniffers. * etc. * * H. von Brand : Added missing #include <linux/string.h> * Imran Patel : frag id should be in NBO * Kazunori MIYAZAWA @USAGI * : add ip6_append_data and related functions * for datagram xmit */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/if_arp.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/route.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/bpf-cgroup.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ndisc.h> #include <net/protocol.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/rawv6.h> #include <net/icmp.h> #include <net/xfrm.h> #include <net/checksum.h> #include <linux/mroute6.h> #include <net/l3mdev.h> #include <net/lwtunnel.h> #include <net/ip_tunnels.h> static int ip6_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; unsigned int hh_len = LL_RESERVED_SPACE(dev); int delta = hh_len - skb_headroom(skb); const struct in6_addr *nexthop; struct neighbour *neigh; int ret; /* Be paranoid, rather than too clever. */ if (unlikely(delta > 0) && dev->header_ops) { /* pskb_expand_head() might crash, if skb is shared */ if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); if (likely(nskb)) { if (skb->sk) skb_set_owner_w(nskb, skb->sk); consume_skb(skb); } else { kfree_skb(skb); } skb = nskb; } if (skb && pskb_expand_head(skb, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) { kfree_skb(skb); skb = NULL; } if (!skb) { IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTDISCARDS); return -ENOMEM; } } if (ipv6_addr_is_multicast(&ipv6_hdr(skb)->daddr)) { struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); if (!(dev->flags & IFF_LOOPBACK) && sk_mc_loop(sk) && ((mroute6_is_socket(net, skb) && !(IP6CB(skb)->flags & IP6SKB_FORWARDED)) || ipv6_chk_mcast_addr(dev, &ipv6_hdr(skb)->daddr, &ipv6_hdr(skb)->saddr))) { struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); /* Do not check for IFF_ALLMULTI; multicast routing is not supported in any case. */ if (newskb) NF_HOOK(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, newskb, NULL, newskb->dev, dev_loopback_xmit); if (ipv6_hdr(skb)->hop_limit == 0) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return 0; } } IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUTMCAST, skb->len); if (IPV6_ADDR_MC_SCOPE(&ipv6_hdr(skb)->daddr) <= IPV6_ADDR_SCOPE_NODELOCAL && !(dev->flags & IFF_LOOPBACK)) { kfree_skb(skb); return 0; } } if (lwtunnel_xmit_redirect(dst->lwtstate)) { int res = lwtunnel_xmit(skb); if (res < 0 || res == LWTUNNEL_XMIT_DONE) return res; } rcu_read_lock_bh(); nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); if (!IS_ERR(neigh)) { sock_confirm_neigh(skb, neigh); ret = neigh_output(neigh, skb, false); rcu_read_unlock_bh(); return ret; } rcu_read_unlock_bh(); IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); kfree_skb(skb); return -EINVAL; } static int ip6_finish_output_gso_slowpath_drop(struct net *net, struct sock *sk, struct sk_buff *skb, unsigned int mtu) { struct sk_buff *segs, *nskb; netdev_features_t features; int ret = 0; /* Please see corresponding comment in ip_finish_output_gso * describing the cases where GSO segment length exceeds the * egress MTU. */ features = netif_skb_features(skb); segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) { kfree_skb(skb); return -ENOMEM; } consume_skb(skb); skb_list_walk_safe(segs, segs, nskb) { int err; skb_mark_not_on_list(segs); err = ip6_fragment(net, sk, segs, ip6_finish_output2); if (err && ret == 0) ret = err; } return ret; } static int __ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { unsigned int mtu; #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) /* Policy lookup after SNAT yielded a new policy */ if (skb_dst(skb)->xfrm) { IP6CB(skb)->flags |= IP6SKB_REROUTED; return dst_output(net, sk, skb); } #endif mtu = ip6_skb_dst_mtu(skb); if (skb_is_gso(skb) && !skb_gso_validate_network_len(skb, mtu)) return ip6_finish_output_gso_slowpath_drop(net, sk, skb, mtu); if ((skb->len > mtu && !skb_is_gso(skb)) || dst_allfrag(skb_dst(skb)) || (IP6CB(skb)->frag_max_size && skb->len > IP6CB(skb)->frag_max_size)) return ip6_fragment(net, sk, skb, ip6_finish_output2); else return ip6_finish_output2(net, sk, skb); } static int ip6_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { int ret; ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); switch (ret) { case NET_XMIT_SUCCESS: return __ip6_finish_output(net, sk, skb); case NET_XMIT_CN: return __ip6_finish_output(net, sk, skb) ? : ret; default: kfree_skb(skb); return ret; } } int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; if (unlikely(idev->cnf.disable_ipv6)) { IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return 0; } return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, indev, dev, ip6_finish_output, !(IP6CB(skb)->flags & IP6SKB_REROUTED)); } bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np) { if (!np->autoflowlabel_set) return ip6_default_np_autolabel(net); else return np->autoflowlabel; } /* * xmit an sk_buff (used by TCP, SCTP and DCCP) * Note : socket lock is not held for SYNACK packets, but might be modified * by calls to skb_set_owner_w() and ipv6_local_error(), * which are using proper atomic operations or spinlocks. */ int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6, __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority) { struct net *net = sock_net(sk); const struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *first_hop = &fl6->daddr; struct dst_entry *dst = skb_dst(skb); unsigned int head_room; struct ipv6hdr *hdr; u8 proto = fl6->flowi6_proto; int seg_len = skb->len; int hlimit = -1; u32 mtu; head_room = sizeof(struct ipv6hdr) + LL_RESERVED_SPACE(dst->dev); if (opt) head_room += opt->opt_nflen + opt->opt_flen; if (unlikely(skb_headroom(skb) < head_room)) { struct sk_buff *skb2 = skb_realloc_headroom(skb, head_room); if (!skb2) { IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); return -ENOBUFS; } if (skb->sk) skb_set_owner_w(skb2, skb->sk); consume_skb(skb); skb = skb2; } if (opt) { seg_len += opt->opt_nflen + opt->opt_flen; if (opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &first_hop, &fl6->saddr); } skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); /* * Fill in the IPv6 header */ if (np) hlimit = np->hop_limit; if (hlimit < 0) hlimit = ip6_dst_hoplimit(dst); ip6_flow_hdr(hdr, tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, ip6_autoflowlabel(net, np), fl6)); hdr->payload_len = htons(seg_len); hdr->nexthdr = proto; hdr->hop_limit = hlimit; hdr->saddr = fl6->saddr; hdr->daddr = *first_hop; skb->protocol = htons(ETH_P_IPV6); skb->priority = priority; skb->mark = mark; mtu = dst_mtu(dst); if ((skb->len <= mtu) || skb->ignore_df || skb_is_gso(skb)) { IP6_UPD_PO_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUT, skb->len); /* if egress device is enslaved to an L3 master device pass the * skb to its handler for processing */ skb = l3mdev_ip6_out((struct sock *)sk, skb); if (unlikely(!skb)) return 0; /* hooks should never assume socket lock is held. * we promote our socket to non const */ return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, (struct sock *)sk, skb, NULL, dst->dev, dst_output); } skb->dev = dst->dev; /* ipv6_local_error() does not require socket lock, * we promote our socket to non const */ ipv6_local_error((struct sock *)sk, EMSGSIZE, fl6, mtu); IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } EXPORT_SYMBOL(ip6_xmit); static int ip6_call_ra_chain(struct sk_buff *skb, int sel) { struct ip6_ra_chain *ra; struct sock *last = NULL; read_lock(&ip6_ra_lock); for (ra = ip6_ra_chain; ra; ra = ra->next) { struct sock *sk = ra->sk; if (sk && ra->sel == sel && (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == skb->dev->ifindex)) { struct ipv6_pinfo *np = inet6_sk(sk); if (np && np->rtalert_isolate && !net_eq(sock_net(sk), dev_net(skb->dev))) { continue; } if (last) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) rawv6_rcv(last, skb2); } last = sk; } } if (last) { rawv6_rcv(last, skb); read_unlock(&ip6_ra_lock); return 1; } read_unlock(&ip6_ra_lock); return 0; } static int ip6_forward_proxy_check(struct sk_buff *skb) { struct ipv6hdr *hdr = ipv6_hdr(skb); u8 nexthdr = hdr->nexthdr; __be16 frag_off; int offset; if (ipv6_ext_hdr(nexthdr)) { offset = ipv6_skip_exthdr(skb, sizeof(*hdr), &nexthdr, &frag_off); if (offset < 0) return 0; } else offset = sizeof(struct ipv6hdr); if (nexthdr == IPPROTO_ICMPV6) { struct icmp6hdr *icmp6; if (!pskb_may_pull(skb, (skb_network_header(skb) + offset + 1 - skb->data))) return 0; icmp6 = (struct icmp6hdr *)(skb_network_header(skb) + offset); switch (icmp6->icmp6_type) { case NDISC_ROUTER_SOLICITATION: case NDISC_ROUTER_ADVERTISEMENT: case NDISC_NEIGHBOUR_SOLICITATION: case NDISC_NEIGHBOUR_ADVERTISEMENT: case NDISC_REDIRECT: /* For reaction involving unicast neighbor discovery * message destined to the proxied address, pass it to * input function. */ return 1; default: break; } } /* * The proxying router can't forward traffic sent to a link-local * address, so signal the sender and discard the packet. This * behavior is clarified by the MIPv6 specification. */ if (ipv6_addr_type(&hdr->daddr) & IPV6_ADDR_LINKLOCAL) { dst_link_failure(skb); return -1; } return 0; } static inline int ip6_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS); __IP6_ADD_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTOCTETS, skb->len); #ifdef CONFIG_NET_SWITCHDEV if (skb->offload_l3_fwd_mark) { consume_skb(skb); return 0; } #endif skb->tstamp = 0; return dst_output(net, sk, skb); } static bool ip6_pkt_too_big(const struct sk_buff *skb, unsigned int mtu) { if (skb->len <= mtu) return false; /* ipv6 conntrack defrag sets max_frag_size + ignore_df */ if (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu) return true; if (skb->ignore_df) return false; if (skb_is_gso(skb) && skb_gso_validate_network_len(skb, mtu)) return false; return true; } int ip6_forward(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct ipv6hdr *hdr = ipv6_hdr(skb); struct inet6_skb_parm *opt = IP6CB(skb); struct net *net = dev_net(dst->dev); struct inet6_dev *idev; u32 mtu; idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); if (net->ipv6.devconf_all->forwarding == 0) goto error; if (skb->pkt_type != PACKET_HOST) goto drop; if (unlikely(skb->sk)) goto drop; if (skb_warn_if_lro(skb)) goto drop; if (!net->ipv6.devconf_all->disable_policy && !idev->cnf.disable_policy && !xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); goto drop; } skb_forward_csum(skb); /* * We DO NOT make any processing on * RA packets, pushing them to user level AS IS * without ane WARRANTY that application will be able * to interpret them. The reason is that we * cannot make anything clever here. * * We are not end-node, so that if packet contains * AH/ESP, we cannot make anything. * Defragmentation also would be mistake, RA packets * cannot be fragmented, because there is no warranty * that different fragments will go along one path. --ANK */ if (unlikely(opt->flags & IP6SKB_ROUTERALERT)) { if (ip6_call_ra_chain(skb, ntohs(opt->ra))) return 0; } /* * check and decrement ttl */ if (hdr->hop_limit <= 1) { icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0); __IP6_INC_STATS(net, idev, IPSTATS_MIB_INHDRERRORS); kfree_skb(skb); return -ETIMEDOUT; } /* XXX: idev->cnf.proxy_ndp? */ if (net->ipv6.devconf_all->proxy_ndp && pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) { int proxied = ip6_forward_proxy_check(skb); if (proxied > 0) return ip6_input(skb); else if (proxied < 0) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); goto drop; } } if (!xfrm6_route_forward(skb)) { __IP6_INC_STATS(net, idev, IPSTATS_MIB_INDISCARDS); goto drop; } dst = skb_dst(skb); /* IPv6 specs say nothing about it, but it is clear that we cannot send redirects to source routed frames. We don't send redirects to frames decapsulated from IPsec. */ if (IP6CB(skb)->iif == dst->dev->ifindex && opt->srcrt == 0 && !skb_sec_path(skb)) { struct in6_addr *target = NULL; struct inet_peer *peer; struct rt6_info *rt; /* * incoming and outgoing devices are the same * send a redirect. */ rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_GATEWAY) target = &rt->rt6i_gateway; else target = &hdr->daddr; peer = inet_getpeer_v6(net->ipv6.peers, &hdr->daddr, 1); /* Limit redirects both by destination (here) and by source (inside ndisc_send_redirect) */ if (inet_peer_xrlim_allow(peer, 1*HZ)) ndisc_send_redirect(skb, target); if (peer) inet_putpeer(peer); } else { int addrtype = ipv6_addr_type(&hdr->saddr); /* This check is security critical. */ if (addrtype == IPV6_ADDR_ANY || addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK)) goto error; if (addrtype & IPV6_ADDR_LINKLOCAL) { icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_NOT_NEIGHBOUR, 0); goto error; } } mtu = ip6_dst_mtu_forward(dst); if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; if (ip6_pkt_too_big(skb, mtu)) { /* Again, force OUTPUT device used as source address */ skb->dev = dst->dev; icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); __IP6_INC_STATS(net, idev, IPSTATS_MIB_INTOOBIGERRORS); __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return -EMSGSIZE; } if (skb_cow(skb, dst->dev->hard_header_len)) { __IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTDISCARDS); goto drop; } hdr = ipv6_hdr(skb); /* Mangling hops number delayed to point after skb COW */ hdr->hop_limit--; return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, net, NULL, skb, skb->dev, dst->dev, ip6_forward_finish); error: __IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); drop: kfree_skb(skb); return -EINVAL; } static void ip6_copy_metadata(struct sk_buff *to, struct sk_buff *from) { to->pkt_type = from->pkt_type; to->priority = from->priority; to->protocol = from->protocol; skb_dst_drop(to); skb_dst_set(to, dst_clone(skb_dst(from))); to->dev = from->dev; to->mark = from->mark; skb_copy_hash(to, from); #ifdef CONFIG_NET_SCHED to->tc_index = from->tc_index; #endif nf_copy(to, from); skb_ext_copy(to, from); skb_copy_secmark(to, from); } int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_fraglist_iter *iter) { unsigned int first_len; struct frag_hdr *fh; /* BUILD HEADER */ *prevhdr = NEXTHDR_FRAGMENT; iter->tmp_hdr = kmemdup(skb_network_header(skb), hlen, GFP_ATOMIC); if (!iter->tmp_hdr) return -ENOMEM; iter->frag = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); iter->offset = 0; iter->hlen = hlen; iter->frag_id = frag_id; iter->nexthdr = nexthdr; __skb_pull(skb, hlen); fh = __skb_push(skb, sizeof(struct frag_hdr)); __skb_push(skb, hlen); skb_reset_network_header(skb); memcpy(skb_network_header(skb), iter->tmp_hdr, hlen); fh->nexthdr = nexthdr; fh->reserved = 0; fh->frag_off = htons(IP6_MF); fh->identification = frag_id; first_len = skb_pagelen(skb); skb->data_len = first_len - skb_headlen(skb); skb->len = first_len; ipv6_hdr(skb)->payload_len = htons(first_len - sizeof(struct ipv6hdr)); return 0; } EXPORT_SYMBOL(ip6_fraglist_init); void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter) { struct sk_buff *frag = iter->frag; unsigned int hlen = iter->hlen; struct frag_hdr *fh; frag->ip_summed = CHECKSUM_NONE; skb_reset_transport_header(frag); fh = __skb_push(frag, sizeof(struct frag_hdr)); __skb_push(frag, hlen); skb_reset_network_header(frag); memcpy(skb_network_header(frag), iter->tmp_hdr, hlen); iter->offset += skb->len - hlen - sizeof(struct frag_hdr); fh->nexthdr = iter->nexthdr; fh->reserved = 0; fh->frag_off = htons(iter->offset); if (frag->next) fh->frag_off |= htons(IP6_MF); fh->identification = iter->frag_id; ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); ip6_copy_metadata(frag, skb); } EXPORT_SYMBOL(ip6_fraglist_prepare); void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu, unsigned short needed_tailroom, int hdr_room, u8 *prevhdr, u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state) { state->prevhdr = prevhdr; state->nexthdr = nexthdr; state->frag_id = frag_id; state->hlen = hlen; state->mtu = mtu; state->left = skb->len - hlen; /* Space per frame */ state->ptr = hlen; /* Where to start from */ state->hroom = hdr_room; state->troom = needed_tailroom; state->offset = 0; } EXPORT_SYMBOL(ip6_frag_init); struct sk_buff *ip6_frag_next(struct sk_buff *skb, struct ip6_frag_state *state) { u8 *prevhdr = state->prevhdr, *fragnexthdr_offset; struct sk_buff *frag; struct frag_hdr *fh; unsigned int len; len = state->left; /* IF: it doesn't fit, use 'mtu' - the data space left */ if (len > state->mtu) len = state->mtu; /* IF: we are not sending up to and including the packet end then align the next start on an eight byte boundary */ if (len < state->left) len &= ~7; /* Allocate buffer */ frag = alloc_skb(len + state->hlen + sizeof(struct frag_hdr) + state->hroom + state->troom, GFP_ATOMIC); if (!frag) return ERR_PTR(-ENOMEM); /* * Set up data on packet */ ip6_copy_metadata(frag, skb); skb_reserve(frag, state->hroom); skb_put(frag, len + state->hlen + sizeof(struct frag_hdr)); skb_reset_network_header(frag); fh = (struct frag_hdr *)(skb_network_header(frag) + state->hlen); frag->transport_header = (frag->network_header + state->hlen + sizeof(struct frag_hdr)); /* * Charge the memory for the fragment to any owner * it might possess */ if (skb->sk) skb_set_owner_w(frag, skb->sk); /* * Copy the packet header into the new buffer. */ skb_copy_from_linear_data(skb, skb_network_header(frag), state->hlen); fragnexthdr_offset = skb_network_header(frag); fragnexthdr_offset += prevhdr - skb_network_header(skb); *fragnexthdr_offset = NEXTHDR_FRAGMENT; /* * Build fragment header. */ fh->nexthdr = state->nexthdr; fh->reserved = 0; fh->identification = state->frag_id; /* * Copy a block of the IP datagram. */ BUG_ON(skb_copy_bits(skb, state->ptr, skb_transport_header(frag), len)); state->left -= len; fh->frag_off = htons(state->offset); if (state->left > 0) fh->frag_off |= htons(IP6_MF); ipv6_hdr(frag)->payload_len = htons(frag->len - sizeof(struct ipv6hdr)); state->ptr += len; state->offset += len; return frag; } EXPORT_SYMBOL(ip6_frag_next); int ip6_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)) { struct sk_buff *frag; struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); struct ipv6_pinfo *np = skb->sk && !dev_recursion_level() ? inet6_sk(skb->sk) : NULL; struct ip6_frag_state state; unsigned int mtu, hlen, nexthdr_offset; ktime_t tstamp = skb->tstamp; int hroom, err = 0; __be32 frag_id; u8 *prevhdr, nexthdr = 0; err = ip6_find_1stfragopt(skb, &prevhdr); if (err < 0) goto fail; hlen = err; nexthdr = *prevhdr; nexthdr_offset = prevhdr - skb_network_header(skb); mtu = ip6_skb_dst_mtu(skb); /* We must not fragment if the socket is set to force MTU discovery * or if the skb it not generated by a local socket. */ if (unlikely(!skb->ignore_df && skb->len > mtu)) goto fail_toobig; if (IP6CB(skb)->frag_max_size) { if (IP6CB(skb)->frag_max_size > mtu) goto fail_toobig; /* don't send fragments larger than what we received */ mtu = IP6CB(skb)->frag_max_size; if (mtu < IPV6_MIN_MTU) mtu = IPV6_MIN_MTU; } if (np && np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } if (mtu < hlen + sizeof(struct frag_hdr) + 8) goto fail_toobig; mtu -= hlen + sizeof(struct frag_hdr); frag_id = ipv6_select_ident(net, &ipv6_hdr(skb)->daddr, &ipv6_hdr(skb)->saddr); if (skb->ip_summed == CHECKSUM_PARTIAL && (err = skb_checksum_help(skb))) goto fail; prevhdr = skb_network_header(skb) + nexthdr_offset; hroom = LL_RESERVED_SPACE(rt->dst.dev); if (skb_has_frag_list(skb)) { unsigned int first_len = skb_pagelen(skb); struct ip6_fraglist_iter iter; struct sk_buff *frag2; if (first_len - hlen > mtu || ((first_len - hlen) & 7) || skb_cloned(skb) || skb_headroom(skb) < (hroom + sizeof(struct frag_hdr))) goto slow_path; skb_walk_frags(skb, frag) { /* Correct geometry. */ if (frag->len > mtu || ((frag->len & 7) && frag->next) || skb_headroom(frag) < (hlen + hroom + sizeof(struct frag_hdr))) goto slow_path_clean; /* Partially cloned skb? */ if (skb_shared(frag)) goto slow_path_clean; BUG_ON(frag->sk); if (skb->sk) { frag->sk = skb->sk; frag->destructor = sock_wfree; } skb->truesize -= frag->truesize; } err = ip6_fraglist_init(skb, hlen, prevhdr, nexthdr, frag_id, &iter); if (err < 0) goto fail; for (;;) { /* Prepare header of the next frame, * before previous one went down. */ if (iter.frag) ip6_fraglist_prepare(skb, &iter); skb->tstamp = tstamp; err = output(net, sk, skb); if (!err) IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGCREATES); if (err || !iter.frag) break; skb = ip6_fraglist_next(&iter); } kfree(iter.tmp_hdr); if (err == 0) { IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGOKS); return 0; } kfree_skb_list(iter.frag); IP6_INC_STATS(net, ip6_dst_idev(&rt->dst), IPSTATS_MIB_FRAGFAILS); return err; slow_path_clean: skb_walk_frags(skb, frag2) { if (frag2 == frag) break; frag2->sk = NULL; frag2->destructor = NULL; skb->truesize += frag2->truesize; } } slow_path: /* * Fragment the datagram. */ ip6_frag_init(skb, hlen, mtu, rt->dst.dev->needed_tailroom, LL_RESERVED_SPACE(rt->dst.dev), prevhdr, nexthdr, frag_id, &state); /* * Keep copying data until we run out. */ while (state.left > 0) { frag = ip6_frag_next(skb, &state); if (IS_ERR(frag)) { err = PTR_ERR(frag); goto fail; } /* * Put this fragment into the sending queue. */ frag->tstamp = tstamp; err = output(net, sk, frag); if (err) goto fail; IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGCREATES); } IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGOKS); consume_skb(skb); return err; fail_toobig: if (skb->sk && dst_allfrag(skb_dst(skb))) sk_nocaps_add(skb->sk, NETIF_F_GSO_MASK); icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu); err = -EMSGSIZE; fail: IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_FRAGFAILS); kfree_skb(skb); return err; } static inline int ip6_rt_check(const struct rt6key *rt_key, const struct in6_addr *fl_addr, const struct in6_addr *addr_cache) { return (rt_key->plen != 128 || !ipv6_addr_equal(fl_addr, &rt_key->addr)) && (!addr_cache || !ipv6_addr_equal(fl_addr, addr_cache)); } static struct dst_entry *ip6_sk_dst_check(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6) { struct ipv6_pinfo *np = inet6_sk(sk); struct rt6_info *rt; if (!dst) goto out; if (dst->ops->family != AF_INET6) { dst_release(dst); return NULL; } rt = (struct rt6_info *)dst; /* Yes, checking route validity in not connected * case is not very simple. Take into account, * that we do not support routing by source, TOS, * and MSG_DONTROUTE --ANK (980726) * * 1. ip6_rt_check(): If route was host route, * check that cached destination is current. * If it is network route, we still may * check its validity using saved pointer * to the last used address: daddr_cache. * We do not want to save whole address now, * (because main consumer of this service * is tcp, which has not this problem), * so that the last trick works only on connected * sockets. * 2. oif also should be the same. */ if (ip6_rt_check(&rt->rt6i_dst, &fl6->daddr, np->daddr_cache) || #ifdef CONFIG_IPV6_SUBTREES ip6_rt_check(&rt->rt6i_src, &fl6->saddr, np->saddr_cache) || #endif (!(fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) && (fl6->flowi6_oif && fl6->flowi6_oif != dst->dev->ifindex))) { dst_release(dst); dst = NULL; } out: return dst; } static int ip6_dst_lookup_tail(struct net *net, const struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { #ifdef CONFIG_IPV6_OPTIMISTIC_DAD struct neighbour *n; struct rt6_info *rt; #endif int err; int flags = 0; /* The correct way to handle this would be to do * ip6_route_get_saddr, and then ip6_route_output; however, * the route-specific preferred source forces the * ip6_route_output call _before_ ip6_route_get_saddr. * * In source specific routing (no src=any default route), * ip6_route_output will fail given src=any saddr, though, so * that's why we try it again later. */ if (ipv6_addr_any(&fl6->saddr) && (!*dst || !(*dst)->error)) { struct fib6_info *from; struct rt6_info *rt; bool had_dst = *dst != NULL; if (!had_dst) *dst = ip6_route_output(net, sk, fl6); rt = (*dst)->error ? NULL : (struct rt6_info *)*dst; rcu_read_lock(); from = rt ? rcu_dereference(rt->from) : NULL; err = ip6_route_get_saddr(net, from, &fl6->daddr, sk ? inet6_sk(sk)->srcprefs : 0, &fl6->saddr); rcu_read_unlock(); if (err) goto out_err_release; /* If we had an erroneous initial result, pretend it * never existed and let the SA-enabled version take * over. */ if (!had_dst && (*dst)->error) { dst_release(*dst); *dst = NULL; } if (fl6->flowi6_oif) flags |= RT6_LOOKUP_F_IFACE; } if (!*dst) *dst = ip6_route_output_flags(net, sk, fl6, flags); err = (*dst)->error; if (err) goto out_err_release; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * Here if the dst entry we've looked up * has a neighbour entry that is in the INCOMPLETE * state and the src address from the flow is * marked as OPTIMISTIC, we release the found * dst entry and replace it instead with the * dst entry of the nexthop router */ rt = (struct rt6_info *) *dst; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(rt->dst.dev, rt6_nexthop(rt, &fl6->daddr)); err = n && !(n->nud_state & NUD_VALID) ? -EINVAL : 0; rcu_read_unlock_bh(); if (err) { struct inet6_ifaddr *ifp; struct flowi6 fl_gw6; int redirect; ifp = ipv6_get_ifaddr(net, &fl6->saddr, (*dst)->dev, 1); redirect = (ifp && ifp->flags & IFA_F_OPTIMISTIC); if (ifp) in6_ifa_put(ifp); if (redirect) { /* * We need to get the dst entry for the * default router instead */ dst_release(*dst); memcpy(&fl_gw6, fl6, sizeof(struct flowi6)); memset(&fl_gw6.daddr, 0, sizeof(struct in6_addr)); *dst = ip6_route_output(net, sk, &fl_gw6); err = (*dst)->error; if (err) goto out_err_release; } } #endif if (ipv6_addr_v4mapped(&fl6->saddr) && !(ipv6_addr_v4mapped(&fl6->daddr) || ipv6_addr_any(&fl6->daddr))) { err = -EAFNOSUPPORT; goto out_err_release; } return 0; out_err_release: dst_release(*dst); *dst = NULL; if (err == -ENETUNREACH) IP6_INC_STATS(net, NULL, IPSTATS_MIB_OUTNOROUTES); return err; } /** * ip6_dst_lookup - perform route lookup on flow * @net: Network namespace to perform lookup in * @sk: socket which provides route info * @dst: pointer to dst_entry * for result * @fl6: flow to lookup * * This function performs a route lookup on the given flow. * * It returns zero on success, or a standard errno code on error. */ int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst, struct flowi6 *fl6) { *dst = NULL; return ip6_dst_lookup_tail(net, sk, dst, fl6); } EXPORT_SYMBOL_GPL(ip6_dst_lookup); /** * ip6_dst_lookup_flow - perform route lookup on flow with ipsec * @net: Network namespace to perform lookup in * @sk: socket which provides route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * * This function performs a route lookup on the given flow. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst) { struct dst_entry *dst = NULL; int err; err = ip6_dst_lookup_tail(net, sk, &dst, fl6); if (err) return ERR_PTR(err); if (final_dst) fl6->daddr = *final_dst; return xfrm_lookup_route(net, dst, flowi6_to_flowi(fl6), sk, 0); } EXPORT_SYMBOL_GPL(ip6_dst_lookup_flow); /** * ip6_sk_dst_lookup_flow - perform socket cached route lookup on flow * @sk: socket which provides the dst cache and route info * @fl6: flow to lookup * @final_dst: final destination address for ipsec lookup * @connected: whether @sk is connected or not * * This function performs a route lookup on the given flow with the * possibility of using the cached route in the socket if it is valid. * It will take the socket dst lock when operating on the dst cache. * As a result, this function can only be used in process context. * * In addition, for a connected socket, cache the dst in the socket * if the current cache is not valid. * * It returns a valid dst pointer on success, or a pointer encoded * error code. */ struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6, const struct in6_addr *final_dst, bool connected) { struct dst_entry *dst = sk_dst_check(sk, inet6_sk(sk)->dst_cookie); dst = ip6_sk_dst_check(sk, dst, fl6); if (dst) return dst; dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_dst); if (connected && !IS_ERR(dst)) ip6_sk_dst_store_flow(sk, dst_clone(dst), fl6); return dst; } EXPORT_SYMBOL_GPL(ip6_sk_dst_lookup_flow); /** * ip6_dst_lookup_tunnel - perform route lookup on tunnel * @skb: Packet for which lookup is done * @dev: Tunnel device * @net: Network namespace of tunnel device * @sock: Socket which provides route info * @saddr: Memory to store the src ip address * @info: Tunnel information * @protocol: IP protocol * @use_cache: Flag to enable cache usage * This function performs a route lookup on a tunnel * * It returns a valid dst pointer and stores src address to be used in * tunnel in param saddr on success, else a pointer encoded error code. */ struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, struct socket *sock, struct in6_addr *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache) { struct dst_entry *dst = NULL; #ifdef CONFIG_DST_CACHE struct dst_cache *dst_cache; #endif struct flowi6 fl6; __u8 prio; #ifdef CONFIG_DST_CACHE dst_cache = (struct dst_cache *)&info->dst_cache; if (use_cache) { dst = dst_cache_get_ip6(dst_cache, saddr); if (dst) return dst; } #endif memset(&fl6, 0, sizeof(fl6)); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = protocol; fl6.daddr = info->key.u.ipv6.dst; fl6.saddr = info->key.u.ipv6.src; prio = info->key.tos; fl6.flowlabel = ip6_make_flowinfo(RT_TOS(prio), info->key.label); dst = ipv6_stub->ipv6_dst_lookup_flow(net, sock->sk, &fl6, NULL); if (IS_ERR(dst)) { netdev_dbg(dev, "no route to %pI6\n", &fl6.daddr); return ERR_PTR(-ENETUNREACH); } if (dst->dev == dev) { /* is this necessary? */ netdev_dbg(dev, "circular route to %pI6\n", &fl6.daddr); dst_release(dst); return ERR_PTR(-ELOOP); } #ifdef CONFIG_DST_CACHE if (use_cache) dst_cache_set_ip6(dst_cache, dst, &fl6.saddr); #endif *saddr = fl6.saddr; return dst; } EXPORT_SYMBOL_GPL(ip6_dst_lookup_tunnel); static inline struct ipv6_opt_hdr *ip6_opt_dup(struct ipv6_opt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static inline struct ipv6_rt_hdr *ip6_rthdr_dup(struct ipv6_rt_hdr *src, gfp_t gfp) { return src ? kmemdup(src, (src->hdrlen + 1) * 8, gfp) : NULL; } static void ip6_append_data_mtu(unsigned int *mtu, int *maxfraglen, unsigned int fragheaderlen, struct sk_buff *skb, struct rt6_info *rt, unsigned int orig_mtu) { if (!(rt->dst.flags & DST_XFRM_TUNNEL)) { if (!skb) { /* first fragment, reserve header_len */ *mtu = orig_mtu - rt->dst.header_len; } else { /* * this fragment is not first, the headers * space is regarded as data space. */ *mtu = orig_mtu; } *maxfraglen = ((*mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); } } static int ip6_setup_cork(struct sock *sk, struct inet_cork_full *cork, struct inet6_cork *v6_cork, struct ipcm6_cookie *ipc6, struct rt6_info *rt, struct flowi6 *fl6) { struct ipv6_pinfo *np = inet6_sk(sk); unsigned int mtu; struct ipv6_txoptions *opt = ipc6->opt; /* * setup for corking */ if (opt) { if (WARN_ON(v6_cork->opt)) return -EINVAL; v6_cork->opt = kzalloc(sizeof(*opt), sk->sk_allocation); if (unlikely(!v6_cork->opt)) return -ENOBUFS; v6_cork->opt->tot_len = sizeof(*opt); v6_cork->opt->opt_flen = opt->opt_flen; v6_cork->opt->opt_nflen = opt->opt_nflen; v6_cork->opt->dst0opt = ip6_opt_dup(opt->dst0opt, sk->sk_allocation); if (opt->dst0opt && !v6_cork->opt->dst0opt) return -ENOBUFS; v6_cork->opt->dst1opt = ip6_opt_dup(opt->dst1opt, sk->sk_allocation); if (opt->dst1opt && !v6_cork->opt->dst1opt) return -ENOBUFS; v6_cork->opt->hopopt = ip6_opt_dup(opt->hopopt, sk->sk_allocation); if (opt->hopopt && !v6_cork->opt->hopopt) return -ENOBUFS; v6_cork->opt->srcrt = ip6_rthdr_dup(opt->srcrt, sk->sk_allocation); if (opt->srcrt && !v6_cork->opt->srcrt) return -ENOBUFS; /* need source address above miyazawa*/ } dst_hold(&rt->dst); cork->base.dst = &rt->dst; cork->fl.u.ip6 = *fl6; v6_cork->hop_limit = ipc6->hlimit; v6_cork->tclass = ipc6->tclass; if (rt->dst.flags & DST_XFRM_TUNNEL) mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? READ_ONCE(rt->dst.dev->mtu) : dst_mtu(&rt->dst); else mtu = np->pmtudisc >= IPV6_PMTUDISC_PROBE ? READ_ONCE(rt->dst.dev->mtu) : dst_mtu(xfrm_dst_path(&rt->dst)); if (np->frag_size < mtu) { if (np->frag_size) mtu = np->frag_size; } if (mtu < IPV6_MIN_MTU) return -EINVAL; cork->base.fragsize = mtu; cork->base.gso_size = ipc6->gso_size; cork->base.tx_flags = 0; cork->base.mark = ipc6->sockc.mark; sock_tx_timestamp(sk, ipc6->sockc.tsflags, &cork->base.tx_flags); if (dst_allfrag(xfrm_dst_path(&rt->dst))) cork->base.flags |= IPCORK_ALLFRAG; cork->base.length = 0; cork->base.transmit_time = ipc6->sockc.transmit_time; return 0; } static int __ip6_append_data(struct sock *sk, struct flowi6 *fl6, struct sk_buff_head *queue, struct inet_cork *cork, struct inet6_cork *v6_cork, struct page_frag *pfrag, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, unsigned int flags, struct ipcm6_cookie *ipc6) { struct sk_buff *skb, *skb_prev = NULL; unsigned int maxfraglen, fragheaderlen, mtu, orig_mtu, pmtu; struct ubuf_info *uarg = NULL; int exthdrlen = 0; int dst_exthdrlen = 0; int hh_len; int copy; int err; int offset = 0; u32 tskey = 0; struct rt6_info *rt = (struct rt6_info *)cork->dst; struct ipv6_txoptions *opt = v6_cork->opt; int csummode = CHECKSUM_NONE; unsigned int maxnonfragsize, headersize; unsigned int wmem_alloc_delta = 0; bool paged, extra_uref = false; skb = skb_peek_tail(queue); if (!skb) { exthdrlen = opt ? opt->opt_flen : 0; dst_exthdrlen = rt->dst.header_len - rt->rt6i_nfheader_len; } paged = !!cork->gso_size; mtu = cork->gso_size ? IP6_MAX_MTU : cork->fragsize; orig_mtu = mtu; if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) tskey = sk->sk_tskey++; hh_len = LL_RESERVED_SPACE(rt->dst.dev); fragheaderlen = sizeof(struct ipv6hdr) + rt->rt6i_nfheader_len + (opt ? opt->opt_nflen : 0); maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen - sizeof(struct frag_hdr); headersize = sizeof(struct ipv6hdr) + (opt ? opt->opt_flen + opt->opt_nflen : 0) + (dst_allfrag(&rt->dst) ? sizeof(struct frag_hdr) : 0) + rt->rt6i_nfheader_len; /* as per RFC 7112 section 5, the entire IPv6 Header Chain must fit * the first fragment */ if (headersize + transhdrlen > mtu) goto emsgsize; if (cork->length + length > mtu - headersize && ipc6->dontfrag && (sk->sk_protocol == IPPROTO_UDP || sk->sk_protocol == IPPROTO_RAW)) { ipv6_local_rxpmtu(sk, fl6, mtu - headersize + sizeof(struct ipv6hdr)); goto emsgsize; } if (ip6_sk_ignore_df(sk)) maxnonfragsize = sizeof(struct ipv6hdr) + IPV6_MAXPLEN; else maxnonfragsize = mtu; if (cork->length + length > maxnonfragsize - headersize) { emsgsize: pmtu = max_t(int, mtu - headersize + sizeof(struct ipv6hdr), 0); ipv6_local_error(sk, EMSGSIZE, fl6, pmtu); return -EMSGSIZE; } /* CHECKSUM_PARTIAL only with no extension headers and when * we are not going to fragment */ if (transhdrlen && sk->sk_protocol == IPPROTO_UDP && headersize == sizeof(struct ipv6hdr) && length <= mtu - headersize && (!(flags & MSG_MORE) || cork->gso_size) && rt->dst.dev->features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) csummode = CHECKSUM_PARTIAL; if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); if (!uarg) return -ENOBUFS; extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ if (rt->dst.dev->features & NETIF_F_SG && csummode == CHECKSUM_PARTIAL) { paged = true; } else { uarg->zerocopy = 0; skb_zcopy_set(skb, uarg, &extra_uref); } } /* * Let's try using as much space as possible. * Use MTU if total length of the message fits into the MTU. * Otherwise, we need to reserve fragment header and * fragment alignment (= 8-15 octects, in total). * * Note that we may need to "move" the data from the tail * of the buffer to the new fragment when we split * the message. * * FIXME: It may be fragmented into multiple chunks * at once if non-fragmentable extension headers * are too large. * --yoshfuji */ cork->length += length; if (!skb) goto alloc_new_skb; while (length > 0) { /* Check if the remaining data fits into current packet. */ copy = (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - skb->len; if (copy < length) copy = maxfraglen - skb->len; if (copy <= 0) { char *data; unsigned int datalen; unsigned int fraglen; unsigned int fraggap; unsigned int alloclen, alloc_extra; unsigned int pagedlen; alloc_new_skb: /* There's no room in the current skb */ if (skb) fraggap = skb->len - maxfraglen; else fraggap = 0; /* update mtu and maxfraglen if necessary */ if (!skb || !skb_prev) ip6_append_data_mtu(&mtu, &maxfraglen, fragheaderlen, skb, rt, orig_mtu); skb_prev = skb; /* * If remaining data exceeds the mtu, * we know we need more fragment(s). */ datalen = length + fraggap; if (datalen > (cork->length <= mtu && !(cork->flags & IPCORK_ALLFRAG) ? mtu : maxfraglen) - fragheaderlen) datalen = maxfraglen - fragheaderlen - rt->dst.trailer_len; fraglen = datalen + fragheaderlen; pagedlen = 0; alloc_extra = hh_len; alloc_extra += dst_exthdrlen; alloc_extra += rt->dst.trailer_len; /* We just reserve space for fragment header. * Note: this may be overallocation if the message * (without MSG_MORE) fits into the MTU. */ alloc_extra += sizeof(struct frag_hdr); if ((flags & MSG_MORE) && !(rt->dst.dev->features&NETIF_F_SG)) alloclen = mtu; else if (!paged && (fraglen + alloc_extra < SKB_MAX_ALLOC || !(rt->dst.dev->features & NETIF_F_SG))) alloclen = fraglen; else { alloclen = min_t(int, fraglen, MAX_HEADER); pagedlen = fraglen - alloclen; } alloclen += alloc_extra; if (datalen != length + fraggap) { /* * this is not the last fragment, the trailer * space is regarded as data space. */ datalen += rt->dst.trailer_len; } fraglen = datalen + fragheaderlen; copy = datalen - transhdrlen - fraggap - pagedlen; if (copy < 0) { err = -EINVAL; goto error; } if (transhdrlen) { skb = sock_alloc_send_skb(sk, alloclen, (flags & MSG_DONTWAIT), &err); } else { skb = NULL; if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 2 * sk->sk_sndbuf) skb = alloc_skb(alloclen, sk->sk_allocation); if (unlikely(!skb)) err = -ENOBUFS; } if (!skb) goto error; /* * Fill in the control structures */ skb->protocol = htons(ETH_P_IPV6); skb->ip_summed = csummode; skb->csum = 0; /* reserve for fragmentation and ipsec header */ skb_reserve(skb, hh_len + sizeof(struct frag_hdr) + dst_exthdrlen); /* * Find where to start putting bytes */ data = skb_put(skb, fraglen - pagedlen); skb_set_network_header(skb, exthdrlen); data += fragheaderlen; skb->transport_header = (skb->network_header + fragheaderlen); if (fraggap) { skb->csum = skb_copy_and_csum_bits( skb_prev, maxfraglen, data + transhdrlen, fraggap); skb_prev->csum = csum_sub(skb_prev->csum, skb->csum); data += fraggap; pskb_trim_unique(skb_prev, maxfraglen); } if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { err = -EFAULT; kfree_skb(skb); goto error; } offset += copy; length -= copy + transhdrlen; transhdrlen = 0; exthdrlen = 0; dst_exthdrlen = 0; /* Only the initial fragment is time stamped */ skb_shinfo(skb)->tx_flags = cork->tx_flags; cork->tx_flags = 0; skb_shinfo(skb)->tskey = tskey; tskey = 0; skb_zcopy_set(skb, uarg, &extra_uref); if ((flags & MSG_CONFIRM) && !skb_prev) skb_set_dst_pending_confirm(skb, 1); /* * Put the packet on the pending queue */ if (!skb->destructor) { skb->destructor = sock_wfree; skb->sk = sk; wmem_alloc_delta += skb->truesize; } __skb_queue_tail(queue, skb); continue; } if (copy > length) copy = length; if (!(rt->dst.dev->features&NETIF_F_SG) && skb_tailroom(skb) >= copy) { unsigned int off; off = skb->len; if (getfrag(from, skb_put(skb, copy), offset, copy, off, skb) < 0) { __skb_trim(skb, off); err = -EFAULT; goto error; } } else if (!uarg || !uarg->zerocopy) { int i = skb_shinfo(skb)->nr_frags; err = -ENOMEM; if (!sk_page_frag_refill(sk, pfrag)) goto error; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { err = -EMSGSIZE; if (i == MAX_SKB_FRAGS) goto error; __skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, 0); skb_shinfo(skb)->nr_frags = ++i; get_page(pfrag->page); } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (getfrag(from, page_address(pfrag->page) + pfrag->offset, offset, copy, skb->len, skb) < 0) goto error_efault; pfrag->offset += copy; skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); skb->len += copy; skb->data_len += copy; skb->truesize += copy; wmem_alloc_delta += copy; } else { err = skb_zerocopy_iter_dgram(skb, from, copy); if (err < 0) goto error; } offset += copy; length -= copy; } if (wmem_alloc_delta) refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return 0; error_efault: err = -EFAULT; error: if (uarg) sock_zerocopy_put_abort(uarg, extra_uref); cork->length -= length; IP6_INC_STATS(sock_net(sk), rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); return err; } int ip6_append_data(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); int exthdrlen; int err; if (flags&MSG_PROBE) return 0; if (skb_queue_empty(&sk->sk_write_queue)) { /* * setup for corking */ err = ip6_setup_cork(sk, &inet->cork, &np->cork, ipc6, rt, fl6); if (err) return err; exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); length += exthdrlen; transhdrlen += exthdrlen; } else { fl6 = &inet->cork.fl.u.ip6; transhdrlen = 0; } return __ip6_append_data(sk, fl6, &sk->sk_write_queue, &inet->cork.base, &np->cork, sk_page_frag(sk), getfrag, from, length, transhdrlen, flags, ipc6); } EXPORT_SYMBOL_GPL(ip6_append_data); static void ip6_cork_release(struct inet_cork_full *cork, struct inet6_cork *v6_cork) { if (v6_cork->opt) { kfree(v6_cork->opt->dst0opt); kfree(v6_cork->opt->dst1opt); kfree(v6_cork->opt->hopopt); kfree(v6_cork->opt->srcrt); kfree(v6_cork->opt); v6_cork->opt = NULL; } if (cork->base.dst) { dst_release(cork->base.dst); cork->base.dst = NULL; cork->base.flags &= ~IPCORK_ALLFRAG; } memset(&cork->fl, 0, sizeof(cork->fl)); } struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb, *tmp_skb; struct sk_buff **tail_skb; struct in6_addr final_dst_buf, *final_dst = &final_dst_buf; struct ipv6_pinfo *np = inet6_sk(sk); struct net *net = sock_net(sk); struct ipv6hdr *hdr; struct ipv6_txoptions *opt = v6_cork->opt; struct rt6_info *rt = (struct rt6_info *)cork->base.dst; struct flowi6 *fl6 = &cork->fl.u.ip6; unsigned char proto = fl6->flowi6_proto; skb = __skb_dequeue(queue); if (!skb) goto out; tail_skb = &(skb_shinfo(skb)->frag_list); /* move skb->data to ip header from ext header */ if (skb->data < skb_network_header(skb)) __skb_pull(skb, skb_network_offset(skb)); while ((tmp_skb = __skb_dequeue(queue)) != NULL) { __skb_pull(tmp_skb, skb_network_header_len(skb)); *tail_skb = tmp_skb; tail_skb = &(tmp_skb->next); skb->len += tmp_skb->len; skb->data_len += tmp_skb->len; skb->truesize += tmp_skb->truesize; tmp_skb->destructor = NULL; tmp_skb->sk = NULL; } /* Allow local fragmentation. */ skb->ignore_df = ip6_sk_ignore_df(sk); *final_dst = fl6->daddr; __skb_pull(skb, skb_network_header_len(skb)); if (opt && opt->opt_flen) ipv6_push_frag_opts(skb, opt, &proto); if (opt && opt->opt_nflen) ipv6_push_nfrag_opts(skb, opt, &proto, &final_dst, &fl6->saddr); skb_push(skb, sizeof(struct ipv6hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, v6_cork->tclass, ip6_make_flowlabel(net, skb, fl6->flowlabel, ip6_autoflowlabel(net, np), fl6)); hdr->hop_limit = v6_cork->hop_limit; hdr->nexthdr = proto; hdr->saddr = fl6->saddr; hdr->daddr = *final_dst; skb->priority = sk->sk_priority; skb->mark = cork->base.mark; skb->tstamp = cork->base.transmit_time; skb_dst_set(skb, dst_clone(&rt->dst)); IP6_UPD_PO_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUT, skb->len); if (proto == IPPROTO_ICMPV6) { struct inet6_dev *idev = ip6_dst_idev(skb_dst(skb)); ICMP6MSGOUT_INC_STATS(net, idev, icmp6_hdr(skb)->icmp6_type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } ip6_cork_release(cork, v6_cork); out: return skb; } int ip6_send_skb(struct sk_buff *skb) { struct net *net = sock_net(skb->sk); struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); int err; err = ip6_local_out(net, skb->sk, skb); if (err) { if (err > 0) err = net_xmit_errno(err); if (err) IP6_INC_STATS(net, rt->rt6i_idev, IPSTATS_MIB_OUTDISCARDS); } return err; } int ip6_push_pending_frames(struct sock *sk) { struct sk_buff *skb; skb = ip6_finish_skb(sk); if (!skb) return 0; return ip6_send_skb(skb); } EXPORT_SYMBOL_GPL(ip6_push_pending_frames); static void __ip6_flush_pending_frames(struct sock *sk, struct sk_buff_head *queue, struct inet_cork_full *cork, struct inet6_cork *v6_cork) { struct sk_buff *skb; while ((skb = __skb_dequeue_tail(queue)) != NULL) { if (skb_dst(skb)) IP6_INC_STATS(sock_net(sk), ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_OUTDISCARDS); kfree_skb(skb); } ip6_cork_release(cork, v6_cork); } void ip6_flush_pending_frames(struct sock *sk) { __ip6_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork, &inet6_sk(sk)->cork); } EXPORT_SYMBOL_GPL(ip6_flush_pending_frames); struct sk_buff *ip6_make_skb(struct sock *sk, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm6_cookie *ipc6, struct flowi6 *fl6, struct rt6_info *rt, unsigned int flags, struct inet_cork_full *cork) { struct inet6_cork v6_cork; struct sk_buff_head queue; int exthdrlen = (ipc6->opt ? ipc6->opt->opt_flen : 0); int err; if (flags & MSG_PROBE) return NULL; __skb_queue_head_init(&queue); cork->base.flags = 0; cork->base.addr = 0; cork->base.opt = NULL; cork->base.dst = NULL; v6_cork.opt = NULL; err = ip6_setup_cork(sk, cork, &v6_cork, ipc6, rt, fl6); if (err) { ip6_cork_release(cork, &v6_cork); return ERR_PTR(err); } if (ipc6->dontfrag < 0) ipc6->dontfrag = inet6_sk(sk)->dontfrag; err = __ip6_append_data(sk, fl6, &queue, &cork->base, &v6_cork, &current->task_frag, getfrag, from, length + exthdrlen, transhdrlen + exthdrlen, flags, ipc6); if (err) { __ip6_flush_pending_frames(sk, &queue, cork, &v6_cork); return ERR_PTR(err); } return __ip6_make_skb(sk, &queue, cork, &v6_cork); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NETFILTER_INGRESS_H_ #define _NETFILTER_INGRESS_H_ #include <linux/netfilter.h> #include <linux/netdevice.h> #ifdef CONFIG_NETFILTER_INGRESS static inline bool nf_hook_ingress_active(const struct sk_buff *skb) { #ifdef CONFIG_JUMP_LABEL if (!static_key_false(&nf_hooks_needed[NFPROTO_NETDEV][NF_NETDEV_INGRESS])) return false; #endif return rcu_access_pointer(skb->dev->nf_hooks_ingress); } /* caller must hold rcu_read_lock */ static inline int nf_hook_ingress(struct sk_buff *skb) { struct nf_hook_entries *e = rcu_dereference(skb->dev->nf_hooks_ingress); struct nf_hook_state state; int ret; /* Must recheck the ingress hook head, in the event it became NULL * after the check in nf_hook_ingress_active evaluated to true. */ if (unlikely(!e)) return 0; nf_hook_state_init(&state, NF_NETDEV_INGRESS, NFPROTO_NETDEV, skb->dev, NULL, NULL, dev_net(skb->dev), NULL); ret = nf_hook_slow(skb, &state, e, 0); if (ret == 0) return -1; return ret; } static inline void nf_hook_ingress_init(struct net_device *dev) { RCU_INIT_POINTER(dev->nf_hooks_ingress, NULL); } #else /* CONFIG_NETFILTER_INGRESS */ static inline int nf_hook_ingress_active(struct sk_buff *skb) { return 0; } static inline int nf_hook_ingress(struct sk_buff *skb) { return 0; } static inline void nf_hook_ingress_init(struct net_device *dev) {} #endif /* CONFIG_NETFILTER_INGRESS */ #endif /* _NETFILTER_INGRESS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Private definitions for the generic associative array implementation. * * See Documentation/core-api/assoc_array.rst for information. * * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_ASSOC_ARRAY_PRIV_H #define _LINUX_ASSOC_ARRAY_PRIV_H #ifdef CONFIG_ASSOCIATIVE_ARRAY #include <linux/assoc_array.h> #define ASSOC_ARRAY_FAN_OUT 16 /* Number of slots per node */ #define ASSOC_ARRAY_FAN_MASK (ASSOC_ARRAY_FAN_OUT - 1) #define ASSOC_ARRAY_LEVEL_STEP (ilog2(ASSOC_ARRAY_FAN_OUT)) #define ASSOC_ARRAY_LEVEL_STEP_MASK (ASSOC_ARRAY_LEVEL_STEP - 1) #define ASSOC_ARRAY_KEY_CHUNK_MASK (ASSOC_ARRAY_KEY_CHUNK_SIZE - 1) #define ASSOC_ARRAY_KEY_CHUNK_SHIFT (ilog2(BITS_PER_LONG)) /* * Undefined type representing a pointer with type information in the bottom * two bits. */ struct assoc_array_ptr; /* * An N-way node in the tree. * * Each slot contains one of four things: * * (1) Nothing (NULL). * * (2) A leaf object (pointer types 0). * * (3) A next-level node (pointer type 1, subtype 0). * * (4) A shortcut (pointer type 1, subtype 1). * * The tree is optimised for search-by-ID, but permits reasonable iteration * also. * * The tree is navigated by constructing an index key consisting of an array of * segments, where each segment is ilog2(ASSOC_ARRAY_FAN_OUT) bits in size. * * The segments correspond to levels of the tree (the first segment is used at * level 0, the second at level 1, etc.). */ struct assoc_array_node { struct assoc_array_ptr *back_pointer; u8 parent_slot; struct assoc_array_ptr *slots[ASSOC_ARRAY_FAN_OUT]; unsigned long nr_leaves_on_branch; }; /* * A shortcut through the index space out to where a collection of nodes/leaves * with the same IDs live. */ struct assoc_array_shortcut { struct assoc_array_ptr *back_pointer; int parent_slot; int skip_to_level; struct assoc_array_ptr *next_node; unsigned long index_key[]; }; /* * Preallocation cache. */ struct assoc_array_edit { struct rcu_head rcu; struct assoc_array *array; const struct assoc_array_ops *ops; const struct assoc_array_ops *ops_for_excised_subtree; struct assoc_array_ptr *leaf; struct assoc_array_ptr **leaf_p; struct assoc_array_ptr *dead_leaf; struct assoc_array_ptr *new_meta[3]; struct assoc_array_ptr *excised_meta[1]; struct assoc_array_ptr *excised_subtree; struct assoc_array_ptr **set_backpointers[ASSOC_ARRAY_FAN_OUT]; struct assoc_array_ptr *set_backpointers_to; struct assoc_array_node *adjust_count_on; long adjust_count_by; struct { struct assoc_array_ptr **ptr; struct assoc_array_ptr *to; } set[2]; struct { u8 *p; u8 to; } set_parent_slot[1]; u8 segment_cache[ASSOC_ARRAY_FAN_OUT + 1]; }; /* * Internal tree member pointers are marked in the bottom one or two bits to * indicate what type they are so that we don't have to look behind every * pointer to see what it points to. * * We provide functions to test type annotations and to create and translate * the annotated pointers. */ #define ASSOC_ARRAY_PTR_TYPE_MASK 0x1UL #define ASSOC_ARRAY_PTR_LEAF_TYPE 0x0UL /* Points to leaf (or nowhere) */ #define ASSOC_ARRAY_PTR_META_TYPE 0x1UL /* Points to node or shortcut */ #define ASSOC_ARRAY_PTR_SUBTYPE_MASK 0x2UL #define ASSOC_ARRAY_PTR_NODE_SUBTYPE 0x0UL #define ASSOC_ARRAY_PTR_SHORTCUT_SUBTYPE 0x2UL static inline bool assoc_array_ptr_is_meta(const struct assoc_array_ptr *x) { return (unsigned long)x & ASSOC_ARRAY_PTR_TYPE_MASK; } static inline bool assoc_array_ptr_is_leaf(const struct assoc_array_ptr *x) { return !assoc_array_ptr_is_meta(x); } static inline bool assoc_array_ptr_is_shortcut(const struct assoc_array_ptr *x) { return (unsigned long)x & ASSOC_ARRAY_PTR_SUBTYPE_MASK; } static inline bool assoc_array_ptr_is_node(const struct assoc_array_ptr *x) { return !assoc_array_ptr_is_shortcut(x); } static inline void *assoc_array_ptr_to_leaf(const struct assoc_array_ptr *x) { return (void *)((unsigned long)x & ~ASSOC_ARRAY_PTR_TYPE_MASK); } static inline unsigned long __assoc_array_ptr_to_meta(const struct assoc_array_ptr *x) { return (unsigned long)x & ~(ASSOC_ARRAY_PTR_SUBTYPE_MASK | ASSOC_ARRAY_PTR_TYPE_MASK); } static inline struct assoc_array_node *assoc_array_ptr_to_node(const struct assoc_array_ptr *x) { return (struct assoc_array_node *)__assoc_array_ptr_to_meta(x); } static inline struct assoc_array_shortcut *assoc_array_ptr_to_shortcut(const struct assoc_array_ptr *x) { return (struct assoc_array_shortcut *)__assoc_array_ptr_to_meta(x); } static inline struct assoc_array_ptr *__assoc_array_x_to_ptr(const void *p, unsigned long t) { return (struct assoc_array_ptr *)((unsigned long)p | t); } static inline struct assoc_array_ptr *assoc_array_leaf_to_ptr(const void *p) { return __assoc_array_x_to_ptr(p, ASSOC_ARRAY_PTR_LEAF_TYPE); } static inline struct assoc_array_ptr *assoc_array_node_to_ptr(const struct assoc_array_node *p) { return __assoc_array_x_to_ptr( p, ASSOC_ARRAY_PTR_META_TYPE | ASSOC_ARRAY_PTR_NODE_SUBTYPE); } static inline struct assoc_array_ptr *assoc_array_shortcut_to_ptr(const struct assoc_array_shortcut *p) { return __assoc_array_x_to_ptr( p, ASSOC_ARRAY_PTR_META_TYPE | ASSOC_ARRAY_PTR_SHORTCUT_SUBTYPE); } #endif /* CONFIG_ASSOCIATIVE_ARRAY */ #endif /* _LINUX_ASSOC_ARRAY_PRIV_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2016 Qualcomm Atheros, Inc * * Based on net/sched/sch_fq_codel.c */ #ifndef __NET_SCHED_FQ_IMPL_H #define __NET_SCHED_FQ_IMPL_H #include <net/fq.h> /* functions that are embedded into includer */ static void fq_adjust_removal(struct fq *fq, struct fq_flow *flow, struct sk_buff *skb) { struct fq_tin *tin = flow->tin; tin->backlog_bytes -= skb->len; tin->backlog_packets--; flow->backlog -= skb->len; fq->backlog--; fq->memory_usage -= skb->truesize; } static void fq_rejigger_backlog(struct fq *fq, struct fq_flow *flow) { struct fq_flow *i; if (flow->backlog == 0) { list_del_init(&flow->backlogchain); } else { i = flow; list_for_each_entry_continue(i, &fq->backlogs, backlogchain) if (i->backlog < flow->backlog) break; list_move_tail(&flow->backlogchain, &i->backlogchain); } } static struct sk_buff *fq_flow_dequeue(struct fq *fq, struct fq_flow *flow) { struct sk_buff *skb; lockdep_assert_held(&fq->lock); skb = __skb_dequeue(&flow->queue); if (!skb) return NULL; fq_adjust_removal(fq, flow, skb); fq_rejigger_backlog(fq, flow); return skb; } static struct sk_buff *fq_tin_dequeue(struct fq *fq, struct fq_tin *tin, fq_tin_dequeue_t dequeue_func) { struct fq_flow *flow; struct list_head *head; struct sk_buff *skb; lockdep_assert_held(&fq->lock); begin: head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) return NULL; } flow = list_first_entry(head, struct fq_flow, flowchain); if (flow->deficit <= 0) { flow->deficit += fq->quantum; list_move_tail(&flow->flowchain, &tin->old_flows); goto begin; } skb = dequeue_func(fq, tin, flow); if (!skb) { /* force a pass through old_flows to prevent starvation */ if ((head == &tin->new_flows) && !list_empty(&tin->old_flows)) { list_move_tail(&flow->flowchain, &tin->old_flows); } else { list_del_init(&flow->flowchain); flow->tin = NULL; } goto begin; } flow->deficit -= skb->len; tin->tx_bytes += skb->len; tin->tx_packets++; return skb; } static u32 fq_flow_idx(struct fq *fq, struct sk_buff *skb) { u32 hash = skb_get_hash(skb); return reciprocal_scale(hash, fq->flows_cnt); } static struct fq_flow *fq_flow_classify(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); flow = &fq->flows[idx]; if (flow->tin && flow->tin != tin) { flow = get_default_func(fq, tin, idx, skb); tin->collisions++; fq->collisions++; } if (!flow->tin) tin->flows++; return flow; } static void fq_recalc_backlog(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct fq_flow *i; if (list_empty(&flow->backlogchain)) list_add_tail(&flow->backlogchain, &fq->backlogs); i = flow; list_for_each_entry_continue_reverse(i, &fq->backlogs, backlogchain) if (i->backlog > flow->backlog) break; list_move(&flow->backlogchain, &i->backlogchain); } static void fq_tin_enqueue(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_skb_free_t free_func, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; bool oom; lockdep_assert_held(&fq->lock); flow = fq_flow_classify(fq, tin, idx, skb, get_default_func); flow->tin = tin; flow->backlog += skb->len; tin->backlog_bytes += skb->len; tin->backlog_packets++; fq->memory_usage += skb->truesize; fq->backlog++; fq_recalc_backlog(fq, tin, flow); if (list_empty(&flow->flowchain)) { flow->deficit = fq->quantum; list_add_tail(&flow->flowchain, &tin->new_flows); } __skb_queue_tail(&flow->queue, skb); oom = (fq->memory_usage > fq->memory_limit); while (fq->backlog > fq->limit || oom) { flow = list_first_entry_or_null(&fq->backlogs, struct fq_flow, backlogchain); if (!flow) return; skb = fq_flow_dequeue(fq, flow); if (!skb) return; free_func(fq, flow->tin, flow, skb); flow->tin->overlimit++; fq->overlimit++; if (oom) { fq->overmemory++; oom = (fq->memory_usage > fq->memory_limit); } } } static void fq_flow_filter(struct fq *fq, struct fq_flow *flow, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_tin *tin = flow->tin; struct sk_buff *skb, *tmp; lockdep_assert_held(&fq->lock); skb_queue_walk_safe(&flow->queue, skb, tmp) { if (!filter_func(fq, tin, flow, skb, filter_data)) continue; __skb_unlink(skb, &flow->queue); fq_adjust_removal(fq, flow, skb); free_func(fq, tin, flow, skb); } fq_rejigger_backlog(fq, flow); } static void fq_tin_filter(struct fq *fq, struct fq_tin *tin, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); list_for_each_entry(flow, &tin->new_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); list_for_each_entry(flow, &tin->old_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); } static void fq_flow_reset(struct fq *fq, struct fq_flow *flow, fq_skb_free_t free_func) { struct sk_buff *skb; while ((skb = fq_flow_dequeue(fq, flow))) free_func(fq, flow->tin, flow, skb); if (!list_empty(&flow->flowchain)) list_del_init(&flow->flowchain); if (!list_empty(&flow->backlogchain)) list_del_init(&flow->backlogchain); flow->tin = NULL; WARN_ON_ONCE(flow->backlog); } static void fq_tin_reset(struct fq *fq, struct fq_tin *tin, fq_skb_free_t free_func) { struct list_head *head; struct fq_flow *flow; for (;;) { head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) break; } flow = list_first_entry(head, struct fq_flow, flowchain); fq_flow_reset(fq, flow, free_func); } WARN_ON_ONCE(tin->backlog_bytes); WARN_ON_ONCE(tin->backlog_packets); } static void fq_flow_init(struct fq_flow *flow) { INIT_LIST_HEAD(&flow->flowchain); INIT_LIST_HEAD(&flow->backlogchain); __skb_queue_head_init(&flow->queue); } static void fq_tin_init(struct fq_tin *tin) { INIT_LIST_HEAD(&tin->new_flows); INIT_LIST_HEAD(&tin->old_flows); } static int fq_init(struct fq *fq, int flows_cnt) { int i; memset(fq, 0, sizeof(fq[0])); INIT_LIST_HEAD(&fq->backlogs); spin_lock_init(&fq->lock); fq->flows_cnt = max_t(u32, flows_cnt, 1); fq->quantum = 300; fq->limit = 8192; fq->memory_limit = 16 << 20; /* 16 MBytes */ fq->flows = kvcalloc(fq->flows_cnt, sizeof(fq->flows[0]), GFP_KERNEL); if (!fq->flows) return -ENOMEM; for (i = 0; i < fq->flows_cnt; i++) fq_flow_init(&fq->flows[i]); return 0; } static void fq_reset(struct fq *fq, fq_skb_free_t free_func) { int i; for (i = 0; i < fq->flows_cnt; i++) fq_flow_reset(fq, &fq->flows[i], free_func); kvfree(fq->flows); fq->flows = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_SIGNAL_H #define _LINUX_SCHED_SIGNAL_H #include <linux/rculist.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/sched/jobctl.h> #include <linux/sched/task.h> #include <linux/cred.h> #include <linux/refcount.h> #include <linux/posix-timers.h> #include <linux/mm_types.h> #include <asm/ptrace.h> /* * Types defining task->signal and task->sighand and APIs using them: */ struct sighand_struct { spinlock_t siglock; refcount_t count; wait_queue_head_t signalfd_wqh; struct k_sigaction action[_NSIG]; }; /* * Per-process accounting stats: */ struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; u64 ac_utime, ac_stime; unsigned long ac_minflt, ac_majflt; }; struct cpu_itimer { u64 expires; u64 incr; }; /* * This is the atomic variant of task_cputime, which can be used for * storing and updating task_cputime statistics without locking. */ struct task_cputime_atomic { atomic64_t utime; atomic64_t stime; atomic64_t sum_exec_runtime; }; #define INIT_CPUTIME_ATOMIC \ (struct task_cputime_atomic) { \ .utime = ATOMIC64_INIT(0), \ .stime = ATOMIC64_INIT(0), \ .sum_exec_runtime = ATOMIC64_INIT(0), \ } /** * struct thread_group_cputimer - thread group interval timer counts * @cputime_atomic: atomic thread group interval timers. * * This structure contains the version of task_cputime, above, that is * used for thread group CPU timer calculations. */ struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic; }; struct multiprocess_signals { sigset_t signal; struct hlist_node node; }; /* * NOTE! "signal_struct" does not have its own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { refcount_t sigcnt; atomic_t live; int nr_threads; struct list_head thread_head; wait_queue_head_t wait_chldexit; /* for wait4() */ /* current thread group signal load-balancing target: */ struct task_struct *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* For collecting multiprocess signals during fork */ struct hlist_head multiprocess; /* thread group exit support */ int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ int notify_count; struct task_struct *group_exit_task; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; unsigned int flags; /* see SIGNAL_* flags below */ /* * PR_SET_CHILD_SUBREAPER marks a process, like a service * manager, to re-parent orphan (double-forking) child processes * to this process instead of 'init'. The service manager is * able to receive SIGCHLD signals and is able to investigate * the process until it calls wait(). All children of this * process will inherit a flag if they should look for a * child_subreaper process at exit. */ unsigned int is_child_subreaper:1; unsigned int has_child_subreaper:1; #ifdef CONFIG_POSIX_TIMERS /* POSIX.1b Interval Timers */ int posix_timer_id; struct list_head posix_timers; /* ITIMER_REAL timer for the process */ struct hrtimer real_timer; ktime_t it_real_incr; /* * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these * values are defined to 0 and 1 respectively */ struct cpu_itimer it[2]; /* * Thread group totals for process CPU timers. * See thread_group_cputimer(), et al, for details. */ struct thread_group_cputimer cputimer; #endif /* Empty if CONFIG_POSIX_TIMERS=n */ struct posix_cputimers posix_cputimers; /* PID/PID hash table linkage. */ struct pid *pids[PIDTYPE_MAX]; #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif struct pid *tty_old_pgrp; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif /* * Cumulative resource counters for dead threads in the group, * and for reaped dead child processes forked by this group. * Live threads maintain their own counters and add to these * in __exit_signal, except for the group leader. */ seqlock_t stats_lock; u64 utime, stime, cutime, cstime; u64 gtime; u64 cgtime; struct prev_cputime prev_cputime; unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; unsigned long maxrss, cmaxrss; struct task_io_accounting ioac; /* * Cumulative ns of schedule CPU time fo dead threads in the * group, not including a zombie group leader, (This only differs * from jiffies_to_ns(utime + stime) if sched_clock uses something * other than jiffies.) */ unsigned long long sum_sched_runtime; /* * We don't bother to synchronize most readers of this at all, * because there is no reader checking a limit that actually needs * to get both rlim_cur and rlim_max atomically, and either one * alone is a single word that can safely be read normally. * getrlimit/setrlimit use task_lock(current->group_leader) to * protect this instead of the siglock, because they really * have no need to disable irqs. */ struct rlimit rlim[RLIM_NLIMITS]; #ifdef CONFIG_BSD_PROCESS_ACCT struct pacct_struct pacct; /* per-process accounting information */ #endif #ifdef CONFIG_TASKSTATS struct taskstats *stats; #endif #ifdef CONFIG_AUDIT unsigned audit_tty; struct tty_audit_buf *tty_audit_buf; #endif /* * Thread is the potential origin of an oom condition; kill first on * oom */ bool oom_flag_origin; short oom_score_adj; /* OOM kill score adjustment */ short oom_score_adj_min; /* OOM kill score adjustment min value. * Only settable by CAP_SYS_RESOURCE. */ struct mm_struct *oom_mm; /* recorded mm when the thread group got * killed by the oom killer */ struct mutex cred_guard_mutex; /* guard against foreign influences on * credential calculations * (notably. ptrace) * Deprecated do not use in new code. * Use exec_update_lock instead. */ struct rw_semaphore exec_update_lock; /* Held while task_struct is * being updated during exec, * and may have inconsistent * permissions. */ } __randomize_layout; /* * Bits in flags field of signal_struct. */ #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ /* * Pending notifications to parent. */ #define SIGNAL_CLD_STOPPED 0x00000010 #define SIGNAL_CLD_CONTINUED 0x00000020 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ SIGNAL_STOP_CONTINUED) static inline void signal_set_stop_flags(struct signal_struct *sig, unsigned int flags) { WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; } /* If true, all threads except ->group_exit_task have pending SIGKILL */ static inline int signal_group_exit(const struct signal_struct *sig) { return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL); } extern void flush_signals(struct task_struct *); extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *task, sigset_t *mask, kernel_siginfo_t *info); static inline int kernel_dequeue_signal(void) { struct task_struct *task = current; kernel_siginfo_t __info; int ret; spin_lock_irq(&task->sighand->siglock); ret = dequeue_signal(task, &task->blocked, &__info); spin_unlock_irq(&task->sighand->siglock); return ret; } static inline void kernel_signal_stop(void) { spin_lock_irq(&current->sighand->siglock); if (current->jobctl & JOBCTL_STOP_DEQUEUED) set_special_state(TASK_STOPPED); spin_unlock_irq(&current->sighand->siglock); schedule(); } #ifdef __ARCH_SI_TRAPNO # define ___ARCH_SI_TRAPNO(_a1) , _a1 #else # define ___ARCH_SI_TRAPNO(_a1) #endif #ifdef __ia64__ # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3 #else # define ___ARCH_SI_IA64(_a1, _a2, _a3) #endif int force_sig_fault_to_task(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)); int send_sig_fault(int sig, int code, void __user *addr ___ARCH_SI_TRAPNO(int trapno) ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) , struct task_struct *t); int force_sig_mceerr(int code, void __user *, short); int send_sig_mceerr(int code, void __user *, short, struct task_struct *); int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper); int force_sig_pkuerr(void __user *addr, u32 pkey); int force_sig_ptrace_errno_trap(int errno, void __user *addr); extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *); extern void force_sigsegv(int sig); extern int force_sig_info(struct kernel_siginfo *); extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp); extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid); extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *, const struct cred *); extern int kill_pgrp(struct pid *pid, int sig, int priv); extern int kill_pid(struct pid *pid, int sig, int priv); extern __must_check bool do_notify_parent(struct task_struct *, int); extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); extern void force_sig(int); extern int send_sig(int, struct task_struct *, int); extern int zap_other_threads(struct task_struct *p); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type); extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); static inline int restart_syscall(void) { set_tsk_thread_flag(current, TIF_SIGPENDING); return -ERESTARTNOINTR; } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int __fatal_signal_pending(struct task_struct *p) { return unlikely(sigismember(&p->pending.signal, SIGKILL)); } static inline int fatal_signal_pending(struct task_struct *p) { return signal_pending(p) && __fatal_signal_pending(p); } static inline int signal_pending_state(long state, struct task_struct *p) { if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) return 0; if (!signal_pending(p)) return 0; return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); } /* * This should only be used in fault handlers to decide whether we * should stop the current fault routine to handle the signals * instead, especially with the case where we've got interrupted with * a VM_FAULT_RETRY. */ static inline bool fault_signal_pending(vm_fault_t fault_flags, struct pt_regs *regs) { return unlikely((fault_flags & VM_FAULT_RETRY) && (fatal_signal_pending(current) || (user_mode(regs) && signal_pending(current)))); } /* * Reevaluate whether the task has signals pending delivery. * Wake the task if so. * This is required every time the blocked sigset_t changes. * callers must hold sighand->siglock. */ extern void recalc_sigpending_and_wake(struct task_struct *t); extern void recalc_sigpending(void); extern void calculate_sigpending(void); extern void signal_wake_up_state(struct task_struct *t, unsigned int state); static inline void signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); } static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? __TASK_TRACED : 0); } void task_join_group_stop(struct task_struct *task); #ifdef TIF_RESTORE_SIGMASK /* * Legacy restore_sigmask accessors. These are inefficient on * SMP architectures because they require atomic operations. */ /** * set_restore_sigmask() - make sure saved_sigmask processing gets done * * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code * will run before returning to user mode, to process the flag. For * all callers, TIF_SIGPENDING is already set or it's no harm to set * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the * arch code will notice on return to user mode, in case those bits * are scarce. We set TIF_SIGPENDING here to ensure that the arch * signal code always gets run when TIF_RESTORE_SIGMASK is set. */ static inline void set_restore_sigmask(void) { set_thread_flag(TIF_RESTORE_SIGMASK); } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline void clear_restore_sigmask(void) { clear_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK); } static inline bool test_restore_sigmask(void) { return test_thread_flag(TIF_RESTORE_SIGMASK); } static inline bool test_and_clear_restore_sigmask(void) { return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); } #else /* TIF_RESTORE_SIGMASK */ /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ static inline void set_restore_sigmask(void) { current->restore_sigmask = true; } static inline void clear_tsk_restore_sigmask(struct task_struct *task) { task->restore_sigmask = false; } static inline void clear_restore_sigmask(void) { current->restore_sigmask = false; } static inline bool test_restore_sigmask(void) { return current->restore_sigmask; } static inline bool test_tsk_restore_sigmask(struct task_struct *task) { return task->restore_sigmask; } static inline bool test_and_clear_restore_sigmask(void) { if (!current->restore_sigmask) return false; current->restore_sigmask = false; return true; } #endif static inline void restore_saved_sigmask(void) { if (test_and_clear_restore_sigmask()) __set_current_blocked(&current->saved_sigmask); } extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize); static inline void restore_saved_sigmask_unless(bool interrupted) { if (interrupted) WARN_ON(!test_thread_flag(TIF_SIGPENDING)); else restore_saved_sigmask(); } static inline sigset_t *sigmask_to_save(void) { sigset_t *res = &current->blocked; if (unlikely(test_restore_sigmask())) res = &current->saved_sigmask; return res; } static inline int kill_cad_pid(int sig, int priv) { return kill_pid(cad_pid, sig, priv); } /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0) #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1) static inline int __on_sig_stack(unsigned long sp) { #ifdef CONFIG_STACK_GROWSUP return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; #else return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size; #endif } /* * True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { /* * If the signal stack is SS_AUTODISARM then, by construction, we * can't be on the signal stack unless user code deliberately set * SS_AUTODISARM when we were already on it. * * This improves reliability: if user state gets corrupted such that * the stack pointer points very close to the end of the signal stack, * then this check will enable the signal to be handled anyway. */ if (current->sas_ss_flags & SS_AUTODISARM) return 0; return __on_sig_stack(sp); } static inline int sas_ss_flags(unsigned long sp) { if (!current->sas_ss_size) return SS_DISABLE; return on_sig_stack(sp) ? SS_ONSTACK : 0; } static inline void sas_ss_reset(struct task_struct *p) { p->sas_ss_sp = 0; p->sas_ss_size = 0; p->sas_ss_flags = SS_DISABLE; } static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) { if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) #ifdef CONFIG_STACK_GROWSUP return current->sas_ss_sp; #else return current->sas_ss_sp + current->sas_ss_size; #endif return sp; } extern void __cleanup_sighand(struct sighand_struct *); extern void flush_itimer_signals(void); #define tasklist_empty() \ list_empty(&init_task.tasks) #define next_task(p) \ list_entry_rcu((p)->tasks.next, struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) extern bool current_is_single_threaded(void); /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) #define __for_each_thread(signal, t) \ list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) #define for_each_thread(p, t) \ __for_each_thread((p)->signal, t) /* Careful: this is a double loop, 'break' won't work as expected. */ #define for_each_process_thread(p, t) \ for_each_process(p) for_each_thread(p, t) typedef int (*proc_visitor)(struct task_struct *p, void *data); void walk_process_tree(struct task_struct *top, proc_visitor, void *); static inline struct pid *task_pid_type(struct task_struct *task, enum pid_type type) { struct pid *pid; if (type == PIDTYPE_PID) pid = task_pid(task); else pid = task->signal->pids[type]; return pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->signal->pids[PIDTYPE_TGID]; } /* * Without tasklist or RCU lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */ static inline struct pid *task_pgrp(struct task_struct *task) { return task->signal->pids[PIDTYPE_PGID]; } static inline struct pid *task_session(struct task_struct *task) { return task->signal->pids[PIDTYPE_SID]; } static inline int get_nr_threads(struct task_struct *task) { return task->signal->nr_threads; } static inline bool thread_group_leader(struct task_struct *p) { return p->exit_signal >= 0; } static inline bool same_thread_group(struct task_struct *p1, struct task_struct *p2) { return p1->signal == p2->signal; } static inline struct task_struct *next_thread(const struct task_struct *p) { return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group); } static inline int thread_group_empty(struct task_struct *p) { return list_empty(&p->thread_group); } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) extern bool thread_group_exited(struct pid *pid); extern struct sighand_struct *__lock_task_sighand(struct task_struct *task, unsigned long *flags); static inline struct sighand_struct *lock_task_sighand(struct task_struct *task, unsigned long *flags) { struct sighand_struct *ret; ret = __lock_task_sighand(task, flags); (void)__cond_lock(&task->sighand->siglock, ret); return ret; } static inline void unlock_task_sighand(struct task_struct *task, unsigned long *flags) { spin_unlock_irqrestore(&task->sighand->siglock, *flags); } static inline unsigned long task_rlimit(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_cur); } static inline unsigned long task_rlimit_max(const struct task_struct *task, unsigned int limit) { return READ_ONCE(task->signal->rlim[limit].rlim_max); } static inline unsigned long rlimit(unsigned int limit) { return task_rlimit(current, limit); } static inline unsigned long rlimit_max(unsigned int limit) { return task_rlimit_max(current, limit); } #endif /* _LINUX_SCHED_SIGNAL_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com> */ #include <linux/dcache.h> #include <linux/fs.h> #include <linux/gfp.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mount.h> #include <linux/srcu.h> #include <linux/fsnotify_backend.h> #include "fsnotify.h" /* * Clear all of the marks on an inode when it is being evicted from core */ void __fsnotify_inode_delete(struct inode *inode) { fsnotify_clear_marks_by_inode(inode); } EXPORT_SYMBOL_GPL(__fsnotify_inode_delete); void __fsnotify_vfsmount_delete(struct vfsmount *mnt) { fsnotify_clear_marks_by_mount(mnt); } /** * fsnotify_unmount_inodes - an sb is unmounting. handle any watched inodes. * @sb: superblock being unmounted. * * Called during unmount with no locks held, so needs to be safe against * concurrent modifiers. We temporarily drop sb->s_inode_list_lock and CAN block. */ static void fsnotify_unmount_inodes(struct super_block *sb) { struct inode *inode, *iput_inode = NULL; spin_lock(&sb->s_inode_list_lock); list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { /* * We cannot __iget() an inode in state I_FREEING, * I_WILL_FREE, or I_NEW which is fine because by that point * the inode cannot have any associated watches. */ spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { spin_unlock(&inode->i_lock); continue; } /* * If i_count is zero, the inode cannot have any watches and * doing an __iget/iput with SB_ACTIVE clear would actually * evict all inodes with zero i_count from icache which is * unnecessarily violent and may in fact be illegal to do. * However, we should have been called /after/ evict_inodes * removed all zero refcount inodes, in any case. Test to * be sure. */ if (!atomic_read(&inode->i_count)) { spin_unlock(&inode->i_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); spin_unlock(&sb->s_inode_list_lock); if (iput_inode) iput(iput_inode); /* for each watch, send FS_UNMOUNT and then remove it */ fsnotify_inode(inode, FS_UNMOUNT); fsnotify_inode_delete(inode); iput_inode = inode; cond_resched(); spin_lock(&sb->s_inode_list_lock); } spin_unlock(&sb->s_inode_list_lock); if (iput_inode) iput(iput_inode); /* Wait for outstanding inode references from connectors */ wait_var_event(&sb->s_fsnotify_inode_refs, !atomic_long_read(&sb->s_fsnotify_inode_refs)); } void fsnotify_sb_delete(struct super_block *sb) { fsnotify_unmount_inodes(sb); fsnotify_clear_marks_by_sb(sb); } /* * Given an inode, first check if we care what happens to our children. Inotify * and dnotify both tell their parents about events. If we care about any event * on a child we run all of our children and set a dentry flag saying that the * parent cares. Thus when an event happens on a child it can quickly tell if * if there is a need to find a parent and send the event to the parent. */ void __fsnotify_update_child_dentry_flags(struct inode *inode) { struct dentry *alias; int watched; if (!S_ISDIR(inode->i_mode)) return; /* determine if the children should tell inode about their events */ watched = fsnotify_inode_watches_children(inode); spin_lock(&inode->i_lock); /* run all of the dentries associated with this inode. Since this is a * directory, there damn well better only be one item on this list */ hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { struct dentry *child; /* run all of the children of the original inode and fix their * d_flags to indicate parental interest (their parent is the * original inode) */ spin_lock(&alias->d_lock); list_for_each_entry(child, &alias->d_subdirs, d_child) { if (!child->d_inode) continue; spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); if (watched) child->d_flags |= DCACHE_FSNOTIFY_PARENT_WATCHED; else child->d_flags &= ~DCACHE_FSNOTIFY_PARENT_WATCHED; spin_unlock(&child->d_lock); } spin_unlock(&alias->d_lock); } spin_unlock(&inode->i_lock); } /* Are inode/sb/mount interested in parent and name info with this event? */ static bool fsnotify_event_needs_parent(struct inode *inode, struct mount *mnt, __u32 mask) { __u32 marks_mask = 0; /* We only send parent/name to inode/sb/mount for events on non-dir */ if (mask & FS_ISDIR) return false; /* * All events that are possible on child can also may be reported with * parent/name info to inode/sb/mount. Otherwise, a watching parent * could result in events reported with unexpected name info to sb/mount. */ BUILD_BUG_ON(FS_EVENTS_POSS_ON_CHILD & ~FS_EVENTS_POSS_TO_PARENT); /* Did either inode/sb/mount subscribe for events with parent/name? */ marks_mask |= fsnotify_parent_needed_mask(inode->i_fsnotify_mask); marks_mask |= fsnotify_parent_needed_mask(inode->i_sb->s_fsnotify_mask); if (mnt) marks_mask |= fsnotify_parent_needed_mask(mnt->mnt_fsnotify_mask); /* Did they subscribe for this event with parent/name info? */ return mask & marks_mask; } /* * Notify this dentry's parent about a child's events with child name info * if parent is watching or if inode/sb/mount are interested in events with * parent and name info. * * Notify only the child without name info if parent is not watching and * inode/sb/mount are not interested in events with parent and name info. */ int __fsnotify_parent(struct dentry *dentry, __u32 mask, const void *data, int data_type) { const struct path *path = fsnotify_data_path(data, data_type); struct mount *mnt = path ? real_mount(path->mnt) : NULL; struct inode *inode = d_inode(dentry); struct dentry *parent; bool parent_watched = dentry->d_flags & DCACHE_FSNOTIFY_PARENT_WATCHED; bool parent_needed, parent_interested; __u32 p_mask; struct inode *p_inode = NULL; struct name_snapshot name; struct qstr *file_name = NULL; int ret = 0; /* * Do inode/sb/mount care about parent and name info on non-dir? * Do they care about any event at all? */ if (!inode->i_fsnotify_marks && !inode->i_sb->s_fsnotify_marks && (!mnt || !mnt->mnt_fsnotify_marks) && !parent_watched) return 0; parent = NULL; parent_needed = fsnotify_event_needs_parent(inode, mnt, mask); if (!parent_watched && !parent_needed) goto notify; /* Does parent inode care about events on children? */ parent = dget_parent(dentry); p_inode = parent->d_inode; p_mask = fsnotify_inode_watches_children(p_inode); if (unlikely(parent_watched && !p_mask)) __fsnotify_update_child_dentry_flags(p_inode); /* * Include parent/name in notification either if some notification * groups require parent info or the parent is interested in this event. */ parent_interested = mask & p_mask & ALL_FSNOTIFY_EVENTS; if (parent_needed || parent_interested) { /* When notifying parent, child should be passed as data */ WARN_ON_ONCE(inode != fsnotify_data_inode(data, data_type)); /* Notify both parent and child with child name info */ take_dentry_name_snapshot(&name, dentry); file_name = &name.name; if (parent_interested) mask |= FS_EVENT_ON_CHILD; } notify: ret = fsnotify(mask, data, data_type, p_inode, file_name, inode, 0); if (file_name) release_dentry_name_snapshot(&name); dput(parent); return ret; } EXPORT_SYMBOL_GPL(__fsnotify_parent); static int fsnotify_handle_inode_event(struct fsnotify_group *group, struct fsnotify_mark *inode_mark, u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, u32 cookie) { const struct path *path = fsnotify_data_path(data, data_type); struct inode *inode = fsnotify_data_inode(data, data_type); const struct fsnotify_ops *ops = group->ops; if (WARN_ON_ONCE(!ops->handle_inode_event)) return 0; if ((inode_mark->mask & FS_EXCL_UNLINK) && path && d_unlinked(path->dentry)) return 0; /* Check interest of this mark in case event was sent with two marks */ if (!(mask & inode_mark->mask & ALL_FSNOTIFY_EVENTS)) return 0; return ops->handle_inode_event(inode_mark, mask, inode, dir, name, cookie); } static int fsnotify_handle_event(struct fsnotify_group *group, __u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *name, u32 cookie, struct fsnotify_iter_info *iter_info) { struct fsnotify_mark *inode_mark = fsnotify_iter_inode_mark(iter_info); struct fsnotify_mark *parent_mark = fsnotify_iter_parent_mark(iter_info); int ret; if (WARN_ON_ONCE(fsnotify_iter_sb_mark(iter_info)) || WARN_ON_ONCE(fsnotify_iter_vfsmount_mark(iter_info))) return 0; if (parent_mark) { /* * parent_mark indicates that the parent inode is watching * children and interested in this event, which is an event * possible on child. But is *this mark* watching children and * interested in this event? */ if (parent_mark->mask & FS_EVENT_ON_CHILD) { ret = fsnotify_handle_inode_event(group, parent_mark, mask, data, data_type, dir, name, 0); if (ret) return ret; } if (!inode_mark) return 0; } if (mask & FS_EVENT_ON_CHILD) { /* * Some events can be sent on both parent dir and child marks * (e.g. FS_ATTRIB). If both parent dir and child are * watching, report the event once to parent dir with name (if * interested) and once to child without name (if interested). * The child watcher is expecting an event without a file name * and without the FS_EVENT_ON_CHILD flag. */ mask &= ~FS_EVENT_ON_CHILD; dir = NULL; name = NULL; } return fsnotify_handle_inode_event(group, inode_mark, mask, data, data_type, dir, name, cookie); } static int send_to_group(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *file_name, u32 cookie, struct fsnotify_iter_info *iter_info) { struct fsnotify_group *group = NULL; __u32 test_mask = (mask & ALL_FSNOTIFY_EVENTS); __u32 marks_mask = 0; __u32 marks_ignored_mask = 0; struct fsnotify_mark *mark; int type; if (WARN_ON(!iter_info->report_mask)) return 0; /* clear ignored on inode modification */ if (mask & FS_MODIFY) { fsnotify_foreach_obj_type(type) { if (!fsnotify_iter_should_report_type(iter_info, type)) continue; mark = iter_info->marks[type]; if (mark && !(mark->flags & FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY)) mark->ignored_mask = 0; } } fsnotify_foreach_obj_type(type) { if (!fsnotify_iter_should_report_type(iter_info, type)) continue; mark = iter_info->marks[type]; /* does the object mark tell us to do something? */ if (mark) { group = mark->group; marks_mask |= mark->mask; marks_ignored_mask |= mark->ignored_mask; } } pr_debug("%s: group=%p mask=%x marks_mask=%x marks_ignored_mask=%x data=%p data_type=%d dir=%p cookie=%d\n", __func__, group, mask, marks_mask, marks_ignored_mask, data, data_type, dir, cookie); if (!(test_mask & marks_mask & ~marks_ignored_mask)) return 0; if (group->ops->handle_event) { return group->ops->handle_event(group, mask, data, data_type, dir, file_name, cookie, iter_info); } return fsnotify_handle_event(group, mask, data, data_type, dir, file_name, cookie, iter_info); } static struct fsnotify_mark *fsnotify_first_mark(struct fsnotify_mark_connector **connp) { struct fsnotify_mark_connector *conn; struct hlist_node *node = NULL; conn = srcu_dereference(*connp, &fsnotify_mark_srcu); if (conn) node = srcu_dereference(conn->list.first, &fsnotify_mark_srcu); return hlist_entry_safe(node, struct fsnotify_mark, obj_list); } static struct fsnotify_mark *fsnotify_next_mark(struct fsnotify_mark *mark) { struct hlist_node *node = NULL; if (mark) node = srcu_dereference(mark->obj_list.next, &fsnotify_mark_srcu); return hlist_entry_safe(node, struct fsnotify_mark, obj_list); } /* * iter_info is a multi head priority queue of marks. * Pick a subset of marks from queue heads, all with the * same group and set the report_mask for selected subset. * Returns the report_mask of the selected subset. */ static unsigned int fsnotify_iter_select_report_types( struct fsnotify_iter_info *iter_info) { struct fsnotify_group *max_prio_group = NULL; struct fsnotify_mark *mark; int type; /* Choose max prio group among groups of all queue heads */ fsnotify_foreach_obj_type(type) { mark = iter_info->marks[type]; if (mark && fsnotify_compare_groups(max_prio_group, mark->group) > 0) max_prio_group = mark->group; } if (!max_prio_group) return 0; /* Set the report mask for marks from same group as max prio group */ iter_info->report_mask = 0; fsnotify_foreach_obj_type(type) { mark = iter_info->marks[type]; if (mark && fsnotify_compare_groups(max_prio_group, mark->group) == 0) fsnotify_iter_set_report_type(iter_info, type); } return iter_info->report_mask; } /* * Pop from iter_info multi head queue, the marks that were iterated in the * current iteration step. */ static void fsnotify_iter_next(struct fsnotify_iter_info *iter_info) { int type; fsnotify_foreach_obj_type(type) { if (fsnotify_iter_should_report_type(iter_info, type)) iter_info->marks[type] = fsnotify_next_mark(iter_info->marks[type]); } } /* * fsnotify - This is the main call to fsnotify. * * The VFS calls into hook specific functions in linux/fsnotify.h. * Those functions then in turn call here. Here will call out to all of the * registered fsnotify_group. Those groups can then use the notification event * in whatever means they feel necessary. * * @mask: event type and flags * @data: object that event happened on * @data_type: type of object for fanotify_data_XXX() accessors * @dir: optional directory associated with event - * if @file_name is not NULL, this is the directory that * @file_name is relative to * @file_name: optional file name associated with event * @inode: optional inode associated with event - * either @dir or @inode must be non-NULL. * if both are non-NULL event may be reported to both. * @cookie: inotify rename cookie */ int fsnotify(__u32 mask, const void *data, int data_type, struct inode *dir, const struct qstr *file_name, struct inode *inode, u32 cookie) { const struct path *path = fsnotify_data_path(data, data_type); struct fsnotify_iter_info iter_info = {}; struct super_block *sb; struct mount *mnt = NULL; struct inode *parent = NULL; int ret = 0; __u32 test_mask, marks_mask; if (path) mnt = real_mount(path->mnt); if (!inode) { /* Dirent event - report on TYPE_INODE to dir */ inode = dir; } else if (mask & FS_EVENT_ON_CHILD) { /* * Event on child - report on TYPE_PARENT to dir if it is * watching children and on TYPE_INODE to child. */ parent = dir; } sb = inode->i_sb; /* * Optimization: srcu_read_lock() has a memory barrier which can * be expensive. It protects walking the *_fsnotify_marks lists. * However, if we do not walk the lists, we do not have to do * SRCU because we have no references to any objects and do not * need SRCU to keep them "alive". */ if (!sb->s_fsnotify_marks && (!mnt || !mnt->mnt_fsnotify_marks) && (!inode || !inode->i_fsnotify_marks) && (!parent || !parent->i_fsnotify_marks)) return 0; marks_mask = sb->s_fsnotify_mask; if (mnt) marks_mask |= mnt->mnt_fsnotify_mask; if (inode) marks_mask |= inode->i_fsnotify_mask; if (parent) marks_mask |= parent->i_fsnotify_mask; /* * if this is a modify event we may need to clear the ignored masks * otherwise return if none of the marks care about this type of event. */ test_mask = (mask & ALL_FSNOTIFY_EVENTS); if (!(mask & FS_MODIFY) && !(test_mask & marks_mask)) return 0; iter_info.srcu_idx = srcu_read_lock(&fsnotify_mark_srcu); iter_info.marks[FSNOTIFY_OBJ_TYPE_SB] = fsnotify_first_mark(&sb->s_fsnotify_marks); if (mnt) { iter_info.marks[FSNOTIFY_OBJ_TYPE_VFSMOUNT] = fsnotify_first_mark(&mnt->mnt_fsnotify_marks); } if (inode) { iter_info.marks[FSNOTIFY_OBJ_TYPE_INODE] = fsnotify_first_mark(&inode->i_fsnotify_marks); } if (parent) { iter_info.marks[FSNOTIFY_OBJ_TYPE_PARENT] = fsnotify_first_mark(&parent->i_fsnotify_marks); } /* * We need to merge inode/vfsmount/sb mark lists so that e.g. inode mark * ignore masks are properly reflected for mount/sb mark notifications. * That's why this traversal is so complicated... */ while (fsnotify_iter_select_report_types(&iter_info)) { ret = send_to_group(mask, data, data_type, dir, file_name, cookie, &iter_info); if (ret && (mask & ALL_FSNOTIFY_PERM_EVENTS)) goto out; fsnotify_iter_next(&iter_info); } ret = 0; out: srcu_read_unlock(&fsnotify_mark_srcu, iter_info.srcu_idx); return ret; } EXPORT_SYMBOL_GPL(fsnotify); static __init int fsnotify_init(void) { int ret; BUILD_BUG_ON(HWEIGHT32(ALL_FSNOTIFY_BITS) != 25); ret = init_srcu_struct(&fsnotify_mark_srcu); if (ret) panic("initializing fsnotify_mark_srcu"); fsnotify_mark_connector_cachep = KMEM_CACHE(fsnotify_mark_connector, SLAB_PANIC); return 0; } core_initcall(fsnotify_init);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JIFFIES_H #define _LINUX_JIFFIES_H #include <linux/cache.h> #include <linux/limits.h> #include <linux/math64.h> #include <linux/minmax.h> #include <linux/types.h> #include <linux/time.h> #include <linux/timex.h> #include <vdso/jiffies.h> #include <asm/param.h> /* for HZ */ #include <generated/timeconst.h> /* * The following defines establish the engineering parameters of the PLL * model. The HZ variable establishes the timer interrupt frequency, 100 Hz * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the * nearest power of two in order to avoid hardware multiply operations. */ #if HZ >= 12 && HZ < 24 # define SHIFT_HZ 4 #elif HZ >= 24 && HZ < 48 # define SHIFT_HZ 5 #elif HZ >= 48 && HZ < 96 # define SHIFT_HZ 6 #elif HZ >= 96 && HZ < 192 # define SHIFT_HZ 7 #elif HZ >= 192 && HZ < 384 # define SHIFT_HZ 8 #elif HZ >= 384 && HZ < 768 # define SHIFT_HZ 9 #elif HZ >= 768 && HZ < 1536 # define SHIFT_HZ 10 #elif HZ >= 1536 && HZ < 3072 # define SHIFT_HZ 11 #elif HZ >= 3072 && HZ < 6144 # define SHIFT_HZ 12 #elif HZ >= 6144 && HZ < 12288 # define SHIFT_HZ 13 #else # error Invalid value of HZ. #endif /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can * improve accuracy by shifting LSH bits, hence calculating: * (NOM << LSH) / DEN * This however means trouble for large NOM, because (NOM << LSH) may no * longer fit in 32 bits. The following way of calculating this gives us * some slack, under the following conditions: * - (NOM / DEN) fits in (32 - LSH) bits. * - (NOM % DEN) fits in (32 - LSH) bits. */ #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) /* LATCH is used in the interval timer and ftape setup. */ #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ extern int register_refined_jiffies(long clock_tick_rate); /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */ #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ) /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) #ifndef __jiffy_arch_data #define __jiffy_arch_data #endif /* * The 64-bit value is not atomic - you MUST NOT read it * without sampling the sequence number in jiffies_lock. * get_jiffies_64() will do this for you as appropriate. */ extern u64 __cacheline_aligned_in_smp jiffies_64; extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; #if (BITS_PER_LONG < 64) u64 get_jiffies_64(void); #else static inline u64 get_jiffies_64(void) { return (u64)jiffies; } #endif /* * These inlines deal with timer wrapping correctly. You are * strongly encouraged to use them * 1. Because people otherwise forget * 2. Because if the timer wrap changes in future you won't have to * alter your driver code. * * time_after(a,b) returns true if the time a is after time b. * * Do this with "<0" and ">=0" to only test the sign of the result. A * good compiler would generate better code (and a really good compiler * wouldn't care). Gcc is currently neither. */ #define time_after(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((b) - (a)) < 0)) #define time_before(a,b) time_after(b,a) #define time_after_eq(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((a) - (b)) >= 0)) #define time_before_eq(a,b) time_after_eq(b,a) /* * Calculate whether a is in the range of [b, c]. */ #define time_in_range(a,b,c) \ (time_after_eq(a,b) && \ time_before_eq(a,c)) /* * Calculate whether a is in the range of [b, c). */ #define time_in_range_open(a,b,c) \ (time_after_eq(a,b) && \ time_before(a,c)) /* Same as above, but does so with platform independent 64bit types. * These must be used when utilizing jiffies_64 (i.e. return value of * get_jiffies_64() */ #define time_after64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((b) - (a)) < 0)) #define time_before64(a,b) time_after64(b,a) #define time_after_eq64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((a) - (b)) >= 0)) #define time_before_eq64(a,b) time_after_eq64(b,a) #define time_in_range64(a, b, c) \ (time_after_eq64(a, b) && \ time_before_eq64(a, c)) /* * These four macros compare jiffies and 'a' for convenience. */ /* time_is_before_jiffies(a) return true if a is before jiffies */ #define time_is_before_jiffies(a) time_after(jiffies, a) #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) /* time_is_after_jiffies(a) return true if a is after jiffies */ #define time_is_after_jiffies(a) time_before(jiffies, a) #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) /* * Have the 32 bit jiffies value wrap 5 minutes after boot * so jiffies wrap bugs show up earlier. */ #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) /* * Change timeval to jiffies, trying to avoid the * most obvious overflows.. * * And some not so obvious. * * Note that we don't want to return LONG_MAX, because * for various timeout reasons we often end up having * to wait "jiffies+1" in order to guarantee that we wait * at _least_ "jiffies" - so "jiffies+1" had better still * be positive. */ #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) extern unsigned long preset_lpj; /* * We want to do realistic conversions of time so we need to use the same * values the update wall clock code uses as the jiffies size. This value * is: TICK_NSEC (which is defined in timex.h). This * is a constant and is in nanoseconds. We will use scaled math * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and * NSEC_JIFFIE_SC. Note that these defines contain nothing but * constants and so are computed at compile time. SHIFT_HZ (computed in * timex.h) adjusts the scaling for different HZ values. * Scaled math??? What is that? * * Scaled math is a way to do integer math on values that would, * otherwise, either overflow, underflow, or cause undesired div * instructions to appear in the execution path. In short, we "scale" * up the operands so they take more bits (more precision, less * underflow), do the desired operation and then "scale" the result back * by the same amount. If we do the scaling by shifting we avoid the * costly mpy and the dastardly div instructions. * Suppose, for example, we want to convert from seconds to jiffies * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we * might calculate at compile time, however, the result will only have * about 3-4 bits of precision (less for smaller values of HZ). * * So, we scale as follows: * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; * Then we make SCALE a power of two so: * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; * Now we define: * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) * jiff = (sec * SEC_CONV) >> SCALE; * * Often the math we use will expand beyond 32-bits so we tell C how to * do this and pass the 64-bit result of the mpy through the ">> SCALE" * which should take the result back to 32-bits. We want this expansion * to capture as much precision as possible. At the same time we don't * want to overflow so we pick the SCALE to avoid this. In this file, * that means using a different scale for each range of HZ values (as * defined in timex.h). * * For those who want to know, gcc will give a 64-bit result from a "*" * operator if the result is a long long AND at least one of the * operands is cast to long long (usually just prior to the "*" so as * not to confuse it into thinking it really has a 64-bit operand, * which, buy the way, it can do, but it takes more code and at least 2 * mpys). * We also need to be aware that one second in nanoseconds is only a * couple of bits away from overflowing a 32-bit word, so we MUST use * 64-bits to get the full range time in nanoseconds. */ /* * Here are the scales we will use. One for seconds, nanoseconds and * microseconds. * * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and * check if the sign bit is set. If not, we bump the shift count by 1. * (Gets an extra bit of precision where we can use it.) * We know it is set for HZ = 1024 and HZ = 100 not for 1000. * Haven't tested others. * Limits of cpp (for #if expressions) only long (no long long), but * then we only need the most signicant bit. */ #define SEC_JIFFIE_SC (31 - SHIFT_HZ) #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) #undef SEC_JIFFIE_SC #define SEC_JIFFIE_SC (32 - SHIFT_HZ) #endif #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) /* * The maximum jiffie value is (MAX_INT >> 1). Here we translate that * into seconds. The 64-bit case will overflow if we are not careful, * so use the messy SH_DIV macro to do it. Still all constants. */ #if BITS_PER_LONG < 64 # define MAX_SEC_IN_JIFFIES \ (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) #else /* take care of overflow on 64 bits machines */ # define MAX_SEC_IN_JIFFIES \ (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) #endif /* * Convert various time units to each other: */ extern unsigned int jiffies_to_msecs(const unsigned long j); extern unsigned int jiffies_to_usecs(const unsigned long j); static inline u64 jiffies_to_nsecs(const unsigned long j) { return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC; } extern u64 jiffies64_to_nsecs(u64 j); extern u64 jiffies64_to_msecs(u64 j); extern unsigned long __msecs_to_jiffies(const unsigned int m); #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) /* * HZ is equal to or smaller than 1000, and 1000 is a nice round * multiple of HZ, divide with the factor between them, but round * upwards: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); } #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) /* * HZ is larger than 1000, and HZ is a nice round multiple of 1000 - * simply multiply with the factor between them. * * But first make sure the multiplication result cannot overflow: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return m * (HZ / MSEC_PER_SEC); } #else /* * Generic case - multiply, round and divide. But first check that if * we are doing a net multiplication, that we wouldn't overflow: */ static inline unsigned long _msecs_to_jiffies(const unsigned int m) { if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32; } #endif /** * msecs_to_jiffies: - convert milliseconds to jiffies * @m: time in milliseconds * * conversion is done as follows: * * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) * * - 'too large' values [that would result in larger than * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying * the input value by a factor or dividing it with a factor and * handling any 32-bit overflows. * for the details see __msecs_to_jiffies() * * msecs_to_jiffies() checks for the passed in value being a constant * via __builtin_constant_p() allowing gcc to eliminate most of the * code, __msecs_to_jiffies() is called if the value passed does not * allow constant folding and the actual conversion must be done at * runtime. * the HZ range specific helpers _msecs_to_jiffies() are called both * directly here and from __msecs_to_jiffies() in the case where * constant folding is not possible. */ static __always_inline unsigned long msecs_to_jiffies(const unsigned int m) { if (__builtin_constant_p(m)) { if ((int)m < 0) return MAX_JIFFY_OFFSET; return _msecs_to_jiffies(m); } else { return __msecs_to_jiffies(m); } } extern unsigned long __usecs_to_jiffies(const unsigned int u); #if !(USEC_PER_SEC % HZ) static inline unsigned long _usecs_to_jiffies(const unsigned int u) { return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); } #else static inline unsigned long _usecs_to_jiffies(const unsigned int u) { return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) >> USEC_TO_HZ_SHR32; } #endif /** * usecs_to_jiffies: - convert microseconds to jiffies * @u: time in microseconds * * conversion is done as follows: * * - 'too large' values [that would result in larger than * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. * * - all other values are converted to jiffies by either multiplying * the input value by a factor or dividing it with a factor and * handling any 32-bit overflows as for msecs_to_jiffies. * * usecs_to_jiffies() checks for the passed in value being a constant * via __builtin_constant_p() allowing gcc to eliminate most of the * code, __usecs_to_jiffies() is called if the value passed does not * allow constant folding and the actual conversion must be done at * runtime. * the HZ range specific helpers _usecs_to_jiffies() are called both * directly here and from __msecs_to_jiffies() in the case where * constant folding is not possible. */ static __always_inline unsigned long usecs_to_jiffies(const unsigned int u) { if (__builtin_constant_p(u)) { if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; return _usecs_to_jiffies(u); } else { return __usecs_to_jiffies(u); } } extern unsigned long timespec64_to_jiffies(const struct timespec64 *value); extern void jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value); extern clock_t jiffies_to_clock_t(unsigned long x); static inline clock_t jiffies_delta_to_clock_t(long delta) { return jiffies_to_clock_t(max(0L, delta)); } static inline unsigned int jiffies_delta_to_msecs(long delta) { return jiffies_to_msecs(max(0L, delta)); } extern unsigned long clock_t_to_jiffies(unsigned long x); extern u64 jiffies_64_to_clock_t(u64 x); extern u64 nsec_to_clock_t(u64 x); extern u64 nsecs_to_jiffies64(u64 n); extern unsigned long nsecs_to_jiffies(u64 n); #define TIMESTAMP_SIZE 30 #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Supervisor Mode Access Prevention support * * Copyright (C) 2012 Intel Corporation * Author: H. Peter Anvin <hpa@linux.intel.com> */ #ifndef _ASM_X86_SMAP_H #define _ASM_X86_SMAP_H #include <asm/nops.h> #include <asm/cpufeatures.h> /* "Raw" instruction opcodes */ #define __ASM_CLAC ".byte 0x0f,0x01,0xca" #define __ASM_STAC ".byte 0x0f,0x01,0xcb" #ifdef __ASSEMBLY__ #include <asm/alternative-asm.h> #ifdef CONFIG_X86_SMAP #define ASM_CLAC \ ALTERNATIVE "", __ASM_CLAC, X86_FEATURE_SMAP #define ASM_STAC \ ALTERNATIVE "", __ASM_STAC, X86_FEATURE_SMAP #else /* CONFIG_X86_SMAP */ #define ASM_CLAC #define ASM_STAC #endif /* CONFIG_X86_SMAP */ #else /* __ASSEMBLY__ */ #include <asm/alternative.h> #ifdef CONFIG_X86_SMAP static __always_inline void clac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_CLAC, X86_FEATURE_SMAP); } static __always_inline void stac(void) { /* Note: a barrier is implicit in alternative() */ alternative("", __ASM_STAC, X86_FEATURE_SMAP); } static __always_inline unsigned long smap_save(void) { unsigned long flags; asm volatile ("# smap_save\n\t" ALTERNATIVE("jmp 1f", "", X86_FEATURE_SMAP) "pushf; pop %0; " __ASM_CLAC "\n\t" "1:" : "=rm" (flags) : : "memory", "cc"); return flags; } static __always_inline void smap_restore(unsigned long flags) { asm volatile ("# smap_restore\n\t" ALTERNATIVE("jmp 1f", "", X86_FEATURE_SMAP) "push %0; popf\n\t" "1:" : : "g" (flags) : "memory", "cc"); } /* These macros can be used in asm() statements */ #define ASM_CLAC \ ALTERNATIVE("", __ASM_CLAC, X86_FEATURE_SMAP) #define ASM_STAC \ ALTERNATIVE("", __ASM_STAC, X86_FEATURE_SMAP) #else /* CONFIG_X86_SMAP */ static inline void clac(void) { } static inline void stac(void) { } static inline unsigned long smap_save(void) { return 0; } static inline void smap_restore(unsigned long flags) { } #define ASM_CLAC #define ASM_STAC #endif /* CONFIG_X86_SMAP */ #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMAN_H #define _LINUX_MMAN_H #include <linux/mm.h> #include <linux/percpu_counter.h> #include <linux/atomic.h> #include <uapi/linux/mman.h> /* * Arrange for legacy / undefined architecture specific flags to be * ignored by mmap handling code. */ #ifndef MAP_32BIT #define MAP_32BIT 0 #endif #ifndef MAP_HUGE_2MB #define MAP_HUGE_2MB 0 #endif #ifndef MAP_HUGE_1GB #define MAP_HUGE_1GB 0 #endif #ifndef MAP_UNINITIALIZED #define MAP_UNINITIALIZED 0 #endif #ifndef MAP_SYNC #define MAP_SYNC 0 #endif /* * The historical set of flags that all mmap implementations implicitly * support when a ->mmap_validate() op is not provided in file_operations. */ #define LEGACY_MAP_MASK (MAP_SHARED \ | MAP_PRIVATE \ | MAP_FIXED \ | MAP_ANONYMOUS \ | MAP_DENYWRITE \ | MAP_EXECUTABLE \ | MAP_UNINITIALIZED \ | MAP_GROWSDOWN \ | MAP_LOCKED \ | MAP_NORESERVE \ | MAP_POPULATE \ | MAP_NONBLOCK \ | MAP_STACK \ | MAP_HUGETLB \ | MAP_32BIT \ | MAP_HUGE_2MB \ | MAP_HUGE_1GB) extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; extern struct percpu_counter vm_committed_as; #ifdef CONFIG_SMP extern s32 vm_committed_as_batch; extern void mm_compute_batch(int overcommit_policy); #else #define vm_committed_as_batch 0 static inline void mm_compute_batch(int overcommit_policy) { } #endif unsigned long vm_memory_committed(void); static inline void vm_acct_memory(long pages) { percpu_counter_add_batch(&vm_committed_as, pages, vm_committed_as_batch); } static inline void vm_unacct_memory(long pages) { vm_acct_memory(-pages); } /* * Allow architectures to handle additional protection and flag bits. The * overriding macros must be defined in the arch-specific asm/mman.h file. */ #ifndef arch_calc_vm_prot_bits #define arch_calc_vm_prot_bits(prot, pkey) 0 #endif #ifndef arch_calc_vm_flag_bits #define arch_calc_vm_flag_bits(flags) 0 #endif #ifndef arch_vm_get_page_prot #define arch_vm_get_page_prot(vm_flags) __pgprot(0) #endif #ifndef arch_validate_prot /* * This is called from mprotect(). PROT_GROWSDOWN and PROT_GROWSUP have * already been masked out. * * Returns true if the prot flags are valid */ static inline bool arch_validate_prot(unsigned long prot, unsigned long addr) { return (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM)) == 0; } #define arch_validate_prot arch_validate_prot #endif #ifndef arch_validate_flags /* * This is called from mmap() and mprotect() with the updated vma->vm_flags. * * Returns true if the VM_* flags are valid. */ static inline bool arch_validate_flags(unsigned long flags) { return true; } #define arch_validate_flags arch_validate_flags #endif /* * Optimisation macro. It is equivalent to: * (x & bit1) ? bit2 : 0 * but this version is faster. * ("bit1" and "bit2" must be single bits) */ #define _calc_vm_trans(x, bit1, bit2) \ ((!(bit1) || !(bit2)) ? 0 : \ ((bit1) <= (bit2) ? ((x) & (bit1)) * ((bit2) / (bit1)) \ : ((x) & (bit1)) / ((bit1) / (bit2)))) /* * Combine the mmap "prot" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_prot_bits(unsigned long prot, unsigned long pkey) { return _calc_vm_trans(prot, PROT_READ, VM_READ ) | _calc_vm_trans(prot, PROT_WRITE, VM_WRITE) | _calc_vm_trans(prot, PROT_EXEC, VM_EXEC) | arch_calc_vm_prot_bits(prot, pkey); } /* * Combine the mmap "flags" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_flag_bits(unsigned long flags) { return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN ) | _calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE ) | _calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED ) | _calc_vm_trans(flags, MAP_SYNC, VM_SYNC ) | arch_calc_vm_flag_bits(flags); } unsigned long vm_commit_limit(void); #endif /* _LINUX_MMAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM printk #if !defined(_TRACE_PRINTK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PRINTK_H #include <linux/tracepoint.h> TRACE_EVENT(console, TP_PROTO(const char *text, size_t len), TP_ARGS(text, len), TP_STRUCT__entry( __dynamic_array(char, msg, len + 1) ), TP_fast_assign( /* * Each trace entry is printed in a new line. * If the msg finishes with '\n', cut it off * to avoid blank lines in the trace. */ if ((len > 0) && (text[len-1] == '\n')) len -= 1; memcpy(__get_str(msg), text, len); __get_str(msg)[len] = 0; ), TP_printk("%s", __get_str(msg)) ); #endif /* _TRACE_PRINTK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi_bus.h - ACPI Bus Driver ($Revision: 22 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef __ACPI_BUS_H__ #define __ACPI_BUS_H__ #include <linux/device.h> #include <linux/property.h> /* TBD: Make dynamic */ #define ACPI_MAX_HANDLES 10 struct acpi_handle_list { u32 count; acpi_handle handles[ACPI_MAX_HANDLES]; }; /* acpi_utils.h */ acpi_status acpi_extract_package(union acpi_object *package, struct acpi_buffer *format, struct acpi_buffer *buffer); acpi_status acpi_evaluate_integer(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, unsigned long long *data); acpi_status acpi_evaluate_reference(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, struct acpi_handle_list *list); acpi_status acpi_evaluate_ost(acpi_handle handle, u32 source_event, u32 status_code, struct acpi_buffer *status_buf); acpi_status acpi_get_physical_device_location(acpi_handle handle, struct acpi_pld_info **pld); bool acpi_has_method(acpi_handle handle, char *name); acpi_status acpi_execute_simple_method(acpi_handle handle, char *method, u64 arg); acpi_status acpi_evaluate_ej0(acpi_handle handle); acpi_status acpi_evaluate_lck(acpi_handle handle, int lock); acpi_status acpi_evaluate_reg(acpi_handle handle, u8 space_id, u32 function); bool acpi_ata_match(acpi_handle handle); bool acpi_bay_match(acpi_handle handle); bool acpi_dock_match(acpi_handle handle); bool acpi_check_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 funcs); union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4); static inline union acpi_object * acpi_evaluate_dsm_typed(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4, acpi_object_type type) { union acpi_object *obj; obj = acpi_evaluate_dsm(handle, guid, rev, func, argv4); if (obj && obj->type != type) { ACPI_FREE(obj); obj = NULL; } return obj; } #define ACPI_INIT_DSM_ARGV4(cnt, eles) \ { \ .package.type = ACPI_TYPE_PACKAGE, \ .package.count = (cnt), \ .package.elements = (eles) \ } bool acpi_dev_found(const char *hid); bool acpi_dev_present(const char *hid, const char *uid, s64 hrv); #ifdef CONFIG_ACPI struct proc_dir_entry; #define ACPI_BUS_FILE_ROOT "acpi" extern struct proc_dir_entry *acpi_root_dir; enum acpi_bus_device_type { ACPI_BUS_TYPE_DEVICE = 0, ACPI_BUS_TYPE_POWER, ACPI_BUS_TYPE_PROCESSOR, ACPI_BUS_TYPE_THERMAL, ACPI_BUS_TYPE_POWER_BUTTON, ACPI_BUS_TYPE_SLEEP_BUTTON, ACPI_BUS_TYPE_ECDT_EC, ACPI_BUS_DEVICE_TYPE_COUNT }; struct acpi_driver; struct acpi_device; /* * ACPI Scan Handler * ----------------- */ struct acpi_hotplug_profile { struct kobject kobj; int (*scan_dependent)(struct acpi_device *adev); void (*notify_online)(struct acpi_device *adev); bool enabled:1; bool demand_offline:1; }; static inline struct acpi_hotplug_profile *to_acpi_hotplug_profile( struct kobject *kobj) { return container_of(kobj, struct acpi_hotplug_profile, kobj); } struct acpi_scan_handler { const struct acpi_device_id *ids; struct list_head list_node; bool (*match)(const char *idstr, const struct acpi_device_id **matchid); int (*attach)(struct acpi_device *dev, const struct acpi_device_id *id); void (*detach)(struct acpi_device *dev); void (*bind)(struct device *phys_dev); void (*unbind)(struct device *phys_dev); struct acpi_hotplug_profile hotplug; }; /* * ACPI Hotplug Context * -------------------- */ struct acpi_hotplug_context { struct acpi_device *self; int (*notify)(struct acpi_device *, u32); void (*uevent)(struct acpi_device *, u32); void (*fixup)(struct acpi_device *); }; /* * ACPI Driver * ----------- */ typedef int (*acpi_op_add) (struct acpi_device * device); typedef int (*acpi_op_remove) (struct acpi_device * device); typedef void (*acpi_op_notify) (struct acpi_device * device, u32 event); struct acpi_device_ops { acpi_op_add add; acpi_op_remove remove; acpi_op_notify notify; }; #define ACPI_DRIVER_ALL_NOTIFY_EVENTS 0x1 /* system AND device events */ struct acpi_driver { char name[80]; char class[80]; const struct acpi_device_id *ids; /* Supported Hardware IDs */ unsigned int flags; struct acpi_device_ops ops; struct device_driver drv; struct module *owner; }; /* * ACPI Device * ----------- */ /* Status (_STA) */ struct acpi_device_status { u32 present:1; u32 enabled:1; u32 show_in_ui:1; u32 functional:1; u32 battery_present:1; u32 reserved:27; }; /* Flags */ struct acpi_device_flags { u32 dynamic_status:1; u32 removable:1; u32 ejectable:1; u32 power_manageable:1; u32 match_driver:1; u32 initialized:1; u32 visited:1; u32 hotplug_notify:1; u32 is_dock_station:1; u32 of_compatible_ok:1; u32 coherent_dma:1; u32 cca_seen:1; u32 enumeration_by_parent:1; u32 reserved:19; }; /* File System */ struct acpi_device_dir { struct proc_dir_entry *entry; }; #define acpi_device_dir(d) ((d)->dir.entry) /* Plug and Play */ typedef char acpi_bus_id[8]; typedef u64 acpi_bus_address; typedef char acpi_device_name[40]; typedef char acpi_device_class[20]; struct acpi_hardware_id { struct list_head list; const char *id; }; struct acpi_pnp_type { u32 hardware_id:1; u32 bus_address:1; u32 platform_id:1; u32 reserved:29; }; struct acpi_device_pnp { acpi_bus_id bus_id; /* Object name */ int instance_no; /* Instance number of this object */ struct acpi_pnp_type type; /* ID type */ acpi_bus_address bus_address; /* _ADR */ char *unique_id; /* _UID */ struct list_head ids; /* _HID and _CIDs */ acpi_device_name device_name; /* Driver-determined */ acpi_device_class device_class; /* " */ union acpi_object *str_obj; /* unicode string for _STR method */ }; #define acpi_device_bid(d) ((d)->pnp.bus_id) #define acpi_device_adr(d) ((d)->pnp.bus_address) const char *acpi_device_hid(struct acpi_device *device); #define acpi_device_uid(d) ((d)->pnp.unique_id) #define acpi_device_name(d) ((d)->pnp.device_name) #define acpi_device_class(d) ((d)->pnp.device_class) /* Power Management */ struct acpi_device_power_flags { u32 explicit_get:1; /* _PSC present? */ u32 power_resources:1; /* Power resources */ u32 inrush_current:1; /* Serialize Dx->D0 */ u32 power_removed:1; /* Optimize Dx->D0 */ u32 ignore_parent:1; /* Power is independent of parent power state */ u32 dsw_present:1; /* _DSW present? */ u32 reserved:26; }; struct acpi_device_power_state { struct { u8 valid:1; u8 explicit_set:1; /* _PSx present? */ u8 reserved:6; } flags; int power; /* % Power (compared to D0) */ int latency; /* Dx->D0 time (microseconds) */ struct list_head resources; /* Power resources referenced */ }; struct acpi_device_power { int state; /* Current state */ struct acpi_device_power_flags flags; struct acpi_device_power_state states[ACPI_D_STATE_COUNT]; /* Power states (D0-D3Cold) */ }; /* Performance Management */ struct acpi_device_perf_flags { u8 reserved:8; }; struct acpi_device_perf_state { struct { u8 valid:1; u8 reserved:7; } flags; u8 power; /* % Power (compared to P0) */ u8 performance; /* % Performance ( " ) */ int latency; /* Px->P0 time (microseconds) */ }; struct acpi_device_perf { int state; struct acpi_device_perf_flags flags; int state_count; struct acpi_device_perf_state *states; }; /* Wakeup Management */ struct acpi_device_wakeup_flags { u8 valid:1; /* Can successfully enable wakeup? */ u8 notifier_present:1; /* Wake-up notify handler has been installed */ }; struct acpi_device_wakeup_context { void (*func)(struct acpi_device_wakeup_context *context); struct device *dev; }; struct acpi_device_wakeup { acpi_handle gpe_device; u64 gpe_number; u64 sleep_state; struct list_head resources; struct acpi_device_wakeup_flags flags; struct acpi_device_wakeup_context context; struct wakeup_source *ws; int prepare_count; int enable_count; }; struct acpi_device_physical_node { unsigned int node_id; struct list_head node; struct device *dev; bool put_online:1; }; struct acpi_device_properties { const guid_t *guid; const union acpi_object *properties; struct list_head list; }; /* ACPI Device Specific Data (_DSD) */ struct acpi_device_data { const union acpi_object *pointer; struct list_head properties; const union acpi_object *of_compatible; struct list_head subnodes; }; struct acpi_gpio_mapping; /* Device */ struct acpi_device { int device_type; acpi_handle handle; /* no handle for fixed hardware */ struct fwnode_handle fwnode; struct acpi_device *parent; struct list_head children; struct list_head node; struct list_head wakeup_list; struct list_head del_list; struct acpi_device_status status; struct acpi_device_flags flags; struct acpi_device_pnp pnp; struct acpi_device_power power; struct acpi_device_wakeup wakeup; struct acpi_device_perf performance; struct acpi_device_dir dir; struct acpi_device_data data; struct acpi_scan_handler *handler; struct acpi_hotplug_context *hp; struct acpi_driver *driver; const struct acpi_gpio_mapping *driver_gpios; void *driver_data; struct device dev; unsigned int physical_node_count; unsigned int dep_unmet; struct list_head physical_node_list; struct mutex physical_node_lock; void (*remove)(struct acpi_device *); }; /* Non-device subnode */ struct acpi_data_node { const char *name; acpi_handle handle; struct fwnode_handle fwnode; struct fwnode_handle *parent; struct acpi_device_data data; struct list_head sibling; struct kobject kobj; struct completion kobj_done; }; extern const struct fwnode_operations acpi_device_fwnode_ops; extern const struct fwnode_operations acpi_data_fwnode_ops; extern const struct fwnode_operations acpi_static_fwnode_ops; bool is_acpi_device_node(const struct fwnode_handle *fwnode); bool is_acpi_data_node(const struct fwnode_handle *fwnode); static inline bool is_acpi_node(const struct fwnode_handle *fwnode) { return (is_acpi_device_node(fwnode) || is_acpi_data_node(fwnode)); } #define to_acpi_device_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_device_node_fwnode = __fwnode; \ \ is_acpi_device_node(__to_acpi_device_node_fwnode) ? \ container_of(__to_acpi_device_node_fwnode, \ struct acpi_device, fwnode) : \ NULL; \ }) #define to_acpi_data_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_data_node_fwnode = __fwnode; \ \ is_acpi_data_node(__to_acpi_data_node_fwnode) ? \ container_of(__to_acpi_data_node_fwnode, \ struct acpi_data_node, fwnode) : \ NULL; \ }) static inline bool is_acpi_static_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_static_fwnode_ops; } static inline bool acpi_data_node_match(const struct fwnode_handle *fwnode, const char *name) { return is_acpi_data_node(fwnode) ? (!strcmp(to_acpi_data_node(fwnode)->name, name)) : false; } static inline struct fwnode_handle *acpi_fwnode_handle(struct acpi_device *adev) { return &adev->fwnode; } static inline void *acpi_driver_data(struct acpi_device *d) { return d->driver_data; } #define to_acpi_device(d) container_of(d, struct acpi_device, dev) #define to_acpi_driver(d) container_of(d, struct acpi_driver, drv) static inline void acpi_set_device_status(struct acpi_device *adev, u32 sta) { *((u32 *)&adev->status) = sta; } static inline void acpi_set_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp) { hp->self = adev; adev->hp = hp; } void acpi_initialize_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp, int (*notify)(struct acpi_device *, u32), void (*uevent)(struct acpi_device *, u32)); /* acpi_device.dev.bus == &acpi_bus_type */ extern struct bus_type acpi_bus_type; /* * Events * ------ */ struct acpi_bus_event { struct list_head node; acpi_device_class device_class; acpi_bus_id bus_id; u32 type; u32 data; }; extern struct kobject *acpi_kobj; extern int acpi_bus_generate_netlink_event(const char*, const char*, u8, int); void acpi_bus_private_data_handler(acpi_handle, void *); int acpi_bus_get_private_data(acpi_handle, void **); int acpi_bus_attach_private_data(acpi_handle, void *); void acpi_bus_detach_private_data(acpi_handle); extern int acpi_notifier_call_chain(struct acpi_device *, u32, u32); extern int register_acpi_notifier(struct notifier_block *); extern int unregister_acpi_notifier(struct notifier_block *); /* * External Functions */ int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device); struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle); void acpi_bus_put_acpi_device(struct acpi_device *adev); acpi_status acpi_bus_get_status_handle(acpi_handle handle, unsigned long long *sta); int acpi_bus_get_status(struct acpi_device *device); int acpi_bus_set_power(acpi_handle handle, int state); const char *acpi_power_state_string(int state); int acpi_device_set_power(struct acpi_device *device, int state); int acpi_bus_init_power(struct acpi_device *device); int acpi_device_fix_up_power(struct acpi_device *device); int acpi_bus_update_power(acpi_handle handle, int *state_p); int acpi_device_update_power(struct acpi_device *device, int *state_p); bool acpi_bus_power_manageable(acpi_handle handle); int acpi_device_power_add_dependent(struct acpi_device *adev, struct device *dev); void acpi_device_power_remove_dependent(struct acpi_device *adev, struct device *dev); #ifdef CONFIG_PM bool acpi_bus_can_wakeup(acpi_handle handle); #else static inline bool acpi_bus_can_wakeup(acpi_handle handle) { return false; } #endif void acpi_scan_lock_acquire(void); void acpi_scan_lock_release(void); void acpi_lock_hp_context(void); void acpi_unlock_hp_context(void); int acpi_scan_add_handler(struct acpi_scan_handler *handler); int acpi_bus_register_driver(struct acpi_driver *driver); void acpi_bus_unregister_driver(struct acpi_driver *driver); int acpi_bus_scan(acpi_handle handle); void acpi_bus_trim(struct acpi_device *start); acpi_status acpi_bus_get_ejd(acpi_handle handle, acpi_handle * ejd); int acpi_match_device_ids(struct acpi_device *device, const struct acpi_device_id *ids); void acpi_set_modalias(struct acpi_device *adev, const char *default_id, char *modalias, size_t len); int acpi_create_dir(struct acpi_device *); void acpi_remove_dir(struct acpi_device *); static inline bool acpi_device_enumerated(struct acpi_device *adev) { return adev && adev->flags.initialized && adev->flags.visited; } /** * module_acpi_driver(acpi_driver) - Helper macro for registering an ACPI driver * @__acpi_driver: acpi_driver struct * * Helper macro for ACPI drivers which do not do anything special in module * init/exit. This eliminates a lot of boilerplate. Each module may only * use this macro once, and calling it replaces module_init() and module_exit() */ #define module_acpi_driver(__acpi_driver) \ module_driver(__acpi_driver, acpi_bus_register_driver, \ acpi_bus_unregister_driver) /* * Bind physical devices with ACPI devices */ struct acpi_bus_type { struct list_head list; const char *name; bool (*match)(struct device *dev); struct acpi_device * (*find_companion)(struct device *); void (*setup)(struct device *); void (*cleanup)(struct device *); }; int register_acpi_bus_type(struct acpi_bus_type *); int unregister_acpi_bus_type(struct acpi_bus_type *); int acpi_bind_one(struct device *dev, struct acpi_device *adev); int acpi_unbind_one(struct device *dev); struct acpi_pci_root { struct acpi_device * device; struct pci_bus *bus; u16 segment; struct resource secondary; /* downstream bus range */ u32 osc_support_set; /* _OSC state of support bits */ u32 osc_control_set; /* _OSC state of control bits */ phys_addr_t mcfg_addr; }; /* helper */ bool acpi_dma_supported(struct acpi_device *adev); enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev); int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, u64 *size); int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, const u32 *input_id); static inline int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr) { return acpi_dma_configure_id(dev, attr, NULL); } struct acpi_device *acpi_find_child_device(struct acpi_device *parent, u64 address, bool check_children); int acpi_is_root_bridge(acpi_handle); struct acpi_pci_root *acpi_pci_find_root(acpi_handle handle); int acpi_enable_wakeup_device_power(struct acpi_device *dev, int state); int acpi_disable_wakeup_device_power(struct acpi_device *dev); #ifdef CONFIG_X86 bool acpi_device_always_present(struct acpi_device *adev); #else static inline bool acpi_device_always_present(struct acpi_device *adev) { return false; } #endif #ifdef CONFIG_PM void acpi_pm_wakeup_event(struct device *dev); acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)); acpi_status acpi_remove_pm_notifier(struct acpi_device *adev); bool acpi_pm_device_can_wakeup(struct device *dev); int acpi_pm_device_sleep_state(struct device *, int *, int); int acpi_pm_set_device_wakeup(struct device *dev, bool enable); #else static inline void acpi_pm_wakeup_event(struct device *dev) { } static inline acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)) { return AE_SUPPORT; } static inline acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) { return AE_SUPPORT; } static inline bool acpi_pm_device_can_wakeup(struct device *dev) { return false; } static inline int acpi_pm_device_sleep_state(struct device *d, int *p, int m) { if (p) *p = ACPI_STATE_D0; return (m >= ACPI_STATE_D0 && m <= ACPI_STATE_D3_COLD) ? m : ACPI_STATE_D0; } static inline int acpi_pm_set_device_wakeup(struct device *dev, bool enable) { return -ENODEV; } #endif #ifdef CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT bool acpi_sleep_state_supported(u8 sleep_state); #else static inline bool acpi_sleep_state_supported(u8 sleep_state) { return false; } #endif #ifdef CONFIG_ACPI_SLEEP u32 acpi_target_system_state(void); #else static inline u32 acpi_target_system_state(void) { return ACPI_STATE_S0; } #endif static inline bool acpi_device_power_manageable(struct acpi_device *adev) { return adev->flags.power_manageable; } static inline bool acpi_device_can_wakeup(struct acpi_device *adev) { return adev->wakeup.flags.valid; } static inline bool acpi_device_can_poweroff(struct acpi_device *adev) { return adev->power.states[ACPI_STATE_D3_COLD].flags.valid || ((acpi_gbl_FADT.header.revision < 6) && adev->power.states[ACPI_STATE_D3_HOT].flags.explicit_set); } bool acpi_dev_hid_uid_match(struct acpi_device *adev, const char *hid2, const char *uid2); struct acpi_device * acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv); static inline void acpi_dev_put(struct acpi_device *adev) { if (adev) put_device(&adev->dev); } #else /* CONFIG_ACPI */ static inline int register_acpi_bus_type(void *bus) { return 0; } static inline int unregister_acpi_bus_type(void *bus) { return 0; } #endif /* CONFIG_ACPI */ #endif /*__ACPI_BUS_H__*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KERNEL_STAT_H #define _LINUX_KERNEL_STAT_H #include <linux/smp.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/vtime.h> #include <asm/irq.h> /* * 'kernel_stat.h' contains the definitions needed for doing * some kernel statistics (CPU usage, context switches ...), * used by rstatd/perfmeter */ enum cpu_usage_stat { CPUTIME_USER, CPUTIME_NICE, CPUTIME_SYSTEM, CPUTIME_SOFTIRQ, CPUTIME_IRQ, CPUTIME_IDLE, CPUTIME_IOWAIT, CPUTIME_STEAL, CPUTIME_GUEST, CPUTIME_GUEST_NICE, NR_STATS, }; struct kernel_cpustat { u64 cpustat[NR_STATS]; }; struct kernel_stat { unsigned long irqs_sum; unsigned int softirqs[NR_SOFTIRQS]; }; DECLARE_PER_CPU(struct kernel_stat, kstat); DECLARE_PER_CPU(struct kernel_cpustat, kernel_cpustat); /* Must have preemption disabled for this to be meaningful. */ #define kstat_this_cpu this_cpu_ptr(&kstat) #define kcpustat_this_cpu this_cpu_ptr(&kernel_cpustat) #define kstat_cpu(cpu) per_cpu(kstat, cpu) #define kcpustat_cpu(cpu) per_cpu(kernel_cpustat, cpu) extern unsigned long long nr_context_switches(void); extern unsigned int kstat_irqs_cpu(unsigned int irq, int cpu); extern void kstat_incr_irq_this_cpu(unsigned int irq); static inline void kstat_incr_softirqs_this_cpu(unsigned int irq) { __this_cpu_inc(kstat.softirqs[irq]); } static inline unsigned int kstat_softirqs_cpu(unsigned int irq, int cpu) { return kstat_cpu(cpu).softirqs[irq]; } /* * Number of interrupts per specific IRQ source, since bootup */ extern unsigned int kstat_irqs(unsigned int irq); extern unsigned int kstat_irqs_usr(unsigned int irq); /* * Number of interrupts per cpu, since bootup */ static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu) { return kstat_cpu(cpu).irqs_sum; } #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu); extern void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu); #else static inline u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu) { return kcpustat->cpustat[usage]; } static inline void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) { *dst = kcpustat_cpu(cpu); } #endif extern void account_user_time(struct task_struct *, u64); extern void account_guest_time(struct task_struct *, u64); extern void account_system_time(struct task_struct *, int, u64); extern void account_system_index_time(struct task_struct *, u64, enum cpu_usage_stat); extern void account_steal_time(u64); extern void account_idle_time(u64); extern u64 get_idle_time(struct kernel_cpustat *kcs, int cpu); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE static inline void account_process_tick(struct task_struct *tsk, int user) { vtime_flush(tsk); } #else extern void account_process_tick(struct task_struct *, int user); #endif extern void account_idle_ticks(unsigned long ticks); #endif /* _LINUX_KERNEL_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 1999-2002 Vojtech Pavlik */ #ifndef _INPUT_H #define _INPUT_H #include <linux/time.h> #include <linux/list.h> #include <uapi/linux/input.h> /* Implementation details, userspace should not care about these */ #define ABS_MT_FIRST ABS_MT_TOUCH_MAJOR #define ABS_MT_LAST ABS_MT_TOOL_Y /* * In-kernel definitions. */ #include <linux/device.h> #include <linux/fs.h> #include <linux/timer.h> #include <linux/mod_devicetable.h> struct input_dev_poller; /** * struct input_value - input value representation * @type: type of value (EV_KEY, EV_ABS, etc) * @code: the value code * @value: the value */ struct input_value { __u16 type; __u16 code; __s32 value; }; enum input_clock_type { INPUT_CLK_REAL = 0, INPUT_CLK_MONO, INPUT_CLK_BOOT, INPUT_CLK_MAX }; /** * struct input_dev - represents an input device * @name: name of the device * @phys: physical path to the device in the system hierarchy * @uniq: unique identification code for the device (if device has it) * @id: id of the device (struct input_id) * @propbit: bitmap of device properties and quirks * @evbit: bitmap of types of events supported by the device (EV_KEY, * EV_REL, etc.) * @keybit: bitmap of keys/buttons this device has * @relbit: bitmap of relative axes for the device * @absbit: bitmap of absolute axes for the device * @mscbit: bitmap of miscellaneous events supported by the device * @ledbit: bitmap of leds present on the device * @sndbit: bitmap of sound effects supported by the device * @ffbit: bitmap of force feedback effects supported by the device * @swbit: bitmap of switches present on the device * @hint_events_per_packet: average number of events generated by the * device in a packet (between EV_SYN/SYN_REPORT events). Used by * event handlers to estimate size of the buffer needed to hold * events. * @keycodemax: size of keycode table * @keycodesize: size of elements in keycode table * @keycode: map of scancodes to keycodes for this device * @getkeycode: optional legacy method to retrieve current keymap. * @setkeycode: optional method to alter current keymap, used to implement * sparse keymaps. If not supplied default mechanism will be used. * The method is being called while holding event_lock and thus must * not sleep * @ff: force feedback structure associated with the device if device * supports force feedback effects * @poller: poller structure associated with the device if device is * set up to use polling mode * @repeat_key: stores key code of the last key pressed; used to implement * software autorepeat * @timer: timer for software autorepeat * @rep: current values for autorepeat parameters (delay, rate) * @mt: pointer to multitouch state * @absinfo: array of &struct input_absinfo elements holding information * about absolute axes (current value, min, max, flat, fuzz, * resolution) * @key: reflects current state of device's keys/buttons * @led: reflects current state of device's LEDs * @snd: reflects current state of sound effects * @sw: reflects current state of device's switches * @open: this method is called when the very first user calls * input_open_device(). The driver must prepare the device * to start generating events (start polling thread, * request an IRQ, submit URB, etc.) * @close: this method is called when the very last user calls * input_close_device(). * @flush: purges the device. Most commonly used to get rid of force * feedback effects loaded into the device when disconnecting * from it * @event: event handler for events sent _to_ the device, like EV_LED * or EV_SND. The device is expected to carry out the requested * action (turn on a LED, play sound, etc.) The call is protected * by @event_lock and must not sleep * @grab: input handle that currently has the device grabbed (via * EVIOCGRAB ioctl). When a handle grabs a device it becomes sole * recipient for all input events coming from the device * @event_lock: this spinlock is taken when input core receives * and processes a new event for the device (in input_event()). * Code that accesses and/or modifies parameters of a device * (such as keymap or absmin, absmax, absfuzz, etc.) after device * has been registered with input core must take this lock. * @mutex: serializes calls to open(), close() and flush() methods * @users: stores number of users (input handlers) that opened this * device. It is used by input_open_device() and input_close_device() * to make sure that dev->open() is only called when the first * user opens device and dev->close() is called when the very * last user closes the device * @going_away: marks devices that are in a middle of unregistering and * causes input_open_device*() fail with -ENODEV. * @dev: driver model's view of this device * @h_list: list of input handles associated with the device. When * accessing the list dev->mutex must be held * @node: used to place the device onto input_dev_list * @num_vals: number of values queued in the current frame * @max_vals: maximum number of values queued in a frame * @vals: array of values queued in the current frame * @devres_managed: indicates that devices is managed with devres framework * and needs not be explicitly unregistered or freed. * @timestamp: storage for a timestamp set by input_set_timestamp called * by a driver */ struct input_dev { const char *name; const char *phys; const char *uniq; struct input_id id; unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]; unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; unsigned int hint_events_per_packet; unsigned int keycodemax; unsigned int keycodesize; void *keycode; int (*setkeycode)(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode); int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke); struct ff_device *ff; struct input_dev_poller *poller; unsigned int repeat_key; struct timer_list timer; int rep[REP_CNT]; struct input_mt *mt; struct input_absinfo *absinfo; unsigned long key[BITS_TO_LONGS(KEY_CNT)]; unsigned long led[BITS_TO_LONGS(LED_CNT)]; unsigned long snd[BITS_TO_LONGS(SND_CNT)]; unsigned long sw[BITS_TO_LONGS(SW_CNT)]; int (*open)(struct input_dev *dev); void (*close)(struct input_dev *dev); int (*flush)(struct input_dev *dev, struct file *file); int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); struct input_handle __rcu *grab; spinlock_t event_lock; struct mutex mutex; unsigned int users; bool going_away; struct device dev; struct list_head h_list; struct list_head node; unsigned int num_vals; unsigned int max_vals; struct input_value *vals; bool devres_managed; ktime_t timestamp[INPUT_CLK_MAX]; }; #define to_input_dev(d) container_of(d, struct input_dev, dev) /* * Verify that we are in sync with input_device_id mod_devicetable.h #defines */ #if EV_MAX != INPUT_DEVICE_ID_EV_MAX #error "EV_MAX and INPUT_DEVICE_ID_EV_MAX do not match" #endif #if KEY_MIN_INTERESTING != INPUT_DEVICE_ID_KEY_MIN_INTERESTING #error "KEY_MIN_INTERESTING and INPUT_DEVICE_ID_KEY_MIN_INTERESTING do not match" #endif #if KEY_MAX != INPUT_DEVICE_ID_KEY_MAX #error "KEY_MAX and INPUT_DEVICE_ID_KEY_MAX do not match" #endif #if REL_MAX != INPUT_DEVICE_ID_REL_MAX #error "REL_MAX and INPUT_DEVICE_ID_REL_MAX do not match" #endif #if ABS_MAX != INPUT_DEVICE_ID_ABS_MAX #error "ABS_MAX and INPUT_DEVICE_ID_ABS_MAX do not match" #endif #if MSC_MAX != INPUT_DEVICE_ID_MSC_MAX #error "MSC_MAX and INPUT_DEVICE_ID_MSC_MAX do not match" #endif #if LED_MAX != INPUT_DEVICE_ID_LED_MAX #error "LED_MAX and INPUT_DEVICE_ID_LED_MAX do not match" #endif #if SND_MAX != INPUT_DEVICE_ID_SND_MAX #error "SND_MAX and INPUT_DEVICE_ID_SND_MAX do not match" #endif #if FF_MAX != INPUT_DEVICE_ID_FF_MAX #error "FF_MAX and INPUT_DEVICE_ID_FF_MAX do not match" #endif #if SW_MAX != INPUT_DEVICE_ID_SW_MAX #error "SW_MAX and INPUT_DEVICE_ID_SW_MAX do not match" #endif #if INPUT_PROP_MAX != INPUT_DEVICE_ID_PROP_MAX #error "INPUT_PROP_MAX and INPUT_DEVICE_ID_PROP_MAX do not match" #endif #define INPUT_DEVICE_ID_MATCH_DEVICE \ (INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT) #define INPUT_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ (INPUT_DEVICE_ID_MATCH_DEVICE | INPUT_DEVICE_ID_MATCH_VERSION) struct input_handle; /** * struct input_handler - implements one of interfaces for input devices * @private: driver-specific data * @event: event handler. This method is being called by input core with * interrupts disabled and dev->event_lock spinlock held and so * it may not sleep * @events: event sequence handler. This method is being called by * input core with interrupts disabled and dev->event_lock * spinlock held and so it may not sleep * @filter: similar to @event; separates normal event handlers from * "filters". * @match: called after comparing device's id with handler's id_table * to perform fine-grained matching between device and handler * @connect: called when attaching a handler to an input device * @disconnect: disconnects a handler from input device * @start: starts handler for given handle. This function is called by * input core right after connect() method and also when a process * that "grabbed" a device releases it * @legacy_minors: set to %true by drivers using legacy minor ranges * @minor: beginning of range of 32 legacy minors for devices this driver * can provide * @name: name of the handler, to be shown in /proc/bus/input/handlers * @id_table: pointer to a table of input_device_ids this driver can * handle * @h_list: list of input handles associated with the handler * @node: for placing the driver onto input_handler_list * * Input handlers attach to input devices and create input handles. There * are likely several handlers attached to any given input device at the * same time. All of them will get their copy of input event generated by * the device. * * The very same structure is used to implement input filters. Input core * allows filters to run first and will not pass event to regular handlers * if any of the filters indicate that the event should be filtered (by * returning %true from their filter() method). * * Note that input core serializes calls to connect() and disconnect() * methods. */ struct input_handler { void *private; void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value); void (*events)(struct input_handle *handle, const struct input_value *vals, unsigned int count); bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value); bool (*match)(struct input_handler *handler, struct input_dev *dev); int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id); void (*disconnect)(struct input_handle *handle); void (*start)(struct input_handle *handle); bool legacy_minors; int minor; const char *name; const struct input_device_id *id_table; struct list_head h_list; struct list_head node; }; /** * struct input_handle - links input device with an input handler * @private: handler-specific data * @open: counter showing whether the handle is 'open', i.e. should deliver * events from its device * @name: name given to the handle by handler that created it * @dev: input device the handle is attached to * @handler: handler that works with the device through this handle * @d_node: used to put the handle on device's list of attached handles * @h_node: used to put the handle on handler's list of handles from which * it gets events */ struct input_handle { void *private; int open; const char *name; struct input_dev *dev; struct input_handler *handler; struct list_head d_node; struct list_head h_node; }; struct input_dev __must_check *input_allocate_device(void); struct input_dev __must_check *devm_input_allocate_device(struct device *); void input_free_device(struct input_dev *dev); static inline struct input_dev *input_get_device(struct input_dev *dev) { return dev ? to_input_dev(get_device(&dev->dev)) : NULL; } static inline void input_put_device(struct input_dev *dev) { if (dev) put_device(&dev->dev); } static inline void *input_get_drvdata(struct input_dev *dev) { return dev_get_drvdata(&dev->dev); } static inline void input_set_drvdata(struct input_dev *dev, void *data) { dev_set_drvdata(&dev->dev, data); } int __must_check input_register_device(struct input_dev *); void input_unregister_device(struct input_dev *); void input_reset_device(struct input_dev *); int input_setup_polling(struct input_dev *dev, void (*poll_fn)(struct input_dev *dev)); void input_set_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_min_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_max_poll_interval(struct input_dev *dev, unsigned int interval); int input_get_poll_interval(struct input_dev *dev); int __must_check input_register_handler(struct input_handler *); void input_unregister_handler(struct input_handler *); int __must_check input_get_new_minor(int legacy_base, unsigned int legacy_num, bool allow_dynamic); void input_free_minor(unsigned int minor); int input_handler_for_each_handle(struct input_handler *, void *data, int (*fn)(struct input_handle *, void *)); int input_register_handle(struct input_handle *); void input_unregister_handle(struct input_handle *); int input_grab_device(struct input_handle *); void input_release_device(struct input_handle *); int input_open_device(struct input_handle *); void input_close_device(struct input_handle *); int input_flush_device(struct input_handle *handle, struct file *file); void input_set_timestamp(struct input_dev *dev, ktime_t timestamp); ktime_t *input_get_timestamp(struct input_dev *dev); void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value); static inline void input_report_key(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_KEY, code, !!value); } static inline void input_report_rel(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_REL, code, value); } static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_ABS, code, value); } static inline void input_report_ff_status(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_FF_STATUS, code, value); } static inline void input_report_switch(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_SW, code, !!value); } static inline void input_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_REPORT, 0); } static inline void input_mt_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_MT_REPORT, 0); } void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code); /** * input_set_events_per_packet - tell handlers about the driver event rate * @dev: the input device used by the driver * @n_events: the average number of events between calls to input_sync() * * If the event rate sent from a device is unusually large, use this * function to set the expected event rate. This will allow handlers * to set up an appropriate buffer size for the event stream, in order * to minimize information loss. */ static inline void input_set_events_per_packet(struct input_dev *dev, int n_events) { dev->hint_events_per_packet = n_events; } void input_alloc_absinfo(struct input_dev *dev); void input_set_abs_params(struct input_dev *dev, unsigned int axis, int min, int max, int fuzz, int flat); #define INPUT_GENERATE_ABS_ACCESSORS(_suffix, _item) \ static inline int input_abs_get_##_suffix(struct input_dev *dev, \ unsigned int axis) \ { \ return dev->absinfo ? dev->absinfo[axis]._item : 0; \ } \ \ static inline void input_abs_set_##_suffix(struct input_dev *dev, \ unsigned int axis, int val) \ { \ input_alloc_absinfo(dev); \ if (dev->absinfo) \ dev->absinfo[axis]._item = val; \ } INPUT_GENERATE_ABS_ACCESSORS(val, value) INPUT_GENERATE_ABS_ACCESSORS(min, minimum) INPUT_GENERATE_ABS_ACCESSORS(max, maximum) INPUT_GENERATE_ABS_ACCESSORS(fuzz, fuzz) INPUT_GENERATE_ABS_ACCESSORS(flat, flat) INPUT_GENERATE_ABS_ACCESSORS(res, resolution) int input_scancode_to_scalar(const struct input_keymap_entry *ke, unsigned int *scancode); int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke); int input_set_keycode(struct input_dev *dev, const struct input_keymap_entry *ke); bool input_match_device_id(const struct input_dev *dev, const struct input_device_id *id); void input_enable_softrepeat(struct input_dev *dev, int delay, int period); extern struct class input_class; /** * struct ff_device - force-feedback part of an input device * @upload: Called to upload an new effect into device * @erase: Called to erase an effect from device * @playback: Called to request device to start playing specified effect * @set_gain: Called to set specified gain * @set_autocenter: Called to auto-center device * @destroy: called by input core when parent input device is being * destroyed * @private: driver-specific data, will be freed automatically * @ffbit: bitmap of force feedback capabilities truly supported by * device (not emulated like ones in input_dev->ffbit) * @mutex: mutex for serializing access to the device * @max_effects: maximum number of effects supported by device * @effects: pointer to an array of effects currently loaded into device * @effect_owners: array of effect owners; when file handle owning * an effect gets closed the effect is automatically erased * * Every force-feedback device must implement upload() and playback() * methods; erase() is optional. set_gain() and set_autocenter() need * only be implemented if driver sets up FF_GAIN and FF_AUTOCENTER * bits. * * Note that playback(), set_gain() and set_autocenter() are called with * dev->event_lock spinlock held and interrupts off and thus may not * sleep. */ struct ff_device { int (*upload)(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old); int (*erase)(struct input_dev *dev, int effect_id); int (*playback)(struct input_dev *dev, int effect_id, int value); void (*set_gain)(struct input_dev *dev, u16 gain); void (*set_autocenter)(struct input_dev *dev, u16 magnitude); void (*destroy)(struct ff_device *); void *private; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; struct mutex mutex; int max_effects; struct ff_effect *effects; struct file *effect_owners[]; }; int input_ff_create(struct input_dev *dev, unsigned int max_effects); void input_ff_destroy(struct input_dev *dev); int input_ff_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); int input_ff_upload(struct input_dev *dev, struct ff_effect *effect, struct file *file); int input_ff_erase(struct input_dev *dev, int effect_id, struct file *file); int input_ff_flush(struct input_dev *dev, struct file *file); int input_ff_create_memless(struct input_dev *dev, void *data, int (*play_effect)(struct input_dev *, void *, struct ff_effect *)); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG80211_RDEV_OPS #define __CFG80211_RDEV_OPS #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "core.h" #include "trace.h" static inline int rdev_suspend(struct cfg80211_registered_device *rdev, struct cfg80211_wowlan *wowlan) { int ret; trace_rdev_suspend(&rdev->wiphy, wowlan); ret = rdev->ops->suspend(&rdev->wiphy, wowlan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_resume(struct cfg80211_registered_device *rdev) { int ret; trace_rdev_resume(&rdev->wiphy); ret = rdev->ops->resume(&rdev->wiphy); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_set_wakeup(struct cfg80211_registered_device *rdev, bool enabled) { trace_rdev_set_wakeup(&rdev->wiphy, enabled); rdev->ops->set_wakeup(&rdev->wiphy, enabled); trace_rdev_return_void(&rdev->wiphy); } static inline struct wireless_dev *rdev_add_virtual_intf(struct cfg80211_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct wireless_dev *ret; trace_rdev_add_virtual_intf(&rdev->wiphy, name, type); ret = rdev->ops->add_virtual_intf(&rdev->wiphy, name, name_assign_type, type, params); trace_rdev_return_wdev(&rdev->wiphy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_del_virtual_intf(&rdev->wiphy, wdev); ret = rdev->ops->del_virtual_intf(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_virtual_intf(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { int ret; trace_rdev_change_virtual_intf(&rdev->wiphy, dev, type); ret = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, type, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int ret; trace_rdev_add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params->mode); ret = rdev->ops->add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)) { int ret; trace_rdev_get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, cookie, callback); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr) { int ret; trace_rdev_del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool unicast, bool multicast) { int ret; trace_rdev_set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); ret = rdev->ops->set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_mgmt_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_mgmt_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_mgmt_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_beacon_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_beacon_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_beacon_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ap_settings *settings) { int ret; trace_rdev_start_ap(&rdev->wiphy, dev, settings); ret = rdev->ops->start_ap(&rdev->wiphy, dev, settings); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_beacon(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_beacon_data *info) { int ret; trace_rdev_change_beacon(&rdev->wiphy, dev, info); ret = rdev->ops->change_beacon(&rdev->wiphy, dev, info); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_stop_ap(&rdev->wiphy, dev); ret = rdev->ops->stop_ap(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_add_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->add_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_station(struct cfg80211_registered_device *rdev, struct net_device *dev, struct station_del_parameters *params) { int ret; trace_rdev_del_station(&rdev->wiphy, dev, params); ret = rdev->ops->del_station(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_change_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->change_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_station(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_get_station(&rdev->wiphy, dev, mac); ret = rdev->ops->get_station(&rdev->wiphy, dev, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_dump_station(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_dump_station(&rdev->wiphy, dev, idx, mac); ret = rdev->ops->dump_station(&rdev->wiphy, dev, idx, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_add_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_add_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->add_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst) { int ret; trace_rdev_del_mpath(&rdev->wiphy, dev, dst); ret = rdev->ops->del_mpath(&rdev->wiphy, dev, dst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_change_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->change_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->get_mpath(&rdev->wiphy, dev, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpp(&rdev->wiphy, dev, dst, mpp); ret = rdev->ops->get_mpp(&rdev->wiphy, dev, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop); ret = rdev->ops->dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpp(&rdev->wiphy, dev, idx, dst, mpp); ret = rdev->ops->dump_mpp(&rdev->wiphy, dev, idx, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_config *conf) { int ret; trace_rdev_get_mesh_config(&rdev->wiphy, dev); ret = rdev->ops->get_mesh_config(&rdev->wiphy, dev, conf); trace_rdev_return_int_mesh_config(&rdev->wiphy, ret, conf); return ret; } static inline int rdev_update_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { int ret; trace_rdev_update_mesh_config(&rdev->wiphy, dev, mask, nconf); ret = rdev->ops->update_mesh_config(&rdev->wiphy, dev, mask, nconf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { int ret; trace_rdev_join_mesh(&rdev->wiphy, dev, conf, setup); ret = rdev->ops->join_mesh(&rdev->wiphy, dev, conf, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_mesh(&rdev->wiphy, dev); ret = rdev->ops->leave_mesh(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup) { int ret; trace_rdev_join_ocb(&rdev->wiphy, dev, setup); ret = rdev->ops->join_ocb(&rdev->wiphy, dev, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ocb(&rdev->wiphy, dev); ret = rdev->ops->leave_ocb(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_bss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct bss_parameters *params) { int ret; trace_rdev_change_bss(&rdev->wiphy, dev, params); ret = rdev->ops->change_bss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_txq_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_txq_params *params) { int ret; trace_rdev_set_txq_params(&rdev->wiphy, dev, params); ret = rdev->ops->set_txq_params(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_libertas_set_mesh_channel(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan) { int ret; trace_rdev_libertas_set_mesh_channel(&rdev->wiphy, dev, chan); ret = rdev->ops->libertas_set_mesh_channel(&rdev->wiphy, dev, chan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_monitor_channel(&rdev->wiphy, chandef); ret = rdev->ops->set_monitor_channel(&rdev->wiphy, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_scan(struct cfg80211_registered_device *rdev, struct cfg80211_scan_request *request) { int ret; trace_rdev_scan(&rdev->wiphy, request); ret = rdev->ops->scan(&rdev->wiphy, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_scan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_abort_scan(&rdev->wiphy, wdev); rdev->ops->abort_scan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req) { int ret; trace_rdev_auth(&rdev->wiphy, dev, req); ret = rdev->ops->auth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req) { int ret; trace_rdev_assoc(&rdev->wiphy, dev, req); ret = rdev->ops->assoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_deauth_request *req) { int ret; trace_rdev_deauth(&rdev->wiphy, dev, req); ret = rdev->ops->deauth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_disassoc_request *req) { int ret; trace_rdev_disassoc(&rdev->wiphy, dev, req); ret = rdev->ops->disassoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme) { int ret; trace_rdev_connect(&rdev->wiphy, dev, sme); ret = rdev->ops->connect(&rdev->wiphy, dev, sme); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_connect_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme, u32 changed) { int ret; trace_rdev_update_connect_params(&rdev->wiphy, dev, sme, changed); ret = rdev->ops->update_connect_params(&rdev->wiphy, dev, sme, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason_code) { int ret; trace_rdev_disconnect(&rdev->wiphy, dev, reason_code); ret = rdev->ops->disconnect(&rdev->wiphy, dev, reason_code); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params) { int ret; trace_rdev_join_ibss(&rdev->wiphy, dev, params); ret = rdev->ops->join_ibss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ibss(&rdev->wiphy, dev); ret = rdev->ops->leave_ibss(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_wiphy_params(struct cfg80211_registered_device *rdev, u32 changed) { int ret; if (!rdev->ops->set_wiphy_params) return -EOPNOTSUPP; trace_rdev_set_wiphy_params(&rdev->wiphy, changed); ret = rdev->ops->set_wiphy_params(&rdev->wiphy, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { int ret; trace_rdev_set_tx_power(&rdev->wiphy, wdev, type, mbm); ret = rdev->ops->set_tx_power(&rdev->wiphy, wdev, type, mbm); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, int *dbm) { int ret; trace_rdev_get_tx_power(&rdev->wiphy, wdev); ret = rdev->ops->get_tx_power(&rdev->wiphy, wdev, dbm); trace_rdev_return_int_int(&rdev->wiphy, ret, *dbm); return ret; } static inline int rdev_set_wds_peer(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { int ret; trace_rdev_set_wds_peer(&rdev->wiphy, dev, addr); ret = rdev->ops->set_wds_peer(&rdev->wiphy, dev, addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_multicast_to_unicast(struct cfg80211_registered_device *rdev, struct net_device *dev, const bool enabled) { int ret; trace_rdev_set_multicast_to_unicast(&rdev->wiphy, dev, enabled); ret = rdev->ops->set_multicast_to_unicast(&rdev->wiphy, dev, enabled); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_txq_stats(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_txq_stats *txqstats) { int ret; trace_rdev_get_txq_stats(&rdev->wiphy, wdev); ret = rdev->ops->get_txq_stats(&rdev->wiphy, wdev, txqstats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_rfkill_poll(struct cfg80211_registered_device *rdev) { trace_rdev_rfkill_poll(&rdev->wiphy); rdev->ops->rfkill_poll(&rdev->wiphy); trace_rdev_return_void(&rdev->wiphy); } #ifdef CONFIG_NL80211_TESTMODE static inline int rdev_testmode_cmd(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, void *data, int len) { int ret; trace_rdev_testmode_cmd(&rdev->wiphy, wdev); ret = rdev->ops->testmode_cmd(&rdev->wiphy, wdev, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_testmode_dump(struct cfg80211_registered_device *rdev, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { int ret; trace_rdev_testmode_dump(&rdev->wiphy); ret = rdev->ops->testmode_dump(&rdev->wiphy, skb, cb, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif static inline int rdev_set_bitrate_mask(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask) { int ret; trace_rdev_set_bitrate_mask(&rdev->wiphy, dev, peer, mask); ret = rdev->ops->set_bitrate_mask(&rdev->wiphy, dev, peer, mask); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_dump_survey(struct cfg80211_registered_device *rdev, struct net_device *netdev, int idx, struct survey_info *info) { int ret; trace_rdev_dump_survey(&rdev->wiphy, netdev, idx); ret = rdev->ops->dump_survey(&rdev->wiphy, netdev, idx, info); if (ret < 0) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_survey_info(&rdev->wiphy, ret, info); return ret; } static inline int rdev_set_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_set_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->set_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_del_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->del_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_flush_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev) { int ret; trace_rdev_flush_pmksa(&rdev->wiphy, netdev); ret = rdev->ops->flush_pmksa(&rdev->wiphy, netdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { int ret; trace_rdev_remain_on_channel(&rdev->wiphy, wdev, chan, duration); ret = rdev->ops->remain_on_channel(&rdev->wiphy, wdev, chan, duration, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_cancel_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); ret = rdev->ops->cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { int ret; trace_rdev_mgmt_tx(&rdev->wiphy, wdev, params); ret = rdev->ops->mgmt_tx(&rdev->wiphy, wdev, params, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_tx_control_port(struct cfg80211_registered_device *rdev, struct net_device *dev, const void *buf, size_t len, const u8 *dest, __be16 proto, const bool noencrypt, u64 *cookie) { int ret; trace_rdev_tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt); ret = rdev->ops->tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt, cookie); if (cookie) trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); else trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx_cancel_wait(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); ret = rdev->ops->mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_power_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, bool enabled, int timeout) { int ret; trace_rdev_set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); ret = rdev->ops->set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { int ret; trace_rdev_set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); ret = rdev->ops->set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_range_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 low, s32 high) { int ret; trace_rdev_set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); ret = rdev->ops->set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_txe_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 rate, u32 pkts, u32 intvl) { int ret; trace_rdev_set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); ret = rdev->ops->set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_update_mgmt_frame_registrations(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { might_sleep(); trace_rdev_update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); if (rdev->ops->update_mgmt_frame_registrations) rdev->ops->update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_antenna(struct cfg80211_registered_device *rdev, u32 tx_ant, u32 rx_ant) { int ret; trace_rdev_set_antenna(&rdev->wiphy, tx_ant, rx_ant); ret = rdev->ops->set_antenna(&rdev->wiphy, tx_ant, rx_ant); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_antenna(struct cfg80211_registered_device *rdev, u32 *tx_ant, u32 *rx_ant) { int ret; trace_rdev_get_antenna(&rdev->wiphy); ret = rdev->ops->get_antenna(&rdev->wiphy, tx_ant, rx_ant); if (ret) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_tx_rx(&rdev->wiphy, ret, *tx_ant, *rx_ant); return ret; } static inline int rdev_sched_scan_start(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_sched_scan_request *request) { int ret; trace_rdev_sched_scan_start(&rdev->wiphy, dev, request->reqid); ret = rdev->ops->sched_scan_start(&rdev->wiphy, dev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_sched_scan_stop(struct cfg80211_registered_device *rdev, struct net_device *dev, u64 reqid) { int ret; trace_rdev_sched_scan_stop(&rdev->wiphy, dev, reqid); ret = rdev->ops->sched_scan_stop(&rdev->wiphy, dev, reqid); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_rekey_data(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { int ret; trace_rdev_set_rekey_data(&rdev->wiphy, dev); ret = rdev->ops->set_rekey_data(&rdev->wiphy, dev, data); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t len) { int ret; trace_rdev_tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); ret = rdev->ops->tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_oper(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper) { int ret; trace_rdev_tdls_oper(&rdev->wiphy, dev, peer, oper); ret = rdev->ops->tdls_oper(&rdev->wiphy, dev, peer, oper); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_client(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u64 *cookie) { int ret; trace_rdev_probe_client(&rdev->wiphy, dev, peer); ret = rdev->ops->probe_client(&rdev->wiphy, dev, peer, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_set_noack_map(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 noack_map) { int ret; trace_rdev_set_noack_map(&rdev->wiphy, dev, noack_map); ret = rdev->ops->set_noack_map(&rdev->wiphy, dev, noack_map); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_get_channel(&rdev->wiphy, wdev); ret = rdev->ops->get_channel(&rdev->wiphy, wdev, chandef); trace_rdev_return_chandef(&rdev->wiphy, ret, chandef); return ret; } static inline int rdev_start_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_start_p2p_device(&rdev->wiphy, wdev); ret = rdev->ops->start_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_p2p_device(&rdev->wiphy, wdev); rdev->ops->stop_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf) { int ret; trace_rdev_start_nan(&rdev->wiphy, wdev, conf); ret = rdev->ops->start_nan(&rdev->wiphy, wdev, conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_nan(&rdev->wiphy, wdev); rdev->ops->stop_nan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_add_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_func *nan_func) { int ret; trace_rdev_add_nan_func(&rdev->wiphy, wdev, nan_func); ret = rdev->ops->add_nan_func(&rdev->wiphy, wdev, nan_func); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_del_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { trace_rdev_del_nan_func(&rdev->wiphy, wdev, cookie); rdev->ops->del_nan_func(&rdev->wiphy, wdev, cookie); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_nan_change_conf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes) { int ret; trace_rdev_nan_change_conf(&rdev->wiphy, wdev, conf, changes); if (rdev->ops->nan_change_conf) ret = rdev->ops->nan_change_conf(&rdev->wiphy, wdev, conf, changes); else ret = -ENOTSUPP; trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_mac_acl(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_acl_data *params) { int ret; trace_rdev_set_mac_acl(&rdev->wiphy, dev, params); ret = rdev->ops->set_mac_acl(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_ft_ies(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { int ret; trace_rdev_update_ft_ies(&rdev->wiphy, dev, ftie); ret = rdev->ops->update_ft_ies(&rdev->wiphy, dev, ftie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_crit_proto_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration) { int ret; trace_rdev_crit_proto_start(&rdev->wiphy, wdev, protocol, duration); ret = rdev->ops->crit_proto_start(&rdev->wiphy, wdev, protocol, duration); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_crit_proto_stop(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_crit_proto_stop(&rdev->wiphy, wdev); rdev->ops->crit_proto_stop(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_csa_settings *params) { int ret; trace_rdev_channel_switch(&rdev->wiphy, dev, params); ret = rdev->ops->channel_switch(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_qos_map(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_qos_map *qos_map) { int ret = -EOPNOTSUPP; if (rdev->ops->set_qos_map) { trace_rdev_set_qos_map(&rdev->wiphy, dev, qos_map); ret = rdev->ops->set_qos_map(&rdev->wiphy, dev, qos_map); trace_rdev_return_int(&rdev->wiphy, ret); } return ret; } static inline int rdev_set_ap_chanwidth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_ap_chanwidth(&rdev->wiphy, dev, chandef); ret = rdev->ops->set_ap_chanwidth(&rdev->wiphy, dev, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer, u8 user_prio, u16 admitted_time) { int ret = -EOPNOTSUPP; trace_rdev_add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); if (rdev->ops->add_tx_ts) ret = rdev->ops->add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer) { int ret = -EOPNOTSUPP; trace_rdev_del_tx_ts(&rdev->wiphy, dev, tsid, peer); if (rdev->ops->del_tx_ts) ret = rdev->ops->del_tx_ts(&rdev->wiphy, dev, tsid, peer); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); ret = rdev->ops->tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_tdls_cancel_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { trace_rdev_tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); rdev->ops->tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_radar_detection(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { int ret = -ENOTSUPP; trace_rdev_start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); if (rdev->ops->start_radar_detection) ret = rdev->ops->start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_end_cac(struct cfg80211_registered_device *rdev, struct net_device *dev) { trace_rdev_end_cac(&rdev->wiphy, dev); if (rdev->ops->end_cac) rdev->ops->end_cac(&rdev->wiphy, dev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_mcast_rate(struct cfg80211_registered_device *rdev, struct net_device *dev, int mcast_rate[NUM_NL80211_BANDS]) { int ret = -ENOTSUPP; trace_rdev_set_mcast_rate(&rdev->wiphy, dev, mcast_rate); if (rdev->ops->set_mcast_rate) ret = rdev->ops->set_mcast_rate(&rdev->wiphy, dev, mcast_rate); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_coalesce(struct cfg80211_registered_device *rdev, struct cfg80211_coalesce *coalesce) { int ret = -ENOTSUPP; trace_rdev_set_coalesce(&rdev->wiphy, coalesce); if (rdev->ops->set_coalesce) ret = rdev->ops->set_coalesce(&rdev->wiphy, coalesce); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_pmk_conf *pmk_conf) { int ret = -EOPNOTSUPP; trace_rdev_set_pmk(&rdev->wiphy, dev, pmk_conf); if (rdev->ops->set_pmk) ret = rdev->ops->set_pmk(&rdev->wiphy, dev, pmk_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *aa) { int ret = -EOPNOTSUPP; trace_rdev_del_pmk(&rdev->wiphy, dev, aa); if (rdev->ops->del_pmk) ret = rdev->ops->del_pmk(&rdev->wiphy, dev, aa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_external_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_external_auth_params *params) { int ret = -EOPNOTSUPP; trace_rdev_external_auth(&rdev->wiphy, dev, params); if (rdev->ops->external_auth) ret = rdev->ops->external_auth(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_ftm_responder_stats(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ftm_responder_stats *ftm_stats) { int ret = -EOPNOTSUPP; trace_rdev_get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); if (rdev->ops->get_ftm_responder_stats) ret = rdev->ops->get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; trace_rdev_start_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->start_pmsr) ret = rdev->ops->start_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { trace_rdev_abort_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->abort_pmsr) rdev->ops->abort_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_update_owe_info(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_owe_info *oweinfo) { int ret = -EOPNOTSUPP; trace_rdev_update_owe_info(&rdev->wiphy, dev, oweinfo); if (rdev->ops->update_owe_info) ret = rdev->ops->update_owe_info(&rdev->wiphy, dev, oweinfo); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_mesh_link(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *dest, const void *buf, size_t len) { int ret; trace_rdev_probe_mesh_link(&rdev->wiphy, dev, dest, buf, len); ret = rdev->ops->probe_mesh_link(&rdev->wiphy, dev, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_tid_config *tid_conf) { int ret; trace_rdev_set_tid_config(&rdev->wiphy, dev, tid_conf); ret = rdev->ops->set_tid_config(&rdev->wiphy, dev, tid_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_reset_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u8 tids) { int ret; trace_rdev_reset_tid_config(&rdev->wiphy, dev, peer, tids); ret = rdev->ops->reset_tid_config(&rdev->wiphy, dev, peer, tids); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif /* __CFG80211_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_UIDGID_H #define _LINUX_UIDGID_H /* * A set of types for the internal kernel types representing uids and gids. * * The types defined in this header allow distinguishing which uids and gids in * the kernel are values used by userspace and which uid and gid values are * the internal kernel values. With the addition of user namespaces the values * can be different. Using the type system makes it possible for the compiler * to detect when we overlook these differences. * */ #include <linux/types.h> #include <linux/highuid.h> struct user_namespace; extern struct user_namespace init_user_ns; typedef struct { uid_t val; } kuid_t; typedef struct { gid_t val; } kgid_t; #define KUIDT_INIT(value) (kuid_t){ value } #define KGIDT_INIT(value) (kgid_t){ value } #ifdef CONFIG_MULTIUSER static inline uid_t __kuid_val(kuid_t uid) { return uid.val; } static inline gid_t __kgid_val(kgid_t gid) { return gid.val; } #else static inline uid_t __kuid_val(kuid_t uid) { return 0; } static inline gid_t __kgid_val(kgid_t gid) { return 0; } #endif #define GLOBAL_ROOT_UID KUIDT_INIT(0) #define GLOBAL_ROOT_GID KGIDT_INIT(0) #define INVALID_UID KUIDT_INIT(-1) #define INVALID_GID KGIDT_INIT(-1) static inline bool uid_eq(kuid_t left, kuid_t right) { return __kuid_val(left) == __kuid_val(right); } static inline bool gid_eq(kgid_t left, kgid_t right) { return __kgid_val(left) == __kgid_val(right); } static inline bool uid_gt(kuid_t left, kuid_t right) { return __kuid_val(left) > __kuid_val(right); } static inline bool gid_gt(kgid_t left, kgid_t right) { return __kgid_val(left) > __kgid_val(right); } static inline bool uid_gte(kuid_t left, kuid_t right) { return __kuid_val(left) >= __kuid_val(right); } static inline bool gid_gte(kgid_t left, kgid_t right) { return __kgid_val(left) >= __kgid_val(right); } static inline bool uid_lt(kuid_t left, kuid_t right) { return __kuid_val(left) < __kuid_val(right); } static inline bool gid_lt(kgid_t left, kgid_t right) { return __kgid_val(left) < __kgid_val(right); } static inline bool uid_lte(kuid_t left, kuid_t right) { return __kuid_val(left) <= __kuid_val(right); } static inline bool gid_lte(kgid_t left, kgid_t right) { return __kgid_val(left) <= __kgid_val(right); } static inline bool uid_valid(kuid_t uid) { return __kuid_val(uid) != (uid_t) -1; } static inline bool gid_valid(kgid_t gid) { return __kgid_val(gid) != (gid_t) -1; } #ifdef CONFIG_USER_NS extern kuid_t make_kuid(struct user_namespace *from, uid_t uid); extern kgid_t make_kgid(struct user_namespace *from, gid_t gid); extern uid_t from_kuid(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid(struct user_namespace *to, kgid_t gid); extern uid_t from_kuid_munged(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid_munged(struct user_namespace *to, kgid_t gid); static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return from_kuid(ns, uid) != (uid_t) -1; } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return from_kgid(ns, gid) != (gid_t) -1; } #else static inline kuid_t make_kuid(struct user_namespace *from, uid_t uid) { return KUIDT_INIT(uid); } static inline kgid_t make_kgid(struct user_namespace *from, gid_t gid) { return KGIDT_INIT(gid); } static inline uid_t from_kuid(struct user_namespace *to, kuid_t kuid) { return __kuid_val(kuid); } static inline gid_t from_kgid(struct user_namespace *to, kgid_t kgid) { return __kgid_val(kgid); } static inline uid_t from_kuid_munged(struct user_namespace *to, kuid_t kuid) { uid_t uid = from_kuid(to, kuid); if (uid == (uid_t)-1) uid = overflowuid; return uid; } static inline gid_t from_kgid_munged(struct user_namespace *to, kgid_t kgid) { gid_t gid = from_kgid(to, kgid); if (gid == (gid_t)-1) gid = overflowgid; return gid; } static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return uid_valid(uid); } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return gid_valid(gid); } #endif /* CONFIG_USER_NS */ #endif /* _LINUX_UIDGID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNETLINK_H #define __NET_RTNETLINK_H #include <linux/rtnetlink.h> #include <net/netlink.h> typedef int (*rtnl_doit_func)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *); typedef int (*rtnl_dumpit_func)(struct sk_buff *, struct netlink_callback *); enum rtnl_link_flags { RTNL_FLAG_DOIT_UNLOCKED = 1, }; void rtnl_register(int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_register_module(struct module *owner, int protocol, int msgtype, rtnl_doit_func, rtnl_dumpit_func, unsigned int flags); int rtnl_unregister(int protocol, int msgtype); void rtnl_unregister_all(int protocol); static inline int rtnl_msg_family(const struct nlmsghdr *nlh) { if (nlmsg_len(nlh) >= sizeof(struct rtgenmsg)) return ((struct rtgenmsg *) nlmsg_data(nlh))->rtgen_family; else return AF_UNSPEC; } /** * struct rtnl_link_ops - rtnetlink link operations * * @list: Used internally * @kind: Identifier * @netns_refund: Physical device, move to init_net on netns exit * @maxtype: Highest device specific netlink attribute number * @policy: Netlink policy for device specific attribute validation * @validate: Optional validation function for netlink/changelink parameters * @priv_size: sizeof net_device private space * @setup: net_device setup function * @newlink: Function for configuring and registering a new device * @changelink: Function for changing parameters of an existing device * @dellink: Function to remove a device * @get_size: Function to calculate required room for dumping device * specific netlink attributes * @fill_info: Function to dump device specific netlink attributes * @get_xstats_size: Function to calculate required room for dumping device * specific statistics * @fill_xstats: Function to dump device specific statistics * @get_num_tx_queues: Function to determine number of transmit queues * to create when creating a new device. * @get_num_rx_queues: Function to determine number of receive queues * to create when creating a new device. * @get_link_net: Function to get the i/o netns of the device * @get_linkxstats_size: Function to calculate the required room for * dumping device-specific extended link stats * @fill_linkxstats: Function to dump device-specific extended link stats */ struct rtnl_link_ops { struct list_head list; const char *kind; size_t priv_size; void (*setup)(struct net_device *dev); bool netns_refund; unsigned int maxtype; const struct nla_policy *policy; int (*validate)(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*newlink)(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); int (*changelink)(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); void (*dellink)(struct net_device *dev, struct list_head *head); size_t (*get_size)(const struct net_device *dev); int (*fill_info)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_xstats_size)(const struct net_device *dev); int (*fill_xstats)(struct sk_buff *skb, const struct net_device *dev); unsigned int (*get_num_tx_queues)(void); unsigned int (*get_num_rx_queues)(void); unsigned int slave_maxtype; const struct nla_policy *slave_policy; int (*slave_changelink)(struct net_device *dev, struct net_device *slave_dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack); size_t (*get_slave_size)(const struct net_device *dev, const struct net_device *slave_dev); int (*fill_slave_info)(struct sk_buff *skb, const struct net_device *dev, const struct net_device *slave_dev); struct net *(*get_link_net)(const struct net_device *dev); size_t (*get_linkxstats_size)(const struct net_device *dev, int attr); int (*fill_linkxstats)(struct sk_buff *skb, const struct net_device *dev, int *prividx, int attr); }; int __rtnl_link_register(struct rtnl_link_ops *ops); void __rtnl_link_unregister(struct rtnl_link_ops *ops); int rtnl_link_register(struct rtnl_link_ops *ops); void rtnl_link_unregister(struct rtnl_link_ops *ops); /** * struct rtnl_af_ops - rtnetlink address family operations * * @list: Used internally * @family: Address family * @fill_link_af: Function to fill IFLA_AF_SPEC with address family * specific netlink attributes. * @get_link_af_size: Function to calculate size of address family specific * netlink attributes. * @validate_link_af: Validate a IFLA_AF_SPEC attribute, must check attr * for invalid configuration settings. * @set_link_af: Function to parse a IFLA_AF_SPEC attribute and modify * net_device accordingly. */ struct rtnl_af_ops { struct list_head list; int family; int (*fill_link_af)(struct sk_buff *skb, const struct net_device *dev, u32 ext_filter_mask); size_t (*get_link_af_size)(const struct net_device *dev, u32 ext_filter_mask); int (*validate_link_af)(const struct net_device *dev, const struct nlattr *attr); int (*set_link_af)(struct net_device *dev, const struct nlattr *attr); int (*fill_stats_af)(struct sk_buff *skb, const struct net_device *dev); size_t (*get_stats_af_size)(const struct net_device *dev); }; void rtnl_af_register(struct rtnl_af_ops *ops); void rtnl_af_unregister(struct rtnl_af_ops *ops); struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[]); struct net_device *rtnl_create_link(struct net *net, const char *ifname, unsigned char name_assign_type, const struct rtnl_link_ops *ops, struct nlattr *tb[], struct netlink_ext_ack *extack); int rtnl_delete_link(struct net_device *dev); int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm); int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len, struct netlink_ext_ack *exterr); struct net *rtnl_get_net_ns_capable(struct sock *sk, int netnsid); #define MODULE_ALIAS_RTNL_LINK(kind) MODULE_ALIAS("rtnl-link-" kind) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_FUTEX_H #define _ASM_X86_FUTEX_H #ifdef __KERNEL__ #include <linux/futex.h> #include <linux/uaccess.h> #include <asm/asm.h> #include <asm/errno.h> #include <asm/processor.h> #include <asm/smap.h> #define unsafe_atomic_op1(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret; \ asm volatile("1:\t" insn "\n" \ "2:\n" \ "\t.section .fixup,\"ax\"\n" \ "3:\tmov\t%3, %1\n" \ "\tjmp\t2b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : "=r" (oldval), "=r" (ret), "+m" (*uaddr) \ : "i" (-EFAULT), "0" (oparg), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) #define unsafe_atomic_op2(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret, tem; \ asm volatile("1:\tmovl %2, %0\n" \ "2:\tmovl\t%0, %3\n" \ "\t" insn "\n" \ "3:\t" LOCK_PREFIX "cmpxchgl %3, %2\n" \ "\tjnz\t2b\n" \ "4:\n" \ "\t.section .fixup,\"ax\"\n" \ "5:\tmov\t%5, %1\n" \ "\tjmp\t4b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 5b) \ _ASM_EXTABLE_UA(3b, 5b) \ : "=&a" (oldval), "=&r" (ret), \ "+m" (*uaddr), "=&r" (tem) \ : "r" (oparg), "i" (-EFAULT), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) static __always_inline int arch_futex_atomic_op_inuser(int op, int oparg, int *oval, u32 __user *uaddr) { if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; switch (op) { case FUTEX_OP_SET: unsafe_atomic_op1("xchgl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ADD: unsafe_atomic_op1(LOCK_PREFIX "xaddl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_OR: unsafe_atomic_op2("orl %4, %3", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ANDN: unsafe_atomic_op2("andl %4, %3", oval, uaddr, ~oparg, Efault); break; case FUTEX_OP_XOR: unsafe_atomic_op2("xorl %4, %3", oval, uaddr, oparg, Efault); break; default: user_access_end(); return -ENOSYS; } user_access_end(); return 0; Efault: user_access_end(); return -EFAULT; } static inline int futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr, u32 oldval, u32 newval) { int ret = 0; if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; asm volatile("\n" "1:\t" LOCK_PREFIX "cmpxchgl %4, %2\n" "2:\n" "\t.section .fixup, \"ax\"\n" "3:\tmov %3, %0\n" "\tjmp 2b\n" "\t.previous\n" _ASM_EXTABLE_UA(1b, 3b) : "+r" (ret), "=a" (oldval), "+m" (*uaddr) : "i" (-EFAULT), "r" (newval), "1" (oldval) : "memory" ); user_access_end(); *uval = oldval; return ret; } #endif #endif /* _ASM_X86_FUTEX_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz> */ #ifndef IEEE80211_RATE_H #define IEEE80211_RATE_H #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "sta_info.h" #include "driver-ops.h" struct rate_control_ref { const struct rate_control_ops *ops; void *priv; }; void rate_control_get_rate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_tx_rate_control *txrc); void rate_control_tx_status(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct ieee80211_tx_status *st); void rate_control_rate_init(struct sta_info *sta); void rate_control_rate_update(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct sta_info *sta, u32 changed); static inline void *rate_control_alloc_sta(struct rate_control_ref *ref, struct sta_info *sta, gfp_t gfp) { spin_lock_init(&sta->rate_ctrl_lock); return ref->ops->alloc_sta(ref->priv, &sta->sta, gfp); } static inline void rate_control_free_sta(struct sta_info *sta) { struct rate_control_ref *ref = sta->rate_ctrl; struct ieee80211_sta *ista = &sta->sta; void *priv_sta = sta->rate_ctrl_priv; ref->ops->free_sta(ref->priv, ista, priv_sta); } static inline void rate_control_add_sta_debugfs(struct sta_info *sta) { #ifdef CONFIG_MAC80211_DEBUGFS struct rate_control_ref *ref = sta->rate_ctrl; if (ref && sta->debugfs_dir && ref->ops->add_sta_debugfs) ref->ops->add_sta_debugfs(ref->priv, sta->rate_ctrl_priv, sta->debugfs_dir); #endif } extern const struct file_operations rcname_ops; static inline void rate_control_add_debugfs(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfsdir; if (!local->rate_ctrl) return; if (!local->rate_ctrl->ops->add_debugfs) return; debugfsdir = debugfs_create_dir("rc", local->hw.wiphy->debugfsdir); local->debugfs.rcdir = debugfsdir; debugfs_create_file("name", 0400, debugfsdir, local->rate_ctrl, &rcname_ops); local->rate_ctrl->ops->add_debugfs(&local->hw, local->rate_ctrl->priv, debugfsdir); #endif } void ieee80211_check_rate_mask(struct ieee80211_sub_if_data *sdata); /* Get a reference to the rate control algorithm. If `name' is NULL, get the * first available algorithm. */ int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, const char *name); void rate_control_deinitialize(struct ieee80211_local *local); /* Rate control algorithms */ #ifdef CONFIG_MAC80211_RC_MINSTREL int rc80211_minstrel_init(void); void rc80211_minstrel_exit(void); #else static inline int rc80211_minstrel_init(void) { return 0; } static inline void rc80211_minstrel_exit(void) { } #endif #endif /* IEEE80211_RATE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM msr #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE msr-trace #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/ #if !defined(_TRACE_MSR_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MSR_H #include <linux/tracepoint.h> /* * Tracing for x86 model specific registers. Directly maps to the * RDMSR/WRMSR instructions. */ DECLARE_EVENT_CLASS(msr_trace_class, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed), TP_STRUCT__entry( __field( unsigned, msr ) __field( u64, val ) __field( int, failed ) ), TP_fast_assign( __entry->msr = msr; __entry->val = val; __entry->failed = failed; ), TP_printk("%x, value %llx%s", __entry->msr, __entry->val, __entry->failed ? " #GP" : "") ); DEFINE_EVENT(msr_trace_class, read_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, write_msr, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); DEFINE_EVENT(msr_trace_class, rdpmc, TP_PROTO(unsigned msr, u64 val, int failed), TP_ARGS(msr, val, failed) ); #endif /* _TRACE_MSR_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: common low-level thread information accessors * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds */ #ifndef _LINUX_THREAD_INFO_H #define _LINUX_THREAD_INFO_H #include <linux/types.h> #include <linux/bug.h> #include <linux/restart_block.h> #include <linux/errno.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For CONFIG_THREAD_INFO_IN_TASK kernels we need <asm/current.h> for the * definition of current, but for !CONFIG_THREAD_INFO_IN_TASK kernels, * including <asm/current.h> can cause a circular dependency on some platforms. */ #include <asm/current.h> #define current_thread_info() ((struct thread_info *)current) #endif #include <linux/bitops.h> /* * For per-arch arch_within_stack_frames() implementations, defined in * asm/thread_info.h. */ enum { BAD_STACK = -1, NOT_STACK = 0, GOOD_FRAME, GOOD_STACK, }; #include <asm/thread_info.h> #ifdef __KERNEL__ #ifndef arch_set_restart_data #define arch_set_restart_data(restart) do { } while (0) #endif static inline long set_restart_fn(struct restart_block *restart, long (*fn)(struct restart_block *)) { restart->fn = fn; arch_set_restart_data(restart); return -ERESTART_RESTARTBLOCK; } #ifndef THREAD_ALIGN #define THREAD_ALIGN THREAD_SIZE #endif #define THREADINFO_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) /* * flag set/clear/test wrappers * - pass TIF_xxxx constants to these functions */ static inline void set_ti_thread_flag(struct thread_info *ti, int flag) { set_bit(flag, (unsigned long *)&ti->flags); } static inline void clear_ti_thread_flag(struct thread_info *ti, int flag) { clear_bit(flag, (unsigned long *)&ti->flags); } static inline void update_ti_thread_flag(struct thread_info *ti, int flag, bool value) { if (value) set_ti_thread_flag(ti, flag); else clear_ti_thread_flag(ti, flag); } static inline int test_and_set_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_set_bit(flag, (unsigned long *)&ti->flags); } static inline int test_and_clear_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_clear_bit(flag, (unsigned long *)&ti->flags); } static inline int test_ti_thread_flag(struct thread_info *ti, int flag) { return test_bit(flag, (unsigned long *)&ti->flags); } #define set_thread_flag(flag) \ set_ti_thread_flag(current_thread_info(), flag) #define clear_thread_flag(flag) \ clear_ti_thread_flag(current_thread_info(), flag) #define update_thread_flag(flag, value) \ update_ti_thread_flag(current_thread_info(), flag, value) #define test_and_set_thread_flag(flag) \ test_and_set_ti_thread_flag(current_thread_info(), flag) #define test_and_clear_thread_flag(flag) \ test_and_clear_ti_thread_flag(current_thread_info(), flag) #define test_thread_flag(flag) \ test_ti_thread_flag(current_thread_info(), flag) #define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) #ifndef CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { return 0; } #endif #ifdef CONFIG_HARDENED_USERCOPY extern void __check_object_size(const void *ptr, unsigned long n, bool to_user); static __always_inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { if (!__builtin_constant_p(n)) __check_object_size(ptr, n, to_user); } #else static inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { } #endif /* CONFIG_HARDENED_USERCOPY */ extern void __compiletime_error("copy source size is too small") __bad_copy_from(void); extern void __compiletime_error("copy destination size is too small") __bad_copy_to(void); static inline void copy_overflow(int size, unsigned long count) { WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count); } static __always_inline __must_check bool check_copy_size(const void *addr, size_t bytes, bool is_source) { int sz = __compiletime_object_size(addr); if (unlikely(sz >= 0 && sz < bytes)) { if (!__builtin_constant_p(bytes)) copy_overflow(sz, bytes); else if (is_source) __bad_copy_from(); else __bad_copy_to(); return false; } if (WARN_ON_ONCE(bytes > INT_MAX)) return false; check_object_size(addr, bytes, is_source); return true; } #ifndef arch_setup_new_exec static inline void arch_setup_new_exec(void) { } #endif #endif /* __KERNEL__ */ #endif /* _LINUX_THREAD_INFO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* -*- mode: c; c-basic-offset:8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * configfs_internal.h - Internal stuff for configfs * * Based on sysfs: * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel * * configfs Copyright (C) 2005 Oracle. All rights reserved. */ #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/list.h> #include <linux/spinlock.h> struct configfs_fragment { atomic_t frag_count; struct rw_semaphore frag_sem; bool frag_dead; }; void put_fragment(struct configfs_fragment *); struct configfs_fragment *get_fragment(struct configfs_fragment *); struct configfs_dirent { atomic_t s_count; int s_dependent_count; struct list_head s_sibling; struct list_head s_children; int s_links; void * s_element; int s_type; umode_t s_mode; struct dentry * s_dentry; struct iattr * s_iattr; #ifdef CONFIG_LOCKDEP int s_depth; #endif struct configfs_fragment *s_frag; }; #define CONFIGFS_ROOT 0x0001 #define CONFIGFS_DIR 0x0002 #define CONFIGFS_ITEM_ATTR 0x0004 #define CONFIGFS_ITEM_BIN_ATTR 0x0008 #define CONFIGFS_ITEM_LINK 0x0020 #define CONFIGFS_USET_DIR 0x0040 #define CONFIGFS_USET_DEFAULT 0x0080 #define CONFIGFS_USET_DROPPING 0x0100 #define CONFIGFS_USET_IN_MKDIR 0x0200 #define CONFIGFS_USET_CREATING 0x0400 #define CONFIGFS_NOT_PINNED (CONFIGFS_ITEM_ATTR | CONFIGFS_ITEM_BIN_ATTR) extern struct mutex configfs_symlink_mutex; extern spinlock_t configfs_dirent_lock; extern struct kmem_cache *configfs_dir_cachep; extern int configfs_is_root(struct config_item *item); extern struct inode * configfs_new_inode(umode_t mode, struct configfs_dirent *, struct super_block *); extern struct inode *configfs_create(struct dentry *, umode_t mode); extern int configfs_create_file(struct config_item *, const struct configfs_attribute *); extern int configfs_create_bin_file(struct config_item *, const struct configfs_bin_attribute *); extern int configfs_make_dirent(struct configfs_dirent *, struct dentry *, void *, umode_t, int, struct configfs_fragment *); extern int configfs_dirent_is_ready(struct configfs_dirent *); extern void configfs_hash_and_remove(struct dentry * dir, const char * name); extern const unsigned char * configfs_get_name(struct configfs_dirent *sd); extern void configfs_drop_dentry(struct configfs_dirent *sd, struct dentry *parent); extern int configfs_setattr(struct dentry *dentry, struct iattr *iattr); extern struct dentry *configfs_pin_fs(void); extern void configfs_release_fs(void); extern const struct file_operations configfs_dir_operations; extern const struct file_operations configfs_file_operations; extern const struct file_operations configfs_bin_file_operations; extern const struct inode_operations configfs_dir_inode_operations; extern const struct inode_operations configfs_root_inode_operations; extern const struct inode_operations configfs_symlink_inode_operations; extern const struct dentry_operations configfs_dentry_ops; extern int configfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname); extern int configfs_unlink(struct inode *dir, struct dentry *dentry); int configfs_create_link(struct configfs_dirent *target, struct dentry *parent, struct dentry *dentry, char *body); static inline struct config_item * to_item(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct config_item *) sd->s_element); } static inline struct configfs_attribute * to_attr(struct dentry * dentry) { struct configfs_dirent * sd = dentry->d_fsdata; return ((struct configfs_attribute *) sd->s_element); } static inline struct configfs_bin_attribute *to_bin_attr(struct dentry *dentry) { struct configfs_attribute *attr = to_attr(dentry); return container_of(attr, struct configfs_bin_attribute, cb_attr); } static inline struct config_item *configfs_get_config_item(struct dentry *dentry) { struct config_item * item = NULL; spin_lock(&dentry->d_lock); if (!d_unhashed(dentry)) { struct configfs_dirent * sd = dentry->d_fsdata; item = config_item_get(sd->s_element); } spin_unlock(&dentry->d_lock); return item; } static inline void release_configfs_dirent(struct configfs_dirent * sd) { if (!(sd->s_type & CONFIGFS_ROOT)) { kfree(sd->s_iattr); put_fragment(sd->s_frag); kmem_cache_free(configfs_dir_cachep, sd); } } static inline struct configfs_dirent * configfs_get(struct configfs_dirent * sd) { if (sd) { WARN_ON(!atomic_read(&sd->s_count)); atomic_inc(&sd->s_count); } return sd; } static inline void configfs_put(struct configfs_dirent * sd) { WARN_ON(!atomic_read(&sd->s_count)); if (atomic_dec_and_test(&sd->s_count)) release_configfs_dirent(sd); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IP, TCP, UDP and so on * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ #ifndef _CHECKSUM_H #define _CHECKSUM_H #include <linux/errno.h> #include <asm/types.h> #include <asm/byteorder.h> #include <linux/uaccess.h> #include <asm/checksum.h> #ifndef _HAVE_ARCH_COPY_AND_CSUM_FROM_USER static inline __wsum csum_and_copy_from_user (const void __user *src, void *dst, int len) { if (copy_from_user(dst, src, len)) return 0; return csum_partial(dst, len, ~0U); } #endif #ifndef HAVE_CSUM_COPY_USER static __inline__ __wsum csum_and_copy_to_user (const void *src, void __user *dst, int len) { __wsum sum = csum_partial(src, len, ~0U); if (copy_to_user(dst, src, len) == 0) return sum; return 0; } #endif #ifndef _HAVE_ARCH_CSUM_AND_COPY static inline __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len) { memcpy(dst, src, len); return csum_partial(dst, len, 0); } #endif #ifndef HAVE_ARCH_CSUM_ADD static inline __wsum csum_add(__wsum csum, __wsum addend) { u32 res = (__force u32)csum; res += (__force u32)addend; return (__force __wsum)(res + (res < (__force u32)addend)); } #endif static inline __wsum csum_sub(__wsum csum, __wsum addend) { return csum_add(csum, ~addend); } static inline __sum16 csum16_add(__sum16 csum, __be16 addend) { u16 res = (__force u16)csum; res += (__force u16)addend; return (__force __sum16)(res + (res < (__force u16)addend)); } static inline __sum16 csum16_sub(__sum16 csum, __be16 addend) { return csum16_add(csum, ~addend); } static inline __wsum csum_block_add(__wsum csum, __wsum csum2, int offset) { u32 sum = (__force u32)csum2; /* rotate sum to align it with a 16b boundary */ if (offset & 1) sum = ror32(sum, 8); return csum_add(csum, (__force __wsum)sum); } static inline __wsum csum_block_add_ext(__wsum csum, __wsum csum2, int offset, int len) { return csum_block_add(csum, csum2, offset); } static inline __wsum csum_block_sub(__wsum csum, __wsum csum2, int offset) { return csum_block_add(csum, ~csum2, offset); } static inline __wsum csum_unfold(__sum16 n) { return (__force __wsum)n; } static inline __wsum csum_partial_ext(const void *buff, int len, __wsum sum) { return csum_partial(buff, len, sum); } #define CSUM_MANGLED_0 ((__force __sum16)0xffff) static inline void csum_replace_by_diff(__sum16 *sum, __wsum diff) { *sum = csum_fold(csum_add(diff, ~csum_unfold(*sum))); } static inline void csum_replace4(__sum16 *sum, __be32 from, __be32 to) { __wsum tmp = csum_sub(~csum_unfold(*sum), (__force __wsum)from); *sum = csum_fold(csum_add(tmp, (__force __wsum)to)); } /* Implements RFC 1624 (Incremental Internet Checksum) * 3. Discussion states : * HC' = ~(~HC + ~m + m') * m : old value of a 16bit field * m' : new value of a 16bit field */ static inline void csum_replace2(__sum16 *sum, __be16 old, __be16 new) { *sum = ~csum16_add(csum16_sub(~(*sum), old), new); } struct sk_buff; void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb, __be32 from, __be32 to, bool pseudohdr); void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb, const __be32 *from, const __be32 *to, bool pseudohdr); void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb, __wsum diff, bool pseudohdr); static inline void inet_proto_csum_replace2(__sum16 *sum, struct sk_buff *skb, __be16 from, __be16 to, bool pseudohdr) { inet_proto_csum_replace4(sum, skb, (__force __be32)from, (__force __be32)to, pseudohdr); } static inline __wsum remcsum_adjust(void *ptr, __wsum csum, int start, int offset) { __sum16 *psum = (__sum16 *)(ptr + offset); __wsum delta; /* Subtract out checksum up to start */ csum = csum_sub(csum, csum_partial(ptr, start, 0)); /* Set derived checksum in packet */ delta = csum_sub((__force __wsum)csum_fold(csum), (__force __wsum)*psum); *psum = csum_fold(csum); return delta; } static inline void remcsum_unadjust(__sum16 *psum, __wsum delta) { *psum = csum_fold(csum_sub(delta, (__force __wsum)*psum)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 /* SPDX-License-Identifier: GPL-2.0-only */ /* * A policy database (policydb) specifies the * configuration data for the security policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> * * Added conditional policy language extensions * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * Copyright (C) 2003 - 2004 Tresys Technology, LLC */ #ifndef _SS_POLICYDB_H_ #define _SS_POLICYDB_H_ #include "symtab.h" #include "avtab.h" #include "sidtab.h" #include "ebitmap.h" #include "mls_types.h" #include "context.h" #include "constraint.h" /* * A datum type is defined for each kind of symbol * in the configuration data: individual permissions, * common prefixes for access vectors, classes, * users, roles, types, sensitivities, categories, etc. */ /* Permission attributes */ struct perm_datum { u32 value; /* permission bit + 1 */ }; /* Attributes of a common prefix for access vectors */ struct common_datum { u32 value; /* internal common value */ struct symtab permissions; /* common permissions */ }; /* Class attributes */ struct class_datum { u32 value; /* class value */ char *comkey; /* common name */ struct common_datum *comdatum; /* common datum */ struct symtab permissions; /* class-specific permission symbol table */ struct constraint_node *constraints; /* constraints on class permissions */ struct constraint_node *validatetrans; /* special transition rules */ /* Options how a new object user, role, and type should be decided */ #define DEFAULT_SOURCE 1 #define DEFAULT_TARGET 2 char default_user; char default_role; char default_type; /* Options how a new object range should be decided */ #define DEFAULT_SOURCE_LOW 1 #define DEFAULT_SOURCE_HIGH 2 #define DEFAULT_SOURCE_LOW_HIGH 3 #define DEFAULT_TARGET_LOW 4 #define DEFAULT_TARGET_HIGH 5 #define DEFAULT_TARGET_LOW_HIGH 6 #define DEFAULT_GLBLUB 7 char default_range; }; /* Role attributes */ struct role_datum { u32 value; /* internal role value */ u32 bounds; /* boundary of role */ struct ebitmap dominates; /* set of roles dominated by this role */ struct ebitmap types; /* set of authorized types for role */ }; struct role_trans_key { u32 role; /* current role */ u32 type; /* program executable type, or new object type */ u32 tclass; /* process class, or new object class */ }; struct role_trans_datum { u32 new_role; /* new role */ }; struct filename_trans_key { u32 ttype; /* parent dir context */ u16 tclass; /* class of new object */ const char *name; /* last path component */ }; struct filename_trans_datum { struct ebitmap stypes; /* bitmap of source types for this otype */ u32 otype; /* resulting type of new object */ struct filename_trans_datum *next; /* record for next otype*/ }; struct role_allow { u32 role; /* current role */ u32 new_role; /* new role */ struct role_allow *next; }; /* Type attributes */ struct type_datum { u32 value; /* internal type value */ u32 bounds; /* boundary of type */ unsigned char primary; /* primary name? */ unsigned char attribute;/* attribute ?*/ }; /* User attributes */ struct user_datum { u32 value; /* internal user value */ u32 bounds; /* bounds of user */ struct ebitmap roles; /* set of authorized roles for user */ struct mls_range range; /* MLS range (min - max) for user */ struct mls_level dfltlevel; /* default login MLS level for user */ }; /* Sensitivity attributes */ struct level_datum { struct mls_level *level; /* sensitivity and associated categories */ unsigned char isalias; /* is this sensitivity an alias for another? */ }; /* Category attributes */ struct cat_datum { u32 value; /* internal category bit + 1 */ unsigned char isalias; /* is this category an alias for another? */ }; struct range_trans { u32 source_type; u32 target_type; u32 target_class; }; /* Boolean data type */ struct cond_bool_datum { __u32 value; /* internal type value */ int state; }; struct cond_node; /* * type set preserves data needed to determine constraint info from * policy source. This is not used by the kernel policy but allows * utilities such as audit2allow to determine constraint denials. */ struct type_set { struct ebitmap types; struct ebitmap negset; u32 flags; }; /* * The configuration data includes security contexts for * initial SIDs, unlabeled file systems, TCP and UDP port numbers, * network interfaces, and nodes. This structure stores the * relevant data for one such entry. Entries of the same kind * (e.g. all initial SIDs) are linked together into a list. */ struct ocontext { union { char *name; /* name of initial SID, fs, netif, fstype, path */ struct { u8 protocol; u16 low_port; u16 high_port; } port; /* TCP or UDP port information */ struct { u32 addr; u32 mask; } node; /* node information */ struct { u32 addr[4]; u32 mask[4]; } node6; /* IPv6 node information */ struct { u64 subnet_prefix; u16 low_pkey; u16 high_pkey; } ibpkey; struct { char *dev_name; u8 port; } ibendport; } u; union { u32 sclass; /* security class for genfs */ u32 behavior; /* labeling behavior for fs_use */ } v; struct context context[2]; /* security context(s) */ u32 sid[2]; /* SID(s) */ struct ocontext *next; }; struct genfs { char *fstype; struct ocontext *head; struct genfs *next; }; /* symbol table array indices */ #define SYM_COMMONS 0 #define SYM_CLASSES 1 #define SYM_ROLES 2 #define SYM_TYPES 3 #define SYM_USERS 4 #define SYM_BOOLS 5 #define SYM_LEVELS 6 #define SYM_CATS 7 #define SYM_NUM 8 /* object context array indices */ #define OCON_ISID 0 /* initial SIDs */ #define OCON_FS 1 /* unlabeled file systems */ #define OCON_PORT 2 /* TCP and UDP port numbers */ #define OCON_NETIF 3 /* network interfaces */ #define OCON_NODE 4 /* nodes */ #define OCON_FSUSE 5 /* fs_use */ #define OCON_NODE6 6 /* IPv6 nodes */ #define OCON_IBPKEY 7 /* Infiniband PKeys */ #define OCON_IBENDPORT 8 /* Infiniband end ports */ #define OCON_NUM 9 /* The policy database */ struct policydb { int mls_enabled; /* symbol tables */ struct symtab symtab[SYM_NUM]; #define p_commons symtab[SYM_COMMONS] #define p_classes symtab[SYM_CLASSES] #define p_roles symtab[SYM_ROLES] #define p_types symtab[SYM_TYPES] #define p_users symtab[SYM_USERS] #define p_bools symtab[SYM_BOOLS] #define p_levels symtab[SYM_LEVELS] #define p_cats symtab[SYM_CATS] /* symbol names indexed by (value - 1) */ char **sym_val_to_name[SYM_NUM]; /* class, role, and user attributes indexed by (value - 1) */ struct class_datum **class_val_to_struct; struct role_datum **role_val_to_struct; struct user_datum **user_val_to_struct; struct type_datum **type_val_to_struct; /* type enforcement access vectors and transitions */ struct avtab te_avtab; /* role transitions */ struct hashtab role_tr; /* file transitions with the last path component */ /* quickly exclude lookups when parent ttype has no rules */ struct ebitmap filename_trans_ttypes; /* actual set of filename_trans rules */ struct hashtab filename_trans; /* only used if policyvers < POLICYDB_VERSION_COMP_FTRANS */ u32 compat_filename_trans_count; /* bools indexed by (value - 1) */ struct cond_bool_datum **bool_val_to_struct; /* type enforcement conditional access vectors and transitions */ struct avtab te_cond_avtab; /* array indexing te_cond_avtab by conditional */ struct cond_node *cond_list; u32 cond_list_len; /* role allows */ struct role_allow *role_allow; /* security contexts of initial SIDs, unlabeled file systems, TCP or UDP port numbers, network interfaces and nodes */ struct ocontext *ocontexts[OCON_NUM]; /* security contexts for files in filesystems that cannot support a persistent label mapping or use another fixed labeling behavior. */ struct genfs *genfs; /* range transitions table (range_trans_key -> mls_range) */ struct hashtab range_tr; /* type -> attribute reverse mapping */ struct ebitmap *type_attr_map_array; struct ebitmap policycaps; struct ebitmap permissive_map; /* length of this policy when it was loaded */ size_t len; unsigned int policyvers; unsigned int reject_unknown : 1; unsigned int allow_unknown : 1; u16 process_class; u32 process_trans_perms; } __randomize_layout; extern void policydb_destroy(struct policydb *p); extern int policydb_load_isids(struct policydb *p, struct sidtab *s); extern int policydb_context_isvalid(struct policydb *p, struct context *c); extern int policydb_class_isvalid(struct policydb *p, unsigned int class); extern int policydb_type_isvalid(struct policydb *p, unsigned int type); extern int policydb_role_isvalid(struct policydb *p, unsigned int role); extern int policydb_read(struct policydb *p, void *fp); extern int policydb_write(struct policydb *p, void *fp); extern struct filename_trans_datum *policydb_filenametr_search( struct policydb *p, struct filename_trans_key *key); extern struct mls_range *policydb_rangetr_search( struct policydb *p, struct range_trans *key); extern struct role_trans_datum *policydb_roletr_search( struct policydb *p, struct role_trans_key *key); #define POLICYDB_CONFIG_MLS 1 /* the config flags related to unknown classes/perms are bits 2 and 3 */ #define REJECT_UNKNOWN 0x00000002 #define ALLOW_UNKNOWN 0x00000004 #define OBJECT_R "object_r" #define OBJECT_R_VAL 1 #define POLICYDB_MAGIC SELINUX_MAGIC #define POLICYDB_STRING "SE Linux" struct policy_file { char *data; size_t len; }; struct policy_data { struct policydb *p; void *fp; }; static inline int next_entry(void *buf, struct policy_file *fp, size_t bytes) { if (bytes > fp->len) return -EINVAL; memcpy(buf, fp->data, bytes); fp->data += bytes; fp->len -= bytes; return 0; } static inline int put_entry(const void *buf, size_t bytes, int num, struct policy_file *fp) { size_t len = bytes * num; memcpy(fp->data, buf, len); fp->data += len; fp->len -= len; return 0; } static inline char *sym_name(struct policydb *p, unsigned int sym_num, unsigned int element_nr) { return p->sym_val_to_name[sym_num][element_nr]; } extern u16 string_to_security_class(struct policydb *p, const char *name); extern u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name); #endif /* _SS_POLICYDB_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * pm_wakeup.h - Power management wakeup interface * * Copyright (C) 2008 Alan Stern * Copyright (C) 2010 Rafael J. Wysocki, Novell Inc. */ #ifndef _LINUX_PM_WAKEUP_H #define _LINUX_PM_WAKEUP_H #ifndef _DEVICE_H_ # error "please don't include this file directly" #endif #include <linux/types.h> struct wake_irq; /** * struct wakeup_source - Representation of wakeup sources * * @name: Name of the wakeup source * @id: Wakeup source id * @entry: Wakeup source list entry * @lock: Wakeup source lock * @wakeirq: Optional device specific wakeirq * @timer: Wakeup timer list * @timer_expires: Wakeup timer expiration * @total_time: Total time this wakeup source has been active. * @max_time: Maximum time this wakeup source has been continuously active. * @last_time: Monotonic clock when the wakeup source's was touched last time. * @prevent_sleep_time: Total time this source has been preventing autosleep. * @event_count: Number of signaled wakeup events. * @active_count: Number of times the wakeup source was activated. * @relax_count: Number of times the wakeup source was deactivated. * @expire_count: Number of times the wakeup source's timeout has expired. * @wakeup_count: Number of times the wakeup source might abort suspend. * @dev: Struct device for sysfs statistics about the wakeup source. * @active: Status of the wakeup source. * @autosleep_enabled: Autosleep is active, so update @prevent_sleep_time. */ struct wakeup_source { const char *name; int id; struct list_head entry; spinlock_t lock; struct wake_irq *wakeirq; struct timer_list timer; unsigned long timer_expires; ktime_t total_time; ktime_t max_time; ktime_t last_time; ktime_t start_prevent_time; ktime_t prevent_sleep_time; unsigned long event_count; unsigned long active_count; unsigned long relax_count; unsigned long expire_count; unsigned long wakeup_count; struct device *dev; bool active:1; bool autosleep_enabled:1; }; #define for_each_wakeup_source(ws) \ for ((ws) = wakeup_sources_walk_start(); \ (ws); \ (ws) = wakeup_sources_walk_next((ws))) #ifdef CONFIG_PM_SLEEP /* * Changes to device_may_wakeup take effect on the next pm state change. */ static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && !!dev->power.wakeup; } static inline void device_set_wakeup_path(struct device *dev) { dev->power.wakeup_path = true; } /* drivers/base/power/wakeup.c */ extern struct wakeup_source *wakeup_source_create(const char *name); extern void wakeup_source_destroy(struct wakeup_source *ws); extern void wakeup_source_add(struct wakeup_source *ws); extern void wakeup_source_remove(struct wakeup_source *ws); extern struct wakeup_source *wakeup_source_register(struct device *dev, const char *name); extern void wakeup_source_unregister(struct wakeup_source *ws); extern int wakeup_sources_read_lock(void); extern void wakeup_sources_read_unlock(int idx); extern struct wakeup_source *wakeup_sources_walk_start(void); extern struct wakeup_source *wakeup_sources_walk_next(struct wakeup_source *ws); extern int device_wakeup_enable(struct device *dev); extern int device_wakeup_disable(struct device *dev); extern void device_set_wakeup_capable(struct device *dev, bool capable); extern int device_init_wakeup(struct device *dev, bool val); extern int device_set_wakeup_enable(struct device *dev, bool enable); extern void __pm_stay_awake(struct wakeup_source *ws); extern void pm_stay_awake(struct device *dev); extern void __pm_relax(struct wakeup_source *ws); extern void pm_relax(struct device *dev); extern void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard); extern void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard); #else /* !CONFIG_PM_SLEEP */ static inline void device_set_wakeup_capable(struct device *dev, bool capable) { dev->power.can_wakeup = capable; } static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline struct wakeup_source *wakeup_source_create(const char *name) { return NULL; } static inline void wakeup_source_destroy(struct wakeup_source *ws) {} static inline void wakeup_source_add(struct wakeup_source *ws) {} static inline void wakeup_source_remove(struct wakeup_source *ws) {} static inline struct wakeup_source *wakeup_source_register(struct device *dev, const char *name) { return NULL; } static inline void wakeup_source_unregister(struct wakeup_source *ws) {} static inline int device_wakeup_enable(struct device *dev) { dev->power.should_wakeup = true; return 0; } static inline int device_wakeup_disable(struct device *dev) { dev->power.should_wakeup = false; return 0; } static inline int device_set_wakeup_enable(struct device *dev, bool enable) { dev->power.should_wakeup = enable; return 0; } static inline int device_init_wakeup(struct device *dev, bool val) { device_set_wakeup_capable(dev, val); device_set_wakeup_enable(dev, val); return 0; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && dev->power.should_wakeup; } static inline void device_set_wakeup_path(struct device *dev) {} static inline void __pm_stay_awake(struct wakeup_source *ws) {} static inline void pm_stay_awake(struct device *dev) {} static inline void __pm_relax(struct wakeup_source *ws) {} static inline void pm_relax(struct device *dev) {} static inline void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard) {} static inline void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard) {} #endif /* !CONFIG_PM_SLEEP */ static inline void __pm_wakeup_event(struct wakeup_source *ws, unsigned int msec) { return pm_wakeup_ws_event(ws, msec, false); } static inline void pm_wakeup_event(struct device *dev, unsigned int msec) { return pm_wakeup_dev_event(dev, msec, false); } static inline void pm_wakeup_hard_event(struct device *dev) { return pm_wakeup_dev_event(dev, 0, true); } #endif /* _LINUX_PM_WAKEUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_MROUTE_H #define __LINUX_MROUTE_H #include <linux/in.h> #include <linux/pim.h> #include <net/fib_rules.h> #include <net/fib_notifier.h> #include <uapi/linux/mroute.h> #include <linux/mroute_base.h> #include <linux/sockptr.h> #ifdef CONFIG_IP_MROUTE static inline int ip_mroute_opt(int opt) { return opt >= MRT_BASE && opt <= MRT_MAX; } int ip_mroute_setsockopt(struct sock *, int, sockptr_t, unsigned int); int ip_mroute_getsockopt(struct sock *, int, char __user *, int __user *); int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg); int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); int ip_mr_init(void); bool ipmr_rule_default(const struct fib_rule *rule); #else static inline int ip_mroute_setsockopt(struct sock *sock, int optname, sockptr_t optval, unsigned int optlen) { return -ENOPROTOOPT; } static inline int ip_mroute_getsockopt(struct sock *sock, int optname, char __user *optval, int __user *optlen) { return -ENOPROTOOPT; } static inline int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) { return -ENOIOCTLCMD; } static inline int ip_mr_init(void) { return 0; } static inline int ip_mroute_opt(int opt) { return 0; } static inline bool ipmr_rule_default(const struct fib_rule *rule) { return true; } #endif #define VIFF_STATIC 0x8000 struct mfc_cache_cmp_arg { __be32 mfc_mcastgrp; __be32 mfc_origin; }; /** * struct mfc_cache - multicast routing entries * @_c: Common multicast routing information; has to be first [for casting] * @mfc_mcastgrp: destination multicast group address * @mfc_origin: source address * @cmparg: used for rhashtable comparisons */ struct mfc_cache { struct mr_mfc _c; union { struct { __be32 mfc_mcastgrp; __be32 mfc_origin; }; struct mfc_cache_cmp_arg cmparg; }; }; struct rtmsg; int ipmr_get_route(struct net *net, struct sk_buff *skb, __be32 saddr, __be32 daddr, struct rtmsg *rtm, u32 portid); #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* SPDX-License-Identifier: GPL-2.0 */ /* * This header provides generic wrappers for memory access instrumentation that * the compiler cannot emit for: KASAN, KCSAN. */ #ifndef _LINUX_INSTRUMENTED_H #define _LINUX_INSTRUMENTED_H #include <linux/compiler.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> #include <linux/types.h> /** * instrument_read - instrument regular read access * * Instrument a regular read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_read(v, size); } /** * instrument_write - instrument regular write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_write(v, size); } /** * instrument_read_write - instrument regular read-write access * * Instrument a regular write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_read_write(v, size); } /** * instrument_atomic_read - instrument atomic read access * * Instrument an atomic read access. The instrumentation should be inserted * before the actual read happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read(const volatile void *v, size_t size) { kasan_check_read(v, size); kcsan_check_atomic_read(v, size); } /** * instrument_atomic_write - instrument atomic write access * * Instrument an atomic write access. The instrumentation should be inserted * before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_write(v, size); } /** * instrument_atomic_read_write - instrument atomic read-write access * * Instrument an atomic read-write access. The instrumentation should be * inserted before the actual write happens. * * @ptr address of access * @size size of access */ static __always_inline void instrument_atomic_read_write(const volatile void *v, size_t size) { kasan_check_write(v, size); kcsan_check_atomic_read_write(v, size); } /** * instrument_copy_to_user - instrument reads of copy_to_user * * Instrument reads from kernel memory, that are due to copy_to_user (and * variants). The instrumentation must be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_to_user(void __user *to, const void *from, unsigned long n) { kasan_check_read(from, n); kcsan_check_read(from, n); } /** * instrument_copy_from_user - instrument writes of copy_from_user * * Instrument writes to kernel memory, that are due to copy_from_user (and * variants). The instrumentation should be inserted before the accesses. * * @to destination address * @from source address * @n number of bytes to copy */ static __always_inline void instrument_copy_from_user(const void *to, const void __user *from, unsigned long n) { kasan_check_write(to, n); kcsan_check_write(to, n); } #endif /* _LINUX_INSTRUMENTED_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas <alex@clusterfs.com> */ #ifndef _EXT4_EXTENTS #define _EXT4_EXTENTS #include "ext4.h" /* * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks * becomes very small, so index split, in-depth growing and * other hard changes happen much more often. * This is for debug purposes only. */ #define AGGRESSIVE_TEST_ /* * With EXTENTS_STATS defined, the number of blocks and extents * are collected in the truncate path. They'll be shown at * umount time. */ #define EXTENTS_STATS__ /* * If CHECK_BINSEARCH is defined, then the results of the binary search * will also be checked by linear search. */ #define CHECK_BINSEARCH__ /* * If EXT_STATS is defined then stats numbers are collected. * These number will be displayed at umount time. */ #define EXT_STATS_ /* * ext4_inode has i_block array (60 bytes total). * The first 12 bytes store ext4_extent_header; * the remainder stores an array of ext4_extent. * For non-inode extent blocks, ext4_extent_tail * follows the array. */ /* * This is the extent tail on-disk structure. * All other extent structures are 12 bytes long. It turns out that * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which * covers all valid ext4 block sizes. Therefore, this tail structure can be * crammed into the end of the block without having to rebalance the tree. */ struct ext4_extent_tail { __le32 et_checksum; /* crc32c(uuid+inum+extent_block) */ }; /* * This is the extent on-disk structure. * It's used at the bottom of the tree. */ struct ext4_extent { __le32 ee_block; /* first logical block extent covers */ __le16 ee_len; /* number of blocks covered by extent */ __le16 ee_start_hi; /* high 16 bits of physical block */ __le32 ee_start_lo; /* low 32 bits of physical block */ }; /* * This is index on-disk structure. * It's used at all the levels except the bottom. */ struct ext4_extent_idx { __le32 ei_block; /* index covers logical blocks from 'block' */ __le32 ei_leaf_lo; /* pointer to the physical block of the next * * level. leaf or next index could be there */ __le16 ei_leaf_hi; /* high 16 bits of physical block */ __u16 ei_unused; }; /* * Each block (leaves and indexes), even inode-stored has header. */ struct ext4_extent_header { __le16 eh_magic; /* probably will support different formats */ __le16 eh_entries; /* number of valid entries */ __le16 eh_max; /* capacity of store in entries */ __le16 eh_depth; /* has tree real underlying blocks? */ __le32 eh_generation; /* generation of the tree */ }; #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) #define EXT4_MAX_EXTENT_DEPTH 5 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \ (sizeof(struct ext4_extent_header) + \ (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max))) static inline struct ext4_extent_tail * find_ext4_extent_tail(struct ext4_extent_header *eh) { return (struct ext4_extent_tail *)(((void *)eh) + EXT4_EXTENT_TAIL_OFFSET(eh)); } /* * Array of ext4_ext_path contains path to some extent. * Creation/lookup routines use it for traversal/splitting/etc. * Truncate uses it to simulate recursive walking. */ struct ext4_ext_path { ext4_fsblk_t p_block; __u16 p_depth; __u16 p_maxdepth; struct ext4_extent *p_ext; struct ext4_extent_idx *p_idx; struct ext4_extent_header *p_hdr; struct buffer_head *p_bh; }; /* * Used to record a portion of a cluster found at the beginning or end * of an extent while traversing the extent tree during space removal. * A partial cluster may be removed if it does not contain blocks shared * with extents that aren't being deleted (tofree state). Otherwise, * it cannot be removed (nofree state). */ struct partial_cluster { ext4_fsblk_t pclu; /* physical cluster number */ ext4_lblk_t lblk; /* logical block number within logical cluster */ enum {initial, tofree, nofree} state; }; /* * structure for external API */ /* * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an * initialized extent. This is 2^15 and not (2^16 - 1), since we use the * MSB of ee_len field in the extent datastructure to signify if this * particular extent is an initialized extent or an unwritten (i.e. * preallocated). * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an * unwritten extent. * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an * unwritten one. In other words, if MSB of ee_len is set, it is an * unwritten extent with only one special scenario when ee_len = 0x8000. * In this case we can not have an unwritten extent of zero length and * thus we make it as a special case of initialized extent with 0x8000 length. * This way we get better extent-to-group alignment for initialized extents. * Hence, the maximum number of blocks we can have in an *initialized* * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767). */ #define EXT_INIT_MAX_LEN (1UL << 15) #define EXT_UNWRITTEN_MAX_LEN (EXT_INIT_MAX_LEN - 1) #define EXT_FIRST_EXTENT(__hdr__) \ ((struct ext4_extent *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_FIRST_INDEX(__hdr__) \ ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_HAS_FREE_INDEX(__path__) \ (le16_to_cpu((__path__)->p_hdr->eh_entries) \ < le16_to_cpu((__path__)->p_hdr->eh_max)) #define EXT_LAST_EXTENT(__hdr__) \ (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_LAST_INDEX(__hdr__) \ (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_MAX_EXTENT(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) \ : 0) #define EXT_MAX_INDEX(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) : 0) static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) { return (struct ext4_extent_header *) EXT4_I(inode)->i_data; } static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) { return (struct ext4_extent_header *) bh->b_data; } static inline unsigned short ext_depth(struct inode *inode) { return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); } static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext) { /* We can not have an unwritten extent of zero length! */ BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); } static inline int ext4_ext_is_unwritten(struct ext4_extent *ext) { /* Extent with ee_len of 0x8000 is treated as an initialized extent */ return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); } static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) { return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? le16_to_cpu(ext->ee_len) : (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); } static inline void ext4_ext_mark_initialized(struct ext4_extent *ext) { ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext)); } /* * ext4_ext_pblock: * combine low and high parts of physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex) { ext4_fsblk_t block; block = le32_to_cpu(ex->ee_start_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; return block; } /* * ext4_idx_pblock: * combine low and high parts of a leaf physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix) { ext4_fsblk_t block; block = le32_to_cpu(ix->ei_leaf_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; return block; } /* * ext4_ext_store_pblock: * stores a large physical block number into an extent struct, * breaking it into parts */ static inline void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) { ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } /* * ext4_idx_store_pblock: * stores a large physical block number into an index struct, * breaking it into parts */ static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) { ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } #endif /* _EXT4_EXTENTS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _XFRM_HASH_H #define _XFRM_HASH_H #include <linux/xfrm.h> #include <linux/socket.h> #include <linux/jhash.h> static inline unsigned int __xfrm4_addr_hash(const xfrm_address_t *addr) { return ntohl(addr->a4); } static inline unsigned int __xfrm6_addr_hash(const xfrm_address_t *addr) { return jhash2((__force u32 *)addr->a6, 4, 0); } static inline unsigned int __xfrm4_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { u32 sum = (__force u32)daddr->a4 + (__force u32)saddr->a4; return ntohl((__force __be32)sum); } static inline unsigned int __xfrm6_daddr_saddr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr) { return __xfrm6_addr_hash(daddr) ^ __xfrm6_addr_hash(saddr); } static inline u32 __bits2mask32(__u8 bits) { u32 mask32 = 0xffffffff; if (bits == 0) mask32 = 0; else if (bits < 32) mask32 <<= (32 - bits); return mask32; } static inline unsigned int __xfrm4_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return jhash_2words(ntohl(daddr->a4) & __bits2mask32(dbits), ntohl(saddr->a4) & __bits2mask32(sbits), 0); } static inline unsigned int __xfrm6_pref_hash(const xfrm_address_t *addr, __u8 prefixlen) { unsigned int pdw; unsigned int pbi; u32 initval = 0; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); initval = (__force u32)(addr->a6[pdw] & mask); } return jhash2((__force u32 *)addr->a6, pdw, initval); } static inline unsigned int __xfrm6_dpref_spref_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, __u8 dbits, __u8 sbits) { return __xfrm6_pref_hash(daddr, dbits) ^ __xfrm6_pref_hash(saddr, sbits); } static inline unsigned int __xfrm_dst_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, u32 reqid, unsigned short family, unsigned int hmask) { unsigned int h = family ^ reqid; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_src_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask) { unsigned int h = family; switch (family) { case AF_INET: h ^= __xfrm4_daddr_saddr_hash(daddr, saddr); break; case AF_INET6: h ^= __xfrm6_daddr_saddr_hash(daddr, saddr); break; } return (h ^ (h >> 16)) & hmask; } static inline unsigned int __xfrm_spi_hash(const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family, unsigned int hmask) { unsigned int h = (__force u32)spi ^ proto; switch (family) { case AF_INET: h ^= __xfrm4_addr_hash(daddr); break; case AF_INET6: h ^= __xfrm6_addr_hash(daddr); break; } return (h ^ (h >> 10) ^ (h >> 20)) & hmask; } static inline unsigned int __idx_hash(u32 index, unsigned int hmask) { return (index ^ (index >> 8)) & hmask; } static inline unsigned int __sel_hash(const struct xfrm_selector *sel, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { const xfrm_address_t *daddr = &sel->daddr; const xfrm_address_t *saddr = &sel->saddr; unsigned int h = 0; switch (family) { case AF_INET: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: if (sel->prefixlen_d < dbits || sel->prefixlen_s < sbits) return hmask + 1; h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } static inline unsigned int __addr_hash(const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family, unsigned int hmask, u8 dbits, u8 sbits) { unsigned int h = 0; switch (family) { case AF_INET: h = __xfrm4_dpref_spref_hash(daddr, saddr, dbits, sbits); break; case AF_INET6: h = __xfrm6_dpref_spref_hash(daddr, saddr, dbits, sbits); break; } h ^= (h >> 16); return h & hmask; } struct hlist_head *xfrm_hash_alloc(unsigned int sz); void xfrm_hash_free(struct hlist_head *n, unsigned int sz); #endif /* _XFRM_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_NEIGHBOUR_H #define _NET_NEIGHBOUR_H #include <linux/neighbour.h> /* * Generic neighbour manipulation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * * Changes: * * Harald Welte: <laforge@gnumonks.org> * - Add neighbour cache statistics like rtstat */ #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/rcupdate.h> #include <linux/seq_file.h> #include <linux/bitmap.h> #include <linux/err.h> #include <linux/sysctl.h> #include <linux/workqueue.h> #include <net/rtnetlink.h> /* * NUD stands for "neighbor unreachability detection" */ #define NUD_IN_TIMER (NUD_INCOMPLETE|NUD_REACHABLE|NUD_DELAY|NUD_PROBE) #define NUD_VALID (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE|NUD_PROBE|NUD_STALE|NUD_DELAY) #define NUD_CONNECTED (NUD_PERMANENT|NUD_NOARP|NUD_REACHABLE) struct neighbour; enum { NEIGH_VAR_MCAST_PROBES, NEIGH_VAR_UCAST_PROBES, NEIGH_VAR_APP_PROBES, NEIGH_VAR_MCAST_REPROBES, NEIGH_VAR_RETRANS_TIME, NEIGH_VAR_BASE_REACHABLE_TIME, NEIGH_VAR_DELAY_PROBE_TIME, NEIGH_VAR_GC_STALETIME, NEIGH_VAR_QUEUE_LEN_BYTES, NEIGH_VAR_PROXY_QLEN, NEIGH_VAR_ANYCAST_DELAY, NEIGH_VAR_PROXY_DELAY, NEIGH_VAR_LOCKTIME, #define NEIGH_VAR_DATA_MAX (NEIGH_VAR_LOCKTIME + 1) /* Following are used as a second way to access one of the above */ NEIGH_VAR_QUEUE_LEN, /* same data as NEIGH_VAR_QUEUE_LEN_BYTES */ NEIGH_VAR_RETRANS_TIME_MS, /* same data as NEIGH_VAR_RETRANS_TIME */ NEIGH_VAR_BASE_REACHABLE_TIME_MS, /* same data as NEIGH_VAR_BASE_REACHABLE_TIME */ /* Following are used by "default" only */ NEIGH_VAR_GC_INTERVAL, NEIGH_VAR_GC_THRESH1, NEIGH_VAR_GC_THRESH2, NEIGH_VAR_GC_THRESH3, NEIGH_VAR_MAX }; struct neigh_parms { possible_net_t net; struct net_device *dev; struct list_head list; int (*neigh_setup)(struct neighbour *); struct neigh_table *tbl; void *sysctl_table; int dead; refcount_t refcnt; struct rcu_head rcu_head; int reachable_time; int data[NEIGH_VAR_DATA_MAX]; DECLARE_BITMAP(data_state, NEIGH_VAR_DATA_MAX); }; static inline void neigh_var_set(struct neigh_parms *p, int index, int val) { set_bit(index, p->data_state); p->data[index] = val; } #define NEIGH_VAR(p, attr) ((p)->data[NEIGH_VAR_ ## attr]) /* In ndo_neigh_setup, NEIGH_VAR_INIT should be used. * In other cases, NEIGH_VAR_SET should be used. */ #define NEIGH_VAR_INIT(p, attr, val) (NEIGH_VAR(p, attr) = val) #define NEIGH_VAR_SET(p, attr, val) neigh_var_set(p, NEIGH_VAR_ ## attr, val) static inline void neigh_parms_data_state_setall(struct neigh_parms *p) { bitmap_fill(p->data_state, NEIGH_VAR_DATA_MAX); } static inline void neigh_parms_data_state_cleanall(struct neigh_parms *p) { bitmap_zero(p->data_state, NEIGH_VAR_DATA_MAX); } struct neigh_statistics { unsigned long allocs; /* number of allocated neighs */ unsigned long destroys; /* number of destroyed neighs */ unsigned long hash_grows; /* number of hash resizes */ unsigned long res_failed; /* number of failed resolutions */ unsigned long lookups; /* number of lookups */ unsigned long hits; /* number of hits (among lookups) */ unsigned long rcv_probes_mcast; /* number of received mcast ipv6 */ unsigned long rcv_probes_ucast; /* number of received ucast ipv6 */ unsigned long periodic_gc_runs; /* number of periodic GC runs */ unsigned long forced_gc_runs; /* number of forced GC runs */ unsigned long unres_discards; /* number of unresolved drops */ unsigned long table_fulls; /* times even gc couldn't help */ }; #define NEIGH_CACHE_STAT_INC(tbl, field) this_cpu_inc((tbl)->stats->field) struct neighbour { struct neighbour __rcu *next; struct neigh_table *tbl; struct neigh_parms *parms; unsigned long confirmed; unsigned long updated; rwlock_t lock; refcount_t refcnt; unsigned int arp_queue_len_bytes; struct sk_buff_head arp_queue; struct timer_list timer; unsigned long used; atomic_t probes; __u8 flags; __u8 nud_state; __u8 type; __u8 dead; u8 protocol; seqlock_t ha_lock; unsigned char ha[ALIGN(MAX_ADDR_LEN, sizeof(unsigned long))] __aligned(8); struct hh_cache hh; int (*output)(struct neighbour *, struct sk_buff *); const struct neigh_ops *ops; struct list_head gc_list; struct rcu_head rcu; struct net_device *dev; u8 primary_key[0]; } __randomize_layout; struct neigh_ops { int family; void (*solicit)(struct neighbour *, struct sk_buff *); void (*error_report)(struct neighbour *, struct sk_buff *); int (*output)(struct neighbour *, struct sk_buff *); int (*connected_output)(struct neighbour *, struct sk_buff *); }; struct pneigh_entry { struct pneigh_entry *next; possible_net_t net; struct net_device *dev; u8 flags; u8 protocol; u8 key[]; }; /* * neighbour table manipulation */ #define NEIGH_NUM_HASH_RND 4 struct neigh_hash_table { struct neighbour __rcu **hash_buckets; unsigned int hash_shift; __u32 hash_rnd[NEIGH_NUM_HASH_RND]; struct rcu_head rcu; }; struct neigh_table { int family; unsigned int entry_size; unsigned int key_len; __be16 protocol; __u32 (*hash)(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); bool (*key_eq)(const struct neighbour *, const void *pkey); int (*constructor)(struct neighbour *); int (*pconstructor)(struct pneigh_entry *); void (*pdestructor)(struct pneigh_entry *); void (*proxy_redo)(struct sk_buff *skb); int (*is_multicast)(const void *pkey); bool (*allow_add)(const struct net_device *dev, struct netlink_ext_ack *extack); char *id; struct neigh_parms parms; struct list_head parms_list; int gc_interval; int gc_thresh1; int gc_thresh2; int gc_thresh3; unsigned long last_flush; struct delayed_work gc_work; struct timer_list proxy_timer; struct sk_buff_head proxy_queue; atomic_t entries; atomic_t gc_entries; struct list_head gc_list; rwlock_t lock; unsigned long last_rand; struct neigh_statistics __percpu *stats; struct neigh_hash_table __rcu *nht; struct pneigh_entry **phash_buckets; }; enum { NEIGH_ARP_TABLE = 0, NEIGH_ND_TABLE = 1, NEIGH_DN_TABLE = 2, NEIGH_NR_TABLES, NEIGH_LINK_TABLE = NEIGH_NR_TABLES /* Pseudo table for neigh_xmit */ }; static inline int neigh_parms_family(struct neigh_parms *p) { return p->tbl->family; } #define NEIGH_PRIV_ALIGN sizeof(long long) #define NEIGH_ENTRY_SIZE(size) ALIGN((size), NEIGH_PRIV_ALIGN) static inline void *neighbour_priv(const struct neighbour *n) { return (char *)n + n->tbl->entry_size; } /* flags for neigh_update() */ #define NEIGH_UPDATE_F_OVERRIDE 0x00000001 #define NEIGH_UPDATE_F_WEAK_OVERRIDE 0x00000002 #define NEIGH_UPDATE_F_OVERRIDE_ISROUTER 0x00000004 #define NEIGH_UPDATE_F_USE 0x10000000 #define NEIGH_UPDATE_F_EXT_LEARNED 0x20000000 #define NEIGH_UPDATE_F_ISROUTER 0x40000000 #define NEIGH_UPDATE_F_ADMIN 0x80000000 extern const struct nla_policy nda_policy[]; static inline bool neigh_key_eq16(const struct neighbour *n, const void *pkey) { return *(const u16 *)n->primary_key == *(const u16 *)pkey; } static inline bool neigh_key_eq32(const struct neighbour *n, const void *pkey) { return *(const u32 *)n->primary_key == *(const u32 *)pkey; } static inline bool neigh_key_eq128(const struct neighbour *n, const void *pkey) { const u32 *n32 = (const u32 *)n->primary_key; const u32 *p32 = pkey; return ((n32[0] ^ p32[0]) | (n32[1] ^ p32[1]) | (n32[2] ^ p32[2]) | (n32[3] ^ p32[3])) == 0; } static inline struct neighbour *___neigh_lookup_noref( struct neigh_table *tbl, bool (*key_eq)(const struct neighbour *n, const void *pkey), __u32 (*hash)(const void *pkey, const struct net_device *dev, __u32 *hash_rnd), const void *pkey, struct net_device *dev) { struct neigh_hash_table *nht = rcu_dereference_bh(tbl->nht); struct neighbour *n; u32 hash_val; hash_val = hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); n != NULL; n = rcu_dereference_bh(n->next)) { if (n->dev == dev && key_eq(n, pkey)) return n; } return NULL; } static inline struct neighbour *__neigh_lookup_noref(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { return ___neigh_lookup_noref(tbl, tbl->key_eq, tbl->hash, pkey, dev); } void neigh_table_init(int index, struct neigh_table *tbl); int neigh_table_clear(int index, struct neigh_table *tbl); struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev); struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, const void *pkey); struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev, bool want_ref); static inline struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { return __neigh_create(tbl, pkey, dev, true); } void neigh_destroy(struct neighbour *neigh); int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb); int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid); void __neigh_set_probe_once(struct neighbour *neigh); bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl); void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev); int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev); int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev); int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb); int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb); int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb); struct neighbour *neigh_event_ns(struct neigh_table *tbl, u8 *lladdr, void *saddr, struct net_device *dev); struct neigh_parms *neigh_parms_alloc(struct net_device *dev, struct neigh_table *tbl); void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms); static inline struct net *neigh_parms_net(const struct neigh_parms *parms) { return read_pnet(&parms->net); } unsigned long neigh_rand_reach_time(unsigned long base); void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, struct sk_buff *skb); struct pneigh_entry *pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev, int creat); struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev); int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *key, struct net_device *dev); static inline struct net *pneigh_net(const struct pneigh_entry *pneigh) { return read_pnet(&pneigh->net); } void neigh_app_ns(struct neighbour *n); void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie); void __neigh_for_each_release(struct neigh_table *tbl, int (*cb)(struct neighbour *)); int neigh_xmit(int fam, struct net_device *, const void *, struct sk_buff *); void pneigh_for_each(struct neigh_table *tbl, void (*cb)(struct pneigh_entry *)); struct neigh_seq_state { struct seq_net_private p; struct neigh_table *tbl; struct neigh_hash_table *nht; void *(*neigh_sub_iter)(struct neigh_seq_state *state, struct neighbour *n, loff_t *pos); unsigned int bucket; unsigned int flags; #define NEIGH_SEQ_NEIGH_ONLY 0x00000001 #define NEIGH_SEQ_IS_PNEIGH 0x00000002 #define NEIGH_SEQ_SKIP_NOARP 0x00000004 }; void *neigh_seq_start(struct seq_file *, loff_t *, struct neigh_table *, unsigned int); void *neigh_seq_next(struct seq_file *, void *, loff_t *); void neigh_seq_stop(struct seq_file *, void *); int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, proc_handler *proc_handler); void neigh_sysctl_unregister(struct neigh_parms *p); static inline void __neigh_parms_put(struct neigh_parms *parms) { refcount_dec(&parms->refcnt); } static inline struct neigh_parms *neigh_parms_clone(struct neigh_parms *parms) { refcount_inc(&parms->refcnt); return parms; } /* * Neighbour references */ static inline void neigh_release(struct neighbour *neigh) { if (refcount_dec_and_test(&neigh->refcnt)) neigh_destroy(neigh); } static inline struct neighbour * neigh_clone(struct neighbour *neigh) { if (neigh) refcount_inc(&neigh->refcnt); return neigh; } #define neigh_hold(n) refcount_inc(&(n)->refcnt) static inline int neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) { unsigned long now = jiffies; if (READ_ONCE(neigh->used) != now) WRITE_ONCE(neigh->used, now); if (!(neigh->nud_state&(NUD_CONNECTED|NUD_DELAY|NUD_PROBE))) return __neigh_event_send(neigh, skb); return 0; } #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) static inline int neigh_hh_bridge(struct hh_cache *hh, struct sk_buff *skb) { unsigned int seq, hh_alen; do { seq = read_seqbegin(&hh->hh_lock); hh_alen = HH_DATA_ALIGN(ETH_HLEN); memcpy(skb->data - hh_alen, hh->hh_data, ETH_ALEN + hh_alen - ETH_HLEN); } while (read_seqretry(&hh->hh_lock, seq)); return 0; } #endif static inline int neigh_hh_output(const struct hh_cache *hh, struct sk_buff *skb) { unsigned int hh_alen = 0; unsigned int seq; unsigned int hh_len; do { seq = read_seqbegin(&hh->hh_lock); hh_len = READ_ONCE(hh->hh_len); if (likely(hh_len <= HH_DATA_MOD)) { hh_alen = HH_DATA_MOD; /* skb_push() would proceed silently if we have room for * the unaligned size but not for the aligned size: * check headroom explicitly. */ if (likely(skb_headroom(skb) >= HH_DATA_MOD)) { /* this is inlined by gcc */ memcpy(skb->data - HH_DATA_MOD, hh->hh_data, HH_DATA_MOD); } } else { hh_alen = HH_DATA_ALIGN(hh_len); if (likely(skb_headroom(skb) >= hh_alen)) { memcpy(skb->data - hh_alen, hh->hh_data, hh_alen); } } } while (read_seqretry(&hh->hh_lock, seq)); if (WARN_ON_ONCE(skb_headroom(skb) < hh_alen)) { kfree_skb(skb); return NET_XMIT_DROP; } __skb_push(skb, hh_len); return dev_queue_xmit(skb); } static inline int neigh_output(struct neighbour *n, struct sk_buff *skb, bool skip_cache) { const struct hh_cache *hh = &n->hh; /* n->nud_state and hh->hh_len could be changed under us. * neigh_hh_output() is taking care of the race later. */ if (!skip_cache && (READ_ONCE(n->nud_state) & NUD_CONNECTED) && READ_ONCE(hh->hh_len)) return neigh_hh_output(hh, skb); return n->output(n, skb); } static inline struct neighbour * __neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev, int creat) { struct neighbour *n = neigh_lookup(tbl, pkey, dev); if (n || !creat) return n; n = neigh_create(tbl, pkey, dev); return IS_ERR(n) ? NULL : n; } static inline struct neighbour * __neigh_lookup_errno(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { struct neighbour *n = neigh_lookup(tbl, pkey, dev); if (n) return n; return neigh_create(tbl, pkey, dev); } struct neighbour_cb { unsigned long sched_next; unsigned int flags; }; #define LOCALLY_ENQUEUED 0x1 #define NEIGH_CB(skb) ((struct neighbour_cb *)(skb)->cb) static inline void neigh_ha_snapshot(char *dst, const struct neighbour *n, const struct net_device *dev) { unsigned int seq; do { seq = read_seqbegin(&n->ha_lock); memcpy(dst, n->ha, dev->addr_len); } while (read_seqretry(&n->ha_lock, seq)); } static inline void neigh_update_is_router(struct neighbour *neigh, u32 flags, int *notify) { u8 ndm_flags = 0; ndm_flags |= (flags & NEIGH_UPDATE_F_ISROUTER) ? NTF_ROUTER : 0; if ((neigh->flags ^ ndm_flags) & NTF_ROUTER) { if (ndm_flags & NTF_ROUTER) neigh->flags |= NTF_ROUTER; else neigh->flags &= ~NTF_ROUTER; *notify = 1; } } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_64_H #define _ASM_X86_PGTABLE_64_H #include <linux/const.h> #include <asm/pgtable_64_types.h> #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. */ #include <asm/processor.h> #include <linux/bitops.h> #include <linux/threads.h> #include <asm/fixmap.h> extern p4d_t level4_kernel_pgt[512]; extern p4d_t level4_ident_pgt[512]; extern pud_t level3_kernel_pgt[512]; extern pud_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pmd_t level2_fixmap_pgt[512]; extern pmd_t level2_ident_pgt[512]; extern pte_t level1_fixmap_pgt[512 * FIXMAP_PMD_NUM]; extern pgd_t init_top_pgt[]; #define swapper_pg_dir init_top_pgt extern void paging_init(void); static inline void sync_initial_page_table(void) { } #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pud_val(e)) #if CONFIG_PGTABLE_LEVELS >= 5 #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %p(%016lx)\n", \ __FILE__, __LINE__, &(e), p4d_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pgd_val(e)) struct mm_struct; #define mm_p4d_folded mm_p4d_folded static inline bool mm_p4d_folded(struct mm_struct *mm) { return !pgtable_l5_enabled(); } void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte); void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte); static inline void native_set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { native_set_pte(ptep, native_make_pte(0)); } static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void native_pmd_clear(pmd_t *pmd) { native_set_pmd(pmd, native_make_pmd(0)); } static inline pte_t native_ptep_get_and_clear(pte_t *xp) { #ifdef CONFIG_SMP return native_make_pte(xchg(&xp->pte, 0)); #else /* native_local_ptep_get_and_clear, but duplicated because of cyclic dependency */ pte_t ret = *xp; native_pte_clear(NULL, 0, xp); return ret; #endif } static inline pmd_t native_pmdp_get_and_clear(pmd_t *xp) { #ifdef CONFIG_SMP return native_make_pmd(xchg(&xp->pmd, 0)); #else /* native_local_pmdp_get_and_clear, but duplicated because of cyclic dependency */ pmd_t ret = *xp; native_pmd_clear(xp); return ret; #endif } static inline void native_set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void native_pud_clear(pud_t *pud) { native_set_pud(pud, native_make_pud(0)); } static inline pud_t native_pudp_get_and_clear(pud_t *xp) { #ifdef CONFIG_SMP return native_make_pud(xchg(&xp->pud, 0)); #else /* native_local_pudp_get_and_clear, * but duplicated because of cyclic dependency */ pud_t ret = *xp; native_pud_clear(xp); return ret; #endif } static inline void native_set_p4d(p4d_t *p4dp, p4d_t p4d) { pgd_t pgd; if (pgtable_l5_enabled() || !IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) { WRITE_ONCE(*p4dp, p4d); return; } pgd = native_make_pgd(native_p4d_val(p4d)); pgd = pti_set_user_pgtbl((pgd_t *)p4dp, pgd); WRITE_ONCE(*p4dp, native_make_p4d(native_pgd_val(pgd))); } static inline void native_p4d_clear(p4d_t *p4d) { native_set_p4d(p4d, native_make_p4d(0)); } static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd)); } static inline void native_pgd_clear(pgd_t *pgd) { native_set_pgd(pgd, native_make_pgd(0)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* PGD - Level 4 access */ /* PUD - Level 3 access */ /* PMD - Level 2 access */ /* PTE - Level 1 access */ /* * Encode and de-code a swap entry * * | ... | 11| 10| 9|8|7|6|5| 4| 3|2| 1|0| <- bit number * | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U| W|P| <- bit names * | TYPE (59-63) | ~OFFSET (9-58) |0|0|X|X| X| X|F|SD|0| <- swp entry * * G (8) is aliased and used as a PROT_NONE indicator for * !present ptes. We need to start storing swap entries above * there. We also need to avoid using A and D because of an * erratum where they can be incorrectly set by hardware on * non-present PTEs. * * SD Bits 1-4 are not used in non-present format and available for * special use described below: * * SD (1) in swp entry is used to store soft dirty bit, which helps us * remember soft dirty over page migration * * F (2) in swp entry is used to record when a pagetable is * writeprotected by userfaultfd WP support. * * Bit 7 in swp entry should be 0 because pmd_present checks not only P, * but also L and G. * * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define SWP_TYPE_BITS 5 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) /* We always extract/encode the offset by shifting it all the way up, and then down again */ #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT+SWP_TYPE_BITS) #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) /* Extract the high bits for type */ #define __swp_type(x) ((x).val >> (64 - SWP_TYPE_BITS)) /* Shift up (to get rid of type), then down to get value */ #define __swp_offset(x) (~(x).val << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT) /* * Shift the offset up "too far" by TYPE bits, then down again * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define __swp_entry(type, offset) ((swp_entry_t) { \ (~(unsigned long)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ | ((unsigned long)(type) << (64-SWP_TYPE_BITS)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val((pmd)) }) #define __swp_entry_to_pte(x) ((pte_t) { .pte = (x).val }) #define __swp_entry_to_pmd(x) ((pmd_t) { .pmd = (x).val }) extern int kern_addr_valid(unsigned long addr); extern void cleanup_highmap(void); #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define PAGE_AGP PAGE_KERNEL_NOCACHE #define HAVE_PAGE_AGP 1 /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK) #define kc_offset_to_vaddr(o) ((o) | ~__VIRTUAL_MASK) #define __HAVE_ARCH_PTE_SAME #define vmemmap ((struct page *)VMEMMAP_START) extern void init_extra_mapping_uc(unsigned long phys, unsigned long size); extern void init_extra_mapping_wb(unsigned long phys, unsigned long size); #define gup_fast_permitted gup_fast_permitted static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { if (end >> __VIRTUAL_MASK_SHIFT) return false; return true; } #include <asm/pgtable-invert.h> #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 #ifndef INTERNAL_IO_WQ_H #define INTERNAL_IO_WQ_H #include <linux/io_uring.h> struct io_wq; enum { IO_WQ_WORK_CANCEL = 1, IO_WQ_WORK_HASHED = 2, IO_WQ_WORK_UNBOUND = 4, IO_WQ_WORK_NO_CANCEL = 8, IO_WQ_WORK_CONCURRENT = 16, IO_WQ_WORK_FILES = 32, IO_WQ_WORK_FS = 64, IO_WQ_WORK_MM = 128, IO_WQ_WORK_CREDS = 256, IO_WQ_WORK_BLKCG = 512, IO_WQ_WORK_FSIZE = 1024, IO_WQ_HASH_SHIFT = 24, /* upper 8 bits are used for hash key */ }; enum io_wq_cancel { IO_WQ_CANCEL_OK, /* cancelled before started */ IO_WQ_CANCEL_RUNNING, /* found, running, and attempted cancelled */ IO_WQ_CANCEL_NOTFOUND, /* work not found */ }; struct io_wq_work_node { struct io_wq_work_node *next; }; struct io_wq_work_list { struct io_wq_work_node *first; struct io_wq_work_node *last; }; static inline void wq_list_add_after(struct io_wq_work_node *node, struct io_wq_work_node *pos, struct io_wq_work_list *list) { struct io_wq_work_node *next = pos->next; pos->next = node; node->next = next; if (!next) list->last = node; } static inline void wq_list_add_tail(struct io_wq_work_node *node, struct io_wq_work_list *list) { if (!list->first) { list->last = node; WRITE_ONCE(list->first, node); } else { list->last->next = node; list->last = node; } node->next = NULL; } static inline void wq_list_cut(struct io_wq_work_list *list, struct io_wq_work_node *last, struct io_wq_work_node *prev) { /* first in the list, if prev==NULL */ if (!prev) WRITE_ONCE(list->first, last->next); else prev->next = last->next; if (last == list->last) list->last = prev; last->next = NULL; } static inline void wq_list_del(struct io_wq_work_list *list, struct io_wq_work_node *node, struct io_wq_work_node *prev) { wq_list_cut(list, node, prev); } #define wq_list_for_each(pos, prv, head) \ for (pos = (head)->first, prv = NULL; pos; prv = pos, pos = (pos)->next) #define wq_list_empty(list) (READ_ONCE((list)->first) == NULL) #define INIT_WQ_LIST(list) do { \ (list)->first = NULL; \ (list)->last = NULL; \ } while (0) struct io_wq_work { struct io_wq_work_node list; struct io_identity *identity; unsigned flags; }; static inline struct io_wq_work *wq_next_work(struct io_wq_work *work) { if (!work->list.next) return NULL; return container_of(work->list.next, struct io_wq_work, list); } typedef void (free_work_fn)(struct io_wq_work *); typedef struct io_wq_work *(io_wq_work_fn)(struct io_wq_work *); struct io_wq_data { struct user_struct *user; io_wq_work_fn *do_work; free_work_fn *free_work; }; struct io_wq *io_wq_create(unsigned bounded, struct io_wq_data *data); bool io_wq_get(struct io_wq *wq, struct io_wq_data *data); void io_wq_destroy(struct io_wq *wq); void io_wq_enqueue(struct io_wq *wq, struct io_wq_work *work); void io_wq_hash_work(struct io_wq_work *work, void *val); static inline bool io_wq_is_hashed(struct io_wq_work *work) { return work->flags & IO_WQ_WORK_HASHED; } void io_wq_cancel_all(struct io_wq *wq); typedef bool (work_cancel_fn)(struct io_wq_work *, void *); enum io_wq_cancel io_wq_cancel_cb(struct io_wq *wq, work_cancel_fn *cancel, void *data, bool cancel_all); struct task_struct *io_wq_get_task(struct io_wq *wq); #if defined(CONFIG_IO_WQ) extern void io_wq_worker_sleeping(struct task_struct *); extern void io_wq_worker_running(struct task_struct *); #else static inline void io_wq_worker_sleeping(struct task_struct *tsk) { } static inline void io_wq_worker_running(struct task_struct *tsk) { } #endif static inline bool io_wq_current_is_worker(void) { return in_task() && (current->flags & PF_IO_WORKER); } #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_SCHED_GENERIC_H #define __NET_SCHED_GENERIC_H #include <linux/netdevice.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/pkt_sched.h> #include <linux/pkt_cls.h> #include <linux/percpu.h> #include <linux/dynamic_queue_limits.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/hashtable.h> #include <net/gen_stats.h> #include <net/rtnetlink.h> #include <net/flow_offload.h> struct Qdisc_ops; struct qdisc_walker; struct tcf_walker; struct module; struct bpf_flow_keys; struct qdisc_rate_table { struct tc_ratespec rate; u32 data[256]; struct qdisc_rate_table *next; int refcnt; }; enum qdisc_state_t { __QDISC_STATE_SCHED, __QDISC_STATE_DEACTIVATED, __QDISC_STATE_MISSED, }; struct qdisc_size_table { struct rcu_head rcu; struct list_head list; struct tc_sizespec szopts; int refcnt; u16 data[]; }; /* similar to sk_buff_head, but skb->prev pointer is undefined. */ struct qdisc_skb_head { struct sk_buff *head; struct sk_buff *tail; __u32 qlen; spinlock_t lock; }; struct Qdisc { int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *sch); unsigned int flags; #define TCQ_F_BUILTIN 1 #define TCQ_F_INGRESS 2 #define TCQ_F_CAN_BYPASS 4 #define TCQ_F_MQROOT 8 #define TCQ_F_ONETXQUEUE 0x10 /* dequeue_skb() can assume all skbs are for * q->dev_queue : It can test * netif_xmit_frozen_or_stopped() before * dequeueing next packet. * Its true for MQ/MQPRIO slaves, or non