1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef PM_TRACE_H #define PM_TRACE_H #include <linux/types.h> #ifdef CONFIG_PM_TRACE #include <asm/pm-trace.h> extern int pm_trace_enabled; extern bool pm_trace_rtc_abused; static inline bool pm_trace_rtc_valid(void) { return !pm_trace_rtc_abused; } static inline int pm_trace_is_enabled(void) { return pm_trace_enabled; } struct device; extern void set_trace_device(struct device *); extern void generate_pm_trace(const void *tracedata, unsigned int user); extern int show_trace_dev_match(char *buf, size_t size); #define TRACE_DEVICE(dev) do { \ if (pm_trace_enabled) \ set_trace_device(dev); \ } while(0) #else static inline bool pm_trace_rtc_valid(void) { return true; } static inline int pm_trace_is_enabled(void) { return 0; } #define TRACE_DEVICE(dev) do { } while (0) #define TRACE_RESUME(dev) do { } while (0) #define TRACE_SUSPEND(dev) do { } while (0) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 /* SPDX-License-Identifier: GPL-2.0 */ /* * Authors: ThiƩbaud Weksteen <tweek@google.com> * Peter Enderborg <Peter.Enderborg@sony.com> */ #undef TRACE_SYSTEM #define TRACE_SYSTEM avc #if !defined(_TRACE_SELINUX_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SELINUX_H #include <linux/tracepoint.h> TRACE_EVENT(selinux_audited, TP_PROTO(struct selinux_audit_data *sad, char *scontext, char *tcontext, const char *tclass ), TP_ARGS(sad, scontext, tcontext, tclass), TP_STRUCT__entry( __field(u32, requested) __field(u32, denied) __field(u32, audited) __field(int, result) __string(scontext, scontext) __string(tcontext, tcontext) __string(tclass, tclass) ), TP_fast_assign( __entry->requested = sad->requested; __entry->denied = sad->denied; __entry->audited = sad->audited; __entry->result = sad->result; __assign_str(tcontext, tcontext); __assign_str(scontext, scontext); __assign_str(tclass, tclass); ), TP_printk("requested=0x%x denied=0x%x audited=0x%x result=%d scontext=%s tcontext=%s tclass=%s", __entry->requested, __entry->denied, __entry->audited, __entry->result, __get_str(scontext), __get_str(tcontext), __get_str(tclass) ) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Authors: Lotsa people, from code originally in tcp */ #ifndef _INET_HASHTABLES_H #define _INET_HASHTABLES_H #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/wait.h> #include <net/inet_connection_sock.h> #include <net/inet_sock.h> #include <net/sock.h> #include <net/route.h> #include <net/tcp_states.h> #include <net/netns/hash.h> #include <linux/refcount.h> #include <asm/byteorder.h> /* This is for all connections with a full identity, no wildcards. * The 'e' prefix stands for Establish, but we really put all sockets * but LISTEN ones. */ struct inet_ehash_bucket { struct hlist_nulls_head chain; }; /* There are a few simple rules, which allow for local port reuse by * an application. In essence: * * 1) Sockets bound to different interfaces may share a local port. * Failing that, goto test 2. * 2) If all sockets have sk->sk_reuse set, and none of them are in * TCP_LISTEN state, the port may be shared. * Failing that, goto test 3. * 3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local * address, and none of them are the same, the port may be * shared. * Failing this, the port cannot be shared. * * The interesting point, is test #2. This is what an FTP server does * all day. To optimize this case we use a specific flag bit defined * below. As we add sockets to a bind bucket list, we perform a * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN)) * As long as all sockets added to a bind bucket pass this test, * the flag bit will be set. * The resulting situation is that tcp_v[46]_verify_bind() can just check * for this flag bit, if it is set and the socket trying to bind has * sk->sk_reuse set, we don't even have to walk the owners list at all, * we return that it is ok to bind this socket to the requested local port. * * Sounds like a lot of work, but it is worth it. In a more naive * implementation (ie. current FreeBSD etc.) the entire list of ports * must be walked for each data port opened by an ftp server. Needless * to say, this does not scale at all. With a couple thousand FTP * users logged onto your box, isn't it nice to know that new data * ports are created in O(1) time? I thought so. ;-) -DaveM */ #define FASTREUSEPORT_ANY 1 #define FASTREUSEPORT_STRICT 2 struct inet_bind_bucket { possible_net_t ib_net; int l3mdev; unsigned short port; signed char fastreuse; signed char fastreuseport; kuid_t fastuid; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr fast_v6_rcv_saddr; #endif __be32 fast_rcv_saddr; unsigned short fast_sk_family; bool fast_ipv6_only; struct hlist_node node; struct hlist_head owners; }; static inline struct net *ib_net(struct inet_bind_bucket *ib) { return read_pnet(&ib->ib_net); } #define inet_bind_bucket_for_each(tb, head) \ hlist_for_each_entry(tb, head, node) struct inet_bind_hashbucket { spinlock_t lock; struct hlist_head chain; }; /* Sockets can be hashed in established or listening table. * We must use different 'nulls' end-of-chain value for all hash buckets : * A socket might transition from ESTABLISH to LISTEN state without * RCU grace period. A lookup in ehash table needs to handle this case. */ #define LISTENING_NULLS_BASE (1U << 29) struct inet_listen_hashbucket { spinlock_t lock; unsigned int count; union { struct hlist_head head; struct hlist_nulls_head nulls_head; }; }; /* This is for listening sockets, thus all sockets which possess wildcards. */ #define INET_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */ struct inet_hashinfo { /* This is for sockets with full identity only. Sockets here will * always be without wildcards and will have the following invariant: * * TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE * */ struct inet_ehash_bucket *ehash; spinlock_t *ehash_locks; unsigned int ehash_mask; unsigned int ehash_locks_mask; /* Ok, let's try this, I give up, we do need a local binding * TCP hash as well as the others for fast bind/connect. */ struct kmem_cache *bind_bucket_cachep; struct inet_bind_hashbucket *bhash; unsigned int bhash_size; /* The 2nd listener table hashed by local port and address */ unsigned int lhash2_mask; struct inet_listen_hashbucket *lhash2; /* All the above members are written once at bootup and * never written again _or_ are predominantly read-access. * * Now align to a new cache line as all the following members * might be often dirty. */ /* All sockets in TCP_LISTEN state will be in listening_hash. * This is the only table where wildcard'd TCP sockets can * exist. listening_hash is only hashed by local port number. * If lhash2 is initialized, the same socket will also be hashed * to lhash2 by port and address. */ struct inet_listen_hashbucket listening_hash[INET_LHTABLE_SIZE] ____cacheline_aligned_in_smp; }; #define inet_lhash2_for_each_icsk_rcu(__icsk, list) \ hlist_for_each_entry_rcu(__icsk, list, icsk_listen_portaddr_node) static inline struct inet_listen_hashbucket * inet_lhash2_bucket(struct inet_hashinfo *h, u32 hash) { return &h->lhash2[hash & h->lhash2_mask]; } static inline struct inet_ehash_bucket *inet_ehash_bucket( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash[hash & hashinfo->ehash_mask]; } static inline spinlock_t *inet_ehash_lockp( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash_locks[hash & hashinfo->ehash_locks_mask]; } int inet_ehash_locks_alloc(struct inet_hashinfo *hashinfo); static inline void inet_hashinfo2_free_mod(struct inet_hashinfo *h) { kfree(h->lhash2); h->lhash2 = NULL; } static inline void inet_ehash_locks_free(struct inet_hashinfo *hashinfo) { kvfree(hashinfo->ehash_locks); hashinfo->ehash_locks = NULL; } struct inet_bind_bucket * inet_bind_bucket_create(struct kmem_cache *cachep, struct net *net, struct inet_bind_hashbucket *head, const unsigned short snum, int l3mdev); void inet_bind_bucket_destroy(struct kmem_cache *cachep, struct inet_bind_bucket *tb); static inline u32 inet_bhashfn(const struct net *net, const __u16 lport, const u32 bhash_size) { return (lport + net_hash_mix(net)) & (bhash_size - 1); } void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb, const unsigned short snum); /* These can have wildcards, don't try too hard. */ static inline u32 inet_lhashfn(const struct net *net, const unsigned short num) { return (num + net_hash_mix(net)) & (INET_LHTABLE_SIZE - 1); } static inline int inet_sk_listen_hashfn(const struct sock *sk) { return inet_lhashfn(sock_net(sk), inet_sk(sk)->inet_num); } /* Caller must disable local BH processing. */ int __inet_inherit_port(const struct sock *sk, struct sock *child); void inet_put_port(struct sock *sk); void inet_hashinfo_init(struct inet_hashinfo *h); void inet_hashinfo2_init(struct inet_hashinfo *h, const char *name, unsigned long numentries, int scale, unsigned long low_limit, unsigned long high_limit); int inet_hashinfo2_init_mod(struct inet_hashinfo *h); bool inet_ehash_insert(struct sock *sk, struct sock *osk, bool *found_dup_sk); bool inet_ehash_nolisten(struct sock *sk, struct sock *osk, bool *found_dup_sk); int __inet_hash(struct sock *sk, struct sock *osk); int inet_hash(struct sock *sk); void inet_unhash(struct sock *sk); struct sock *__inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const unsigned short hnum, const int dif, const int sdif); static inline struct sock *inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif, int sdif) { return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, ntohs(dport), dif, sdif); } /* Socket demux engine toys. */ /* What happens here is ugly; there's a pair of adjacent fields in struct inet_sock; __be16 dport followed by __u16 num. We want to search by pair, so we combine the keys into a single 32bit value and compare with 32bit value read from &...->dport. Let's at least make sure that it's not mixed with anything else... On 64bit targets we combine comparisons with pair of adjacent __be32 fields in the same way. */ #ifdef __BIG_ENDIAN #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__force __u32)(__be16)(__sport) << 16) | (__u32)(__dport))) #else /* __LITTLE_ENDIAN */ #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__u32)(__dport) << 16) | (__force __u32)(__be16)(__sport))) #endif #ifdef __BIG_ENDIAN #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__saddr)) << 32) | \ ((__force __u64)(__be32)(__daddr))) #else /* __LITTLE_ENDIAN */ #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__daddr)) << 32) | \ ((__force __u64)(__be32)(__saddr))) #endif /* __BIG_ENDIAN */ static inline bool INET_MATCH(struct net *net, const struct sock *sk, const __addrpair cookie, const __portpair ports, int dif, int sdif) { if (!net_eq(sock_net(sk), net) || sk->sk_portpair != ports || sk->sk_addrpair != cookie) return false; /* READ_ONCE() paired with WRITE_ONCE() in sock_bindtoindex_locked() */ return inet_sk_bound_dev_eq(net, READ_ONCE(sk->sk_bound_dev_if), dif, sdif); } /* Sockets in TCP_CLOSE state are _always_ taken out of the hash, so we need * not check it for lookups anymore, thanks Alexey. -DaveM */ struct sock *__inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const u16 hnum, const int dif, const int sdif); static inline struct sock * inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { return __inet_lookup_established(net, hashinfo, saddr, sport, daddr, ntohs(dport), dif, 0); } static inline struct sock *__inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif, const int sdif, bool *refcounted) { u16 hnum = ntohs(dport); struct sock *sk; sk = __inet_lookup_established(net, hashinfo, saddr, sport, daddr, hnum, dif, sdif); *refcounted = true; if (sk) return sk; *refcounted = false; return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, hnum, dif, sdif); } static inline struct sock *inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { struct sock *sk; bool refcounted; sk = __inet_lookup(net, hashinfo, skb, doff, saddr, sport, daddr, dport, dif, 0, &refcounted); if (sk && !refcounted && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } static inline struct sock *__inet_lookup_skb(struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be16 sport, const __be16 dport, const int sdif, bool *refcounted) { struct sock *sk = skb_steal_sock(skb, refcounted); const struct iphdr *iph = ip_hdr(skb); if (sk) return sk; return __inet_lookup(dev_net(skb_dst(skb)->dev), hashinfo, skb, doff, iph->saddr, sport, iph->daddr, dport, inet_iif(skb), sdif, refcounted); } u32 inet6_ehashfn(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport); static inline void sk_daddr_set(struct sock *sk, __be32 addr) { sk->sk_daddr = addr; /* alias of inet_daddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_daddr); #endif } static inline void sk_rcv_saddr_set(struct sock *sk, __be32 addr) { sk->sk_rcv_saddr = addr; /* alias of inet_rcv_saddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_rcv_saddr); #endif } int __inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk, u64 port_offset, int (*check_established)(struct inet_timewait_death_row *, struct sock *, __u16, struct inet_timewait_sock **)); int inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk); #endif /* _INET_HASHTABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * ALSA sequencer Memory Manager * Copyright (c) 1998 by Frank van de Pol <fvdpol@coil.demon.nl> */ #ifndef __SND_SEQ_MEMORYMGR_H #define __SND_SEQ_MEMORYMGR_H #include <sound/seq_kernel.h> #include <linux/poll.h> struct snd_info_buffer; /* container for sequencer event (internal use) */ struct snd_seq_event_cell { struct snd_seq_event event; struct snd_seq_pool *pool; /* used pool */ struct snd_seq_event_cell *next; /* next cell */ }; /* design note: the pool is a contiguous block of memory, if we dynamicly want to add additional cells to the pool be better store this in another pool as we need to know the base address of the pool when releasing memory. */ struct snd_seq_pool { struct snd_seq_event_cell *ptr; /* pointer to first event chunk */ struct snd_seq_event_cell *free; /* pointer to the head of the free list */ int total_elements; /* pool size actually allocated */ atomic_t counter; /* cells free */ int size; /* pool size to be allocated */ int room; /* watermark for sleep/wakeup */ int closing; /* statistics */ int max_used; int event_alloc_nopool; int event_alloc_failures; int event_alloc_success; /* Write locking */ wait_queue_head_t output_sleep; /* Pool lock */ spinlock_t lock; }; void snd_seq_cell_free(struct snd_seq_event_cell *cell); int snd_seq_event_dup(struct snd_seq_pool *pool, struct snd_seq_event *event, struct snd_seq_event_cell **cellp, int nonblock, struct file *file, struct mutex *mutexp); /* return number of unused (free) cells */ static inline int snd_seq_unused_cells(struct snd_seq_pool *pool) { return pool ? pool->total_elements - atomic_read(&pool->counter) : 0; } /* return total number of allocated cells */ static inline int snd_seq_total_cells(struct snd_seq_pool *pool) { return pool ? pool->total_elements : 0; } /* init pool - allocate events */ int snd_seq_pool_init(struct snd_seq_pool *pool); /* done pool - free events */ void snd_seq_pool_mark_closing(struct snd_seq_pool *pool); int snd_seq_pool_done(struct snd_seq_pool *pool); /* create pool */ struct snd_seq_pool *snd_seq_pool_new(int poolsize); /* remove pool */ int snd_seq_pool_delete(struct snd_seq_pool **pool); /* polling */ int snd_seq_pool_poll_wait(struct snd_seq_pool *pool, struct file *file, poll_table *wait); void snd_seq_info_pool(struct snd_info_buffer *buffer, struct snd_seq_pool *pool, char *space); #endif
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 // SPDX-License-Identifier: GPL-2.0-or-later /* * NET An implementation of the SOCKET network access protocol. * * Version: @(#)socket.c 1.1.93 18/02/95 * * Authors: Orest Zborowski, <obz@Kodak.COM> * Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Fixes: * Anonymous : NOTSOCK/BADF cleanup. Error fix in * shutdown() * Alan Cox : verify_area() fixes * Alan Cox : Removed DDI * Jonathan Kamens : SOCK_DGRAM reconnect bug * Alan Cox : Moved a load of checks to the very * top level. * Alan Cox : Move address structures to/from user * mode above the protocol layers. * Rob Janssen : Allow 0 length sends. * Alan Cox : Asynchronous I/O support (cribbed from the * tty drivers). * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) * Jeff Uphoff : Made max number of sockets command-line * configurable. * Matti Aarnio : Made the number of sockets dynamic, * to be allocated when needed, and mr. * Uphoff's max is used as max to be * allowed to allocate. * Linus : Argh. removed all the socket allocation * altogether: it's in the inode now. * Alan Cox : Made sock_alloc()/sock_release() public * for NetROM and future kernel nfsd type * stuff. * Alan Cox : sendmsg/recvmsg basics. * Tom Dyas : Export net symbols. * Marcin Dalecki : Fixed problems with CONFIG_NET="n". * Alan Cox : Added thread locking to sys_* calls * for sockets. May have errors at the * moment. * Kevin Buhr : Fixed the dumb errors in the above. * Andi Kleen : Some small cleanups, optimizations, * and fixed a copy_from_user() bug. * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) * Tigran Aivazian : Made listen(2) backlog sanity checks * protocol-independent * * This module is effectively the top level interface to the BSD socket * paradigm. * * Based upon Swansea University Computer Society NET3.039 */ #include <linux/mm.h> #include <linux/socket.h> #include <linux/file.h> #include <linux/net.h> #include <linux/interrupt.h> #include <linux/thread_info.h> #include <linux/rcupdate.h> #include <linux/netdevice.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/mutex.h> #include <linux/if_bridge.h> #include <linux/if_frad.h> #include <linux/if_vlan.h> #include <linux/ptp_classify.h> #include <linux/init.h> #include <linux/poll.h> #include <linux/cache.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/mount.h> #include <linux/pseudo_fs.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/compat.h> #include <linux/kmod.h> #include <linux/audit.h> #include <linux/wireless.h> #include <linux/nsproxy.h> #include <linux/magic.h> #include <linux/slab.h> #include <linux/xattr.h> #include <linux/nospec.h> #include <linux/indirect_call_wrapper.h> #include <linux/uaccess.h> #include <asm/unistd.h> #include <net/compat.h> #include <net/wext.h> #include <net/cls_cgroup.h> #include <net/sock.h> #include <linux/netfilter.h> #include <linux/if_tun.h> #include <linux/ipv6_route.h> #include <linux/route.h> #include <linux/termios.h> #include <linux/sockios.h> #include <net/busy_poll.h> #include <linux/errqueue.h> #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sysctl_net_busy_read __read_mostly; unsigned int sysctl_net_busy_poll __read_mostly; #endif static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); static int sock_mmap(struct file *file, struct vm_area_struct *vma); static int sock_close(struct inode *inode, struct file *file); static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait); static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #endif static int sock_fasync(int fd, struct file *filp, int on); static ssize_t sock_sendpage(struct file *file, struct page *page, int offset, size_t size, loff_t *ppos, int more); static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); #ifdef CONFIG_PROC_FS static void sock_show_fdinfo(struct seq_file *m, struct file *f) { struct socket *sock = f->private_data; if (sock->ops->show_fdinfo) sock->ops->show_fdinfo(m, sock); } #else #define sock_show_fdinfo NULL #endif /* * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear * in the operation structures but are done directly via the socketcall() multiplexor. */ static const struct file_operations socket_file_ops = { .owner = THIS_MODULE, .llseek = no_llseek, .read_iter = sock_read_iter, .write_iter = sock_write_iter, .poll = sock_poll, .unlocked_ioctl = sock_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_sock_ioctl, #endif .mmap = sock_mmap, .release = sock_close, .fasync = sock_fasync, .sendpage = sock_sendpage, .splice_write = generic_splice_sendpage, .splice_read = sock_splice_read, .show_fdinfo = sock_show_fdinfo, }; /* * The protocol list. Each protocol is registered in here. */ static DEFINE_SPINLOCK(net_family_lock); static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; /* * Support routines. * Move socket addresses back and forth across the kernel/user * divide and look after the messy bits. */ /** * move_addr_to_kernel - copy a socket address into kernel space * @uaddr: Address in user space * @kaddr: Address in kernel space * @ulen: Length in user space * * The address is copied into kernel space. If the provided address is * too long an error code of -EINVAL is returned. If the copy gives * invalid addresses -EFAULT is returned. On a success 0 is returned. */ int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) { if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) return -EINVAL; if (ulen == 0) return 0; if (copy_from_user(kaddr, uaddr, ulen)) return -EFAULT; return audit_sockaddr(ulen, kaddr); } /** * move_addr_to_user - copy an address to user space * @kaddr: kernel space address * @klen: length of address in kernel * @uaddr: user space address * @ulen: pointer to user length field * * The value pointed to by ulen on entry is the buffer length available. * This is overwritten with the buffer space used. -EINVAL is returned * if an overlong buffer is specified or a negative buffer size. -EFAULT * is returned if either the buffer or the length field are not * accessible. * After copying the data up to the limit the user specifies, the true * length of the data is written over the length limit the user * specified. Zero is returned for a success. */ static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, void __user *uaddr, int __user *ulen) { int err; int len; BUG_ON(klen > sizeof(struct sockaddr_storage)); err = get_user(len, ulen); if (err) return err; if (len > klen) len = klen; if (len < 0) return -EINVAL; if (len) { if (audit_sockaddr(klen, kaddr)) return -ENOMEM; if (copy_to_user(uaddr, kaddr, len)) return -EFAULT; } /* * "fromlen shall refer to the value before truncation.." * 1003.1g */ return __put_user(klen, ulen); } static struct kmem_cache *sock_inode_cachep __ro_after_init; static struct inode *sock_alloc_inode(struct super_block *sb) { struct socket_alloc *ei; ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); if (!ei) return NULL; init_waitqueue_head(&ei->socket.wq.wait); ei->socket.wq.fasync_list = NULL; ei->socket.wq.flags = 0; ei->socket.state = SS_UNCONNECTED; ei->socket.flags = 0; ei->socket.ops = NULL; ei->socket.sk = NULL; ei->socket.file = NULL; return &ei->vfs_inode; } static void sock_free_inode(struct inode *inode) { struct socket_alloc *ei; ei = container_of(inode, struct socket_alloc, vfs_inode); kmem_cache_free(sock_inode_cachep, ei); } static void init_once(void *foo) { struct socket_alloc *ei = (struct socket_alloc *)foo; inode_init_once(&ei->vfs_inode); } static void init_inodecache(void) { sock_inode_cachep = kmem_cache_create("sock_inode_cache", sizeof(struct socket_alloc), 0, (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT), init_once); BUG_ON(sock_inode_cachep == NULL); } static const struct super_operations sockfs_ops = { .alloc_inode = sock_alloc_inode, .free_inode = sock_free_inode, .statfs = simple_statfs, }; /* * sockfs_dname() is called from d_path(). */ static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", d_inode(dentry)->i_ino); } static const struct dentry_operations sockfs_dentry_operations = { .d_dname = sockfs_dname, }; static int sockfs_xattr_get(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, void *value, size_t size) { if (value) { if (dentry->d_name.len + 1 > size) return -ERANGE; memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); } return dentry->d_name.len + 1; } #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) static const struct xattr_handler sockfs_xattr_handler = { .name = XATTR_NAME_SOCKPROTONAME, .get = sockfs_xattr_get, }; static int sockfs_security_xattr_set(const struct xattr_handler *handler, struct dentry *dentry, struct inode *inode, const char *suffix, const void *value, size_t size, int flags) { /* Handled by LSM. */ return -EAGAIN; } static const struct xattr_handler sockfs_security_xattr_handler = { .prefix = XATTR_SECURITY_PREFIX, .set = sockfs_security_xattr_set, }; static const struct xattr_handler *sockfs_xattr_handlers[] = { &sockfs_xattr_handler, &sockfs_security_xattr_handler, NULL }; static int sockfs_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); if (!ctx) return -ENOMEM; ctx->ops = &sockfs_ops; ctx->dops = &sockfs_dentry_operations; ctx->xattr = sockfs_xattr_handlers; return 0; } static struct vfsmount *sock_mnt __read_mostly; static struct file_system_type sock_fs_type = { .name = "sockfs", .init_fs_context = sockfs_init_fs_context, .kill_sb = kill_anon_super, }; /* * Obtains the first available file descriptor and sets it up for use. * * These functions create file structures and maps them to fd space * of the current process. On success it returns file descriptor * and file struct implicitly stored in sock->file. * Note that another thread may close file descriptor before we return * from this function. We use the fact that now we do not refer * to socket after mapping. If one day we will need it, this * function will increment ref. count on file by 1. * * In any case returned fd MAY BE not valid! * This race condition is unavoidable * with shared fd spaces, we cannot solve it inside kernel, * but we take care of internal coherence yet. */ /** * sock_alloc_file - Bind a &socket to a &file * @sock: socket * @flags: file status flags * @dname: protocol name * * Returns the &file bound with @sock, implicitly storing it * in sock->file. If dname is %NULL, sets to "". * On failure the return is a ERR pointer (see linux/err.h). * This function uses GFP_KERNEL internally. */ struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) { struct file *file; if (!dname) dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, O_RDWR | (flags & O_NONBLOCK), &socket_file_ops); if (IS_ERR(file)) { sock_release(sock); return file; } sock->file = file; file->private_data = sock; stream_open(SOCK_INODE(sock), file); return file; } EXPORT_SYMBOL(sock_alloc_file); static int sock_map_fd(struct socket *sock, int flags) { struct file *newfile; int fd = get_unused_fd_flags(flags); if (unlikely(fd < 0)) { sock_release(sock); return fd; } newfile = sock_alloc_file(sock, flags, NULL); if (!IS_ERR(newfile)) { fd_install(fd, newfile); return fd; } put_unused_fd(fd); return PTR_ERR(newfile); } /** * sock_from_file - Return the &socket bounded to @file. * @file: file * @err: pointer to an error code return * * On failure returns %NULL and assigns -ENOTSOCK to @err. */ struct socket *sock_from_file(struct file *file, int *err) { if (file->f_op == &socket_file_ops) return file->private_data; /* set in sock_map_fd */ *err = -ENOTSOCK; return NULL; } EXPORT_SYMBOL(sock_from_file); /** * sockfd_lookup - Go from a file number to its socket slot * @fd: file handle * @err: pointer to an error code return * * The file handle passed in is locked and the socket it is bound * to is returned. If an error occurs the err pointer is overwritten * with a negative errno code and NULL is returned. The function checks * for both invalid handles and passing a handle which is not a socket. * * On a success the socket object pointer is returned. */ struct socket *sockfd_lookup(int fd, int *err) { struct file *file; struct socket *sock; file = fget(fd); if (!file) { *err = -EBADF; return NULL; } sock = sock_from_file(file, err); if (!sock) fput(file); return sock; } EXPORT_SYMBOL(sockfd_lookup); static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) { struct fd f = fdget(fd); struct socket *sock; *err = -EBADF; if (f.file) { sock = sock_from_file(f.file, err); if (likely(sock)) { *fput_needed = f.flags & FDPUT_FPUT; return sock; } fdput(f); } return NULL; } static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, size_t size) { ssize_t len; ssize_t used = 0; len = security_inode_listsecurity(d_inode(dentry), buffer, size); if (len < 0) return len; used += len; if (buffer) { if (size < used) return -ERANGE; buffer += len; } len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); used += len; if (buffer) { if (size < used) return -ERANGE; memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); buffer += len; } return used; } static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) { int err = simple_setattr(dentry, iattr); if (!err && (iattr->ia_valid & ATTR_UID)) { struct socket *sock = SOCKET_I(d_inode(dentry)); if (sock->sk) sock->sk->sk_uid = iattr->ia_uid; else err = -ENOENT; } return err; } static const struct inode_operations sockfs_inode_ops = { .listxattr = sockfs_listxattr, .setattr = sockfs_setattr, }; /** * sock_alloc - allocate a socket * * Allocate a new inode and socket object. The two are bound together * and initialised. The socket is then returned. If we are out of inodes * NULL is returned. This functions uses GFP_KERNEL internally. */ struct socket *sock_alloc(void) { struct inode *inode; struct socket *sock; inode = new_inode_pseudo(sock_mnt->mnt_sb); if (!inode) return NULL; sock = SOCKET_I(inode); inode->i_ino = get_next_ino(); inode->i_mode = S_IFSOCK | S_IRWXUGO; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_op = &sockfs_inode_ops; return sock; } EXPORT_SYMBOL(sock_alloc); static void __sock_release(struct socket *sock, struct inode *inode) { if (sock->ops) { struct module *owner = sock->ops->owner; if (inode) inode_lock(inode); sock->ops->release(sock); sock->sk = NULL; if (inode) inode_unlock(inode); sock->ops = NULL; module_put(owner); } if (sock->wq.fasync_list) pr_err("%s: fasync list not empty!\n", __func__); if (!sock->file) { iput(SOCK_INODE(sock)); return; } sock->file = NULL; } /** * sock_release - close a socket * @sock: socket to close * * The socket is released from the protocol stack if it has a release * callback, and the inode is then released if the socket is bound to * an inode not a file. */ void sock_release(struct socket *sock) { __sock_release(sock, NULL); } EXPORT_SYMBOL(sock_release); void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) { u8 flags = *tx_flags; if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) flags |= SKBTX_HW_TSTAMP; if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) flags |= SKBTX_SW_TSTAMP; if (tsflags & SOF_TIMESTAMPING_TX_SCHED) flags |= SKBTX_SCHED_TSTAMP; *tx_flags = flags; } EXPORT_SYMBOL(__sock_tx_timestamp); INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, size_t)); INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, size_t)); static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) { int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, inet_sendmsg, sock, msg, msg_data_left(msg)); BUG_ON(ret == -EIOCBQUEUED); return ret; } /** * sock_sendmsg - send a message through @sock * @sock: socket * @msg: message to send * * Sends @msg through @sock, passing through LSM. * Returns the number of bytes sent, or an error code. */ int sock_sendmsg(struct socket *sock, struct msghdr *msg) { int err = security_socket_sendmsg(sock, msg, msg_data_left(msg)); return err ?: sock_sendmsg_nosec(sock, msg); } EXPORT_SYMBOL(sock_sendmsg); /** * kernel_sendmsg - send a message through @sock (kernel-space) * @sock: socket * @msg: message header * @vec: kernel vec * @num: vec array length * @size: total message data size * * Builds the message data with @vec and sends it through @sock. * Returns the number of bytes sent, or an error code. */ int kernel_sendmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size) { iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); return sock_sendmsg(sock, msg); } EXPORT_SYMBOL(kernel_sendmsg); /** * kernel_sendmsg_locked - send a message through @sock (kernel-space) * @sk: sock * @msg: message header * @vec: output s/g array * @num: output s/g array length * @size: total message data size * * Builds the message data with @vec and sends it through @sock. * Returns the number of bytes sent, or an error code. * Caller must hold @sk. */ int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, struct kvec *vec, size_t num, size_t size) { struct socket *sock = sk->sk_socket; if (!sock->ops->sendmsg_locked) return sock_no_sendmsg_locked(sk, msg, size); iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); } EXPORT_SYMBOL(kernel_sendmsg_locked); static bool skb_is_err_queue(const struct sk_buff *skb) { /* pkt_type of skbs enqueued on the error queue are set to * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do * in recvmsg, since skbs received on a local socket will never * have a pkt_type of PACKET_OUTGOING. */ return skb->pkt_type == PACKET_OUTGOING; } /* On transmit, software and hardware timestamps are returned independently. * As the two skb clones share the hardware timestamp, which may be updated * before the software timestamp is received, a hardware TX timestamp may be * returned only if there is no software TX timestamp. Ignore false software * timestamps, which may be made in the __sock_recv_timestamp() call when the * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a * hardware timestamp. */ static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) { return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); } static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) { struct scm_ts_pktinfo ts_pktinfo; struct net_device *orig_dev; if (!skb_mac_header_was_set(skb)) return; memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); rcu_read_lock(); orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); if (orig_dev) ts_pktinfo.if_index = orig_dev->ifindex; rcu_read_unlock(); ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, sizeof(ts_pktinfo), &ts_pktinfo); } /* * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) */ void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); struct scm_timestamping_internal tss; int empty = 1, false_tstamp = 0; struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); /* Race occurred between timestamp enabling and packet receiving. Fill in the current time for now. */ if (need_software_tstamp && skb->tstamp == 0) { __net_timestamp(skb); false_tstamp = 1; } if (need_software_tstamp) { if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { if (new_tstamp) { struct __kernel_sock_timeval tv; skb_get_new_timestamp(skb, &tv); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(tv), &tv); } else { struct __kernel_old_timeval tv; skb_get_timestamp(skb, &tv); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } } else { if (new_tstamp) { struct __kernel_timespec ts; skb_get_new_timestampns(skb, &ts); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, sizeof(ts), &ts); } else { struct __kernel_old_timespec ts; skb_get_timestampns(skb, &ts); put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, sizeof(ts), &ts); } } } memset(&tss, 0, sizeof(tss)); if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) empty = 0; if (shhwtstamps && (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && !skb_is_swtx_tstamp(skb, false_tstamp) && ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { empty = 0; if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && !skb_is_err_queue(skb)) put_ts_pktinfo(msg, skb); } if (!empty) { if (sock_flag(sk, SOCK_TSTAMP_NEW)) put_cmsg_scm_timestamping64(msg, &tss); else put_cmsg_scm_timestamping(msg, &tss); if (skb_is_err_queue(skb) && skb->len && SKB_EXT_ERR(skb)->opt_stats) put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, skb->len, skb->data); } } EXPORT_SYMBOL_GPL(__sock_recv_timestamp); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int ack; if (!sock_flag(sk, SOCK_WIFI_STATUS)) return; if (!skb->wifi_acked_valid) return; ack = skb->wifi_acked; put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); } EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); } void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { sock_recv_timestamp(msg, sk, skb); sock_recv_drops(msg, sk, skb); } EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, size_t, int)); INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, size_t, int)); static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, int flags) { return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, inet_recvmsg, sock, msg, msg_data_left(msg), flags); } /** * sock_recvmsg - receive a message from @sock * @sock: socket * @msg: message to receive * @flags: message flags * * Receives @msg from @sock, passing through LSM. Returns the total number * of bytes received, or an error. */ int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) { int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); return err ?: sock_recvmsg_nosec(sock, msg, flags); } EXPORT_SYMBOL(sock_recvmsg); /** * kernel_recvmsg - Receive a message from a socket (kernel space) * @sock: The socket to receive the message from * @msg: Received message * @vec: Input s/g array for message data * @num: Size of input s/g array * @size: Number of bytes to read * @flags: Message flags (MSG_DONTWAIT, etc...) * * On return the msg structure contains the scatter/gather array passed in the * vec argument. The array is modified so that it consists of the unfilled * portion of the original array. * * The returned value is the total number of bytes received, or an error. */ int kernel_recvmsg(struct socket *sock, struct msghdr *msg, struct kvec *vec, size_t num, size_t size, int flags) { msg->msg_control_is_user = false; iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); return sock_recvmsg(sock, msg, flags); } EXPORT_SYMBOL(kernel_recvmsg); static ssize_t sock_sendpage(struct file *file, struct page *page, int offset, size_t size, loff_t *ppos, int more) { struct socket *sock; int flags; sock = file->private_data; flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ flags |= more; return kernel_sendpage(sock, page, offset, size, flags); } static ssize_t sock_splice_read(struct file *file, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct socket *sock = file->private_data; if (unlikely(!sock->ops->splice_read)) return generic_file_splice_read(file, ppos, pipe, len, flags); return sock->ops->splice_read(sock, ppos, pipe, len, flags); } static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *to, .msg_iocb = iocb}; ssize_t res; if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) msg.msg_flags = MSG_DONTWAIT; if (iocb->ki_pos != 0) return -ESPIPE; if (!iov_iter_count(to)) /* Match SYS5 behaviour */ return 0; res = sock_recvmsg(sock, &msg, msg.msg_flags); *to = msg.msg_iter; return res; } static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct socket *sock = file->private_data; struct msghdr msg = {.msg_iter = *from, .msg_iocb = iocb}; ssize_t res; if (iocb->ki_pos != 0) return -ESPIPE; if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) msg.msg_flags = MSG_DONTWAIT; if (sock->type == SOCK_SEQPACKET) msg.msg_flags |= MSG_EOR; res = sock_sendmsg(sock, &msg); *from = msg.msg_iter; return res; } /* * Atomic setting of ioctl hooks to avoid race * with module unload. */ static DEFINE_MUTEX(br_ioctl_mutex); static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) { mutex_lock(&br_ioctl_mutex); br_ioctl_hook = hook; mutex_unlock(&br_ioctl_mutex); } EXPORT_SYMBOL(brioctl_set); static DEFINE_MUTEX(vlan_ioctl_mutex); static int (*vlan_ioctl_hook) (struct net *, void __user *arg); void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) { mutex_lock(&vlan_ioctl_mutex); vlan_ioctl_hook = hook; mutex_unlock(&vlan_ioctl_mutex); } EXPORT_SYMBOL(vlan_ioctl_set); static DEFINE_MUTEX(dlci_ioctl_mutex); static int (*dlci_ioctl_hook) (unsigned int, void __user *); void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) { mutex_lock(&dlci_ioctl_mutex); dlci_ioctl_hook = hook; mutex_unlock(&dlci_ioctl_mutex); } EXPORT_SYMBOL(dlci_ioctl_set); static long sock_do_ioctl(struct net *net, struct socket *sock, unsigned int cmd, unsigned long arg) { int err; void __user *argp = (void __user *)arg; err = sock->ops->ioctl(sock, cmd, arg); /* * If this ioctl is unknown try to hand it down * to the NIC driver. */ if (err != -ENOIOCTLCMD) return err; if (cmd == SIOCGIFCONF) { struct ifconf ifc; if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) return -EFAULT; rtnl_lock(); err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); rtnl_unlock(); if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) err = -EFAULT; } else if (is_socket_ioctl_cmd(cmd)) { struct ifreq ifr; bool need_copyout; if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) return -EFAULT; err = dev_ioctl(net, cmd, &ifr, &need_copyout); if (!err && need_copyout) if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) return -EFAULT; } else { err = -ENOTTY; } return err; } /* * With an ioctl, arg may well be a user mode pointer, but we don't know * what to do with it - that's up to the protocol still. */ static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) { struct socket *sock; struct sock *sk; void __user *argp = (void __user *)arg; int pid, err; struct net *net; sock = file->private_data; sk = sock->sk; net = sock_net(sk); if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { struct ifreq ifr; bool need_copyout; if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) return -EFAULT; err = dev_ioctl(net, cmd, &ifr, &need_copyout); if (!err && need_copyout) if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) return -EFAULT; } else #ifdef CONFIG_WEXT_CORE if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { err = wext_handle_ioctl(net, cmd, argp); } else #endif switch (cmd) { case FIOSETOWN: case SIOCSPGRP: err = -EFAULT; if (get_user(pid, (int __user *)argp)) break; err = f_setown(sock->file, pid, 1); break; case FIOGETOWN: case SIOCGPGRP: err = put_user(f_getown(sock->file), (int __user *)argp); break; case SIOCGIFBR: case SIOCSIFBR: case SIOCBRADDBR: case SIOCBRDELBR: err = -ENOPKG; if (!br_ioctl_hook) request_module("bridge"); mutex_lock(&br_ioctl_mutex); if (br_ioctl_hook) err = br_ioctl_hook(net, cmd, argp); mutex_unlock(&br_ioctl_mutex); break; case SIOCGIFVLAN: case SIOCSIFVLAN: err = -ENOPKG; if (!vlan_ioctl_hook) request_module("8021q"); mutex_lock(&vlan_ioctl_mutex); if (vlan_ioctl_hook) err = vlan_ioctl_hook(net, argp); mutex_unlock(&vlan_ioctl_mutex); break; case SIOCADDDLCI: case SIOCDELDLCI: err = -ENOPKG; if (!dlci_ioctl_hook) request_module("dlci"); mutex_lock(&dlci_ioctl_mutex); if (dlci_ioctl_hook) err = dlci_ioctl_hook(cmd, argp); mutex_unlock(&dlci_ioctl_mutex); break; case SIOCGSKNS: err = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) break; err = open_related_ns(&net->ns, get_net_ns); break; case SIOCGSTAMP_OLD: case SIOCGSTAMPNS_OLD: if (!sock->ops->gettstamp) { err = -ENOIOCTLCMD; break; } err = sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, !IS_ENABLED(CONFIG_64BIT)); break; case SIOCGSTAMP_NEW: case SIOCGSTAMPNS_NEW: if (!sock->ops->gettstamp) { err = -ENOIOCTLCMD; break; } err = sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_NEW, false); break; default: err = sock_do_ioctl(net, sock, cmd, arg); break; } return err; } /** * sock_create_lite - creates a socket * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * Creates a new socket and assigns it to @res, passing through LSM. * The new socket initialization is not complete, see kernel_accept(). * Returns 0 or an error. On failure @res is set to %NULL. * This function internally uses GFP_KERNEL. */ int sock_create_lite(int family, int type, int protocol, struct socket **res) { int err; struct socket *sock = NULL; err = security_socket_create(family, type, protocol, 1); if (err) goto out; sock = sock_alloc(); if (!sock) { err = -ENOMEM; goto out; } sock->type = type; err = security_socket_post_create(sock, family, type, protocol, 1); if (err) goto out_release; out: *res = sock; return err; out_release: sock_release(sock); sock = NULL; goto out; } EXPORT_SYMBOL(sock_create_lite); /* No kernel lock held - perfect */ static __poll_t sock_poll(struct file *file, poll_table *wait) { struct socket *sock = file->private_data; __poll_t events = poll_requested_events(wait), flag = 0; if (!sock->ops->poll) return 0; if (sk_can_busy_loop(sock->sk)) { /* poll once if requested by the syscall */ if (events & POLL_BUSY_LOOP) sk_busy_loop(sock->sk, 1); /* if this socket can poll_ll, tell the system call */ flag = POLL_BUSY_LOOP; } return sock->ops->poll(file, sock, wait) | flag; } static int sock_mmap(struct file *file, struct vm_area_struct *vma) { struct socket *sock = file->private_data; return sock->ops->mmap(file, sock, vma); } static int sock_close(struct inode *inode, struct file *filp) { __sock_release(SOCKET_I(inode), inode); return 0; } /* * Update the socket async list * * Fasync_list locking strategy. * * 1. fasync_list is modified only under process context socket lock * i.e. under semaphore. * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) * or under socket lock */ static int sock_fasync(int fd, struct file *filp, int on) { struct socket *sock = filp->private_data; struct sock *sk = sock->sk; struct socket_wq *wq = &sock->wq; if (sk == NULL) return -EINVAL; lock_sock(sk); fasync_helper(fd, filp, on, &wq->fasync_list); if (!wq->fasync_list) sock_reset_flag(sk, SOCK_FASYNC); else sock_set_flag(sk, SOCK_FASYNC); release_sock(sk); return 0; } /* This function may be called only under rcu_lock */ int sock_wake_async(struct socket_wq *wq, int how, int band) { if (!wq || !wq->fasync_list) return -1; switch (how) { case SOCK_WAKE_WAITD: if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) break; goto call_kill; case SOCK_WAKE_SPACE: if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) break; fallthrough; case SOCK_WAKE_IO: call_kill: kill_fasync(&wq->fasync_list, SIGIO, band); break; case SOCK_WAKE_URG: kill_fasync(&wq->fasync_list, SIGURG, band); } return 0; } EXPORT_SYMBOL(sock_wake_async); /** * __sock_create - creates a socket * @net: net namespace * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * @kern: boolean for kernel space sockets * * Creates a new socket and assigns it to @res, passing through LSM. * Returns 0 or an error. On failure @res is set to %NULL. @kern must * be set to true if the socket resides in kernel space. * This function internally uses GFP_KERNEL. */ int __sock_create(struct net *net, int family, int type, int protocol, struct socket **res, int kern) { int err; struct socket *sock; const struct net_proto_family *pf; /* * Check protocol is in range */ if (family < 0 || family >= NPROTO) return -EAFNOSUPPORT; if (type < 0 || type >= SOCK_MAX) return -EINVAL; /* Compatibility. This uglymoron is moved from INET layer to here to avoid deadlock in module load. */ if (family == PF_INET && type == SOCK_PACKET) { pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); family = PF_PACKET; } err = security_socket_create(family, type, protocol, kern); if (err) return err; /* * Allocate the socket and allow the family to set things up. if * the protocol is 0, the family is instructed to select an appropriate * default. */ sock = sock_alloc(); if (!sock) { net_warn_ratelimited("socket: no more sockets\n"); return -ENFILE; /* Not exactly a match, but its the closest posix thing */ } sock->type = type; #ifdef CONFIG_MODULES /* Attempt to load a protocol module if the find failed. * * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user * requested real, full-featured networking support upon configuration. * Otherwise module support will break! */ if (rcu_access_pointer(net_families[family]) == NULL) request_module("net-pf-%d", family); #endif rcu_read_lock(); pf = rcu_dereference(net_families[family]); err = -EAFNOSUPPORT; if (!pf) goto out_release; /* * We will call the ->create function, that possibly is in a loadable * module, so we have to bump that loadable module refcnt first. */ if (!try_module_get(pf->owner)) goto out_release; /* Now protected by module ref count */ rcu_read_unlock(); err = pf->create(net, sock, protocol, kern); if (err < 0) goto out_module_put; /* * Now to bump the refcnt of the [loadable] module that owns this * socket at sock_release time we decrement its refcnt. */ if (!try_module_get(sock->ops->owner)) goto out_module_busy; /* * Now that we're done with the ->create function, the [loadable] * module can have its refcnt decremented */ module_put(pf->owner); err = security_socket_post_create(sock, family, type, protocol, kern); if (err) goto out_sock_release; *res = sock; return 0; out_module_busy: err = -EAFNOSUPPORT; out_module_put: sock->ops = NULL; module_put(pf->owner); out_sock_release: sock_release(sock); return err; out_release: rcu_read_unlock(); goto out_sock_release; } EXPORT_SYMBOL(__sock_create); /** * sock_create - creates a socket * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * A wrapper around __sock_create(). * Returns 0 or an error. This function internally uses GFP_KERNEL. */ int sock_create(int family, int type, int protocol, struct socket **res) { return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); } EXPORT_SYMBOL(sock_create); /** * sock_create_kern - creates a socket (kernel space) * @net: net namespace * @family: protocol family (AF_INET, ...) * @type: communication type (SOCK_STREAM, ...) * @protocol: protocol (0, ...) * @res: new socket * * A wrapper around __sock_create(). * Returns 0 or an error. This function internally uses GFP_KERNEL. */ int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) { return __sock_create(net, family, type, protocol, res, 1); } EXPORT_SYMBOL(sock_create_kern); int __sys_socket(int family, int type, int protocol) { int retval; struct socket *sock; int flags; /* Check the SOCK_* constants for consistency. */ BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); flags = type & ~SOCK_TYPE_MASK; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; type &= SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; retval = sock_create(family, type, protocol, &sock); if (retval < 0) return retval; return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); } SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) { return __sys_socket(family, type, protocol); } /* * Create a pair of connected sockets. */ int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) { struct socket *sock1, *sock2; int fd1, fd2, err; struct file *newfile1, *newfile2; int flags; flags = type & ~SOCK_TYPE_MASK; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; type &= SOCK_TYPE_MASK; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; /* * reserve descriptors and make sure we won't fail * to return them to userland. */ fd1 = get_unused_fd_flags(flags); if (unlikely(fd1 < 0)) return fd1; fd2 = get_unused_fd_flags(flags); if (unlikely(fd2 < 0)) { put_unused_fd(fd1); return fd2; } err = put_user(fd1, &usockvec[0]); if (err) goto out; err = put_user(fd2, &usockvec[1]); if (err) goto out; /* * Obtain the first socket and check if the underlying protocol * supports the socketpair call. */ err = sock_create(family, type, protocol, &sock1); if (unlikely(err < 0)) goto out; err = sock_create(family, type, protocol, &sock2); if (unlikely(err < 0)) { sock_release(sock1); goto out; } err = security_socket_socketpair(sock1, sock2); if (unlikely(err)) { sock_release(sock2); sock_release(sock1); goto out; } err = sock1->ops->socketpair(sock1, sock2); if (unlikely(err < 0)) { sock_release(sock2); sock_release(sock1); goto out; } newfile1 = sock_alloc_file(sock1, flags, NULL); if (IS_ERR(newfile1)) { err = PTR_ERR(newfile1); sock_release(sock2); goto out; } newfile2 = sock_alloc_file(sock2, flags, NULL); if (IS_ERR(newfile2)) { err = PTR_ERR(newfile2); fput(newfile1); goto out; } audit_fd_pair(fd1, fd2); fd_install(fd1, newfile1); fd_install(fd2, newfile2); return 0; out: put_unused_fd(fd2); put_unused_fd(fd1); return err; } SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, int __user *, usockvec) { return __sys_socketpair(family, type, protocol, usockvec); } /* * Bind a name to a socket. Nothing much to do here since it's * the protocol's responsibility to handle the local address. * * We move the socket address to kernel space before we call * the protocol layer (having also checked the address is ok). */ int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock) { err = move_addr_to_kernel(umyaddr, addrlen, &address); if (!err) { err = security_socket_bind(sock, (struct sockaddr *)&address, addrlen); if (!err) err = sock->ops->bind(sock, (struct sockaddr *) &address, addrlen); } fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) { return __sys_bind(fd, umyaddr, addrlen); } /* * Perform a listen. Basically, we allow the protocol to do anything * necessary for a listen, and if that works, we mark the socket as * ready for listening. */ int __sys_listen(int fd, int backlog) { struct socket *sock; int err, fput_needed; int somaxconn; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock) { somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); if ((unsigned int)backlog > somaxconn) backlog = somaxconn; err = security_socket_listen(sock, backlog); if (!err) err = sock->ops->listen(sock, backlog); fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE2(listen, int, fd, int, backlog) { return __sys_listen(fd, backlog); } struct file *do_accept(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { struct socket *sock, *newsock; struct file *newfile; int err, len; struct sockaddr_storage address; sock = sock_from_file(file, &err); if (!sock) return ERR_PTR(err); newsock = sock_alloc(); if (!newsock) return ERR_PTR(-ENFILE); newsock->type = sock->type; newsock->ops = sock->ops; /* * We don't need try_module_get here, as the listening socket (sock) * has the protocol module (sock->ops->owner) held. */ __module_get(newsock->ops->owner); newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); if (IS_ERR(newfile)) return newfile; err = security_socket_accept(sock, newsock); if (err) goto out_fd; err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, false); if (err < 0) goto out_fd; if (upeer_sockaddr) { len = newsock->ops->getname(newsock, (struct sockaddr *)&address, 2); if (len < 0) { err = -ECONNABORTED; goto out_fd; } err = move_addr_to_user(&address, len, upeer_sockaddr, upeer_addrlen); if (err < 0) goto out_fd; } /* File flags are not inherited via accept() unlike another OSes. */ return newfile; out_fd: fput(newfile); return ERR_PTR(err); } int __sys_accept4_file(struct file *file, unsigned file_flags, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags, unsigned long nofile) { struct file *newfile; int newfd; if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return -EINVAL; if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; newfd = __get_unused_fd_flags(flags, nofile); if (unlikely(newfd < 0)) return newfd; newfile = do_accept(file, file_flags, upeer_sockaddr, upeer_addrlen, flags); if (IS_ERR(newfile)) { put_unused_fd(newfd); return PTR_ERR(newfile); } fd_install(newfd, newfile); return newfd; } /* * For accept, we attempt to create a new socket, set up the link * with the client, wake up the client, then return the new * connected fd. We collect the address of the connector in kernel * space and move it to user at the very end. This is unclean because * we open the socket then return an error. * * 1003.1g adds the ability to recvmsg() to query connection pending * status to recvmsg. We need to add that support in a way thats * clean when we restructure accept also. */ int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen, int flags) { int ret = -EBADF; struct fd f; f = fdget(fd); if (f.file) { ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, upeer_addrlen, flags, rlimit(RLIMIT_NOFILE)); fdput(f); } return ret; } SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen, int, flags) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); } SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, int __user *, upeer_addrlen) { return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); } /* * Attempt to connect to a socket with the server address. The address * is in user space so we verify it is OK and move it to kernel space. * * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to * break bindings * * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and * other SEQPACKET protocols that take time to connect() as it doesn't * include the -EINPROGRESS status for such sockets. */ int __sys_connect_file(struct file *file, struct sockaddr_storage *address, int addrlen, int file_flags) { struct socket *sock; int err; sock = sock_from_file(file, &err); if (!sock) goto out; err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); if (err) goto out; err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, sock->file->f_flags | file_flags); out: return err; } int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) { int ret = -EBADF; struct fd f; f = fdget(fd); if (f.file) { struct sockaddr_storage address; ret = move_addr_to_kernel(uservaddr, addrlen, &address); if (!ret) ret = __sys_connect_file(f.file, &address, addrlen, 0); fdput(f); } return ret; } SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, int, addrlen) { return __sys_connect(fd, uservaddr, addrlen); } /* * Get the local address ('name') of a socket object. Move the obtained * name to user space. */ int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = security_socket_getsockname(sock); if (err) goto out_put; err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); if (err < 0) goto out_put; /* "err" is actually length in this case */ err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); out_put: fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { return __sys_getsockname(fd, usockaddr, usockaddr_len); } /* * Get the remote address ('name') of a socket object. Move the obtained * name to user space. */ int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) { struct socket *sock; struct sockaddr_storage address; int err, fput_needed; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { err = security_socket_getpeername(sock); if (err) { fput_light(sock->file, fput_needed); return err; } err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); if (err >= 0) /* "err" is actually length in this case */ err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, int __user *, usockaddr_len) { return __sys_getpeername(fd, usockaddr, usockaddr_len); } /* * Send a datagram to a given address. We move the address into kernel * space and check the user space data area is readable before invoking * the protocol. */ int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, struct sockaddr __user *addr, int addr_len) { struct socket *sock; struct sockaddr_storage address; int err; struct msghdr msg; struct iovec iov; int fput_needed; err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); if (unlikely(err)) return err; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; msg.msg_name = NULL; msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_namelen = 0; if (addr) { err = move_addr_to_kernel(addr, addr_len, &address); if (err < 0) goto out_put; msg.msg_name = (struct sockaddr *)&address; msg.msg_namelen = addr_len; } if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; msg.msg_flags = flags; err = sock_sendmsg(sock, &msg); out_put: fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, unsigned int, flags, struct sockaddr __user *, addr, int, addr_len) { return __sys_sendto(fd, buff, len, flags, addr, addr_len); } /* * Send a datagram down a socket. */ SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, unsigned int, flags) { return __sys_sendto(fd, buff, len, flags, NULL, 0); } /* * Receive a frame from the socket and optionally record the address of the * sender. We verify the buffers are writable and if needed move the * sender address from kernel to user space. */ int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, struct sockaddr __user *addr, int __user *addr_len) { struct socket *sock; struct iovec iov; struct msghdr msg; struct sockaddr_storage address; int err, err2; int fput_needed; err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); if (unlikely(err)) return err; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; msg.msg_control = NULL; msg.msg_controllen = 0; /* Save some cycles and don't copy the address if not needed */ msg.msg_name = addr ? (struct sockaddr *)&address : NULL; /* We assume all kernel code knows the size of sockaddr_storage */ msg.msg_namelen = 0; msg.msg_iocb = NULL; msg.msg_flags = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &msg, flags); if (err >= 0 && addr != NULL) { err2 = move_addr_to_user(&address, msg.msg_namelen, addr, addr_len); if (err2 < 0) err = err2; } fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags, struct sockaddr __user *, addr, int __user *, addr_len) { return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); } /* * Receive a datagram from a socket. */ SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, unsigned int, flags) { return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); } static bool sock_use_custom_sol_socket(const struct socket *sock) { const struct sock *sk = sock->sk; /* Use sock->ops->setsockopt() for MPTCP */ return IS_ENABLED(CONFIG_MPTCP) && sk->sk_protocol == IPPROTO_MPTCP && sk->sk_type == SOCK_STREAM && (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); } /* * Set a socket option. Because we don't know the option lengths we have * to pass the user mode parameter for the protocols to sort out. */ int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, int optlen) { sockptr_t optval = USER_SOCKPTR(user_optval); char *kernel_optval = NULL; int err, fput_needed; struct socket *sock; if (optlen < 0) return -EINVAL; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; err = security_socket_setsockopt(sock, level, optname); if (err) goto out_put; if (!in_compat_syscall()) err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, user_optval, &optlen, &kernel_optval); if (err < 0) goto out_put; if (err > 0) { err = 0; goto out_put; } if (kernel_optval) optval = KERNEL_SOCKPTR(kernel_optval); if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) err = sock_setsockopt(sock, level, optname, optval, optlen); else if (unlikely(!sock->ops->setsockopt)) err = -EOPNOTSUPP; else err = sock->ops->setsockopt(sock, level, optname, optval, optlen); kfree(kernel_optval); out_put: fput_light(sock->file, fput_needed); return err; } SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, char __user *, optval, int, optlen) { return __sys_setsockopt(fd, level, optname, optval, optlen); } /* * Get a socket option. Because we don't know the option lengths we have * to pass a user mode parameter for the protocols to sort out. */ int __sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) { int err, fput_needed; struct socket *sock; int max_optlen; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; err = security_socket_getsockopt(sock, level, optname); if (err) goto out_put; if (!in_compat_syscall()) max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); if (level == SOL_SOCKET) err = sock_getsockopt(sock, level, optname, optval, optlen); else if (unlikely(!sock->ops->getsockopt)) err = -EOPNOTSUPP; else err = sock->ops->getsockopt(sock, level, optname, optval, optlen); if (!in_compat_syscall()) err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, optval, optlen, max_optlen, err); out_put: fput_light(sock->file, fput_needed); return err; } SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, char __user *, optval, int __user *, optlen) { return __sys_getsockopt(fd, level, optname, optval, optlen); } /* * Shutdown a socket. */ int __sys_shutdown_sock(struct socket *sock, int how) { int err; err = security_socket_shutdown(sock, how); if (!err) err = sock->ops->shutdown(sock, how); return err; } int __sys_shutdown(int fd, int how) { int err, fput_needed; struct socket *sock; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (sock != NULL) { err = __sys_shutdown_sock(sock, how); fput_light(sock->file, fput_needed); } return err; } SYSCALL_DEFINE2(shutdown, int, fd, int, how) { return __sys_shutdown(fd, how); } /* A couple of helpful macros for getting the address of the 32/64 bit * fields which are the same type (int / unsigned) on our platforms. */ #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) struct used_address { struct sockaddr_storage name; unsigned int name_len; }; int __copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec __user **uiov, size_t *nsegs) { struct user_msghdr msg; ssize_t err; if (copy_from_user(&msg, umsg, sizeof(*umsg))) return -EFAULT; kmsg->msg_control_is_user = true; kmsg->msg_control_user = msg.msg_control; kmsg->msg_controllen = msg.msg_controllen; kmsg->msg_flags = msg.msg_flags; kmsg->msg_namelen = msg.msg_namelen; if (!msg.msg_name) kmsg->msg_namelen = 0; if (kmsg->msg_namelen < 0) return -EINVAL; if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) kmsg->msg_namelen = sizeof(struct sockaddr_storage); if (save_addr) *save_addr = msg.msg_name; if (msg.msg_name && kmsg->msg_namelen) { if (!save_addr) { err = move_addr_to_kernel(msg.msg_name, kmsg->msg_namelen, kmsg->msg_name); if (err < 0) return err; } } else { kmsg->msg_name = NULL; kmsg->msg_namelen = 0; } if (msg.msg_iovlen > UIO_MAXIOV) return -EMSGSIZE; kmsg->msg_iocb = NULL; *uiov = msg.msg_iov; *nsegs = msg.msg_iovlen; return 0; } static int copy_msghdr_from_user(struct msghdr *kmsg, struct user_msghdr __user *umsg, struct sockaddr __user **save_addr, struct iovec **iov) { struct user_msghdr msg; ssize_t err; err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, &msg.msg_iovlen); if (err) return err; err = import_iovec(save_addr ? READ : WRITE, msg.msg_iov, msg.msg_iovlen, UIO_FASTIOV, iov, &kmsg->msg_iter); return err < 0 ? err : 0; } static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags) { unsigned char ctl[sizeof(struct cmsghdr) + 20] __aligned(sizeof(__kernel_size_t)); /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; int ctl_len; ssize_t err; err = -ENOBUFS; if (msg_sys->msg_controllen > INT_MAX) goto out; flags |= (msg_sys->msg_flags & allowed_msghdr_flags); ctl_len = msg_sys->msg_controllen; if ((MSG_CMSG_COMPAT & flags) && ctl_len) { err = cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, sizeof(ctl)); if (err) goto out; ctl_buf = msg_sys->msg_control; ctl_len = msg_sys->msg_controllen; } else if (ctl_len) { BUILD_BUG_ON(sizeof(struct cmsghdr) != CMSG_ALIGN(sizeof(struct cmsghdr))); if (ctl_len > sizeof(ctl)) { ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out; } err = -EFAULT; if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) goto out_freectl; msg_sys->msg_control = ctl_buf; msg_sys->msg_control_is_user = false; } msg_sys->msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys->msg_flags |= MSG_DONTWAIT; /* * If this is sendmmsg() and current destination address is same as * previously succeeded address, omit asking LSM's decision. * used_address->name_len is initialized to UINT_MAX so that the first * destination address never matches. */ if (used_address && msg_sys->msg_name && used_address->name_len == msg_sys->msg_namelen && !memcmp(&used_address->name, msg_sys->msg_name, used_address->name_len)) { err = sock_sendmsg_nosec(sock, msg_sys); goto out_freectl; } err = sock_sendmsg(sock, msg_sys); /* * If this is sendmmsg() and sending to current destination address was * successful, remember it. */ if (used_address && err >= 0) { used_address->name_len = msg_sys->msg_namelen; if (msg_sys->msg_name) memcpy(&used_address->name, msg_sys->msg_name, used_address->name_len); } out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out: return err; } int sendmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct iovec **iov) { int err; if (flags & MSG_CMSG_COMPAT) { struct compat_msghdr __user *msg_compat; msg_compat = (struct compat_msghdr __user *) umsg; err = get_compat_msghdr(msg, msg_compat, NULL, iov); } else { err = copy_msghdr_from_user(msg, umsg, NULL, iov); } if (err < 0) return err; return 0; } static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, struct used_address *used_address, unsigned int allowed_msghdr_flags) { struct sockaddr_storage address; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; ssize_t err; msg_sys->msg_name = &address; err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); if (err < 0) return err; err = ____sys_sendmsg(sock, msg_sys, flags, used_address, allowed_msghdr_flags); kfree(iov); return err; } /* * BSD sendmsg interface */ long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, unsigned int flags) { return ____sys_sendmsg(sock, msg, flags, NULL, 0); } long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat) { int fput_needed, err; struct msghdr msg_sys; struct socket *sock; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { return __sys_sendmsg(fd, msg, flags, true); } /* * Linux sendmmsg interface */ int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, bool forbid_cmsg_compat) { int fput_needed, err, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct used_address used_address; unsigned int oflags = flags; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; if (vlen > UIO_MAXIOV) vlen = UIO_MAXIOV; datagrams = 0; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; used_address.name_len = UINT_MAX; entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; err = 0; flags |= MSG_BATCH; while (datagrams < vlen) { if (datagrams == vlen - 1) flags = oflags; if (MSG_CMSG_COMPAT & flags) { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_sendmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags, &used_address, MSG_EOR); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; if (msg_data_left(&msg_sys)) break; cond_resched(); } fput_light(sock->file, fput_needed); /* We only return an error if no datagrams were able to be sent */ if (datagrams != 0) return datagrams; return err; } SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags) { return __sys_sendmmsg(fd, mmsg, vlen, flags, true); } int recvmsg_copy_msghdr(struct msghdr *msg, struct user_msghdr __user *umsg, unsigned flags, struct sockaddr __user **uaddr, struct iovec **iov) { ssize_t err; if (MSG_CMSG_COMPAT & flags) { struct compat_msghdr __user *msg_compat; msg_compat = (struct compat_msghdr __user *) umsg; err = get_compat_msghdr(msg, msg_compat, uaddr, iov); } else { err = copy_msghdr_from_user(msg, umsg, uaddr, iov); } if (err < 0) return err; return 0; } static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, struct user_msghdr __user *msg, struct sockaddr __user *uaddr, unsigned int flags, int nosec) { struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *) msg; int __user *uaddr_len = COMPAT_NAMELEN(msg); struct sockaddr_storage addr; unsigned long cmsg_ptr; int len; ssize_t err; msg_sys->msg_name = &addr; cmsg_ptr = (unsigned long)msg_sys->msg_control; msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); /* We assume all kernel code knows the size of sockaddr_storage */ msg_sys->msg_namelen = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; if (unlikely(nosec)) err = sock_recvmsg_nosec(sock, msg_sys, flags); else err = sock_recvmsg(sock, msg_sys, flags); if (err < 0) goto out; len = err; if (uaddr != NULL) { err = move_addr_to_user(&addr, msg_sys->msg_namelen, uaddr, uaddr_len); if (err < 0) goto out; } err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), COMPAT_FLAGS(msg)); if (err) goto out; if (MSG_CMSG_COMPAT & flags) err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg_compat->msg_controllen); else err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, &msg->msg_controllen); if (err) goto out; err = len; out: return err; } static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, struct msghdr *msg_sys, unsigned int flags, int nosec) { struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; /* user mode address pointers */ struct sockaddr __user *uaddr; ssize_t err; err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); if (err < 0) return err; err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); kfree(iov); return err; } /* * BSD recvmsg interface */ long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, struct user_msghdr __user *umsg, struct sockaddr __user *uaddr, unsigned int flags) { return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); } long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, bool forbid_cmsg_compat) { int fput_needed, err; struct msghdr msg_sys; struct socket *sock; if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) return -EINVAL; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) goto out; err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); fput_light(sock->file, fput_needed); out: return err; } SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) { return __sys_recvmsg(fd, msg, flags, true); } /* * Linux recvmmsg interface */ static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct timespec64 *timeout) { int fput_needed, err, datagrams; struct socket *sock; struct mmsghdr __user *entry; struct compat_mmsghdr __user *compat_entry; struct msghdr msg_sys; struct timespec64 end_time; struct timespec64 timeout64; if (timeout && poll_select_set_timeout(&end_time, timeout->tv_sec, timeout->tv_nsec)) return -EINVAL; datagrams = 0; sock = sockfd_lookup_light(fd, &err, &fput_needed); if (!sock) return err; if (likely(!(flags & MSG_ERRQUEUE))) { err = sock_error(sock->sk); if (err) { datagrams = err; goto out_put; } } entry = mmsg; compat_entry = (struct compat_mmsghdr __user *)mmsg; while (datagrams < vlen) { /* * No need to ask LSM for more than the first datagram. */ if (MSG_CMSG_COMPAT & flags) { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = __put_user(err, &compat_entry->msg_len); ++compat_entry; } else { err = ___sys_recvmsg(sock, (struct user_msghdr __user *)entry, &msg_sys, flags & ~MSG_WAITFORONE, datagrams); if (err < 0) break; err = put_user(err, &entry->msg_len); ++entry; } if (err) break; ++datagrams; /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ if (flags & MSG_WAITFORONE) flags |= MSG_DONTWAIT; if (timeout) { ktime_get_ts64(&timeout64); *timeout = timespec64_sub(end_time, timeout64); if (timeout->tv_sec < 0) { timeout->tv_sec = timeout->tv_nsec = 0; break; } /* Timeout, return less than vlen datagrams */ if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) break; } /* Out of band data, return right away */ if (msg_sys.msg_flags & MSG_OOB) break; cond_resched(); } if (err == 0) goto out_put; if (datagrams == 0) { datagrams = err; goto out_put; } /* * We may return less entries than requested (vlen) if the * sock is non block and there aren't enough datagrams... */ if (err != -EAGAIN) { /* * ... or if recvmsg returns an error after we * received some datagrams, where we record the * error to return on the next call or if the * app asks about it using getsockopt(SO_ERROR). */ sock->sk->sk_err = -err; } out_put: fput_light(sock->file, fput_needed); return datagrams; } int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, unsigned int flags, struct __kernel_timespec __user *timeout, struct old_timespec32 __user *timeout32) { int datagrams; struct timespec64 timeout_sys; if (timeout && get_timespec64(&timeout_sys, timeout)) return -EFAULT; if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) return -EFAULT; if (!timeout && !timeout32) return do_recvmmsg(fd, mmsg, vlen, flags, NULL); datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); if (datagrams <= 0) return datagrams; if (timeout && put_timespec64(&timeout_sys, timeout)) datagrams = -EFAULT; if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) datagrams = -EFAULT; return datagrams; } SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct __kernel_timespec __user *, timeout) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); } #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, unsigned int, vlen, unsigned int, flags, struct old_timespec32 __user *, timeout) { if (flags & MSG_CMSG_COMPAT) return -EINVAL; return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); } #endif #ifdef __ARCH_WANT_SYS_SOCKETCALL /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(unsigned long)) static const unsigned char nargs[21] = { AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), AL(4), AL(5), AL(4) }; #undef AL /* * System call vectors. * * Argument checking cleaned up. Saved 20% in size. * This function doesn't need to set the kernel lock because * it is set by the callees. */ SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) { unsigned long a[AUDITSC_ARGS]; unsigned long a0, a1; int err; unsigned int len; if (call < 1 || call > SYS_SENDMMSG) return -EINVAL; call = array_index_nospec(call, SYS_SENDMMSG + 1); len = nargs[call]; if (len > sizeof(a)) return -EINVAL; /* copy_from_user should be SMP safe. */ if (copy_from_user(a, args, len)) return -EFAULT; err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); if (err) return err; a0 = a[0]; a1 = a[1]; switch (call) { case SYS_SOCKET: err = __sys_socket(a0, a1, a[2]); break; case SYS_BIND: err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_CONNECT: err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); break; case SYS_LISTEN: err = __sys_listen(a0, a1); break; case SYS_ACCEPT: err = __sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], 0); break; case SYS_GETSOCKNAME: err = __sys_getsockname(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_GETPEERNAME: err = __sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); break; case SYS_SOCKETPAIR: err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); break; case SYS_SEND: err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], NULL, 0); break; case SYS_SENDTO: err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], a[5]); break; case SYS_RECV: err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], NULL, NULL); break; case SYS_RECVFROM: err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], (struct sockaddr __user *)a[4], (int __user *)a[5]); break; case SYS_SHUTDOWN: err = __sys_shutdown(a0, a1); break; case SYS_SETSOCKOPT: err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); break; case SYS_GETSOCKOPT: err = __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); break; case SYS_SENDMSG: err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2], true); break; case SYS_SENDMMSG: err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], true); break; case SYS_RECVMSG: err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2], true); break; case SYS_RECVMMSG: if (IS_ENABLED(CONFIG_64BIT)) err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], (struct __kernel_timespec __user *)a[4], NULL); else err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], NULL, (struct old_timespec32 __user *)a[4]); break; case SYS_ACCEPT4: err = __sys_accept4(a0, (struct sockaddr __user *)a1, (int __user *)a[2], a[3]); break; default: err = -EINVAL; break; } return err; } #endif /* __ARCH_WANT_SYS_SOCKETCALL */ /** * sock_register - add a socket protocol handler * @ops: description of protocol * * This function is called by a protocol handler that wants to * advertise its address family, and have it linked into the * socket interface. The value ops->family corresponds to the * socket system call protocol family. */ int sock_register(const struct net_proto_family *ops) { int err; if (ops->family >= NPROTO) { pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); return -ENOBUFS; } spin_lock(&net_family_lock); if (rcu_dereference_protected(net_families[ops->family], lockdep_is_held(&net_family_lock))) err = -EEXIST; else { rcu_assign_pointer(net_families[ops->family], ops); err = 0; } spin_unlock(&net_family_lock); pr_info("NET: Registered protocol family %d\n", ops->family); return err; } EXPORT_SYMBOL(sock_register); /** * sock_unregister - remove a protocol handler * @family: protocol family to remove * * This function is called by a protocol handler that wants to * remove its address family, and have it unlinked from the * new socket creation. * * If protocol handler is a module, then it can use module reference * counts to protect against new references. If protocol handler is not * a module then it needs to provide its own protection in * the ops->create routine. */ void sock_unregister(int family) { BUG_ON(family < 0 || family >= NPROTO); spin_lock(&net_family_lock); RCU_INIT_POINTER(net_families[family], NULL); spin_unlock(&net_family_lock); synchronize_rcu(); pr_info("NET: Unregistered protocol family %d\n", family); } EXPORT_SYMBOL(sock_unregister); bool sock_is_registered(int family) { return family < NPROTO && rcu_access_pointer(net_families[family]); } static int __init sock_init(void) { int err; /* * Initialize the network sysctl infrastructure. */ err = net_sysctl_init(); if (err) goto out; /* * Initialize skbuff SLAB cache */ skb_init(); /* * Initialize the protocols module. */ init_inodecache(); err = register_filesystem(&sock_fs_type); if (err) goto out; sock_mnt = kern_mount(&sock_fs_type); if (IS_ERR(sock_mnt)) { err = PTR_ERR(sock_mnt); goto out_mount; } /* The real protocol initialization is performed in later initcalls. */ #ifdef CONFIG_NETFILTER err = netfilter_init(); if (err) goto out; #endif ptp_classifier_init(); out: return err; out_mount: unregister_filesystem(&sock_fs_type); goto out; } core_initcall(sock_init); /* early initcall */ #ifdef CONFIG_PROC_FS void socket_seq_show(struct seq_file *seq) { seq_printf(seq, "sockets: used %d\n", sock_inuse_get(seq->private)); } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_COMPAT static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) { struct compat_ifconf ifc32; struct ifconf ifc; int err; if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) return -EFAULT; ifc.ifc_len = ifc32.ifc_len; ifc.ifc_req = compat_ptr(ifc32.ifcbuf); rtnl_lock(); err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); rtnl_unlock(); if (err) return err; ifc32.ifc_len = ifc.ifc_len; if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) return -EFAULT; return 0; } static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) { compat_uptr_t uptr32; struct ifreq ifr; void __user *saved; int err; if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) return -EFAULT; if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) return -EFAULT; saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); if (!err) { ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) err = -EFAULT; } return err; } /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, struct compat_ifreq __user *u_ifreq32) { struct ifreq ifreq; u32 data32; if (!is_socket_ioctl_cmd(cmd)) return -ENOTTY; if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) return -EFAULT; if (get_user(data32, &u_ifreq32->ifr_data)) return -EFAULT; ifreq.ifr_data = compat_ptr(data32); return dev_ioctl(net, cmd, &ifreq, NULL); } static int compat_ifreq_ioctl(struct net *net, struct socket *sock, unsigned int cmd, struct compat_ifreq __user *uifr32) { struct ifreq __user *uifr; int err; /* Handle the fact that while struct ifreq has the same *layout* on * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, * which are handled elsewhere, it still has different *size* due to * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, * resulting in struct ifreq being 32 and 40 bytes respectively). * As a result, if the struct happens to be at the end of a page and * the next page isn't readable/writable, we get a fault. To prevent * that, copy back and forth to the full size. */ uifr = compat_alloc_user_space(sizeof(*uifr)); if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) return -EFAULT; err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); if (!err) { switch (cmd) { case SIOCGIFFLAGS: case SIOCGIFMETRIC: case SIOCGIFMTU: case SIOCGIFMEM: case SIOCGIFHWADDR: case SIOCGIFINDEX: case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFDSTADDR: case SIOCGIFNETMASK: case SIOCGIFPFLAGS: case SIOCGIFTXQLEN: case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCGIFNAME: if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) err = -EFAULT; break; } } return err; } static int compat_sioc_ifmap(struct net *net, unsigned int cmd, struct compat_ifreq __user *uifr32) { struct ifreq ifr; struct compat_ifmap __user *uifmap32; int err; uifmap32 = &uifr32->ifr_ifru.ifru_map; err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); err |= get_user(ifr.ifr_map.port, &uifmap32->port); if (err) return -EFAULT; err = dev_ioctl(net, cmd, &ifr, NULL); if (cmd == SIOCGIFMAP && !err) { err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); err |= put_user(ifr.ifr_map.port, &uifmap32->port); if (err) err = -EFAULT; } return err; } /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE * for some operations; this forces use of the newer bridge-utils that * use compatible ioctls */ static int old_bridge_ioctl(compat_ulong_t __user *argp) { compat_ulong_t tmp; if (get_user(tmp, argp)) return -EFAULT; if (tmp == BRCTL_GET_VERSION) return BRCTL_VERSION + 1; return -EINVAL; } static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = compat_ptr(arg); struct sock *sk = sock->sk; struct net *net = sock_net(sk); if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) return compat_ifr_data_ioctl(net, cmd, argp); switch (cmd) { case SIOCSIFBR: case SIOCGIFBR: return old_bridge_ioctl(argp); case SIOCGIFCONF: return compat_dev_ifconf(net, argp); case SIOCWANDEV: return compat_siocwandev(net, argp); case SIOCGIFMAP: case SIOCSIFMAP: return compat_sioc_ifmap(net, cmd, argp); case SIOCGSTAMP_OLD: case SIOCGSTAMPNS_OLD: if (!sock->ops->gettstamp) return -ENOIOCTLCMD; return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, !COMPAT_USE_64BIT_TIME); case SIOCETHTOOL: case SIOCBONDSLAVEINFOQUERY: case SIOCBONDINFOQUERY: case SIOCSHWTSTAMP: case SIOCGHWTSTAMP: return compat_ifr_data_ioctl(net, cmd, argp); case FIOSETOWN: case SIOCSPGRP: case FIOGETOWN: case SIOCGPGRP: case SIOCBRADDBR: case SIOCBRDELBR: case SIOCGIFVLAN: case SIOCSIFVLAN: case SIOCADDDLCI: case SIOCDELDLCI: case SIOCGSKNS: case SIOCGSTAMP_NEW: case SIOCGSTAMPNS_NEW: return sock_ioctl(file, cmd, arg); case SIOCGIFFLAGS: case SIOCSIFFLAGS: case SIOCGIFMETRIC: case SIOCSIFMETRIC: case SIOCGIFMTU: case SIOCSIFMTU: case SIOCGIFMEM: case SIOCSIFMEM: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCGIFINDEX: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCSIFHWBROADCAST: case SIOCDIFADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCSIFPFLAGS: case SIOCGIFPFLAGS: case SIOCGIFTXQLEN: case SIOCSIFTXQLEN: case SIOCBRADDIF: case SIOCBRDELIF: case SIOCGIFNAME: case SIOCSIFNAME: case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: case SIOCBONDENSLAVE: case SIOCBONDRELEASE: case SIOCBONDSETHWADDR: case SIOCBONDCHANGEACTIVE: return compat_ifreq_ioctl(net, sock, cmd, argp); case SIOCSARP: case SIOCGARP: case SIOCDARP: case SIOCOUTQ: case SIOCOUTQNSD: case SIOCATMARK: return sock_do_ioctl(net, sock, cmd, arg); } return -ENOIOCTLCMD; } static long compat_sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct socket *sock = file->private_data; int ret = -ENOIOCTLCMD; struct sock *sk; struct net *net; sk = sock->sk; net = sock_net(sk); if (sock->ops->compat_ioctl) ret = sock->ops->compat_ioctl(sock, cmd, arg); if (ret == -ENOIOCTLCMD && (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) ret = compat_wext_handle_ioctl(net, cmd, arg); if (ret == -ENOIOCTLCMD) ret = compat_sock_ioctl_trans(file, sock, cmd, arg); return ret; } #endif /** * kernel_bind - bind an address to a socket (kernel space) * @sock: socket * @addr: address * @addrlen: length of address * * Returns 0 or an error. */ int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) { return sock->ops->bind(sock, addr, addrlen); } EXPORT_SYMBOL(kernel_bind); /** * kernel_listen - move socket to listening state (kernel space) * @sock: socket * @backlog: pending connections queue size * * Returns 0 or an error. */ int kernel_listen(struct socket *sock, int backlog) { return sock->ops->listen(sock, backlog); } EXPORT_SYMBOL(kernel_listen); /** * kernel_accept - accept a connection (kernel space) * @sock: listening socket * @newsock: new connected socket * @flags: flags * * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. * If it fails, @newsock is guaranteed to be %NULL. * Returns 0 or an error. */ int kernel_accept(struct socket *sock, struct socket **newsock, int flags) { struct sock *sk = sock->sk; int err; err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, newsock); if (err < 0) goto done; err = sock->ops->accept(sock, *newsock, flags, true); if (err < 0) { sock_release(*newsock); *newsock = NULL; goto done; } (*newsock)->ops = sock->ops; __module_get((*newsock)->ops->owner); done: return err; } EXPORT_SYMBOL(kernel_accept); /** * kernel_connect - connect a socket (kernel space) * @sock: socket * @addr: address * @addrlen: address length * @flags: flags (O_NONBLOCK, ...) * * For datagram sockets, @addr is the addres to which datagrams are sent * by default, and the only address from which datagrams are received. * For stream sockets, attempts to connect to @addr. * Returns 0 or an error code. */ int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, int flags) { return sock->ops->connect(sock, addr, addrlen, flags); } EXPORT_SYMBOL(kernel_connect); /** * kernel_getsockname - get the address which the socket is bound (kernel space) * @sock: socket * @addr: address holder * * Fills the @addr pointer with the address which the socket is bound. * Returns 0 or an error code. */ int kernel_getsockname(struct socket *sock, struct sockaddr *addr) { return sock->ops->getname(sock, addr, 0); } EXPORT_SYMBOL(kernel_getsockname); /** * kernel_getpeername - get the address which the socket is connected (kernel space) * @sock: socket * @addr: address holder * * Fills the @addr pointer with the address which the socket is connected. * Returns 0 or an error code. */ int kernel_getpeername(struct socket *sock, struct sockaddr *addr) { return sock->ops->getname(sock, addr, 1); } EXPORT_SYMBOL(kernel_getpeername); /** * kernel_sendpage - send a &page through a socket (kernel space) * @sock: socket * @page: page * @offset: page offset * @size: total size in bytes * @flags: flags (MSG_DONTWAIT, ...) * * Returns the total amount sent in bytes or an error. */ int kernel_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) { if (sock->ops->sendpage) { /* Warn in case the improper page to zero-copy send */ WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); return sock->ops->sendpage(sock, page, offset, size, flags); } return sock_no_sendpage(sock, page, offset, size, flags); } EXPORT_SYMBOL(kernel_sendpage); /** * kernel_sendpage_locked - send a &page through the locked sock (kernel space) * @sk: sock * @page: page * @offset: page offset * @size: total size in bytes * @flags: flags (MSG_DONTWAIT, ...) * * Returns the total amount sent in bytes or an error. * Caller must hold @sk. */ int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct socket *sock = sk->sk_socket; if (sock->ops->sendpage_locked) return sock->ops->sendpage_locked(sk, page, offset, size, flags); return sock_no_sendpage_locked(sk, page, offset, size, flags); } EXPORT_SYMBOL(kernel_sendpage_locked); /** * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) * @sock: socket * @how: connection part * * Returns 0 or an error. */ int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) { return sock->ops->shutdown(sock, how); } EXPORT_SYMBOL(kernel_sock_shutdown); /** * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket * @sk: socket * * This routine returns the IP overhead imposed by a socket i.e. * the length of the underlying IP header, depending on whether * this is an IPv4 or IPv6 socket and the length from IP options turned * on at the socket. Assumes that the caller has a lock on the socket. */ u32 kernel_sock_ip_overhead(struct sock *sk) { struct inet_sock *inet; struct ip_options_rcu *opt; u32 overhead = 0; #if IS_ENABLED(CONFIG_IPV6) struct ipv6_pinfo *np; struct ipv6_txoptions *optv6 = NULL; #endif /* IS_ENABLED(CONFIG_IPV6) */ if (!sk) return overhead; switch (sk->sk_family) { case AF_INET: inet = inet_sk(sk); overhead += sizeof(struct iphdr); opt = rcu_dereference_protected(inet->inet_opt, sock_owned_by_user(sk)); if (opt) overhead += opt->opt.optlen; return overhead; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: np = inet6_sk(sk); overhead += sizeof(struct ipv6hdr); if (np) optv6 = rcu_dereference_protected(np->opt, sock_owned_by_user(sk)); if (optv6) overhead += (optv6->opt_flen + optv6->opt_nflen); return overhead; #endif /* IS_ENABLED(CONFIG_IPV6) */ default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ return overhead; } } EXPORT_SYMBOL(kernel_sock_ip_overhead);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel_match(struct task_struct *task, bool (*match)(struct callback_head *, void *data), void *data); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COMPLETION_H #define __LINUX_COMPLETION_H /* * (C) Copyright 2001 Linus Torvalds * * Atomic wait-for-completion handler data structures. * See kernel/sched/completion.c for details. */ #include <linux/swait.h> /* * struct completion - structure used to maintain state for a "completion" * * This is the opaque structure used to maintain the state for a "completion". * Completions currently use a FIFO to queue threads that have to wait for * the "completion" event. * * See also: complete(), wait_for_completion() (and friends _timeout, * _interruptible, _interruptible_timeout, and _killable), init_completion(), * reinit_completion(), and macros DECLARE_COMPLETION(), * DECLARE_COMPLETION_ONSTACK(). */ struct completion { unsigned int done; struct swait_queue_head wait; }; #define init_completion_map(x, m) __init_completion(x) #define init_completion(x) __init_completion(x) static inline void complete_acquire(struct completion *x) {} static inline void complete_release(struct completion *x) {} #define COMPLETION_INITIALIZER(work) \ { 0, __SWAIT_QUEUE_HEAD_INITIALIZER((work).wait) } #define COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) \ (*({ init_completion_map(&(work), &(map)); &(work); })) #define COMPLETION_INITIALIZER_ONSTACK(work) \ (*({ init_completion(&work); &work; })) /** * DECLARE_COMPLETION - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure. Generally used * for static declarations. You should use the _ONSTACK variant for automatic * variables. */ #define DECLARE_COMPLETION(work) \ struct completion work = COMPLETION_INITIALIZER(work) /* * Lockdep needs to run a non-constant initializer for on-stack * completions - so we use the _ONSTACK() variant for those that * are on the kernel stack: */ /** * DECLARE_COMPLETION_ONSTACK - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure on the kernel * stack. */ #ifdef CONFIG_LOCKDEP # define DECLARE_COMPLETION_ONSTACK(work) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) #else # define DECLARE_COMPLETION_ONSTACK(work) DECLARE_COMPLETION(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) DECLARE_COMPLETION(work) #endif /** * init_completion - Initialize a dynamically allocated completion * @x: pointer to completion structure that is to be initialized * * This inline function will initialize a dynamically created completion * structure. */ static inline void __init_completion(struct completion *x) { x->done = 0; init_swait_queue_head(&x->wait); } /** * reinit_completion - reinitialize a completion structure * @x: pointer to completion structure that is to be reinitialized * * This inline function should be used to reinitialize a completion structure so it can * be reused. This is especially important after complete_all() is used. */ static inline void reinit_completion(struct completion *x) { x->done = 0; } extern void wait_for_completion(struct completion *); extern void wait_for_completion_io(struct completion *); extern int wait_for_completion_interruptible(struct completion *x); extern int wait_for_completion_killable(struct completion *x); extern unsigned long wait_for_completion_timeout(struct completion *x, unsigned long timeout); extern unsigned long wait_for_completion_io_timeout(struct completion *x, unsigned long timeout); extern long wait_for_completion_interruptible_timeout( struct completion *x, unsigned long timeout); extern long wait_for_completion_killable_timeout( struct completion *x, unsigned long timeout); extern bool try_wait_for_completion(struct completion *x); extern bool completion_done(struct completion *x); extern void complete(struct completion *); extern void complete_all(struct completion *); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 #ifndef _CRYPTO_GCM_H #define _CRYPTO_GCM_H #include <linux/errno.h> #define GCM_AES_IV_SIZE 12 #define GCM_RFC4106_IV_SIZE 8 #define GCM_RFC4543_IV_SIZE 8 /* * validate authentication tag for GCM */ static inline int crypto_gcm_check_authsize(unsigned int authsize) { switch (authsize) { case 4: case 8: case 12: case 13: case 14: case 15: case 16: break; default: return -EINVAL; } return 0; } /* * validate authentication tag for RFC4106 */ static inline int crypto_rfc4106_check_authsize(unsigned int authsize) { switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return 0; } /* * validate assoclen for RFC4106/RFC4543 */ static inline int crypto_ipsec_check_assoclen(unsigned int assoclen) { switch (assoclen) { case 16: case 20: break; default: return -EINVAL; } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/mballoc.h * * Written by: Alex Tomas <alex@clusterfs.com> * */ #ifndef _EXT4_MBALLOC_H #define _EXT4_MBALLOC_H #include <linux/time.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/buffer_head.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/proc_fs.h> #include <linux/pagemap.h> #include <linux/seq_file.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include "ext4_jbd2.h" #include "ext4.h" /* * mb_debug() dynamic printk msgs could be used to debug mballoc code. */ #ifdef CONFIG_EXT4_DEBUG #define mb_debug(sb, fmt, ...) \ pr_debug("[%s/%d] EXT4-fs (%s): (%s, %d): %s: " fmt, \ current->comm, task_pid_nr(current), sb->s_id, \ __FILE__, __LINE__, __func__, ##__VA_ARGS__) #else #define mb_debug(sb, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif #define EXT4_MB_HISTORY_ALLOC 1 /* allocation */ #define EXT4_MB_HISTORY_PREALLOC 2 /* preallocated blocks used */ /* * How long mballoc can look for a best extent (in found extents) */ #define MB_DEFAULT_MAX_TO_SCAN 200 /* * How long mballoc must look for a best extent */ #define MB_DEFAULT_MIN_TO_SCAN 10 /* * with 'ext4_mb_stats' allocator will collect stats that will be * shown at umount. The collecting costs though! */ #define MB_DEFAULT_STATS 0 /* * files smaller than MB_DEFAULT_STREAM_THRESHOLD are served * by the stream allocator, which purpose is to pack requests * as close each to other as possible to produce smooth I/O traffic * We use locality group prealloc space for stream request. * We can tune the same via /proc/fs/ext4/<partition>/stream_req */ #define MB_DEFAULT_STREAM_THRESHOLD 16 /* 64K */ /* * for which requests use 2^N search using buddies */ #define MB_DEFAULT_ORDER2_REQS 2 /* * default group prealloc size 512 blocks */ #define MB_DEFAULT_GROUP_PREALLOC 512 /* * maximum length of inode prealloc list */ #define MB_DEFAULT_MAX_INODE_PREALLOC 512 struct ext4_free_data { /* this links the free block information from sb_info */ struct list_head efd_list; /* this links the free block information from group_info */ struct rb_node efd_node; /* group which free block extent belongs */ ext4_group_t efd_group; /* free block extent */ ext4_grpblk_t efd_start_cluster; ext4_grpblk_t efd_count; /* transaction which freed this extent */ tid_t efd_tid; }; struct ext4_prealloc_space { struct list_head pa_inode_list; struct list_head pa_group_list; union { struct list_head pa_tmp_list; struct rcu_head pa_rcu; } u; spinlock_t pa_lock; atomic_t pa_count; unsigned pa_deleted; ext4_fsblk_t pa_pstart; /* phys. block */ ext4_lblk_t pa_lstart; /* log. block */ ext4_grpblk_t pa_len; /* len of preallocated chunk */ ext4_grpblk_t pa_free; /* how many blocks are free */ unsigned short pa_type; /* pa type. inode or group */ spinlock_t *pa_obj_lock; struct inode *pa_inode; /* hack, for history only */ }; enum { MB_INODE_PA = 0, MB_GROUP_PA = 1 }; struct ext4_free_extent { ext4_lblk_t fe_logical; ext4_grpblk_t fe_start; /* In cluster units */ ext4_group_t fe_group; ext4_grpblk_t fe_len; /* In cluster units */ }; /* * Locality group: * we try to group all related changes together * so that writeback can flush/allocate them together as well * Size of lg_prealloc_list hash is determined by MB_DEFAULT_GROUP_PREALLOC * (512). We store prealloc space into the hash based on the pa_free blocks * order value.ie, fls(pa_free)-1; */ #define PREALLOC_TB_SIZE 10 struct ext4_locality_group { /* for allocator */ /* to serialize allocates */ struct mutex lg_mutex; /* list of preallocations */ struct list_head lg_prealloc_list[PREALLOC_TB_SIZE]; spinlock_t lg_prealloc_lock; }; struct ext4_allocation_context { struct inode *ac_inode; struct super_block *ac_sb; /* original request */ struct ext4_free_extent ac_o_ex; /* goal request (normalized ac_o_ex) */ struct ext4_free_extent ac_g_ex; /* the best found extent */ struct ext4_free_extent ac_b_ex; /* copy of the best found extent taken before preallocation efforts */ struct ext4_free_extent ac_f_ex; __u16 ac_groups_scanned; __u16 ac_found; __u16 ac_tail; __u16 ac_buddy; __u16 ac_flags; /* allocation hints */ __u8 ac_status; __u8 ac_criteria; __u8 ac_2order; /* if request is to allocate 2^N blocks and * N > 0, the field stores N, otherwise 0 */ __u8 ac_op; /* operation, for history only */ struct page *ac_bitmap_page; struct page *ac_buddy_page; struct ext4_prealloc_space *ac_pa; struct ext4_locality_group *ac_lg; }; #define AC_STATUS_CONTINUE 1 #define AC_STATUS_FOUND 2 #define AC_STATUS_BREAK 3 struct ext4_buddy { struct page *bd_buddy_page; void *bd_buddy; struct page *bd_bitmap_page; void *bd_bitmap; struct ext4_group_info *bd_info; struct super_block *bd_sb; __u16 bd_blkbits; ext4_group_t bd_group; }; static inline ext4_fsblk_t ext4_grp_offs_to_block(struct super_block *sb, struct ext4_free_extent *fex) { return ext4_group_first_block_no(sb, fex->fe_group) + (fex->fe_start << EXT4_SB(sb)->s_cluster_bits); } typedef int (*ext4_mballoc_query_range_fn)( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t len, void *priv); int ext4_mballoc_query_range( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t end, ext4_mballoc_query_range_fn formatter, void *priv); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_FLOW_DISSECTOR_H #define _NET_FLOW_DISSECTOR_H #include <linux/types.h> #include <linux/in6.h> #include <linux/siphash.h> #include <linux/string.h> #include <uapi/linux/if_ether.h> struct bpf_prog; struct net; struct sk_buff; /** * struct flow_dissector_key_control: * @thoff: Transport header offset */ struct flow_dissector_key_control { u16 thoff; u16 addr_type; u32 flags; }; #define FLOW_DIS_IS_FRAGMENT BIT(0) #define FLOW_DIS_FIRST_FRAG BIT(1) #define FLOW_DIS_ENCAPSULATION BIT(2) enum flow_dissect_ret { FLOW_DISSECT_RET_OUT_GOOD, FLOW_DISSECT_RET_OUT_BAD, FLOW_DISSECT_RET_PROTO_AGAIN, FLOW_DISSECT_RET_IPPROTO_AGAIN, FLOW_DISSECT_RET_CONTINUE, }; /** * struct flow_dissector_key_basic: * @n_proto: Network header protocol (eg. IPv4/IPv6) * @ip_proto: Transport header protocol (eg. TCP/UDP) */ struct flow_dissector_key_basic { __be16 n_proto; u8 ip_proto; u8 padding; }; struct flow_dissector_key_tags { u32 flow_label; }; struct flow_dissector_key_vlan { union { struct { u16 vlan_id:12, vlan_dei:1, vlan_priority:3; }; __be16 vlan_tci; }; __be16 vlan_tpid; __be16 vlan_eth_type; u16 padding; }; struct flow_dissector_mpls_lse { u32 mpls_ttl:8, mpls_bos:1, mpls_tc:3, mpls_label:20; }; #define FLOW_DIS_MPLS_MAX 7 struct flow_dissector_key_mpls { struct flow_dissector_mpls_lse ls[FLOW_DIS_MPLS_MAX]; /* Label Stack */ u8 used_lses; /* One bit set for each Label Stack Entry in use */ }; static inline void dissector_set_mpls_lse(struct flow_dissector_key_mpls *mpls, int lse_index) { mpls->used_lses |= 1 << lse_index; } #define FLOW_DIS_TUN_OPTS_MAX 255 /** * struct flow_dissector_key_enc_opts: * @data: tunnel option data * @len: length of tunnel option data * @dst_opt_type: tunnel option type */ struct flow_dissector_key_enc_opts { u8 data[FLOW_DIS_TUN_OPTS_MAX]; /* Using IP_TUNNEL_OPTS_MAX is desired * here but seems difficult to #include */ u8 len; __be16 dst_opt_type; }; struct flow_dissector_key_keyid { __be32 keyid; }; /** * struct flow_dissector_key_ipv4_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv4_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ __be32 src; __be32 dst; }; /** * struct flow_dissector_key_ipv6_addrs: * @src: source ip address * @dst: destination ip address */ struct flow_dissector_key_ipv6_addrs { /* (src,dst) must be grouped, in the same way than in IP header */ struct in6_addr src; struct in6_addr dst; }; /** * struct flow_dissector_key_tipc: * @key: source node address combined with selector */ struct flow_dissector_key_tipc { __be32 key; }; /** * struct flow_dissector_key_addrs: * @v4addrs: IPv4 addresses * @v6addrs: IPv6 addresses */ struct flow_dissector_key_addrs { union { struct flow_dissector_key_ipv4_addrs v4addrs; struct flow_dissector_key_ipv6_addrs v6addrs; struct flow_dissector_key_tipc tipckey; }; }; /** * flow_dissector_key_arp: * @ports: Operation, source and target addresses for an ARP header * for Ethernet hardware addresses and IPv4 protocol addresses * sip: Sender IP address * tip: Target IP address * op: Operation * sha: Sender hardware address * tpa: Target hardware address */ struct flow_dissector_key_arp { __u32 sip; __u32 tip; __u8 op; unsigned char sha[ETH_ALEN]; unsigned char tha[ETH_ALEN]; }; /** * flow_dissector_key_tp_ports: * @ports: port numbers of Transport header * src: source port number * dst: destination port number */ struct flow_dissector_key_ports { union { __be32 ports; struct { __be16 src; __be16 dst; }; }; }; /** * flow_dissector_key_icmp: * type: ICMP type * code: ICMP code * id: session identifier */ struct flow_dissector_key_icmp { struct { u8 type; u8 code; }; u16 id; }; /** * struct flow_dissector_key_eth_addrs: * @src: source Ethernet address * @dst: destination Ethernet address */ struct flow_dissector_key_eth_addrs { /* (dst,src) must be grouped, in the same way than in ETH header */ unsigned char dst[ETH_ALEN]; unsigned char src[ETH_ALEN]; }; /** * struct flow_dissector_key_tcp: * @flags: flags */ struct flow_dissector_key_tcp { __be16 flags; }; /** * struct flow_dissector_key_ip: * @tos: tos * @ttl: ttl */ struct flow_dissector_key_ip { __u8 tos; __u8 ttl; }; /** * struct flow_dissector_key_meta: * @ingress_ifindex: ingress ifindex * @ingress_iftype: ingress interface type */ struct flow_dissector_key_meta { int ingress_ifindex; u16 ingress_iftype; }; /** * struct flow_dissector_key_ct: * @ct_state: conntrack state after converting with map * @ct_mark: conttrack mark * @ct_zone: conntrack zone * @ct_labels: conntrack labels */ struct flow_dissector_key_ct { u16 ct_state; u16 ct_zone; u32 ct_mark; u32 ct_labels[4]; }; /** * struct flow_dissector_key_hash: * @hash: hash value */ struct flow_dissector_key_hash { u32 hash; }; enum flow_dissector_key_id { FLOW_DISSECTOR_KEY_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_BASIC, /* struct flow_dissector_key_basic */ FLOW_DISSECTOR_KEY_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_PORTS_RANGE, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_ICMP, /* struct flow_dissector_key_icmp */ FLOW_DISSECTOR_KEY_ETH_ADDRS, /* struct flow_dissector_key_eth_addrs */ FLOW_DISSECTOR_KEY_TIPC, /* struct flow_dissector_key_tipc */ FLOW_DISSECTOR_KEY_ARP, /* struct flow_dissector_key_arp */ FLOW_DISSECTOR_KEY_VLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_FLOW_LABEL, /* struct flow_dissector_key_tags */ FLOW_DISSECTOR_KEY_GRE_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_MPLS_ENTROPY, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_KEYID, /* struct flow_dissector_key_keyid */ FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, /* struct flow_dissector_key_ipv4_addrs */ FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, /* struct flow_dissector_key_ipv6_addrs */ FLOW_DISSECTOR_KEY_ENC_CONTROL, /* struct flow_dissector_key_control */ FLOW_DISSECTOR_KEY_ENC_PORTS, /* struct flow_dissector_key_ports */ FLOW_DISSECTOR_KEY_MPLS, /* struct flow_dissector_key_mpls */ FLOW_DISSECTOR_KEY_TCP, /* struct flow_dissector_key_tcp */ FLOW_DISSECTOR_KEY_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_CVLAN, /* struct flow_dissector_key_vlan */ FLOW_DISSECTOR_KEY_ENC_IP, /* struct flow_dissector_key_ip */ FLOW_DISSECTOR_KEY_ENC_OPTS, /* struct flow_dissector_key_enc_opts */ FLOW_DISSECTOR_KEY_META, /* struct flow_dissector_key_meta */ FLOW_DISSECTOR_KEY_CT, /* struct flow_dissector_key_ct */ FLOW_DISSECTOR_KEY_HASH, /* struct flow_dissector_key_hash */ FLOW_DISSECTOR_KEY_MAX, }; #define FLOW_DISSECTOR_F_PARSE_1ST_FRAG BIT(0) #define FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL BIT(1) #define FLOW_DISSECTOR_F_STOP_AT_ENCAP BIT(2) struct flow_dissector_key { enum flow_dissector_key_id key_id; size_t offset; /* offset of struct flow_dissector_key_* in target the struct */ }; struct flow_dissector { unsigned int used_keys; /* each bit repesents presence of one key id */ unsigned short int offset[FLOW_DISSECTOR_KEY_MAX]; }; struct flow_keys_basic { struct flow_dissector_key_control control; struct flow_dissector_key_basic basic; }; struct flow_keys { struct flow_dissector_key_control control; #define FLOW_KEYS_HASH_START_FIELD basic struct flow_dissector_key_basic basic __aligned(SIPHASH_ALIGNMENT); struct flow_dissector_key_tags tags; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_vlan cvlan; struct flow_dissector_key_keyid keyid; struct flow_dissector_key_ports ports; struct flow_dissector_key_icmp icmp; /* 'addrs' must be the last member */ struct flow_dissector_key_addrs addrs; }; #define FLOW_KEYS_HASH_OFFSET \ offsetof(struct flow_keys, FLOW_KEYS_HASH_START_FIELD) __be32 flow_get_u32_src(const struct flow_keys *flow); __be32 flow_get_u32_dst(const struct flow_keys *flow); extern struct flow_dissector flow_keys_dissector; extern struct flow_dissector flow_keys_basic_dissector; /* struct flow_keys_digest: * * This structure is used to hold a digest of the full flow keys. This is a * larger "hash" of a flow to allow definitively matching specific flows where * the 32 bit skb->hash is not large enough. The size is limited to 16 bytes so * that it can be used in CB of skb (see sch_choke for an example). */ #define FLOW_KEYS_DIGEST_LEN 16 struct flow_keys_digest { u8 data[FLOW_KEYS_DIGEST_LEN]; }; void make_flow_keys_digest(struct flow_keys_digest *digest, const struct flow_keys *flow); static inline bool flow_keys_have_l4(const struct flow_keys *keys) { return (keys->ports.ports || keys->tags.flow_label); } u32 flow_hash_from_keys(struct flow_keys *keys); void skb_flow_get_icmp_tci(const struct sk_buff *skb, struct flow_dissector_key_icmp *key_icmp, void *data, int thoff, int hlen); static inline bool dissector_uses_key(const struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id) { return flow_dissector->used_keys & (1 << key_id); } static inline void *skb_flow_dissector_target(struct flow_dissector *flow_dissector, enum flow_dissector_key_id key_id, void *target_container) { return ((char *)target_container) + flow_dissector->offset[key_id]; } struct bpf_flow_dissector { struct bpf_flow_keys *flow_keys; const struct sk_buff *skb; void *data; void *data_end; }; static inline void flow_dissector_init_keys(struct flow_dissector_key_control *key_control, struct flow_dissector_key_basic *key_basic) { memset(key_control, 0, sizeof(*key_control)); memset(key_basic, 0, sizeof(*key_basic)); } #ifdef CONFIG_BPF_SYSCALL int flow_dissector_bpf_prog_attach_check(struct net *net, struct bpf_prog *prog); #endif /* CONFIG_BPF_SYSCALL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPAT_H #define _LINUX_COMPAT_H /* * These are the type definitions for the architecture specific * syscall compatibility layer. */ #include <linux/types.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/param.h> /* for HZ */ #include <linux/sem.h> #include <linux/socket.h> #include <linux/if.h> #include <linux/fs.h> #include <linux/aio_abi.h> /* for aio_context_t */ #include <linux/uaccess.h> #include <linux/unistd.h> #include <asm/compat.h> #ifdef CONFIG_COMPAT #include <asm/siginfo.h> #include <asm/signal.h> #endif #ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER /* * It may be useful for an architecture to override the definitions of the * COMPAT_SYSCALL_DEFINE0 and COMPAT_SYSCALL_DEFINEx() macros, in particular * to use a different calling convention for syscalls. To allow for that, + the prototypes for the compat_sys_*() functions below will *not* be included * if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #include <asm/syscall_wrapper.h> #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ #ifndef COMPAT_USE_64BIT_TIME #define COMPAT_USE_64BIT_TIME 0 #endif #ifndef __SC_DELOUSE #define __SC_DELOUSE(t,v) ((__force t)(unsigned long)(v)) #endif #ifndef COMPAT_SYSCALL_DEFINE0 #define COMPAT_SYSCALL_DEFINE0(name) \ asmlinkage long compat_sys_##name(void); \ ALLOW_ERROR_INJECTION(compat_sys_##name, ERRNO); \ asmlinkage long compat_sys_##name(void) #endif /* COMPAT_SYSCALL_DEFINE0 */ #define COMPAT_SYSCALL_DEFINE1(name, ...) \ COMPAT_SYSCALL_DEFINEx(1, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE2(name, ...) \ COMPAT_SYSCALL_DEFINEx(2, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE3(name, ...) \ COMPAT_SYSCALL_DEFINEx(3, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE4(name, ...) \ COMPAT_SYSCALL_DEFINEx(4, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE5(name, ...) \ COMPAT_SYSCALL_DEFINEx(5, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE6(name, ...) \ COMPAT_SYSCALL_DEFINEx(6, _##name, __VA_ARGS__) /* * The asmlinkage stub is aliased to a function named __se_compat_sys_*() which * sign-extends 32-bit ints to longs whenever needed. The actual work is * done within __do_compat_sys_*(). */ #ifndef COMPAT_SYSCALL_DEFINEx #define COMPAT_SYSCALL_DEFINEx(x, name, ...) \ __diag_push(); \ __diag_ignore(GCC, 8, "-Wattribute-alias", \ "Type aliasing is used to sanitize syscall arguments");\ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) \ __attribute__((alias(__stringify(__se_compat_sys##name)))); \ ALLOW_ERROR_INJECTION(compat_sys##name, ERRNO); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__));\ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \ { \ long ret = __do_compat_sys##name(__MAP(x,__SC_DELOUSE,__VA_ARGS__));\ __MAP(x,__SC_TEST,__VA_ARGS__); \ return ret; \ } \ __diag_pop(); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) #endif /* COMPAT_SYSCALL_DEFINEx */ struct compat_iovec { compat_uptr_t iov_base; compat_size_t iov_len; }; #ifdef CONFIG_COMPAT #ifndef compat_user_stack_pointer #define compat_user_stack_pointer() current_user_stack_pointer() #endif #ifndef compat_sigaltstack /* we'll need that for MIPS */ typedef struct compat_sigaltstack { compat_uptr_t ss_sp; int ss_flags; compat_size_t ss_size; } compat_stack_t; #endif #ifndef COMPAT_MINSIGSTKSZ #define COMPAT_MINSIGSTKSZ MINSIGSTKSZ #endif #define compat_jiffies_to_clock_t(x) \ (((unsigned long)(x) * COMPAT_USER_HZ) / HZ) typedef __compat_uid32_t compat_uid_t; typedef __compat_gid32_t compat_gid_t; struct compat_sel_arg_struct; struct rusage; struct old_itimerval32; struct compat_tms { compat_clock_t tms_utime; compat_clock_t tms_stime; compat_clock_t tms_cutime; compat_clock_t tms_cstime; }; #define _COMPAT_NSIG_WORDS (_COMPAT_NSIG / _COMPAT_NSIG_BPW) typedef struct { compat_sigset_word sig[_COMPAT_NSIG_WORDS]; } compat_sigset_t; int set_compat_user_sigmask(const compat_sigset_t __user *umask, size_t sigsetsize); struct compat_sigaction { #ifndef __ARCH_HAS_IRIX_SIGACTION compat_uptr_t sa_handler; compat_ulong_t sa_flags; #else compat_uint_t sa_flags; compat_uptr_t sa_handler; #endif #ifdef __ARCH_HAS_SA_RESTORER compat_uptr_t sa_restorer; #endif compat_sigset_t sa_mask __packed; }; typedef union compat_sigval { compat_int_t sival_int; compat_uptr_t sival_ptr; } compat_sigval_t; typedef struct compat_siginfo { int si_signo; #ifndef __ARCH_HAS_SWAPPED_SIGINFO int si_errno; int si_code; #else int si_code; int si_errno; #endif union { int _pad[128/sizeof(int) - 3]; /* kill() */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ } _kill; /* POSIX.1b timers */ struct { compat_timer_t _tid; /* timer id */ int _overrun; /* overrun count */ compat_sigval_t _sigval; /* same as below */ } _timer; /* POSIX.1b signals */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ compat_sigval_t _sigval; } _rt; /* SIGCHLD */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_clock_t _utime; compat_clock_t _stime; } _sigchld; #ifdef CONFIG_X86_X32_ABI /* SIGCHLD (x32 version) */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_s64 _utime; compat_s64 _stime; } _sigchld_x32; #endif /* SIGILL, SIGFPE, SIGSEGV, SIGBUS, SIGTRAP, SIGEMT */ struct { compat_uptr_t _addr; /* faulting insn/memory ref. */ #ifdef __ARCH_SI_TRAPNO int _trapno; /* TRAP # which caused the signal */ #endif #define __COMPAT_ADDR_BND_PKEY_PAD (__alignof__(compat_uptr_t) < sizeof(short) ? \ sizeof(short) : __alignof__(compat_uptr_t)) union { /* * used when si_code=BUS_MCEERR_AR or * used when si_code=BUS_MCEERR_AO */ short int _addr_lsb; /* Valid LSB of the reported address. */ /* used when si_code=SEGV_BNDERR */ struct { char _dummy_bnd[__COMPAT_ADDR_BND_PKEY_PAD]; compat_uptr_t _lower; compat_uptr_t _upper; } _addr_bnd; /* used when si_code=SEGV_PKUERR */ struct { char _dummy_pkey[__COMPAT_ADDR_BND_PKEY_PAD]; u32 _pkey; } _addr_pkey; }; } _sigfault; /* SIGPOLL */ struct { compat_long_t _band; /* POLL_IN, POLL_OUT, POLL_MSG */ int _fd; } _sigpoll; struct { compat_uptr_t _call_addr; /* calling user insn */ int _syscall; /* triggering system call number */ unsigned int _arch; /* AUDIT_ARCH_* of syscall */ } _sigsys; } _sifields; } compat_siginfo_t; struct compat_rlimit { compat_ulong_t rlim_cur; compat_ulong_t rlim_max; }; struct compat_rusage { struct old_timeval32 ru_utime; struct old_timeval32 ru_stime; compat_long_t ru_maxrss; compat_long_t ru_ixrss; compat_long_t ru_idrss; compat_long_t ru_isrss; compat_long_t ru_minflt; compat_long_t ru_majflt; compat_long_t ru_nswap; compat_long_t ru_inblock; compat_long_t ru_oublock; compat_long_t ru_msgsnd; compat_long_t ru_msgrcv; compat_long_t ru_nsignals; compat_long_t ru_nvcsw; compat_long_t ru_nivcsw; }; extern int put_compat_rusage(const struct rusage *, struct compat_rusage __user *); struct compat_siginfo; struct __compat_aio_sigset; struct compat_dirent { u32 d_ino; compat_off_t d_off; u16 d_reclen; char d_name[256]; }; struct compat_ustat { compat_daddr_t f_tfree; compat_ino_t f_tinode; char f_fname[6]; char f_fpack[6]; }; #define COMPAT_SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int)) - 3) typedef struct compat_sigevent { compat_sigval_t sigev_value; compat_int_t sigev_signo; compat_int_t sigev_notify; union { compat_int_t _pad[COMPAT_SIGEV_PAD_SIZE]; compat_int_t _tid; struct { compat_uptr_t _function; compat_uptr_t _attribute; } _sigev_thread; } _sigev_un; } compat_sigevent_t; struct compat_ifmap { compat_ulong_t mem_start; compat_ulong_t mem_end; unsigned short base_addr; unsigned char irq; unsigned char dma; unsigned char port; }; struct compat_if_settings { unsigned int type; /* Type of physical device or protocol */ unsigned int size; /* Size of the data allocated by the caller */ compat_uptr_t ifs_ifsu; /* union of pointers */ }; struct compat_ifreq { union { char ifrn_name[IFNAMSIZ]; /* if name, e.g. "en0" */ } ifr_ifrn; union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct sockaddr ifru_netmask; struct sockaddr ifru_hwaddr; short ifru_flags; compat_int_t ifru_ivalue; compat_int_t ifru_mtu; struct compat_ifmap ifru_map; char ifru_slave[IFNAMSIZ]; /* Just fits the size */ char ifru_newname[IFNAMSIZ]; compat_caddr_t ifru_data; struct compat_if_settings ifru_settings; } ifr_ifru; }; struct compat_ifconf { compat_int_t ifc_len; /* size of buffer */ compat_caddr_t ifcbuf; }; struct compat_robust_list { compat_uptr_t next; }; struct compat_robust_list_head { struct compat_robust_list list; compat_long_t futex_offset; compat_uptr_t list_op_pending; }; #ifdef CONFIG_COMPAT_OLD_SIGACTION struct compat_old_sigaction { compat_uptr_t sa_handler; compat_old_sigset_t sa_mask; compat_ulong_t sa_flags; compat_uptr_t sa_restorer; }; #endif struct compat_keyctl_kdf_params { compat_uptr_t hashname; compat_uptr_t otherinfo; __u32 otherinfolen; __u32 __spare[8]; }; struct compat_statfs; struct compat_statfs64; struct compat_old_linux_dirent; struct compat_linux_dirent; struct linux_dirent64; struct compat_msghdr; struct compat_mmsghdr; struct compat_sysinfo; struct compat_sysctl_args; struct compat_kexec_segment; struct compat_mq_attr; struct compat_msgbuf; #define BITS_PER_COMPAT_LONG (8*sizeof(compat_long_t)) #define BITS_TO_COMPAT_LONGS(bits) DIV_ROUND_UP(bits, BITS_PER_COMPAT_LONG) long compat_get_bitmap(unsigned long *mask, const compat_ulong_t __user *umask, unsigned long bitmap_size); long compat_put_bitmap(compat_ulong_t __user *umask, unsigned long *mask, unsigned long bitmap_size); void copy_siginfo_to_external32(struct compat_siginfo *to, const struct kernel_siginfo *from); int copy_siginfo_from_user32(kernel_siginfo_t *to, const struct compat_siginfo __user *from); int __copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #ifndef copy_siginfo_to_user32 #define copy_siginfo_to_user32 __copy_siginfo_to_user32 #endif int get_compat_sigevent(struct sigevent *event, const struct compat_sigevent __user *u_event); extern int get_compat_sigset(sigset_t *set, const compat_sigset_t __user *compat); /* * Defined inline such that size can be compile time constant, which avoids * CONFIG_HARDENED_USERCOPY complaining about copies from task_struct */ static inline int put_compat_sigset(compat_sigset_t __user *compat, const sigset_t *set, unsigned int size) { /* size <= sizeof(compat_sigset_t) <= sizeof(sigset_t) */ #ifdef __BIG_ENDIAN compat_sigset_t v; switch (_NSIG_WORDS) { case 4: v.sig[7] = (set->sig[3] >> 32); v.sig[6] = set->sig[3]; fallthrough; case 3: v.sig[5] = (set->sig[2] >> 32); v.sig[4] = set->sig[2]; fallthrough; case 2: v.sig[3] = (set->sig[1] >> 32); v.sig[2] = set->sig[1]; fallthrough; case 1: v.sig[1] = (set->sig[0] >> 32); v.sig[0] = set->sig[0]; } return copy_to_user(compat, &v, size) ? -EFAULT : 0; #else return copy_to_user(compat, set, size) ? -EFAULT : 0; #endif } extern int compat_ptrace_request(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); extern long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); struct epoll_event; /* fortunately, this one is fixed-layout */ extern void __user *compat_alloc_user_space(unsigned long len); int compat_restore_altstack(const compat_stack_t __user *uss); int __compat_save_altstack(compat_stack_t __user *, unsigned long); #define unsafe_compat_save_altstack(uss, sp, label) do { \ compat_stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user(ptr_to_compat((void __user *)t->sas_ss_sp), \ &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); /* * These syscall function prototypes are kept in the same order as * include/uapi/asm-generic/unistd.h. Deprecated or obsolete system calls * go below. * * Please note that these prototypes here are only provided for information * purposes, for static analysis, and for linking from the syscall table. * These functions should not be called elsewhere from kernel code. * * As the syscall calling convention may be different from the default * for architectures overriding the syscall calling convention, do not * include the prototypes if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #ifndef CONFIG_ARCH_HAS_SYSCALL_WRAPPER asmlinkage long compat_sys_io_setup(unsigned nr_reqs, u32 __user *ctx32p); asmlinkage long compat_sys_io_submit(compat_aio_context_t ctx_id, int nr, u32 __user *iocb); asmlinkage long compat_sys_io_pgetevents(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct old_timespec32 __user *timeout, const struct __compat_aio_sigset __user *usig); asmlinkage long compat_sys_io_pgetevents_time64(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct __kernel_timespec __user *timeout, const struct __compat_aio_sigset __user *usig); /* fs/cookies.c */ asmlinkage long compat_sys_lookup_dcookie(u32, u32, char __user *, compat_size_t); /* fs/eventpoll.c */ asmlinkage long compat_sys_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, int timeout, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/fcntl.c */ asmlinkage long compat_sys_fcntl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); asmlinkage long compat_sys_fcntl64(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/ioctl.c */ asmlinkage long compat_sys_ioctl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/open.c */ asmlinkage long compat_sys_statfs(const char __user *pathname, struct compat_statfs __user *buf); asmlinkage long compat_sys_statfs64(const char __user *pathname, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_fstatfs(unsigned int fd, struct compat_statfs __user *buf); asmlinkage long compat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_truncate(const char __user *, compat_off_t); asmlinkage long compat_sys_ftruncate(unsigned int, compat_ulong_t); /* No generic prototype for truncate64, ftruncate64, fallocate */ asmlinkage long compat_sys_openat(int dfd, const char __user *filename, int flags, umode_t mode); /* fs/readdir.c */ asmlinkage long compat_sys_getdents(unsigned int fd, struct compat_linux_dirent __user *dirent, unsigned int count); /* fs/read_write.c */ asmlinkage long compat_sys_lseek(unsigned int, compat_off_t, unsigned int); /* No generic prototype for pread64 and pwrite64 */ asmlinkage ssize_t compat_sys_preadv(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); asmlinkage ssize_t compat_sys_pwritev(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64 asmlinkage long compat_sys_preadv64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64 asmlinkage long compat_sys_pwritev64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif /* fs/sendfile.c */ asmlinkage long compat_sys_sendfile(int out_fd, int in_fd, compat_off_t __user *offset, compat_size_t count); asmlinkage long compat_sys_sendfile64(int out_fd, int in_fd, compat_loff_t __user *offset, compat_size_t count); /* fs/select.c */ asmlinkage long compat_sys_pselect6_time32(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timespec32 __user *tsp, void __user *sig); asmlinkage long compat_sys_pselect6_time64(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct __kernel_timespec __user *tsp, void __user *sig); asmlinkage long compat_sys_ppoll_time32(struct pollfd __user *ufds, unsigned int nfds, struct old_timespec32 __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); asmlinkage long compat_sys_ppoll_time64(struct pollfd __user *ufds, unsigned int nfds, struct __kernel_timespec __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/signalfd.c */ asmlinkage long compat_sys_signalfd4(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize, int flags); /* fs/stat.c */ asmlinkage long compat_sys_newfstatat(unsigned int dfd, const char __user *filename, struct compat_stat __user *statbuf, int flag); asmlinkage long compat_sys_newfstat(unsigned int fd, struct compat_stat __user *statbuf); /* fs/sync.c: No generic prototype for sync_file_range and sync_file_range2 */ /* kernel/exit.c */ asmlinkage long compat_sys_waitid(int, compat_pid_t, struct compat_siginfo __user *, int, struct compat_rusage __user *); /* kernel/futex.c */ asmlinkage long compat_sys_set_robust_list(struct compat_robust_list_head __user *head, compat_size_t len); asmlinkage long compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, compat_size_t __user *len_ptr); /* kernel/itimer.c */ asmlinkage long compat_sys_getitimer(int which, struct old_itimerval32 __user *it); asmlinkage long compat_sys_setitimer(int which, struct old_itimerval32 __user *in, struct old_itimerval32 __user *out); /* kernel/kexec.c */ asmlinkage long compat_sys_kexec_load(compat_ulong_t entry, compat_ulong_t nr_segments, struct compat_kexec_segment __user *, compat_ulong_t flags); /* kernel/posix-timers.c */ asmlinkage long compat_sys_timer_create(clockid_t which_clock, struct compat_sigevent __user *timer_event_spec, timer_t __user *created_timer_id); /* kernel/ptrace.c */ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, compat_long_t addr, compat_long_t data); /* kernel/sched/core.c */ asmlinkage long compat_sys_sched_setaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); /* kernel/signal.c */ asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr, compat_stack_t __user *uoss_ptr); asmlinkage long compat_sys_rt_sigsuspend(compat_sigset_t __user *unewset, compat_size_t sigsetsize); #ifndef CONFIG_ODD_RT_SIGACTION asmlinkage long compat_sys_rt_sigaction(int, const struct compat_sigaction __user *, struct compat_sigaction __user *, compat_size_t); #endif asmlinkage long compat_sys_rt_sigprocmask(int how, compat_sigset_t __user *set, compat_sigset_t __user *oset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigpending(compat_sigset_t __user *uset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time32(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct old_timespec32 __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time64(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct __kernel_timespec __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigqueueinfo(compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); /* No generic prototype for rt_sigreturn */ /* kernel/sys.c */ asmlinkage long compat_sys_times(struct compat_tms __user *tbuf); asmlinkage long compat_sys_getrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_setrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_getrusage(int who, struct compat_rusage __user *ru); /* kernel/time.c */ asmlinkage long compat_sys_gettimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); asmlinkage long compat_sys_settimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); /* kernel/timer.c */ asmlinkage long compat_sys_sysinfo(struct compat_sysinfo __user *info); /* ipc/mqueue.c */ asmlinkage long compat_sys_mq_open(const char __user *u_name, int oflag, compat_mode_t mode, struct compat_mq_attr __user *u_attr); asmlinkage long compat_sys_mq_notify(mqd_t mqdes, const struct compat_sigevent __user *u_notification); asmlinkage long compat_sys_mq_getsetattr(mqd_t mqdes, const struct compat_mq_attr __user *u_mqstat, struct compat_mq_attr __user *u_omqstat); /* ipc/msg.c */ asmlinkage long compat_sys_msgctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); asmlinkage long compat_sys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); /* ipc/sem.c */ asmlinkage long compat_sys_semctl(int semid, int semnum, int cmd, int arg); /* ipc/shm.c */ asmlinkage long compat_sys_shmctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_shmat(int shmid, compat_uptr_t shmaddr, int shmflg); /* net/socket.c */ asmlinkage long compat_sys_recvfrom(int fd, void __user *buf, compat_size_t len, unsigned flags, struct sockaddr __user *addr, int __user *addrlen); asmlinkage long compat_sys_sendmsg(int fd, struct compat_msghdr __user *msg, unsigned flags); asmlinkage long compat_sys_recvmsg(int fd, struct compat_msghdr __user *msg, unsigned int flags); /* mm/filemap.c: No generic prototype for readahead */ /* security/keys/keyctl.c */ asmlinkage long compat_sys_keyctl(u32 option, u32 arg2, u32 arg3, u32 arg4, u32 arg5); /* arch/example/kernel/sys_example.c */ asmlinkage long compat_sys_execve(const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp); /* mm/fadvise.c: No generic prototype for fadvise64_64 */ /* mm/, CONFIG_MMU only */ asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, compat_ulong_t mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t flags); asmlinkage long compat_sys_get_mempolicy(int __user *policy, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t addr, compat_ulong_t flags); asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode); asmlinkage long compat_sys_migrate_pages(compat_pid_t pid, compat_ulong_t maxnode, const compat_ulong_t __user *old_nodes, const compat_ulong_t __user *new_nodes); asmlinkage long compat_sys_move_pages(pid_t pid, compat_ulong_t nr_pages, __u32 __user *pages, const int __user *nodes, int __user *status, int flags); asmlinkage long compat_sys_rt_tgsigqueueinfo(compat_pid_t tgid, compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); asmlinkage long compat_sys_recvmmsg_time64(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct __kernel_timespec __user *timeout); asmlinkage long compat_sys_recvmmsg_time32(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct old_timespec32 __user *timeout); asmlinkage long compat_sys_wait4(compat_pid_t pid, compat_uint_t __user *stat_addr, int options, struct compat_rusage __user *ru); asmlinkage long compat_sys_fanotify_mark(int, unsigned int, __u32, __u32, int, const char __user *); asmlinkage long compat_sys_open_by_handle_at(int mountdirfd, struct file_handle __user *handle, int flags); asmlinkage long compat_sys_sendmmsg(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags); asmlinkage long compat_sys_execveat(int dfd, const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp, int flags); asmlinkage ssize_t compat_sys_preadv2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); asmlinkage ssize_t compat_sys_pwritev2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64V2 asmlinkage long compat_sys_preadv64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64V2 asmlinkage long compat_sys_pwritev64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif /* * Deprecated system calls which are still defined in * include/uapi/asm-generic/unistd.h and wanted by >= 1 arch */ /* __ARCH_WANT_SYSCALL_NO_AT */ asmlinkage long compat_sys_open(const char __user *filename, int flags, umode_t mode); /* __ARCH_WANT_SYSCALL_NO_FLAGS */ asmlinkage long compat_sys_signalfd(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* __ARCH_WANT_SYSCALL_OFF_T */ asmlinkage long compat_sys_newstat(const char __user *filename, struct compat_stat __user *statbuf); asmlinkage long compat_sys_newlstat(const char __user *filename, struct compat_stat __user *statbuf); /* __ARCH_WANT_SYSCALL_DEPRECATED */ asmlinkage long compat_sys_select(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timeval32 __user *tvp); asmlinkage long compat_sys_ustat(unsigned dev, struct compat_ustat __user *u32); asmlinkage long compat_sys_recv(int fd, void __user *buf, compat_size_t len, unsigned flags); /* obsolete: fs/readdir.c */ asmlinkage long compat_sys_old_readdir(unsigned int fd, struct compat_old_linux_dirent __user *, unsigned int count); /* obsolete: fs/select.c */ asmlinkage long compat_sys_old_select(struct compat_sel_arg_struct __user *arg); /* obsolete: ipc */ asmlinkage long compat_sys_ipc(u32, int, int, u32, compat_uptr_t, u32); /* obsolete: kernel/signal.c */ #ifdef __ARCH_WANT_SYS_SIGPENDING asmlinkage long compat_sys_sigpending(compat_old_sigset_t __user *set); #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *nset, compat_old_sigset_t __user *oset); #endif #ifdef CONFIG_COMPAT_OLD_SIGACTION asmlinkage long compat_sys_sigaction(int sig, const struct compat_old_sigaction __user *act, struct compat_old_sigaction __user *oact); #endif /* obsolete: net/socket.c */ asmlinkage long compat_sys_socketcall(int call, u32 __user *args); #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ /* * For most but not all architectures, "am I in a compat syscall?" and * "am I a compat task?" are the same question. For architectures on which * they aren't the same question, arch code can override in_compat_syscall. */ #ifndef in_compat_syscall static inline bool in_compat_syscall(void) { return is_compat_task(); } #endif /** * ns_to_old_timeval32 - Compat version of ns_to_timeval * @nsec: the nanoseconds value to be converted * * Returns the old_timeval32 representation of the nsec parameter. */ static inline struct old_timeval32 ns_to_old_timeval32(s64 nsec) { struct __kernel_old_timeval tv; struct old_timeval32 ctv; tv = ns_to_kernel_old_timeval(nsec); ctv.tv_sec = tv.tv_sec; ctv.tv_usec = tv.tv_usec; return ctv; } /* * Kernel code should not call compat syscalls (i.e., compat_sys_xyzyyz()) * directly. Instead, use one of the functions which work equivalently, such * as the kcompat_sys_xyzyyz() functions prototyped below. */ int kcompat_sys_statfs64(const char __user * pathname, compat_size_t sz, struct compat_statfs64 __user * buf); int kcompat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user * buf); #else /* !CONFIG_COMPAT */ #define is_compat_task() (0) /* Ensure no one redefines in_compat_syscall() under !CONFIG_COMPAT */ #define in_compat_syscall in_compat_syscall static inline bool in_compat_syscall(void) { return false; } #endif /* CONFIG_COMPAT */ /* * Some legacy ABIs like the i386 one use less than natural alignment for 64-bit * types, and will need special compat treatment for that. Most architectures * don't need that special handling even for compat syscalls. */ #ifndef compat_need_64bit_alignment_fixup #define compat_need_64bit_alignment_fixup() false #endif /* * A pointer passed in from user mode. This should not * be used for syscall parameters, just declare them * as pointers because the syscall entry code will have * appropriately converted them already. */ #ifndef compat_ptr static inline void __user *compat_ptr(compat_uptr_t uptr) { return (void __user *)(unsigned long)uptr; } #endif static inline compat_uptr_t ptr_to_compat(void __user *uptr) { return (u32)(unsigned long)uptr; } #endif /* _LINUX_COMPAT_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_H #define _ASM_X86_UACCESS_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/kasan-checks.h> #include <linux/string.h> #include <asm/asm.h> #include <asm/page.h> #include <asm/smap.h> #include <asm/extable.h> /* * Test whether a block of memory is a valid user space address. * Returns 0 if the range is valid, nonzero otherwise. */ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, unsigned long limit) { /* * If we have used "sizeof()" for the size, * we know it won't overflow the limit (but * it might overflow the 'addr', so it's * important to subtract the size from the * limit, not add it to the address). */ if (__builtin_constant_p(size)) return unlikely(addr > limit - size); /* Arbitrary sizes? Be careful about overflow */ addr += size; if (unlikely(addr < size)) return true; return unlikely(addr > limit); } #define __range_not_ok(addr, size, limit) \ ({ \ __chk_user_ptr(addr); \ __chk_range_not_ok((unsigned long __force)(addr), size, limit); \ }) #ifdef CONFIG_DEBUG_ATOMIC_SLEEP static inline bool pagefault_disabled(void); # define WARN_ON_IN_IRQ() \ WARN_ON_ONCE(!in_task() && !pagefault_disabled()) #else # define WARN_ON_IN_IRQ() #endif /** * access_ok - Checks if a user space pointer is valid * @addr: User space pointer to start of block to check * @size: Size of block to check * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Checks if a pointer to a block of memory in user space is valid. * * Note that, depending on architecture, this function probably just * checks that the pointer is in the user space range - after calling * this function, memory access functions may still return -EFAULT. * * Return: true (nonzero) if the memory block may be valid, false (zero) * if it is definitely invalid. */ #define access_ok(addr, size) \ ({ \ WARN_ON_IN_IRQ(); \ likely(!__range_not_ok(addr, size, TASK_SIZE_MAX)); \ }) extern int __get_user_1(void); extern int __get_user_2(void); extern int __get_user_4(void); extern int __get_user_8(void); extern int __get_user_nocheck_1(void); extern int __get_user_nocheck_2(void); extern int __get_user_nocheck_4(void); extern int __get_user_nocheck_8(void); extern int __get_user_bad(void); #define __uaccess_begin() stac() #define __uaccess_end() clac() #define __uaccess_begin_nospec() \ ({ \ stac(); \ barrier_nospec(); \ }) /* * This is the smallest unsigned integer type that can fit a value * (up to 'long long') */ #define __inttype(x) __typeof__( \ __typefits(x,char, \ __typefits(x,short, \ __typefits(x,int, \ __typefits(x,long,0ULL))))) #define __typefits(x,type,not) \ __builtin_choose_expr(sizeof(x)<=sizeof(type),(unsigned type)0,not) /* * This is used for both get_user() and __get_user() to expand to * the proper special function call that has odd calling conventions * due to returning both a value and an error, and that depends on * the size of the pointer passed in. * * Careful: we have to cast the result to the type of the pointer * for sign reasons. * * The use of _ASM_DX as the register specifier is a bit of a * simplification, as gcc only cares about it as the starting point * and not size: for a 64-bit value it will use %ecx:%edx on 32 bits * (%ecx being the next register in gcc's x86 register sequence), and * %rdx on 64 bits. * * Clang/LLVM cares about the size of the register, but still wants * the base register for something that ends up being a pair. */ #define do_get_user_call(fn,x,ptr) \ ({ \ int __ret_gu; \ register __inttype(*(ptr)) __val_gu asm("%"_ASM_DX); \ __chk_user_ptr(ptr); \ asm volatile("call __" #fn "_%P4" \ : "=a" (__ret_gu), "=r" (__val_gu), \ ASM_CALL_CONSTRAINT \ : "0" (ptr), "i" (sizeof(*(ptr)))); \ (x) = (__force __typeof__(*(ptr))) __val_gu; \ __builtin_expect(__ret_gu, 0); \ }) /** * get_user - Get a simple variable from user space. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Return: zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define get_user(x,ptr) ({ might_fault(); do_get_user_call(get_user,x,ptr); }) /** * __get_user - Get a simple variable from user space, with less checking. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Caller must check the pointer with access_ok() before calling this * function. * * Return: zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define __get_user(x,ptr) do_get_user_call(get_user_nocheck,x,ptr) #ifdef CONFIG_X86_32 #define __put_user_goto_u64(x, addr, label) \ asm_volatile_goto("\n" \ "1: movl %%eax,0(%1)\n" \ "2: movl %%edx,4(%1)\n" \ _ASM_EXTABLE_UA(1b, %l2) \ _ASM_EXTABLE_UA(2b, %l2) \ : : "A" (x), "r" (addr) \ : : label) #else #define __put_user_goto_u64(x, ptr, label) \ __put_user_goto(x, ptr, "q", "er", label) #endif extern void __put_user_bad(void); /* * Strange magic calling convention: pointer in %ecx, * value in %eax(:%edx), return value in %ecx. clobbers %rbx */ extern void __put_user_1(void); extern void __put_user_2(void); extern void __put_user_4(void); extern void __put_user_8(void); extern void __put_user_nocheck_1(void); extern void __put_user_nocheck_2(void); extern void __put_user_nocheck_4(void); extern void __put_user_nocheck_8(void); /* * ptr must be evaluated and assigned to the temporary __ptr_pu before * the assignment of x to __val_pu, to avoid any function calls * involved in the ptr expression (possibly implicitly generated due * to KASAN) from clobbering %ax. */ #define do_put_user_call(fn,x,ptr) \ ({ \ int __ret_pu; \ void __user *__ptr_pu; \ register __typeof__(*(ptr)) __val_pu asm("%"_ASM_AX); \ __chk_user_ptr(ptr); \ __ptr_pu = (ptr); \ __val_pu = (x); \ asm volatile("call __" #fn "_%P[size]" \ : "=c" (__ret_pu), \ ASM_CALL_CONSTRAINT \ : "0" (__ptr_pu), \ "r" (__val_pu), \ [size] "i" (sizeof(*(ptr))) \ :"ebx"); \ __builtin_expect(__ret_pu, 0); \ }) /** * put_user - Write a simple value into user space. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Return: zero on success, or -EFAULT on error. */ #define put_user(x, ptr) ({ might_fault(); do_put_user_call(put_user,x,ptr); }) /** * __put_user - Write a simple value into user space, with less checking. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Caller must check the pointer with access_ok() before calling this * function. * * Return: zero on success, or -EFAULT on error. */ #define __put_user(x, ptr) do_put_user_call(put_user_nocheck,x,ptr) #define __put_user_size(x, ptr, size, label) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __put_user_goto(x, ptr, "b", "iq", label); \ break; \ case 2: \ __put_user_goto(x, ptr, "w", "ir", label); \ break; \ case 4: \ __put_user_goto(x, ptr, "l", "ir", label); \ break; \ case 8: \ __put_user_goto_u64(x, ptr, label); \ break; \ default: \ __put_user_bad(); \ } \ } while (0) #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #ifdef CONFIG_X86_32 #define __get_user_asm_u64(x, ptr, label) do { \ unsigned int __gu_low, __gu_high; \ const unsigned int __user *__gu_ptr; \ __gu_ptr = (const void __user *)(ptr); \ __get_user_asm(__gu_low, __gu_ptr, "l", "=r", label); \ __get_user_asm(__gu_high, __gu_ptr+1, "l", "=r", label); \ (x) = ((unsigned long long)__gu_high << 32) | __gu_low; \ } while (0) #else #define __get_user_asm_u64(x, ptr, label) \ __get_user_asm(x, ptr, "q", "=r", label) #endif #define __get_user_size(x, ptr, size, label) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: { \ unsigned char x_u8__; \ __get_user_asm(x_u8__, ptr, "b", "=q", label); \ (x) = x_u8__; \ break; \ } \ case 2: \ __get_user_asm(x, ptr, "w", "=r", label); \ break; \ case 4: \ __get_user_asm(x, ptr, "l", "=r", label); \ break; \ case 8: \ __get_user_asm_u64(x, ptr, label); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, itype, ltype, label) \ asm_volatile_goto("\n" \ "1: mov"itype" %[umem],%[output]\n" \ _ASM_EXTABLE_UA(1b, %l2) \ : [output] ltype(x) \ : [umem] "m" (__m(addr)) \ : : label) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #ifdef CONFIG_X86_32 #define __get_user_asm_u64(x, ptr, retval) \ ({ \ __typeof__(ptr) __ptr = (ptr); \ asm volatile("\n" \ "1: movl %[lowbits],%%eax\n" \ "2: movl %[highbits],%%edx\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: mov %[efault],%[errout]\n" \ " xorl %%eax,%%eax\n" \ " xorl %%edx,%%edx\n" \ " jmp 3b\n" \ ".previous\n" \ _ASM_EXTABLE_UA(1b, 4b) \ _ASM_EXTABLE_UA(2b, 4b) \ : [errout] "=r" (retval), \ [output] "=&A"(x) \ : [lowbits] "m" (__m(__ptr)), \ [highbits] "m" __m(((u32 __user *)(__ptr)) + 1), \ [efault] "i" (-EFAULT), "0" (retval)); \ }) #else #define __get_user_asm_u64(x, ptr, retval) \ __get_user_asm(x, ptr, retval, "q", "=r") #endif #define __get_user_size(x, ptr, size, retval) \ do { \ unsigned char x_u8__; \ \ retval = 0; \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __get_user_asm(x_u8__, ptr, retval, "b", "=q"); \ (x) = x_u8__; \ break; \ case 2: \ __get_user_asm(x, ptr, retval, "w", "=r"); \ break; \ case 4: \ __get_user_asm(x, ptr, retval, "l", "=r"); \ break; \ case 8: \ __get_user_asm_u64(x, ptr, retval); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, itype, ltype) \ asm volatile("\n" \ "1: mov"itype" %[umem],%[output]\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: mov %[efault],%[errout]\n" \ " xorl %k[output],%k[output]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : [errout] "=r" (err), \ [output] ltype(x) \ : [umem] "m" (__m(addr)), \ [efault] "i" (-EFAULT), "0" (err)) #endif // CONFIG_CC_ASM_GOTO_OUTPUT /* FIXME: this hack is definitely wrong -AK */ struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct __user *)(x)) /* * Tell gcc we read from memory instead of writing: this is because * we do not write to any memory gcc knows about, so there are no * aliasing issues. */ #define __put_user_goto(x, addr, itype, ltype, label) \ asm_volatile_goto("\n" \ "1: mov"itype" %0,%1\n" \ _ASM_EXTABLE_UA(1b, %l2) \ : : ltype(x), "m" (__m(addr)) \ : : label) extern unsigned long copy_from_user_nmi(void *to, const void __user *from, unsigned long n); extern __must_check long strncpy_from_user(char *dst, const char __user *src, long count); extern __must_check long strnlen_user(const char __user *str, long n); unsigned long __must_check clear_user(void __user *mem, unsigned long len); unsigned long __must_check __clear_user(void __user *mem, unsigned long len); #ifdef CONFIG_ARCH_HAS_COPY_MC unsigned long __must_check copy_mc_to_kernel(void *to, const void *from, unsigned len); #define copy_mc_to_kernel copy_mc_to_kernel unsigned long __must_check copy_mc_to_user(void *to, const void *from, unsigned len); #endif /* * movsl can be slow when source and dest are not both 8-byte aligned */ #ifdef CONFIG_X86_INTEL_USERCOPY extern struct movsl_mask { int mask; } ____cacheline_aligned_in_smp movsl_mask; #endif #define ARCH_HAS_NOCACHE_UACCESS 1 #ifdef CONFIG_X86_32 # include <asm/uaccess_32.h> #else # include <asm/uaccess_64.h> #endif /* * The "unsafe" user accesses aren't really "unsafe", but the naming * is a big fat warning: you have to not only do the access_ok() * checking before using them, but you have to surround them with the * user_access_begin/end() pair. */ static __must_check __always_inline bool user_access_begin(const void __user *ptr, size_t len) { if (unlikely(!access_ok(ptr,len))) return 0; __uaccess_begin_nospec(); return 1; } #define user_access_begin(a,b) user_access_begin(a,b) #define user_access_end() __uaccess_end() #define user_access_save() smap_save() #define user_access_restore(x) smap_restore(x) #define unsafe_put_user(x, ptr, label) \ __put_user_size((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)), label) #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define unsafe_get_user(x, ptr, err_label) \ do { \ __inttype(*(ptr)) __gu_val; \ __get_user_size(__gu_val, (ptr), sizeof(*(ptr)), err_label); \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ } while (0) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define unsafe_get_user(x, ptr, err_label) \ do { \ int __gu_err; \ __inttype(*(ptr)) __gu_val; \ __get_user_size(__gu_val, (ptr), sizeof(*(ptr)), __gu_err); \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ if (unlikely(__gu_err)) goto err_label; \ } while (0) #endif // CONFIG_CC_HAS_ASM_GOTO_OUTPUT /* * We want the unsafe accessors to always be inlined and use * the error labels - thus the macro games. */ #define unsafe_copy_loop(dst, src, len, type, label) \ while (len >= sizeof(type)) { \ unsafe_put_user(*(type *)(src),(type __user *)(dst),label); \ dst += sizeof(type); \ src += sizeof(type); \ len -= sizeof(type); \ } #define unsafe_copy_to_user(_dst,_src,_len,label) \ do { \ char __user *__ucu_dst = (_dst); \ const char *__ucu_src = (_src); \ size_t __ucu_len = (_len); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u64, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u32, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u16, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u8, label); \ } while (0) #define HAVE_GET_KERNEL_NOFAULT #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __get_kernel_nofault(dst, src, type, err_label) \ __get_user_size(*((type *)(dst)), (__force type __user *)(src), \ sizeof(type), err_label) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __get_kernel_nofault(dst, src, type, err_label) \ do { \ int __kr_err; \ \ __get_user_size(*((type *)(dst)), (__force type __user *)(src), \ sizeof(type), __kr_err); \ if (unlikely(__kr_err)) \ goto err_label; \ } while (0) #endif // CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __put_kernel_nofault(dst, src, type, err_label) \ __put_user_size(*((type *)(src)), (__force type __user *)(dst), \ sizeof(type), err_label) #endif /* _ASM_X86_UACCESS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BLOCKGROUP_LOCK_H #define _LINUX_BLOCKGROUP_LOCK_H /* * Per-blockgroup locking for ext2 and ext3. * * Simple hashed spinlocking. */ #include <linux/spinlock.h> #include <linux/cache.h> #ifdef CONFIG_SMP #define NR_BG_LOCKS (4 << ilog2(NR_CPUS < 32 ? NR_CPUS : 32)) #else #define NR_BG_LOCKS 1 #endif struct bgl_lock { spinlock_t lock; } ____cacheline_aligned_in_smp; struct blockgroup_lock { struct bgl_lock locks[NR_BG_LOCKS]; }; static inline void bgl_lock_init(struct blockgroup_lock *bgl) { int i; for (i = 0; i < NR_BG_LOCKS; i++) spin_lock_init(&bgl->locks[i].lock); } static inline spinlock_t * bgl_lock_ptr(struct blockgroup_lock *bgl, unsigned int block_group) { return &bgl->locks[block_group & (NR_BG_LOCKS-1)].lock; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VIRTIO_NET_H #define _LINUX_VIRTIO_NET_H #include <linux/if_vlan.h> #include <uapi/linux/tcp.h> #include <uapi/linux/udp.h> #include <uapi/linux/virtio_net.h> static inline bool virtio_net_hdr_match_proto(__be16 protocol, __u8 gso_type) { switch (gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: return protocol == cpu_to_be16(ETH_P_IP); case VIRTIO_NET_HDR_GSO_TCPV6: return protocol == cpu_to_be16(ETH_P_IPV6); case VIRTIO_NET_HDR_GSO_UDP: return protocol == cpu_to_be16(ETH_P_IP) || protocol == cpu_to_be16(ETH_P_IPV6); default: return false; } } static inline int virtio_net_hdr_set_proto(struct sk_buff *skb, const struct virtio_net_hdr *hdr) { if (skb->protocol) return 0; switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_UDP: skb->protocol = cpu_to_be16(ETH_P_IP); break; case VIRTIO_NET_HDR_GSO_TCPV6: skb->protocol = cpu_to_be16(ETH_P_IPV6); break; default: return -EINVAL; } return 0; } static inline int virtio_net_hdr_to_skb(struct sk_buff *skb, const struct virtio_net_hdr *hdr, bool little_endian) { unsigned int gso_type = 0; unsigned int thlen = 0; unsigned int p_off = 0; unsigned int ip_proto; if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: gso_type = SKB_GSO_TCPV4; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_TCPV6: gso_type = SKB_GSO_TCPV6; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_UDP: gso_type = SKB_GSO_UDP; ip_proto = IPPROTO_UDP; thlen = sizeof(struct udphdr); break; default: return -EINVAL; } if (hdr->gso_type & VIRTIO_NET_HDR_GSO_ECN) gso_type |= SKB_GSO_TCP_ECN; if (hdr->gso_size == 0) return -EINVAL; } skb_reset_mac_header(skb); if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { u32 start = __virtio16_to_cpu(little_endian, hdr->csum_start); u32 off = __virtio16_to_cpu(little_endian, hdr->csum_offset); u32 needed = start + max_t(u32, thlen, off + sizeof(__sum16)); if (!pskb_may_pull(skb, needed)) return -EINVAL; if (!skb_partial_csum_set(skb, start, off)) return -EINVAL; p_off = skb_transport_offset(skb) + thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } else { /* gso packets without NEEDS_CSUM do not set transport_offset. * probe and drop if does not match one of the above types. */ if (gso_type && skb->network_header) { struct flow_keys_basic keys; if (!skb->protocol) { __be16 protocol = dev_parse_header_protocol(skb); if (!protocol) virtio_net_hdr_set_proto(skb, hdr); else if (!virtio_net_hdr_match_proto(protocol, hdr->gso_type)) return -EINVAL; else skb->protocol = protocol; } retry: if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) { /* UFO does not specify ipv4 or 6: try both */ if (gso_type & SKB_GSO_UDP && skb->protocol == htons(ETH_P_IP)) { skb->protocol = htons(ETH_P_IPV6); goto retry; } return -EINVAL; } p_off = keys.control.thoff + thlen; if (!pskb_may_pull(skb, p_off) || keys.basic.ip_proto != ip_proto) return -EINVAL; skb_set_transport_header(skb, keys.control.thoff); } else if (gso_type) { p_off = thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { u16 gso_size = __virtio16_to_cpu(little_endian, hdr->gso_size); unsigned int nh_off = p_off; struct skb_shared_info *shinfo = skb_shinfo(skb); /* UFO may not include transport header in gso_size. */ if (gso_type & SKB_GSO_UDP) nh_off -= thlen; /* Too small packets are not really GSO ones. */ if (skb->len - nh_off > gso_size) { shinfo->gso_size = gso_size; shinfo->gso_type = gso_type; /* Header must be checked, and gso_segs computed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } } return 0; } static inline int virtio_net_hdr_from_skb(const struct sk_buff *skb, struct virtio_net_hdr *hdr, bool little_endian, bool has_data_valid, int vlan_hlen) { memset(hdr, 0, sizeof(*hdr)); /* no info leak */ if (skb_is_gso(skb)) { struct skb_shared_info *sinfo = skb_shinfo(skb); /* This is a hint as to how much should be linear. */ hdr->hdr_len = __cpu_to_virtio16(little_endian, skb_headlen(skb)); hdr->gso_size = __cpu_to_virtio16(little_endian, sinfo->gso_size); if (sinfo->gso_type & SKB_GSO_TCPV4) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else if (sinfo->gso_type & SKB_GSO_TCPV6) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; else return -EINVAL; if (sinfo->gso_type & SKB_GSO_TCP_ECN) hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; } else hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE; if (skb->ip_summed == CHECKSUM_PARTIAL) { hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; hdr->csum_start = __cpu_to_virtio16(little_endian, skb_checksum_start_offset(skb) + vlan_hlen); hdr->csum_offset = __cpu_to_virtio16(little_endian, skb->csum_offset); } else if (has_data_valid && skb->ip_summed == CHECKSUM_UNNECESSARY) { hdr->flags = VIRTIO_NET_HDR_F_DATA_VALID; } /* else everything is zero */ return 0; } #endif /* _LINUX_VIRTIO_NET_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 // SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/memremap.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/export.h> #include <linux/delayacct.h> #include <linux/init.h> #include <linux/pfn_t.h> #include <linux/writeback.h> #include <linux/memcontrol.h> #include <linux/mmu_notifier.h> #include <linux/swapops.h> #include <linux/elf.h> #include <linux/gfp.h> #include <linux/migrate.h> #include <linux/string.h> #include <linux/debugfs.h> #include <linux/userfaultfd_k.h> #include <linux/dax.h> #include <linux/oom.h> #include <linux/numa.h> #include <linux/perf_event.h> #include <linux/ptrace.h> #include <linux/vmalloc.h> #include <trace/events/kmem.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include "pgalloc-track.h" #include "internal.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NEED_MULTIPLE_NODES /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; EXPORT_SYMBOL(max_mapnr); struct page *mem_map; EXPORT_SYMBOL(mem_map); #endif /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void *high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif #ifndef arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { /* * Those arches which don't have hw access flag feature need to * implement their own helper. By default, "true" means pagefault * will be hit on old pte. */ return true; } #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); unsigned long highest_memmap_pfn __read_mostly; /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } early_initcall(init_zero_pfn); void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) { trace_rss_stat(mm, member, count); } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm) { int i; for (i = 0; i < NR_MM_COUNTERS; i++) { if (current->rss_stat.count[i]) { add_mm_counter(mm, i, current->rss_stat.count[i]); current->rss_stat.count[i] = 0; } } current->rss_stat.events = 0; } static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) { struct task_struct *task = current; if (likely(task->mm == mm)) task->rss_stat.count[member] += val; else add_mm_counter(mm, member, val); } #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) /* sync counter once per 64 page faults */ #define TASK_RSS_EVENTS_THRESH (64) static void check_sync_rss_stat(struct task_struct *task) { if (unlikely(task != current)) return; if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) sync_mm_rss(task->mm); } #else /* SPLIT_RSS_COUNTING */ #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) static void check_sync_rss_stat(struct task_struct *task) { } #endif /* SPLIT_RSS_COUNTING */ /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= P4D_MASK; if (start < floor) return; if (ceiling) { ceiling &= P4D_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { p4d_t *p4d; unsigned long next; unsigned long start; start = addr; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; free_pud_range(tlb, p4d, addr, next, floor, ceiling); } while (p4d++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; p4d = p4d_offset(pgd, start); pgd_clear(pgd); p4d_free_tlb(tlb, p4d, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; /* * We add page table cache pages with PAGE_SIZE, * (see pte_free_tlb()), flush the tlb if we need */ tlb_change_page_size(tlb, PAGE_SIZE); pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_p4d_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl; pgtable_t new = pte_alloc_one(mm); if (!new) return -ENOMEM; /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_rmb() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ mm_inc_nr_ptes(mm); pmd_populate(mm, pmd, new); new = NULL; } spin_unlock(ptl); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd) { pte_t *new = pte_alloc_one_kernel(&init_mm); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->readpage : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; if (pte_devmap(pte)) return NULL; print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (pmd_devmap(pmd)) return NULL; if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static unsigned long copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss) { unsigned long vm_flags = dst_vma->vm_flags; pte_t pte = *src_pte; struct page *page; swp_entry_t entry = pte_to_swp_entry(pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return entry.val; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = migration_entry_to_page(entry); rss[mm_counter(page)]++; if (is_write_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both * parent and child to be set to read. */ make_migration_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(*src_pte)) pte = pte_swp_mksoft_dirty(pte); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = device_private_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; page_dup_rmap(page, false); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_write_device_private_entry(entry) && is_cow_mapping(vm_flags)) { make_device_private_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } if (!userfaultfd_wp(dst_vma)) pte = pte_swp_clear_uffd_wp(pte); set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } /* * Copy a present and normal page if necessary. * * NOTE! The usual case is that this doesn't need to do * anything, and can just return a positive value. That * will let the caller know that it can just increase * the page refcount and re-use the pte the traditional * way. * * But _if_ we need to copy it because it needs to be * pinned in the parent (and the child should get its own * copy rather than just a reference to the same page), * we'll do that here and return zero to let the caller * know we're done. * * And if we need a pre-allocated page but don't yet have * one, return a negative error to let the preallocation * code know so that it can do so outside the page table * lock. */ static inline int copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc, pte_t pte, struct page *page) { struct mm_struct *src_mm = src_vma->vm_mm; struct page *new_page; if (!is_cow_mapping(src_vma->vm_flags)) return 1; /* * What we want to do is to check whether this page may * have been pinned by the parent process. If so, * instead of wrprotect the pte on both sides, we copy * the page immediately so that we'll always guarantee * the pinned page won't be randomly replaced in the * future. * * The page pinning checks are just "has this mm ever * seen pinning", along with the (inexact) check of * the page count. That might give false positives for * for pinning, but it will work correctly. */ if (likely(!atomic_read(&src_mm->has_pinned))) return 1; if (likely(!page_maybe_dma_pinned(page))) return 1; /* * The vma->anon_vma of the child process may be NULL * because the entire vma does not contain anonymous pages. * A BUG will occur when the copy_present_page() passes * a copy of a non-anonymous page of that vma to the * page_add_new_anon_rmap() to set up new anonymous rmap. * Return 1 if the page is not an anonymous page. */ if (!PageAnon(page)) return 1; new_page = *prealloc; if (!new_page) return -EAGAIN; /* * We have a prealloc page, all good! Take it * over and copy the page & arm it. */ *prealloc = NULL; copy_user_highpage(new_page, page, addr, src_vma); __SetPageUptodate(new_page); page_add_new_anon_rmap(new_page, dst_vma, addr, false); lru_cache_add_inactive_or_unevictable(new_page, dst_vma); rss[mm_counter(new_page)]++; /* All done, just insert the new page copy in the child */ pte = mk_pte(new_page, dst_vma->vm_page_prot); pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); if (userfaultfd_pte_wp(dst_vma, *src_pte)) /* Uffd-wp needs to be delivered to dest pte as well */ pte = pte_wrprotect(pte_mkuffd_wp(pte)); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } /* * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page * is required to copy this pte. */ static inline int copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc) { struct mm_struct *src_mm = src_vma->vm_mm; unsigned long vm_flags = src_vma->vm_flags; pte_t pte = *src_pte; struct page *page; page = vm_normal_page(src_vma, addr, pte); if (page) { int retval; retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, addr, rss, prealloc, pte, page); if (retval <= 0) return retval; get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags) && pte_write(pte)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); if (!userfaultfd_wp(dst_vma)) pte = pte_clear_uffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } static inline struct page * page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr) { struct page *new_page; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); if (!new_page) return NULL; if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { put_page(new_page); return NULL; } cgroup_throttle_swaprate(new_page, GFP_KERNEL); return new_page; } static int copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress, ret = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; struct page *prealloc = NULL; again: progress = 0; init_rss_vec(rss); dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) { ret = -ENOMEM; goto out; } src_pte = pte_offset_map(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } if (unlikely(!pte_present(*src_pte))) { entry.val = copy_nonpresent_pte(dst_mm, src_mm, dst_pte, src_pte, dst_vma, src_vma, addr, rss); if (entry.val) break; progress += 8; continue; } /* copy_present_pte() will clear `*prealloc' if consumed */ ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, addr, rss, &prealloc); /* * If we need a pre-allocated page for this pte, drop the * locks, allocate, and try again. */ if (unlikely(ret == -EAGAIN)) break; if (unlikely(prealloc)) { /* * pre-alloc page cannot be reused by next time so as * to strictly follow mempolicy (e.g., alloc_page_vma() * will allocate page according to address). This * could only happen if one pinned pte changed. */ put_page(prealloc); prealloc = NULL; } progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); spin_unlock(src_ptl); pte_unmap(orig_src_pte); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (entry.val) { if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { ret = -ENOMEM; goto out; } entry.val = 0; } else if (ret) { WARN_ON_ONCE(ret != -EAGAIN); prealloc = page_copy_prealloc(src_mm, src_vma, addr); if (!prealloc) return -ENOMEM; /* We've captured and resolved the error. Reset, try again. */ ret = 0; } if (addr != end) goto again; out: if (unlikely(prealloc)) put_page(prealloc); return ret; } static inline int copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, dst_vma, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_p4d, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); err = copy_huge_pud(dst_mm, src_mm, dst_pud, src_pud, addr, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static inline int copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; p4d_t *src_p4d, *dst_p4d; unsigned long next; dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); if (!dst_p4d) return -ENOMEM; src_p4d = p4d_offset(src_pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(src_p4d)) continue; if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, addr, next)) return -ENOMEM; } while (dst_p4d++, src_p4d++, addr = next, addr != end); return 0; } int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = src_vma->vm_start; unsigned long end = src_vma->vm_end; struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; struct mmu_notifier_range range; bool is_cow; int ret; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && !src_vma->anon_vma) return 0; if (is_vm_hugetlb_page(src_vma)) return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(src_vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(src_vma->vm_flags); if (is_cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, src_vma, src_mm, addr, end); mmu_notifier_invalidate_range_start(&range); /* * Disabling preemption is not needed for the write side, as * the read side doesn't spin, but goes to the mmap_lock. * * Use the raw variant of the seqcount_t write API to avoid * lockdep complaining about preemptibility. */ mmap_assert_write_locked(src_mm); raw_write_seqcount_begin(&src_mm->write_protect_seq); } ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, addr, next))) { ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) { raw_write_seqcount_end(&src_mm->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } return ret; } /* Whether we should zap all COWed (private) pages too */ static inline bool should_zap_cows(struct zap_details *details) { /* By default, zap all pages */ if (!details) return true; /* Or, we zap COWed pages only if the caller wants to */ return !details->check_mapping; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; tlb_change_page_size(tlb, PAGE_SIZE); again: init_rss_vec(rss); start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte = start_pte; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = *pte; if (pte_none(ptent)) continue; if (need_resched()) break; if (pte_present(ptent)) { struct page *page; page = vm_normal_page(vma, addr, ptent); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page_rmapping(page)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (!PageAnon(page)) { if (pte_dirty(ptent)) { force_flush = 1; set_page_dirty(page); } if (pte_young(ptent) && likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); } rss[mm_counter(page)]--; page_remove_rmap(page, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); if (unlikely(__tlb_remove_page(tlb, page))) { force_flush = 1; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (is_device_private_entry(entry)) { struct page *page = device_private_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping != page_rmapping(page)) continue; } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); rss[mm_counter(page)]--; page_remove_rmap(page, false); put_page(page); continue; } if (!non_swap_entry(entry)) { /* Genuine swap entry, hence a private anon page */ if (!should_zap_cows(details)) continue; rss[MM_SWAPENTS]--; } else if (is_migration_entry(entry)) { struct page *page; page = migration_entry_to_page(entry); if (details && details->check_mapping && details->check_mapping != page_rmapping(page)) continue; rss[mm_counter(page)]--; } if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Restart if we didn't do everything. */ if (force_flush) { force_flush = 0; tlb_flush_mmu(tlb); } if (addr != end) { cond_resched(); goto again; } return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) __split_huge_pmd(vma, pmd, addr, false, NULL); else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ } else if (details && details->single_page && PageTransCompound(details->single_page) && next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { spinlock_t *ptl = pmd_lock(tlb->mm, pmd); /* * Take and drop THP pmd lock so that we cannot return * prematurely, while zap_huge_pmd() has cleared *pmd, * but not yet decremented compound_mapcount(). */ spin_unlock(ptl); } /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is * none or trans huge it can change under us. This is * because MADV_DONTNEED holds the mmap_lock in read * mode. */ if (pmd_none_or_trans_huge_or_clear_bad(pmd)) goto next; next = zap_pte_range(tlb, vma, pmd, addr, next, details); next: cond_resched(); } while (pmd++, addr = next, addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*pud) || pud_devmap(*pud)) { if (next - addr != HPAGE_PUD_SIZE) { mmap_assert_locked(tlb->mm); split_huge_pud(vma, pud, addr); } else if (zap_huge_pud(tlb, vma, pud, addr)) goto next; /* fall through */ } if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); next: cond_resched(); } while (pud++, addr = next, addr != end); return addr; } static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; next = zap_pud_range(tlb, vma, p4d, addr, next, details); } while (p4d++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_p4d_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { i_mmap_lock_write(vma->vm_file->f_mapping); __unmap_hugepage_range_final(tlb, vma, start, end, NULL); i_mmap_unlock_write(vma->vm_file->f_mapping); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mmu_notifier_range range; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, start_addr, end_addr); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); mmu_notifier_invalidate_range_end(&range); } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @start: starting address of pages to zap * @size: number of bytes to zap * * Caller must protect the VMA list */ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long size) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, start, start + size); tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) unmap_single_vma(&tlb, vma, start, range.end, NULL); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, start, range.end); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, address, address + size); tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); unmap_single_vma(&tlb, vma, address, range.end, details); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, address, range.end); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * */ void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (address < vma->vm_start || address + size > vma->vm_end || !(vma->vm_flags & VM_PFNMAP)) return; zap_page_range_single(vma, address, size, NULL); } EXPORT_SYMBOL_GPL(zap_vma_ptes); static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pmd_t *pmd = walk_to_pmd(mm, addr); if (!pmd) return NULL; return pte_alloc_map_lock(mm, pmd, addr, ptl); } static int validate_page_before_insert(struct page *page) { if (PageAnon(page) || PageSlab(page) || page_has_type(page)) return -EINVAL; flush_dcache_page(page); return 0; } static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { if (!pte_none(*pte)) return -EBUSY; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter_fast(mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(mm, addr, pte, mk_pte(page, prot)); return 0; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte; spinlock_t *ptl; retval = validate_page_before_insert(page); if (retval) goto out; retval = -ENOMEM; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); pte_unmap_unlock(pte, ptl); out: return retval; } #ifdef pte_index static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { int err; if (!page_count(page)) return -EINVAL; err = validate_page_before_insert(page); if (err) return err; return insert_page_into_pte_locked(mm, pte, addr, page, prot); } /* insert_pages() amortizes the cost of spinlock operations * when inserting pages in a loop. Arch *must* define pte_index. */ static int insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot) { pmd_t *pmd = NULL; pte_t *start_pte, *pte; spinlock_t *pte_lock; struct mm_struct *const mm = vma->vm_mm; unsigned long curr_page_idx = 0; unsigned long remaining_pages_total = *num; unsigned long pages_to_write_in_pmd; int ret; more: ret = -EFAULT; pmd = walk_to_pmd(mm, addr); if (!pmd) goto out; pages_to_write_in_pmd = min_t(unsigned long, remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); /* Allocate the PTE if necessary; takes PMD lock once only. */ ret = -ENOMEM; if (pte_alloc(mm, pmd)) goto out; while (pages_to_write_in_pmd) { int pte_idx = 0; const int batch_size = min_t(int, pages_to_write_in_pmd, 8); start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { int err = insert_page_in_batch_locked(mm, pte, addr, pages[curr_page_idx], prot); if (unlikely(err)) { pte_unmap_unlock(start_pte, pte_lock); ret = err; remaining_pages_total -= pte_idx; goto out; } addr += PAGE_SIZE; ++curr_page_idx; } pte_unmap_unlock(start_pte, pte_lock); pages_to_write_in_pmd -= batch_size; remaining_pages_total -= batch_size; } if (remaining_pages_total) goto more; ret = 0; out: *num = remaining_pages_total; return ret; } #endif /* ifdef pte_index */ /** * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. * @vma: user vma to map to * @addr: target start user address of these pages * @pages: source kernel pages * @num: in: number of pages to map. out: number of pages that were *not* * mapped. (0 means all pages were successfully mapped). * * Preferred over vm_insert_page() when inserting multiple pages. * * In case of error, we may have mapped a subset of the provided * pages. It is the caller's responsibility to account for this case. * * The same restrictions apply as in vm_insert_page(). */ int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num) { #ifdef pte_index const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; if (addr < vma->vm_start || end_addr >= vma->vm_end) return -EFAULT; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } /* Defer page refcount checking till we're about to map that page. */ return insert_pages(vma, addr, pages, num, vma->vm_page_prot); #else unsigned long idx = 0, pgcount = *num; int err = -EINVAL; for (; idx < pgcount; ++idx) { err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); if (err) break; } *num = pgcount - idx; return err; #endif /* ifdef pte_index */ } EXPORT_SYMBOL(vm_insert_pages); /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_lock write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. * * Return: %0 on success, negative error code otherwise. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * __vm_map_pages - maps range of kernel pages into user vma * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * @offset: user's requested vm_pgoff * * This allows drivers to map range of kernel pages into a user vma. * * Return: 0 on success and error code otherwise. */ static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset) { unsigned long count = vma_pages(vma); unsigned long uaddr = vma->vm_start; int ret, i; /* Fail if the user requested offset is beyond the end of the object */ if (offset >= num) return -ENXIO; /* Fail if the user requested size exceeds available object size */ if (count > num - offset) return -ENXIO; for (i = 0; i < count; i++) { ret = vm_insert_page(vma, uaddr, pages[offset + i]); if (ret < 0) return ret; uaddr += PAGE_SIZE; } return 0; } /** * vm_map_pages - maps range of kernel pages starts with non zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Maps an object consisting of @num pages, catering for the user's * requested vm_pgoff * * If we fail to insert any page into the vma, the function will return * immediately leaving any previously inserted pages present. Callers * from the mmap handler may immediately return the error as their caller * will destroy the vma, removing any successfully inserted pages. Other * callers should make their own arrangements for calling unmap_region(). * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, vma->vm_pgoff); } EXPORT_SYMBOL(vm_map_pages); /** * vm_map_pages_zero - map range of kernel pages starts with zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Similar to vm_map_pages(), except that it explicitly sets the offset * to 0. This function is intended for the drivers that did not consider * vm_pgoff. * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, 0); } EXPORT_SYMBOL(vm_map_pages_zero); static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite) { struct mm_struct *mm = vma->vm_mm; pte_t *pte, entry; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) return VM_FAULT_OOM; if (!pte_none(*pte)) { if (mkwrite) { /* * For read faults on private mappings the PFN passed * in may not match the PFN we have mapped if the * mapped PFN is a writeable COW page. In the mkwrite * case we are creating a writable PTE for a shared * mapping and we expect the PFNs to match. If they * don't match, we are likely racing with block * allocation and mapping invalidation so just skip the * update. */ if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); goto out_unlock; } entry = pte_mkyoung(*pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, addr, pte, entry, 1)) update_mmu_cache(vma, addr, pte); } goto out_unlock; } /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); if (mkwrite) { entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); } set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ out_unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_NOPAGE; } /** * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_pfn(), except that it allows drivers * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * COW mappings. In general, using multiple vmas is preferable; * vmf_insert_pfn_prot should only be used if using multiple VMAs is * impractical. * * See vmf_insert_mixed_prot() for a discussion of the implication of using * a value of @pgprot different from that of @vma->vm_page_prot. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (!pfn_modify_allowed(pfn, pgprot)) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, false); } EXPORT_SYMBOL(vmf_insert_pfn_prot); /** * vmf_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return the result of this function. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vmf_insert_pfn); static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) { /* these checks mirror the abort conditions in vm_normal_page */ if (vma->vm_flags & VM_MIXEDMAP) return true; if (pfn_t_devmap(pfn)) return true; if (pfn_t_special(pfn)) return true; if (is_zero_pfn(pfn_t_to_pfn(pfn))) return true; return false; } static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot, bool mkwrite) { int err; BUG_ON(!vm_mixed_ok(vma, pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, pfn); if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return VM_FAULT_SIGBUS; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); err = insert_page(vma, addr, page, pgprot); } else { return insert_pfn(vma, addr, pfn, pgprot, mkwrite); } if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } /** * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_mixed(), except that it allows drivers * to override pgprot on a per-page basis. * * Typically this function should be used by drivers to set caching- and * encryption bits different than those of @vma->vm_page_prot, because * the caching- or encryption mode may not be known at mmap() time. * This is ok as long as @vma->vm_page_prot is not used by the core vm * to set caching and encryption bits for those vmas (except for COW pages). * This is ensured by core vm only modifying these page table entries using * functions that don't touch caching- or encryption bits, using pte_modify() * if needed. (See for example mprotect()). * Also when new page-table entries are created, this is only done using the * fault() callback, and never using the value of vma->vm_page_prot, * except for page-table entries that point to anonymous pages as the result * of COW. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot) { return __vm_insert_mixed(vma, addr, pfn, pgprot, false); } EXPORT_SYMBOL(vmf_insert_mixed_prot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); } EXPORT_SYMBOL(vmf_insert_mixed); /* * If the insertion of PTE failed because someone else already added a * different entry in the mean time, we treat that as success as we assume * the same entry was actually inserted. */ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); } EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(*pte)); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(mapped_pte, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, p4d, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); err = remap_pud_range(mm, p4d, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (p4d++, addr = next, addr != end); return 0; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. * * Return: %0 on success, negative error code otherwise. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; unsigned long remap_pfn = pfn; int err; if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) return -EINVAL; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_p4d_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) break; } while (pgd++, addr = next, addr != end); if (err) untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of the physical memory to be mapped * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. * * Return: %0 on success, negative error code otherwise. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pte_t *pte; int err = 0; spinlock_t *ptl; if (create) { pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); } BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); if (fn) { do { if (create || !pte_none(*pte)) { err = fn(pte++, addr, data); if (err) break; } } while (addr += PAGE_SIZE, addr != end); } *mask |= PGTBL_PTE_MODIFIED; arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(pte-1, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int err = 0; BUG_ON(pud_huge(*pud)); if (create) { pmd = pmd_alloc_track(mm, pud, addr, mask); if (!pmd) return -ENOMEM; } else { pmd = pmd_offset(pud, addr); } do { next = pmd_addr_end(addr, end); if (create || !pmd_none_or_clear_bad(pmd)) { err = apply_to_pte_range(mm, pmd, addr, next, fn, data, create, mask); if (err) break; } } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int err = 0; if (create) { pud = pud_alloc_track(mm, p4d, addr, mask); if (!pud) return -ENOMEM; } else { pud = pud_offset(p4d, addr); } do { next = pud_addr_end(addr, end); if (create || !pud_none_or_clear_bad(pud)) { err = apply_to_pmd_range(mm, pud, addr, next, fn, data, create, mask); if (err) break; } } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int err = 0; if (create) { p4d = p4d_alloc_track(mm, pgd, addr, mask); if (!p4d) return -ENOMEM; } else { p4d = p4d_offset(pgd, addr); } do { next = p4d_addr_end(addr, end); if (create || !p4d_none_or_clear_bad(p4d)) { err = apply_to_pud_range(mm, p4d, addr, next, fn, data, create, mask); if (err) break; } } while (p4d++, addr = next, addr != end); return err; } static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create) { pgd_t *pgd; unsigned long start = addr, next; unsigned long end = addr + size; pgtbl_mod_mask mask = 0; int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); if (!create && pgd_none_or_clear_bad(pgd)) continue; err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); if (err) break; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, start + size); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, true); } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * Scan a region of virtual memory, calling a provided function on * each leaf page table where it exists. * * Unlike apply_to_page_range, this does _not_ fill in page tables * where they are absent. */ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, false); } EXPORT_SYMBOL_GPL(apply_to_existing_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } static inline bool cow_user_page(struct page *dst, struct page *src, struct vm_fault *vmf) { bool ret; void *kaddr; void __user *uaddr; bool locked = false; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = vmf->address; if (likely(src)) { copy_user_highpage(dst, src, addr, vma); return true; } /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ kaddr = kmap_atomic(dst); uaddr = (void __user *)(addr & PAGE_MASK); /* * On architectures with software "accessed" bits, we would * take a double page fault, so mark it accessed here. */ if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { pte_t entry; vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* * Other thread has already handled the fault * and update local tlb only */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } entry = pte_mkyoung(vmf->orig_pte); if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) update_mmu_cache(vma, addr, vmf->pte); } /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { if (locked) goto warn; /* Re-validate under PTL if the page is still mapped */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* The PTE changed under us, update local tlb */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } /* * The same page can be mapped back since last copy attempt. * Try to copy again under PTL. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* * Give a warn in case there can be some obscure * use-case */ warn: WARN_ON_ONCE(1); clear_page(kaddr); } } ret = true; pte_unlock: if (locked) pte_unmap_unlock(vmf->pte, vmf->ptl); kunmap_atomic(kaddr); flush_dcache_page(dst); return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) { vm_fault_t ret; struct page *page = vmf->page; unsigned int old_flags = vmf->flags; vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; if (vmf->vma->vm_file && IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) return VM_FAULT_SIGBUS; ret = vmf->vma->vm_ops->page_mkwrite(vmf); /* Restore original flags so that caller is not surprised */ vmf->flags = old_flags; if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { lock_page(page); if (!page->mapping) { unlock_page(page); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_PAGE(!PageLocked(page), page); return ret; } /* * Handle dirtying of a page in shared file mapping on a write fault. * * The function expects the page to be locked and unlocks it. */ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; struct page *page = vmf->page; bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; dirtied = set_page_dirty(page); VM_BUG_ON_PAGE(PageAnon(page), page); /* * Take a local copy of the address_space - page.mapping may be zeroed * by truncate after unlock_page(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on unlock_page()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = page_rmapping(page); unlock_page(page); if (!page_mkwrite) file_update_time(vma->vm_file); /* * Throttle page dirtying rate down to writeback speed. * * mapping may be NULL here because some device drivers do not * set page.mapping but still dirty their pages * * Drop the mmap_lock before waiting on IO, if we can. The file * is pinning the mapping, as per above. */ if ((dirtied || page_mkwrite) && mapping) { struct file *fpin; fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); if (fpin) { fput(fpin); return VM_FAULT_RETRY; } } return 0; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline void wp_page_reuse(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = pte_mkyoung(vmf->orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); count_vm_event(PGREUSE); } /* * Handle the case of a page which we actually need to copy to a new page. * * Called with mmap_lock locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static vm_fault_t wp_page_copy(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct page *old_page = vmf->page; struct page *new_page = NULL; pte_t entry; int page_copied = 0; struct mmu_notifier_range range; if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { new_page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!new_page) goto oom; if (!cow_user_page(new_page, old_page, vmf)) { /* * COW failed, if the fault was solved by other, * it's fine. If not, userspace would re-fault on * the same address and we will handle the fault * from the second attempt. */ put_page(new_page); if (old_page) put_page(old_page); return 0; } } if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) goto oom_free_new; cgroup_throttle_swaprate(new_page, GFP_KERNEL); __SetPageUptodate(new_page); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); /* * Re-check the pte - we dropped the lock */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { if (old_page) { if (!PageAnon(old_page)) { dec_mm_counter_fast(mm, mm_counter_file(old_page)); inc_mm_counter_fast(mm, MM_ANONPAGES); } } else { inc_mm_counter_fast(mm, MM_ANONPAGES); } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* * Clear the pte entry and flush it first, before updating the * pte with the new entry. This will avoid a race condition * seen in the presence of one thread doing SMC and another * thread doing COW. */ ptep_clear_flush_notify(vma, vmf->address, vmf->pte); page_add_new_anon_rmap(new_page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(new_page, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ set_pte_at_notify(mm, vmf->address, vmf->pte, entry); update_mmu_cache(vma, vmf->address, vmf->pte); if (old_page) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(old_page, false); } /* Free the old page.. */ new_page = old_page; page_copied = 1; } else { update_mmu_tlb(vma, vmf->address, vmf->pte); } if (new_page) put_page(new_page); pte_unmap_unlock(vmf->pte, vmf->ptl); /* * No need to double call mmu_notifier->invalidate_range() callback as * the above ptep_clear_flush_notify() did already call it. */ mmu_notifier_invalidate_range_only_end(&range); if (old_page) { /* * Don't let another task, with possibly unlocked vma, * keep the mlocked page. */ if (page_copied && (vma->vm_flags & VM_LOCKED)) { lock_page(old_page); /* LRU manipulation */ if (PageMlocked(old_page)) munlock_vma_page(old_page); unlock_page(old_page); } put_page(old_page); } return page_copied ? VM_FAULT_WRITE : 0; oom_free_new: put_page(new_page); oom: if (old_page) put_page(old_page); return VM_FAULT_OOM; } /** * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE * writeable once the page is prepared * * @vmf: structure describing the fault * * This function handles all that is needed to finish a write page fault in a * shared mapping due to PTE being read-only once the mapped page is prepared. * It handles locking of PTE and modifying it. * * The function expects the page to be locked or other protection against * concurrent faults / writeback (such as DAX radix tree locks). * * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before * we acquired PTE lock. */ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) { WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * We might have raced with another page fault while we released the * pte_offset_map_lock. */ if (!pte_same(*vmf->pte, vmf->orig_pte)) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return VM_FAULT_NOPAGE; } wp_page_reuse(vmf); return 0; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { vm_fault_t ret; pte_unmap_unlock(vmf->pte, vmf->ptl); vmf->flags |= FAULT_FLAG_MKWRITE; ret = vma->vm_ops->pfn_mkwrite(vmf); if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) return ret; return finish_mkwrite_fault(vmf); } wp_page_reuse(vmf); return VM_FAULT_WRITE; } static vm_fault_t wp_page_shared(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = VM_FAULT_WRITE; get_page(vmf->page); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { vm_fault_t tmp; pte_unmap_unlock(vmf->pte, vmf->ptl); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } tmp = finish_mkwrite_fault(vmf); if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { unlock_page(vmf->page); put_page(vmf->page); return tmp; } } else { wp_page_reuse(vmf); lock_page(vmf->page); } ret |= fault_dirty_shared_page(vmf); put_page(vmf->page); return ret; } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_wp_page(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; if (userfaultfd_pte_wp(vma, *vmf->pte)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_WP); } /* * Userfaultfd write-protect can defer flushes. Ensure the TLB * is flushed in this case before copying. */ if (unlikely(userfaultfd_wp(vmf->vma) && mm_tlb_flush_pending(vmf->vma->vm_mm))) flush_tlb_page(vmf->vma, vmf->address); vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (!vmf->page) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) return wp_pfn_shared(vmf); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } /* * Take out anonymous pages first, anonymous shared vmas are * not dirty accountable. */ if (PageAnon(vmf->page)) { struct page *page = vmf->page; /* PageKsm() doesn't necessarily raise the page refcount */ if (PageKsm(page) || page_count(page) != 1) goto copy; if (!trylock_page(page)) goto copy; if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { unlock_page(page); goto copy; } /* * Ok, we've got the only map reference, and the only * page count reference, and the page is locked, * it's dark out, and we're wearing sunglasses. Hit it. */ unlock_page(page); wp_page_reuse(vmf); return VM_FAULT_WRITE; } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED))) { return wp_page_shared(vmf); } copy: /* * Ok, we need to copy. Oh, well.. */ get_page(vmf->page); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root_cached *root, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, details->first_index, details->last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_page() - Unmap single page from processes. * @page: The locked page to be unmapped. * * Unmap this page from any userspace process which still has it mmaped. * Typically, for efficiency, the range of nearby pages has already been * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once * truncation or invalidation holds the lock on a page, it may find that * the page has been remapped again: and then uses unmap_mapping_page() * to unmap it finally. */ void unmap_mapping_page(struct page *page) { struct address_space *mapping = page->mapping; struct zap_details details = { }; VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(PageTail(page)); details.check_mapping = mapping; details.first_index = page->index; details.last_index = page->index + thp_nr_pages(page) - 1; details.single_page = page; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. * @nr: Number of pages to be unmapped. 0 to unmap to end of file. * @even_cows: Whether to unmap even private COWed pages. * * Unmap the pages in this address space from any userspace process which * has them mmaped. Generally, you want to remove COWed pages as well when * a file is being truncated, but not when invalidating pages from the page * cache. */ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { struct zap_details details = { }; details.check_mapping = even_cows ? NULL : mapping; details.first_index = start; details.last_index = start + nr - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified byte range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { pgoff_t hba = holebegin >> PAGE_SHIFT; pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } unmap_mapping_pages(mapping, hba, hlen, even_cows); } EXPORT_SYMBOL(unmap_mapping_range); /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_lock locked or unlocked in the same cases * as does filemap_fault(). */ vm_fault_t do_swap_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL, *swapcache; swp_entry_t entry; pte_t pte; int locked; int exclusive = 0; vm_fault_t ret = 0; void *shadow = NULL; if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) goto out; entry = pte_to_swp_entry(vmf->orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, vmf->pmd, vmf->address); } else if (is_device_private_entry(entry)) { vmf->page = device_private_entry_to_page(entry); ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else { print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } delayacct_set_flag(DELAYACCT_PF_SWAPIN); page = lookup_swap_cache(entry, vma, vmf->address); swapcache = page; if (!page) { struct swap_info_struct *si = swp_swap_info(entry); if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && __swap_count(entry) == 1) { /* skip swapcache */ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (page) { int err; __SetPageLocked(page); __SetPageSwapBacked(page); set_page_private(page, entry.val); /* Tell memcg to use swap ownership records */ SetPageSwapCache(page); err = mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL); ClearPageSwapCache(page); if (err) { ret = VM_FAULT_OOM; goto out_page; } shadow = get_shadow_from_swap_cache(entry); if (shadow) workingset_refault(page, shadow); lru_cache_add(page); swap_readpage(page, true); } } else { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); swapcache = page; } if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) ret = VM_FAULT_OOM; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto out_release; } locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); delayacct_clear_flag(DELAYACCT_PF_SWAPIN); if (!locked) { ret |= VM_FAULT_RETRY; goto out_release; } /* * Make sure try_to_free_swap or reuse_swap_page or swapoff did not * release the swapcache from under us. The page pin, and pte_same * test below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not changed. */ if (unlikely((!PageSwapCache(page) || page_private(page) != entry.val)) && swapcache) goto out_page; page = ksm_might_need_to_copy(page, vma, vmf->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; page = swapcache; goto out_page; } cgroup_throttle_swaprate(page, GFP_KERNEL); /* * Back out if somebody else already faulted in this pte. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * The page isn't present yet, go ahead with the fault. * * Be careful about the sequence of operations here. * To get its accounting right, reuse_swap_page() must be called * while the page is counted on swap but not yet in mapcount i.e. * before page_add_anon_rmap() and swap_free(); try_to_free_swap() * must be called after the swap_free(), or it will never succeed. */ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; ret |= VM_FAULT_WRITE; exclusive = RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(vmf->orig_pte)) pte = pte_mksoft_dirty(pte); if (pte_swp_uffd_wp(vmf->orig_pte)) { pte = pte_mkuffd_wp(pte); pte = pte_wrprotect(pte); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); vmf->orig_pte = pte; /* ksm created a completely new copy */ if (unlikely(page != swapcache && swapcache)) { page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { do_page_add_anon_rmap(page, vma, vmf->address, exclusive); } swap_free(entry); if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) try_to_free_swap(page); unlock_page(page); if (page != swapcache && swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ unlock_page(swapcache); put_page(swapcache); } if (vmf->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(vmf); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); out: return ret; out_nomap: pte_unmap_unlock(vmf->pte, vmf->ptl); out_page: unlock_page(page); out_release: put_page(page); if (page != swapcache && swapcache) { unlock_page(swapcache); put_page(swapcache); } return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret = 0; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(). We can't run * pte_offset_map() on pmds where a huge pmd might be created * from a different thread. * * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when * parallel threads are excluded by other means. * * Here we only have mmap_read_lock(mm). */ if (pte_alloc(vma->vm_mm, vmf->pmd)) return VM_FAULT_OOM; /* See the comment in pte_alloc_one_map() */ if (unlikely(pmd_trans_unstable(vmf->pmd))) return 0; /* Use the zero-page for reads */ if (!(vmf->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), vma->vm_page_prot)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto unlock; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!page) goto oom; if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) goto oom_free_page; cgroup_throttle_swaprate(page, GFP_KERNEL); /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_cache(vma, vmf->address, vmf->pte); goto release; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); put_page(page); return handle_userfault(vmf, VM_UFFD_MISSING); } inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); setpte: set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; release: put_page(page); goto unlock; oom_free_page: put_page(page); oom: return VM_FAULT_OOM; } /* * The mmap_lock must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static vm_fault_t __do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_one * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } ret = vma->vm_ops->fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | VM_FAULT_DONE_COW))) return ret; if (unlikely(PageHWPoison(vmf->page))) { struct page *page = vmf->page; vm_fault_t poisonret = VM_FAULT_HWPOISON; if (ret & VM_FAULT_LOCKED) { if (page_mapped(page)) unmap_mapping_pages(page_mapping(page), page->index, 1, false); /* Retry if a clean page was removed from the cache. */ if (invalidate_inode_page(page)) poisonret = VM_FAULT_NOPAGE; unlock_page(page); } put_page(page); vmf->page = NULL; return poisonret; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf->page); else VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); return ret; } /* * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. * If we check pmd_trans_unstable() first we will trip the bad_pmd() check * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. */ static int pmd_devmap_trans_unstable(pmd_t *pmd) { return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); } static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (!pmd_none(*vmf->pmd)) goto map_pte; if (vmf->prealloc_pte) { vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) { spin_unlock(vmf->ptl); goto map_pte; } mm_inc_nr_ptes(vma->vm_mm); pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); spin_unlock(vmf->ptl); vmf->prealloc_pte = NULL; } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { return VM_FAULT_OOM; } map_pte: /* * If a huge pmd materialized under us just retry later. Use * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge * under us and then back to pmd_none, as a result of MADV_DONTNEED * running immediately after a huge pmd fault in a different thread of * this mm, in turn leading to a misleading pmd_trans_huge() retval. * All we have to ensure is that it is a regular pmd that we can walk * with pte_offset_map() and we can do that through an atomic read in * C, which is what pmd_trans_unstable() provides. */ if (pmd_devmap_trans_unstable(vmf->pmd)) return VM_FAULT_NOPAGE; /* * At this point we know that our vmf->pmd points to a page of ptes * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() * for the duration of the fault. If a racing MADV_DONTNEED runs and * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still * be valid and we will re-check to make sure the vmf->pte isn't * pte_none() under vmf->ptl protection when we return to * alloc_set_pte(). */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); return 0; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void deposit_prealloc_pte(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); /* * We are going to consume the prealloc table, * count that as nr_ptes. */ mm_inc_nr_ptes(vma->vm_mm); vmf->prealloc_pte = NULL; } static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned long haddr = vmf->address & HPAGE_PMD_MASK; pmd_t entry; int i; vm_fault_t ret = VM_FAULT_FALLBACK; if (!transhuge_vma_suitable(vma, haddr)) return ret; page = compound_head(page); if (compound_order(page) != HPAGE_PMD_ORDER) return ret; /* * Archs like ppc64 need additonal space to store information * related to pte entry. Use the preallocated table for that. */ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); page_add_file_rmap(page, true); /* * deposit and withdraw with pmd lock held */ if (arch_needs_pgtable_deposit()) deposit_prealloc_pte(vmf); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); update_mmu_cache_pmd(vma, haddr, vmf->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(vmf->ptl); return ret; } #else static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { BUILD_BUG(); return 0; } #endif /** * alloc_set_pte - setup new PTE entry for given page and add reverse page * mapping. If needed, the function allocates page table or use pre-allocated. * * @vmf: fault environment * @page: page to map * * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on * return. * * Target users are page handler itself and implementations of * vm_ops->map_pages. * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; pte_t entry; vm_fault_t ret; if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { ret = do_set_pmd(vmf, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (!vmf->pte) { ret = pte_alloc_one_map(vmf); if (ret) return ret; } /* Re-check under ptl */ if (unlikely(!pte_none(*vmf->pte))) { update_mmu_tlb(vma, vmf->address, vmf->pte); return VM_FAULT_NOPAGE; } flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, false); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* no need to invalidate: a not-present page won't be cached */ update_mmu_cache(vma, vmf->address, vmf->pte); return 0; } /** * finish_fault - finish page fault once we have prepared the page to fault * * @vmf: structure describing the fault * * This function handles all that is needed to finish a page fault once the * page to fault in is prepared. It handles locking of PTEs, inserts PTE for * given page, adds reverse page mapping, handles memcg charges and LRU * addition. * * The function expects the page to be locked and on success it consumes a * reference of a page being mapped (for the PTE which maps it). * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t finish_fault(struct vm_fault *vmf) { struct page *page; vm_fault_t ret = 0; /* Did we COW the page? */ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vmf->vma->vm_flags & VM_SHARED)) page = vmf->cow_page; else page = vmf->page; /* * check even for read faults because we might have lost our CoWed * page */ if (!(vmf->vma->vm_flags & VM_SHARED)) ret = check_stable_address_space(vmf->vma->vm_mm); if (!ret) ret = alloc_set_pte(vmf, page); if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; } static unsigned long fault_around_bytes __read_mostly = rounddown_pow_of_two(65536); #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_bytes; return 0; } /* * fault_around_bytes must be rounded down to the nearest page order as it's * what do_fault_around() expects to see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; if (val > PAGE_SIZE) fault_around_bytes = rounddown_pow_of_two(val); else fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function is called with the page table lock taken. In the split ptlock * case the page table lock only protects only those entries which belong to * the page table corresponding to the fault address. * * This function doesn't cross the VMA boundaries, in order to call map_pages() * only once. * * fault_around_bytes defines how many bytes we'll try to map. * do_fault_around() expects it to be set to a power of two less than or equal * to PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to * fault_around_bytes rounded down to the machine page size * (and therefore to page order). This way it's easier to guarantee * that we don't cross page table boundaries. */ static vm_fault_t do_fault_around(struct vm_fault *vmf) { unsigned long address = vmf->address, nr_pages, mask; pgoff_t start_pgoff = vmf->pgoff; pgoff_t end_pgoff; int off; vm_fault_t ret = 0; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; vmf->address = max(address & mask, vmf->vma->vm_start); off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); start_pgoff -= off; /* * end_pgoff is either the end of the page table, the end of * the vma or nr_pages from start_pgoff, depending what is nearest. */ end_pgoff = start_pgoff - ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, start_pgoff + nr_pages - 1); if (pmd_none(*vmf->pmd)) { vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); if (!vmf->prealloc_pte) goto out; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); /* Huge page is mapped? Page fault is solved */ if (pmd_trans_huge(*vmf->pmd)) { ret = VM_FAULT_NOPAGE; goto out; } /* ->map_pages() haven't done anything useful. Cold page cache? */ if (!vmf->pte) goto out; /* check if the page fault is solved */ vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); if (!pte_none(*vmf->pte)) ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); out: vmf->address = address; vmf->pte = NULL; return ret; } static vm_fault_t do_read_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = 0; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { ret = do_fault_around(vmf); if (ret) return ret; } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= finish_fault(vmf); unlock_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) put_page(vmf->page); return ret; } static vm_fault_t do_cow_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!vmf->cow_page) return VM_FAULT_OOM; if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { put_page(vmf->cow_page); return VM_FAULT_OOM; } cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (ret & VM_FAULT_DONE_COW) return ret; copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); __SetPageUptodate(vmf->cow_page); ret |= finish_fault(vmf); unlock_page(vmf->page); put_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: put_page(vmf->cow_page); return ret; } static vm_fault_t do_shared_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret, tmp; ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { unlock_page(vmf->page); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } } ret |= finish_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { unlock_page(vmf->page); put_page(vmf->page); return ret; } ret |= fault_dirty_shared_page(vmf); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults). * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). * If mmap_lock is released, vma may become invalid (for example * by other thread calling munmap()). */ static vm_fault_t do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *vm_mm = vma->vm_mm; vm_fault_t ret; /* * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) { /* * If we find a migration pmd entry or a none pmd entry, which * should never happen, return SIGBUS */ if (unlikely(!pmd_present(*vmf->pmd))) ret = VM_FAULT_SIGBUS; else { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * Make sure this is not a temporary clearing of pte * by holding ptl and checking again. A R/M/W update * of pte involves: take ptl, clearing the pte so that * we don't have concurrent modification by hardware * followed by an update. */ if (unlikely(pte_none(*vmf->pte))) ret = VM_FAULT_SIGBUS; else ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); } } else if (!(vmf->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(vmf); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(vmf); else ret = do_shared_fault(vmf); /* preallocated pagetable is unused: free it */ if (vmf->prealloc_pte) { pte_free(vm_mm, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } return ret; } static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static vm_fault_t do_numa_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL; int page_nid = NUMA_NO_NODE; int last_cpupid; int target_nid; bool migrated = false; pte_t pte, old_pte; bool was_writable = pte_savedwrite(vmf->orig_pte); int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. */ vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } /* * Make it present again, Depending on how arch implementes non * accessible ptes, some can allow access by kernel mode. */ old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (was_writable) pte = pte_mkwrite(pte); ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); update_mmu_cache(vma, vmf->address, vmf->pte); page = vm_normal_page(vma, vmf->address, pte); if (!page) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!pte_write(pte)) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; last_cpupid = page_cpupid_last(page); page_nid = page_to_nid(page); target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, &flags); pte_unmap_unlock(vmf->pte, vmf->ptl); if (target_nid == NUMA_NO_NODE) { put_page(page); goto out; } /* Migrate to the requested node */ migrated = migrate_misplaced_page(page, vma, target_nid); if (migrated) { page_nid = target_nid; flags |= TNF_MIGRATED; } else flags |= TNF_MIGRATE_FAIL; out: if (page_nid != NUMA_NO_NODE) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) return do_huge_pmd_anonymous_page(vmf); if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); return VM_FAULT_FALLBACK; } /* `inline' is required to avoid gcc 4.1.2 build error */ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) { if (vma_is_anonymous(vmf->vma)) { if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) return handle_userfault(vmf, VM_UFFD_WP); return do_huge_pmd_wp_page(vmf, orig_pmd); } if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); return VM_FAULT_FALLBACK; } static vm_fault_t create_huge_pud(struct vm_fault *vmf) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) return VM_FAULT_FALLBACK; if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) goto split; if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } split: /* COW or write-notify not handled on PUD level: split pud.*/ __split_huge_pud(vmf->vma, vmf->pud, vmf->address); #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ return VM_FAULT_FALLBACK; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow * concurrent faults). * * The mmap_lock may have been released depending on flags and our return value. * See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) { pte_t entry; if (unlikely(pmd_none(*vmf->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ vmf->pte = NULL; } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap_trans_unstable(vmf->pmd)) return 0; /* * A regular pmd is established and it can't morph into a huge * pmd from under us anymore at this point because we hold the * mmap_lock read mode and khugepaged takes it in write mode. * So now it's safe to run pte_offset_map(). */ vmf->pte = pte_offset_map(vmf->pmd, vmf->address); vmf->orig_pte = *vmf->pte; /* * some architectures can have larger ptes than wordsize, * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic * accesses. The code below just needs a consistent view * for the ifs and we later double check anyway with the * ptl lock held. So here a barrier will do. */ barrier(); if (pte_none(vmf->orig_pte)) { pte_unmap(vmf->pte); vmf->pte = NULL; } } if (!vmf->pte) { if (vma_is_anonymous(vmf->vma)) return do_anonymous_page(vmf); else return do_fault(vmf); } if (!pte_present(vmf->orig_pte)) return do_swap_page(vmf); if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) return do_numa_page(vmf); vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); entry = vmf->orig_pte; if (unlikely(!pte_same(*vmf->pte, entry))) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); goto unlock; } if (vmf->flags & FAULT_FLAG_WRITE) { if (!pte_write(entry)) return do_wp_page(vmf); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, vmf->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(vmf->vma, vmf->address, vmf->pte); } else { /* Skip spurious TLB flush for retried page fault */ if (vmf->flags & FAULT_FLAG_TRIED) goto unlock; /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (vmf->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); } unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct vm_fault vmf = { .vma = vma, .address = address & PAGE_MASK, .flags = flags, .pgoff = linear_page_index(vma, address), .gfp_mask = __get_fault_gfp_mask(vma), }; unsigned int dirty = flags & FAULT_FLAG_WRITE; struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; p4d_t *p4d; vm_fault_t ret; pgd = pgd_offset(mm, address); p4d = p4d_alloc(mm, pgd, address); if (!p4d) return VM_FAULT_OOM; vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; retry_pud: if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pud_t orig_pud = *vmf.pud; barrier(); if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { /* NUMA case for anonymous PUDs would go here */ if (dirty && !pud_write(orig_pud)) { ret = wp_huge_pud(&vmf, orig_pud); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pud_set_accessed(&vmf, orig_pud); return 0; } } } vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; /* Huge pud page fault raced with pmd_alloc? */ if (pud_trans_unstable(vmf.pud)) goto retry_pud; if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pmd_t orig_pmd = *vmf.pmd; barrier(); if (unlikely(is_swap_pmd(orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(orig_pmd)); if (is_pmd_migration_entry(orig_pmd)) pmd_migration_entry_wait(mm, vmf.pmd); return 0; } if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&vmf, orig_pmd); if (dirty && !pmd_write(orig_pmd)) { ret = wp_huge_pmd(&vmf, orig_pmd); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&vmf, orig_pmd); return 0; } } } return handle_pte_fault(&vmf); } /** * mm_account_fault - Do page fault accountings * * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting * of perf event counters, but we'll still do the per-task accounting to * the task who triggered this page fault. * @address: the faulted address. * @flags: the fault flags. * @ret: the fault retcode. * * This will take care of most of the page fault accountings. Meanwhile, it * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should * still be in per-arch page fault handlers at the entry of page fault. */ static inline void mm_account_fault(struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret) { bool major; /* * We don't do accounting for some specific faults: * * - Unsuccessful faults (e.g. when the address wasn't valid). That * includes arch_vma_access_permitted() failing before reaching here. * So this is not a "this many hardware page faults" counter. We * should use the hw profiling for that. * * - Incomplete faults (VM_FAULT_RETRY). They will only be counted * once they're completed. */ if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) return; /* * We define the fault as a major fault when the final successful fault * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't * handle it immediately previously). */ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); if (major) current->maj_flt++; else current->min_flt++; /* * If the fault is done for GUP, regs will be NULL. We only do the * accounting for the per thread fault counters who triggered the * fault, and we skip the perf event updates. */ if (!regs) return; if (major) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { vm_fault_t ret; __set_current_state(TASK_RUNNING); count_vm_event(PGFAULT); count_memcg_event_mm(vma->vm_mm, PGFAULT); /* do counter updates before entering really critical section. */ check_sync_rss_stat(current); if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) return VM_FAULT_SIGSEGV; /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_enter_user_fault(); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); if (flags & FAULT_FLAG_USER) { mem_cgroup_exit_user_fault(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } mm_account_fault(regs, address, flags, ret); return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifndef __PAGETABLE_P4D_FOLDED /* * Allocate p4d page table. * We've already handled the fast-path in-line. */ int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { p4d_t *new = p4d_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ p4d_free(mm, new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_P4D_FOLDED */ #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (!p4d_present(*p4d)) { mm_inc_nr_puds(mm); p4d_populate(mm, p4d, new); } else /* Another has populated it */ pud_free(mm, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { spinlock_t *ptl; pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ ptl = pud_lock(mm, pud); if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); spin_unlock(ptl); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) goto out; pud = pud_offset(p4d, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); if (pmd_huge(*pmd)) { if (!pmdpp) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PMD_MASK, (address & PMD_MASK) + PMD_SIZE); mmu_notifier_invalidate_range_start(range); } *ptlp = pmd_lock(mm, pmd); if (pmd_huge(*pmd)) { *pmdpp = pmd; return 0; } spin_unlock(*ptlp); if (range) mmu_notifier_invalidate_range_end(range); } if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PAGE_MASK, (address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(range); } ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!pte_present(*ptep)) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); if (range) mmu_notifier_invalidate_range_end(range); out: return -EINVAL; } /** * follow_pte - look up PTE at a user virtual address * @mm: the mm_struct of the target address space * @address: user virtual address * @ptepp: location to store found PTE * @ptlp: location to store the lock for the PTE * * On a successful return, the pointer to the PTE is stored in @ptepp; * the corresponding lock is taken and its location is stored in @ptlp. * The contents of the PTE are only stable until @ptlp is released; * any further use, if any, must be protected against invalidation * with MMU notifiers. * * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore * should be taken for read. * * KVM uses this function. While it is arguably less bad than ``follow_pfn``, * it is not a good general-purpose API. * * Return: zero on success, -ve otherwise. */ int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); } EXPORT_SYMBOL_GPL(follow_pte); /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * This function does not allow the caller to read the permissions * of the PTE. Do not use it. * * Return: zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = *ptep; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; int offset = addr & (PAGE_SIZE-1); if (follow_phys(vma, addr, write, &prot, &phys_addr)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); iounmap(maddr); return len; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. If non-NULL, use the * given task for page fault accounting. */ int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct vm_area_struct *vma; void *old_buf = buf; int write = gup_flags & FOLL_WRITE; if (mmap_read_lock_killable(mm)) return 0; /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, ret, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, &vma, NULL); if (ret <= 0) { #ifndef CONFIG_HAVE_IOREMAP_PROT break; #else /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ vma = find_vma(mm, addr); if (!vma || vma->vm_start > addr) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, len, write); if (ret <= 0) break; bytes = ret; #endif } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } mmap_read_unlock(mm); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. * * Return: number of bytes copied from source to destination. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); mmput(mm); return ret; } EXPORT_SYMBOL_GPL(access_process_vm); /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * we might be running from an atomic context so we cannot sleep */ if (!mmap_read_trylock(mm)) return; vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_NOWAIT); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } mmap_read_unlock(mm); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { /* * Some code (nfs/sunrpc) uses socket ops on kernel memory while * holding the mmap_lock, this is safe because kernel memory doesn't * get paged out, therefore we'll never actually fault, and the * below annotations will generate false positives. */ if (uaccess_kernel()) return; if (pagefault_disabled()) return; __might_sleep(file, line, 0); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(&current->mm->mmap_lock); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) /* * Process all subpages of the specified huge page with the specified * operation. The target subpage will be processed last to keep its * cache lines hot. */ static inline void process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, void (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg) { int i, n, base, l; unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); /* Process target subpage last to keep its cache lines hot */ might_sleep(); n = (addr_hint - addr) / PAGE_SIZE; if (2 * n <= pages_per_huge_page) { /* If target subpage in first half of huge page */ base = 0; l = n; /* Process subpages at the end of huge page */ for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } else { /* If target subpage in second half of huge page */ base = pages_per_huge_page - 2 * (pages_per_huge_page - n); l = pages_per_huge_page - n; /* Process subpages at the begin of huge page */ for (i = 0; i < base; i++) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } /* * Process remaining subpages in left-right-left-right pattern * towards the target subpage */ for (i = 0; i < l; i++) { int left_idx = base + i; int right_idx = base + 2 * l - 1 - i; cond_resched(); process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); cond_resched(); process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); } } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p = page; might_sleep(); for (i = 0; i < pages_per_huge_page; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static void clear_subpage(unsigned long addr, int idx, void *arg) { struct page *page = arg; clear_user_highpage(page + idx, addr); } void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); } static void copy_user_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_base = dst; struct page *src_base = src; for (i = 0; i < pages_per_huge_page; ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } struct copy_subpage_arg { struct page *dst; struct page *src; struct vm_area_struct *vma; }; static void copy_subpage(unsigned long addr, int idx, void *arg) { struct copy_subpage_arg *copy_arg = arg; copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, addr, copy_arg->vma); } void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); struct copy_subpage_arg arg = { .dst = dst, .src = src, .vma = vma, }; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); } long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault) { void *src = (void *)usr_src; void *page_kaddr; unsigned long i, rc = 0; unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; struct page *subpage = dst_page; for (i = 0; i < pages_per_huge_page; i++, subpage = mem_map_next(subpage, dst_page, i)) { if (allow_pagefault) page_kaddr = kmap(subpage); else page_kaddr = kmap_atomic(subpage); rc = copy_from_user(page_kaddr, (const void __user *)(src + i * PAGE_SIZE), PAGE_SIZE); if (allow_pagefault) kunmap(subpage); else kunmap_atomic(page_kaddr); ret_val -= (PAGE_SIZE - rc); if (rc) break; flush_dcache_page(subpage); cond_resched(); } return ret_val; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct page *page) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; return true; } void ptlock_free(struct page *page) { kmem_cache_free(page_ptl_cachep, page->ptl); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2020 ARM Ltd. */ #ifndef __ASM_VDSO_PROCESSOR_H #define __ASM_VDSO_PROCESSOR_H #ifndef __ASSEMBLY__ /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ static __always_inline void rep_nop(void) { asm volatile("rep; nop" ::: "memory"); } static __always_inline void cpu_relax(void) { rep_nop(); } #endif /* __ASSEMBLY__ */ #endif /* __ASM_VDSO_PROCESSOR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGTABLE_H #define _LINUX_PGTABLE_H #include <linux/pfn.h> #include <asm/pgtable.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_MMU #include <linux/mm_types.h> #include <linux/bug.h> #include <linux/errno.h> #include <asm-generic/pgtable_uffd.h> #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED #endif /* * On almost all architectures and configurations, 0 can be used as the * upper ceiling to free_pgtables(): on many architectures it has the same * effect as using TASK_SIZE. However, there is one configuration which * must impose a more careful limit, to avoid freeing kernel pgtables. */ #ifndef USER_PGTABLES_CEILING #define USER_PGTABLES_CEILING 0UL #endif /* * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] * * The pXx_index() functions return the index of the entry in the page * table page which would control the given virtual address * * As these functions may be used by the same code for different levels of * the page table folding, they are always available, regardless of * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 * because in such cases PTRS_PER_PxD equals 1. */ static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } #define pte_index pte_index #ifndef pmd_index static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } #define pmd_index pmd_index #endif #ifndef pud_index static inline unsigned long pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } #define pud_index pud_index #endif #ifndef pgd_index /* Must be a compile-time constant, so implement it as a macro */ #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #endif #ifndef pte_offset_kernel static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); } #define pte_offset_kernel pte_offset_kernel #endif #if defined(CONFIG_HIGHPTE) #define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ pte_index((address))) #define pte_unmap(pte) kunmap_atomic((pte)) #else #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) #define pte_unmap(pte) ((void)(pte)) /* NOP */ #endif /* Find an entry in the second-level page table.. */ #ifndef pmd_offset static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); } #define pmd_offset pmd_offset #endif #ifndef pud_offset static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) { return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); } #define pud_offset pud_offset #endif static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) { return (pgd + pgd_index(address)); }; /* * a shortcut to get a pgd_t in a given mm */ #ifndef pgd_offset #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) #endif /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #ifndef pgd_offset_k #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) #endif /* * In many cases it is known that a virtual address is mapped at PMD or PTE * level, so instead of traversing all the page table levels, we can get a * pointer to the PMD entry in user or kernel page table or translate a virtual * address to the pointer in the PTE in the kernel page tables with simple * helpers. */ static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); } static inline pmd_t *pmd_off_k(unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); } static inline pte_t *virt_to_kpte(unsigned long vaddr) { pmd_t *pmd = pmd_off_k(vaddr); return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); } #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #else static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { BUILD_BUG(); return 0; } static inline int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; int r = 1; if (!pte_young(pte)) r = 0; else set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); return r; } #endif #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; int r = 1; if (!pmd_young(pmd)) r = 0; else set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); return r; } #else static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else /* * Despite relevant to THP only, this API is called from generic rmap code * under PageTransHuge(), hence needs a dummy implementation for !THP */ static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, address, ptep); return pte; } #endif #ifndef __HAVE_ARCH_PTEP_GET static inline pte_t ptep_get(pte_t *ptep) { return READ_ONCE(*ptep); } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and