1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl.h (C) 2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #ifndef __LINUX_POSIX_ACL_H #define __LINUX_POSIX_ACL_H #include <linux/bug.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <uapi/linux/posix_acl.h> struct posix_acl_entry { short e_tag; unsigned short e_perm; union { kuid_t e_uid; kgid_t e_gid; }; }; struct posix_acl { refcount_t a_refcount; struct rcu_head a_rcu; unsigned int a_count; struct posix_acl_entry a_entries[]; }; #define FOREACH_ACL_ENTRY(pa, acl, pe) \ for(pa=(acl)->a_entries, pe=pa+(acl)->a_count; pa<pe; pa++) /* * Duplicate an ACL handle. */ static inline struct posix_acl * posix_acl_dup(struct posix_acl *acl) { if (acl) refcount_inc(&acl->a_refcount); return acl; } /* * Free an ACL handle. */ static inline void posix_acl_release(struct posix_acl *acl) { if (acl && refcount_dec_and_test(&acl->a_refcount)) kfree_rcu(acl, a_rcu); } /* posix_acl.c */ extern void posix_acl_init(struct posix_acl *, int); extern struct posix_acl *posix_acl_alloc(int, gfp_t); extern int posix_acl_valid(struct user_namespace *, const struct posix_acl *); extern int posix_acl_permission(struct inode *, const struct posix_acl *, int); extern struct posix_acl *posix_acl_from_mode(umode_t, gfp_t); extern int posix_acl_equiv_mode(const struct posix_acl *, umode_t *); extern int __posix_acl_create(struct posix_acl **, gfp_t, umode_t *); extern int __posix_acl_chmod(struct posix_acl **, gfp_t, umode_t); extern struct posix_acl *get_posix_acl(struct inode *, int); extern int set_posix_acl(struct inode *, int, struct posix_acl *); #ifdef CONFIG_FS_POSIX_ACL extern int posix_acl_chmod(struct inode *, umode_t); extern int posix_acl_create(struct inode *, umode_t *, struct posix_acl **, struct posix_acl **); extern int posix_acl_update_mode(struct inode *, umode_t *, struct posix_acl **); extern int simple_set_acl(struct inode *, struct posix_acl *, int); extern int simple_acl_create(struct inode *, struct inode *); struct posix_acl *get_cached_acl(struct inode *inode, int type); struct posix_acl *get_cached_acl_rcu(struct inode *inode, int type); void set_cached_acl(struct inode *inode, int type, struct posix_acl *acl); void forget_cached_acl(struct inode *inode, int type); void forget_all_cached_acls(struct inode *inode); static inline void cache_no_acl(struct inode *inode) { inode->i_acl = NULL; inode->i_default_acl = NULL; } #else static inline int posix_acl_chmod(struct inode *inode, umode_t mode) { return 0; } #define simple_set_acl NULL static inline int simple_acl_create(struct inode *dir, struct inode *inode) { return 0; } static inline void cache_no_acl(struct inode *inode) { } static inline int posix_acl_create(struct inode *inode, umode_t *mode, struct posix_acl **default_acl, struct posix_acl **acl) { *default_acl = *acl = NULL; return 0; } static inline void forget_all_cached_acls(struct inode *inode) { } #endif /* CONFIG_FS_POSIX_ACL */ struct posix_acl *get_acl(struct inode *inode, int type); #endif /* __LINUX_POSIX_ACL_H */
1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 // SPDX-License-Identifier: GPL-2.0-only #include <crypto/hash.h> #include <linux/export.h> #include <linux/bvec.h> #include <linux/fault-inject-usercopy.h> #include <linux/uio.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/splice.h> #include <linux/compat.h> #include <net/checksum.h> #include <linux/scatterlist.h> #include <linux/instrumented.h> #define PIPE_PARANOIA /* for now */ #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ size_t left; \ size_t wanted = n; \ __p = i->iov; \ __v.iov_len = min(n, __p->iov_len - skip); \ if (likely(__v.iov_len)) { \ __v.iov_base = __p->iov_base + skip; \ left = (STEP); \ __v.iov_len -= left; \ skip += __v.iov_len; \ n -= __v.iov_len; \ } else { \ left = 0; \ } \ while (unlikely(!left && n)) { \ __p++; \ __v.iov_len = min(n, __p->iov_len); \ if (unlikely(!__v.iov_len)) \ continue; \ __v.iov_base = __p->iov_base; \ left = (STEP); \ __v.iov_len -= left; \ skip = __v.iov_len; \ n -= __v.iov_len; \ } \ n = wanted - n; \ } #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ size_t wanted = n; \ __p = i->kvec; \ __v.iov_len = min(n, __p->iov_len - skip); \ if (likely(__v.iov_len)) { \ __v.iov_base = __p->iov_base + skip; \ (void)(STEP); \ skip += __v.iov_len; \ n -= __v.iov_len; \ } \ while (unlikely(n)) { \ __p++; \ __v.iov_len = min(n, __p->iov_len); \ if (unlikely(!__v.iov_len)) \ continue; \ __v.iov_base = __p->iov_base; \ (void)(STEP); \ skip = __v.iov_len; \ n -= __v.iov_len; \ } \ n = wanted; \ } #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ struct bvec_iter __start; \ __start.bi_size = n; \ __start.bi_bvec_done = skip; \ __start.bi_idx = 0; \ for_each_bvec(__v, i->bvec, __bi, __start) { \ if (!__v.bv_len) \ continue; \ (void)(STEP); \ } \ } #define iterate_all_kinds(i, n, v, I, B, K) { \ if (likely(n)) { \ size_t skip = i->iov_offset; \ if (unlikely(i->type & ITER_BVEC)) { \ struct bio_vec v; \ struct bvec_iter __bi; \ iterate_bvec(i, n, v, __bi, skip, (B)) \ } else if (unlikely(i->type & ITER_KVEC)) { \ const struct kvec *kvec; \ struct kvec v; \ iterate_kvec(i, n, v, kvec, skip, (K)) \ } else if (unlikely(i->type & ITER_DISCARD)) { \ } else { \ const struct iovec *iov; \ struct iovec v; \ iterate_iovec(i, n, v, iov, skip, (I)) \ } \ } \ } #define iterate_and_advance(i, n, v, I, B, K) { \ if (unlikely(i->count < n)) \ n = i->count; \ if (i->count) { \ size_t skip = i->iov_offset; \ if (unlikely(i->type & ITER_BVEC)) { \ const struct bio_vec *bvec = i->bvec; \ struct bio_vec v; \ struct bvec_iter __bi; \ iterate_bvec(i, n, v, __bi, skip, (B)) \ i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ i->nr_segs -= i->bvec - bvec; \ skip = __bi.bi_bvec_done; \ } else if (unlikely(i->type & ITER_KVEC)) { \ const struct kvec *kvec; \ struct kvec v; \ iterate_kvec(i, n, v, kvec, skip, (K)) \ if (skip == kvec->iov_len) { \ kvec++; \ skip = 0; \ } \ i->nr_segs -= kvec - i->kvec; \ i->kvec = kvec; \ } else if (unlikely(i->type & ITER_DISCARD)) { \ skip += n; \ } else { \ const struct iovec *iov; \ struct iovec v; \ iterate_iovec(i, n, v, iov, skip, (I)) \ if (skip == iov->iov_len) { \ iov++; \ skip = 0; \ } \ i->nr_segs -= iov - i->iov; \ i->iov = iov; \ } \ i->count -= n; \ i->iov_offset = skip; \ } \ } static int copyout(void __user *to, const void *from, size_t n) { if (should_fail_usercopy()) return n; if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } static int copyin(void *to, const void __user *from, size_t n) { if (should_fail_usercopy()) return n; if (access_ok(from, n)) { instrument_copy_from_user(to, from, n); n = raw_copy_from_user(to, from, n); } return n; } static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *from; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { kaddr = kmap_atomic(page); from = kaddr + offset; /* first chunk, usually the only one */ left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = from - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); from = kaddr + offset; left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *to; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { kaddr = kmap_atomic(page); to = kaddr + offset; /* first chunk, usually the only one */ left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = to - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); to = kaddr + offset; left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } #ifdef PIPE_PARANOIA static bool sanity(const struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_head = pipe->head; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int p_occupancy = pipe_occupancy(p_head, p_tail); unsigned int i_head = i->head; unsigned int idx; if (i->iov_offset) { struct pipe_buffer *p; if (unlikely(p_occupancy == 0)) goto Bad; // pipe must be non-empty if (unlikely(i_head != p_head - 1)) goto Bad; // must be at the last buffer... p = &pipe->bufs[i_head & p_mask]; if (unlikely(p->offset + p->len != i->iov_offset)) goto Bad; // ... at the end of segment } else { if (i_head != p_head) goto Bad; // must be right after the last buffer } return true; Bad: printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset); printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n", p_head, p_tail, pipe->ring_size); for (idx = 0; idx < pipe->ring_size; idx++) printk(KERN_ERR "[%p %p %d %d]\n", pipe->bufs[idx].ops, pipe->bufs[idx].page, pipe->bufs[idx].offset, pipe->bufs[idx].len); WARN_ON(1); return false; } #else #define sanity(i) true #endif static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; struct pipe_buffer *buf; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; if (!sanity(i)) return 0; off = i->iov_offset; buf = &pipe->bufs[i_head & p_mask]; if (off) { if (offset == off && buf->page == page) { /* merge with the last one */ buf->len += bytes; i->iov_offset += bytes; goto out; } i_head++; buf = &pipe->bufs[i_head & p_mask]; } if (pipe_full(i_head, p_tail, pipe->max_usage)) return 0; buf->ops = &page_cache_pipe_buf_ops; get_page(page); buf->page = page; buf->offset = offset; buf->len = bytes; pipe->head = i_head + 1; i->iov_offset = offset + bytes; i->head = i_head; out: i->count -= bytes; return bytes; } /* * Fault in one or more iovecs of the given iov_iter, to a maximum length of * bytes. For each iovec, fault in each page that constitutes the iovec. * * Return 0 on success, or non-zero if the memory could not be accessed (i.e. * because it is an invalid address). */ int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) { size_t skip = i->iov_offset; const struct iovec *iov; int err; struct iovec v; if (iter_is_iovec(i)) { iterate_iovec(i, bytes, v, iov, skip, ({ err = fault_in_pages_readable(v.iov_base, v.iov_len); if (unlikely(err)) return err; 0;})) } return 0; } EXPORT_SYMBOL(iov_iter_fault_in_readable); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); direction &= READ | WRITE; /* It will get better. Eventually... */ if (uaccess_kernel()) { i->type = ITER_KVEC | direction; i->kvec = (struct kvec *)iov; } else { i->type = ITER_IOVEC | direction; i->iov = iov; } i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_init); static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) { char *from = kmap_atomic(page); memcpy(to, from + offset, len); kunmap_atomic(from); } static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) { char *to = kmap_atomic(page); memcpy(to + offset, from, len); kunmap_atomic(to); } static void memzero_page(struct page *page, size_t offset, size_t len) { char *addr = kmap_atomic(page); memset(addr + offset, 0, len); kunmap_atomic(addr); } static inline bool allocated(struct pipe_buffer *buf) { return buf->ops == &default_pipe_buf_ops; } static inline void data_start(const struct iov_iter *i, unsigned int *iter_headp, size_t *offp) { unsigned int p_mask = i->pipe->ring_size - 1; unsigned int iter_head = i->head; size_t off = i->iov_offset; if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) || off == PAGE_SIZE)) { iter_head++; off = 0; } *iter_headp = iter_head; *offp = off; } static size_t push_pipe(struct iov_iter *i, size_t size, int *iter_headp, size_t *offp) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int iter_head; size_t off; ssize_t left; if (unlikely(size > i->count)) size = i->count; if (unlikely(!size)) return 0; left = size; data_start(i, &iter_head, &off); *iter_headp = iter_head; *offp = off; if (off) { left -= PAGE_SIZE - off; if (left <= 0) { pipe->bufs[iter_head & p_mask].len += size; return size; } pipe->bufs[iter_head & p_mask].len = PAGE_SIZE; iter_head++; } while (!pipe_full(iter_head, p_tail, pipe->max_usage)) { struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask]; struct page *page = alloc_page(GFP_USER); if (!page) break; buf->ops = &default_pipe_buf_ops; buf->page = page; buf->offset = 0; buf->len = min_t(ssize_t, left, PAGE_SIZE); left -= buf->len; iter_head++; pipe->head = iter_head; if (left == 0) return size; } return size - left; } static size_t copy_pipe_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk); i->head = i_head; i->iov_offset = off + chunk; n -= chunk; addr += chunk; off = 0; i_head++; } while (n); i->count -= bytes; return bytes; } static __wsum csum_and_memcpy(void *to, const void *from, size_t len, __wsum sum, size_t off) { __wsum next = csum_partial_copy_nocheck(from, to, len); return csum_block_add(sum, next, off); } static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, struct csum_state *csstate, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; __wsum sum = csstate->csum; size_t off = csstate->off; unsigned int i_head; size_t n, r; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &r); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - r); char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page); sum = csum_and_memcpy(p + r, addr, chunk, sum, off); kunmap_atomic(p); i->head = i_head; i->iov_offset = r + chunk; n -= chunk; off += chunk; addr += chunk; r = 0; i_head++; } while (n); i->count -= bytes; csstate->csum = sum; csstate->off = off; return bytes; } size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { const char *from = addr; if (unlikely(iov_iter_is_pipe(i))) return copy_pipe_to_iter(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), memcpy_to_page(v.bv_page, v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len), memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_to_iter); #ifdef CONFIG_ARCH_HAS_COPY_MC static int copyout_mc(void __user *to, const void *from, size_t n) { if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = copy_mc_to_user((__force void *) to, from, n); } return n; } static unsigned long copy_mc_to_page(struct page *page, size_t offset, const char *from, size_t len) { unsigned long ret; char *to; to = kmap_atomic(page); ret = copy_mc_to_kernel(to + offset, from, len); kunmap_atomic(to); return ret; } static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off, xfer = 0; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); unsigned long rem; rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk); i->head = i_head; i->iov_offset = off + chunk - rem; xfer += chunk - rem; if (rem) break; n -= chunk; addr += chunk; off = 0; i_head++; } while (n); i->count -= xfer; return xfer; } /** * _copy_mc_to_iter - copy to iter with source memory error exception handling * @addr: source kernel address * @bytes: total transfer length * @iter: destination iterator * * The pmem driver deploys this for the dax operation * (dax_copy_to_iter()) for dax reads (bypass page-cache and the * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes * successfully copied. * * The main differences between this and typical _copy_to_iter(). * * * Typical tail/residue handling after a fault retries the copy * byte-by-byte until the fault happens again. Re-triggering machine * checks is potentially fatal so the implementation uses source * alignment and poison alignment assumptions to avoid re-triggering * hardware exceptions. * * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. * Compare to copy_to_iter() where only ITER_IOVEC attempts might return * a short copy. */ size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { const char *from = addr; unsigned long rem, curr_addr, s_addr = (unsigned long) addr; if (unlikely(iov_iter_is_pipe(i))) return copy_mc_pipe_to_iter(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), ({ rem = copy_mc_to_page(v.bv_page, v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len); if (rem) { curr_addr = (unsigned long) from; bytes = curr_addr - s_addr - rem; return bytes; } }), ({ rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len); if (rem) { curr_addr = (unsigned long) from; bytes = curr_addr - s_addr - rem; return bytes; } }) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_mc_to_iter); #endif /* CONFIG_ARCH_HAS_COPY_MC */ size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter); bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; if (iter_is_iovec(i)) might_fault(); iterate_all_kinds(i, bytes, v, ({ if (copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)) return false; 0;}), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(_copy_from_iter_full); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter_nocache); #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /** * _copy_from_iter_flushcache - write destination through cpu cache * @addr: destination kernel address * @bytes: total transfer length * @iter: source iterator * * The pmem driver arranges for filesystem-dax to use this facility via * dax_copy_from_iter() for ensuring that writes to persistent memory * are flushed through the CPU cache. It is differentiated from * _copy_from_iter_nocache() in that guarantees all data is flushed for * all iterator types. The _copy_from_iter_nocache() only attempts to * bypass the cache for the ITER_IOVEC case, and on some archs may use * instructions that strand dirty-data in the cache. */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); #endif bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; iterate_all_kinds(i, bytes, v, ({ if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)) return false; 0;}), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(_copy_from_iter_full_nocache); static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) { struct page *head; size_t v = n + offset; /* * The general case needs to access the page order in order * to compute the page size. * However, we mostly deal with order-0 pages and thus can * avoid a possible cache line miss for requests that fit all * page orders. */ if (n <= v && v <= PAGE_SIZE) return true; head = compound_head(page); v += (page - head) << PAGE_SHIFT; if (likely(n <= v && v <= (page_size(head)))) return true; WARN_ON(1); return false; } size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; if (i->type & (ITER_BVEC|ITER_KVEC)) { void *kaddr = kmap_atomic(page); size_t wanted = copy_to_iter(kaddr + offset, bytes, i); kunmap_atomic(kaddr); return wanted; } else if (unlikely(iov_iter_is_discard(i))) { if (unlikely(i->count < bytes)) bytes = i->count; i->count -= bytes; return bytes; } else if (likely(!iov_iter_is_pipe(i))) return copy_page_to_iter_iovec(page, offset, bytes, i); else return copy_page_to_iter_pipe(page, offset, bytes, i); } EXPORT_SYMBOL(copy_page_to_iter); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return 0; } if (i->type & (ITER_BVEC|ITER_KVEC)) { void *kaddr = kmap_atomic(page); size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); kunmap_atomic(kaddr); return wanted; } else return copy_page_from_iter_iovec(page, offset, bytes, i); } EXPORT_SYMBOL(copy_page_from_iter); static size_t pipe_zero(size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk); i->head = i_head; i->iov_offset = off + chunk; n -= chunk; off = 0; i_head++; } while (n); i->count -= bytes; return bytes; } size_t iov_iter_zero(size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return pipe_zero(bytes, i); iterate_and_advance(i, bytes, v, clear_user(v.iov_base, v.iov_len), memzero_page(v.bv_page, v.bv_offset, v.bv_len), memset(v.iov_base, 0, v.iov_len) ) return bytes; } EXPORT_SYMBOL(iov_iter_zero); size_t iov_iter_copy_from_user_atomic(struct page *page, struct iov_iter *i, unsigned long offset, size_t bytes) { char *kaddr = kmap_atomic(page), *p = kaddr + offset; if (unlikely(!page_copy_sane(page, offset, bytes))) { kunmap_atomic(kaddr); return 0; } if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { kunmap_atomic(kaddr); WARN_ON(1); return 0; } iterate_all_kinds(i, bytes, v, copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) kunmap_atomic(kaddr); return bytes; } EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); static inline void pipe_truncate(struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_tail = pipe->tail; unsigned int p_head = pipe->head; unsigned int p_mask = pipe->ring_size - 1; if (!pipe_empty(p_head, p_tail)) { struct pipe_buffer *buf; unsigned int i_head = i->head; size_t off = i->iov_offset; if (off) { buf = &pipe->bufs[i_head & p_mask]; buf->len = off - buf->offset; i_head++; } while (p_head != i_head) { p_head--; pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]); } pipe->head = p_head; } } static void pipe_advance(struct iov_iter *i, size_t size) { struct pipe_inode_info *pipe = i->pipe; if (unlikely(i->count < size)) size = i->count; if (size) { struct pipe_buffer *buf; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off = i->iov_offset, left = size; if (off) /* make it relative to the beginning of buffer */ left += off - pipe->bufs[i_head & p_mask].offset; while (1) { buf = &pipe->bufs[i_head & p_mask]; if (left <= buf->len) break; left -= buf->len; i_head++; } i->head = i_head; i->iov_offset = buf->offset + left; } i->count -= size; /* ... and discard everything past that point */ pipe_truncate(i); } void iov_iter_advance(struct iov_iter *i, size_t size) { if (unlikely(iov_iter_is_pipe(i))) { pipe_advance(i, size); return; } if (unlikely(iov_iter_is_discard(i))) { i->count -= size; return; } iterate_and_advance(i, size, v, 0, 0, 0) } EXPORT_SYMBOL(iov_iter_advance); void iov_iter_revert(struct iov_iter *i, size_t unroll) { if (!unroll) return; if (WARN_ON(unroll > MAX_RW_COUNT)) return; i->count += unroll; if (unlikely(iov_iter_is_pipe(i))) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off = i->iov_offset; while (1) { struct pipe_buffer *b = &pipe->bufs[i_head & p_mask]; size_t n = off - b->offset; if (unroll < n) { off -= unroll; break; } unroll -= n; if (!unroll && i_head == i->start_head) { off = 0; break; } i_head--; b = &pipe->bufs[i_head & p_mask]; off = b->offset + b->len; } i->iov_offset = off; i->head = i_head; pipe_truncate(i); return; } if (unlikely(iov_iter_is_discard(i))) return; if (unroll <= i->iov_offset) { i->iov_offset -= unroll; return; } unroll -= i->iov_offset; if (iov_iter_is_bvec(i)) { const struct bio_vec *bvec = i->bvec; while (1) { size_t n = (--bvec)->bv_len; i->nr_segs++; if (unroll <= n) { i->bvec = bvec; i->iov_offset = n - unroll; return; } unroll -= n; } } else { /* same logics for iovec and kvec */ const struct iovec *iov = i->iov; while (1) { size_t n = (--iov)->iov_len; i->nr_segs++; if (unroll <= n) { i->iov = iov; i->iov_offset = n - unroll; return; } unroll -= n; } } } EXPORT_SYMBOL(iov_iter_revert); /* * Return the count of just the current iov_iter segment. */ size_t iov_iter_single_seg_count(const struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return i->count; // it is a silly place, anyway if (i->nr_segs == 1) return i->count; if (unlikely(iov_iter_is_discard(i))) return i->count; else if (iov_iter_is_bvec(i)) return min(i->count, i->bvec->bv_len - i->iov_offset); else return min(i->count, i->iov->iov_len - i->iov_offset); } EXPORT_SYMBOL(iov_iter_single_seg_count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); i->type = ITER_KVEC | (direction & (READ | WRITE)); i->kvec = kvec; i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_kvec); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); i->type = ITER_BVEC | (direction & (READ | WRITE)); i->bvec = bvec; i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_bvec); void iov_iter_pipe(struct iov_iter *i, unsigned int direction, struct pipe_inode_info *pipe, size_t count) { BUG_ON(direction != READ); WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size)); i->type = ITER_PIPE | READ; i->pipe = pipe; i->head = pipe->head; i->iov_offset = 0; i->count = count; i->start_head = i->head; } EXPORT_SYMBOL(iov_iter_pipe); /** * iov_iter_discard - Initialise an I/O iterator that discards data * @i: The iterator to initialise. * @direction: The direction of the transfer. * @count: The size of the I/O buffer in bytes. * * Set up an I/O iterator that just discards everything that's written to it. * It's only available as a READ iterator. */ void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) { BUG_ON(direction != READ); i->type = ITER_DISCARD | READ; i->count = count; i->iov_offset = 0; } EXPORT_SYMBOL(iov_iter_discard); unsigned long iov_iter_alignment(const struct iov_iter *i) { unsigned long res = 0; size_t size = i->count; if (unlikely(iov_iter_is_pipe(i))) { unsigned int p_mask = i->pipe->ring_size - 1; if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask])) return size | i->iov_offset; return size; } iterate_all_kinds(i, size, v, (res |= (unsigned long)v.iov_base | v.iov_len, 0), res |= v.bv_offset | v.bv_len, res |= (unsigned long)v.iov_base | v.iov_len ) return res; } EXPORT_SYMBOL(iov_iter_alignment); unsigned long iov_iter_gap_alignment(const struct iov_iter *i) { unsigned long res = 0; size_t size = i->count; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return ~0U; } iterate_all_kinds(i, size, v, (res |= (!res ? 0 : (unsigned long)v.iov_base) | (size != v.iov_len ? size : 0), 0), (res |= (!res ? 0 : (unsigned long)v.bv_offset) | (size != v.bv_len ? size : 0)), (res |= (!res ? 0 : (unsigned long)v.iov_base) | (size != v.iov_len ? size : 0)) ); return res; } EXPORT_SYMBOL(iov_iter_gap_alignment); static inline ssize_t __pipe_get_pages(struct iov_iter *i, size_t maxsize, struct page **pages, int iter_head, size_t *start) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; ssize_t n = push_pipe(i, maxsize, &iter_head, start); if (!n) return -EFAULT; maxsize = n; n += *start; while (n > 0) { get_page(*pages++ = pipe->bufs[iter_head & p_mask].page); iter_head++; n -= PAGE_SIZE; } return maxsize; } static ssize_t pipe_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { unsigned int iter_head, npages; size_t capacity; if (!maxsize) return 0; if (!sanity(i)) return -EFAULT; data_start(i, &iter_head, start); /* Amount of free space: some of this one + all after this one */ npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); capacity = min(npages, maxpages) * PAGE_SIZE - *start; return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start); } ssize_t iov_iter_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { if (maxsize > i->count) maxsize = i->count; if (unlikely(iov_iter_is_pipe(i))) return pipe_get_pages(i, pages, maxsize, maxpages, start); if (unlikely(iov_iter_is_discard(i))) return -EFAULT; iterate_all_kinds(i, maxsize, v, ({ unsigned long addr = (unsigned long)v.iov_base; size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); int n; int res; if (len > maxpages * PAGE_SIZE) len = maxpages * PAGE_SIZE; addr &= ~(PAGE_SIZE - 1); n = DIV_ROUND_UP(len, PAGE_SIZE); res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, pages); if (unlikely(res <= 0)) return res; return (res == n ? len : res * PAGE_SIZE) - *start; 0;}),({ /* can't be more than PAGE_SIZE */ *start = v.bv_offset; get_page(*pages = v.bv_page); return v.bv_len; }),({ return -EFAULT; }) ) return 0; } EXPORT_SYMBOL(iov_iter_get_pages); static struct page **get_pages_array(size_t n) { return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); } static ssize_t pipe_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; unsigned int iter_head, npages; ssize_t n; if (!maxsize) return 0; if (!sanity(i)) return -EFAULT; data_start(i, &iter_head, start); /* Amount of free space: some of this one + all after this one */ npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); n = npages * PAGE_SIZE - *start; if (maxsize > n) maxsize = n; else npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); p = get_pages_array(npages); if (!p) return -ENOMEM; n = __pipe_get_pages(i, maxsize, p, iter_head, start); if (n > 0) *pages = p; else kvfree(p); return n; } ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; if (maxsize > i->count) maxsize = i->count; if (unlikely(iov_iter_is_pipe(i))) return pipe_get_pages_alloc(i, pages, maxsize, start); if (unlikely(iov_iter_is_discard(i))) return -EFAULT; iterate_all_kinds(i, maxsize, v, ({ unsigned long addr = (unsigned long)v.iov_base; size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); int n; int res; addr &= ~(PAGE_SIZE - 1); n = DIV_ROUND_UP(len, PAGE_SIZE); p = get_pages_array(n); if (!p) return -ENOMEM; res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p); if (unlikely(res <= 0)) { kvfree(p); *pages = NULL; return res; } *pages = p; return (res == n ? len : res * PAGE_SIZE) - *start; 0;}),({ /* can't be more than PAGE_SIZE */ *start = v.bv_offset; *pages = p = get_pages_array(1); if (!p) return -ENOMEM; get_page(*p = v.bv_page); return v.bv_len; }),({ return -EFAULT; }) ) return 0; } EXPORT_SYMBOL(iov_iter_get_pages_alloc); size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { char *to = addr; __wsum sum, next; size_t off = 0; sum = *csum; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, ({ next = csum_and_copy_from_user(v.iov_base, (to += v.iov_len) - v.iov_len, v.iov_len); if (next) { sum = csum_block_add(sum, next, off); off += v.iov_len; } next ? 0 : v.iov_len; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, p + v.bv_offset, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len, sum, off); off += v.iov_len; }) ) *csum = sum; return bytes; } EXPORT_SYMBOL(csum_and_copy_from_iter); bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { char *to = addr; __wsum sum, next; size_t off = 0; sum = *csum; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; iterate_all_kinds(i, bytes, v, ({ next = csum_and_copy_from_user(v.iov_base, (to += v.iov_len) - v.iov_len, v.iov_len); if (!next) return false; sum = csum_block_add(sum, next, off); off += v.iov_len; 0; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, p + v.bv_offset, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len, sum, off); off += v.iov_len; }) ) *csum = sum; iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(csum_and_copy_from_iter_full); size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, struct iov_iter *i) { struct csum_state *csstate = _csstate; const char *from = addr; __wsum sum, next; size_t off; if (unlikely(iov_iter_is_pipe(i))) return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i); sum = csstate->csum; off = csstate->off; if (unlikely(iov_iter_is_discard(i))) { WARN_ON(1); /* for now */ return 0; } iterate_and_advance(i, bytes, v, ({ next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, v.iov_base, v.iov_len); if (next) { sum = csum_block_add(sum, next, off); off += v.iov_len; } next ? 0 : v.iov_len; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy(p + v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len, sum, off); off += v.iov_len; }) ) csstate->csum = sum; csstate->off = off; return bytes; } EXPORT_SYMBOL(csum_and_copy_to_iter); size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, struct iov_iter *i) { #ifdef CONFIG_CRYPTO_HASH struct ahash_request *hash = hashp; struct scatterlist sg; size_t copied; copied = copy_to_iter(addr, bytes, i); sg_init_one(&sg, addr, copied); ahash_request_set_crypt(hash, &sg, NULL, copied); crypto_ahash_update(hash); return copied; #else return 0; #endif } EXPORT_SYMBOL(hash_and_copy_to_iter); int iov_iter_npages(const struct iov_iter *i, int maxpages) { size_t size = i->count; int npages = 0; if (!size) return 0; if (unlikely(iov_iter_is_discard(i))) return 0; if (unlikely(iov_iter_is_pipe(i))) { struct pipe_inode_info *pipe = i->pipe; unsigned int iter_head; size_t off; if (!sanity(i)) return 0; data_start(i, &iter_head, &off); /* some of this one + all after this one */ npages = pipe_space_for_user(iter_head, pipe->tail, pipe); if (npages >= maxpages) return maxpages; } else iterate_all_kinds(i, size, v, ({ unsigned long p = (unsigned long)v.iov_base; npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) - p / PAGE_SIZE; if (npages >= maxpages) return maxpages; 0;}),({ npages++; if (npages >= maxpages) return maxpages; }),({ unsigned long p = (unsigned long)v.iov_base; npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) - p / PAGE_SIZE; if (npages >= maxpages) return maxpages; }) ) return npages; } EXPORT_SYMBOL(iov_iter_npages); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) { *new = *old; if (unlikely(iov_iter_is_pipe(new))) { WARN_ON(1); return NULL; } if (unlikely(iov_iter_is_discard(new))) return NULL; if (iov_iter_is_bvec(new)) return new->bvec = kmemdup(new->bvec, new->nr_segs * sizeof(struct bio_vec), flags); else /* iovec and kvec have identical layout */ return new->iov = kmemdup(new->iov, new->nr_segs * sizeof(struct iovec), flags); } EXPORT_SYMBOL(dup_iter); static int copy_compat_iovec_from_user(struct iovec *iov, const struct iovec __user *uvec, unsigned long nr_segs) { const struct compat_iovec __user *uiov = (const struct compat_iovec __user *)uvec; int ret = -EFAULT, i; if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) return -EFAULT; for (i = 0; i < nr_segs; i++) { compat_uptr_t buf; compat_ssize_t len; unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); /* check for compat_size_t not fitting in compat_ssize_t .. */ if (len < 0) { ret = -EINVAL; goto uaccess_end; } iov[i].iov_base = compat_ptr(buf); iov[i].iov_len = len; } ret = 0; uaccess_end: user_access_end(); return ret; } static int copy_iovec_from_user(struct iovec *iov, const struct iovec __user *uvec, unsigned long nr_segs) { unsigned long seg; if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec))) return -EFAULT; for (seg = 0; seg < nr_segs; seg++) { if ((ssize_t)iov[seg].iov_len < 0) return -EINVAL; } return 0; } struct iovec *iovec_from_user(const struct iovec __user *uvec, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat) { struct iovec *iov = fast_iov; int ret; /* * SuS says "The readv() function *may* fail if the iovcnt argument was * less than or equal to 0, or greater than {IOV_MAX}. Linux has * traditionally returned zero for zero segments, so... */ if (nr_segs == 0) return iov; if (nr_segs > UIO_MAXIOV) return ERR_PTR(-EINVAL); if (nr_segs > fast_segs) { iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); if (!iov) return ERR_PTR(-ENOMEM); } if (compat) ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); else ret = copy_iovec_from_user(iov, uvec, nr_segs); if (ret) { if (iov != fast_iov) kfree(iov); return ERR_PTR(ret); } return iov; } ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat) { ssize_t total_len = 0; unsigned long seg; struct iovec *iov; iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); if (IS_ERR(iov)) { *iovp = NULL; return PTR_ERR(iov); } /* * According to the Single Unix Specification we should return EINVAL if * an element length is < 0 when cast to ssize_t or if the total length * would overflow the ssize_t return value of the system call. * * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the * overflow case. */ for (seg = 0; seg < nr_segs; seg++) { ssize_t len = (ssize_t)iov[seg].iov_len; if (!access_ok(iov[seg].iov_base, len)) { if (iov != *iovp) kfree(iov); *iovp = NULL; return -EFAULT; } if (len > MAX_RW_COUNT - total_len) { len = MAX_RW_COUNT - total_len; iov[seg].iov_len = len; } total_len += len; } iov_iter_init(i, type, iov, nr_segs, total_len); if (iov == *iovp) *iovp = NULL; else *iovp = iov; return total_len; } /** * import_iovec() - Copy an array of &struct iovec from userspace * into the kernel, check that it is valid, and initialize a new * &struct iov_iter iterator to access it. * * @type: One of %READ or %WRITE. * @uvec: Pointer to the userspace array. * @nr_segs: Number of elements in userspace array. * @fast_segs: Number of elements in @iov. * @iovp: (input and output parameter) Pointer to pointer to (usually small * on-stack) kernel array. * @i: Pointer to iterator that will be initialized on success. * * If the array pointed to by *@iov is large enough to hold all @nr_segs, * then this function places %NULL in *@iov on return. Otherwise, a new * array will be allocated and the result placed in *@iov. This means that * the caller may call kfree() on *@iov regardless of whether the small * on-stack array was used or not (and regardless of whether this function * returns an error or not). * * Return: Negative error code on error, bytes imported on success */ ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i) { return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, in_compat_syscall()); } EXPORT_SYMBOL(import_iovec); int import_single_range(int rw, void __user *buf, size_t len, struct iovec *iov, struct iov_iter *i) { if (len > MAX_RW_COUNT) len = MAX_RW_COUNT; if (unlikely(!access_ok(buf, len))) return -EFAULT; iov->iov_base = buf; iov->iov_len = len; iov_iter_init(i, rw, iov, 1, len); return 0; } EXPORT_SYMBOL(import_single_range); int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, int (*f)(struct kvec *vec, void *context), void *context) { struct kvec w; int err = -EINVAL; if (!bytes) return 0; iterate_all_kinds(i, bytes, v, -EINVAL, ({ w.iov_base = kmap(v.bv_page) + v.bv_offset; w.iov_len = v.bv_len; err = f(&w, context); kunmap(v.bv_page); err;}), ({ w = v; err = f(&w, context);}) ) return err; } EXPORT_SYMBOL(iov_iter_for_each_range);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 #ifndef _LINUX_JHASH_H #define _LINUX_JHASH_H /* jhash.h: Jenkins hash support. * * Copyright (C) 2006. Bob Jenkins (bob_jenkins@burtleburtle.net) * * https://burtleburtle.net/bob/hash/ * * These are the credits from Bob's sources: * * lookup3.c, by Bob Jenkins, May 2006, Public Domain. * * These are functions for producing 32-bit hashes for hash table lookup. * hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() * are externally useful functions. Routines to test the hash are included * if SELF_TEST is defined. You can use this free for any purpose. It's in * the public domain. It has no warranty. * * Copyright (C) 2009-2010 Jozsef Kadlecsik (kadlec@netfilter.org) * * I've modified Bob's hash to be useful in the Linux kernel, and * any bugs present are my fault. * Jozsef */ #include <linux/bitops.h> #include <linux/unaligned/packed_struct.h> /* Best hash sizes are of power of two */ #define jhash_size(n) ((u32)1<<(n)) /* Mask the hash value, i.e (value & jhash_mask(n)) instead of (value % n) */ #define jhash_mask(n) (jhash_size(n)-1) /* __jhash_mix -- mix 3 32-bit values reversibly. */ #define __jhash_mix(a, b, c) \ { \ a -= c; a ^= rol32(c, 4); c += b; \ b -= a; b ^= rol32(a, 6); a += c; \ c -= b; c ^= rol32(b, 8); b += a; \ a -= c; a ^= rol32(c, 16); c += b; \ b -= a; b ^= rol32(a, 19); a += c; \ c -= b; c ^= rol32(b, 4); b += a; \ } /* __jhash_final - final mixing of 3 32-bit values (a,b,c) into c */ #define __jhash_final(a, b, c) \ { \ c ^= b; c -= rol32(b, 14); \ a ^= c; a -= rol32(c, 11); \ b ^= a; b -= rol32(a, 25); \ c ^= b; c -= rol32(b, 16); \ a ^= c; a -= rol32(c, 4); \ b ^= a; b -= rol32(a, 14); \ c ^= b; c -= rol32(b, 24); \ } /* An arbitrary initial parameter */ #define JHASH_INITVAL 0xdeadbeef /* jhash - hash an arbitrary key * @k: sequence of bytes as key * @length: the length of the key * @initval: the previous hash, or an arbitray value * * The generic version, hashes an arbitrary sequence of bytes. * No alignment or length assumptions are made about the input key. * * Returns the hash value of the key. The result depends on endianness. */ static inline u32 jhash(const void *key, u32 length, u32 initval) { u32 a, b, c; const u8 *k = key; /* Set up the internal state */ a = b = c = JHASH_INITVAL + length + initval; /* All but the last block: affect some 32 bits of (a,b,c) */ while (length > 12) { a += __get_unaligned_cpu32(k); b += __get_unaligned_cpu32(k + 4); c += __get_unaligned_cpu32(k + 8); __jhash_mix(a, b, c); length -= 12; k += 12; } /* Last block: affect all 32 bits of (c) */ switch (length) { case 12: c += (u32)k[11]<<24; fallthrough; case 11: c += (u32)k[10]<<16; fallthrough; case 10: c += (u32)k[9]<<8; fallthrough; case 9: c += k[8]; fallthrough; case 8: b += (u32)k[7]<<24; fallthrough; case 7: b += (u32)k[6]<<16; fallthrough; case 6: b += (u32)k[5]<<8; fallthrough; case 5: b += k[4]; fallthrough; case 4: a += (u32)k[3]<<24; fallthrough; case 3: a += (u32)k[2]<<16; fallthrough; case 2: a += (u32)k[1]<<8; fallthrough; case 1: a += k[0]; __jhash_final(a, b, c); break; case 0: /* Nothing left to add */ break; } return c; } /* jhash2 - hash an array of u32's * @k: the key which must be an array of u32's * @length: the number of u32's in the key * @initval: the previous hash, or an arbitray value * * Returns the hash value of the key. */ static inline u32 jhash2(const u32 *k, u32 length, u32 initval) { u32 a, b, c; /* Set up the internal state */ a = b = c = JHASH_INITVAL + (length<<2) + initval; /* Handle most of the key */ while (length > 3) { a += k[0]; b += k[1]; c += k[2]; __jhash_mix(a, b, c); length -= 3; k += 3; } /* Handle the last 3 u32's */ switch (length) { case 3: c += k[2]; fallthrough; case 2: b += k[1]; fallthrough; case 1: a += k[0]; __jhash_final(a, b, c); break; case 0: /* Nothing left to add */ break; } return c; } /* __jhash_nwords - hash exactly 3, 2 or 1 word(s) */ static inline u32 __jhash_nwords(u32 a, u32 b, u32 c, u32 initval) { a += initval; b += initval; c += initval; __jhash_final(a, b, c); return c; } static inline u32 jhash_3words(u32 a, u32 b, u32 c, u32 initval) { return __jhash_nwords(a, b, c, initval + JHASH_INITVAL + (3 << 2)); } static inline u32 jhash_2words(u32 a, u32 b, u32 initval) { return __jhash_nwords(a, b, 0, initval + JHASH_INITVAL + (2 << 2)); } static inline u32 jhash_1word(u32 a, u32 initval) { return __jhash_nwords(a, 0, 0, initval + JHASH_INITVAL + (1 << 2)); } #endif /* _LINUX_JHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _INPUT_MT_H #define _INPUT_MT_H /* * Input Multitouch Library * * Copyright (c) 2010 Henrik Rydberg */ #include <linux/input.h> #define TRKID_MAX 0xffff #define INPUT_MT_POINTER 0x0001 /* pointer device, e.g. trackpad */ #define INPUT_MT_DIRECT 0x0002 /* direct device, e.g. touchscreen */ #define INPUT_MT_DROP_UNUSED 0x0004 /* drop contacts not seen in frame */ #define INPUT_MT_TRACK 0x0008 /* use in-kernel tracking */ #define INPUT_MT_SEMI_MT 0x0010 /* semi-mt device, finger count handled manually */ /** * struct input_mt_slot - represents the state of an input MT slot * @abs: holds current values of ABS_MT axes for this slot * @frame: last frame at which input_mt_report_slot_state() was called * @key: optional driver designation of this slot */ struct input_mt_slot { int abs[ABS_MT_LAST - ABS_MT_FIRST + 1]; unsigned int frame; unsigned int key; }; /** * struct input_mt - state of tracked contacts * @trkid: stores MT tracking ID for the next contact * @num_slots: number of MT slots the device uses * @slot: MT slot currently being transmitted * @flags: input_mt operation flags * @frame: increases every time input_mt_sync_frame() is called * @red: reduced cost matrix for in-kernel tracking * @slots: array of slots holding current values of tracked contacts */ struct input_mt { int trkid; int num_slots; int slot; unsigned int flags; unsigned int frame; int *red; struct input_mt_slot slots[]; }; static inline void input_mt_set_value(struct input_mt_slot *slot, unsigned code, int value) { slot->abs[code - ABS_MT_FIRST] = value; } static inline int input_mt_get_value(const struct input_mt_slot *slot, unsigned code) { return slot->abs[code - ABS_MT_FIRST]; } static inline bool input_mt_is_active(const struct input_mt_slot *slot) { return input_mt_get_value(slot, ABS_MT_TRACKING_ID) >= 0; } static inline bool input_mt_is_used(const struct input_mt *mt, const struct input_mt_slot *slot) { return slot->frame == mt->frame; } int input_mt_init_slots(struct input_dev *dev, unsigned int num_slots, unsigned int flags); void input_mt_destroy_slots(struct input_dev *dev); static inline int input_mt_new_trkid(struct input_mt *mt) { return mt->trkid++ & TRKID_MAX; } static inline void input_mt_slot(struct input_dev *dev, int slot) { input_event(dev, EV_ABS, ABS_MT_SLOT, slot); } static inline bool input_is_mt_value(int axis) { return axis >= ABS_MT_FIRST && axis <= ABS_MT_LAST; } static inline bool input_is_mt_axis(int axis) { return axis == ABS_MT_SLOT || input_is_mt_value(axis); } bool input_mt_report_slot_state(struct input_dev *dev, unsigned int tool_type, bool active); static inline void input_mt_report_slot_inactive(struct input_dev *dev) { input_mt_report_slot_state(dev, 0, false); } void input_mt_report_finger_count(struct input_dev *dev, int count); void input_mt_report_pointer_emulation(struct input_dev *dev, bool use_count); void input_mt_drop_unused(struct input_dev *dev); void input_mt_sync_frame(struct input_dev *dev); /** * struct input_mt_pos - contact position * @x: horizontal coordinate * @y: vertical coordinate */ struct input_mt_pos { s16 x, y; }; int input_mt_assign_slots(struct input_dev *dev, int *slots, const struct input_mt_pos *pos, int num_pos, int dmax); int input_mt_get_slot_by_key(struct input_dev *dev, int key); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_STRING_H_ #define _LINUX_STRING_H_ #include <linux/compiler.h> /* for inline */ #include <linux/types.h> /* for size_t */ #include <linux/stddef.h> /* for NULL */ #include <stdarg.h> #include <uapi/linux/string.h> extern char *strndup_user(const char __user *, long); extern void *memdup_user(const void __user *, size_t); extern void *vmemdup_user(const void __user *, size_t); extern void *memdup_user_nul(const void __user *, size_t); /* * Include machine specific inline routines */ #include <asm/string.h> #ifndef __HAVE_ARCH_STRCPY extern char * strcpy(char *,const char *); #endif #ifndef __HAVE_ARCH_STRNCPY extern char * strncpy(char *,const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRLCPY size_t strlcpy(char *, const char *, size_t); #endif #ifndef __HAVE_ARCH_STRSCPY ssize_t strscpy(char *, const char *, size_t); #endif /* Wraps calls to strscpy()/memset(), no arch specific code required */ ssize_t strscpy_pad(char *dest, const char *src, size_t count); #ifndef __HAVE_ARCH_STRCAT extern char * strcat(char *, const char *); #endif #ifndef __HAVE_ARCH_STRNCAT extern char * strncat(char *, const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRLCAT extern size_t strlcat(char *, const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRCMP extern int strcmp(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRNCMP extern int strncmp(const char *,const char *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_STRCASECMP extern int strcasecmp(const char *s1, const char *s2); #endif #ifndef __HAVE_ARCH_STRNCASECMP extern int strncasecmp(const char *s1, const char *s2, size_t n); #endif #ifndef __HAVE_ARCH_STRCHR extern char * strchr(const char *,int); #endif #ifndef __HAVE_ARCH_STRCHRNUL extern char * strchrnul(const char *,int); #endif extern char * strnchrnul(const char *, size_t, int); #ifndef __HAVE_ARCH_STRNCHR extern char * strnchr(const char *, size_t, int); #endif #ifndef __HAVE_ARCH_STRRCHR extern char * strrchr(const char *,int); #endif extern char * __must_check skip_spaces(const char *); extern char *strim(char *); static inline __must_check char *strstrip(char *str) { return strim(str); } #ifndef __HAVE_ARCH_STRSTR extern char * strstr(const char *, const char *); #endif #ifndef __HAVE_ARCH_STRNSTR extern char * strnstr(const char *, const char *, size_t); #endif #ifndef __HAVE_ARCH_STRLEN extern __kernel_size_t strlen(const char *); #endif #ifndef __HAVE_ARCH_STRNLEN extern __kernel_size_t strnlen(const char *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_STRPBRK extern char * strpbrk(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRSEP extern char * strsep(char **,const char *); #endif #ifndef __HAVE_ARCH_STRSPN extern __kernel_size_t strspn(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRCSPN extern __kernel_size_t strcspn(const char *,const char *); #endif #ifndef __HAVE_ARCH_MEMSET extern void * memset(void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET16 extern void *memset16(uint16_t *, uint16_t, __kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET32 extern void *memset32(uint32_t *, uint32_t, __kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET64 extern void *memset64(uint64_t *, uint64_t, __kernel_size_t); #endif static inline void *memset_l(unsigned long *p, unsigned long v, __kernel_size_t n) { if (BITS_PER_LONG == 32) return memset32((uint32_t *)p, v, n); else return memset64((uint64_t *)p, v, n); } static inline void *memset_p(void **p, void *v, __kernel_size_t n) { if (BITS_PER_LONG == 32) return memset32((uint32_t *)p, (uintptr_t)v, n); else return memset64((uint64_t *)p, (uintptr_t)v, n); } extern void **__memcat_p(void **a, void **b); #define memcat_p(a, b) ({ \ BUILD_BUG_ON_MSG(!__same_type(*(a), *(b)), \ "type mismatch in memcat_p()"); \ (typeof(*a) *)__memcat_p((void **)(a), (void **)(b)); \ }) #ifndef __HAVE_ARCH_MEMCPY extern void * memcpy(void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMMOVE extern void * memmove(void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSCAN extern void * memscan(void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCMP extern int memcmp(const void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_BCMP extern int bcmp(const void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCHR extern void * memchr(const void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCPY_FLUSHCACHE static inline void memcpy_flushcache(void *dst, const void *src, size_t cnt) { memcpy(dst, src, cnt); } #endif void *memchr_inv(const void *s, int c, size_t n); char *strreplace(char *s, char old, char new); extern void kfree_const(const void *x); extern char *kstrdup(const char *s, gfp_t gfp) __malloc; extern const char *kstrdup_const(const char *s, gfp_t gfp); extern char *kstrndup(const char *s, size_t len, gfp_t gfp); extern void *kmemdup(const void *src, size_t len, gfp_t gfp); extern char *kmemdup_nul(const char *s, size_t len, gfp_t gfp); extern char **argv_split(gfp_t gfp, const char *str, int *argcp); extern void argv_free(char **argv); extern bool sysfs_streq(const char *s1, const char *s2); extern int kstrtobool(const char *s, bool *res); static inline int strtobool(const char *s, bool *res) { return kstrtobool(s, res); } int match_string(const char * const *array, size_t n, const char *string); int __sysfs_match_string(const char * const *array, size_t n, const char *s); /** * sysfs_match_string - matches given string in an array * @_a: array of strings * @_s: string to match with * * Helper for __sysfs_match_string(). Calculates the size of @a automatically. */ #define sysfs_match_string(_a, _s) __sysfs_match_string(_a, ARRAY_SIZE(_a), _s) #ifdef CONFIG_BINARY_PRINTF int vbin_printf(u32 *bin_buf, size_t size, const char *fmt, va_list args); int bstr_printf(char *buf, size_t size, const char *fmt, const u32 *bin_buf); int bprintf(u32 *bin_buf, size_t size, const char *fmt, ...) __printf(3, 4); #endif extern ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, const void *from, size_t available); int ptr_to_hashval(const void *ptr, unsigned long *hashval_out); /** * strstarts - does @str start with @prefix? * @str: string to examine * @prefix: prefix to look for. */ static inline bool strstarts(const char *str, const char *prefix) { return strncmp(str, prefix, strlen(prefix)) == 0; } size_t memweight(const void *ptr, size_t bytes); /** * memzero_explicit - Fill a region of memory (e.g. sensitive * keying data) with 0s. * @s: Pointer to the start of the area. * @count: The size of the area. * * Note: usually using memset() is just fine (!), but in cases * where clearing out _local_ data at the end of a scope is * necessary, memzero_explicit() should be used instead in * order to prevent the compiler from optimising away zeroing. * * memzero_explicit() doesn't need an arch-specific version as * it just invokes the one of memset() implicitly. */ static inline void memzero_explicit(void *s, size_t count) { memset(s, 0, count); barrier_data(s); } /** * kbasename - return the last part of a pathname. * * @path: path to extract the filename from. */ static inline const char *kbasename(const char *path) { const char *tail = strrchr(path, '/'); return tail ? tail + 1 : path; } #define __FORTIFY_INLINE extern __always_inline __attribute__((gnu_inline)) #define __RENAME(x) __asm__(#x) void fortify_panic(const char *name) __noreturn __cold; void __read_overflow(void) __compiletime_error("detected read beyond size of object passed as 1st parameter"); void __read_overflow2(void) __compiletime_error("detected read beyond size of object passed as 2nd parameter"); void __read_overflow3(void) __compiletime_error("detected read beyond size of object passed as 3rd parameter"); void __write_overflow(void) __compiletime_error("detected write beyond size of object passed as 1st parameter"); #if !defined(__NO_FORTIFY) && defined(__OPTIMIZE__) && defined(CONFIG_FORTIFY_SOURCE) #ifdef CONFIG_KASAN extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); #else #define __underlying_memchr __builtin_memchr #define __underlying_memcmp __builtin_memcmp #define __underlying_memcpy __builtin_memcpy #define __underlying_memmove __builtin_memmove #define __underlying_memset __builtin_memset #define __underlying_strcat __builtin_strcat #define __underlying_strcpy __builtin_strcpy #define __underlying_strlen __builtin_strlen #define __underlying_strncat __builtin_strncat #define __underlying_strncpy __builtin_strncpy #endif __FORTIFY_INLINE char *strncpy(char *p, const char *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __write_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_strncpy(p, q, size); } __FORTIFY_INLINE char *strcat(char *p, const char *q) { size_t p_size = __builtin_object_size(p, 0); if (p_size == (size_t)-1) return __underlying_strcat(p, q); if (strlcat(p, q, p_size) >= p_size) fortify_panic(__func__); return p; } __FORTIFY_INLINE __kernel_size_t strlen(const char *p) { __kernel_size_t ret; size_t p_size = __builtin_object_size(p, 0); /* Work around gcc excess stack consumption issue */ if (p_size == (size_t)-1 || (__builtin_constant_p(p[p_size - 1]) && p[p_size - 1] == '\0')) return __underlying_strlen(p); ret = strnlen(p, p_size); if (p_size <= ret) fortify_panic(__func__); return ret; } extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen); __FORTIFY_INLINE __kernel_size_t strnlen(const char *p, __kernel_size_t maxlen) { size_t p_size = __builtin_object_size(p, 0); __kernel_size_t ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size); if (p_size <= ret && maxlen != ret) fortify_panic(__func__); return ret; } /* defined after fortified strlen to reuse it */ extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy); __FORTIFY_INLINE size_t strlcpy(char *p, const char *q, size_t size) { size_t ret; size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __real_strlcpy(p, q, size); ret = strlen(q); if (size) { size_t len = (ret >= size) ? size - 1 : ret; if (__builtin_constant_p(len) && len >= p_size) __write_overflow(); if (len >= p_size) fortify_panic(__func__); __underlying_memcpy(p, q, len); p[len] = '\0'; } return ret; } /* defined after fortified strlen and strnlen to reuse them */ __FORTIFY_INLINE char *strncat(char *p, const char *q, __kernel_size_t count) { size_t p_len, copy_len; size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __underlying_strncat(p, q, count); p_len = strlen(p); copy_len = strnlen(q, count); if (p_size < p_len + copy_len + 1) fortify_panic(__func__); __underlying_memcpy(p + p_len, q, copy_len); p[p_len + copy_len] = '\0'; return p; } __FORTIFY_INLINE void *memset(void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __write_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_memset(p, c, size); } __FORTIFY_INLINE void *memcpy(void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __write_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memcpy(p, q, size); } __FORTIFY_INLINE void *memmove(void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __write_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memmove(p, q, size); } extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); __FORTIFY_INLINE void *memscan(void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_memscan(p, c, size); } __FORTIFY_INLINE int memcmp(const void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __read_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memcmp(p, q, size); } __FORTIFY_INLINE void *memchr(const void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_memchr(p, c, size); } void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); __FORTIFY_INLINE void *memchr_inv(const void *p, int c, size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_memchr_inv(p, c, size); } extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup); __FORTIFY_INLINE void *kmemdup(const void *p, size_t size, gfp_t gfp) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_kmemdup(p, size, gfp); } /* defined after fortified strlen and memcpy to reuse them */ __FORTIFY_INLINE char *strcpy(char *p, const char *q) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __underlying_strcpy(p, q); memcpy(p, q, strlen(q) + 1); return p; } /* Don't use these outside the FORITFY_SOURCE implementation */ #undef __underlying_memchr #undef __underlying_memcmp #undef __underlying_memcpy #undef __underlying_memmove #undef __underlying_memset #undef __underlying_strcat #undef __underlying_strcpy #undef __underlying_strlen #undef __underlying_strncat #undef __underlying_strncpy #endif /** * memcpy_and_pad - Copy one buffer to another with padding * @dest: Where to copy to * @dest_len: The destination buffer size * @src: Where to copy from * @count: The number of bytes to copy * @pad: Character to use for padding if space is left in destination. */ static inline void memcpy_and_pad(void *dest, size_t dest_len, const void *src, size_t count, int pad) { if (dest_len > count) { memcpy(dest, src, count); memset(dest + count, pad, dest_len - count); } else memcpy(dest, src, dest_len); } /** * str_has_prefix - Test if a string has a given prefix * @str: The string to test * @prefix: The string to see if @str starts with * * A common way to test a prefix of a string is to do: * strncmp(str, prefix, sizeof(prefix) - 1) * * But this can lead to bugs due to typos, or if prefix is a pointer * and not a constant. Instead use str_has_prefix(). * * Returns: * * strlen(@prefix) if @str starts with @prefix * * 0 if @str does not start with @prefix */ static __always_inline size_t str_has_prefix(const char *str, const char *prefix) { size_t len = strlen(prefix); return strncmp(str, prefix, len) == 0 ? len : 0; } #endif /* _LINUX_STRING_H_ */
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/file.c * * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes * * Manage the dynamic fd arrays in the process files_struct. */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/bitops.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/close_range.h> #include <net/sock.h> unsigned int sysctl_nr_open __read_mostly = 1024*1024; unsigned int sysctl_nr_open_min = BITS_PER_LONG; /* our min() is unusable in constant expressions ;-/ */ #define __const_min(x, y) ((x) < (y) ? (x) : (y)) unsigned int sysctl_nr_open_max = __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG; static void __free_fdtable(struct fdtable *fdt) { kvfree(fdt->fd); kvfree(fdt->open_fds); kfree(fdt); } static void free_fdtable_rcu(struct rcu_head *rcu) { __free_fdtable(container_of(rcu, struct fdtable, rcu)); } #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) /* * Copy 'count' fd bits from the old table to the new table and clear the extra * space if any. This does not copy the file pointers. Called with the files * spinlock held for write. */ static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, unsigned int count) { unsigned int cpy, set; cpy = count / BITS_PER_BYTE; set = (nfdt->max_fds - count) / BITS_PER_BYTE; memcpy(nfdt->open_fds, ofdt->open_fds, cpy); memset((char *)nfdt->open_fds + cpy, 0, set); memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); memset((char *)nfdt->close_on_exec + cpy, 0, set); cpy = BITBIT_SIZE(count); set = BITBIT_SIZE(nfdt->max_fds) - cpy; memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy); memset((char *)nfdt->full_fds_bits + cpy, 0, set); } /* * Copy all file descriptors from the old table to the new, expanded table and * clear the extra space. Called with the files spinlock held for write. */ static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) { size_t cpy, set; BUG_ON(nfdt->max_fds < ofdt->max_fds); cpy = ofdt->max_fds * sizeof(struct file *); set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); memcpy(nfdt->fd, ofdt->fd, cpy); memset((char *)nfdt->fd + cpy, 0, set); copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds); } static struct fdtable * alloc_fdtable(unsigned int nr) { struct fdtable *fdt; void *data; /* * Figure out how many fds we actually want to support in this fdtable. * Allocation steps are keyed to the size of the fdarray, since it * grows far faster than any of the other dynamic data. We try to fit * the fdarray into comfortable page-tuned chunks: starting at 1024B * and growing in powers of two from there on. */ nr /= (1024 / sizeof(struct file *)); nr = roundup_pow_of_two(nr + 1); nr *= (1024 / sizeof(struct file *)); /* * Note that this can drive nr *below* what we had passed if sysctl_nr_open * had been set lower between the check in expand_files() and here. Deal * with that in caller, it's cheaper that way. * * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise * bitmaps handling below becomes unpleasant, to put it mildly... */ if (unlikely(nr > sysctl_nr_open)) nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT); if (!fdt) goto out; fdt->max_fds = nr; data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT); if (!data) goto out_fdt; fdt->fd = data; data = kvmalloc(max_t(size_t, 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES), GFP_KERNEL_ACCOUNT); if (!data) goto out_arr; fdt->open_fds = data; data += nr / BITS_PER_BYTE; fdt->close_on_exec = data; data += nr / BITS_PER_BYTE; fdt->full_fds_bits = data; return fdt; out_arr: kvfree(fdt->fd); out_fdt: kfree(fdt); out: return NULL; } /* * Expand the file descriptor table. * This function will allocate a new fdtable and both fd array and fdset, of * the given size. * Return <0 error code on error; 1 on successful completion. * The files->file_lock should be held on entry, and will be held on exit. */ static int expand_fdtable(struct files_struct *files, unsigned int nr) __releases(files->file_lock) __acquires(files->file_lock) { struct fdtable *new_fdt, *cur_fdt; spin_unlock(&files->file_lock); new_fdt = alloc_fdtable(nr); /* make sure all __fd_install() have seen resize_in_progress * or have finished their rcu_read_lock_sched() section. */ if (atomic_read(&files->count) > 1) synchronize_rcu(); spin_lock(&files->file_lock); if (!new_fdt) return -ENOMEM; /* * extremely unlikely race - sysctl_nr_open decreased between the check in * caller and alloc_fdtable(). Cheaper to catch it here... */ if (unlikely(new_fdt->max_fds <= nr)) { __free_fdtable(new_fdt); return -EMFILE; } cur_fdt = files_fdtable(files); BUG_ON(nr < cur_fdt->max_fds); copy_fdtable(new_fdt, cur_fdt); rcu_assign_pointer(files->fdt, new_fdt); if (cur_fdt != &files->fdtab) call_rcu(&cur_fdt->rcu, free_fdtable_rcu); /* coupled with smp_rmb() in __fd_install() */ smp_wmb(); return 1; } /* * Expand files. * This function will expand the file structures, if the requested size exceeds * the current capacity and there is room for expansion. * Return <0 error code on error; 0 when nothing done; 1 when files were * expanded and execution may have blocked. * The files->file_lock should be held on entry, and will be held on exit. */ static int expand_files(struct files_struct *files, unsigned int nr) __releases(files->file_lock) __acquires(files->file_lock) { struct fdtable *fdt; int expanded = 0; repeat: fdt = files_fdtable(files); /* Do we need to expand? */ if (nr < fdt->max_fds) return expanded; /* Can we expand? */ if (nr >= sysctl_nr_open) return -EMFILE; if (unlikely(files->resize_in_progress)) { spin_unlock(&files->file_lock); expanded = 1; wait_event(files->resize_wait, !files->resize_in_progress); spin_lock(&files->file_lock); goto repeat; } /* All good, so we try */ files->resize_in_progress = true; expanded = expand_fdtable(files, nr); files->resize_in_progress = false; wake_up_all(&files->resize_wait); return expanded; } static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt) { __set_bit(fd, fdt->close_on_exec); } static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt) { if (test_bit(fd, fdt->close_on_exec)) __clear_bit(fd, fdt->close_on_exec); } static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt) { __set_bit(fd, fdt->open_fds); fd /= BITS_PER_LONG; if (!~fdt->open_fds[fd]) __set_bit(fd, fdt->full_fds_bits); } static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) { __clear_bit(fd, fdt->open_fds); __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits); } static unsigned int count_open_files(struct fdtable *fdt) { unsigned int size = fdt->max_fds; unsigned int i; /* Find the last open fd */ for (i = size / BITS_PER_LONG; i > 0; ) { if (fdt->open_fds[--i]) break; } i = (i + 1) * BITS_PER_LONG; return i; } static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds) { unsigned int count; count = count_open_files(fdt); if (max_fds < NR_OPEN_DEFAULT) max_fds = NR_OPEN_DEFAULT; return min(count, max_fds); } /* * Allocate a new files structure and copy contents from the * passed in files structure. * errorp will be valid only when the returned files_struct is NULL. */ struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp) { struct files_struct *newf; struct file **old_fds, **new_fds; unsigned int open_files, i; struct fdtable *old_fdt, *new_fdt; *errorp = -ENOMEM; newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); if (!newf) goto out; atomic_set(&newf->count, 1); spin_lock_init(&newf->file_lock); newf->resize_in_progress = false; init_waitqueue_head(&newf->resize_wait); newf->next_fd = 0; new_fdt = &newf->fdtab; new_fdt->max_fds = NR_OPEN_DEFAULT; new_fdt->close_on_exec = newf->close_on_exec_init; new_fdt->open_fds = newf->open_fds_init; new_fdt->full_fds_bits = newf->full_fds_bits_init; new_fdt->fd = &newf->fd_array[0]; spin_lock(&oldf->file_lock); old_fdt = files_fdtable(oldf); open_files = sane_fdtable_size(old_fdt, max_fds); /* * Check whether we need to allocate a larger fd array and fd set. */ while (unlikely(open_files > new_fdt->max_fds)) { spin_unlock(&oldf->file_lock); if (new_fdt != &newf->fdtab) __free_fdtable(new_fdt); new_fdt = alloc_fdtable(open_files - 1); if (!new_fdt) { *errorp = -ENOMEM; goto out_release; } /* beyond sysctl_nr_open; nothing to do */ if (unlikely(new_fdt->max_fds < open_files)) { __free_fdtable(new_fdt); *errorp = -EMFILE; goto out_release; } /* * Reacquire the oldf lock and a pointer to its fd table * who knows it may have a new bigger fd table. We need * the latest pointer. */ spin_lock(&oldf->file_lock); old_fdt = files_fdtable(oldf); open_files = sane_fdtable_size(old_fdt, max_fds); } copy_fd_bitmaps(new_fdt, old_fdt, open_files); old_fds = old_fdt->fd; new_fds = new_fdt->fd; for (i = open_files; i != 0; i--) { struct file *f = *old_fds++; if (f) { get_file(f); } else { /* * The fd may be claimed in the fd bitmap but not yet * instantiated in the files array if a sibling thread * is partway through open(). So make sure that this * fd is available to the new process. */ __clear_open_fd(open_files - i, new_fdt); } rcu_assign_pointer(*new_fds++, f); } spin_unlock(&oldf->file_lock); /* clear the remainder */ memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); rcu_assign_pointer(newf->fdt, new_fdt); return newf; out_release: kmem_cache_free(files_cachep, newf); out: return NULL; } static struct fdtable *close_files(struct files_struct * files) { /* * It is safe to dereference the fd table without RCU or * ->file_lock because this is the last reference to the * files structure. */ struct fdtable *fdt = rcu_dereference_raw(files->fdt); unsigned int i, j = 0; for (;;) { unsigned long set; i = j * BITS_PER_LONG; if (i >= fdt->max_fds) break; set = fdt->open_fds[j++]; while (set) { if (set & 1) { struct file * file = xchg(&fdt->fd[i], NULL); if (file) { filp_close(file, files); cond_resched(); } } i++; set >>= 1; } } return fdt; } struct files_struct *get_files_struct(struct task_struct *task) { struct files_struct *files; task_lock(task); files = task->files; if (files) atomic_inc(&files->count); task_unlock(task); return files; } void put_files_struct(struct files_struct *files) { if (atomic_dec_and_test(&files->count)) { struct fdtable *fdt = close_files(files); /* free the arrays if they are not embedded */ if (fdt != &files->fdtab) __free_fdtable(fdt); kmem_cache_free(files_cachep, files); } } void reset_files_struct(struct files_struct *files) { struct task_struct *tsk = current; struct files_struct *old; old = tsk->files; task_lock(tsk); tsk->files = files; task_unlock(tsk); put_files_struct(old); } void exit_files(struct task_struct *tsk) { struct files_struct * files = tsk->files; if (files) { task_lock(tsk); tsk->files = NULL; task_unlock(tsk); put_files_struct(files); } } struct files_struct init_files = { .count = ATOMIC_INIT(1), .fdt = &init_files.fdtab, .fdtab = { .max_fds = NR_OPEN_DEFAULT, .fd = &init_files.fd_array[0], .close_on_exec = init_files.close_on_exec_init, .open_fds = init_files.open_fds_init, .full_fds_bits = init_files.full_fds_bits_init, }, .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), .resize_wait = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait), }; static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start) { unsigned int maxfd = fdt->max_fds; unsigned int maxbit = maxfd / BITS_PER_LONG; unsigned int bitbit = start / BITS_PER_LONG; bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; if (bitbit > maxfd) return maxfd; if (bitbit > start) start = bitbit; return find_next_zero_bit(fdt->open_fds, maxfd, start); } /* * allocate a file descriptor, mark it busy. */ int __alloc_fd(struct files_struct *files, unsigned start, unsigned end, unsigned flags) { unsigned int fd; int error; struct fdtable *fdt; spin_lock(&files->file_lock); repeat: fdt = files_fdtable(files); fd = start; if (fd < files->next_fd) fd = files->next_fd; if (fd < fdt->max_fds) fd = find_next_fd(fdt, fd); /* * N.B. For clone tasks sharing a files structure, this test * will limit the total number of files that can be opened. */ error = -EMFILE; if (fd >= end) goto out; error = expand_files(files, fd); if (error < 0) goto out; /* * If we needed to expand the fs array we * might have blocked - try again. */ if (error) goto repeat; if (start <= files->next_fd) files->next_fd = fd + 1; __set_open_fd(fd, fdt); if (flags & O_CLOEXEC) __set_close_on_exec(fd, fdt); else __clear_close_on_exec(fd, fdt); error = fd; #if 1 /* Sanity check */ if (rcu_access_pointer(fdt->fd[fd]) != NULL) { printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); rcu_assign_pointer(fdt->fd[fd], NULL); } #endif out: spin_unlock(&files->file_lock); return error; } static int alloc_fd(unsigned start, unsigned flags) { return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags); } int __get_unused_fd_flags(unsigned flags, unsigned long nofile) { return __alloc_fd(current->files, 0, nofile, flags); } int get_unused_fd_flags(unsigned flags) { return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE)); } EXPORT_SYMBOL(get_unused_fd_flags); static void __put_unused_fd(struct files_struct *files, unsigned int fd) { struct fdtable *fdt = files_fdtable(files); __clear_open_fd(fd, fdt); if (fd < files->next_fd) files->next_fd = fd; } void put_unused_fd(unsigned int fd) { struct files_struct *files = current->files; spin_lock(&files->file_lock); __put_unused_fd(files, fd); spin_unlock(&files->file_lock); } EXPORT_SYMBOL(put_unused_fd); /* * Install a file pointer in the fd array. * * The VFS is full of places where we drop the files lock between * setting the open_fds bitmap and installing the file in the file * array. At any such point, we are vulnerable to a dup2() race * installing a file in the array before us. We need to detect this and * fput() the struct file we are about to overwrite in this case. * * It should never happen - if we allow dup2() do it, _really_ bad things * will follow. * * NOTE: __fd_install() variant is really, really low-level; don't * use it unless you are forced to by truly lousy API shoved down * your throat. 'files' *MUST* be either current->files or obtained * by get_files_struct(current) done by whoever had given it to you, * or really bad things will happen. Normally you want to use * fd_install() instead. */ void __fd_install(struct files_struct *files, unsigned int fd, struct file *file) { struct fdtable *fdt; rcu_read_lock_sched(); if (unlikely(files->resize_in_progress)) { rcu_read_unlock_sched(); spin_lock(&files->file_lock); fdt = files_fdtable(files); BUG_ON(fdt->fd[fd] != NULL); rcu_assign_pointer(fdt->fd[fd], file); spin_unlock(&files->file_lock); return; } /* coupled with smp_wmb() in expand_fdtable() */ smp_rmb(); fdt = rcu_dereference_sched(files->fdt); BUG_ON(fdt->fd[fd] != NULL); rcu_assign_pointer(fdt->fd[fd], file); rcu_read_unlock_sched(); } /* * This consumes the "file" refcount, so callers should treat it * as if they had called fput(file). */ void fd_install(unsigned int fd, struct file *file) { __fd_install(current->files, fd, file); } EXPORT_SYMBOL(fd_install); static struct file *pick_file(struct files_struct *files, unsigned fd) { struct file *file = NULL; struct fdtable *fdt; spin_lock(&files->file_lock); fdt = files_fdtable(files); if (fd >= fdt->max_fds) goto out_unlock; file = fdt->fd[fd]; if (!file) goto out_unlock; rcu_assign_pointer(fdt->fd[fd], NULL); __put_unused_fd(files, fd); out_unlock: spin_unlock(&files->file_lock); return file; } /* * The same warnings as for __alloc_fd()/__fd_install() apply here... */ int __close_fd(struct files_struct *files, unsigned fd) { struct file *file; file = pick_file(files, fd); if (!file) return -EBADF; return filp_close(file, files); } EXPORT_SYMBOL(__close_fd); /* for ksys_close() */ /** * __close_range() - Close all file descriptors in a given range. * * @fd: starting file descriptor to close * @max_fd: last file descriptor to close * * This closes a range of file descriptors. All file descriptors * from @fd up to and including @max_fd are closed. */ int __close_range(unsigned fd, unsigned max_fd, unsigned int flags) { unsigned int cur_max; struct task_struct *me = current; struct files_struct *cur_fds = me->files, *fds = NULL; if (flags & ~CLOSE_RANGE_UNSHARE) return -EINVAL; if (fd > max_fd) return -EINVAL; rcu_read_lock(); cur_max = files_fdtable(cur_fds)->max_fds; rcu_read_unlock(); /* cap to last valid index into fdtable */ cur_max--; if (flags & CLOSE_RANGE_UNSHARE) { int ret; unsigned int max_unshare_fds = NR_OPEN_MAX; /* * If the requested range is greater than the current maximum, * we're closing everything so only copy all file descriptors * beneath the lowest file descriptor. */ if (max_fd >= cur_max) max_unshare_fds = fd; ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds); if (ret) return ret; /* * We used to share our file descriptor table, and have now * created a private one, make sure we're using it below. */ if (fds) swap(cur_fds, fds); } max_fd = min(max_fd, cur_max); while (fd <= max_fd) { struct file *file; file = pick_file(cur_fds, fd++); if (!file) continue; filp_close(file, cur_fds); cond_resched(); } if (fds) { /* * We're done closing the files we were supposed to. Time to install * the new file descriptor table and drop the old one. */ task_lock(me); me->files = cur_fds; task_unlock(me); put_files_struct(fds); } return 0; } /* * variant of __close_fd that gets a ref on the file for later fput. * The caller must ensure that filp_close() called on the file, and then * an fput(). */ int __close_fd_get_file(unsigned int fd, struct file **res) { struct files_struct *files = current->files; struct file *file; struct fdtable *fdt; spin_lock(&files->file_lock); fdt = files_fdtable(files); if (fd >= fdt->max_fds) goto out_unlock; file = fdt->fd[fd]; if (!file) goto out_unlock; rcu_assign_pointer(fdt->fd[fd], NULL); __put_unused_fd(files, fd); spin_unlock(&files->file_lock); get_file(file); *res = file; return 0; out_unlock: spin_unlock(&files->file_lock); *res = NULL; return -ENOENT; } void do_close_on_exec(struct files_struct *files) { unsigned i; struct fdtable *fdt; /* exec unshares first */ spin_lock(&files->file_lock); for (i = 0; ; i++) { unsigned long set; unsigned fd = i * BITS_PER_LONG; fdt = files_fdtable(files); if (fd >= fdt->max_fds) break; set = fdt->close_on_exec[i]; if (!set) continue; fdt->close_on_exec[i] = 0; for ( ; set ; fd++, set >>= 1) { struct file *file; if (!(set & 1)) continue; file = fdt->fd[fd]; if (!file) continue; rcu_assign_pointer(fdt->fd[fd], NULL); __put_unused_fd(files, fd); spin_unlock(&files->file_lock); filp_close(file, files); cond_resched(); spin_lock(&files->file_lock); } } spin_unlock(&files->file_lock); } static struct file *__fget_files(struct files_struct *files, unsigned int fd, fmode_t mask, unsigned int refs) { struct file *file; rcu_read_lock(); loop: file = fcheck_files(files, fd); if (file) { /* File object ref couldn't be taken. * dup2() atomicity guarantee is the reason * we loop to catch the new file (or NULL pointer) */ if (file->f_mode & mask) file = NULL; else if (!get_file_rcu_many(file, refs)) goto loop; else if (__fcheck_files(files, fd) != file) { fput_many(file, refs); goto loop; } } rcu_read_unlock(); return file; } static inline struct file *__fget(unsigned int fd, fmode_t mask, unsigned int refs) { return __fget_files(current->files, fd, mask, refs); } struct file *fget_many(unsigned int fd, unsigned int refs) { return __fget(fd, FMODE_PATH, refs); } struct file *fget(unsigned int fd) { return __fget(fd, FMODE_PATH, 1); } EXPORT_SYMBOL(fget); struct file *fget_raw(unsigned int fd) { return __fget(fd, 0, 1); } EXPORT_SYMBOL(fget_raw); struct file *fget_task(struct task_struct *task, unsigned int fd) { struct file *file = NULL; task_lock(task); if (task->files) file = __fget_files(task->files, fd, 0, 1); task_unlock(task); return file; } /* * Lightweight file lookup - no refcnt increment if fd table isn't shared. * * You can use this instead of fget if you satisfy all of the following * conditions: * 1) You must call fput_light before exiting the syscall and returning control * to userspace (i.e. you cannot remember the returned struct file * after * returning to userspace). * 2) You must not call filp_close on the returned struct file * in between * calls to fget_light and fput_light. * 3) You must not clone the current task in between the calls to fget_light * and fput_light. * * The fput_needed flag returned by fget_light should be passed to the * corresponding fput_light. */ static unsigned long __fget_light(unsigned int fd, fmode_t mask) { struct files_struct *files = current->files; struct file *file; if (atomic_read(&files->count) == 1) { file = __fcheck_files(files, fd); if (!file || unlikely(file->f_mode & mask)) return 0; return (unsigned long)file; } else { file = __fget(fd, mask, 1); if (!file) return 0; return FDPUT_FPUT | (unsigned long)file; } } unsigned long __fdget(unsigned int fd) { return __fget_light(fd, FMODE_PATH); } EXPORT_SYMBOL(__fdget); unsigned long __fdget_raw(unsigned int fd) { return __fget_light(fd, 0); } unsigned long __fdget_pos(unsigned int fd) { unsigned long v = __fdget(fd); struct file *file = (struct file *)(v & ~3); if (file && (file->f_mode & FMODE_ATOMIC_POS)) { if (file_count(file) > 1) { v |= FDPUT_POS_UNLOCK; mutex_lock(&file->f_pos_lock); } } return v; } void __f_unlock_pos(struct file *f) { mutex_unlock(&f->f_pos_lock); } /* * We only lock f_pos if we have threads or if the file might be * shared with another process. In both cases we'll have an elevated * file count (done either by fdget() or by fork()). */ void set_close_on_exec(unsigned int fd, int flag) { struct files_struct *files = current->files; struct fdtable *fdt; spin_lock(&files->file_lock); fdt = files_fdtable(files); if (flag) __set_close_on_exec(fd, fdt); else __clear_close_on_exec(fd, fdt); spin_unlock(&files->file_lock); } bool get_close_on_exec(unsigned int fd) { struct files_struct *files = current->files; struct fdtable *fdt; bool res; rcu_read_lock(); fdt = files_fdtable(files); res = close_on_exec(fd, fdt); rcu_read_unlock(); return res; } static int do_dup2(struct files_struct *files, struct file *file, unsigned fd, unsigned flags) __releases(&files->file_lock) { struct file *tofree; struct fdtable *fdt; /* * We need to detect attempts to do dup2() over allocated but still * not finished descriptor. NB: OpenBSD avoids that at the price of * extra work in their equivalent of fget() - they insert struct * file immediately after grabbing descriptor, mark it larval if * more work (e.g. actual opening) is needed and make sure that * fget() treats larval files as absent. Potentially interesting, * but while extra work in fget() is trivial, locking implications * and amount of surgery on open()-related paths in VFS are not. * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" * deadlocks in rather amusing ways, AFAICS. All of that is out of * scope of POSIX or SUS, since neither considers shared descriptor * tables and this condition does not arise without those. */ fdt = files_fdtable(files); tofree = fdt->fd[fd]; if (!tofree && fd_is_open(fd, fdt)) goto Ebusy; get_file(file); rcu_assign_pointer(fdt->fd[fd], file); __set_open_fd(fd, fdt); if (flags & O_CLOEXEC) __set_close_on_exec(fd, fdt); else __clear_close_on_exec(fd, fdt); spin_unlock(&files->file_lock); if (tofree) filp_close(tofree, files); return fd; Ebusy: spin_unlock(&files->file_lock); return -EBUSY; } int replace_fd(unsigned fd, struct file *file, unsigned flags) { int err; struct files_struct *files = current->files; if (!file) return __close_fd(files, fd); if (fd >= rlimit(RLIMIT_NOFILE)) return -EBADF; spin_lock(&files->file_lock); err = expand_files(files, fd); if (unlikely(err < 0)) goto out_unlock; return do_dup2(files, file, fd, flags); out_unlock: spin_unlock(&files->file_lock); return err; } /** * __receive_fd() - Install received file into file descriptor table * * @fd: fd to install into (if negative, a new fd will be allocated) * @file: struct file that was received from another process * @ufd: __user pointer to write new fd number to * @o_flags: the O_* flags to apply to the new fd entry * * Installs a received file into the file descriptor table, with appropriate * checks and count updates. Optionally writes the fd number to userspace, if * @ufd is non-NULL. * * This helper handles its own reference counting of the incoming * struct file. * * Returns newly install fd or -ve on error. */ int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags) { int new_fd; int error; error = security_file_receive(file); if (error) return error; if (fd < 0) { new_fd = get_unused_fd_flags(o_flags); if (new_fd < 0) return new_fd; } else { new_fd = fd; } if (ufd) { error = put_user(new_fd, ufd); if (error) { if (fd < 0) put_unused_fd(new_fd); return error; } } if (fd < 0) { fd_install(new_fd, get_file(file)); } else { error = replace_fd(new_fd, file, o_flags); if (error) return error; } /* Bump the sock usage counts, if any. */ __receive_sock(file); return new_fd; } static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags) { int err = -EBADF; struct file *file; struct files_struct *files = current->files; if ((flags & ~O_CLOEXEC) != 0) return -EINVAL; if (unlikely(oldfd == newfd)) return -EINVAL; if (newfd >= rlimit(RLIMIT_NOFILE)) return -EBADF; spin_lock(&files->file_lock); err = expand_files(files, newfd); file = fcheck(oldfd); if (unlikely(!file)) goto Ebadf; if (unlikely(err < 0)) { if (err == -EMFILE) goto Ebadf; goto out_unlock; } return do_dup2(files, file, newfd, flags); Ebadf: err = -EBADF; out_unlock: spin_unlock(&files->file_lock); return err; } SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) { return ksys_dup3(oldfd, newfd, flags); } SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) { if (unlikely(newfd == oldfd)) { /* corner case */ struct files_struct *files = current->files; int retval = oldfd; rcu_read_lock(); if (!fcheck_files(files, oldfd)) retval = -EBADF; rcu_read_unlock(); return retval; } return ksys_dup3(oldfd, newfd, 0); } SYSCALL_DEFINE1(dup, unsigned int, fildes) { int ret = -EBADF; struct file *file = fget_raw(fildes); if (file) { ret = get_unused_fd_flags(0); if (ret >= 0) fd_install(ret, file); else fput(file); } return ret; } int f_dupfd(unsigned int from, struct file *file, unsigned flags) { int err; if (from >= rlimit(RLIMIT_NOFILE)) return -EINVAL; err = alloc_fd(from, flags); if (err >= 0) { get_file(file); fd_install(err, file); } return err; } int iterate_fd(struct files_struct *files, unsigned n, int (*f)(const void *, struct file *, unsigned), const void *p) { struct fdtable *fdt; int res = 0; if (!files) return 0; spin_lock(&files->file_lock); for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { struct file *file; file = rcu_dereference_check_fdtable(files, fdt->fd[n]); if (!file) continue; res = f(p, file, n); if (res) break; } spin_unlock(&files->file_lock); return res; } EXPORT_SYMBOL(iterate_fd);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAPOPS_H #define _LINUX_SWAPOPS_H #include <linux/radix-tree.h> #include <linux/bug.h> #include <linux/mm_types.h> #ifdef CONFIG_MMU /* * swapcache pages are stored in the swapper_space radix tree. We want to * get good packing density in that tree, so the index should be dense in * the low-order bits. * * We arrange the `type' and `offset' fields so that `type' is at the seven * high-order bits of the swp_entry_t and `offset' is right-aligned in the * remaining bits. Although `type' itself needs only five bits, we allow for * shmem/tmpfs to shift it all up a further two bits: see swp_to_radix_entry(). * * swp_entry_t's are *never* stored anywhere in their arch-dependent format. */ #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) /* Clear all flags but only keep swp_entry_t related information */ static inline pte_t pte_swp_clear_flags(pte_t pte) { if (pte_swp_soft_dirty(pte)) pte = pte_swp_clear_soft_dirty(pte); if (pte_swp_uffd_wp(pte)) pte = pte_swp_clear_uffd_wp(pte); return pte; } /* * Store a type+offset into a swp_entry_t in an arch-independent format */ static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) { swp_entry_t ret; ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); return ret; } /* * Extract the `type' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline unsigned swp_type(swp_entry_t entry) { return (entry.val >> SWP_TYPE_SHIFT); } /* * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline pgoff_t swp_offset(swp_entry_t entry) { return entry.val & SWP_OFFSET_MASK; } /* check whether a pte points to a swap entry */ static inline int is_swap_pte(pte_t pte) { return !pte_none(pte) && !pte_present(pte); } /* * Convert the arch-dependent pte representation of a swp_entry_t into an * arch-independent swp_entry_t. */ static inline swp_entry_t pte_to_swp_entry(pte_t pte) { swp_entry_t arch_entry; pte = pte_swp_clear_flags(pte); arch_entry = __pte_to_swp_entry(pte); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } /* * Convert the arch-independent representation of a swp_entry_t into the * arch-dependent pte representation. */ static inline pte_t swp_entry_to_pte(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pte(arch_entry); } static inline swp_entry_t radix_to_swp_entry(void *arg) { swp_entry_t entry; entry.val = xa_to_value(arg); return entry; } static inline void *swp_to_radix_entry(swp_entry_t entry) { return xa_mk_value(entry.val); } #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(write ? SWP_DEVICE_WRITE : SWP_DEVICE_READ, page_to_pfn(page)); } static inline bool is_device_private_entry(swp_entry_t entry) { int type = swp_type(entry); return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; } static inline void make_device_private_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_DEVICE_READ, swp_offset(*entry)); } static inline bool is_write_device_private_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return pfn_to_page(swp_offset(entry)); } #else /* CONFIG_DEVICE_PRIVATE */ static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(0, 0); } static inline void make_device_private_entry_read(swp_entry_t *entry) { } static inline bool is_device_private_entry(swp_entry_t entry) { return false; } static inline bool is_write_device_private_entry(swp_entry_t entry) { return false; } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return NULL; } #endif /* CONFIG_DEVICE_PRIVATE */ #ifdef CONFIG_MIGRATION static inline swp_entry_t make_migration_entry(struct page *page, int write) { BUG_ON(!PageLocked(compound_head(page))); return swp_entry(write ? SWP_MIGRATION_WRITE : SWP_MIGRATION_READ, page_to_pfn(page)); } static inline int is_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_READ || swp_type(entry) == SWP_MIGRATION_WRITE); } static inline int is_write_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *migration_entry_to_page(swp_entry_t entry) { struct page *p = pfn_to_page(swp_offset(entry)); /* * Any use of migration entries may only occur while the * corresponding page is locked */ BUG_ON(!PageLocked(compound_head(p))); return p; } static inline void make_migration_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_MIGRATION_READ, swp_offset(*entry)); } extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl); extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address); extern void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte); #else #define make_migration_entry(page, write) swp_entry(0, 0) static inline int is_migration_entry(swp_entry_t swp) { return 0; } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *migration_entry_to_page(swp_entry_t entry) { return NULL; } static inline void make_migration_entry_read(swp_entry_t *entryp) { } static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl) { } static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { } static inline void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte) { } static inline int is_write_migration_entry(swp_entry_t entry) { return 0; } #endif struct page_vma_mapped_walk; #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION extern void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page); extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new); extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { swp_entry_t arch_entry; if (pmd_swp_soft_dirty(pmd)) pmd = pmd_swp_clear_soft_dirty(pmd); if (pmd_swp_uffd_wp(pmd)) pmd = pmd_swp_clear_uffd_wp(pmd); arch_entry = __pmd_to_swp_entry(pmd); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pmd(arch_entry); } static inline int is_pmd_migration_entry(pmd_t pmd) { return !pmd_present(pmd) && is_migration_entry(pmd_to_swp_entry(pmd)); } #else static inline void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page) { BUILD_BUG(); } static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) { BUILD_BUG(); } static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { return swp_entry(0, 0); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { return __pmd(0); } static inline int is_pmd_migration_entry(pmd_t pmd) { return 0; } #endif #ifdef CONFIG_MEMORY_FAILURE extern atomic_long_t num_poisoned_pages __read_mostly; /* * Support for hardware poisoned pages */ static inline swp_entry_t make_hwpoison_entry(struct page *page) { BUG_ON(!PageLocked(page)); return swp_entry(SWP_HWPOISON, page_to_pfn(page)); } static inline int is_hwpoison_entry(swp_entry_t entry) { return swp_type(entry) == SWP_HWPOISON; } static inline void num_poisoned_pages_inc(void) { atomic_long_inc(&num_poisoned_pages); } static inline void num_poisoned_pages_dec(void) { atomic_long_dec(&num_poisoned_pages); } #else static inline swp_entry_t make_hwpoison_entry(struct page *page) { return swp_entry(0, 0); } static inline int is_hwpoison_entry(swp_entry_t swp) { return 0; } static inline void num_poisoned_pages_inc(void) { } #endif #if defined(CONFIG_MEMORY_FAILURE) || defined(CONFIG_MIGRATION) || \ defined(CONFIG_DEVICE_PRIVATE) static inline int non_swap_entry(swp_entry_t entry) { return swp_type(entry) >= MAX_SWAPFILES; } #else static inline int non_swap_entry(swp_entry_t entry) { return 0; } #endif #endif /* CONFIG_MMU */ #endif /* _LINUX_SWAPOPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_USER_NAMESPACE_H #define _LINUX_USER_NAMESPACE_H #include <linux/kref.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/sched.h> #include <linux/workqueue.h> #include <linux/rwsem.h> #include <linux/sysctl.h> #include <linux/err.h> #define UID_GID_MAP_MAX_BASE_EXTENTS 5 #define UID_GID_MAP_MAX_EXTENTS 340 struct uid_gid_extent { u32 first; u32 lower_first; u32 count; }; struct uid_gid_map { /* 64 bytes -- 1 cache line */ u32 nr_extents; union { struct uid_gid_extent extent[UID_GID_MAP_MAX_BASE_EXTENTS]; struct { struct uid_gid_extent *forward; struct uid_gid_extent *reverse; }; }; }; #define USERNS_SETGROUPS_ALLOWED 1UL #define USERNS_INIT_FLAGS USERNS_SETGROUPS_ALLOWED struct ucounts; enum ucount_type { UCOUNT_USER_NAMESPACES, UCOUNT_PID_NAMESPACES, UCOUNT_UTS_NAMESPACES, UCOUNT_IPC_NAMESPACES, UCOUNT_NET_NAMESPACES, UCOUNT_MNT_NAMESPACES, UCOUNT_CGROUP_NAMESPACES, UCOUNT_TIME_NAMESPACES, #ifdef CONFIG_INOTIFY_USER UCOUNT_INOTIFY_INSTANCES, UCOUNT_INOTIFY_WATCHES, #endif UCOUNT_COUNTS, }; struct user_namespace { struct uid_gid_map uid_map; struct uid_gid_map gid_map; struct uid_gid_map projid_map; atomic_t count; struct user_namespace *parent; int level; kuid_t owner; kgid_t group; struct ns_common ns; unsigned long flags; /* parent_could_setfcap: true if the creator if this ns had CAP_SETFCAP * in its effective capability set at the child ns creation time. */ bool parent_could_setfcap; #ifdef CONFIG_KEYS /* List of joinable keyrings in this namespace. Modification access of * these pointers is controlled by keyring_sem. Once * user_keyring_register is set, it won't be changed, so it can be * accessed directly with READ_ONCE(). */ struct list_head keyring_name_list; struct key *user_keyring_register; struct rw_semaphore keyring_sem; #endif /* Register of per-UID persistent keyrings for this namespace */ #ifdef CONFIG_PERSISTENT_KEYRINGS struct key *persistent_keyring_register; #endif struct work_struct work; #ifdef CONFIG_SYSCTL struct ctl_table_set set; struct ctl_table_header *sysctls; #endif struct ucounts *ucounts; int ucount_max[UCOUNT_COUNTS]; } __randomize_layout; struct ucounts { struct hlist_node node; struct user_namespace *ns; kuid_t uid; int count; atomic_t ucount[UCOUNT_COUNTS]; }; extern struct user_namespace init_user_ns; bool setup_userns_sysctls(struct user_namespace *ns); void retire_userns_sysctls(struct user_namespace *ns); struct ucounts *inc_ucount(struct user_namespace *ns, kuid_t uid, enum ucount_type type); void dec_ucount(struct ucounts *ucounts, enum ucount_type type); #ifdef CONFIG_USER_NS static inline struct user_namespace *get_user_ns(struct user_namespace *ns) { if (ns) atomic_inc(&ns->count); return ns; } extern int create_user_ns(struct cred *new); extern int unshare_userns(unsigned long unshare_flags, struct cred **new_cred); extern void __put_user_ns(struct user_namespace *ns); static inline void put_user_ns(struct user_namespace *ns) { if (ns && atomic_dec_and_test(&ns->count)) __put_user_ns(ns); } struct seq_operations; extern const struct seq_operations proc_uid_seq_operations; extern const struct seq_operations proc_gid_seq_operations; extern const struct seq_operations proc_projid_seq_operations; extern ssize_t proc_uid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_gid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_projid_map_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t proc_setgroups_write(struct file *, const char __user *, size_t, loff_t *); extern int proc_setgroups_show(struct seq_file *m, void *v); extern bool userns_may_setgroups(const struct user_namespace *ns); extern bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child); extern bool current_in_userns(const struct user_namespace *target_ns); struct ns_common *ns_get_owner(struct ns_common *ns); #else static inline struct user_namespace *get_user_ns(struct user_namespace *ns) { return &init_user_ns; } static inline int create_user_ns(struct cred *new) { return -EINVAL; } static inline int unshare_userns(unsigned long unshare_flags, struct cred **new_cred) { if (unshare_flags & CLONE_NEWUSER) return -EINVAL; return 0; } static inline void put_user_ns(struct user_namespace *ns) { } static inline bool userns_may_setgroups(const struct user_namespace *ns) { return true; } static inline bool in_userns(const struct user_namespace *ancestor, const struct user_namespace *child) { return true; } static inline bool current_in_userns(const struct user_namespace *target_ns) { return true; } static inline struct ns_common *ns_get_owner(struct ns_common *ns) { return ERR_PTR(-EPERM); } #endif #endif /* _LINUX_USER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 /* SPDX-License-Identifier: GPL-2.0-only */ /* * net busy poll support * Copyright(c) 2013 Intel Corporation. * * Author: Eliezer Tamir * * Contact Information: * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> */ #ifndef _LINUX_NET_BUSY_POLL_H #define _LINUX_NET_BUSY_POLL_H #include <linux/netdevice.h> #include <linux/sched/clock.h> #include <linux/sched/signal.h> #include <net/ip.h> /* 0 - Reserved to indicate value not set * 1..NR_CPUS - Reserved for sender_cpu * NR_CPUS+1..~0 - Region available for NAPI IDs */ #define MIN_NAPI_ID ((unsigned int)(NR_CPUS + 1)) #ifdef CONFIG_NET_RX_BUSY_POLL struct napi_struct; extern unsigned int sysctl_net_busy_read __read_mostly; extern unsigned int sysctl_net_busy_poll __read_mostly; static inline bool net_busy_loop_on(void) { return sysctl_net_busy_poll; } static inline bool sk_can_busy_loop(const struct sock *sk) { return READ_ONCE(sk->sk_ll_usec) && !signal_pending(current); } bool sk_busy_loop_end(void *p, unsigned long start_time); void napi_busy_loop(unsigned int napi_id, bool (*loop_end)(void *, unsigned long), void *loop_end_arg); #else /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long net_busy_loop_on(void) { return 0; } static inline bool sk_can_busy_loop(struct sock *sk) { return false; } #endif /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long busy_loop_current_time(void) { #ifdef CONFIG_NET_RX_BUSY_POLL return (unsigned long)(local_clock() >> 10); #else return 0; #endif } /* in poll/select we use the global sysctl_net_ll_poll value */ static inline bool busy_loop_timeout(unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sysctl_net_busy_poll); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline bool sk_busy_loop_timeout(struct sock *sk, unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sk->sk_ll_usec); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline void sk_busy_loop(struct sock *sk, int nonblock) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int napi_id = READ_ONCE(sk->sk_napi_id); if (napi_id >= MIN_NAPI_ID) napi_busy_loop(napi_id, nonblock ? NULL : sk_busy_loop_end, sk); #endif } /* used in the NIC receive handler to mark the skb */ static inline void skb_mark_napi_id(struct sk_buff *skb, struct napi_struct *napi) { #ifdef CONFIG_NET_RX_BUSY_POLL /* If the skb was already marked with a valid NAPI ID, avoid overwriting * it. */ if (skb->napi_id < MIN_NAPI_ID) skb->napi_id = napi->napi_id; #endif } /* used in the protocol hanlder to propagate the napi_id to the socket */ static inline void sk_mark_napi_id(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif sk_rx_queue_set(sk, skb); } /* variant used for unconnected sockets */ static inline void sk_mark_napi_id_once(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL if (!READ_ONCE(sk->sk_napi_id)) WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif } #endif /* _LINUX_NET_BUSY_POLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wireless configuration interface internals. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2018-2020 Intel Corporation */ #ifndef __NET_WIRELESS_CORE_H #define __NET_WIRELESS_CORE_H #include <linux/list.h> #include <linux/netdevice.h> #include <linux/rbtree.h> #include <linux/debugfs.h> #include <linux/rfkill.h> #include <linux/workqueue.h> #include <linux/rtnetlink.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include "reg.h" #define WIPHY_IDX_INVALID -1 struct cfg80211_registered_device { const struct cfg80211_ops *ops; struct list_head list; /* rfkill support */ struct rfkill_ops rfkill_ops; struct rfkill *rfkill; struct work_struct rfkill_block; /* ISO / IEC 3166 alpha2 for which this device is receiving * country IEs on, this can help disregard country IEs from APs * on the same alpha2 quickly. The alpha2 may differ from * cfg80211_regdomain's alpha2 when an intersection has occurred. * If the AP is reconfigured this can also be used to tell us if * the country on the country IE changed. */ char country_ie_alpha2[2]; /* * the driver requests the regulatory core to set this regulatory * domain as the wiphy's. Only used for %REGULATORY_WIPHY_SELF_MANAGED * devices using the regulatory_set_wiphy_regd() API */ const struct ieee80211_regdomain *requested_regd; /* If a Country IE has been received this tells us the environment * which its telling us its in. This defaults to ENVIRON_ANY */ enum environment_cap env; /* wiphy index, internal only */ int wiphy_idx; /* protected by RTNL */ int devlist_generation, wdev_id; int opencount; wait_queue_head_t dev_wait; struct list_head beacon_registrations; spinlock_t beacon_registrations_lock; /* protected by RTNL only */ int num_running_ifaces; int num_running_monitor_ifaces; u64 cookie_counter; /* BSSes/scanning */ spinlock_t bss_lock; struct list_head bss_list; struct rb_root bss_tree; u32 bss_generation; u32 bss_entries; struct cfg80211_scan_request *scan_req; /* protected by RTNL */ struct cfg80211_scan_request *int_scan_req; struct sk_buff *scan_msg; struct list_head sched_scan_req_list; time64_t suspend_at; struct work_struct scan_done_wk; struct genl_info *cur_cmd_info; struct work_struct conn_work; struct work_struct event_work; struct delayed_work dfs_update_channels_wk; /* netlink port which started critical protocol (0 means not started) */ u32 crit_proto_nlportid; struct cfg80211_coalesce *coalesce; struct work_struct destroy_work; struct work_struct sched_scan_stop_wk; struct work_struct sched_scan_res_wk; struct cfg80211_chan_def radar_chandef; struct work_struct propagate_radar_detect_wk; struct cfg80211_chan_def cac_done_chandef; struct work_struct propagate_cac_done_wk; struct work_struct mgmt_registrations_update_wk; /* lock for all wdev lists */ spinlock_t mgmt_registrations_lock; /* must be last because of the way we do wiphy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wiphy wiphy __aligned(NETDEV_ALIGN); }; static inline struct cfg80211_registered_device *wiphy_to_rdev(struct wiphy *wiphy) { BUG_ON(!wiphy); return container_of(wiphy, struct cfg80211_registered_device, wiphy); } static inline void cfg80211_rdev_free_wowlan(struct cfg80211_registered_device *rdev) { #ifdef CONFIG_PM int i; if (!rdev->wiphy.wowlan_config) return; for (i = 0; i < rdev->wiphy.wowlan_config->n_patterns; i++) kfree(rdev->wiphy.wowlan_config->patterns[i].mask); kfree(rdev->wiphy.wowlan_config->patterns); if (rdev->wiphy.wowlan_config->tcp && rdev->wiphy.wowlan_config->tcp->sock) sock_release(rdev->wiphy.wowlan_config->tcp->sock); kfree(rdev->wiphy.wowlan_config->tcp); kfree(rdev->wiphy.wowlan_config->nd_config); kfree(rdev->wiphy.wowlan_config); #endif } static inline u64 cfg80211_assign_cookie(struct cfg80211_registered_device *rdev) { u64 r = ++rdev->cookie_counter; if (WARN_ON(r == 0)) r = ++rdev->cookie_counter; return r; } extern struct workqueue_struct *cfg80211_wq; extern struct list_head cfg80211_rdev_list; extern int cfg80211_rdev_list_generation; struct cfg80211_internal_bss { struct list_head list; struct list_head hidden_list; struct rb_node rbn; u64 ts_boottime; unsigned long ts; unsigned long refcount; atomic_t hold; /* time at the start of the reception of the first octet of the * timestamp field of the last beacon/probe received for this BSS. * The time is the TSF of the BSS specified by %parent_bssid. */ u64 parent_tsf; /* the BSS according to which %parent_tsf is set. This is set to * the BSS that the interface that requested the scan was connected to * when the beacon/probe was received. */ u8 parent_bssid[ETH_ALEN] __aligned(2); /* must be last because of priv member */ struct cfg80211_bss pub; }; static inline struct cfg80211_internal_bss *bss_from_pub(struct cfg80211_bss *pub) { return container_of(pub, struct cfg80211_internal_bss, pub); } static inline void cfg80211_hold_bss(struct cfg80211_internal_bss *bss) { atomic_inc(&bss->hold); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); atomic_inc(&bss->hold); } } static inline void cfg80211_unhold_bss(struct cfg80211_internal_bss *bss) { int r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); } } struct cfg80211_registered_device *cfg80211_rdev_by_wiphy_idx(int wiphy_idx); int get_wiphy_idx(struct wiphy *wiphy); struct wiphy *wiphy_idx_to_wiphy(int wiphy_idx); int cfg80211_switch_netns(struct cfg80211_registered_device *rdev, struct net *net); void cfg80211_init_wdev(struct wireless_dev *wdev); void cfg80211_register_wdev(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); static inline void wdev_lock(struct wireless_dev *wdev) __acquires(wdev) { mutex_lock(&wdev->mtx); __acquire(wdev->mtx); } static inline void wdev_unlock(struct wireless_dev *wdev) __releases(wdev) { __release(wdev->mtx); mutex_unlock(&wdev->mtx); } #define ASSERT_WDEV_LOCK(wdev) lockdep_assert_held(&(wdev)->mtx) static inline bool cfg80211_has_monitors_only(struct cfg80211_registered_device *rdev) { ASSERT_RTNL(); return rdev->num_running_ifaces == rdev->num_running_monitor_ifaces && rdev->num_running_ifaces > 0; } enum cfg80211_event_type { EVENT_CONNECT_RESULT, EVENT_ROAMED, EVENT_DISCONNECTED, EVENT_IBSS_JOINED, EVENT_STOPPED, EVENT_PORT_AUTHORIZED, }; struct cfg80211_event { struct list_head list; enum cfg80211_event_type type; union { struct cfg80211_connect_resp_params cr; struct cfg80211_roam_info rm; struct { const u8 *ie; size_t ie_len; u16 reason; bool locally_generated; } dc; struct { u8 bssid[ETH_ALEN]; struct ieee80211_channel *channel; } ij; struct { u8 bssid[ETH_ALEN]; } pa; }; }; struct cfg80211_cached_keys { struct key_params params[CFG80211_MAX_WEP_KEYS]; u8 data[CFG80211_MAX_WEP_KEYS][WLAN_KEY_LEN_WEP104]; int def; }; enum cfg80211_chan_mode { CHAN_MODE_UNDEFINED, CHAN_MODE_SHARED, CHAN_MODE_EXCLUSIVE, }; struct cfg80211_beacon_registration { struct list_head list; u32 nlportid; }; struct cfg80211_cqm_config { u32 rssi_hyst; s32 last_rssi_event_value; int n_rssi_thresholds; s32 rssi_thresholds[]; }; void cfg80211_destroy_ifaces(struct cfg80211_registered_device *rdev); /* free object */ void cfg80211_dev_free(struct cfg80211_registered_device *rdev); int cfg80211_dev_rename(struct cfg80211_registered_device *rdev, char *newname); void ieee80211_set_bitrate_flags(struct wiphy *wiphy); void cfg80211_bss_expire(struct cfg80211_registered_device *rdev); void cfg80211_bss_age(struct cfg80211_registered_device *rdev, unsigned long age_secs); void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, struct ieee80211_channel *channel); /* IBSS */ int __cfg80211_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params, struct cfg80211_cached_keys *connkeys); void cfg80211_clear_ibss(struct net_device *dev, bool nowext); int __cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); int cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); void __cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, struct ieee80211_channel *channel); int cfg80211_ibss_wext_join(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); /* mesh */ extern const struct mesh_config default_mesh_config; extern const struct mesh_setup default_mesh_setup; int __cfg80211_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_setup *setup, const struct mesh_config *conf); int __cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_set_mesh_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); /* OCB */ int __cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int __cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); /* AP */ int __cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); int cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); /* MLME */ int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_auth_type auth_type, const u8 *bssid, const u8 *ssid, int ssid_len, const u8 *ie, int ie_len, const u8 *key, int key_len, int key_idx, const u8 *auth_data, int auth_data_len); int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, const u8 *bssid, const u8 *ssid, int ssid_len, struct cfg80211_assoc_request *req); int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); void cfg80211_mlme_down(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_pid, u16 frame_type, const u8 *match_data, int match_len, bool multicast_rx, struct netlink_ext_ack *extack); void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk); void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlpid); void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev); int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa, const struct ieee80211_ht_cap *ht_capa_mask); void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa, const struct ieee80211_vht_cap *vht_capa_mask); /* SME events */ int cfg80211_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *connect, struct cfg80211_cached_keys *connkeys, const u8 *prev_bssid); void __cfg80211_connect_result(struct net_device *dev, struct cfg80211_connect_resp_params *params, bool wextev); void __cfg80211_disconnected(struct net_device *dev, const u8 *ie, size_t ie_len, u16 reason, bool from_ap); int cfg80211_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason, bool wextev); void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_roam_info *info); void __cfg80211_port_authorized(struct wireless_dev *wdev, const u8 *bssid); int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_autodisconnect_wk(struct work_struct *work); /* SME implementation */ void cfg80211_conn_work(struct work_struct *work); void cfg80211_sme_scan_done(struct net_device *dev); bool cfg80211_sme_rx_assoc_resp(struct wireless_dev *wdev, u16 status); void cfg80211_sme_rx_auth(struct wireless_dev *wdev, const u8 *buf, size_t len); void cfg80211_sme_disassoc(struct wireless_dev *wdev); void cfg80211_sme_deauth(struct wireless_dev *wdev); void cfg80211_sme_auth_timeout(struct wireless_dev *wdev); void cfg80211_sme_assoc_timeout(struct wireless_dev *wdev); void cfg80211_sme_abandon_assoc(struct wireless_dev *wdev); /* internal helpers */ bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher); bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise); int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr); void __cfg80211_scan_done(struct work_struct *wk); void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool send_message); void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req); int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, bool want_multi); void cfg80211_sched_scan_results_wk(struct work_struct *work); int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req, bool driver_initiated); int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, u64 reqid, bool driver_initiated); void cfg80211_upload_connect_keys(struct wireless_dev *wdev); int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params); void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev); void cfg80211_process_wdev_events(struct wireless_dev *wdev); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz); int cfg80211_scan(struct cfg80211_registered_device *rdev); extern struct work_struct cfg80211_disconnect_work; /** * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable * @wiphy: the wiphy to validate against * @chandef: the channel definition to check * * Checks if chandef is usable and we can/need start CAC on such channel. * * Return: true if all channels available and at least * one channel requires CAC (NL80211_DFS_USABLE) */ bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state); void cfg80211_dfs_channels_update_work(struct work_struct *work); unsigned int cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev); bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan); bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev); bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan); static inline unsigned int elapsed_jiffies_msecs(unsigned long start) { unsigned long end = jiffies; if (end >= start) return jiffies_to_msecs(end - start); return jiffies_to_msecs(end + (ULONG_MAX - start) + 1); } void cfg80211_get_chan_state(struct wireless_dev *wdev, struct ieee80211_channel **chan, enum cfg80211_chan_mode *chanmode, u8 *radar_detect); int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask); int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int); void cfg80211_update_iface_num(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, int num); void __cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct cfg80211_internal_bss * cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts); #ifdef CONFIG_CFG80211_DEVELOPER_WARNINGS #define CFG80211_DEV_WARN_ON(cond) WARN_ON(cond) #else /* * Trick to enable using it as a condition, * and also not give a warning when it's * not used that way. */ #define CFG80211_DEV_WARN_ON(cond) ({bool __r = (cond); __r; }) #endif void cfg80211_cqm_config_free(struct wireless_dev *wdev); void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid); void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev); void cfg80211_pmsr_free_wk(struct work_struct *work); #endif /* __NET_WIRELESS_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. NET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Ethernet handlers. * * Version: @(#)eth.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Relocated to include/linux where it belongs by Alan Cox * <gw4pts@gw4pts.ampr.org> */ #ifndef _LINUX_ETHERDEVICE_H #define _LINUX_ETHERDEVICE_H #include <linux/if_ether.h> #include <linux/netdevice.h> #include <linux/random.h> #include <linux/crc32.h> #include <asm/unaligned.h> #include <asm/bitsperlong.h> #ifdef __KERNEL__ struct device; int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr); unsigned char *arch_get_platform_mac_address(void); int nvmem_get_mac_address(struct device *dev, void *addrbuf); u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len); __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); extern const struct header_ops eth_header_ops; int eth_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len); int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr); int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void eth_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); __be16 eth_header_parse_protocol(const struct sk_buff *skb); int eth_prepare_mac_addr_change(struct net_device *dev, void *p); void eth_commit_mac_addr_change(struct net_device *dev, void *p); int eth_mac_addr(struct net_device *dev, void *p); int eth_validate_addr(struct net_device *dev); struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define alloc_etherdev(sizeof_priv) alloc_etherdev_mq(sizeof_priv, 1) #define alloc_etherdev_mq(sizeof_priv, count) alloc_etherdev_mqs(sizeof_priv, count, count) struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv, unsigned int txqs, unsigned int rxqs); #define devm_alloc_etherdev(dev, sizeof_priv) devm_alloc_etherdev_mqs(dev, sizeof_priv, 1, 1) struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb); int eth_gro_complete(struct sk_buff *skb, int nhoff); /* Reserved Ethernet Addresses per IEEE 802.1Q */ static const u8 eth_reserved_addr_base[ETH_ALEN] __aligned(2) = { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 }; #define eth_stp_addr eth_reserved_addr_base /** * is_link_local_ether_addr - Determine if given Ethernet address is link-local * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if address is link local reserved addr (01:80:c2:00:00:0X) per * IEEE 802.1Q 8.6.3 Frame filtering. * * Please note: addr must be aligned to u16. */ static inline bool is_link_local_ether_addr(const u8 *addr) { __be16 *a = (__be16 *)addr; static const __be16 *b = (const __be16 *)eth_reserved_addr_base; static const __be16 m = cpu_to_be16(0xfff0); #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return (((*(const u32 *)addr) ^ (*(const u32 *)b)) | (__force int)((a[2] ^ b[2]) & m)) == 0; #else return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | ((a[2] ^ b[2]) & m)) == 0; #endif } /** * is_zero_ether_addr - Determine if give Ethernet address is all zeros. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is all zeroes. * * Please note: addr must be aligned to u16. */ static inline bool is_zero_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ((*(const u32 *)addr) | (*(const u16 *)(addr + 4))) == 0; #else return (*(const u16 *)(addr + 0) | *(const u16 *)(addr + 2) | *(const u16 *)(addr + 4)) == 0; #endif } /** * is_multicast_ether_addr - Determine if the Ethernet address is a multicast. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a multicast address. * By definition the broadcast address is also a multicast address. */ static inline bool is_multicast_ether_addr(const u8 *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 a = *(const u32 *)addr; #else u16 a = *(const u16 *)addr; #endif #ifdef __BIG_ENDIAN return 0x01 & (a >> ((sizeof(a) * 8) - 8)); #else return 0x01 & a; #endif } static inline bool is_multicast_ether_addr_64bits(const u8 addr[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 #ifdef __BIG_ENDIAN return 0x01 & ((*(const u64 *)addr) >> 56); #else return 0x01 & (*(const u64 *)addr); #endif #else return is_multicast_ether_addr(addr); #endif } /** * is_local_ether_addr - Determine if the Ethernet address is locally-assigned one (IEEE 802). * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a local address. */ static inline bool is_local_ether_addr(const u8 *addr) { return 0x02 & addr[0]; } /** * is_broadcast_ether_addr - Determine if the Ethernet address is broadcast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is the broadcast address. * * Please note: addr must be aligned to u16. */ static inline bool is_broadcast_ether_addr(const u8 *addr) { return (*(const u16 *)(addr + 0) & *(const u16 *)(addr + 2) & *(const u16 *)(addr + 4)) == 0xffff; } /** * is_unicast_ether_addr - Determine if the Ethernet address is unicast * @addr: Pointer to a six-byte array containing the Ethernet address * * Return true if the address is a unicast address. */ static inline bool is_unicast_ether_addr(const u8 *addr) { return !is_multicast_ether_addr(addr); } /** * is_valid_ether_addr - Determine if the given Ethernet address is valid * @addr: Pointer to a six-byte array containing the Ethernet address * * Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not * a multicast address, and is not FF:FF:FF:FF:FF:FF. * * Return true if the address is valid. * * Please note: addr must be aligned to u16. */ static inline bool is_valid_ether_addr(const u8 *addr) { /* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to * explicitly check for it here. */ return !is_multicast_ether_addr(addr) && !is_zero_ether_addr(addr); } /** * eth_proto_is_802_3 - Determine if a given Ethertype/length is a protocol * @proto: Ethertype/length value to be tested * * Check that the value from the Ethertype/length field is a valid Ethertype. * * Return true if the valid is an 802.3 supported Ethertype. */ static inline bool eth_proto_is_802_3(__be16 proto) { #ifndef __BIG_ENDIAN /* if CPU is little endian mask off bits representing LSB */ proto &= htons(0xFF00); #endif /* cast both to u16 and compare since LSB can be ignored */ return (__force u16)proto >= (__force u16)htons(ETH_P_802_3_MIN); } /** * eth_random_addr - Generate software assigned random Ethernet address * @addr: Pointer to a six-byte array containing the Ethernet address * * Generate a random Ethernet address (MAC) that is not multicast * and has the local assigned bit set. */ static inline void eth_random_addr(u8 *addr) { get_random_bytes(addr, ETH_ALEN); addr[0] &= 0xfe; /* clear multicast bit */ addr[0] |= 0x02; /* set local assignment bit (IEEE802) */ } #define random_ether_addr(addr) eth_random_addr(addr) /** * eth_broadcast_addr - Assign broadcast address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the broadcast address to the given address array. */ static inline void eth_broadcast_addr(u8 *addr) { memset(addr, 0xff, ETH_ALEN); } /** * eth_zero_addr - Assign zero address * @addr: Pointer to a six-byte array containing the Ethernet address * * Assign the zero address to the given address array. */ static inline void eth_zero_addr(u8 *addr) { memset(addr, 0x00, ETH_ALEN); } /** * eth_hw_addr_random - Generate software assigned random Ethernet and * set device flag * @dev: pointer to net_device structure * * Generate a random Ethernet address (MAC) to be used by a net device * and set addr_assign_type so the state can be read by sysfs and be * used by userspace. */ static inline void eth_hw_addr_random(struct net_device *dev) { dev->addr_assign_type = NET_ADDR_RANDOM; eth_random_addr(dev->dev_addr); } /** * eth_hw_addr_crc - Calculate CRC from netdev_hw_addr * @ha: pointer to hardware address * * Calculate CRC from a hardware address as basis for filter hashes. */ static inline u32 eth_hw_addr_crc(struct netdev_hw_addr *ha) { return ether_crc(ETH_ALEN, ha->addr); } /** * ether_addr_copy - Copy an Ethernet address * @dst: Pointer to a six-byte array Ethernet address destination * @src: Pointer to a six-byte array Ethernet address source * * Please note: dst & src must both be aligned to u16. */ static inline void ether_addr_copy(u8 *dst, const u8 *src) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) *(u32 *)dst = *(const u32 *)src; *(u16 *)(dst + 4) = *(const u16 *)(src + 4); #else u16 *a = (u16 *)dst; const u16 *b = (const u16 *)src; a[0] = b[0]; a[1] = b[1]; a[2] = b[2]; #endif } /** * eth_hw_addr_inherit - Copy dev_addr from another net_device * @dst: pointer to net_device to copy dev_addr to * @src: pointer to net_device to copy dev_addr from * * Copy the Ethernet address from one net_device to another along with * the address attributes (addr_assign_type). */ static inline void eth_hw_addr_inherit(struct net_device *dst, struct net_device *src) { dst->addr_assign_type = src->addr_assign_type; ether_addr_copy(dst->dev_addr, src->dev_addr); } /** * ether_addr_equal - Compare two Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: addr1 & addr2 must both be aligned to u16. */ static inline bool ether_addr_equal(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) u32 fold = ((*(const u32 *)addr1) ^ (*(const u32 *)addr2)) | ((*(const u16 *)(addr1 + 4)) ^ (*(const u16 *)(addr2 + 4))); return fold == 0; #else const u16 *a = (const u16 *)addr1; const u16 *b = (const u16 *)addr2; return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) == 0; #endif } /** * ether_addr_equal_64bits - Compare two Ethernet addresses * @addr1: Pointer to an array of 8 bytes * @addr2: Pointer to an other array of 8 bytes * * Compare two Ethernet addresses, returns true if equal, false otherwise. * * The function doesn't need any conditional branches and possibly uses * word memory accesses on CPU allowing cheap unaligned memory reads. * arrays = { byte1, byte2, byte3, byte4, byte5, byte6, pad1, pad2 } * * Please note that alignment of addr1 & addr2 are only guaranteed to be 16 bits. */ static inline bool ether_addr_equal_64bits(const u8 addr1[6+2], const u8 addr2[6+2]) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 u64 fold = (*(const u64 *)addr1) ^ (*(const u64 *)addr2); #ifdef __BIG_ENDIAN return (fold >> 16) == 0; #else return (fold << 16) == 0; #endif #else return ether_addr_equal(addr1, addr2); #endif } /** * ether_addr_equal_unaligned - Compare two not u16 aligned Ethernet addresses * @addr1: Pointer to a six-byte array containing the Ethernet address * @addr2: Pointer other six-byte array containing the Ethernet address * * Compare two Ethernet addresses, returns true if equal * * Please note: Use only when any Ethernet address may not be u16 aligned. */ static inline bool ether_addr_equal_unaligned(const u8 *addr1, const u8 *addr2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return ether_addr_equal(addr1, addr2); #else return memcmp(addr1, addr2, ETH_ALEN) == 0; #endif } /** * ether_addr_equal_masked - Compare two Ethernet addresses with a mask * @addr1: Pointer to a six-byte array containing the 1st Ethernet address * @addr2: Pointer to a six-byte array containing the 2nd Ethernet address * @mask: Pointer to a six-byte array containing the Ethernet address bitmask * * Compare two Ethernet addresses with a mask, returns true if for every bit * set in the bitmask the equivalent bits in the ethernet addresses are equal. * Using a mask with all bits set is a slower ether_addr_equal. */ static inline bool ether_addr_equal_masked(const u8 *addr1, const u8 *addr2, const u8 *mask) { int i; for (i = 0; i < ETH_ALEN; i++) { if ((addr1[i] ^ addr2[i]) & mask[i]) return false; } return true; } /** * ether_addr_to_u64 - Convert an Ethernet address into a u64 value. * @addr: Pointer to a six-byte array containing the Ethernet address * * Return a u64 value of the address */ static inline u64 ether_addr_to_u64(const u8 *addr) { u64 u = 0; int i; for (i = 0; i < ETH_ALEN; i++) u = u << 8 | addr[i]; return u; } /** * u64_to_ether_addr - Convert a u64 to an Ethernet address. * @u: u64 to convert to an Ethernet MAC address * @addr: Pointer to a six-byte array to contain the Ethernet address */ static inline void u64_to_ether_addr(u64 u, u8 *addr) { int i; for (i = ETH_ALEN - 1; i >= 0; i--) { addr[i] = u & 0xff; u = u >> 8; } } /** * eth_addr_dec - Decrement the given MAC address * * @addr: Pointer to a six-byte array containing Ethernet address to decrement */ static inline void eth_addr_dec(u8 *addr) { u64 u = ether_addr_to_u64(addr); u--; u64_to_ether_addr(u, addr); } /** * eth_addr_inc() - Increment the given MAC address. * @addr: Pointer to a six-byte array containing Ethernet address to increment. */ static inline void eth_addr_inc(u8 *addr) { u64 u = ether_addr_to_u64(addr); u++; u64_to_ether_addr(u, addr); } /** * is_etherdev_addr - Tell if given Ethernet address belongs to the device. * @dev: Pointer to a device structure * @addr: Pointer to a six-byte array containing the Ethernet address * * Compare passed address with all addresses of the device. Return true if the * address if one of the device addresses. * * Note that this function calls ether_addr_equal_64bits() so take care of * the right padding. */ static inline bool is_etherdev_addr(const struct net_device *dev, const u8 addr[6 + 2]) { struct netdev_hw_addr *ha; bool res = false; rcu_read_lock(); for_each_dev_addr(dev, ha) { res = ether_addr_equal_64bits(addr, ha->addr); if (res) break; } rcu_read_unlock(); return res; } #endif /* __KERNEL__ */ /** * compare_ether_header - Compare two Ethernet headers * @a: Pointer to Ethernet header * @b: Pointer to Ethernet header * * Compare two Ethernet headers, returns 0 if equal. * This assumes that the network header (i.e., IP header) is 4-byte * aligned OR the platform can handle unaligned access. This is the * case for all packets coming into netif_receive_skb or similar * entry points. */ static inline unsigned long compare_ether_header(const void *a, const void *b) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 unsigned long fold; /* * We want to compare 14 bytes: * [a0 ... a13] ^ [b0 ... b13] * Use two long XOR, ORed together, with an overlap of two bytes. * [a0 a1 a2 a3 a4 a5 a6 a7 ] ^ [b0 b1 b2 b3 b4 b5 b6 b7 ] | * [a6 a7 a8 a9 a10 a11 a12 a13] ^ [b6 b7 b8 b9 b10 b11 b12 b13] * This means the [a6 a7] ^ [b6 b7] part is done two times. */ fold = *(unsigned long *)a ^ *(unsigned long *)b; fold |= *(unsigned long *)(a + 6) ^ *(unsigned long *)(b + 6); return fold; #else u32 *a32 = (u32 *)((u8 *)a + 2); u32 *b32 = (u32 *)((u8 *)b + 2); return (*(u16 *)a ^ *(u16 *)b) | (a32[0] ^ b32[0]) | (a32[1] ^ b32[1]) | (a32[2] ^ b32[2]); #endif } /** * eth_skb_pad - Pad buffer to mininum number of octets for Ethernet frame * @skb: Buffer to pad * * An Ethernet frame should have a minimum size of 60 bytes. This function * takes short frames and pads them with zeros up to the 60 byte limit. */ static inline int eth_skb_pad(struct sk_buff *skb) { return skb_put_padto(skb, ETH_ZLEN); } #endif /* _LINUX_ETHERDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { if (ns) { if (refcount_inc_not_zero(&ns->count)) return ns; } return NULL; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_X86_INAT_H #define _ASM_X86_INAT_H /* * x86 instruction attributes * * Written by Masami Hiramatsu <mhiramat@redhat.com> */ #include <asm/inat_types.h> /* * Internal bits. Don't use bitmasks directly, because these bits are * unstable. You should use checking functions. */ #define INAT_OPCODE_TABLE_SIZE 256 #define INAT_GROUP_TABLE_SIZE 8 /* Legacy last prefixes */ #define INAT_PFX_OPNDSZ 1 /* 0x66 */ /* LPFX1 */ #define INAT_PFX_REPE 2 /* 0xF3 */ /* LPFX2 */ #define INAT_PFX_REPNE 3 /* 0xF2 */ /* LPFX3 */ /* Other Legacy prefixes */ #define INAT_PFX_LOCK 4 /* 0xF0 */ #define INAT_PFX_CS 5 /* 0x2E */ #define INAT_PFX_DS 6 /* 0x3E */ #define INAT_PFX_ES 7 /* 0x26 */ #define INAT_PFX_FS 8 /* 0x64 */ #define INAT_PFX_GS 9 /* 0x65 */ #define INAT_PFX_SS 10 /* 0x36 */ #define INAT_PFX_ADDRSZ 11 /* 0x67 */ /* x86-64 REX prefix */ #define INAT_PFX_REX 12 /* 0x4X */ /* AVX VEX prefixes */ #define INAT_PFX_VEX2 13 /* 2-bytes VEX prefix */ #define INAT_PFX_VEX3 14 /* 3-bytes VEX prefix */ #define INAT_PFX_EVEX 15 /* EVEX prefix */ #define INAT_LSTPFX_MAX 3 #define INAT_LGCPFX_MAX 11 /* Immediate size */ #define INAT_IMM_BYTE 1 #define INAT_IMM_WORD 2 #define INAT_IMM_DWORD 3 #define INAT_IMM_QWORD 4 #define INAT_IMM_PTR 5 #define INAT_IMM_VWORD32 6 #define INAT_IMM_VWORD 7 /* Legacy prefix */ #define INAT_PFX_OFFS 0 #define INAT_PFX_BITS 4 #define INAT_PFX_MAX ((1 << INAT_PFX_BITS) - 1) #define INAT_PFX_MASK (INAT_PFX_MAX << INAT_PFX_OFFS) /* Escape opcodes */ #define INAT_ESC_OFFS (INAT_PFX_OFFS + INAT_PFX_BITS) #define INAT_ESC_BITS 2 #define INAT_ESC_MAX ((1 << INAT_ESC_BITS) - 1) #define INAT_ESC_MASK (INAT_ESC_MAX << INAT_ESC_OFFS) /* Group opcodes (1-16) */ #define INAT_GRP_OFFS (INAT_ESC_OFFS + INAT_ESC_BITS) #define INAT_GRP_BITS 5 #define INAT_GRP_MAX ((1 << INAT_GRP_BITS) - 1) #define INAT_GRP_MASK (INAT_GRP_MAX << INAT_GRP_OFFS) /* Immediates */ #define INAT_IMM_OFFS (INAT_GRP_OFFS + INAT_GRP_BITS) #define INAT_IMM_BITS 3 #define INAT_IMM_MASK (((1 << INAT_IMM_BITS) - 1) << INAT_IMM_OFFS) /* Flags */ #define INAT_FLAG_OFFS (INAT_IMM_OFFS + INAT_IMM_BITS) #define INAT_MODRM (1 << (INAT_FLAG_OFFS)) #define INAT_FORCE64 (1 << (INAT_FLAG_OFFS + 1)) #define INAT_SCNDIMM (1 << (INAT_FLAG_OFFS + 2)) #define INAT_MOFFSET (1 << (INAT_FLAG_OFFS + 3)) #define INAT_VARIANT (1 << (INAT_FLAG_OFFS + 4)) #define INAT_VEXOK (1 << (INAT_FLAG_OFFS + 5)) #define INAT_VEXONLY (1 << (INAT_FLAG_OFFS + 6)) #define INAT_EVEXONLY (1 << (INAT_FLAG_OFFS + 7)) /* Attribute making macros for attribute tables */ #define INAT_MAKE_PREFIX(pfx) (pfx << INAT_PFX_OFFS) #define INAT_MAKE_ESCAPE(esc) (esc << INAT_ESC_OFFS) #define INAT_MAKE_GROUP(grp) ((grp << INAT_GRP_OFFS) | INAT_MODRM) #define INAT_MAKE_IMM(imm) (imm << INAT_IMM_OFFS) /* Identifiers for segment registers */ #define INAT_SEG_REG_IGNORE 0 #define INAT_SEG_REG_DEFAULT 1 #define INAT_SEG_REG_CS 2 #define INAT_SEG_REG_SS 3 #define INAT_SEG_REG_DS 4 #define INAT_SEG_REG_ES 5 #define INAT_SEG_REG_FS 6 #define INAT_SEG_REG_GS 7 /* Attribute search APIs */ extern insn_attr_t inat_get_opcode_attribute(insn_byte_t opcode); extern int inat_get_last_prefix_id(insn_byte_t last_pfx); extern insn_attr_t inat_get_escape_attribute(insn_byte_t opcode, int lpfx_id, insn_attr_t esc_attr); extern insn_attr_t inat_get_group_attribute(insn_byte_t modrm, int lpfx_id, insn_attr_t esc_attr); extern insn_attr_t inat_get_avx_attribute(insn_byte_t opcode, insn_byte_t vex_m, insn_byte_t vex_pp); /* Attribute checking functions */ static inline int inat_is_legacy_prefix(insn_attr_t attr) { attr &= INAT_PFX_MASK; return attr && attr <= INAT_LGCPFX_MAX; } static inline int inat_is_address_size_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_ADDRSZ; } static inline int inat_is_operand_size_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_OPNDSZ; } static inline int inat_is_rex_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_REX; } static inline int inat_last_prefix_id(insn_attr_t attr) { if ((attr & INAT_PFX_MASK) > INAT_LSTPFX_MAX) return 0; else return attr & INAT_PFX_MASK; } static inline int inat_is_vex_prefix(insn_attr_t attr) { attr &= INAT_PFX_MASK; return attr == INAT_PFX_VEX2 || attr == INAT_PFX_VEX3 || attr == INAT_PFX_EVEX; } static inline int inat_is_evex_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_EVEX; } static inline int inat_is_vex3_prefix(insn_attr_t attr) { return (attr & INAT_PFX_MASK) == INAT_PFX_VEX3; } static inline int inat_is_escape(insn_attr_t attr) { return attr & INAT_ESC_MASK; } static inline int inat_escape_id(insn_attr_t attr) { return (attr & INAT_ESC_MASK) >> INAT_ESC_OFFS; } static inline int inat_is_group(insn_attr_t attr) { return attr & INAT_GRP_MASK; } static inline int inat_group_id(insn_attr_t attr) { return (attr & INAT_GRP_MASK) >> INAT_GRP_OFFS; } static inline int inat_group_common_attribute(insn_attr_t attr) { return attr & ~INAT_GRP_MASK; } static inline int inat_has_immediate(insn_attr_t attr) { return attr & INAT_IMM_MASK; } static inline int inat_immediate_size(insn_attr_t attr) { return (attr & INAT_IMM_MASK) >> INAT_IMM_OFFS; } static inline int inat_has_modrm(insn_attr_t attr) { return attr & INAT_MODRM; } static inline int inat_is_force64(insn_attr_t attr) { return attr & INAT_FORCE64; } static inline int inat_has_second_immediate(insn_attr_t attr) { return attr & INAT_SCNDIMM; } static inline int inat_has_moffset(insn_attr_t attr) { return attr & INAT_MOFFSET; } static inline int inat_has_variant(insn_attr_t attr) { return attr & INAT_VARIANT; } static inline int inat_accept_vex(insn_attr_t attr) { return attr & INAT_VEXOK; } static inline int inat_must_vex(insn_attr_t attr) { return attr & (INAT_VEXONLY | INAT_EVEXONLY); } static inline int inat_must_evex(insn_attr_t attr) { return attr & INAT_EVEXONLY; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP module. * * Version: @(#)ip.h 1.0.2 05/07/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Changes: * Mike McLagan : Routing by source */ #ifndef _IP_H #define _IP_H #include <linux/types.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/skbuff.h> #include <linux/jhash.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/route.h> #include <net/snmp.h> #include <net/flow.h> #include <net/flow_dissector.h> #include <net/netns/hash.h> #include <net/lwtunnel.h> #define IPV4_MAX_PMTU 65535U /* RFC 2675, Section 5.1 */ #define IPV4_MIN_MTU 68 /* RFC 791 */ extern unsigned int sysctl_fib_sync_mem; extern unsigned int sysctl_fib_sync_mem_min; extern unsigned int sysctl_fib_sync_mem_max; struct sock; struct inet_skb_parm { int iif; struct ip_options opt; /* Compiled IP options */ u16 flags; #define IPSKB_FORWARDED BIT(0) #define IPSKB_XFRM_TUNNEL_SIZE BIT(1) #define IPSKB_XFRM_TRANSFORMED BIT(2) #define IPSKB_FRAG_COMPLETE BIT(3) #define IPSKB_REROUTED BIT(4) #define IPSKB_DOREDIRECT BIT(5) #define IPSKB_FRAG_PMTU BIT(6) #define IPSKB_L3SLAVE BIT(7) u16 frag_max_size; }; static inline bool ipv4_l3mdev_skb(u16 flags) { return !!(flags & IPSKB_L3SLAVE); } static inline unsigned int ip_hdrlen(const struct sk_buff *skb) { return ip_hdr(skb)->ihl * 4; } struct ipcm_cookie { struct sockcm_cookie sockc; __be32 addr; int oif; struct ip_options_rcu *opt; __u8 ttl; __s16 tos; char priority; __u16 gso_size; }; static inline void ipcm_init(struct ipcm_cookie *ipcm) { *ipcm = (struct ipcm_cookie) { .tos = -1 }; } static inline void ipcm_init_sk(struct ipcm_cookie *ipcm, const struct inet_sock *inet) { ipcm_init(ipcm); ipcm->sockc.mark = inet->sk.sk_mark; ipcm->sockc.tsflags = inet->sk.sk_tsflags; ipcm->oif = inet->sk.sk_bound_dev_if; ipcm->addr = inet->inet_saddr; } #define IPCB(skb) ((struct inet_skb_parm*)((skb)->cb)) #define PKTINFO_SKB_CB(skb) ((struct in_pktinfo *)((skb)->cb)) /* return enslaved device index if relevant */ static inline int inet_sdif(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) return IPCB(skb)->iif; #endif return 0; } /* Special input handler for packets caught by router alert option. They are selected only by protocol field, and then processed likely local ones; but only if someone wants them! Otherwise, router not running rsvpd will kill RSVP. It is user level problem, what it will make with them. I have no idea, how it will masquearde or NAT them (it is joke, joke :-)), but receiver should be enough clever f.e. to forward mtrace requests, sent to multicast group to reach destination designated router. */ struct ip_ra_chain { struct ip_ra_chain __rcu *next; struct sock *sk; union { void (*destructor)(struct sock *); struct sock *saved_sk; }; struct rcu_head rcu; }; /* IP flags. */ #define IP_CE 0x8000 /* Flag: "Congestion" */ #define IP_DF 0x4000 /* Flag: "Don't Fragment" */ #define IP_MF 0x2000 /* Flag: "More Fragments" */ #define IP_OFFSET 0x1FFF /* "Fragment Offset" part */ #define IP_FRAG_TIME (30 * HZ) /* fragment lifetime */ struct msghdr; struct net_device; struct packet_type; struct rtable; struct sockaddr; int igmp_mc_init(void); /* * Functions provided by ip.c */ int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, u8 tos); int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); void ip_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev); int ip_local_deliver(struct sk_buff *skb); void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int proto); int ip_mr_input(struct sk_buff *skb); int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)); struct ip_fraglist_iter { struct sk_buff *frag; struct iphdr *iph; int offset; unsigned int hlen; }; void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, unsigned int hlen, struct ip_fraglist_iter *iter); void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter); static inline struct sk_buff *ip_fraglist_next(struct ip_fraglist_iter *iter) { struct sk_buff *skb = iter->frag; iter->frag = skb->next; skb_mark_not_on_list(skb); return skb; } struct ip_frag_state { bool DF; unsigned int hlen; unsigned int ll_rs; unsigned int mtu; unsigned int left; int offset; int ptr; __be16 not_last_frag; }; void ip_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int ll_rs, unsigned int mtu, bool DF, struct ip_frag_state *state); struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state); void ip_send_check(struct iphdr *ip); int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, __u8 tos); void ip_init(void); int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int len, int protolen, struct ipcm_cookie *ipc, struct rtable **rt, unsigned int flags); int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb); ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, int offset, size_t size, int flags); struct sk_buff *__ip_make_skb(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork); int ip_send_skb(struct net *net, struct sk_buff *skb); int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4); void ip_flush_pending_frames(struct sock *sk); struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, struct inet_cork *cork, unsigned int flags); int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl); static inline struct sk_buff *ip_finish_skb(struct sock *sk, struct flowi4 *fl4) { return __ip_make_skb(sk, fl4, &sk->sk_write_queue, &inet_sk(sk)->cork.base); } static inline __u8 get_rttos(struct ipcm_cookie* ipc, struct inet_sock *inet) { return (ipc->tos != -1) ? RT_TOS(ipc->tos) : RT_TOS(inet->tos); } static inline __u8 get_rtconn_flags(struct ipcm_cookie* ipc, struct sock* sk) { return (ipc->tos != -1) ? RT_CONN_FLAGS_TOS(sk, ipc->tos) : RT_CONN_FLAGS(sk); } /* datagram.c */ int __ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); void ip4_datagram_release_cb(struct sock *sk); struct ip_reply_arg { struct kvec iov[1]; int flags; __wsum csum; int csumoffset; /* u16 offset of csum in iov[0].iov_base */ /* -1 if not needed */ int bound_dev_if; u8 tos; kuid_t uid; }; #define IP_REPLY_ARG_NOSRCCHECK 1 static inline __u8 ip_reply_arg_flowi_flags(const struct ip_reply_arg *arg) { return (arg->flags & IP_REPLY_ARG_NOSRCCHECK) ? FLOWI_FLAG_ANYSRC : 0; } void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, const struct ip_options *sopt, __be32 daddr, __be32 saddr, const struct ip_reply_arg *arg, unsigned int len, u64 transmit_time); #define IP_INC_STATS(net, field) SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define __IP_INC_STATS(net, field) __SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define IP_ADD_STATS(net, field, val) SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define __IP_ADD_STATS(net, field, val) __SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define IP_UPD_PO_STATS(net, field, val) SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define __IP_UPD_PO_STATS(net, field, val) __SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define NET_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.net_statistics, field) #define __NET_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.net_statistics, field) #define NET_ADD_STATS(net, field, adnd) SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) #define __NET_ADD_STATS(net, field, adnd) __SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offct); unsigned long snmp_fold_field(void __percpu *mib, int offt); #if BITS_PER_LONG==32 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset); u64 snmp_fold_field64(void __percpu *mib, int offt, size_t sync_off); #else static inline u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset) { return snmp_get_cpu_field(mib, cpu, offct); } static inline u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_off) { return snmp_fold_field(mib, offt); } #endif #define snmp_get_cpu_field64_batch(buff64, stats_list, mib_statistic, offset) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff64[i] += snmp_get_cpu_field64( \ mib_statistic, \ c, stats_list[i].entry, \ offset); \ } \ } #define snmp_get_cpu_field_batch(buff, stats_list, mib_statistic) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff[i] += snmp_get_cpu_field( \ mib_statistic, \ c, stats_list[i].entry); \ } \ } void inet_get_local_port_range(struct net *net, int *low, int *high); #ifdef CONFIG_SYSCTL static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { if (!net->ipv4.sysctl_local_reserved_ports) return false; return test_bit(port, net->ipv4.sysctl_local_reserved_ports); } static inline bool sysctl_dev_name_is_allowed(const char *name) { return strcmp(name, "default") != 0 && strcmp(name, "all") != 0; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < net->ipv4.sysctl_ip_prot_sock; } #else static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { return false; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < PROT_SOCK; } #endif __be32 inet_current_timestamp(void); /* From inetpeer.c */ extern int inet_peer_threshold; extern int inet_peer_minttl; extern int inet_peer_maxttl; void ipfrag_init(void); void ip_static_sysctl_init(void); #define IP4_REPLY_MARK(net, mark) \ ((net)->ipv4.sysctl_fwmark_reflect ? (mark) : 0) static inline bool ip_is_fragment(const struct iphdr *iph) { return (iph->frag_off & htons(IP_MF | IP_OFFSET)) != 0; } #ifdef CONFIG_INET #include <net/dst.h> /* The function in 2.2 was invalid, producing wrong result for * check=0xFEFF. It was noticed by Arthur Skawina _year_ ago. --ANK(000625) */ static inline int ip_decrease_ttl(struct iphdr *iph) { u32 check = (__force u32)iph->check; check += (__force u32)htons(0x0100); iph->check = (__force __sum16)(check + (check>=0xFFFF)); return --iph->ttl; } static inline int ip_mtu_locked(const struct dst_entry *dst) { const struct rtable *rt = (const struct rtable *)dst; return rt->rt_mtu_locked || dst_metric_locked(dst, RTAX_MTU); } static inline int ip_dont_fragment(const struct sock *sk, const struct dst_entry *dst) { u8 pmtudisc = READ_ONCE(inet_sk(sk)->pmtudisc); return pmtudisc == IP_PMTUDISC_DO || (pmtudisc == IP_PMTUDISC_WANT && !ip_mtu_locked(dst)); } static inline bool ip_sk_accept_pmtu(const struct sock *sk) { return inet_sk(sk)->pmtudisc != IP_PMTUDISC_INTERFACE && inet_sk(sk)->pmtudisc != IP_PMTUDISC_OMIT; } static inline bool ip_sk_use_pmtu(const struct sock *sk) { return inet_sk(sk)->pmtudisc < IP_PMTUDISC_PROBE; } static inline bool ip_sk_ignore_df(const struct sock *sk) { return inet_sk(sk)->pmtudisc < IP_PMTUDISC_DO || inet_sk(sk)->pmtudisc == IP_PMTUDISC_OMIT; } static inline unsigned int ip_dst_mtu_maybe_forward(const struct dst_entry *dst, bool forwarding) { struct net *net = dev_net(dst->dev); unsigned int mtu; if (net->ipv4.sysctl_ip_fwd_use_pmtu || ip_mtu_locked(dst) || !forwarding) return dst_mtu(dst); /* 'forwarding = true' case should always honour route mtu */ mtu = dst_metric_raw(dst, RTAX_MTU); if (!mtu) mtu = min(READ_ONCE(dst->dev->mtu), IP_MAX_MTU); return mtu - lwtunnel_headroom(dst->lwtstate, mtu); } static inline unsigned int ip_skb_dst_mtu(struct sock *sk, const struct sk_buff *skb) { unsigned int mtu; if (!sk || !sk_fullsock(sk) || ip_sk_use_pmtu(sk)) { bool forwarding = IPCB(skb)->flags & IPSKB_FORWARDED; return ip_dst_mtu_maybe_forward(skb_dst(skb), forwarding); } mtu = min(READ_ONCE(skb_dst(skb)->dev->mtu), IP_MAX_MTU); return mtu - lwtunnel_headroom(skb_dst(skb)->lwtstate, mtu); } struct dst_metrics *ip_fib_metrics_init(struct net *net, struct nlattr *fc_mx, int fc_mx_len, struct netlink_ext_ack *extack); static inline void ip_fib_metrics_put(struct dst_metrics *fib_metrics) { if (fib_metrics != &dst_default_metrics && refcount_dec_and_test(&fib_metrics->refcnt)) kfree(fib_metrics); } /* ipv4 and ipv6 both use refcounted metrics if it is not the default */ static inline void ip_dst_init_metrics(struct dst_entry *dst, struct dst_metrics *fib_metrics) { dst_init_metrics(dst, fib_metrics->metrics, true); if (fib_metrics != &dst_default_metrics) { dst->_metrics |= DST_METRICS_REFCOUNTED; refcount_inc(&fib_metrics->refcnt); } } static inline void ip_dst_metrics_put(struct dst_entry *dst) { struct dst_metrics *p = (struct dst_metrics *)DST_METRICS_PTR(dst); if (p != &dst_default_metrics && refcount_dec_and_test(&p->refcnt)) kfree(p); } u32 ip_idents_reserve(u32 hash, int segs); void __ip_select_ident(struct net *net, struct iphdr *iph, int segs); static inline void ip_select_ident_segs(struct net *net, struct sk_buff *skb, struct sock *sk, int segs) { struct iphdr *iph = ip_hdr(skb); if ((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) { /* This is only to work around buggy Windows95/2000 * VJ compression implementations. If the ID field * does not change, they drop every other packet in * a TCP stream using header compression. */ if (sk && inet_sk(sk)->inet_daddr) { iph->id = htons(inet_sk(sk)->inet_id); inet_sk(sk)->inet_id += segs; } else { iph->id = 0; } } else { __ip_select_ident(net, iph, segs); } } static inline void ip_select_ident(struct net *net, struct sk_buff *skb, struct sock *sk) { ip_select_ident_segs(net, skb, sk, 1); } static inline __wsum inet_compute_pseudo(struct sk_buff *skb, int proto) { return csum_tcpudp_nofold(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, skb->len, proto, 0); } /* copy IPv4 saddr & daddr to flow_keys, possibly using 64bit load/store * Equivalent to : flow->v4addrs.src = iph->saddr; * flow->v4addrs.dst = iph->daddr; */ static inline void iph_to_flow_copy_v4addrs(struct flow_keys *flow, const struct iphdr *iph) { BUILD_BUG_ON(offsetof(typeof(flow->addrs), v4addrs.dst) != offsetof(typeof(flow->addrs), v4addrs.src) + sizeof(flow->addrs.v4addrs.src)); memcpy(&flow->addrs.v4addrs, &iph->saddr, sizeof(flow->addrs.v4addrs)); flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } static inline __wsum inet_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct iphdr *iph = skb_gro_network_header(skb); return csum_tcpudp_nofold(iph->saddr, iph->daddr, skb_gro_len(skb), proto, 0); } /* * Map a multicast IP onto multicast MAC for type ethernet. */ static inline void ip_eth_mc_map(__be32 naddr, char *buf) { __u32 addr=ntohl(naddr); buf[0]=0x01; buf[1]=0x00; buf[2]=0x5e; buf[5]=addr&0xFF; addr>>=8; buf[4]=addr&0xFF; addr>>=8; buf[3]=addr&0x7F; } /* * Map a multicast IP onto multicast MAC for type IP-over-InfiniBand. * Leave P_Key as 0 to be filled in by driver. */ static inline void ip_ib_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { __u32 addr; unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; addr = ntohl(naddr); buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x40; /* IPv4 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; buf[10] = 0; buf[11] = 0; buf[12] = 0; buf[13] = 0; buf[14] = 0; buf[15] = 0; buf[19] = addr & 0xff; addr >>= 8; buf[18] = addr & 0xff; addr >>= 8; buf[17] = addr & 0xff; addr >>= 8; buf[16] = addr & 0x0f; } static inline void ip_ipgre_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) memcpy(buf, broadcast, 4); else memcpy(buf, &naddr, sizeof(naddr)); } #if IS_ENABLED(CONFIG_IPV6) #include <linux/ipv6.h> #endif static __inline__ void inet_reset_saddr(struct sock *sk) { inet_sk(sk)->inet_rcv_saddr = inet_sk(sk)->inet_saddr = 0; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == PF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); memset(&np->saddr, 0, sizeof(np->saddr)); memset(&sk->sk_v6_rcv_saddr, 0, sizeof(sk->sk_v6_rcv_saddr)); } #endif } #endif static inline unsigned int ipv4_addr_hash(__be32 ip) { return (__force unsigned int) ip; } static inline u32 ipv4_portaddr_hash(const struct net *net, __be32 saddr, unsigned int port) { return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; } bool ip_call_ra_chain(struct sk_buff *skb); /* * Functions provided by ip_fragment.c */ enum ip_defrag_users { IP_DEFRAG_LOCAL_DELIVER, IP_DEFRAG_CALL_RA_CHAIN, IP_DEFRAG_CONNTRACK_IN, __IP_DEFRAG_CONNTRACK_IN_END = IP_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP_DEFRAG_CONNTRACK_OUT, __IP_DEFRAG_CONNTRACK_OUT_END = IP_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP_DEFRAG_CONNTRACK_BRIDGE_IN, __IP_DEFRAG_CONNTRACK_BRIDGE_IN = IP_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, IP_DEFRAG_VS_IN, IP_DEFRAG_VS_OUT, IP_DEFRAG_VS_FWD, IP_DEFRAG_AF_PACKET, IP_DEFRAG_MACVLAN, }; /* Return true if the value of 'user' is between 'lower_bond' * and 'upper_bond' inclusively. */ static inline bool ip_defrag_user_in_between(u32 user, enum ip_defrag_users lower_bond, enum ip_defrag_users upper_bond) { return user >= lower_bond && user <= upper_bond; } int ip_defrag(struct net *net, struct sk_buff *skb, u32 user); #ifdef CONFIG_INET struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user); #else static inline struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) { return skb; } #endif /* * Functions provided by ip_forward.c */ int ip_forward(struct sk_buff *skb); /* * Functions provided by ip_options.c */ void ip_options_build(struct sk_buff *skb, struct ip_options *opt, __be32 daddr, struct rtable *rt, int is_frag); int __ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb, const struct ip_options *sopt); static inline int ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb) { return __ip_options_echo(net, dopt, skb, &IPCB(skb)->opt); } void ip_options_fragment(struct sk_buff *skb); int __ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb, __be32 *info); int ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb); int ip_options_get(struct net *net, struct ip_options_rcu **optp, sockptr_t data, int optlen); void ip_options_undo(struct ip_options *opt); void ip_forward_options(struct sk_buff *skb); int ip_options_rcv_srr(struct sk_buff *skb, struct net_device *dev); /* * Functions provided by ip_sockglue.c */ void ipv4_pktinfo_prepare(const struct sock *sk, struct sk_buff *skb); void ip_cmsg_recv_offset(struct msghdr *msg, struct sock *sk, struct sk_buff *skb, int tlen, int offset); int ip_cmsg_send(struct sock *sk, struct msghdr *msg, struct ipcm_cookie *ipc, bool allow_ipv6); int ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int ip_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int ip_ra_control(struct sock *sk, unsigned char on, void (*destructor)(struct sock *)); int ip_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len); void ip_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload); void ip_local_error(struct sock *sk, int err, __be32 daddr, __be16 dport, u32 info); static inline void ip_cmsg_recv(struct msghdr *msg, struct sk_buff *skb) { ip_cmsg_recv_offset(msg, skb->sk, skb, 0, 0); } bool icmp_global_allow(void); extern int sysctl_icmp_msgs_per_sec; extern int sysctl_icmp_msgs_burst; #ifdef CONFIG_PROC_FS int ip_misc_proc_init(void); #endif int rtm_getroute_parse_ip_proto(struct nlattr *attr, u8 *ip_proto, u8 family, struct netlink_ext_ack *extack); static inline bool inetdev_valid_mtu(unsigned int mtu) { return likely(mtu >= IPV4_MIN_MTU); } void ip_sock_set_freebind(struct sock *sk); int ip_sock_set_mtu_discover(struct sock *sk, int val); void ip_sock_set_pktinfo(struct sock *sk); void ip_sock_set_recverr(struct sock *sk); void ip_sock_set_tos(struct sock *sk, int val); #endif /* _IP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 // SPDX-License-Identifier: GPL-2.0 /* * hrtimers - High-resolution kernel timers * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * data type definitions, declarations, prototypes * * Started by: Thomas Gleixner and Ingo Molnar */ #ifndef _LINUX_HRTIMER_H #define _LINUX_HRTIMER_H #include <linux/hrtimer_defs.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/list.h> #include <linux/percpu.h> #include <linux/seqlock.h> #include <linux/timer.h> #include <linux/timerqueue.h> struct hrtimer_clock_base; struct hrtimer_cpu_base; /* * Mode arguments of xxx_hrtimer functions: * * HRTIMER_MODE_ABS - Time value is absolute * HRTIMER_MODE_REL - Time value is relative to now * HRTIMER_MODE_PINNED - Timer is bound to CPU (is only considered * when starting the timer) * HRTIMER_MODE_SOFT - Timer callback function will be executed in * soft irq context * HRTIMER_MODE_HARD - Timer callback function will be executed in * hard irq context even on PREEMPT_RT. */ enum hrtimer_mode { HRTIMER_MODE_ABS = 0x00, HRTIMER_MODE_REL = 0x01, HRTIMER_MODE_PINNED = 0x02, HRTIMER_MODE_SOFT = 0x04, HRTIMER_MODE_HARD = 0x08, HRTIMER_MODE_ABS_PINNED = HRTIMER_MODE_ABS | HRTIMER_MODE_PINNED, HRTIMER_MODE_REL_PINNED = HRTIMER_MODE_REL | HRTIMER_MODE_PINNED, HRTIMER_MODE_ABS_SOFT = HRTIMER_MODE_ABS | HRTIMER_MODE_SOFT, HRTIMER_MODE_REL_SOFT = HRTIMER_MODE_REL | HRTIMER_MODE_SOFT, HRTIMER_MODE_ABS_PINNED_SOFT = HRTIMER_MODE_ABS_PINNED | HRTIMER_MODE_SOFT, HRTIMER_MODE_REL_PINNED_SOFT = HRTIMER_MODE_REL_PINNED | HRTIMER_MODE_SOFT, HRTIMER_MODE_ABS_HARD = HRTIMER_MODE_ABS | HRTIMER_MODE_HARD, HRTIMER_MODE_REL_HARD = HRTIMER_MODE_REL | HRTIMER_MODE_HARD, HRTIMER_MODE_ABS_PINNED_HARD = HRTIMER_MODE_ABS_PINNED | HRTIMER_MODE_HARD, HRTIMER_MODE_REL_PINNED_HARD = HRTIMER_MODE_REL_PINNED | HRTIMER_MODE_HARD, }; /* * Return values for the callback function */ enum hrtimer_restart { HRTIMER_NORESTART, /* Timer is not restarted */ HRTIMER_RESTART, /* Timer must be restarted */ }; /* * Values to track state of the timer * * Possible states: * * 0x00 inactive * 0x01 enqueued into rbtree * * The callback state is not part of the timer->state because clearing it would * mean touching the timer after the callback, this makes it impossible to free * the timer from the callback function. * * Therefore we track the callback state in: * * timer->base->cpu_base->running == timer * * On SMP it is possible to have a "callback function running and enqueued" * status. It happens for example when a posix timer expired and the callback * queued a signal. Between dropping the lock which protects the posix timer * and reacquiring the base lock of the hrtimer, another CPU can deliver the * signal and rearm the timer. * * All state transitions are protected by cpu_base->lock. */ #define HRTIMER_STATE_INACTIVE 0x00 #define HRTIMER_STATE_ENQUEUED 0x01 /** * struct hrtimer - the basic hrtimer structure * @node: timerqueue node, which also manages node.expires, * the absolute expiry time in the hrtimers internal * representation. The time is related to the clock on * which the timer is based. Is setup by adding * slack to the _softexpires value. For non range timers * identical to _softexpires. * @_softexpires: the absolute earliest expiry time of the hrtimer. * The time which was given as expiry time when the timer * was armed. * @function: timer expiry callback function * @base: pointer to the timer base (per cpu and per clock) * @state: state information (See bit values above) * @is_rel: Set if the timer was armed relative * @is_soft: Set if hrtimer will be expired in soft interrupt context. * @is_hard: Set if hrtimer will be expired in hard interrupt context * even on RT. * * The hrtimer structure must be initialized by hrtimer_init() */ struct hrtimer { struct timerqueue_node node; ktime_t _softexpires; enum hrtimer_restart (*function)(struct hrtimer *); struct hrtimer_clock_base *base; u8 state; u8 is_rel; u8 is_soft; u8 is_hard; }; /** * struct hrtimer_sleeper - simple sleeper structure * @timer: embedded timer structure * @task: task to wake up * * task is set to NULL, when the timer expires. */ struct hrtimer_sleeper { struct hrtimer timer; struct task_struct *task; }; #ifdef CONFIG_64BIT # define __hrtimer_clock_base_align ____cacheline_aligned #else # define __hrtimer_clock_base_align #endif /** * struct hrtimer_clock_base - the timer base for a specific clock * @cpu_base: per cpu clock base * @index: clock type index for per_cpu support when moving a * timer to a base on another cpu. * @clockid: clock id for per_cpu support * @seq: seqcount around __run_hrtimer * @running: pointer to the currently running hrtimer * @active: red black tree root node for the active timers * @get_time: function to retrieve the current time of the clock * @offset: offset of this clock to the monotonic base */ struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base; unsigned int index; clockid_t clockid; seqcount_raw_spinlock_t seq; struct hrtimer *running; struct timerqueue_head active; ktime_t (*get_time)(void); ktime_t offset; } __hrtimer_clock_base_align; enum hrtimer_base_type { HRTIMER_BASE_MONOTONIC, HRTIMER_BASE_REALTIME, HRTIMER_BASE_BOOTTIME, HRTIMER_BASE_TAI, HRTIMER_BASE_MONOTONIC_SOFT, HRTIMER_BASE_REALTIME_SOFT, HRTIMER_BASE_BOOTTIME_SOFT, HRTIMER_BASE_TAI_SOFT, HRTIMER_MAX_CLOCK_BASES, }; /** * struct hrtimer_cpu_base - the per cpu clock bases * @lock: lock protecting the base and associated clock bases * and timers * @cpu: cpu number * @active_bases: Bitfield to mark bases with active timers * @clock_was_set_seq: Sequence counter of clock was set events * @hres_active: State of high resolution mode * @in_hrtirq: hrtimer_interrupt() is currently executing * @hang_detected: The last hrtimer interrupt detected a hang * @softirq_activated: displays, if the softirq is raised - update of softirq * related settings is not required then. * @nr_events: Total number of hrtimer interrupt events * @nr_retries: Total number of hrtimer interrupt retries * @nr_hangs: Total number of hrtimer interrupt hangs * @max_hang_time: Maximum time spent in hrtimer_interrupt * @softirq_expiry_lock: Lock which is taken while softirq based hrtimer are * expired * @timer_waiters: A hrtimer_cancel() invocation waits for the timer * callback to finish. * @expires_next: absolute time of the next event, is required for remote * hrtimer enqueue; it is the total first expiry time (hard * and soft hrtimer are taken into account) * @next_timer: Pointer to the first expiring timer * @softirq_expires_next: Time to check, if soft queues needs also to be expired * @softirq_next_timer: Pointer to the first expiring softirq based timer * @clock_base: array of clock bases for this cpu * * Note: next_timer is just an optimization for __remove_hrtimer(). * Do not dereference the pointer because it is not reliable on * cross cpu removals. */ struct hrtimer_cpu_base { raw_spinlock_t lock; unsigned int cpu; unsigned int active_bases; unsigned int clock_was_set_seq; unsigned int hres_active : 1, in_hrtirq : 1, hang_detected : 1, softirq_activated : 1; #ifdef CONFIG_HIGH_RES_TIMERS unsigned int nr_events; unsigned short nr_retries; unsigned short nr_hangs; unsigned int max_hang_time; #endif #ifdef CONFIG_PREEMPT_RT spinlock_t softirq_expiry_lock; atomic_t timer_waiters; #endif ktime_t expires_next; struct hrtimer *next_timer; ktime_t softirq_expires_next; struct hrtimer *softirq_next_timer; struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES]; } ____cacheline_aligned; static inline void hrtimer_set_expires(struct hrtimer *timer, ktime_t time) { timer->node.expires = time; timer->_softexpires = time; } static inline void hrtimer_set_expires_range(struct hrtimer *timer, ktime_t time, ktime_t delta) { timer->_softexpires = time; timer->node.expires = ktime_add_safe(time, delta); } static inline void hrtimer_set_expires_range_ns(struct hrtimer *timer, ktime_t time, u64 delta) { timer->_softexpires = time; timer->node.expires = ktime_add_safe(time, ns_to_ktime(delta)); } static inline void hrtimer_set_expires_tv64(struct hrtimer *timer, s64 tv64) { timer->node.expires = tv64; timer->_softexpires = tv64; } static inline void hrtimer_add_expires(struct hrtimer *timer, ktime_t time) { timer->node.expires = ktime_add_safe(timer->node.expires, time); timer->_softexpires = ktime_add_safe(timer->_softexpires, time); } static inline void hrtimer_add_expires_ns(struct hrtimer *timer, u64 ns) { timer->node.expires = ktime_add_ns(timer->node.expires, ns); timer->_softexpires = ktime_add_ns(timer->_softexpires, ns); } static inline ktime_t hrtimer_get_expires(const struct hrtimer *timer) { return timer->node.expires; } static inline ktime_t hrtimer_get_softexpires(const struct hrtimer *timer) { return timer->_softexpires; } static inline s64 hrtimer_get_expires_tv64(const struct hrtimer *timer) { return timer->node.expires; } static inline s64 hrtimer_get_softexpires_tv64(const struct hrtimer *timer) { return timer->_softexpires; } static inline s64 hrtimer_get_expires_ns(const struct hrtimer *timer) { return ktime_to_ns(timer->node.expires); } static inline ktime_t hrtimer_expires_remaining(const struct hrtimer *timer) { return ktime_sub(timer->node.expires, timer->base->get_time()); } static inline ktime_t hrtimer_cb_get_time(struct hrtimer *timer) { return timer->base->get_time(); } static inline int hrtimer_is_hres_active(struct hrtimer *timer) { return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? timer->base->cpu_base->hres_active : 0; } #ifdef CONFIG_HIGH_RES_TIMERS struct clock_event_device; extern void hrtimer_interrupt(struct clock_event_device *dev); extern unsigned int hrtimer_resolution; #else #define hrtimer_resolution (unsigned int)LOW_RES_NSEC #endif static inline ktime_t __hrtimer_expires_remaining_adjusted(const struct hrtimer *timer, ktime_t now) { ktime_t rem = ktime_sub(timer->node.expires, now); /* * Adjust relative timers for the extra we added in * hrtimer_start_range_ns() to prevent short timeouts. */ if (IS_ENABLED(CONFIG_TIME_LOW_RES) && timer->is_rel) rem -= hrtimer_resolution; return rem; } static inline ktime_t hrtimer_expires_remaining_adjusted(const struct hrtimer *timer) { return __hrtimer_expires_remaining_adjusted(timer, timer->base->get_time()); } #ifdef CONFIG_TIMERFD extern void timerfd_clock_was_set(void); #else static inline void timerfd_clock_was_set(void) { } #endif extern void hrtimers_resume(void); DECLARE_PER_CPU(struct tick_device, tick_cpu_device); #ifdef CONFIG_PREEMPT_RT void hrtimer_cancel_wait_running(const struct hrtimer *timer); #else static inline void hrtimer_cancel_wait_running(struct hrtimer *timer) { cpu_relax(); } #endif /* Exported timer functions: */ /* Initialize timers: */ extern void hrtimer_init(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode); extern void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode); #ifdef CONFIG_DEBUG_OBJECTS_TIMERS extern void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode); extern void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode); extern void destroy_hrtimer_on_stack(struct hrtimer *timer); #else static inline void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t which_clock, enum hrtimer_mode mode) { hrtimer_init(timer, which_clock, mode); } static inline void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode) { hrtimer_init_sleeper(sl, clock_id, mode); } static inline void destroy_hrtimer_on_stack(struct hrtimer *timer) { } #endif /* Basic timer operations: */ extern void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, u64 range_ns, const enum hrtimer_mode mode); /** * hrtimer_start - (re)start an hrtimer * @timer: the timer to be added * @tim: expiry time * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); * softirq based mode is considered for debug purpose only! */ static inline void hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { hrtimer_start_range_ns(timer, tim, 0, mode); } extern int hrtimer_cancel(struct hrtimer *timer); extern int hrtimer_try_to_cancel(struct hrtimer *timer); static inline void hrtimer_start_expires(struct hrtimer *timer, enum hrtimer_mode mode) { u64 delta; ktime_t soft, hard; soft = hrtimer_get_softexpires(timer); hard = hrtimer_get_expires(timer); delta = ktime_to_ns(ktime_sub(hard, soft)); hrtimer_start_range_ns(timer, soft, delta, mode); } void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, enum hrtimer_mode mode); static inline void hrtimer_restart(struct hrtimer *timer) { hrtimer_start_expires(timer, HRTIMER_MODE_ABS); } /* Query timers: */ extern ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust); static inline ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { return __hrtimer_get_remaining(timer, false); } extern u64 hrtimer_get_next_event(void); extern u64 hrtimer_next_event_without(const struct hrtimer *exclude); extern bool hrtimer_active(const struct hrtimer *timer); /** * hrtimer_is_queued = check, whether the timer is on one of the queues * @timer: Timer to check * * Returns: True if the timer is queued, false otherwise * * The function can be used lockless, but it gives only a current snapshot. */ static inline bool hrtimer_is_queued(struct hrtimer *timer) { /* The READ_ONCE pairs with the update functions of timer->state */ return !!(READ_ONCE(timer->state) & HRTIMER_STATE_ENQUEUED); } /* * Helper function to check, whether the timer is running the callback * function */ static inline int hrtimer_callback_running(struct hrtimer *timer) { return timer->base->running == timer; } /* Forward a hrtimer so it expires after now: */ extern u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval); /** * hrtimer_forward_now - forward the timer expiry so it expires after now * @timer: hrtimer to forward * @interval: the interval to forward * * Forward the timer expiry so it will expire after the current time * of the hrtimer clock base. Returns the number of overruns. * * Can be safely called from the callback function of @timer. If * called from other contexts @timer must neither be enqueued nor * running the callback and the caller needs to take care of * serialization. * * Note: This only updates the timer expiry value and does not requeue * the timer. */ static inline u64 hrtimer_forward_now(struct hrtimer *timer, ktime_t interval) { return hrtimer_forward(timer, timer->base->get_time(), interval); } /* Precise sleep: */ extern int nanosleep_copyout(struct restart_block *, struct timespec64 *); extern long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, const clockid_t clockid); extern int schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode); extern int schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, const enum hrtimer_mode mode, clockid_t clock_id); extern int schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode); /* Soft interrupt function to run the hrtimer queues: */ extern void hrtimer_run_queues(void); /* Bootup initialization: */ extern void __init hrtimers_init(void); /* Show pending timers: */ extern void sysrq_timer_list_show(void); int hrtimers_prepare_cpu(unsigned int cpu); #ifdef CONFIG_HOTPLUG_CPU int hrtimers_dead_cpu(unsigned int cpu); #else #define hrtimers_dead_cpu NULL #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _MM_PERCPU_INTERNAL_H #define _MM_PERCPU_INTERNAL_H #include <linux/types.h> #include <linux/percpu.h> /* * There are two chunk types: root and memcg-aware. * Chunks of each type have separate slots list. * * Memcg-aware chunks have an attached vector of obj_cgroup pointers, which is * used to store memcg membership data of a percpu object. Obj_cgroups are * ref-counted pointers to a memory cgroup with an ability to switch dynamically * to the parent memory cgroup. This allows to reclaim a deleted memory cgroup * without reclaiming of all outstanding objects, which hold a reference at it. */ enum pcpu_chunk_type { PCPU_CHUNK_ROOT, #ifdef CONFIG_MEMCG_KMEM PCPU_CHUNK_MEMCG, #endif PCPU_NR_CHUNK_TYPES, PCPU_FAIL_ALLOC = PCPU_NR_CHUNK_TYPES }; /* * pcpu_block_md is the metadata block struct. * Each chunk's bitmap is split into a number of full blocks. * All units are in terms of bits. * * The scan hint is the largest known contiguous area before the contig hint. * It is not necessarily the actual largest contig hint though. There is an * invariant that the scan_hint_start > contig_hint_start iff * scan_hint == contig_hint. This is necessary because when scanning forward, * we don't know if a new contig hint would be better than the current one. */ struct pcpu_block_md { int scan_hint; /* scan hint for block */ int scan_hint_start; /* block relative starting position of the scan hint */ int contig_hint; /* contig hint for block */ int contig_hint_start; /* block relative starting position of the contig hint */ int left_free; /* size of free space along the left side of the block */ int right_free; /* size of free space along the right side of the block */ int first_free; /* block position of first free */ int nr_bits; /* total bits responsible for */ }; struct pcpu_chunk { #ifdef CONFIG_PERCPU_STATS int nr_alloc; /* # of allocations */ size_t max_alloc_size; /* largest allocation size */ #endif struct list_head list; /* linked to pcpu_slot lists */ int free_bytes; /* free bytes in the chunk */ struct pcpu_block_md chunk_md; void *base_addr; /* base address of this chunk */ unsigned long *alloc_map; /* allocation map */ unsigned long *bound_map; /* boundary map */ struct pcpu_block_md *md_blocks; /* metadata blocks */ void *data; /* chunk data */ bool immutable; /* no [de]population allowed */ int start_offset; /* the overlap with the previous region to have a page aligned base_addr */ int end_offset; /* additional area required to have the region end page aligned */ #ifdef CONFIG_MEMCG_KMEM struct obj_cgroup **obj_cgroups; /* vector of object cgroups */ #endif int nr_pages; /* # of pages served by this chunk */ int nr_populated; /* # of populated pages */ int nr_empty_pop_pages; /* # of empty populated pages */ unsigned long populated[]; /* populated bitmap */ }; extern spinlock_t pcpu_lock; extern struct list_head *pcpu_chunk_lists; extern int pcpu_nr_slots; extern int pcpu_nr_empty_pop_pages[]; extern struct pcpu_chunk *pcpu_first_chunk; extern struct pcpu_chunk *pcpu_reserved_chunk; /** * pcpu_chunk_nr_blocks - converts nr_pages to # of md_blocks * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bitmap blocks used. */ static inline int pcpu_chunk_nr_blocks(struct pcpu_chunk *chunk) { return chunk->nr_pages * PAGE_SIZE / PCPU_BITMAP_BLOCK_SIZE; } /** * pcpu_nr_pages_to_map_bits - converts the pages to size of bitmap * @pages: number of physical pages * * This conversion is from physical pages to the number of bits * required in the bitmap. */ static inline int pcpu_nr_pages_to_map_bits(int pages) { return pages * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; } /** * pcpu_chunk_map_bits - helper to convert nr_pages to size of bitmap * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bits in the bitmap. */ static inline int pcpu_chunk_map_bits(struct pcpu_chunk *chunk) { return pcpu_nr_pages_to_map_bits(chunk->nr_pages); } #ifdef CONFIG_MEMCG_KMEM static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { if (chunk->obj_cgroups) return PCPU_CHUNK_MEMCG; return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return chunk_type == PCPU_CHUNK_MEMCG; } #else static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return false; } #endif static inline struct list_head *pcpu_chunk_list(enum pcpu_chunk_type chunk_type) { return &pcpu_chunk_lists[pcpu_nr_slots * pcpu_is_memcg_chunk(chunk_type)]; } #ifdef CONFIG_PERCPU_STATS #include <linux/spinlock.h> struct percpu_stats { u64 nr_alloc; /* lifetime # of allocations */ u64 nr_dealloc; /* lifetime # of deallocations */ u64 nr_cur_alloc; /* current # of allocations */ u64 nr_max_alloc; /* max # of live allocations */ u32 nr_chunks; /* current # of live chunks */ u32 nr_max_chunks; /* max # of live chunks */ size_t min_alloc_size; /* min allocaiton size */ size_t max_alloc_size; /* max allocation size */ }; extern struct percpu_stats pcpu_stats; extern struct pcpu_alloc_info pcpu_stats_ai; /* * For debug purposes. We don't care about the flexible array. */ static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { memcpy(&pcpu_stats_ai, ai, sizeof(struct pcpu_alloc_info)); /* initialize min_alloc_size to unit_size */ pcpu_stats.min_alloc_size = pcpu_stats_ai.unit_size; } /* * pcpu_stats_area_alloc - increment area allocation stats * @chunk: the location of the area being allocated * @size: size of area to allocate in bytes * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_alloc++; pcpu_stats.nr_cur_alloc++; pcpu_stats.nr_max_alloc = max(pcpu_stats.nr_max_alloc, pcpu_stats.nr_cur_alloc); pcpu_stats.min_alloc_size = min(pcpu_stats.min_alloc_size, size); pcpu_stats.max_alloc_size = max(pcpu_stats.max_alloc_size, size); chunk->nr_alloc++; chunk->max_alloc_size = max(chunk->max_alloc_size, size); } /* * pcpu_stats_area_dealloc - decrement allocation stats * @chunk: the location of the area being deallocated * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_dealloc++; pcpu_stats.nr_cur_alloc--; chunk->nr_alloc--; } /* * pcpu_stats_chunk_alloc - increment chunk stats */ static inline void pcpu_stats_chunk_alloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks++; pcpu_stats.nr_max_chunks = max(pcpu_stats.nr_max_chunks, pcpu_stats.nr_chunks); spin_unlock_irqrestore(&pcpu_lock, flags); } /* * pcpu_stats_chunk_dealloc - decrement chunk stats */ static inline void pcpu_stats_chunk_dealloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks--; spin_unlock_irqrestore(&pcpu_lock, flags); } #else static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { } static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { } static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { } static inline void pcpu_stats_chunk_alloc(void) { } static inline void pcpu_stats_chunk_dealloc(void) { } #endif /* !CONFIG_PERCPU_STATS */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MSDOS_FS_H #define _LINUX_MSDOS_FS_H #include <uapi/linux/msdos_fs.h> /* media of boot sector */ static inline int fat_valid_media(u8 media) { return 0xf8 <= media || media == 0xf0; } #endif /* !_LINUX_MSDOS_FS_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CURRENT_H #define _ASM_X86_CURRENT_H #include <linux/compiler.h> #include <asm/percpu.h> #ifndef __ASSEMBLY__ struct task_struct; DECLARE_PER_CPU(struct task_struct *, current_task); static __always_inline struct task_struct *get_current(void) { return this_cpu_read_stable(current_task); } #define current get_current() #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_CURRENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/xattr.h Extended attributes handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved. Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #ifndef _LINUX_XATTR_H #define _LINUX_XATTR_H #include <linux/slab.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <uapi/linux/xattr.h> struct inode; struct dentry; /* * struct xattr_handler: When @name is set, match attributes with exactly that * name. When @prefix is set instead, match attributes with that prefix and * with a non-empty suffix. */ struct xattr_handler { const char *name; const char *prefix; int flags; /* fs private flags */ bool (*list)(struct dentry *dentry); int (*get)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, void *buffer, size_t size); int (*set)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, const void *buffer, size_t size, int flags); }; const char *xattr_full_name(const struct xattr_handler *, const char *); struct xattr { const char *name; void *value; size_t value_len; }; ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t); ssize_t vfs_getxattr(struct dentry *, const char *, void *, size_t); ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size); int __vfs_setxattr(struct dentry *, struct inode *, const char *, const void *, size_t, int); int __vfs_setxattr_noperm(struct dentry *, const char *, const void *, size_t, int); int __vfs_setxattr_locked(struct dentry *, const char *, const void *, size_t, int, struct inode **); int vfs_setxattr(struct dentry *, const char *, const void *, size_t, int); int __vfs_removexattr(struct dentry *, const char *); int __vfs_removexattr_locked(struct dentry *, const char *, struct inode **); int vfs_removexattr(struct dentry *, const char *); ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size); ssize_t vfs_getxattr_alloc(struct dentry *dentry, const char *name, char **xattr_value, size_t size, gfp_t flags); int xattr_supported_namespace(struct inode *inode, const char *prefix); static inline const char *xattr_prefix(const struct xattr_handler *handler) { return handler->prefix ?: handler->name; } struct simple_xattrs { struct list_head head; spinlock_t lock; }; struct simple_xattr { struct list_head list; char *name; size_t size; char value[]; }; /* * initialize the simple_xattrs structure */ static inline void simple_xattrs_init(struct simple_xattrs *xattrs) { INIT_LIST_HEAD(&xattrs->head); spin_lock_init(&xattrs->lock); } /* * free all the xattrs */ static inline void simple_xattrs_free(struct simple_xattrs *xattrs) { struct simple_xattr *xattr, *node; list_for_each_entry_safe(xattr, node, &xattrs->head, list) { kfree(xattr->name); kvfree(xattr); } } struct simple_xattr *simple_xattr_alloc(const void *value, size_t size); int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size); int simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags, ssize_t *removed_size); ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size); void simple_xattr_list_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr); #endif /* _LINUX_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _LINUX_IO_URING_H #define _LINUX_IO_URING_H #include <linux/sched.h> #include <linux/xarray.h> struct io_identity { struct files_struct *files; struct mm_struct *mm; #ifdef CONFIG_BLK_CGROUP struct cgroup_subsys_state *blkcg_css; #endif const struct cred *creds; struct nsproxy *nsproxy; struct fs_struct *fs; unsigned long fsize; #ifdef CONFIG_AUDIT kuid_t loginuid; unsigned int sessionid; #endif refcount_t count; }; struct io_uring_task { /* submission side */ struct xarray xa; struct wait_queue_head wait; struct file *last; struct percpu_counter inflight; struct io_identity __identity; struct io_identity *identity; atomic_t in_idle; bool sqpoll; }; #if defined(CONFIG_IO_URING) struct sock *io_uring_get_socket(struct file *file); void __io_uring_task_cancel(void); void __io_uring_files_cancel(struct files_struct *files); void __io_uring_free(struct task_struct *tsk); static inline void io_uring_task_cancel(void) { if (current->io_uring && !xa_empty(&current->io_uring->xa)) __io_uring_task_cancel(); } static inline void io_uring_files_cancel(struct files_struct *files) { if (current->io_uring && !xa_empty(&current->io_uring->xa)) __io_uring_files_cancel(files); } static inline void io_uring_free(struct task_struct *tsk) { if (tsk->io_uring) __io_uring_free(tsk); } #else static inline struct sock *io_uring_get_socket(struct file *file) { return NULL; } static inline void io_uring_task_cancel(void) { } static inline void io_uring_files_cancel(struct files_struct *files) { } static inline void io_uring_free(struct task_struct *tsk) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _UAPI_LINUX_SWAB_H #define _UAPI_LINUX_SWAB_H #include <linux/types.h> #include <linux/compiler.h> #include <asm/bitsperlong.h> #include <asm/swab.h> /* * casts are necessary for constants, because we never know how for sure * how U/UL/ULL map to __u16, __u32, __u64. At least not in a portable way. */ #define ___constant_swab16(x) ((__u16)( \ (((__u16)(x) & (__u16)0x00ffU) << 8) | \ (((__u16)(x) & (__u16)0xff00U) >> 8))) #define ___constant_swab32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x000000ffUL) << 24) | \ (((__u32)(x) & (__u32)0x0000ff00UL) << 8) | \ (((__u32)(x) & (__u32)0x00ff0000UL) >> 8) | \ (((__u32)(x) & (__u32)0xff000000UL) >> 24))) #define ___constant_swab64(x) ((__u64)( \ (((__u64)(x) & (__u64)0x00000000000000ffULL) << 56) | \ (((__u64)(x) & (__u64)0x000000000000ff00ULL) << 40) | \ (((__u64)(x) & (__u64)0x0000000000ff0000ULL) << 24) | \ (((__u64)(x) & (__u64)0x00000000ff000000ULL) << 8) | \ (((__u64)(x) & (__u64)0x000000ff00000000ULL) >> 8) | \ (((__u64)(x) & (__u64)0x0000ff0000000000ULL) >> 24) | \ (((__u64)(x) & (__u64)0x00ff000000000000ULL) >> 40) | \ (((__u64)(x) & (__u64)0xff00000000000000ULL) >> 56))) #define ___constant_swahw32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x0000ffffUL) << 16) | \ (((__u32)(x) & (__u32)0xffff0000UL) >> 16))) #define ___constant_swahb32(x) ((__u32)( \ (((__u32)(x) & (__u32)0x00ff00ffUL) << 8) | \ (((__u32)(x) & (__u32)0xff00ff00UL) >> 8))) /* * Implement the following as inlines, but define the interface using * macros to allow constant folding when possible: * ___swab16, ___swab32, ___swab64, ___swahw32, ___swahb32 */ static inline __attribute_const__ __u16 __fswab16(__u16 val) { #if defined (__arch_swab16) return __arch_swab16(val); #else return ___constant_swab16(val); #endif } static inline __attribute_const__ __u32 __fswab32(__u32 val) { #if defined(__arch_swab32) return __arch_swab32(val); #else return ___constant_swab32(val); #endif } static inline __attribute_const__ __u64 __fswab64(__u64 val) { #if defined (__arch_swab64) return __arch_swab64(val); #elif defined(__SWAB_64_THRU_32__) __u32 h = val >> 32; __u32 l = val & ((1ULL << 32) - 1); return (((__u64)__fswab32(l)) << 32) | ((__u64)(__fswab32(h))); #else return ___constant_swab64(val); #endif } static inline __attribute_const__ __u32 __fswahw32(__u32 val) { #ifdef __arch_swahw32 return __arch_swahw32(val); #else return ___constant_swahw32(val); #endif } static inline __attribute_const__ __u32 __fswahb32(__u32 val) { #ifdef __arch_swahb32 return __arch_swahb32(val); #else return ___constant_swahb32(val); #endif } /** * __swab16 - return a byteswapped 16-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP16__ #define __swab16(x) (__u16)__builtin_bswap16((__u16)(x)) #else #define __swab16(x) \ (__builtin_constant_p((__u16)(x)) ? \ ___constant_swab16(x) : \ __fswab16(x)) #endif /** * __swab32 - return a byteswapped 32-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP32__ #define __swab32(x) (__u32)__builtin_bswap32((__u32)(x)) #else #define __swab32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swab32(x) : \ __fswab32(x)) #endif /** * __swab64 - return a byteswapped 64-bit value * @x: value to byteswap */ #ifdef __HAVE_BUILTIN_BSWAP64__ #define __swab64(x) (__u64)__builtin_bswap64((__u64)(x)) #else #define __swab64(x) \ (__builtin_constant_p((__u64)(x)) ? \ ___constant_swab64(x) : \ __fswab64(x)) #endif static __always_inline unsigned long __swab(const unsigned long y) { #if __BITS_PER_LONG == 64 return __swab64(y); #else /* __BITS_PER_LONG == 32 */ return __swab32(y); #endif } /** * __swahw32 - return a word-swapped 32-bit value * @x: value to wordswap * * __swahw32(0x12340000) is 0x00001234 */ #define __swahw32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swahw32(x) : \ __fswahw32(x)) /** * __swahb32 - return a high and low byte-swapped 32-bit value * @x: value to byteswap * * __swahb32(0x12345678) is 0x34127856 */ #define __swahb32(x) \ (__builtin_constant_p((__u32)(x)) ? \ ___constant_swahb32(x) : \ __fswahb32(x)) /** * __swab16p - return a byteswapped 16-bit value from a pointer * @p: pointer to a naturally-aligned 16-bit value */ static __always_inline __u16 __swab16p(const __u16 *p) { #ifdef __arch_swab16p return __arch_swab16p(p); #else return __swab16(*p); #endif } /** * __swab32p - return a byteswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value */ static __always_inline __u32 __swab32p(const __u32 *p) { #ifdef __arch_swab32p return __arch_swab32p(p); #else return __swab32(*p); #endif } /** * __swab64p - return a byteswapped 64-bit value from a pointer * @p: pointer to a naturally-aligned 64-bit value */ static __always_inline __u64 __swab64p(const __u64 *p) { #ifdef __arch_swab64p return __arch_swab64p(p); #else return __swab64(*p); #endif } /** * __swahw32p - return a wordswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value * * See __swahw32() for details of wordswapping. */ static inline __u32 __swahw32p(const __u32 *p) { #ifdef __arch_swahw32p return __arch_swahw32p(p); #else return __swahw32(*p); #endif } /** * __swahb32p - return a high and low byteswapped 32-bit value from a pointer * @p: pointer to a naturally-aligned 32-bit value * * See __swahb32() for details of high/low byteswapping. */ static inline __u32 __swahb32p(const __u32 *p) { #ifdef __arch_swahb32p return __arch_swahb32p(p); #else return __swahb32(*p); #endif } /** * __swab16s - byteswap a 16-bit value in-place * @p: pointer to a naturally-aligned 16-bit value */ static inline void __swab16s(__u16 *p) { #ifdef __arch_swab16s __arch_swab16s(p); #else *p = __swab16p(p); #endif } /** * __swab32s - byteswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value */ static __always_inline void __swab32s(__u32 *p) { #ifdef __arch_swab32s __arch_swab32s(p); #else *p = __swab32p(p); #endif } /** * __swab64s - byteswap a 64-bit value in-place * @p: pointer to a naturally-aligned 64-bit value */ static __always_inline void __swab64s(__u64 *p) { #ifdef __arch_swab64s __arch_swab64s(p); #else *p = __swab64p(p); #endif } /** * __swahw32s - wordswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value * * See __swahw32() for details of wordswapping */ static inline void __swahw32s(__u32 *p) { #ifdef __arch_swahw32s __arch_swahw32s(p); #else *p = __swahw32p(p); #endif } /** * __swahb32s - high and low byteswap a 32-bit value in-place * @p: pointer to a naturally-aligned 32-bit value * * See __swahb32() for details of high and low byte swapping */ static inline void __swahb32s(__u32 *p) { #ifdef __arch_swahb32s __arch_swahb32s(p); #else *p = __swahb32p(p); #endif } #endif /* _UAPI_LINUX_SWAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 /* SPDX-License-Identifier: GPL-2.0 */ /* rwsem.h: R/W semaphores, public interface * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h */ #ifndef _LINUX_RWSEM_H #define _LINUX_RWSEM_H #include <linux/linkage.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif /* * For an uncontended rwsem, count and owner are the only fields a task * needs to touch when acquiring the rwsem. So they are put next to each * other to increase the chance that they will share the same cacheline. * * In a contended rwsem, the owner is likely the most frequently accessed * field in the structure as the optimistic waiter that holds the osq lock * will spin on owner. For an embedded rwsem, other hot fields in the * containing structure should be moved further away from the rwsem to * reduce the chance that they will share the same cacheline causing * cacheline bouncing problem. */ struct rw_semaphore { atomic_long_t count; /* * Write owner or one of the read owners as well flags regarding * the current state of the rwsem. Can be used as a speculative * check to see if the write owner is running on the cpu. */ atomic_long_t owner; #ifdef CONFIG_RWSEM_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* spinner MCS lock */ #endif raw_spinlock_t wait_lock; struct list_head wait_list; #ifdef CONFIG_DEBUG_RWSEMS void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; /* In all implementations count != 0 means locked */ static inline int rwsem_is_locked(struct rw_semaphore *sem) { return atomic_long_read(&sem->count) != 0; } #define RWSEM_UNLOCKED_VALUE 0L #define __RWSEM_COUNT_INIT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE) /* Common initializer macros and functions */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # define __RWSEM_DEP_MAP_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_SLEEP, \ }, #else # define __RWSEM_DEP_MAP_INIT(lockname) #endif #ifdef CONFIG_DEBUG_RWSEMS # define __RWSEM_DEBUG_INIT(lockname) .magic = &lockname, #else # define __RWSEM_DEBUG_INIT(lockname) #endif #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #define __RWSEM_OPT_INIT(lockname) .osq = OSQ_LOCK_UNLOCKED, #else #define __RWSEM_OPT_INIT(lockname) #endif #define __RWSEM_INITIALIZER(name) \ { __RWSEM_COUNT_INIT(name), \ .owner = ATOMIC_LONG_INIT(0), \ __RWSEM_OPT_INIT(name) \ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),\ .wait_list = LIST_HEAD_INIT((name).wait_list), \ __RWSEM_DEBUG_INIT(name) \ __RWSEM_DEP_MAP_INIT(name) } #define DECLARE_RWSEM(name) \ struct rw_semaphore name = __RWSEM_INITIALIZER(name) extern void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) /* * This is the same regardless of which rwsem implementation that is being used. * It is just a heuristic meant to be called by somebody alreadying holding the * rwsem to see if somebody from an incompatible type is wanting access to the * lock. */ static inline int rwsem_is_contended(struct rw_semaphore *sem) { return !list_empty(&sem->wait_list); } /* * lock for reading */ extern void down_read(struct rw_semaphore *sem); extern int __must_check down_read_interruptible(struct rw_semaphore *sem); extern int __must_check down_read_killable(struct rw_semaphore *sem); /* * trylock for reading -- returns 1 if successful, 0 if contention */ extern int down_read_trylock(struct rw_semaphore *sem); /* * lock for writing */ extern void down_write(struct rw_semaphore *sem); extern int __must_check down_write_killable(struct rw_semaphore *sem); /* * trylock for writing -- returns 1 if successful, 0 if contention */ extern int down_write_trylock(struct rw_semaphore *sem); /* * release a read lock */ extern void up_read(struct rw_semaphore *sem); /* * release a write lock */ extern void up_write(struct rw_semaphore *sem); /* * downgrade write lock to read lock */ extern void downgrade_write(struct rw_semaphore *sem); #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * nested locking. NOTE: rwsems are not allowed to recurse * (which occurs if the same task tries to acquire the same * lock instance multiple times), but multiple locks of the * same lock class might be taken, if the order of the locks * is always the same. This ordering rule can be expressed * to lockdep via the _nested() APIs, but enumerating the * subclasses that are used. (If the nesting relationship is * static then another method for expressing nested locking is * the explicit definition of lock class keys and the use of * lockdep_set_class() at lock initialization time. * See Documentation/locking/lockdep-design.rst for more details.) */ extern void down_read_nested(struct rw_semaphore *sem, int subclass); extern int __must_check down_read_killable_nested(struct rw_semaphore *sem, int subclass); extern void down_write_nested(struct rw_semaphore *sem, int subclass); extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass); extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock); # define down_write_nest_lock(sem, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ _down_write_nest_lock(sem, &(nest_lock)->dep_map); \ } while (0); /* * Take/release a lock when not the owner will release it. * * [ This API should be avoided as much as possible - the * proper abstraction for this case is completions. ] */ extern void down_read_non_owner(struct rw_semaphore *sem); extern void up_read_non_owner(struct rw_semaphore *sem); #else # define down_read_nested(sem, subclass) down_read(sem) # define down_read_killable_nested(sem, subclass) down_read_killable(sem) # define down_write_nest_lock(sem, nest_lock) down_write(sem) # define down_write_nested(sem, subclass) down_write(sem) # define down_write_killable_nested(sem, subclass) down_write_killable(sem) # define down_read_non_owner(sem) down_read(sem) # define up_read_non_owner(sem) up_read(sem) #endif #endif /* _LINUX_RWSEM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGTABLE_H #define _LINUX_PGTABLE_H #include <linux/pfn.h> #include <asm/pgtable.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_MMU #include <linux/mm_types.h> #include <linux/bug.h> #include <linux/errno.h> #include <asm-generic/pgtable_uffd.h> #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED #endif /* * On almost all architectures and configurations, 0 can be used as the * upper ceiling to free_pgtables(): on many architectures it has the same * effect as using TASK_SIZE. However, there is one configuration which * must impose a more careful limit, to avoid freeing kernel pgtables. */ #ifndef USER_PGTABLES_CEILING #define USER_PGTABLES_CEILING 0UL #endif /* * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] * * The pXx_index() functions return the index of the entry in the page * table page which would control the given virtual address * * As these functions may be used by the same code for different levels of * the page table folding, they are always available, regardless of * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 * because in such cases PTRS_PER_PxD equals 1. */ static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } #ifndef pmd_index static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } #define pmd_index pmd_index #endif #ifndef pud_index static inline unsigned long pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } #define pud_index pud_index #endif #ifndef pgd_index /* Must be a compile-time constant, so implement it as a macro */ #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #endif #ifndef pte_offset_kernel static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); } #define pte_offset_kernel pte_offset_kernel #endif #if defined(CONFIG_HIGHPTE) #define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ pte_index((address))) #define pte_unmap(pte) kunmap_atomic((pte)) #else #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) #define pte_unmap(pte) ((void)(pte)) /* NOP */ #endif /* Find an entry in the second-level page table.. */ #ifndef pmd_offset static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); } #define pmd_offset pmd_offset #endif #ifndef pud_offset static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) { return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); } #define pud_offset pud_offset #endif static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) { return (pgd + pgd_index(address)); }; /* * a shortcut to get a pgd_t in a given mm */ #ifndef pgd_offset #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) #endif /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #ifndef pgd_offset_k #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) #endif /* * In many cases it is known that a virtual address is mapped at PMD or PTE * level, so instead of traversing all the page table levels, we can get a * pointer to the PMD entry in user or kernel page table or translate a virtual * address to the pointer in the PTE in the kernel page tables with simple * helpers. */ static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); } static inline pmd_t *pmd_off_k(unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); } static inline pte_t *virt_to_kpte(unsigned long vaddr) { pmd_t *pmd = pmd_off_k(vaddr); return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); } #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #else static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { BUILD_BUG(); return 0; } static inline int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; int r = 1; if (!pte_young(pte)) r = 0; else set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); return r; } #endif #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; int r = 1; if (!pmd_young(pmd)) r = 0; else set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); return r; } #else static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else /* * Despite relevant to THP only, this API is called from generic rmap code * under PageTransHuge(), hence needs a dummy implementation for !THP */ static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, address, ptep); return pte; } #endif #ifndef __HAVE_ARCH_PTEP_GET static inline pte_t ptep_get(pte_t *ptep) { return READ_ONCE(*ptep); } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmd_clear(pmdp); return pmd; } #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t pud = *pudp; pud_clear(pudp); return pud; } #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, int full) { return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); } #endif #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, unsigned long address, pud_t *pudp, int full) { return pudp_huge_get_and_clear(mm, address, pudp); } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_t pte; pte = ptep_get_and_clear(mm, address, ptep); return pte; } #endif /* * If two threads concurrently fault at the same page, the thread that * won the race updates the PTE and its local TLB/Cache. The other thread * gives up, simply does nothing, and continues; on architectures where * software can update TLB, local TLB can be updated here to avoid next page * fault. This function updates TLB only, do nothing with cache or others. * It is the difference with function update_mmu_cache. */ #ifndef __HAVE_ARCH_UPDATE_MMU_TLB static inline void update_mmu_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { } #define __HAVE_ARCH_UPDATE_MMU_TLB #endif /* * Some architectures may be able to avoid expensive synchronization * primitives when modifications are made to PTE's which are already * not present, or in the process of an address space destruction. */ #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL static inline void pte_clear_not_present_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_clear(mm, address, ptep); } #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH extern pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); #endif #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT struct mm_struct; static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t old_pte = *ptep; set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); } #endif /* * On some architectures hardware does not set page access bit when accessing * memory page, it is responsibilty of software setting this bit. It brings * out extra page fault penalty to track page access bit. For optimization page * access bit can be set during all page fault flow on these arches. * To be differentiate with macro pte_mkyoung, this macro is used on platforms * where software maintains page access bit. */ #ifndef pte_sw_mkyoung static inline pte_t pte_sw_mkyoung(pte_t pte) { return pte; } #define pte_sw_mkyoung pte_sw_mkyoung #endif #ifndef pte_savedwrite #define pte_savedwrite pte_write #endif #ifndef pte_mk_savedwrite #define pte_mk_savedwrite pte_mkwrite #endif #ifndef pte_clear_savedwrite #define pte_clear_savedwrite pte_wrprotect #endif #ifndef pmd_savedwrite #define pmd_savedwrite pmd_write #endif #ifndef pmd_mk_savedwrite #define pmd_mk_savedwrite pmd_mkwrite #endif #ifndef pmd_clear_savedwrite #define pmd_clear_savedwrite pmd_wrprotect #endif #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t old_pmd = *pmdp; set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); } #else static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t old_pud = *pudp; set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); } #else static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { BUILD_BUG(); } #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #endif #ifndef pmdp_collapse_flush #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return *pmdp; } #define pmdp_collapse_flush pmdp_collapse_flush #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #endif #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is an implementation of pmdp_establish() that is only suitable for an * architecture that doesn't have hardware dirty/accessed bits. In this case we * can't race with CPU which sets these bits and non-atomic aproach is fine. */ static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { pmd_t old_pmd = *pmdp; set_pmd_at(vma->vm_mm, address, pmdp, pmd); return old_pmd; } #endif #ifndef __HAVE_ARCH_PMDP_INVALIDATE extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { return pte_val(pte_a) == pte_val(pte_b); } #endif #ifndef __HAVE_ARCH_PTE_UNUSED /* * Some architectures provide facilities to virtualization guests * so that they can flag allocated pages as unused. This allows the * host to transparently reclaim unused pages. This function returns * whether the pte's page is unused. */ static inline int pte_unused(pte_t pte) { return 0; } #endif #ifndef pte_access_permitted #define pte_access_permitted(pte, write) \ (pte_present(pte) && (!(write) || pte_write(pte))) #endif #ifndef pmd_access_permitted #define pmd_access_permitted(pmd, write) \ (pmd_present(pmd) && (!(write) || pmd_write(pmd))) #endif #ifndef pud_access_permitted #define pud_access_permitted(pud, write) \ (pud_present(pud) && (!(write) || pud_write(pud))) #endif #ifndef p4d_access_permitted #define p4d_access_permitted(p4d, write) \ (p4d_present(p4d) && (!(write) || p4d_write(p4d))) #endif #ifndef pgd_access_permitted #define pgd_access_permitted(pgd, write) \ (pgd_present(pgd) && (!(write) || pgd_write(pgd))) #endif #ifndef __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return pmd_val(pmd_a) == pmd_val(pmd_b); } static inline int pud_same(pud_t pud_a, pud_t pud_b) { return pud_val(pud_a) == pud_val(pud_b); } #endif #ifndef __HAVE_ARCH_P4D_SAME static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) { return p4d_val(p4d_a) == p4d_val(p4d_b); } #endif #ifndef __HAVE_ARCH_PGD_SAME static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) { return pgd_val(pgd_a) == pgd_val(pgd_b); } #endif /* * Use set_p*_safe(), and elide TLB flushing, when confident that *no* * TLB flush will be required as a result of the "set". For example, use * in scenarios where it is known ahead of time that the routine is * setting non-present entries, or re-setting an existing entry to the * same value. Otherwise, use the typical "set" helpers and flush the * TLB. */ #define set_pte_safe(ptep, pte) \ ({ \ WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ set_pte(ptep, pte); \ }) #define set_pmd_safe(pmdp, pmd) \ ({ \ WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ set_pmd(pmdp, pmd); \ }) #define set_pud_safe(pudp, pud) \ ({ \ WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ set_pud(pudp, pud); \ }) #define set_p4d_safe(p4dp, p4d) \ ({ \ WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ set_p4d(p4dp, p4d); \ }) #define set_pgd_safe(pgdp, pgd) \ ({ \ WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ set_pgd(pgdp, pgd); \ }) #ifndef __HAVE_ARCH_DO_SWAP_PAGE /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_do_swap_page() can restore this * metadata when a page is swapped back in. */ static inline void arch_do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte, pte_t oldpte) { } #endif #ifndef __HAVE_ARCH_UNMAP_ONE /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_unmap_one() can save this * metadata on a swap-out of a page. */ static inline int arch_unmap_one(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t orig_pte) { return 0; } #endif /* * Allow architectures to preserve additional metadata associated with * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function * prototypes must be defined in the arch-specific asm/pgtable.h file. */ #ifndef __HAVE_ARCH_PREPARE_TO_SWAP static inline int arch_prepare_to_swap(struct page *page) { return 0; } #endif #ifndef __HAVE_ARCH_SWAP_INVALIDATE static inline void arch_swap_invalidate_page(int type, pgoff_t offset) { } static inline void arch_swap_invalidate_area(int type) { } #endif #ifndef __HAVE_ARCH_SWAP_RESTORE static inline void arch_swap_restore(swp_entry_t entry, struct page *page) { } #endif #ifndef __HAVE_ARCH_PGD_OFFSET_GATE #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) #endif #ifndef __HAVE_ARCH_MOVE_PTE #define move_pte(pte, prot, old_addr, new_addr) (pte) #endif #ifndef pte_accessible # define pte_accessible(mm, pte) ((void)(pte), 1) #endif #ifndef flush_tlb_fix_spurious_fault #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) #endif /* * When walking page tables, get the address of the next boundary, * or the end address of the range if that comes earlier. Although no * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. */ #define pgd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #ifndef p4d_addr_end #define p4d_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pud_addr_end #define pud_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pmd_addr_end #define pmd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif /* * When walking page tables, we usually want to skip any p?d_none entries; * and any p?d_bad entries - reporting the error before resetting to none. * Do the tests inline, but report and clear the bad entry in mm/memory.c. */ void pgd_clear_bad(pgd_t *); #ifndef __PAGETABLE_P4D_FOLDED void p4d_clear_bad(p4d_t *); #else #define p4d_clear_bad(p4d) do { } while (0) #endif #ifndef __PAGETABLE_PUD_FOLDED void pud_clear_bad(pud_t *); #else #define pud_clear_bad(p4d) do { } while (0) #endif void pmd_clear_bad(pmd_t *); static inline int pgd_none_or_clear_bad(pgd_t *pgd) { if (pgd_none(*pgd)) return 1; if (unlikely(pgd_bad(*pgd))) { pgd_clear_bad(pgd); return 1; } return 0; } static inline int p4d_none_or_clear_bad(p4d_t *p4d) { if (p4d_none(*p4d)) return 1; if (unlikely(p4d_bad(*p4d))) { p4d_clear_bad(p4d); return 1; } return 0; } static inline int pud_none_or_clear_bad(pud_t *pud) { if (pud_none(*pud)) return 1; if (unlikely(pud_bad(*pud))) { pud_clear_bad(pud); return 1; } return 0; } static inline int pmd_none_or_clear_bad(pmd_t *pmd) { if (pmd_none(*pmd)) return 1; if (unlikely(pmd_bad(*pmd))) { pmd_clear_bad(pmd); return 1; } return 0; } static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { /* * Get the current pte state, but zero it out to make it * non-present, preventing the hardware from asynchronously * updating it. */ return ptep_get_and_clear(vma->vm_mm, addr, ptep); } static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t pte) { /* * The pte is non-present, so there's no hardware state to * preserve. */ set_pte_at(vma->vm_mm, addr, ptep, pte); } #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION /* * Start a pte protection read-modify-write transaction, which * protects against asynchronous hardware modifications to the pte. * The intention is not to prevent the hardware from making pte * updates, but to prevent any updates it may make from being lost. * * This does not protect against other software modifications of the * pte; the appropriate pte lock must be held over the transation. * * Note that this interface is intended to be batchable, meaning that * ptep_modify_prot_commit may not actually update the pte, but merely * queue the update to be done at some later time. The update must be * actually committed before the pte lock is released, however. */ static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return __ptep_modify_prot_start(vma, addr, ptep); } /* * Commit an update to a pte, leaving any hardware-controlled bits in * the PTE unmodified. */ static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { __ptep_modify_prot_commit(vma, addr, ptep, pte); } #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ #endif /* CONFIG_MMU */ /* * No-op macros that just return the current protection value. Defined here * because these macros can be used even if CONFIG_MMU is not defined. */ #ifndef pgprot_nx #define pgprot_nx(prot) (prot) #endif #ifndef pgprot_noncached #define pgprot_noncached(prot) (prot) #endif #ifndef pgprot_writecombine #define pgprot_writecombine pgprot_noncached #endif #ifndef pgprot_writethrough #define pgprot_writethrough pgprot_noncached #endif #ifndef pgprot_device #define pgprot_device pgprot_noncached #endif #ifndef pgprot_mhp #define pgprot_mhp(prot) (prot) #endif #ifdef CONFIG_MMU #ifndef pgprot_modify #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) newprot = pgprot_noncached(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) newprot = pgprot_writecombine(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) newprot = pgprot_device(newprot); return newprot; } #endif #endif /* CONFIG_MMU */ #ifndef pgprot_encrypted #define pgprot_encrypted(prot) (prot) #endif #ifndef pgprot_decrypted #define pgprot_decrypted(prot) (prot) #endif /* * A facility to provide lazy MMU batching. This allows PTE updates and * page invalidations to be delayed until a call to leave lazy MMU mode * is issued. Some architectures may benefit from doing this, and it is * beneficial for both shadow and direct mode hypervisors, which may batch * the PTE updates which happen during this window. Note that using this * interface requires that read hazards be removed from the code. A read * hazard could result in the direct mode hypervisor case, since the actual * write to the page tables may not yet have taken place, so reads though * a raw PTE pointer after it has been modified are not guaranteed to be * up to date. This mode can only be entered and left under the protection of * the page table locks for all page tables which may be modified. In the UP * case, this is required so that preemption is disabled, and in the SMP case, * it must synchronize the delayed page table writes properly on other CPUs. */ #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE #define arch_enter_lazy_mmu_mode() do {} while (0) #define arch_leave_lazy_mmu_mode() do {} while (0) #define arch_flush_lazy_mmu_mode() do {} while (0) #endif /* * A facility to provide batching of the reload of page tables and * other process state with the actual context switch code for * paravirtualized guests. By convention, only one of the batched * update (lazy) modes (CPU, MMU) should be active at any given time, * entry should never be nested, and entry and exits should always be * paired. This is for sanity of maintaining and reasoning about the * kernel code. In this case, the exit (end of the context switch) is * in architecture-specific code, and so doesn't need a generic * definition. */ #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH #define arch_start_context_switch(prev) do {} while (0) #endif #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ static inline int pte_soft_dirty(pte_t pte) { return 0; } static inline int pmd_soft_dirty(pmd_t pmd) { return 0; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte; } static inline int pte_swp_soft_dirty(pte_t pte) { return 0; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #ifndef __HAVE_PFNMAP_TRACKING /* * Interfaces that can be used by architecture code to keep track of * memory type of pfn mappings specified by the remap_pfn_range, * vmf_insert_pfn. */ /* * track_pfn_remap is called when a _new_ pfn mapping is being established * by remap_pfn_range() for physical range indicated by pfn and size. */ static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size) { return 0; } /* * track_pfn_insert is called when a _new_ single pfn is established * by vmf_insert_pfn(). */ static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn) { } /* * track_pfn_copy is called when vma that is covering the pfnmap gets * copied through copy_page_range(). */ static inline int track_pfn_copy(struct vm_area_struct *vma) { return 0; } /* * untrack_pfn is called while unmapping a pfnmap for a region. * untrack can be called for a specific region indicated by pfn and size or * can be for the entire vma (in which case pfn, size are zero). */ static inline void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size) { } /* * untrack_pfn_moved is called while mremapping a pfnmap for a new region. */ static inline void untrack_pfn_moved(struct vm_area_struct *vma) { } #else extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size); extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn); extern int track_pfn_copy(struct vm_area_struct *vma); extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size); extern void untrack_pfn_moved(struct vm_area_struct *vma); #endif #ifdef __HAVE_COLOR_ZERO_PAGE static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; unsigned long offset_from_zero_pfn = pfn - zero_pfn; return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); } #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) #else static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; return pfn == zero_pfn; } static inline unsigned long my_zero_pfn(unsigned long addr) { extern unsigned long zero_pfn; return zero_pfn; } #endif #ifdef CONFIG_MMU #ifndef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return 0; } #ifndef pmd_write static inline int pmd_write(pmd_t pmd) { BUG(); return 0; } #endif /* pmd_write */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef pud_write static inline int pud_write(pud_t pud) { BUG(); return 0; } #endif /* pud_write */ #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) static inline int pmd_devmap(pmd_t pmd) { return 0; } static inline int pud_devmap(pud_t pud) { return 0; } static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) static inline int pud_trans_huge(pud_t pud) { return 0; } #endif /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) { pud_t pudval = READ_ONCE(*pud); if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) return 1; if (unlikely(pud_bad(pudval))) { pud_clear_bad(pud); return 1; } return 0; } /* See pmd_trans_unstable for discussion. */ static inline int pud_trans_unstable(pud_t *pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); #else return 0; #endif } #ifndef pmd_read_atomic static inline pmd_t pmd_read_atomic(pmd_t *pmdp) { /* * Depend on compiler for an atomic pmd read. NOTE: this is * only going to work, if the pmdval_t isn't larger than * an unsigned long. */ return *pmdp; } #endif #ifndef arch_needs_pgtable_deposit #define arch_needs_pgtable_deposit() (false) #endif /* * This function is meant to be used by sites walking pagetables with * the mmap_lock held in read mode to protect against MADV_DONTNEED and * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd * into a null pmd and the transhuge page fault can convert a null pmd * into an hugepmd or into a regular pmd (if the hugepage allocation * fails). While holding the mmap_lock in read mode the pmd becomes * stable and stops changing under us only if it's not null and not a * transhuge pmd. When those races occurs and this function makes a * difference vs the standard pmd_none_or_clear_bad, the result is * undefined so behaving like if the pmd was none is safe (because it * can return none anyway). The compiler level barrier() is critically * important to compute the two checks atomically on the same pmdval. * * For 32bit kernels with a 64bit large pmd_t this automatically takes * care of reading the pmd atomically to avoid SMP race conditions * against pmd_populate() when the mmap_lock is hold for reading by the * caller (a special atomic read not done by "gcc" as in the generic * version above, is also needed when THP is disabled because the page * fault can populate the pmd from under us). */ static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) { pmd_t pmdval = pmd_read_atomic(pmd); /* * The barrier will stabilize the pmdval in a register or on * the stack so that it will stop changing under the code. * * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, * pmd_read_atomic is allowed to return a not atomic pmdval * (for example pointing to an hugepage that has never been * mapped in the pmd). The below checks will only care about * the low part of the pmd with 32bit PAE x86 anyway, with the * exception of pmd_none(). So the important thing is that if * the low part of the pmd is found null, the high part will * be also null or the pmd_none() check below would be * confused. */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE barrier(); #endif /* * !pmd_present() checks for pmd migration entries * * The complete check uses is_pmd_migration_entry() in linux/swapops.h * But using that requires moving current function and pmd_trans_unstable() * to linux/swapops.h to resovle dependency, which is too much code move. * * !pmd_present() is equivalent to is_pmd_migration_entry() currently, * because !pmd_present() pages can only be under migration not swapped * out. * * pmd_none() is preseved for future condition checks on pmd migration * entries and not confusing with this function name, although it is * redundant with !pmd_present(). */ if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) return 1; if (unlikely(pmd_bad(pmdval))) { pmd_clear_bad(pmd); return 1; } return 0; } /* * This is a noop if Transparent Hugepage Support is not built into * the kernel. Otherwise it is equivalent to * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in * places that already verified the pmd is not none and they want to * walk ptes while holding the mmap sem in read mode (write mode don't * need this). If THP is not enabled, the pmd can't go away under the * code even if MADV_DONTNEED runs, but if THP is enabled we need to * run a pmd_trans_unstable before walking the ptes after * split_huge_pmd returns (because it may have run when the pmd become * null, but then a page fault can map in a THP and not a regular page). */ static inline int pmd_trans_unstable(pmd_t *pmd) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE return pmd_none_or_trans_huge_or_clear_bad(pmd); #else return 0; #endif } #ifndef CONFIG_NUMA_BALANCING /* * Technically a PTE can be PROTNONE even when not doing NUMA balancing but * the only case the kernel cares is for NUMA balancing and is only ever set * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked * _PAGE_PROTNONE so by default, implement the helper as "always no". It * is the responsibility of the caller to distinguish between PROT_NONE * protections and NUMA hinting fault protections. */ static inline int pte_protnone(pte_t pte) { return 0; } static inline int pmd_protnone(pmd_t pmd) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ #endif /* CONFIG_MMU */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP #ifndef __PAGETABLE_P4D_FOLDED int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); int p4d_clear_huge(p4d_t *p4d); #else static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int p4d_clear_huge(p4d_t *p4d) { return 0; } #endif /* !__PAGETABLE_P4D_FOLDED */ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); int pud_clear_huge(pud_t *pud); int pmd_clear_huge(pmd_t *pmd); int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); int pud_free_pmd_page(pud_t *pud, unsigned long addr); int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int p4d_clear_huge(p4d_t *p4d) { return 0; } static inline int pud_clear_huge(pud_t *pud) { return 0; } static inline int pmd_clear_huge(pmd_t *pmd) { return 0; } static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) { return 0; } static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) { return 0; } static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { return 0; } #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * ARCHes with special requirements for evicting THP backing TLB entries can * implement this. Otherwise also, it can help optimize normal TLB flush in * THP regime. Stock flush_tlb_range() typically has optimization to nuke the * entire TLB if flush span is greater than a threshold, which will * likely be true for a single huge page. Thus a single THP flush will * invalidate the entire TLB which is not desirable. * e.g. see arch/arc: flush_pmd_tlb_range */ #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #else #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() #endif #endif struct file; int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot); #ifndef CONFIG_X86_ESPFIX64 static inline void init_espfix_bsp(void) { } #endif extern void __init pgtable_cache_init(void); #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) { return true; } static inline bool arch_has_pfn_modify_check(void) { return false; } #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ /* * Architecture PAGE_KERNEL_* fallbacks * * Some architectures don't define certain PAGE_KERNEL_* flags. This is either * because they really don't support them, or the port needs to be updated to * reflect the required functionality. Below are a set of relatively safe * fallbacks, as best effort, which we can count on in lieu of the architectures * not defining them on their own yet. */ #ifndef PAGE_KERNEL_RO # define PAGE_KERNEL_RO PAGE_KERNEL #endif #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif /* * Page Table Modification bits for pgtbl_mod_mask. * * These are used by the p?d_alloc_track*() set of functions an in the generic * vmalloc/ioremap code to track at which page-table levels entries have been * modified. Based on that the code can better decide when vmalloc and ioremap * mapping changes need to be synchronized to other page-tables in the system. */ #define __PGTBL_PGD_MODIFIED 0 #define __PGTBL_P4D_MODIFIED 1 #define __PGTBL_PUD_MODIFIED 2 #define __PGTBL_PMD_MODIFIED 3 #define __PGTBL_PTE_MODIFIED 4 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) /* Page-Table Modification Mask */ typedef unsigned int pgtbl_mod_mask; #endif /* !__ASSEMBLY__ */ #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) #ifdef CONFIG_PHYS_ADDR_T_64BIT /* * ZSMALLOC needs to know the highest PFN on 32-bit architectures * with physical address space extension, but falls back to * BITS_PER_LONG otherwise. */ #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition #else #define MAX_POSSIBLE_PHYSMEM_BITS 32 #endif #endif #ifndef has_transparent_hugepage #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define has_transparent_hugepage() 1 #else #define has_transparent_hugepage() 0 #endif #endif /* * On some architectures it depends on the mm if the p4d/pud or pmd * layer of the page table hierarchy is folded or not. */ #ifndef mm_p4d_folded #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) #endif #ifndef mm_pud_folded #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) #endif #ifndef mm_pmd_folded #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) #endif #ifndef p4d_offset_lockless #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) #endif #ifndef pud_offset_lockless #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) #endif #ifndef pmd_offset_lockless #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) #endif /* * p?d_leaf() - true if this entry is a final mapping to a physical address. * This differs from p?d_huge() by the fact that they are always available (if * the architecture supports large pages at the appropriate level) even * if CONFIG_HUGETLB_PAGE is not defined. * Only meaningful when called on a valid entry. */ #ifndef pgd_leaf #define pgd_leaf(x) 0 #endif #ifndef p4d_leaf #define p4d_leaf(x) 0 #endif #ifndef pud_leaf #define pud_leaf(x) 0 #endif #ifndef pmd_leaf #define pmd_leaf(x) 0 #endif #endif /* _LINUX_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 #ifndef _LINUX_MMAP_LOCK_H #define _LINUX_MMAP_LOCK_H #include <linux/mmdebug.h> #define MMAP_LOCK_INITIALIZER(name) \ .mmap_lock = __RWSEM_INITIALIZER((name).mmap_lock), static inline void mmap_init_lock(struct mm_struct *mm) { init_rwsem(&mm->mmap_lock); } static inline void mmap_write_lock(struct mm_struct *mm) { down_write(&mm->mmap_lock); } static inline void mmap_write_lock_nested(struct mm_struct *mm, int subclass) { down_write_nested(&mm->mmap_lock, subclass); } static inline int mmap_write_lock_killable(struct mm_struct *mm) { return down_write_killable(&mm->mmap_lock); } static inline bool mmap_write_trylock(struct mm_struct *mm) { return down_write_trylock(&mm->mmap_lock) != 0; } static inline void mmap_write_unlock(struct mm_struct *mm) { up_write(&mm->mmap_lock); } static inline void mmap_write_downgrade(struct mm_struct *mm) { downgrade_write(&mm->mmap_lock); } static inline void mmap_read_lock(struct mm_struct *mm) { down_read(&mm->mmap_lock); } static inline int mmap_read_lock_killable(struct mm_struct *mm) { return down_read_killable(&mm->mmap_lock); } static inline bool mmap_read_trylock(struct mm_struct *mm) { return down_read_trylock(&mm->mmap_lock) != 0; } static inline void mmap_read_unlock(struct mm_struct *mm) { up_read(&mm->mmap_lock); } static inline bool mmap_read_trylock_non_owner(struct mm_struct *mm) { if (down_read_trylock(&mm->mmap_lock)) { rwsem_release(&mm->mmap_lock.dep_map, _RET_IP_); return true; } return false; } static inline void mmap_read_unlock_non_owner(struct mm_struct *mm) { up_read_non_owner(&mm->mmap_lock); } static inline void mmap_assert_locked(struct mm_struct *mm) { lockdep_assert_held(&mm->mmap_lock); VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_lock), mm); } static inline void mmap_assert_write_locked(struct mm_struct *mm) { lockdep_assert_held_write(&mm->mmap_lock); VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_lock), mm); } static inline int mmap_lock_is_contended(struct mm_struct *mm) { return rwsem_is_contended(&mm->mmap_lock); } #endif /* _LINUX_MMAP_LOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_DISK_H #define _SCSI_DISK_H /* * More than enough for everybody ;) The huge number of majors * is a leftover from 16bit dev_t days, we don't really need that * much numberspace. */ #define SD_MAJORS 16 /* * Time out in seconds for disks and Magneto-opticals (which are slower). */ #define SD_TIMEOUT (30 * HZ) #define SD_MOD_TIMEOUT (75 * HZ) /* * Flush timeout is a multiplier over the standard device timeout which is * user modifiable via sysfs but initially set to SD_TIMEOUT */ #define SD_FLUSH_TIMEOUT_MULTIPLIER 2 #define SD_WRITE_SAME_TIMEOUT (120 * HZ) /* * Number of allowed retries */ #define SD_MAX_RETRIES 5 #define SD_PASSTHROUGH_RETRIES 1 #define SD_MAX_MEDIUM_TIMEOUTS 2 /* * Size of the initial data buffer for mode and read capacity data */ #define SD_BUF_SIZE 512 /* * Number of sectors at the end of the device to avoid multi-sector * accesses to in the case of last_sector_bug */ #define SD_LAST_BUGGY_SECTORS 8 enum { SD_EXT_CDB_SIZE = 32, /* Extended CDB size */ SD_MEMPOOL_SIZE = 2, /* CDB pool size */ }; enum { SD_DEF_XFER_BLOCKS = 0xffff, SD_MAX_XFER_BLOCKS = 0xffffffff, SD_MAX_WS10_BLOCKS = 0xffff, SD_MAX_WS16_BLOCKS = 0x7fffff, }; enum { SD_LBP_FULL = 0, /* Full logical block provisioning */ SD_LBP_UNMAP, /* Use UNMAP command */ SD_LBP_WS16, /* Use WRITE SAME(16) with UNMAP bit */ SD_LBP_WS10, /* Use WRITE SAME(10) with UNMAP bit */ SD_LBP_ZERO, /* Use WRITE SAME(10) with zero payload */ SD_LBP_DISABLE, /* Discard disabled due to failed cmd */ }; enum { SD_ZERO_WRITE = 0, /* Use WRITE(10/16) command */ SD_ZERO_WS, /* Use WRITE SAME(10/16) command */ SD_ZERO_WS16_UNMAP, /* Use WRITE SAME(16) with UNMAP */ SD_ZERO_WS10_UNMAP, /* Use WRITE SAME(10) with UNMAP */ }; struct scsi_disk { struct scsi_driver *driver; /* always &sd_template */ struct scsi_device *device; struct device dev; struct gendisk *disk; struct opal_dev *opal_dev; #ifdef CONFIG_BLK_DEV_ZONED u32 nr_zones; u32 rev_nr_zones; u32 zone_blocks; u32 rev_zone_blocks; u32 zones_optimal_open; u32 zones_optimal_nonseq; u32 zones_max_open; u32 *zones_wp_offset; spinlock_t zones_wp_offset_lock; u32 *rev_wp_offset; struct mutex rev_mutex; struct work_struct zone_wp_offset_work; char *zone_wp_update_buf; #endif atomic_t openers; sector_t capacity; /* size in logical blocks */ int max_retries; u32 max_xfer_blocks; u32 opt_xfer_blocks; u32 max_ws_blocks; u32 max_unmap_blocks; u32 unmap_granularity; u32 unmap_alignment; u32 index; unsigned int physical_block_size; unsigned int max_medium_access_timeouts; unsigned int medium_access_timed_out; u8 media_present; u8 write_prot; u8 protection_type;/* Data Integrity Field */ u8 provisioning_mode; u8 zeroing_mode; unsigned ATO : 1; /* state of disk ATO bit */ unsigned cache_override : 1; /* temp override of WCE,RCD */ unsigned WCE : 1; /* state of disk WCE bit */ unsigned RCD : 1; /* state of disk RCD bit, unused */ unsigned DPOFUA : 1; /* state of disk DPOFUA bit */ unsigned first_scan : 1; unsigned lbpme : 1; unsigned lbprz : 1; unsigned lbpu : 1; unsigned lbpws : 1; unsigned lbpws10 : 1; unsigned lbpvpd : 1; unsigned ws10 : 1; unsigned ws16 : 1; unsigned rc_basis: 2; unsigned zoned: 2; unsigned urswrz : 1; unsigned security : 1; unsigned ignore_medium_access_errors : 1; }; #define to_scsi_disk(obj) container_of(obj,struct scsi_disk,dev) static inline struct scsi_disk *scsi_disk(struct gendisk *disk) { return container_of(disk->private_data, struct scsi_disk, driver); } #define sd_printk(prefix, sdsk, fmt, a...) \ (sdsk)->disk ? \ sdev_prefix_printk(prefix, (sdsk)->device, \ (sdsk)->disk->disk_name, fmt, ##a) : \ sdev_printk(prefix, (sdsk)->device, fmt, ##a) #define sd_first_printk(prefix, sdsk, fmt, a...) \ do { \ if ((sdsk)->first_scan) \ sd_printk(prefix, sdsk, fmt, ##a); \ } while (0) static inline int scsi_medium_access_command(struct scsi_cmnd *scmd) { switch (scmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case SYNCHRONIZE_CACHE: case VERIFY: case VERIFY_12: case VERIFY_16: case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case WRITE_SAME: case WRITE_SAME_16: case UNMAP: return 1; case VARIABLE_LENGTH_CMD: switch (scmd->cmnd[9]) { case READ_32: case VERIFY_32: case WRITE_32: case WRITE_SAME_32: return 1; } } return 0; } static inline sector_t logical_to_sectors(struct scsi_device *sdev, sector_t blocks) { return blocks << (ilog2(sdev->sector_size) - 9); } static inline unsigned int logical_to_bytes(struct scsi_device *sdev, sector_t blocks) { return blocks * sdev->sector_size; } static inline sector_t bytes_to_logical(struct scsi_device *sdev, unsigned int bytes) { return bytes >> ilog2(sdev->sector_size); } static inline sector_t sectors_to_logical(struct scsi_device *sdev, sector_t sector) { return sector >> (ilog2(sdev->sector_size) - 9); } #ifdef CONFIG_BLK_DEV_INTEGRITY extern void sd_dif_config_host(struct scsi_disk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void sd_dif_config_host(struct scsi_disk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static inline int sd_is_zoned(struct scsi_disk *sdkp) { return sdkp->zoned == 1 || sdkp->device->type == TYPE_ZBC; } #ifdef CONFIG_BLK_DEV_ZONED void sd_zbc_release_disk(struct scsi_disk *sdkp); int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buffer); int sd_zbc_revalidate_zones(struct scsi_disk *sdkp); blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all); unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr); int sd_zbc_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks); #else /* CONFIG_BLK_DEV_ZONED */ static inline void sd_zbc_release_disk(struct scsi_disk *sdkp) {} static inline int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf) { return 0; } static inline int sd_zbc_revalidate_zones(struct scsi_disk *sdkp) { return 0; } static inline blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all) { return BLK_STS_TARGET; } static inline unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr) { return good_bytes; } static inline blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks) { return BLK_STS_TARGET; } #define sd_zbc_report_zones NULL #endif /* CONFIG_BLK_DEV_ZONED */ void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr); void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result); #endif /* _SCSI_DISK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2018 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #ifndef _KERNEL_DMA_DIRECT_H #define _KERNEL_DMA_DIRECT_H #include <linux/dma-direct.h> int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_can_mmap(struct device *dev); int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr); int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); size_t dma_direct_max_mapping_size(struct device *dev); #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { } static inline void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif static inline void dma_direct_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, size, dir); } static inline void dma_direct_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (!dev_is_dma_coherent(dev)) { arch_sync_dma_for_cpu(paddr, size, dir); arch_sync_dma_for_cpu_all(); } if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); if (dir == DMA_FROM_DEVICE) arch_dma_mark_clean(paddr, size); } static inline dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dma_addr = phys_to_dma(dev, phys); if (unlikely(swiotlb_force == SWIOTLB_FORCE)) return swiotlb_map(dev, phys, size, dir, attrs); if (unlikely(!dma_capable(dev, dma_addr, size, true))) { if (swiotlb_force != SWIOTLB_NO_FORCE) return swiotlb_map(dev, phys, size, dir, attrs); dev_WARN_ONCE(dev, 1, "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); return DMA_MAPPING_ERROR; } if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(phys, size, dir); return dma_addr; } static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = dma_to_phys(dev, addr); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_cpu(dev, addr, size, dir); if (unlikely(is_swiotlb_buffer(phys))) swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs); } #endif /* _KERNEL_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic nexthop implementation * * Copyright (c) 2017-19 Cumulus Networks * Copyright (c) 2017-19 David Ahern <dsa@cumulusnetworks.com> */ #ifndef __LINUX_NEXTHOP_H #define __LINUX_NEXTHOP_H #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/route.h> #include <linux/types.h> #include <net/ip_fib.h> #include <net/ip6_fib.h> #include <net/netlink.h> #define NEXTHOP_VALID_USER_FLAGS RTNH_F_ONLINK struct nexthop; struct nh_config { u32 nh_id; u8 nh_family; u8 nh_protocol; u8 nh_blackhole; u8 nh_fdb; u32 nh_flags; int nh_ifindex; struct net_device *dev; union { __be32 ipv4; struct in6_addr ipv6; } gw; struct nlattr *nh_grp; u16 nh_grp_type; struct nlattr *nh_encap; u16 nh_encap_type; u32 nlflags; struct nl_info nlinfo; }; struct nh_info { struct hlist_node dev_hash; /* entry on netns devhash */ struct nexthop *nh_parent; u8 family; bool reject_nh; bool fdb_nh; union { struct fib_nh_common fib_nhc; struct fib_nh fib_nh; struct fib6_nh fib6_nh; }; }; struct nh_grp_entry { struct nexthop *nh; u8 weight; atomic_t upper_bound; struct list_head nh_list; struct nexthop *nh_parent; /* nexthop of group with this entry */ }; struct nh_group { struct nh_group *spare; /* spare group for removals */ u16 num_nh; bool mpath; bool fdb_nh; bool has_v4; struct nh_grp_entry nh_entries[]; }; struct nexthop { struct rb_node rb_node; /* entry on netns rbtree */ struct list_head fi_list; /* v4 entries using nh */ struct list_head f6i_list; /* v6 entries using nh */ struct list_head fdb_list; /* fdb entries using this nh */ struct list_head grp_list; /* nh group entries using this nh */ struct net *net; u32 id; u8 protocol; /* app managing this nh */ u8 nh_flags; bool is_group; refcount_t refcnt; struct rcu_head rcu; union { struct nh_info __rcu *nh_info; struct nh_group __rcu *nh_grp; }; }; enum nexthop_event_type { NEXTHOP_EVENT_DEL }; int register_nexthop_notifier(struct net *net, struct notifier_block *nb); int unregister_nexthop_notifier(struct net *net, struct notifier_block *nb); /* caller is holding rcu or rtnl; no reference taken to nexthop */ struct nexthop *nexthop_find_by_id(struct net *net, u32 id); void nexthop_free_rcu(struct rcu_head *head); static inline bool nexthop_get(struct nexthop *nh) { return refcount_inc_not_zero(&nh->refcnt); } static inline void nexthop_put(struct nexthop *nh) { if (refcount_dec_and_test(&nh->refcnt)) call_rcu(&nh->rcu, nexthop_free_rcu); } static inline bool nexthop_cmp(const struct nexthop *nh1, const struct nexthop *nh2) { return nh1 == nh2; } static inline bool nexthop_is_fdb(const struct nexthop *nh) { if (nh->is_group) { const struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->fdb_nh; } else { const struct nh_info *nhi; nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->fdb_nh; } } static inline bool nexthop_has_v4(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->has_v4; } return false; } static inline bool nexthop_is_multipath(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->mpath; } return false; } struct nexthop *nexthop_select_path(struct nexthop *nh, int hash); static inline unsigned int nexthop_num_path(const struct nexthop *nh) { unsigned int rc = 1; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) rc = nh_grp->num_nh; } return rc; } static inline struct nexthop *nexthop_mpath_select(const struct nh_group *nhg, int nhsel) { /* for_nexthops macros in fib_semantics.c grabs a pointer to * the nexthop before checking nhsel */ if (nhsel >= nhg->num_nh) return NULL; return nhg->nh_entries[nhsel].nh; } static inline int nexthop_mpath_fill_node(struct sk_buff *skb, struct nexthop *nh, u8 rt_family) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; struct nh_info *nhi = rcu_dereference_rtnl(nhe->nh_info); struct fib_nh_common *nhc = &nhi->fib_nhc; int weight = nhg->nh_entries[i].weight; if (fib_add_nexthop(skb, nhc, weight, rt_family, 0) < 0) return -EMSGSIZE; } return 0; } /* called with rcu lock */ static inline bool nexthop_is_blackhole(const struct nexthop *nh) { const struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->num_nh > 1) return false; nh = nh_grp->nh_entries[0].nh; } nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->reject_nh; } static inline void nexthop_path_fib_result(struct fib_result *res, int hash) { struct nh_info *nhi; struct nexthop *nh; nh = nexthop_select_path(res->fi->nh, hash); nhi = rcu_dereference(nh->nh_info); res->nhc = &nhi->fib_nhc; } /* called with rcu read lock or rtnl held */ static inline struct fib_nh_common *nexthop_fib_nhc(struct nexthop *nh, int nhsel) { struct nh_info *nhi; BUILD_BUG_ON(offsetof(struct fib_nh, nh_common) != 0); BUILD_BUG_ON(offsetof(struct fib6_nh, nh_common) != 0); if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) { nh = nexthop_mpath_select(nh_grp, nhsel); if (!nh) return NULL; } } nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } /* called from fib_table_lookup with rcu_lock */ static inline struct fib_nh_common *nexthop_get_nhc_lookup(const struct nexthop *nh, int fib_flags, const struct flowi4 *flp, int *nhsel) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = i; return &nhi->fib_nhc; } } } else { nhi = rcu_dereference(nh->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = 0; return &nhi->fib_nhc; } } return NULL; } static inline bool nexthop_uses_dev(const struct nexthop *nh, const struct net_device *dev) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } } else { nhi = rcu_dereference(nh->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } return false; } static inline unsigned int fib_info_num_path(const struct fib_info *fi) { if (unlikely(fi->nh)) return nexthop_num_path(fi->nh); return fi->fib_nhs; } int fib_check_nexthop(struct nexthop *nh, u8 scope, struct netlink_ext_ack *extack); static inline struct fib_nh_common *fib_info_nhc(struct fib_info *fi, int nhsel) { if (unlikely(fi->nh)) return nexthop_fib_nhc(fi->nh, nhsel); return &fi->fib_nh[nhsel].nh_common; } /* only used when fib_nh is built into fib_info */ static inline struct fib_nh *fib_info_nh(struct fib_info *fi, int nhsel) { WARN_ON(fi->nh); return &fi->fib_nh[nhsel]; } /* * IPv6 variants */ int fib6_check_nexthop(struct nexthop *nh, struct fib6_config *cfg, struct netlink_ext_ack *extack); /* Caller should either hold rcu_read_lock(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } /* Variant of nexthop_fib6_nh(). * Caller should either hold rcu_read_lock_bh(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh_bh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_bh_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_bh_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } static inline struct net_device *fib6_info_nh_dev(struct fib6_info *f6i) { struct fib6_nh *fib6_nh; fib6_nh = f6i->nh ? nexthop_fib6_nh(f6i->nh) : f6i->fib6_nh; return fib6_nh->fib_nh_dev; } static inline void nexthop_path_fib6_result(struct fib6_result *res, int hash) { struct nexthop *nh = res->f6i->nh; struct nh_info *nhi; nh = nexthop_select_path(nh, hash); nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->reject_nh) { res->fib6_type = RTN_BLACKHOLE; res->fib6_flags |= RTF_REJECT; res->nh = nexthop_fib6_nh(nh); } else { res->nh = &nhi->fib6_nh; } } int nexthop_for_each_fib6_nh(struct nexthop *nh, int (*cb)(struct fib6_nh *nh, void *arg), void *arg); static inline int nexthop_get_family(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->family; } static inline struct fib_nh_common *nexthop_fdb_nhc(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } static inline struct fib_nh_common *nexthop_path_fdb_result(struct nexthop *nh, int hash) { struct nh_info *nhi; struct nexthop *nhp; nhp = nexthop_select_path(nh, hash); if (unlikely(!nhp)) return NULL; nhi = rcu_dereference(nhp->nh_info); return &nhi->fib_nhc; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 /* SPDX-License-Identifier: GPL-2.0-only */ /* * pm_runtime.h - Device run-time power management helper functions. * * Copyright (C) 2009 Rafael J. Wysocki <rjw@sisk.pl> */ #ifndef _LINUX_PM_RUNTIME_H #define _LINUX_PM_RUNTIME_H #include <linux/device.h> #include <linux/notifier.h> #include <linux/pm.h> #include <linux/jiffies.h> /* Runtime PM flag argument bits */ #define RPM_ASYNC 0x01 /* Request is asynchronous */ #define RPM_NOWAIT 0x02 /* Don't wait for concurrent state change */ #define RPM_GET_PUT 0x04 /* Increment/decrement the usage_count */ #define RPM_AUTO 0x08 /* Use autosuspend_delay */ #ifdef CONFIG_PM extern struct workqueue_struct *pm_wq; static inline bool queue_pm_work(struct work_struct *work) { return queue_work(pm_wq, work); } extern int pm_generic_runtime_suspend(struct device *dev); extern int pm_generic_runtime_resume(struct device *dev); extern int pm_runtime_force_suspend(struct device *dev); extern int pm_runtime_force_resume(struct device *dev); extern int __pm_runtime_idle(struct device *dev, int rpmflags); extern int __pm_runtime_suspend(struct device *dev, int rpmflags); extern int __pm_runtime_resume(struct device *dev, int rpmflags); extern int pm_runtime_get_if_active(struct device *dev, bool ign_usage_count); extern int pm_schedule_suspend(struct device *dev, unsigned int delay); extern int __pm_runtime_set_status(struct device *dev, unsigned int status); extern int pm_runtime_barrier(struct device *dev); extern void pm_runtime_enable(struct device *dev); extern void __pm_runtime_disable(struct device *dev, bool check_resume); extern void pm_runtime_allow(struct device *dev); extern void pm_runtime_forbid(struct device *dev); extern void pm_runtime_no_callbacks(struct device *dev); extern void pm_runtime_irq_safe(struct device *dev); extern void __pm_runtime_use_autosuspend(struct device *dev, bool use); extern void pm_runtime_set_autosuspend_delay(struct device *dev, int delay); extern u64 pm_runtime_autosuspend_expiration(struct device *dev); extern void pm_runtime_update_max_time_suspended(struct device *dev, s64 delta_ns); extern void pm_runtime_set_memalloc_noio(struct device *dev, bool enable); extern void pm_runtime_get_suppliers(struct device *dev); extern void pm_runtime_put_suppliers(struct device *dev); extern void pm_runtime_new_link(struct device *dev); extern void pm_runtime_drop_link(struct device_link *link); /** * pm_runtime_get_if_in_use - Conditionally bump up runtime PM usage counter. * @dev: Target device. * * Increment the runtime PM usage counter of @dev if its runtime PM status is * %RPM_ACTIVE and its runtime PM usage counter is greater than 0. */ static inline int pm_runtime_get_if_in_use(struct device *dev) { return pm_runtime_get_if_active(dev, false); } /** * pm_suspend_ignore_children - Set runtime PM behavior regarding children. * @dev: Target device. * @enable: Whether or not to ignore possible dependencies on children. * * The dependencies of @dev on its children will not be taken into account by * the runtime PM framework going forward if @enable is %true, or they will * be taken into account otherwise. */ static inline void pm_suspend_ignore_children(struct device *dev, bool enable) { dev->power.ignore_children = enable; } /** * pm_runtime_get_noresume - Bump up runtime PM usage counter of a device. * @dev: Target device. */ static inline void pm_runtime_get_noresume(struct device *dev) { atomic_inc(&dev->power.usage_count); } /** * pm_runtime_put_noidle - Drop runtime PM usage counter of a device. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev unless it is 0 already. */ static inline void pm_runtime_put_noidle(struct device *dev) { atomic_add_unless(&dev->power.usage_count, -1, 0); } /** * pm_runtime_suspended - Check whether or not a device is runtime-suspended. * @dev: Target device. * * Return %true if runtime PM is enabled for @dev and its runtime PM status is * %RPM_SUSPENDED, or %false otherwise. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which * runtime PM cannot be either disabled or enabled for @dev and its runtime PM * status cannot change. */ static inline bool pm_runtime_suspended(struct device *dev) { return dev->power.runtime_status == RPM_SUSPENDED && !dev->power.disable_depth; } /** * pm_runtime_active - Check whether or not a device is runtime-active. * @dev: Target device. * * Return %true if runtime PM is disabled for @dev or its runtime PM status is * %RPM_ACTIVE, or %false otherwise. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which * runtime PM cannot be either disabled or enabled for @dev and its runtime PM * status cannot change. */ static inline bool pm_runtime_active(struct device *dev) { return dev->power.runtime_status == RPM_ACTIVE || dev->power.disable_depth; } /** * pm_runtime_status_suspended - Check if runtime PM status is "suspended". * @dev: Target device. * * Return %true if the runtime PM status of @dev is %RPM_SUSPENDED, or %false * otherwise, regardless of whether or not runtime PM has been enabled for @dev. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which the * runtime PM status of @dev cannot change. */ static inline bool pm_runtime_status_suspended(struct device *dev) { return dev->power.runtime_status == RPM_SUSPENDED; } /** * pm_runtime_enabled - Check if runtime PM is enabled. * @dev: Target device. * * Return %true if runtime PM is enabled for @dev or %false otherwise. * * Note that the return value of this function can only be trusted if it is * called under the runtime PM lock of @dev or under conditions in which * runtime PM cannot be either disabled or enabled for @dev. */ static inline bool pm_runtime_enabled(struct device *dev) { return !dev->power.disable_depth; } /** * pm_runtime_has_no_callbacks - Check if runtime PM callbacks may be present. * @dev: Target device. * * Return %true if @dev is a special device without runtime PM callbacks or * %false otherwise. */ static inline bool pm_runtime_has_no_callbacks(struct device *dev) { return dev->power.no_callbacks; } /** * pm_runtime_mark_last_busy - Update the last access time of a device. * @dev: Target device. * * Update the last access time of @dev used by the runtime PM autosuspend * mechanism to the current time as returned by ktime_get_mono_fast_ns(). */ static inline void pm_runtime_mark_last_busy(struct device *dev) { WRITE_ONCE(dev->power.last_busy, ktime_get_mono_fast_ns()); } /** * pm_runtime_is_irq_safe - Check if runtime PM can work in interrupt context. * @dev: Target device. * * Return %true if @dev has been marked as an "IRQ-safe" device (with respect * to runtime PM), in which case its runtime PM callabcks can be expected to * work correctly when invoked from interrupt handlers. */ static inline bool pm_runtime_is_irq_safe(struct device *dev) { return dev->power.irq_safe; } extern u64 pm_runtime_suspended_time(struct device *dev); #else /* !CONFIG_PM */ static inline bool queue_pm_work(struct work_struct *work) { return false; } static inline int pm_generic_runtime_suspend(struct device *dev) { return 0; } static inline int pm_generic_runtime_resume(struct device *dev) { return 0; } static inline int pm_runtime_force_suspend(struct device *dev) { return 0; } static inline int pm_runtime_force_resume(struct device *dev) { return 0; } static inline int __pm_runtime_idle(struct device *dev, int rpmflags) { return -ENOSYS; } static inline int __pm_runtime_suspend(struct device *dev, int rpmflags) { return -ENOSYS; } static inline int __pm_runtime_resume(struct device *dev, int rpmflags) { return 1; } static inline int pm_schedule_suspend(struct device *dev, unsigned int delay) { return -ENOSYS; } static inline int pm_runtime_get_if_in_use(struct device *dev) { return -EINVAL; } static inline int pm_runtime_get_if_active(struct device *dev, bool ign_usage_count) { return -EINVAL; } static inline int __pm_runtime_set_status(struct device *dev, unsigned int status) { return 0; } static inline int pm_runtime_barrier(struct device *dev) { return 0; } static inline void pm_runtime_enable(struct device *dev) {} static inline void __pm_runtime_disable(struct device *dev, bool c) {} static inline void pm_runtime_allow(struct device *dev) {} static inline void pm_runtime_forbid(struct device *dev) {} static inline void pm_suspend_ignore_children(struct device *dev, bool enable) {} static inline void pm_runtime_get_noresume(struct device *dev) {} static inline void pm_runtime_put_noidle(struct device *dev) {} static inline bool pm_runtime_suspended(struct device *dev) { return false; } static inline bool pm_runtime_active(struct device *dev) { return true; } static inline bool pm_runtime_status_suspended(struct device *dev) { return false; } static inline bool pm_runtime_enabled(struct device *dev) { return false; } static inline void pm_runtime_no_callbacks(struct device *dev) {} static inline void pm_runtime_irq_safe(struct device *dev) {} static inline bool pm_runtime_is_irq_safe(struct device *dev) { return false; } static inline bool pm_runtime_has_no_callbacks(struct device *dev) { return false; } static inline void pm_runtime_mark_last_busy(struct device *dev) {} static inline void __pm_runtime_use_autosuspend(struct device *dev, bool use) {} static inline void pm_runtime_set_autosuspend_delay(struct device *dev, int delay) {} static inline u64 pm_runtime_autosuspend_expiration( struct device *dev) { return 0; } static inline void pm_runtime_set_memalloc_noio(struct device *dev, bool enable){} static inline void pm_runtime_get_suppliers(struct device *dev) {} static inline void pm_runtime_put_suppliers(struct device *dev) {} static inline void pm_runtime_new_link(struct device *dev) {} static inline void pm_runtime_drop_link(struct device_link *link) {} #endif /* !CONFIG_PM */ /** * pm_runtime_idle - Conditionally set up autosuspend of a device or suspend it. * @dev: Target device. * * Invoke the "idle check" callback of @dev and, depending on its return value, * set up autosuspend of @dev or suspend it (depending on whether or not * autosuspend has been enabled for it). */ static inline int pm_runtime_idle(struct device *dev) { return __pm_runtime_idle(dev, 0); } /** * pm_runtime_suspend - Suspend a device synchronously. * @dev: Target device. */ static inline int pm_runtime_suspend(struct device *dev) { return __pm_runtime_suspend(dev, 0); } /** * pm_runtime_autosuspend - Set up autosuspend of a device or suspend it. * @dev: Target device. * * Set up autosuspend of @dev or suspend it (depending on whether or not * autosuspend is enabled for it) without engaging its "idle check" callback. */ static inline int pm_runtime_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_AUTO); } /** * pm_runtime_resume - Resume a device synchronously. * @dev: Target device. */ static inline int pm_runtime_resume(struct device *dev) { return __pm_runtime_resume(dev, 0); } /** * pm_request_idle - Queue up "idle check" execution for a device. * @dev: Target device. * * Queue up a work item to run an equivalent of pm_runtime_idle() for @dev * asynchronously. */ static inline int pm_request_idle(struct device *dev) { return __pm_runtime_idle(dev, RPM_ASYNC); } /** * pm_request_resume - Queue up runtime-resume of a device. * @dev: Target device. */ static inline int pm_request_resume(struct device *dev) { return __pm_runtime_resume(dev, RPM_ASYNC); } /** * pm_request_autosuspend - Queue up autosuspend of a device. * @dev: Target device. * * Queue up a work item to run an equivalent pm_runtime_autosuspend() for @dev * asynchronously. */ static inline int pm_request_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_ASYNC | RPM_AUTO); } /** * pm_runtime_get - Bump up usage counter and queue up resume of a device. * @dev: Target device. * * Bump up the runtime PM usage counter of @dev and queue up a work item to * carry out runtime-resume of it. */ static inline int pm_runtime_get(struct device *dev) { return __pm_runtime_resume(dev, RPM_GET_PUT | RPM_ASYNC); } /** * pm_runtime_get_sync - Bump up usage counter of a device and resume it. * @dev: Target device. * * Bump up the runtime PM usage counter of @dev and carry out runtime-resume of * it synchronously. * * The possible return values of this function are the same as for * pm_runtime_resume() and the runtime PM usage counter of @dev remains * incremented in all cases, even if it returns an error code. */ static inline int pm_runtime_get_sync(struct device *dev) { return __pm_runtime_resume(dev, RPM_GET_PUT); } /** * pm_runtime_resume_and_get - Bump up usage counter of a device and resume it. * @dev: Target device. * * Resume @dev synchronously and if that is successful, increment its runtime * PM usage counter. Return 0 if the runtime PM usage counter of @dev has been * incremented or a negative error code otherwise. */ static inline int pm_runtime_resume_and_get(struct device *dev) { int ret; ret = __pm_runtime_resume(dev, RPM_GET_PUT); if (ret < 0) { pm_runtime_put_noidle(dev); return ret; } return 0; } /** * pm_runtime_put - Drop device usage counter and queue up "idle check" if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, queue up a work item for @dev like in pm_request_idle(). */ static inline int pm_runtime_put(struct device *dev) { return __pm_runtime_idle(dev, RPM_GET_PUT | RPM_ASYNC); } /** * pm_runtime_put_autosuspend - Drop device usage counter and queue autosuspend if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, queue up a work item for @dev like in pm_request_autosuspend(). */ static inline int pm_runtime_put_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_GET_PUT | RPM_ASYNC | RPM_AUTO); } /** * pm_runtime_put_sync - Drop device usage counter and run "idle check" if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, invoke the "idle check" callback of @dev and, depending on its * return value, set up autosuspend of @dev or suspend it (depending on whether * or not autosuspend has been enabled for it). * * The possible return values of this function are the same as for * pm_runtime_idle() and the runtime PM usage counter of @dev remains * decremented in all cases, even if it returns an error code. */ static inline int pm_runtime_put_sync(struct device *dev) { return __pm_runtime_idle(dev, RPM_GET_PUT); } /** * pm_runtime_put_sync_suspend - Drop device usage counter and suspend if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, carry out runtime-suspend of @dev synchronously. * * The possible return values of this function are the same as for * pm_runtime_suspend() and the runtime PM usage counter of @dev remains * decremented in all cases, even if it returns an error code. */ static inline int pm_runtime_put_sync_suspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_GET_PUT); } /** * pm_runtime_put_sync_autosuspend - Drop device usage counter and autosuspend if 0. * @dev: Target device. * * Decrement the runtime PM usage counter of @dev and if it turns out to be * equal to 0, set up autosuspend of @dev or suspend it synchronously (depending * on whether or not autosuspend has been enabled for it). * * The possible return values of this function are the same as for * pm_runtime_autosuspend() and the runtime PM usage counter of @dev remains * decremented in all cases, even if it returns an error code. */ static inline int pm_runtime_put_sync_autosuspend(struct device *dev) { return __pm_runtime_suspend(dev, RPM_GET_PUT | RPM_AUTO); } /** * pm_runtime_set_active - Set runtime PM status to "active". * @dev: Target device. * * Set the runtime PM status of @dev to %RPM_ACTIVE and ensure that dependencies * of it will be taken into account. * * It is not valid to call this function for devices with runtime PM enabled. */ static inline int pm_runtime_set_active(struct device *dev) { return __pm_runtime_set_status(dev, RPM_ACTIVE); } /** * pm_runtime_set_suspended - Set runtime PM status to "suspended". * @dev: Target device. * * Set the runtime PM status of @dev to %RPM_SUSPENDED and ensure that * dependencies of it will be taken into account. * * It is not valid to call this function for devices with runtime PM enabled. */ static inline int pm_runtime_set_suspended(struct device *dev) { return __pm_runtime_set_status(dev, RPM_SUSPENDED); } /** * pm_runtime_disable - Disable runtime PM for a device. * @dev: Target device. * * Prevent the runtime PM framework from working with @dev (by incrementing its * "blocking" counter). * * For each invocation of this function for @dev there must be a matching * pm_runtime_enable() call in order for runtime PM to be enabled for it. */ static inline void pm_runtime_disable(struct device *dev) { __pm_runtime_disable(dev, true); } /** * pm_runtime_use_autosuspend - Allow autosuspend to be used for a device. * @dev: Target device. * * Allow the runtime PM autosuspend mechanism to be used for @dev whenever * requested (or "autosuspend" will be handled as direct runtime-suspend for * it). */ static inline void pm_runtime_use_autosuspend(struct device *dev) { __pm_runtime_use_autosuspend(dev, true); } /** * pm_runtime_dont_use_autosuspend - Prevent autosuspend from being used. * @dev: Target device. * * Prevent the runtime PM autosuspend mechanism from being used for @dev which * means that "autosuspend" will be handled as direct runtime-suspend for it * going forward. */ static inline void pm_runtime_dont_use_autosuspend(struct device *dev) { __pm_runtime_use_autosuspend(dev, false); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2020 Christoph Hellwig. * * Support for "universal" pointers that can point to either kernel or userspace * memory. */ #ifndef _LINUX_SOCKPTR_H #define _LINUX_SOCKPTR_H #include <linux/slab.h> #include <linux/uaccess.h> typedef struct { union { void *kernel; void __user *user; }; bool is_kernel : 1; } sockptr_t; static inline bool sockptr_is_kernel(sockptr_t sockptr) { return sockptr.is_kernel; } static inline sockptr_t KERNEL_SOCKPTR(void *p) { return (sockptr_t) { .kernel = p, .is_kernel = true }; } static inline sockptr_t USER_SOCKPTR(void __user *p) { return (sockptr_t) { .user = p }; } static inline bool sockptr_is_null(sockptr_t sockptr) { if (sockptr_is_kernel(sockptr)) return !sockptr.kernel; return !sockptr.user; } static inline int copy_from_sockptr_offset(void *dst, sockptr_t src, size_t offset, size_t size) { if (!sockptr_is_kernel(src)) return copy_from_user(dst, src.user + offset, size); memcpy(dst, src.kernel + offset, size); return 0; } static inline int copy_from_sockptr(void *dst, sockptr_t src, size_t size) { return copy_from_sockptr_offset(dst, src, 0, size); } static inline int copy_to_sockptr_offset(sockptr_t dst, size_t offset, const void *src, size_t size) { if (!sockptr_is_kernel(dst)) return copy_to_user(dst.user + offset, src, size); memcpy(dst.kernel + offset, src, size); return 0; } static inline void *memdup_sockptr(sockptr_t src, size_t len) { void *p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_sockptr(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } return p; } static inline void *memdup_sockptr_nul(sockptr_t src, size_t len) { char *p = kmalloc_track_caller(len + 1, GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (copy_from_sockptr(p, src, len)) { kfree(p); return ERR_PTR(-EFAULT); } p[len] = '\0'; return p; } static inline long strncpy_from_sockptr(char *dst, sockptr_t src, size_t count) { if (sockptr_is_kernel(src)) { size_t len = min(strnlen(src.kernel, count - 1) + 1, count); memcpy(dst, src.kernel, len); return len; } return strncpy_from_user(dst, src.user, count); } #endif /* _LINUX_SOCKPTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNH_H #define __NET_RTNH_H #include <linux/rtnetlink.h> #include <net/netlink.h> static inline int rtnh_ok(const struct rtnexthop *rtnh, int remaining) { return remaining >= (int)sizeof(*rtnh) && rtnh->rtnh_len >= sizeof(*rtnh) && rtnh->rtnh_len <= remaining; } static inline struct rtnexthop *rtnh_next(const struct rtnexthop *rtnh, int *remaining) { int totlen = NLA_ALIGN(rtnh->rtnh_len); *remaining -= totlen; return (struct rtnexthop *) ((char *) rtnh + totlen); } static inline struct nlattr *rtnh_attrs(const struct rtnexthop *rtnh) { return (struct nlattr *) ((char *) rtnh + NLA_ALIGN(sizeof(*rtnh))); } static inline int rtnh_attrlen(const struct rtnexthop *rtnh) { return rtnh->rtnh_len - NLA_ALIGN(sizeof(*rtnh)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_FRAG_H #define _IPV6_FRAG_H #include <linux/kernel.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <net/inet_frag.h> enum ip6_defrag_users { IP6_DEFRAG_LOCAL_DELIVER, IP6_DEFRAG_CONNTRACK_IN, __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP6_DEFRAG_CONNTRACK_OUT, __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP6_DEFRAG_CONNTRACK_BRIDGE_IN, __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, }; /* * Equivalent of ipv4 struct ip */ struct frag_queue { struct inet_frag_queue q; int iif; __u16 nhoffset; u8 ecn; }; #if IS_ENABLED(CONFIG_IPV6) static inline void ip6frag_init(struct inet_frag_queue *q, const void *a) { struct frag_queue *fq = container_of(q, struct frag_queue, q); const struct frag_v6_compare_key *key = a; q->key.v6 = *key; fq->ecn = 0; } static inline u32 ip6frag_key_hashfn(const void *data, u32 len, u32 seed) { return jhash2(data, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline u32 ip6frag_obj_hashfn(const void *data, u32 len, u32 seed) { const struct inet_frag_queue *fq = data; return jhash2((const u32 *)&fq->key.v6, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline int ip6frag_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) { const struct frag_v6_compare_key *key = arg->key; const struct inet_frag_queue *fq = ptr; return !!memcmp(&fq->key, key, sizeof(*key)); } static inline void ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq) { struct net_device *dev = NULL; struct sk_buff *head; rcu_read_lock(); if (fq->q.fqdir->dead) goto out_rcu_unlock; spin_lock(&fq->q.lock); if (fq->q.flags & INET_FRAG_COMPLETE) goto out; inet_frag_kill(&fq->q); dev = dev_get_by_index_rcu(net, fq->iif); if (!dev) goto out; __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT); /* Don't send error if the first segment did not arrive. */ if (!(fq->q.flags & INET_FRAG_FIRST_IN)) goto out; /* sk_buff::dev and sk_buff::rbnode are unionized. So we * pull the head out of the tree in order to be able to * deal with head->dev. */ head = inet_frag_pull_head(&fq->q); if (!head) goto out; head->dev = dev; spin_unlock(&fq->q.lock); icmpv6_send(head, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0); kfree_skb(head); goto out_rcu_unlock; out: spin_unlock(&fq->q.lock); out_rcu_unlock: rcu_read_unlock(); inet_frag_put(&fq->q); } /* Check if the upper layer header is truncated in the first fragment. */ static inline bool ipv6frag_thdr_truncated(struct sk_buff *skb, int start, u8 *nexthdrp) { u8 nexthdr = *nexthdrp; __be16 frag_off; int offset; offset = ipv6_skip_exthdr(skb, start, &nexthdr, &frag_off); if (offset < 0 || (frag_off & htons(IP6_OFFSET))) return false; switch (nexthdr) { case NEXTHDR_TCP: offset += sizeof(struct tcphdr); break; case NEXTHDR_UDP: offset += sizeof(struct udphdr); break; case NEXTHDR_ICMP: offset += sizeof(struct icmp6hdr); break; default: offset += 1; } if (offset > skb->len) return true; return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef LLIST_H #define LLIST_H /* * Lock-less NULL terminated single linked list * * Cases where locking is not needed: * If there are multiple producers and multiple consumers, llist_add can be * used in producers and llist_del_all can be used in consumers simultaneously * without locking. Also a single consumer can use llist_del_first while * multiple producers simultaneously use llist_add, without any locking. * * Cases where locking is needed: * If we have multiple consumers with llist_del_first used in one consumer, and * llist_del_first or llist_del_all used in other consumers, then a lock is * needed. This is because llist_del_first depends on list->first->next not * changing, but without lock protection, there's no way to be sure about that * if a preemption happens in the middle of the delete operation and on being * preempted back, the list->first is the same as before causing the cmpxchg in * llist_del_first to succeed. For example, while a llist_del_first operation * is in progress in one consumer, then a llist_del_first, llist_add, * llist_add (or llist_del_all, llist_add, llist_add) sequence in another * consumer may cause violations. * * This can be summarized as follows: * * | add | del_first | del_all * add | - | - | - * del_first | | L | L * del_all | | | - * * Where, a particular row's operation can happen concurrently with a column's * operation, with "-" being no lock needed, while "L" being lock is needed. * * The list entries deleted via llist_del_all can be traversed with * traversing function such as llist_for_each etc. But the list * entries can not be traversed safely before deleted from the list. * The order of deleted entries is from the newest to the oldest added * one. If you want to traverse from the oldest to the newest, you * must reverse the order by yourself before traversing. * * The basic atomic operation of this list is cmpxchg on long. On * architectures that don't have NMI-safe cmpxchg implementation, the * list can NOT be used in NMI handlers. So code that uses the list in * an NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. * * Copyright 2010,2011 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> */ #include <linux/atomic.h> #include <linux/kernel.h> struct llist_head { struct llist_node *first; }; struct llist_node { struct llist_node *next; }; #define LLIST_HEAD_INIT(name) { NULL } #define LLIST_HEAD(name) struct llist_head name = LLIST_HEAD_INIT(name) /** * init_llist_head - initialize lock-less list head * @head: the head for your lock-less list */ static inline void init_llist_head(struct llist_head *list) { list->first = NULL; } /** * llist_entry - get the struct of this entry * @ptr: the &struct llist_node pointer. * @type: the type of the struct this is embedded in. * @member: the name of the llist_node within the struct. */ #define llist_entry(ptr, type, member) \ container_of(ptr, type, member) /** * member_address_is_nonnull - check whether the member address is not NULL * @ptr: the object pointer (struct type * that contains the llist_node) * @member: the name of the llist_node within the struct. * * This macro is conceptually the same as * &ptr->member != NULL * but it works around the fact that compilers can decide that taking a member * address is never a NULL pointer. * * Real objects that start at a high address and have a member at NULL are * unlikely to exist, but such pointers may be returned e.g. by the * container_of() macro. */ #define member_address_is_nonnull(ptr, member) \ ((uintptr_t)(ptr) + offsetof(typeof(*(ptr)), member) != 0) /** * llist_for_each - iterate over some deleted entries of a lock-less list * @pos: the &struct llist_node to use as a loop cursor * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each(pos, node) \ for ((pos) = (node); pos; (pos) = (pos)->next) /** * llist_for_each_safe - iterate over some deleted entries of a lock-less list * safe against removal of list entry * @pos: the &struct llist_node to use as a loop cursor * @n: another &struct llist_node to use as temporary storage * @node: the first entry of deleted list entries * * In general, some entries of the lock-less list can be traversed * safely only after being deleted from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_safe(pos, n, node) \ for ((pos) = (node); (pos) && ((n) = (pos)->next, true); (pos) = (n)) /** * llist_for_each_entry - iterate over some deleted entries of lock-less list of given type * @pos: the type * to use as a loop cursor. * @node: the fist entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry(pos, node, member) \ for ((pos) = llist_entry((node), typeof(*(pos)), member); \ member_address_is_nonnull(pos, member); \ (pos) = llist_entry((pos)->member.next, typeof(*(pos)), member)) /** * llist_for_each_entry_safe - iterate over some deleted entries of lock-less list of given type * safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @node: the first entry of deleted list entries. * @member: the name of the llist_node with the struct. * * In general, some entries of the lock-less list can be traversed * safely only after being removed from list, so start with an entry * instead of list head. * * If being used on entries deleted from lock-less list directly, the * traverse order is from the newest to the oldest added entry. If * you want to traverse from the oldest to the newest, you must * reverse the order by yourself before traversing. */ #define llist_for_each_entry_safe(pos, n, node, member) \ for (pos = llist_entry((node), typeof(*pos), member); \ member_address_is_nonnull(pos, member) && \ (n = llist_entry(pos->member.next, typeof(*n), member), true); \ pos = n) /** * llist_empty - tests whether a lock-less list is empty * @head: the list to test * * Not guaranteed to be accurate or up to date. Just a quick way to * test whether the list is empty without deleting something from the * list. */ static inline bool llist_empty(const struct llist_head *head) { return READ_ONCE(head->first) == NULL; } static inline struct llist_node *llist_next(struct llist_node *node) { return node->next; } extern bool llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, struct llist_head *head); /** * llist_add - add a new entry * @new: new entry to be added * @head: the head for your lock-less list * * Returns true if the list was empty prior to adding this entry. */ static inline bool llist_add(struct llist_node *new, struct llist_head *head) { return llist_add_batch(new, new, head); } /** * llist_del_all - delete all entries from lock-less list * @head: the head of lock-less list to delete all entries * * If list is empty, return NULL, otherwise, delete all entries and * return the pointer to the first entry. The order of entries * deleted is from the newest to the oldest added one. */ static inline struct llist_node *llist_del_all(struct llist_head *head) { return xchg(&head->first, NULL); } extern struct llist_node *llist_del_first(struct llist_head *head); struct llist_node *llist_reverse_order(struct llist_node *head); #endif /* LLIST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_PREEMPT_H #define __LINUX_PREEMPT_H /* * include/linux/preempt.h - macros for accessing and manipulating * preempt_count (used for kernel preemption, interrupt count, etc.) */ #include <linux/linkage.h> #include <linux/list.h> /* * We put the hardirq and softirq counter into the preemption * counter. The bitmask has the following meaning: * * - bits 0-7 are the preemption count (max preemption depth: 256) * - bits 8-15 are the softirq count (max # of softirqs: 256) * * The hardirq count could in theory be the same as the number of * interrupts in the system, but we run all interrupt handlers with * interrupts disabled, so we cannot have nesting interrupts. Though * there are a few palaeontologic drivers which reenable interrupts in * the handler, so we need more than one bit here. * * PREEMPT_MASK: 0x000000ff * SOFTIRQ_MASK: 0x0000ff00 * HARDIRQ_MASK: 0x000f0000 * NMI_MASK: 0x00f00000 * PREEMPT_NEED_RESCHED: 0x80000000 */ #define PREEMPT_BITS 8 #define SOFTIRQ_BITS 8 #define HARDIRQ_BITS 4 #define NMI_BITS 4 #define PREEMPT_SHIFT 0 #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) #define __IRQ_MASK(x) ((1UL << (x))-1) #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) #define NMI_OFFSET (1UL << NMI_SHIFT) #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /* * Disable preemption until the scheduler is running -- use an unconditional * value so that it also works on !PREEMPT_COUNT kernels. * * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). */ #define INIT_PREEMPT_COUNT PREEMPT_OFFSET /* * Initial preempt_count value; reflects the preempt_count schedule invariant * which states that during context switches: * * preempt_count() == 2*PREEMPT_DISABLE_OFFSET * * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. * Note: See finish_task_switch(). */ #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ #include <asm/preempt.h> #define hardirq_count() (preempt_count() & HARDIRQ_MASK) #define softirq_count() (preempt_count() & SOFTIRQ_MASK) #define irq_count() (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK \ | NMI_MASK)) /* * Are we doing bottom half or hardware interrupt processing? * * in_irq() - We're in (hard) IRQ context * in_softirq() - We have BH disabled, or are processing softirqs * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled * in_serving_softirq() - We're in softirq context * in_nmi() - We're in NMI context * in_task() - We're in task context * * Note: due to the BH disabled confusion: in_softirq(),in_interrupt() really * should not be used in new code. */ #define in_irq() (hardirq_count()) #define in_softirq() (softirq_count()) #define in_interrupt() (irq_count()) #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) #define in_nmi() (preempt_count() & NMI_MASK) #define in_task() (!(preempt_count() & \ (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) /* * The preempt_count offset after preempt_disable(); */ #if defined(CONFIG_PREEMPT_COUNT) # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET #else # define PREEMPT_DISABLE_OFFSET 0 #endif /* * The preempt_count offset after spin_lock() */ #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET /* * The preempt_count offset needed for things like: * * spin_lock_bh() * * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and * softirqs, such that unlock sequences of: * * spin_unlock(); * local_bh_enable(); * * Work as expected. */ #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) /* * Are we running in atomic context? WARNING: this macro cannot * always detect atomic context; in particular, it cannot know about * held spinlocks in non-preemptible kernels. Thus it should not be * used in the general case to determine whether sleeping is possible. * Do not use in_atomic() in driver code. */ #define in_atomic() (preempt_count() != 0) /* * Check whether we were atomic before we did preempt_disable(): * (used by the scheduler) */ #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) extern void preempt_count_add(int val); extern void preempt_count_sub(int val); #define preempt_count_dec_and_test() \ ({ preempt_count_sub(1); should_resched(0); }) #else #define preempt_count_add(val) __preempt_count_add(val) #define preempt_count_sub(val) __preempt_count_sub(val) #define preempt_count_dec_and_test() __preempt_count_dec_and_test() #endif #define __preempt_count_inc() __preempt_count_add(1) #define __preempt_count_dec() __preempt_count_sub(1) #define preempt_count_inc() preempt_count_add(1) #define preempt_count_dec() preempt_count_sub(1) #ifdef CONFIG_PREEMPT_COUNT #define preempt_disable() \ do { \ preempt_count_inc(); \ barrier(); \ } while (0) #define sched_preempt_enable_no_resched() \ do { \ barrier(); \ preempt_count_dec(); \ } while (0) #define preempt_enable_no_resched() sched_preempt_enable_no_resched() #define preemptible() (preempt_count() == 0 && !irqs_disabled()) #ifdef CONFIG_PREEMPTION #define preempt_enable() \ do { \ barrier(); \ if (unlikely(preempt_count_dec_and_test())) \ __preempt_schedule(); \ } while (0) #define preempt_enable_notrace() \ do { \ barrier(); \ if (unlikely(__preempt_count_dec_and_test())) \ __preempt_schedule_notrace(); \ } while (0) #define preempt_check_resched() \ do { \ if (should_resched(0)) \ __preempt_schedule(); \ } while (0) #else /* !CONFIG_PREEMPTION */ #define preempt_enable() \ do { \ barrier(); \ preempt_count_dec(); \ } while (0) #define preempt_enable_notrace() \ do { \ barrier(); \ __preempt_count_dec(); \ } while (0) #define preempt_check_resched() do { } while (0) #endif /* CONFIG_PREEMPTION */ #define preempt_disable_notrace() \ do { \ __preempt_count_inc(); \ barrier(); \ } while (0) #define preempt_enable_no_resched_notrace() \ do { \ barrier(); \ __preempt_count_dec(); \ } while (0) #else /* !CONFIG_PREEMPT_COUNT */ /* * Even if we don't have any preemption, we need preempt disable/enable * to be barriers, so that we don't have things like get_user/put_user * that can cause faults and scheduling migrate into our preempt-protected * region. */ #define preempt_disable() barrier() #define sched_preempt_enable_no_resched() barrier() #define preempt_enable_no_resched() barrier() #define preempt_enable() barrier() #define preempt_check_resched() do { } while (0) #define preempt_disable_notrace() barrier() #define preempt_enable_no_resched_notrace() barrier() #define preempt_enable_notrace() barrier() #define preemptible() 0 #endif /* CONFIG_PREEMPT_COUNT */ #ifdef MODULE /* * Modules have no business playing preemption tricks. */ #undef sched_preempt_enable_no_resched #undef preempt_enable_no_resched #undef preempt_enable_no_resched_notrace #undef preempt_check_resched #endif #define preempt_set_need_resched() \ do { \ set_preempt_need_resched(); \ } while (0) #define preempt_fold_need_resched() \ do { \ if (tif_need_resched()) \ set_preempt_need_resched(); \ } while (0) #ifdef CONFIG_PREEMPT_NOTIFIERS struct preempt_notifier; /** * preempt_ops - notifiers called when a task is preempted and rescheduled * @sched_in: we're about to be rescheduled: * notifier: struct preempt_notifier for the task being scheduled * cpu: cpu we're scheduled on * @sched_out: we've just been preempted * notifier: struct preempt_notifier for the task being preempted * next: the task that's kicking us out * * Please note that sched_in and out are called under different * contexts. sched_out is called with rq lock held and irq disabled * while sched_in is called without rq lock and irq enabled. This * difference is intentional and depended upon by its users. */ struct preempt_ops { void (*sched_in)(struct preempt_notifier *notifier, int cpu); void (*sched_out)(struct preempt_notifier *notifier, struct task_struct *next); }; /** * preempt_notifier - key for installing preemption notifiers * @link: internal use * @ops: defines the notifier functions to be called * * Usually used in conjunction with container_of(). */ struct preempt_notifier { struct hlist_node link; struct preempt_ops *ops; }; void preempt_notifier_inc(void); void preempt_notifier_dec(void); void preempt_notifier_register(struct preempt_notifier *notifier); void preempt_notifier_unregister(struct preempt_notifier *notifier); static inline void preempt_notifier_init(struct preempt_notifier *notifier, struct preempt_ops *ops) { INIT_HLIST_NODE(&notifier->link); notifier->ops = ops; } #endif /** * migrate_disable - Prevent migration of the current task * * Maps to preempt_disable() which also disables preemption. Use * migrate_disable() to annotate that the intent is to prevent migration, * but not necessarily preemption. * * Can be invoked nested like preempt_disable() and needs the corresponding * number of migrate_enable() invocations. */ static __always_inline void migrate_disable(void) { preempt_disable(); } /** * migrate_enable - Allow migration of the current task * * Counterpart to migrate_disable(). * * As migrate_disable() can be invoked nested, only the outermost invocation * reenables migration. * * Currently mapped to preempt_enable(). */ static __always_inline void migrate_enable(void) { preempt_enable(); } #endif /* __LINUX_PREEMPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_COREDUMP_H #define _LINUX_SCHED_COREDUMP_H #include <linux/mm_types.h> #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ #define SUID_DUMP_USER 1 /* Dump as user of process */ #define SUID_DUMP_ROOT 2 /* Dump as root */ /* mm flags */ /* for SUID_DUMP_* above */ #define MMF_DUMPABLE_BITS 2 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) extern void set_dumpable(struct mm_struct *mm, int value); /* * This returns the actual value of the suid_dumpable flag. For things * that are using this for checking for privilege transitions, it must * test against SUID_DUMP_USER rather than treating it as a boolean * value. */ static inline int __get_dumpable(unsigned long mm_flags) { return mm_flags & MMF_DUMPABLE_MASK; } static inline int get_dumpable(struct mm_struct *mm) { return __get_dumpable(mm->flags); } /* coredump filter bits */ #define MMF_DUMP_ANON_PRIVATE 2 #define MMF_DUMP_ANON_SHARED 3 #define MMF_DUMP_MAPPED_PRIVATE 4 #define MMF_DUMP_MAPPED_SHARED 5 #define MMF_DUMP_ELF_HEADERS 6 #define MMF_DUMP_HUGETLB_PRIVATE 7 #define MMF_DUMP_HUGETLB_SHARED 8 #define MMF_DUMP_DAX_PRIVATE 9 #define MMF_DUMP_DAX_SHARED 10 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS #define MMF_DUMP_FILTER_BITS 9 #define MMF_DUMP_FILTER_MASK \ (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) #define MMF_DUMP_FILTER_DEFAULT \ ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) #else # define MMF_DUMP_MASK_DEFAULT_ELF 0 #endif /* leave room for more dump flags */ #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ /* * This one-shot flag is dropped due to necessity of changing exe once again * on NFS restore */ //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ #define MMF_HAS_UPROBES 19 /* has uprobes */ #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ #define MMF_DISABLE_THP 24 /* disable THP for all VMAs */ #define MMF_OOM_VICTIM 25 /* mm is the oom victim */ #define MMF_OOM_REAP_QUEUED 26 /* mm was queued for oom_reaper */ #define MMF_MULTIPROCESS 27 /* mm is shared between processes */ #define MMF_DISABLE_THP_MASK (1 << MMF_DISABLE_THP) #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK |\ MMF_DISABLE_THP_MASK) #endif /* _LINUX_SCHED_COREDUMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 #ifndef _CRYPTO_GCM_H #define _CRYPTO_GCM_H #include <linux/errno.h> #define GCM_AES_IV_SIZE 12 #define GCM_RFC4106_IV_SIZE 8 #define GCM_RFC4543_IV_SIZE 8 /* * validate authentication tag for GCM */ static inline int crypto_gcm_check_authsize(unsigned int authsize) { switch (authsize) { case 4: case 8: case 12: case 13: case 14: case 15: case 16: break; default: return -EINVAL; } return 0; } /* * validate authentication tag for RFC4106 */ static inline int crypto_rfc4106_check_authsize(unsigned int authsize) { switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return 0; } /* * validate assoclen for RFC4106/RFC4543 */ static inline int crypto_ipsec_check_assoclen(unsigned int assoclen) { switch (assoclen) { case 16: case 20: break; default: return -EINVAL; } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_COUNTER_H #define _LINUX_PERCPU_COUNTER_H /* * A simple "approximate counter" for use in ext2 and ext3 superblocks. * * WARNING: these things are HUGE. 4 kbytes per counter on 32-way P4. */ #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/list.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/types.h> #include <linux/gfp.h> #ifdef CONFIG_SMP struct percpu_counter { raw_spinlock_t lock; s64 count; #ifdef CONFIG_HOTPLUG_CPU struct list_head list; /* All percpu_counters are on a list */ #endif s32 __percpu *counters; }; extern int percpu_counter_batch; int __percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp, struct lock_class_key *key); #define percpu_counter_init(fbc, value, gfp) \ ({ \ static struct lock_class_key __key; \ \ __percpu_counter_init(fbc, value, gfp, &__key); \ }) void percpu_counter_destroy(struct percpu_counter *fbc); void percpu_counter_set(struct percpu_counter *fbc, s64 amount); void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch); s64 __percpu_counter_sum(struct percpu_counter *fbc); int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch); void percpu_counter_sync(struct percpu_counter *fbc); static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { return __percpu_counter_compare(fbc, rhs, percpu_counter_batch); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { percpu_counter_add_batch(fbc, amount, percpu_counter_batch); } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { s64 ret = __percpu_counter_sum(fbc); return ret < 0 ? 0 : ret; } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return __percpu_counter_sum(fbc); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * It is possible for the percpu_counter_read() to return a small negative * number for some counter which should never be negative. * */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { /* Prevent reloads of fbc->count */ s64 ret = READ_ONCE(fbc->count); if (ret >= 0) return ret; return 0; } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return (fbc->counters != NULL); } #else /* !CONFIG_SMP */ struct percpu_counter { s64 count; }; static inline int percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp) { fbc->count = amount; return 0; } static inline void percpu_counter_destroy(struct percpu_counter *fbc) { } static inline void percpu_counter_set(struct percpu_counter *fbc, s64 amount) { fbc->count = amount; } static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { if (fbc->count > rhs) return 1; else if (fbc->count < rhs) return -1; else return 0; } static inline int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch) { return percpu_counter_compare(fbc, rhs); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { preempt_disable(); fbc->count += amount; preempt_enable(); } static inline void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { percpu_counter_add(fbc, amount); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * percpu_counter is intended to track positive numbers. In the UP case the * number should never be negative. */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { return fbc->count; } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { return percpu_counter_read_positive(fbc); } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return percpu_counter_read(fbc); } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return true; } static inline void percpu_counter_sync(struct percpu_counter *fbc) { } #endif /* CONFIG_SMP */ static inline void percpu_counter_inc(struct percpu_counter *fbc) { percpu_counter_add(fbc, 1); } static inline void percpu_counter_dec(struct percpu_counter *fbc) { percpu_counter_add(fbc, -1); } static inline void percpu_counter_sub(struct percpu_counter *fbc, s64 amount) { percpu_counter_add(fbc, -amount); } #endif /* _LINUX_PERCPU_COUNTER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __SOUND_CORE_H #define __SOUND_CORE_H /* * Main header file for the ALSA driver * Copyright (c) 1994-2001 by Jaroslav Kysela <perex@perex.cz> */ #include <linux/device.h> #include <linux/sched.h> /* wake_up() */ #include <linux/mutex.h> /* struct mutex */ #include <linux/rwsem.h> /* struct rw_semaphore */ #include <linux/pm.h> /* pm_message_t */ #include <linux/stringify.h> #include <linux/printk.h> /* number of supported soundcards */ #ifdef CONFIG_SND_DYNAMIC_MINORS #define SNDRV_CARDS CONFIG_SND_MAX_CARDS #else #define SNDRV_CARDS 8 /* don't change - minor numbers */ #endif #define CONFIG_SND_MAJOR 116 /* standard configuration */ /* forward declarations */ struct pci_dev; struct module; struct completion; /* device allocation stuff */ /* type of the object used in snd_device_*() * this also defines the calling order */ enum snd_device_type { SNDRV_DEV_LOWLEVEL, SNDRV_DEV_INFO, SNDRV_DEV_BUS, SNDRV_DEV_CODEC, SNDRV_DEV_PCM, SNDRV_DEV_COMPRESS, SNDRV_DEV_RAWMIDI, SNDRV_DEV_TIMER, SNDRV_DEV_SEQUENCER, SNDRV_DEV_HWDEP, SNDRV_DEV_JACK, SNDRV_DEV_CONTROL, /* NOTE: this must be the last one */ }; enum snd_device_state { SNDRV_DEV_BUILD, SNDRV_DEV_REGISTERED, SNDRV_DEV_DISCONNECTED, }; struct snd_device; struct snd_device_ops { int (*dev_free)(struct snd_device *dev); int (*dev_register)(struct snd_device *dev); int (*dev_disconnect)(struct snd_device *dev); }; struct snd_device { struct list_head list; /* list of registered devices */ struct snd_card *card; /* card which holds this device */ enum snd_device_state state; /* state of the device */ enum snd_device_type type; /* device type */ void *device_data; /* device structure */ const struct snd_device_ops *ops; /* operations */ }; #define snd_device(n) list_entry(n, struct snd_device, list) /* main structure for soundcard */ struct snd_card { int number; /* number of soundcard (index to snd_cards) */ char id[16]; /* id string of this card */ char driver[16]; /* driver name */ char shortname[32]; /* short name of this soundcard */ char longname[80]; /* name of this soundcard */ char irq_descr[32]; /* Interrupt description */ char mixername[80]; /* mixer name */ char components[128]; /* card components delimited with space */ struct module *module; /* top-level module */ void *private_data; /* private data for soundcard */ void (*private_free) (struct snd_card *card); /* callback for freeing of private data */ struct list_head devices; /* devices */ struct device ctl_dev; /* control device */ unsigned int last_numid; /* last used numeric ID */ struct rw_semaphore controls_rwsem; /* controls list lock */ rwlock_t ctl_files_rwlock; /* ctl_files list lock */ int controls_count; /* count of all controls */ int user_ctl_count; /* count of all user controls */ struct list_head controls; /* all controls for this card */ struct list_head ctl_files; /* active control files */ struct snd_info_entry *proc_root; /* root for soundcard specific files */ struct proc_dir_entry *proc_root_link; /* number link to real id */ struct list_head files_list; /* all files associated to this card */ struct snd_shutdown_f_ops *s_f_ops; /* file operations in the shutdown state */ spinlock_t files_lock; /* lock the files for this card */ int shutdown; /* this card is going down */ struct completion *release_completion; struct device *dev; /* device assigned to this card */ struct device card_dev; /* cardX object for sysfs */ const struct attribute_group *dev_groups[4]; /* assigned sysfs attr */ bool registered; /* card_dev is registered? */ int sync_irq; /* assigned irq, used for PCM sync */ wait_queue_head_t remove_sleep; size_t total_pcm_alloc_bytes; /* total amount of allocated buffers */ struct mutex memory_mutex; /* protection for the above */ #ifdef CONFIG_PM unsigned int power_state; /* power state */ wait_queue_head_t power_sleep; #endif #if IS_ENABLED(CONFIG_SND_MIXER_OSS) struct snd_mixer_oss *mixer_oss; int mixer_oss_change_count; #endif }; #define dev_to_snd_card(p) container_of(p, struct snd_card, card_dev) #ifdef CONFIG_PM static inline unsigned int snd_power_get_state(struct snd_card *card) { return card->power_state; } static inline void snd_power_change_state(struct snd_card *card, unsigned int state) { card->power_state = state; wake_up(&card->power_sleep); } /* init.c */ int snd_power_wait(struct snd_card *card, unsigned int power_state); #else /* ! CONFIG_PM */ static inline int snd_power_wait(struct snd_card *card, unsigned int state) { return 0; } #define snd_power_get_state(card) ({ (void)(card); SNDRV_CTL_POWER_D0; }) #define snd_power_change_state(card, state) do { (void)(card); } while (0) #endif /* CONFIG_PM */ struct snd_minor { int type; /* SNDRV_DEVICE_TYPE_XXX */ int card; /* card number */ int device; /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data; /* private data for f_ops->open */ struct device *dev; /* device for sysfs */ struct snd_card *card_ptr; /* assigned card instance */ }; /* return a device pointer linked to each sound device as a parent */ static inline struct device *snd_card_get_device_link(struct snd_card *card) { return card ? &card->card_dev : NULL; } /* sound.c */ extern int snd_major; extern int snd_ecards_limit; extern struct class *sound_class; void snd_request_card(int card); void snd_device_initialize(struct device *dev, struct snd_card *card); int snd_register_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data, struct device *device); int snd_unregister_device(struct device *dev); void *snd_lookup_minor_data(unsigned int minor, int type); #ifdef CONFIG_SND_OSSEMUL int snd_register_oss_device(int type, struct snd_card *card, int dev, const struct file_operations *f_ops, void *private_data); int snd_unregister_oss_device(int type, struct snd_card *card, int dev); void *snd_lookup_oss_minor_data(unsigned int minor, int type); #endif int snd_minor_info_init(void); /* sound_oss.c */ #ifdef CONFIG_SND_OSSEMUL int snd_minor_info_oss_init(void); #else static inline int snd_minor_info_oss_init(void) { return 0; } #endif /* memory.c */ int copy_to_user_fromio(void __user *dst, const volatile void __iomem *src, size_t count); int copy_from_user_toio(volatile void __iomem *dst, const void __user *src, size_t count); /* init.c */ int snd_card_locked(int card); #if IS_ENABLED(CONFIG_SND_MIXER_OSS) #define SND_MIXER_OSS_NOTIFY_REGISTER 0 #define SND_MIXER_OSS_NOTIFY_DISCONNECT 1 #define SND_MIXER_OSS_NOTIFY_FREE 2 extern int (*snd_mixer_oss_notify_callback)(struct snd_card *card, int cmd); #endif int snd_card_new(struct device *parent, int idx, const char *xid, struct module *module, int extra_size, struct snd_card **card_ret); int snd_card_disconnect(struct snd_card *card); void snd_card_disconnect_sync(struct snd_card *card); int snd_card_free(struct snd_card *card); int snd_card_free_when_closed(struct snd_card *card); void snd_card_set_id(struct snd_card *card, const char *id); int snd_card_register(struct snd_card *card); int snd_card_info_init(void); int snd_card_add_dev_attr(struct snd_card *card, const struct attribute_group *group); int snd_component_add(struct snd_card *card, const char *component); int snd_card_file_add(struct snd_card *card, struct file *file); int snd_card_file_remove(struct snd_card *card, struct file *file); struct snd_card *snd_card_ref(int card); /** * snd_card_unref - Unreference the card object * @card: the card object to unreference * * Call this function for the card object that was obtained via snd_card_ref() * or snd_lookup_minor_data(). */ static inline void snd_card_unref(struct snd_card *card) { put_device(&card->card_dev); } #define snd_card_set_dev(card, devptr) ((card)->dev = (devptr)) /* device.c */ int snd_device_new(struct snd_card *card, enum snd_device_type type, void *device_data, const struct snd_device_ops *ops); int snd_device_register(struct snd_card *card, void *device_data); int snd_device_register_all(struct snd_card *card); void snd_device_disconnect(struct snd_card *card, void *device_data); void snd_device_disconnect_all(struct snd_card *card); void snd_device_free(struct snd_card *card, void *device_data); void snd_device_free_all(struct snd_card *card); int snd_device_get_state(struct snd_card *card, void *device_data); /* isadma.c */ #ifdef CONFIG_ISA_DMA_API #define DMA_MODE_NO_ENABLE 0x0100 void snd_dma_program(unsigned long dma, unsigned long addr, unsigned int size, unsigned short mode); void snd_dma_disable(unsigned long dma); unsigned int snd_dma_pointer(unsigned long dma, unsigned int size); #endif /* misc.c */ struct resource; void release_and_free_resource(struct resource *res); /* --- */ /* sound printk debug levels */ enum { SND_PR_ALWAYS, SND_PR_DEBUG, SND_PR_VERBOSE, }; #if defined(CONFIG_SND_DEBUG) || defined(CONFIG_SND_VERBOSE_PRINTK) __printf(4, 5) void __snd_printk(unsigned int level, const char *file, int line, const char *format, ...); #else #define __snd_printk(level, file, line, format, ...) \ printk(format, ##__VA_ARGS__) #endif /** * snd_printk - printk wrapper * @fmt: format string * * Works like printk() but prints the file and the line of the caller * when configured with CONFIG_SND_VERBOSE_PRINTK. */ #define snd_printk(fmt, ...) \ __snd_printk(0, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #ifdef CONFIG_SND_DEBUG /** * snd_printd - debug printk * @fmt: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_printd(fmt, ...) \ __snd_printk(1, __FILE__, __LINE__, fmt, ##__VA_ARGS__) #define _snd_printd(level, fmt, ...) \ __snd_printk(level, __FILE__, __LINE__, fmt, ##__VA_ARGS__) /** * snd_BUG - give a BUG warning message and stack trace * * Calls WARN() if CONFIG_SND_DEBUG is set. * Ignored when CONFIG_SND_DEBUG is not set. */ #define snd_BUG() WARN(1, "BUG?\n") /** * snd_printd_ratelimit - Suppress high rates of output when * CONFIG_SND_DEBUG is enabled. */ #define snd_printd_ratelimit() printk_ratelimit() /** * snd_BUG_ON - debugging check macro * @cond: condition to evaluate * * Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, * otherwise just evaluates the conditional and returns the value. */ #define snd_BUG_ON(cond) WARN_ON((cond)) #else /* !CONFIG_SND_DEBUG */ __printf(1, 2) static inline void snd_printd(const char *format, ...) {} __printf(2, 3) static inline void _snd_printd(int level, const char *format, ...) {} #define snd_BUG() do { } while (0) #define snd_BUG_ON(condition) ({ \ int __ret_warn_on = !!(condition); \ unlikely(__ret_warn_on); \ }) static inline bool snd_printd_ratelimit(void) { return false; } #endif /* CONFIG_SND_DEBUG */ #ifdef CONFIG_SND_DEBUG_VERBOSE /** * snd_printdd - debug printk * @format: format string * * Works like snd_printk() for debugging purposes. * Ignored when CONFIG_SND_DEBUG_VERBOSE is not set. */ #define snd_printdd(format, ...) \ __snd_printk(2, __FILE__, __LINE__, format, ##__VA_ARGS__) #else __printf(1, 2) static inline void snd_printdd(const char *format, ...) {} #endif #define SNDRV_OSS_VERSION ((3<<16)|(8<<8)|(1<<4)|(0)) /* 3.8.1a */ /* for easier backward-porting */ #if IS_ENABLED(CONFIG_GAMEPORT) #define gameport_set_dev_parent(gp,xdev) ((gp)->dev.parent = (xdev)) #define gameport_set_port_data(gp,r) ((gp)->port_data = (r)) #define gameport_get_port_data(gp) (gp)->port_data #endif /* PCI quirk list helper */ struct snd_pci_quirk { unsigned short subvendor; /* PCI subvendor ID */ unsigned short subdevice; /* PCI subdevice ID */ unsigned short subdevice_mask; /* bitmask to match */ int value; /* value */ #ifdef CONFIG_SND_DEBUG_VERBOSE const char *name; /* name of the device (optional) */ #endif }; #define _SND_PCI_QUIRK_ID_MASK(vend, mask, dev) \ .subvendor = (vend), .subdevice = (dev), .subdevice_mask = (mask) #define _SND_PCI_QUIRK_ID(vend, dev) \ _SND_PCI_QUIRK_ID_MASK(vend, 0xffff, dev) #define SND_PCI_QUIRK_ID(vend,dev) {_SND_PCI_QUIRK_ID(vend, dev)} #ifdef CONFIG_SND_DEBUG_VERBOSE #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val), .name = (xname)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), \ .value = (val), .name = (xname)} #define snd_pci_quirk_name(q) ((q)->name) #else #define SND_PCI_QUIRK(vend,dev,xname,val) \ {_SND_PCI_QUIRK_ID(vend, dev), .value = (val)} #define SND_PCI_QUIRK_MASK(vend, mask, dev, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, mask, dev), .value = (val)} #define SND_PCI_QUIRK_VENDOR(vend, xname, val) \ {_SND_PCI_QUIRK_ID_MASK(vend, 0, 0), .value = (val)} #define snd_pci_quirk_name(q) "" #endif #ifdef CONFIG_PCI const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list); const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list); #else static inline const struct snd_pci_quirk * snd_pci_quirk_lookup(struct pci_dev *pci, const struct snd_pci_quirk *list) { return NULL; } static inline const struct snd_pci_quirk * snd_pci_quirk_lookup_id(u16 vendor, u16 device, const struct snd_pci_quirk *list) { return NULL; } #endif #endif /* __SOUND_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM scsi #if !defined(_TRACE_SCSI_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCSI_H #include <scsi/scsi_cmnd.h> #include <scsi/scsi_host.h> #include <linux/tracepoint.h> #include <linux/trace_seq.h> #define scsi_opcode_name(opcode) { opcode, #opcode } #define show_opcode_name(val) \ __print_symbolic(val, \ scsi_opcode_name(TEST_UNIT_READY), \ scsi_opcode_name(REZERO_UNIT), \ scsi_opcode_name(REQUEST_SENSE), \ scsi_opcode_name(FORMAT_UNIT), \ scsi_opcode_name(READ_BLOCK_LIMITS), \ scsi_opcode_name(REASSIGN_BLOCKS), \ scsi_opcode_name(INITIALIZE_ELEMENT_STATUS), \ scsi_opcode_name(READ_6), \ scsi_opcode_name(WRITE_6), \ scsi_opcode_name(SEEK_6), \ scsi_opcode_name(READ_REVERSE), \ scsi_opcode_name(WRITE_FILEMARKS), \ scsi_opcode_name(SPACE), \ scsi_opcode_name(INQUIRY), \ scsi_opcode_name(RECOVER_BUFFERED_DATA), \ scsi_opcode_name(MODE_SELECT), \ scsi_opcode_name(RESERVE), \ scsi_opcode_name(RELEASE), \ scsi_opcode_name(COPY), \ scsi_opcode_name(ERASE), \ scsi_opcode_name(MODE_SENSE), \ scsi_opcode_name(START_STOP), \ scsi_opcode_name(RECEIVE_DIAGNOSTIC), \ scsi_opcode_name(SEND_DIAGNOSTIC), \ scsi_opcode_name(ALLOW_MEDIUM_REMOVAL), \ scsi_opcode_name(SET_WINDOW), \ scsi_opcode_name(READ_CAPACITY), \ scsi_opcode_name(READ_10), \ scsi_opcode_name(WRITE_10), \ scsi_opcode_name(SEEK_10), \ scsi_opcode_name(POSITION_TO_ELEMENT), \ scsi_opcode_name(WRITE_VERIFY), \ scsi_opcode_name(VERIFY), \ scsi_opcode_name(SEARCH_HIGH), \ scsi_opcode_name(SEARCH_EQUAL), \ scsi_opcode_name(SEARCH_LOW), \ scsi_opcode_name(SET_LIMITS), \ scsi_opcode_name(PRE_FETCH), \ scsi_opcode_name(READ_POSITION), \ scsi_opcode_name(SYNCHRONIZE_CACHE), \ scsi_opcode_name(LOCK_UNLOCK_CACHE), \ scsi_opcode_name(READ_DEFECT_DATA), \ scsi_opcode_name(MEDIUM_SCAN), \ scsi_opcode_name(COMPARE), \ scsi_opcode_name(COPY_VERIFY), \ scsi_opcode_name(WRITE_BUFFER), \ scsi_opcode_name(READ_BUFFER), \ scsi_opcode_name(UPDATE_BLOCK), \ scsi_opcode_name(READ_LONG), \ scsi_opcode_name(WRITE_LONG), \ scsi_opcode_name(CHANGE_DEFINITION), \ scsi_opcode_name(WRITE_SAME), \ scsi_opcode_name(UNMAP), \ scsi_opcode_name(READ_TOC), \ scsi_opcode_name(LOG_SELECT), \ scsi_opcode_name(LOG_SENSE), \ scsi_opcode_name(XDWRITEREAD_10), \ scsi_opcode_name(MODE_SELECT_10), \ scsi_opcode_name(RESERVE_10), \ scsi_opcode_name(RELEASE_10), \ scsi_opcode_name(MODE_SENSE_10), \ scsi_opcode_name(PERSISTENT_RESERVE_IN), \ scsi_opcode_name(PERSISTENT_RESERVE_OUT), \ scsi_opcode_name(VARIABLE_LENGTH_CMD), \ scsi_opcode_name(REPORT_LUNS), \ scsi_opcode_name(MAINTENANCE_IN), \ scsi_opcode_name(MAINTENANCE_OUT), \ scsi_opcode_name(MOVE_MEDIUM), \ scsi_opcode_name(EXCHANGE_MEDIUM), \ scsi_opcode_name(READ_12), \ scsi_opcode_name(WRITE_12), \ scsi_opcode_name(WRITE_VERIFY_12), \ scsi_opcode_name(SEARCH_HIGH_12), \ scsi_opcode_name(SEARCH_EQUAL_12), \ scsi_opcode_name(SEARCH_LOW_12), \ scsi_opcode_name(READ_ELEMENT_STATUS), \ scsi_opcode_name(SEND_VOLUME_TAG), \ scsi_opcode_name(WRITE_LONG_2), \ scsi_opcode_name(READ_16), \ scsi_opcode_name(WRITE_16), \ scsi_opcode_name(VERIFY_16), \ scsi_opcode_name(WRITE_SAME_16), \ scsi_opcode_name(ZBC_OUT), \ scsi_opcode_name(ZBC_IN), \ scsi_opcode_name(SERVICE_ACTION_IN_16), \ scsi_opcode_name(READ_32), \ scsi_opcode_name(WRITE_32), \ scsi_opcode_name(WRITE_SAME_32), \ scsi_opcode_name(ATA_16), \ scsi_opcode_name(ATA_12)) #define scsi_hostbyte_name(result) { result, #result } #define show_hostbyte_name(val) \ __print_symbolic(val, \ scsi_hostbyte_name(DID_OK), \ scsi_hostbyte_name(DID_NO_CONNECT), \ scsi_hostbyte_name(DID_BUS_BUSY), \ scsi_hostbyte_name(DID_TIME_OUT), \ scsi_hostbyte_name(DID_BAD_TARGET), \ scsi_hostbyte_name(DID_ABORT), \ scsi_hostbyte_name(DID_PARITY), \ scsi_hostbyte_name(DID_ERROR), \ scsi_hostbyte_name(DID_RESET), \ scsi_hostbyte_name(DID_BAD_INTR), \ scsi_hostbyte_name(DID_PASSTHROUGH), \ scsi_hostbyte_name(DID_SOFT_ERROR), \ scsi_hostbyte_name(DID_IMM_RETRY), \ scsi_hostbyte_name(DID_REQUEUE), \ scsi_hostbyte_name(DID_TRANSPORT_DISRUPTED), \ scsi_hostbyte_name(DID_TRANSPORT_FAILFAST)) #define scsi_driverbyte_name(result) { result, #result } #define show_driverbyte_name(val) \ __print_symbolic(val, \ scsi_driverbyte_name(DRIVER_OK), \ scsi_driverbyte_name(DRIVER_BUSY), \ scsi_driverbyte_name(DRIVER_SOFT), \ scsi_driverbyte_name(DRIVER_MEDIA), \ scsi_driverbyte_name(DRIVER_ERROR), \ scsi_driverbyte_name(DRIVER_INVALID), \ scsi_driverbyte_name(DRIVER_TIMEOUT), \ scsi_driverbyte_name(DRIVER_HARD), \ scsi_driverbyte_name(DRIVER_SENSE)) #define scsi_msgbyte_name(result) { result, #result } #define show_msgbyte_name(val) \ __print_symbolic(val, \ scsi_msgbyte_name(COMMAND_COMPLETE), \ scsi_msgbyte_name(EXTENDED_MESSAGE), \ scsi_msgbyte_name(SAVE_POINTERS), \ scsi_msgbyte_name(RESTORE_POINTERS), \ scsi_msgbyte_name(DISCONNECT), \ scsi_msgbyte_name(INITIATOR_ERROR), \ scsi_msgbyte_name(ABORT_TASK_SET), \ scsi_msgbyte_name(MESSAGE_REJECT), \ scsi_msgbyte_name(NOP), \ scsi_msgbyte_name(MSG_PARITY_ERROR), \ scsi_msgbyte_name(LINKED_CMD_COMPLETE), \ scsi_msgbyte_name(LINKED_FLG_CMD_COMPLETE), \ scsi_msgbyte_name(TARGET_RESET), \ scsi_msgbyte_name(ABORT_TASK), \ scsi_msgbyte_name(CLEAR_TASK_SET), \ scsi_msgbyte_name(INITIATE_RECOVERY), \ scsi_msgbyte_name(RELEASE_RECOVERY), \ scsi_msgbyte_name(CLEAR_ACA), \ scsi_msgbyte_name(LOGICAL_UNIT_RESET), \ scsi_msgbyte_name(SIMPLE_QUEUE_TAG), \ scsi_msgbyte_name(HEAD_OF_QUEUE_TAG), \ scsi_msgbyte_name(ORDERED_QUEUE_TAG), \ scsi_msgbyte_name(IGNORE_WIDE_RESIDUE), \ scsi_msgbyte_name(ACA), \ scsi_msgbyte_name(QAS_REQUEST), \ scsi_msgbyte_name(BUS_DEVICE_RESET), \ scsi_msgbyte_name(ABORT)) #define scsi_statusbyte_name(result) { result, #result } #define show_statusbyte_name(val) \ __print_symbolic(val, \ scsi_statusbyte_name(SAM_STAT_GOOD), \ scsi_statusbyte_name(SAM_STAT_CHECK_CONDITION), \ scsi_statusbyte_name(SAM_STAT_CONDITION_MET), \ scsi_statusbyte_name(SAM_STAT_BUSY), \ scsi_statusbyte_name(SAM_STAT_INTERMEDIATE), \ scsi_statusbyte_name(SAM_STAT_INTERMEDIATE_CONDITION_MET), \ scsi_statusbyte_name(SAM_STAT_RESERVATION_CONFLICT), \ scsi_statusbyte_name(SAM_STAT_COMMAND_TERMINATED), \ scsi_statusbyte_name(SAM_STAT_TASK_SET_FULL), \ scsi_statusbyte_name(SAM_STAT_ACA_ACTIVE), \ scsi_statusbyte_name(SAM_STAT_TASK_ABORTED)) #define scsi_prot_op_name(result) { result, #result } #define show_prot_op_name(val) \ __print_symbolic(val, \ scsi_prot_op_name(SCSI_PROT_NORMAL), \ scsi_prot_op_name(SCSI_PROT_READ_INSERT), \ scsi_prot_op_name(SCSI_PROT_WRITE_STRIP), \ scsi_prot_op_name(SCSI_PROT_READ_STRIP), \ scsi_prot_op_name(SCSI_PROT_WRITE_INSERT), \ scsi_prot_op_name(SCSI_PROT_READ_PASS), \ scsi_prot_op_name(SCSI_PROT_WRITE_PASS)) const char *scsi_trace_parse_cdb(struct trace_seq*, unsigned char*, int); #define __parse_cdb(cdb, len) scsi_trace_parse_cdb(p, cdb, len) TRACE_EVENT(scsi_dispatch_cmd_start, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd), TP_STRUCT__entry( __field( unsigned int, host_no ) __field( unsigned int, channel ) __field( unsigned int, id ) __field( unsigned int, lun ) __field( unsigned int, opcode ) __field( unsigned int, cmd_len ) __field( unsigned int, data_sglen ) __field( unsigned int, prot_sglen ) __field( unsigned char, prot_op ) __dynamic_array(unsigned char, cmnd, cmd->cmd_len) ), TP_fast_assign( __entry->host_no = cmd->device->host->host_no; __entry->channel = cmd->device->channel; __entry->id = cmd->device->id; __entry->lun = cmd->device->lun; __entry->opcode = cmd->cmnd[0]; __entry->cmd_len = cmd->cmd_len; __entry->data_sglen = scsi_sg_count(cmd); __entry->prot_sglen = scsi_prot_sg_count(cmd); __entry->prot_op = scsi_get_prot_op(cmd); memcpy(__get_dynamic_array(cmnd), cmd->cmnd, cmd->cmd_len); ), TP_printk("host_no=%u channel=%u id=%u lun=%u data_sgl=%u prot_sgl=%u" \ " prot_op=%s cmnd=(%s %s raw=%s)", __entry->host_no, __entry->channel, __entry->id, __entry->lun, __entry->data_sglen, __entry->prot_sglen, show_prot_op_name(__entry->prot_op), show_opcode_name(__entry->opcode), __parse_cdb(__get_dynamic_array(cmnd), __entry->cmd_len), __print_hex(__get_dynamic_array(cmnd), __entry->cmd_len)) ); TRACE_EVENT(scsi_dispatch_cmd_error, TP_PROTO(struct scsi_cmnd *cmd, int rtn), TP_ARGS(cmd, rtn), TP_STRUCT__entry( __field( unsigned int, host_no ) __field( unsigned int, channel ) __field( unsigned int, id ) __field( unsigned int, lun ) __field( int, rtn ) __field( unsigned int, opcode ) __field( unsigned int, cmd_len ) __field( unsigned int, data_sglen ) __field( unsigned int, prot_sglen ) __field( unsigned char, prot_op ) __dynamic_array(unsigned char, cmnd, cmd->cmd_len) ), TP_fast_assign( __entry->host_no = cmd->device->host->host_no; __entry->channel = cmd->device->channel; __entry->id = cmd->device->id; __entry->lun = cmd->device->lun; __entry->rtn = rtn; __entry->opcode = cmd->cmnd[0]; __entry->cmd_len = cmd->cmd_len; __entry->data_sglen = scsi_sg_count(cmd); __entry->prot_sglen = scsi_prot_sg_count(cmd); __entry->prot_op = scsi_get_prot_op(cmd); memcpy(__get_dynamic_array(cmnd), cmd->cmnd, cmd->cmd_len); ), TP_printk("host_no=%u channel=%u id=%u lun=%u data_sgl=%u prot_sgl=%u" \ " prot_op=%s cmnd=(%s %s raw=%s) rtn=%d", __entry->host_no, __entry->channel, __entry->id, __entry->lun, __entry->data_sglen, __entry->prot_sglen, show_prot_op_name(__entry->prot_op), show_opcode_name(__entry->opcode), __parse_cdb(__get_dynamic_array(cmnd), __entry->cmd_len), __print_hex(__get_dynamic_array(cmnd), __entry->cmd_len), __entry->rtn) ); DECLARE_EVENT_CLASS(scsi_cmd_done_timeout_template, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd), TP_STRUCT__entry( __field( unsigned int, host_no ) __field( unsigned int, channel ) __field( unsigned int, id ) __field( unsigned int, lun ) __field( int, result ) __field( unsigned int, opcode ) __field( unsigned int, cmd_len ) __field( unsigned int, data_sglen ) __field( unsigned int, prot_sglen ) __field( unsigned char, prot_op ) __dynamic_array(unsigned char, cmnd, cmd->cmd_len) ), TP_fast_assign( __entry->host_no = cmd->device->host->host_no; __entry->channel = cmd->device->channel; __entry->id = cmd->device->id; __entry->lun = cmd->device->lun; __entry->result = cmd->result; __entry->opcode = cmd->cmnd[0]; __entry->cmd_len = cmd->cmd_len; __entry->data_sglen = scsi_sg_count(cmd); __entry->prot_sglen = scsi_prot_sg_count(cmd); __entry->prot_op = scsi_get_prot_op(cmd); memcpy(__get_dynamic_array(cmnd), cmd->cmnd, cmd->cmd_len); ), TP_printk("host_no=%u channel=%u id=%u lun=%u data_sgl=%u " \ "prot_sgl=%u prot_op=%s cmnd=(%s %s raw=%s) result=(driver=" \ "%s host=%s message=%s status=%s)", __entry->host_no, __entry->channel, __entry->id, __entry->lun, __entry->data_sglen, __entry->prot_sglen, show_prot_op_name(__entry->prot_op), show_opcode_name(__entry->opcode), __parse_cdb(__get_dynamic_array(cmnd), __entry->cmd_len), __print_hex(__get_dynamic_array(cmnd), __entry->cmd_len), show_driverbyte_name(((__entry->result) >> 24) & 0xff), show_hostbyte_name(((__entry->result) >> 16) & 0xff), show_msgbyte_name(((__entry->result) >> 8) & 0xff), show_statusbyte_name(__entry->result & 0xff)) ); DEFINE_EVENT(scsi_cmd_done_timeout_template, scsi_dispatch_cmd_done, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd)); DEFINE_EVENT(scsi_cmd_done_timeout_template, scsi_dispatch_cmd_timeout, TP_PROTO(struct scsi_cmnd *cmd), TP_ARGS(cmd)); TRACE_EVENT(scsi_eh_wakeup, TP_PROTO(struct Scsi_Host *shost), TP_ARGS(shost), TP_STRUCT__entry( __field( unsigned int, host_no ) ), TP_fast_assign( __entry->host_no = shost->host_no; ), TP_printk("host_no=%u", __entry->host_no) ); #endif /* _TRACE_SCSI_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved. * Authors: David Chinner and Glauber Costa * * Generic LRU infrastructure */ #ifndef _LRU_LIST_H #define _LRU_LIST_H #include <linux/list.h> #include <linux/nodemask.h> #include <linux/shrinker.h> struct mem_cgroup; /* list_lru_walk_cb has to always return one of those */ enum lru_status { LRU_REMOVED, /* item removed from list */ LRU_REMOVED_RETRY, /* item removed, but lock has been dropped and reacquired */ LRU_ROTATE, /* item referenced, give another pass */ LRU_SKIP, /* item cannot be locked, skip */ LRU_RETRY, /* item not freeable. May drop the lock internally, but has to return locked. */ }; struct list_lru_one { struct list_head list; /* may become negative during memcg reparenting */ long nr_items; }; struct list_lru_memcg { struct rcu_head rcu; /* array of per cgroup lists, indexed by memcg_cache_id */ struct list_lru_one *lru[]; }; struct list_lru_node { /* protects all lists on the node, including per cgroup */ spinlock_t lock; /* global list, used for the root cgroup in cgroup aware lrus */ struct list_lru_one lru; #ifdef CONFIG_MEMCG_KMEM /* for cgroup aware lrus points to per cgroup lists, otherwise NULL */ struct list_lru_memcg __rcu *memcg_lrus; #endif long nr_items; } ____cacheline_aligned_in_smp; struct list_lru { struct list_lru_node *node; #ifdef CONFIG_MEMCG_KMEM struct list_head list; int shrinker_id; bool memcg_aware; #endif }; void list_lru_destroy(struct list_lru *lru); int __list_lru_init(struct list_lru *lru, bool memcg_aware, struct lock_class_key *key, struct shrinker *shrinker); #define list_lru_init(lru) \ __list_lru_init((lru), false, NULL, NULL) #define list_lru_init_key(lru, key) \ __list_lru_init((lru), false, (key), NULL) #define list_lru_init_memcg(lru, shrinker) \ __list_lru_init((lru), true, NULL, shrinker) int memcg_update_all_list_lrus(int num_memcgs); void memcg_drain_all_list_lrus(int src_idx, struct mem_cgroup *dst_memcg); /** * list_lru_add: add an element to the lru list's tail * @list_lru: the lru pointer * @item: the item to be added. * * If the element is already part of a list, this function returns doing * nothing. Therefore the caller does not need to keep state about whether or * not the element already belongs in the list and is allowed to lazy update * it. Note however that this is valid for *a* list, not *this* list. If * the caller organize itself in a way that elements can be in more than * one type of list, it is up to the caller to fully remove the item from * the previous list (with list_lru_del() for instance) before moving it * to @list_lru * * Return value: true if the list was updated, false otherwise */ bool list_lru_add(struct list_lru *lru, struct list_head *item); /** * list_lru_del: delete an element to the lru list * @list_lru: the lru pointer * @item: the item to be deleted. * * This function works analogously as list_lru_add in terms of list * manipulation. The comments about an element already pertaining to * a list are also valid for list_lru_del. * * Return value: true if the list was updated, false otherwise */ bool list_lru_del(struct list_lru *lru, struct list_head *item); /** * list_lru_count_one: return the number of objects currently held by @lru * @lru: the lru pointer. * @nid: the node id to count from. * @memcg: the cgroup to count from. * * Always return a non-negative number, 0 for empty lists. There is no * guarantee that the list is not updated while the count is being computed. * Callers that want such a guarantee need to provide an outer lock. */ unsigned long list_lru_count_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg); unsigned long list_lru_count_node(struct list_lru *lru, int nid); static inline unsigned long list_lru_shrink_count(struct list_lru *lru, struct shrink_control *sc) { return list_lru_count_one(lru, sc->nid, sc->memcg); } static inline unsigned long list_lru_count(struct list_lru *lru) { long count = 0; int nid; for_each_node_state(nid, N_NORMAL_MEMORY) count += list_lru_count_node(lru, nid); return count; } void list_lru_isolate(struct list_lru_one *list, struct list_head *item); void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item, struct list_head *head); typedef enum lru_status (*list_lru_walk_cb)(struct list_head *item, struct list_lru_one *list, spinlock_t *lock, void *cb_arg); /** * list_lru_walk_one: walk a list_lru, isolating and disposing freeable items. * @lru: the lru pointer. * @nid: the node id to scan from. * @memcg: the cgroup to scan from. * @isolate: callback function that is resposible for deciding what to do with * the item currently being scanned * @cb_arg: opaque type that will be passed to @isolate * @nr_to_walk: how many items to scan. * * This function will scan all elements in a particular list_lru, calling the * @isolate callback for each of those items, along with the current list * spinlock and a caller-provided opaque. The @isolate callback can choose to * drop the lock internally, but *must* return with the lock held. The callback * will return an enum lru_status telling the list_lru infrastructure what to * do with the object being scanned. * * Please note that nr_to_walk does not mean how many objects will be freed, * just how many objects will be scanned. * * Return value: the number of objects effectively removed from the LRU. */ unsigned long list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); /** * list_lru_walk_one_irq: walk a list_lru, isolating and disposing freeable items. * @lru: the lru pointer. * @nid: the node id to scan from. * @memcg: the cgroup to scan from. * @isolate: callback function that is resposible for deciding what to do with * the item currently being scanned * @cb_arg: opaque type that will be passed to @isolate * @nr_to_walk: how many items to scan. * * Same as @list_lru_walk_one except that the spinlock is acquired with * spin_lock_irq(). */ unsigned long list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); unsigned long list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); static inline unsigned long list_lru_shrink_walk(struct list_lru *lru, struct shrink_control *sc, list_lru_walk_cb isolate, void *cb_arg) { return list_lru_walk_one(lru, sc->nid, sc->memcg, isolate, cb_arg, &sc->nr_to_scan); } static inline unsigned long list_lru_shrink_walk_irq(struct list_lru *lru, struct shrink_control *sc, list_lru_walk_cb isolate, void *cb_arg) { return list_lru_walk_one_irq(lru, sc->nid, sc->memcg, isolate, cb_arg, &sc->nr_to_scan); } static inline unsigned long list_lru_walk(struct list_lru *lru, list_lru_walk_cb isolate, void *cb_arg, unsigned long nr_to_walk) { long isolated = 0; int nid; for_each_node_state(nid, N_NORMAL_MEMORY) { isolated += list_lru_walk_node(lru, nid, isolate, cb_arg, &nr_to_walk); if (nr_to_walk <= 0) break; } return isolated; } #endif /* _LRU_LIST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ERR_H #define _LINUX_ERR_H #include <linux/compiler.h> #include <linux/types.h> #include <asm/errno.h> /* * Kernel pointers have redundant information, so we can use a * scheme where we can return either an error code or a normal * pointer with the same return value. * * This should be a per-architecture thing, to allow different * error and pointer decisions. */ #define MAX_ERRNO 4095 #ifndef __ASSEMBLY__ #define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >= (unsigned long)-MAX_ERRNO) static inline void * __must_check ERR_PTR(long error) { return (void *) error; } static inline long __must_check PTR_ERR(__force const void *ptr) { return (long) ptr; } static inline bool __must_check IS_ERR(__force const void *ptr) { return IS_ERR_VALUE((unsigned long)ptr); } static inline bool __must_check IS_ERR_OR_NULL(__force const void *ptr) { return unlikely(!ptr) || IS_ERR_VALUE((unsigned long)ptr); } /** * ERR_CAST - Explicitly cast an error-valued pointer to another pointer type * @ptr: The pointer to cast. * * Explicitly cast an error-valued pointer to another pointer type in such a * way as to make it clear that's what's going on. */ static inline void * __must_check ERR_CAST(__force const void *ptr) { /* cast away the const */ return (void *) ptr; } static inline int __must_check PTR_ERR_OR_ZERO(__force const void *ptr) { if (IS_ERR(ptr)) return PTR_ERR(ptr); else return 0; } #endif #endif /* _LINUX_ERR_H */
1 1 1 1 1