1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 /* SPDX-License-Identifier: GPL-2.0-only */ /* * V9FS definitions. * * Copyright (C) 2004-2008 by Eric Van Hensbergen <ericvh@gmail.com> * Copyright (C) 2002 by Ron Minnich <rminnich@lanl.gov> */ #ifndef FS_9P_V9FS_H #define FS_9P_V9FS_H #include <linux/backing-dev.h> /** * enum p9_session_flags - option flags for each 9P session * @V9FS_PROTO_2000U: whether or not to use 9P2000.u extensions * @V9FS_PROTO_2000L: whether or not to use 9P2000.l extensions * @V9FS_ACCESS_SINGLE: only the mounting user can access the hierarchy * @V9FS_ACCESS_USER: a new attach will be issued for every user (default) * @V9FS_ACCESS_CLIENT: Just like user, but access check is performed on client. * @V9FS_ACCESS_ANY: use a single attach for all users * @V9FS_ACCESS_MASK: bit mask of different ACCESS options * @V9FS_POSIX_ACL: POSIX ACLs are enforced * * Session flags reflect options selected by users at mount time */ #define V9FS_ACCESS_ANY (V9FS_ACCESS_SINGLE | \ V9FS_ACCESS_USER | \ V9FS_ACCESS_CLIENT) #define V9FS_ACCESS_MASK V9FS_ACCESS_ANY #define V9FS_ACL_MASK V9FS_POSIX_ACL enum p9_session_flags { V9FS_PROTO_2000U = 0x01, V9FS_PROTO_2000L = 0x02, V9FS_ACCESS_SINGLE = 0x04, V9FS_ACCESS_USER = 0x08, V9FS_ACCESS_CLIENT = 0x10, V9FS_POSIX_ACL = 0x20 }; /* possible values of ->cache */ /** * enum p9_cache_modes - user specified cache preferences * @CACHE_NONE: do not cache data, dentries, or directory contents (default) * @CACHE_LOOSE: cache data, dentries, and directory contents w/no consistency * * eventually support loose, tight, time, session, default always none */ enum p9_cache_modes { CACHE_NONE, CACHE_MMAP, CACHE_LOOSE, CACHE_FSCACHE, nr__p9_cache_modes }; /** * struct v9fs_session_info - per-instance session information * @flags: session options of type &p9_session_flags * @nodev: set to 1 to disable device mapping * @debug: debug level * @afid: authentication handle * @cache: cache mode of type &p9_cache_modes * @cachetag: the tag of the cache associated with this session * @fscache: session cookie associated with FS-Cache * @uname: string user name to mount hierarchy as * @aname: mount specifier for remote hierarchy * @maxdata: maximum data to be sent/recvd per protocol message * @dfltuid: default numeric userid to mount hierarchy as * @dfltgid: default numeric groupid to mount hierarchy as * @uid: if %V9FS_ACCESS_SINGLE, the numeric uid which mounted the hierarchy * @clnt: reference to 9P network client instantiated for this session * @slist: reference to list of registered 9p sessions * * This structure holds state for each session instance established during * a sys_mount() . * * Bugs: there seems to be a lot of state which could be condensed and/or * removed. */ struct v9fs_session_info { /* options */ unsigned char flags; unsigned char nodev; unsigned short debug; unsigned int afid; unsigned int cache; #ifdef CONFIG_9P_FSCACHE char *cachetag; struct fscache_cookie *fscache; #endif char *uname; /* user name to mount as */ char *aname; /* name of remote hierarchy being mounted */ unsigned int maxdata; /* max data for client interface */ kuid_t dfltuid; /* default uid/muid for legacy support */ kgid_t dfltgid; /* default gid for legacy support */ kuid_t uid; /* if ACCESS_SINGLE, the uid that has access */ struct p9_client *clnt; /* 9p client */ struct list_head slist; /* list of sessions registered with v9fs */ struct rw_semaphore rename_sem; long session_lock_timeout; /* retry interval for blocking locks */ }; /* cache_validity flags */ #define V9FS_INO_INVALID_ATTR 0x01 struct v9fs_inode { #ifdef CONFIG_9P_FSCACHE struct mutex fscache_lock; struct fscache_cookie *fscache; #endif struct p9_qid qid; unsigned int cache_validity; struct p9_fid *writeback_fid; struct mutex v_mutex; struct inode vfs_inode; }; static inline struct v9fs_inode *V9FS_I(const struct inode *inode) { return container_of(inode, struct v9fs_inode, vfs_inode); } extern int v9fs_show_options(struct seq_file *m, struct dentry *root); struct p9_fid *v9fs_session_init(struct v9fs_session_info *, const char *, char *); extern void v9fs_session_close(struct v9fs_session_info *v9ses); extern void v9fs_session_cancel(struct v9fs_session_info *v9ses); extern void v9fs_session_begin_cancel(struct v9fs_session_info *v9ses); extern struct dentry *v9fs_vfs_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags); extern int v9fs_vfs_unlink(struct inode *i, struct dentry *d); extern int v9fs_vfs_rmdir(struct inode *i, struct dentry *d); extern int v9fs_vfs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags); extern struct inode *v9fs_inode_from_fid(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb, int new); extern const struct inode_operations v9fs_dir_inode_operations_dotl; extern const struct inode_operations v9fs_file_inode_operations_dotl; extern const struct inode_operations v9fs_symlink_inode_operations_dotl; extern struct inode *v9fs_inode_from_fid_dotl(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb, int new); /* other default globals */ #define V9FS_PORT 564 #define V9FS_DEFUSER "nobody" #define V9FS_DEFANAME "" #define V9FS_DEFUID KUIDT_INIT(-2) #define V9FS_DEFGID KGIDT_INIT(-2) static inline struct v9fs_session_info *v9fs_inode2v9ses(struct inode *inode) { return (inode->i_sb->s_fs_info); } static inline struct v9fs_session_info *v9fs_dentry2v9ses(struct dentry *dentry) { return dentry->d_sb->s_fs_info; } static inline int v9fs_proto_dotu(struct v9fs_session_info *v9ses) { return v9ses->flags & V9FS_PROTO_2000U; } static inline int v9fs_proto_dotl(struct v9fs_session_info *v9ses) { return v9ses->flags & V9FS_PROTO_2000L; } /** * v9fs_get_inode_from_fid - Helper routine to populate an inode by * issuing a attribute request * @v9ses: session information * @fid: fid to issue attribute request for * @sb: superblock on which to create inode * */ static inline struct inode * v9fs_get_inode_from_fid(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb) { if (v9fs_proto_dotl(v9ses)) return v9fs_inode_from_fid_dotl(v9ses, fid, sb, 0); else return v9fs_inode_from_fid(v9ses, fid, sb, 0); } /** * v9fs_get_new_inode_from_fid - Helper routine to populate an inode by * issuing a attribute request * @v9ses: session information * @fid: fid to issue attribute request for * @sb: superblock on which to create inode * */ static inline struct inode * v9fs_get_new_inode_from_fid(struct v9fs_session_info *v9ses, struct p9_fid *fid, struct super_block *sb) { if (v9fs_proto_dotl(v9ses)) return v9fs_inode_from_fid_dotl(v9ses, fid, sb, 1); else return v9fs_inode_from_fid(v9ses, fid, sb, 1); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 /* SPDX-License-Identifier: GPL-2.0 */ /* * RT Mutexes: blocking mutual exclusion locks with PI support * * started by Ingo Molnar and Thomas Gleixner: * * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com> * * This file contains the private data structure and API definitions. */ #ifndef __KERNEL_RTMUTEX_COMMON_H #define __KERNEL_RTMUTEX_COMMON_H #include <linux/rtmutex.h> #include <linux/sched/wake_q.h> /* * This is the control structure for tasks blocked on a rt_mutex, * which is allocated on the kernel stack on of the blocked task. * * @tree_entry: pi node to enqueue into the mutex waiters tree * @pi_tree_entry: pi node to enqueue into the mutex owner waiters tree * @task: task reference to the blocked task */ struct rt_mutex_waiter { struct rb_node tree_entry; struct rb_node pi_tree_entry; struct task_struct *task; struct rt_mutex *lock; #ifdef CONFIG_DEBUG_RT_MUTEXES unsigned long ip; struct pid *deadlock_task_pid; struct rt_mutex *deadlock_lock; #endif int prio; u64 deadline; }; /* * Various helpers to access the waiters-tree: */ #ifdef CONFIG_RT_MUTEXES static inline int rt_mutex_has_waiters(struct rt_mutex *lock) { return !RB_EMPTY_ROOT(&lock->waiters.rb_root); } static inline struct rt_mutex_waiter * rt_mutex_top_waiter(struct rt_mutex *lock) { struct rb_node *leftmost = rb_first_cached(&lock->waiters); struct rt_mutex_waiter *w = NULL; if (leftmost) { w = rb_entry(leftmost, struct rt_mutex_waiter, tree_entry); BUG_ON(w->lock != lock); } return w; } static inline int task_has_pi_waiters(struct task_struct *p) { return !RB_EMPTY_ROOT(&p->pi_waiters.rb_root); } static inline struct rt_mutex_waiter * task_top_pi_waiter(struct task_struct *p) { return rb_entry(p->pi_waiters.rb_leftmost, struct rt_mutex_waiter, pi_tree_entry); } #else static inline int rt_mutex_has_waiters(struct rt_mutex *lock) { return false; } static inline struct rt_mutex_waiter * rt_mutex_top_waiter(struct rt_mutex *lock) { return NULL; } static inline int task_has_pi_waiters(struct task_struct *p) { return false; } static inline struct rt_mutex_waiter * task_top_pi_waiter(struct task_struct *p) { return NULL; } #endif /* * lock->owner state tracking: */ #define RT_MUTEX_HAS_WAITERS 1UL static inline struct task_struct *rt_mutex_owner(struct rt_mutex *lock) { unsigned long owner = (unsigned long) READ_ONCE(lock->owner); return (struct task_struct *) (owner & ~RT_MUTEX_HAS_WAITERS); } /* * Constants for rt mutex functions which have a selectable deadlock * detection. * * RT_MUTEX_MIN_CHAINWALK: Stops the lock chain walk when there are * no further PI adjustments to be made. * * RT_MUTEX_FULL_CHAINWALK: Invoke deadlock detection with a full * walk of the lock chain. */ enum rtmutex_chainwalk { RT_MUTEX_MIN_CHAINWALK, RT_MUTEX_FULL_CHAINWALK, }; /* * PI-futex support (proxy locking functions, etc.): */ extern struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock); extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock, struct task_struct *proxy_owner); extern void rt_mutex_proxy_unlock(struct rt_mutex *lock); extern void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter); extern int __rt_mutex_start_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct task_struct *task); extern int rt_mutex_start_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct task_struct *task); extern int rt_mutex_wait_proxy_lock(struct rt_mutex *lock, struct hrtimer_sleeper *to, struct rt_mutex_waiter *waiter); extern bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter); extern int rt_mutex_futex_trylock(struct rt_mutex *l); extern int __rt_mutex_futex_trylock(struct rt_mutex *l); extern void rt_mutex_futex_unlock(struct rt_mutex *lock); extern bool __rt_mutex_futex_unlock(struct rt_mutex *lock, struct wake_q_head *wqh); extern void rt_mutex_postunlock(struct wake_q_head *wake_q); #ifdef CONFIG_DEBUG_RT_MUTEXES # include "rtmutex-debug.h" #else # include "rtmutex.h" #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> */ #ifndef __LINUX_BIO_H #define __LINUX_BIO_H #include <linux/highmem.h> #include <linux/mempool.h> #include <linux/ioprio.h> /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ #include <linux/blk_types.h> #define BIO_DEBUG #ifdef BIO_DEBUG #define BIO_BUG_ON BUG_ON #else #define BIO_BUG_ON #endif #define BIO_MAX_PAGES 256 #define bio_prio(bio) (bio)->bi_ioprio #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) #define bio_iter_iovec(bio, iter) \ bvec_iter_bvec((bio)->bi_io_vec, (iter)) #define bio_iter_page(bio, iter) \ bvec_iter_page((bio)->bi_io_vec, (iter)) #define bio_iter_len(bio, iter) \ bvec_iter_len((bio)->bi_io_vec, (iter)) #define bio_iter_offset(bio, iter) \ bvec_iter_offset((bio)->bi_io_vec, (iter)) #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) /* * Return the data direction, READ or WRITE. */ #define bio_data_dir(bio) \ (op_is_write(bio_op(bio)) ? WRITE : READ) /* * Check whether this bio carries any data or not. A NULL bio is allowed. */ static inline bool bio_has_data(struct bio *bio) { if (bio && bio->bi_iter.bi_size && bio_op(bio) != REQ_OP_DISCARD && bio_op(bio) != REQ_OP_SECURE_ERASE && bio_op(bio) != REQ_OP_WRITE_ZEROES) return true; return false; } static inline bool bio_no_advance_iter(const struct bio *bio) { return bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE || bio_op(bio) == REQ_OP_WRITE_SAME || bio_op(bio) == REQ_OP_WRITE_ZEROES; } static inline bool bio_mergeable(struct bio *bio) { if (bio->bi_opf & REQ_NOMERGE_FLAGS) return false; return true; } static inline unsigned int bio_cur_bytes(struct bio *bio) { if (bio_has_data(bio)) return bio_iovec(bio).bv_len; else /* dataless requests such as discard */ return bio->bi_iter.bi_size; } static inline void *bio_data(struct bio *bio) { if (bio_has_data(bio)) return page_address(bio_page(bio)) + bio_offset(bio); return NULL; } /** * bio_full - check if the bio is full * @bio: bio to check * @len: length of one segment to be added * * Return true if @bio is full and one segment with @len bytes can't be * added to the bio, otherwise return false */ static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } static inline bool bio_next_segment(const struct bio *bio, struct bvec_iter_all *iter) { if (iter->idx >= bio->bi_vcnt) return false; bvec_advance(&bio->bi_io_vec[iter->idx], iter); return true; } /* * drivers should _never_ use the all version - the bio may have been split * before it got to the driver and the driver won't own all of it */ #define bio_for_each_segment_all(bvl, bio, iter) \ for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) static inline void bio_advance_iter(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance(bio->bi_io_vec, iter, bytes); /* TODO: It is reasonable to complete bio with error here. */ } #define __bio_for_each_segment(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bio_iter_iovec((bio), (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) #define bio_for_each_segment(bvl, bio, iter) \ __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) #define __bio_for_each_bvec(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) /* iterate over multi-page bvec */ #define bio_for_each_bvec(bvl, bio, iter) \ __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) /* * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the * same reasons as bio_for_each_segment_all(). */ #define bio_for_each_bvec_all(bvl, bio, i) \ for (i = 0, bvl = bio_first_bvec_all(bio); \ i < (bio)->bi_vcnt; i++, bvl++) \ #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) static inline unsigned bio_segments(struct bio *bio) { unsigned segs = 0; struct bio_vec bv; struct bvec_iter iter; /* * We special case discard/write same/write zeroes, because they * interpret bi_size differently: */ switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; default: break; } bio_for_each_segment(bv, bio, iter) segs++; return segs; } /* * get a reference to a bio, so it won't disappear. the intended use is * something like: * * bio_get(bio); * submit_bio(rw, bio); * if (bio->bi_flags ...) * do_something * bio_put(bio); * * without the bio_get(), it could potentially complete I/O before submit_bio * returns. and then bio would be freed memory when if (bio->bi_flags ...) * runs */ static inline void bio_get(struct bio *bio) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb__before_atomic(); atomic_inc(&bio->__bi_cnt); } static inline void bio_cnt_set(struct bio *bio, unsigned int count) { if (count != 1) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb(); } atomic_set(&bio->__bi_cnt, count); } static inline bool bio_flagged(struct bio *bio, unsigned int bit) { return (bio->bi_flags & (1U << bit)) != 0; } static inline void bio_set_flag(struct bio *bio, unsigned int bit) { bio->bi_flags |= (1U << bit); } static inline void bio_clear_flag(struct bio *bio, unsigned int bit) { bio->bi_flags &= ~(1U << bit); } static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return bio->bi_io_vec; } static inline struct page *bio_first_page_all(struct bio *bio) { return bio_first_bvec_all(bio)->bv_page; } static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return &bio->bi_io_vec[bio->bi_vcnt - 1]; } enum bip_flags { BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ }; /* * bio integrity payload */ struct bio_integrity_payload { struct bio *bip_bio; /* parent bio */ struct bvec_iter bip_iter; unsigned short bip_slab; /* slab the bip came from */ unsigned short bip_vcnt; /* # of integrity bio_vecs */ unsigned short bip_max_vcnt; /* integrity bio_vec slots */ unsigned short bip_flags; /* control flags */ struct bvec_iter bio_iter; /* for rewinding parent bio */ struct work_struct bip_work; /* I/O completion */ struct bio_vec *bip_vec; struct bio_vec bip_inline_vecs[];/* embedded bvec array */ }; #if defined(CONFIG_BLK_DEV_INTEGRITY) static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) { if (bio->bi_opf & REQ_INTEGRITY) return bio->bi_integrity; return NULL; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip) return bip->bip_flags & flag; return false; } static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) { return bip->bip_iter.bi_sector; } static inline void bip_set_seed(struct bio_integrity_payload *bip, sector_t seed) { bip->bip_iter.bi_sector = seed; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ extern void bio_trim(struct bio *bio, int offset, int size); extern struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs); /** * bio_next_split - get next @sectors from a bio, splitting if necessary * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Returns a bio representing the next @sectors of @bio - if the bio is smaller * than @sectors, returns the original bio unchanged. */ static inline struct bio *bio_next_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { if (sectors >= bio_sectors(bio)) return bio; return bio_split(bio, sectors, gfp, bs); } enum { BIOSET_NEED_BVECS = BIT(0), BIOSET_NEED_RESCUER = BIT(1), }; extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); extern void bioset_exit(struct bio_set *); extern int biovec_init_pool(mempool_t *pool, int pool_entries); extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src); extern struct bio *bio_alloc_bioset(gfp_t, unsigned int, struct bio_set *); extern void bio_put(struct bio *); extern void __bio_clone_fast(struct bio *, struct bio *); extern struct bio *bio_clone_fast(struct bio *, gfp_t, struct bio_set *); extern struct bio_set fs_bio_set; static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, &fs_bio_set); } static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); } extern blk_qc_t submit_bio(struct bio *); extern void bio_endio(struct bio *); static inline void bio_io_error(struct bio *bio) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static inline void bio_wouldblock_error(struct bio *bio) { bio_set_flag(bio, BIO_QUIET); bio->bi_status = BLK_STS_AGAIN; bio_endio(bio); } struct request_queue; extern int submit_bio_wait(struct bio *bio); extern void bio_advance(struct bio *, unsigned); extern void bio_init(struct bio *bio, struct bio_vec *table, unsigned short max_vecs); extern void bio_uninit(struct bio *); extern void bio_reset(struct bio *); void bio_chain(struct bio *, struct bio *); extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, unsigned int, unsigned int); bool __bio_try_merge_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off, bool *same_page); void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off); int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); void bio_release_pages(struct bio *bio, bool mark_dirty); extern void bio_set_pages_dirty(struct bio *bio); extern void bio_check_pages_dirty(struct bio *bio); extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter); extern void bio_copy_data(struct bio *dst, struct bio *src); extern void bio_list_copy_data(struct bio *dst, struct bio *src); extern void bio_free_pages(struct bio *bio); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); void bio_truncate(struct bio *bio, unsigned new_size); void guard_bio_eod(struct bio *bio); static inline void zero_fill_bio(struct bio *bio) { zero_fill_bio_iter(bio, bio->bi_iter); } extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); extern unsigned int bvec_nr_vecs(unsigned short idx); extern const char *bio_devname(struct bio *bio, char *buffer); #define bio_set_dev(bio, bdev) \ do { \ if ((bio)->bi_disk != (bdev)->bd_disk) \ bio_clear_flag(bio, BIO_THROTTLED);\ (bio)->bi_disk = (bdev)->bd_disk; \ (bio)->bi_partno = (bdev)->bd_partno; \ bio_associate_blkg(bio); \ } while (0) #define bio_copy_dev(dst, src) \ do { \ (dst)->bi_disk = (src)->bi_disk; \ (dst)->bi_partno = (src)->bi_partno; \ bio_clone_blkg_association(dst, src); \ } while (0) #define bio_dev(bio) \ disk_devt((bio)->bi_disk) #ifdef CONFIG_BLK_CGROUP void bio_associate_blkg(struct bio *bio); void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css); void bio_clone_blkg_association(struct bio *dst, struct bio *src); #else /* CONFIG_BLK_CGROUP */ static inline void bio_associate_blkg(struct bio *bio) { } static inline void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { } static inline void bio_clone_blkg_association(struct bio *dst, struct bio *src) { } #endif /* CONFIG_BLK_CGROUP */ #ifdef CONFIG_HIGHMEM /* * remember never ever reenable interrupts between a bvec_kmap_irq and * bvec_kunmap_irq! */ static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { unsigned long addr; /* * might not be a highmem page, but the preempt/irq count * balancing is a lot nicer this way */ local_irq_save(*flags); addr = (unsigned long) kmap_atomic(bvec->bv_page); BUG_ON(addr & ~PAGE_MASK); return (char *) addr + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { unsigned long ptr = (unsigned long) buffer & PAGE_MASK; kunmap_atomic((void *) ptr); local_irq_restore(*flags); } #else static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { return page_address(bvec->bv_page) + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { *flags = 0; } #endif /* * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. * * A bio_list anchors a singly-linked list of bios chained through the bi_next * member of the bio. The bio_list also caches the last list member to allow * fast access to the tail. */ struct bio_list { struct bio *head; struct bio *tail; }; static inline int bio_list_empty(const struct bio_list *bl) { return bl->head == NULL; } static inline void bio_list_init(struct bio_list *bl) { bl->head = bl->tail = NULL; } #define BIO_EMPTY_LIST { NULL, NULL } #define bio_list_for_each(bio, bl) \ for (bio = (bl)->head; bio; bio = bio->bi_next) static inline unsigned bio_list_size(const struct bio_list *bl) { unsigned sz = 0; struct bio *bio; bio_list_for_each(bio, bl) sz++; return sz; } static inline void bio_list_add(struct bio_list *bl, struct bio *bio) { bio->bi_next = NULL; if (bl->tail) bl->tail->bi_next = bio; else bl->head = bio; bl->tail = bio; } static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) { bio->bi_next = bl->head; bl->head = bio; if (!bl->tail) bl->tail = bio; } static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->tail) bl->tail->bi_next = bl2->head; else bl->head = bl2->head; bl->tail = bl2->tail; } static inline void bio_list_merge_head(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->head) bl2->tail->bi_next = bl->head; else bl->tail = bl2->tail; bl->head = bl2->head; } static inline struct bio *bio_list_peek(struct bio_list *bl) { return bl->head; } static inline struct bio *bio_list_pop(struct bio_list *bl) { struct bio *bio = bl->head; if (bio) { bl->head = bl->head->bi_next; if (!bl->head) bl->tail = NULL; bio->bi_next = NULL; } return bio; } static inline struct bio *bio_list_get(struct bio_list *bl) { struct bio *bio = bl->head; bl->head = bl->tail = NULL; return bio; } /* * Increment chain count for the bio. Make sure the CHAIN flag update * is visible before the raised count. */ static inline void bio_inc_remaining(struct bio *bio) { bio_set_flag(bio, BIO_CHAIN); smp_mb__before_atomic(); atomic_inc(&bio->__bi_remaining); } /* * bio_set is used to allow other portions of the IO system to * allocate their own private memory pools for bio and iovec structures. * These memory pools in turn all allocate from the bio_slab * and the bvec_slabs[]. */ #define BIO_POOL_SIZE 2 struct bio_set { struct kmem_cache *bio_slab; unsigned int front_pad; mempool_t bio_pool; mempool_t bvec_pool; #if defined(CONFIG_BLK_DEV_INTEGRITY) mempool_t bio_integrity_pool; mempool_t bvec_integrity_pool; #endif /* * Deadlock avoidance for stacking block drivers: see comments in * bio_alloc_bioset() for details */ spinlock_t rescue_lock; struct bio_list rescue_list; struct work_struct rescue_work; struct workqueue_struct *rescue_workqueue; }; struct biovec_slab { int nr_vecs; char *name; struct kmem_cache *slab; }; static inline bool bioset_initialized(struct bio_set *bs) { return bs->bio_slab != NULL; } /* * a small number of entries is fine, not going to be performance critical. * basically we just need to survive */ #define BIO_SPLIT_ENTRIES 2 #if defined(CONFIG_BLK_DEV_INTEGRITY) #define bip_for_each_vec(bvl, bip, iter) \ for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ for_each_bio(_bio) \ bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); extern bool bio_integrity_prep(struct bio *); extern void bio_integrity_advance(struct bio *, unsigned int); extern void bio_integrity_trim(struct bio *); extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); extern int bioset_integrity_create(struct bio_set *, int); extern void bioset_integrity_free(struct bio_set *); extern void bio_integrity_init(void); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void *bio_integrity(struct bio *bio) { return NULL; } static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) { return 0; } static inline void bioset_integrity_free (struct bio_set *bs) { return; } static inline bool bio_integrity_prep(struct bio *bio) { return true; } static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp_mask) { return 0; } static inline void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) { return; } static inline void bio_integrity_trim(struct bio *bio) { return; } static inline void bio_integrity_init(void) { return; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { return false; } static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, unsigned int nr) { return ERR_PTR(-EINVAL); } static inline int bio_integrity_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { return 0; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ /* * Mark a bio as polled. Note that for async polled IO, the caller must * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). * We cannot block waiting for requests on polled IO, as those completions * must be found by the caller. This is different than IRQ driven IO, where * it's safe to wait for IO to complete. */ static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) { bio->bi_opf |= REQ_HIPRI; if (!is_sync_kiocb(kiocb)) bio->bi_opf |= REQ_NOWAIT; } #endif /* __LINUX_BIO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 /* SPDX-License-Identifier: GPL-2.0+ */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rseq #if !defined(_TRACE_RSEQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RSEQ_H #include <linux/tracepoint.h> #include <linux/types.h> TRACE_EVENT(rseq_update, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __field(s32, cpu_id) ), TP_fast_assign( __entry->cpu_id = raw_smp_processor_id(); ), TP_printk("cpu_id=%d", __entry->cpu_id) ); TRACE_EVENT(rseq_ip_fixup, TP_PROTO(unsigned long regs_ip, unsigned long start_ip, unsigned long post_commit_offset, unsigned long abort_ip), TP_ARGS(regs_ip, start_ip, post_commit_offset, abort_ip), TP_STRUCT__entry( __field(unsigned long, regs_ip) __field(unsigned long, start_ip) __field(unsigned long, post_commit_offset) __field(unsigned long, abort_ip) ), TP_fast_assign( __entry->regs_ip = regs_ip; __entry->start_ip = start_ip; __entry->post_commit_offset = post_commit_offset; __entry->abort_ip = abort_ip; ), TP_printk("regs_ip=0x%lx start_ip=0x%lx post_commit_offset=%lu abort_ip=0x%lx", __entry->regs_ip, __entry->start_ip, __entry->post_commit_offset, __entry->abort_ip) ); #endif /* _TRACE_SOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 /* SPDX-License-Identifier: GPL-2.0 */ /* * This file provides wrappers with sanitizer instrumentation for non-atomic * bit operations. * * To use this functionality, an arch's bitops.h file needs to define each of * the below bit operations with an arch_ prefix (e.g. arch_set_bit(), * arch___set_bit(), etc.). */ #ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H #define _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H #include <linux/instrumented.h> /** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static inline void __set_bit(long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___set_bit(nr, addr); } /** * __clear_bit - Clears a bit in memory * @nr: the bit to clear * @addr: the address to start counting from * * Unlike clear_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static inline void __clear_bit(long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___clear_bit(nr, addr); } /** * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static inline void __change_bit(long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___change_bit(nr, addr); } static inline void __instrument_read_write_bitop(long nr, volatile unsigned long *addr) { if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC)) { /* * We treat non-atomic read-write bitops a little more special. * Given the operations here only modify a single bit, assuming * non-atomicity of the writer is sufficient may be reasonable * for certain usage (and follows the permissible nature of the * assume-plain-writes-atomic rule): * 1. report read-modify-write races -> check read; * 2. do not report races with marked readers, but do report * races with unmarked readers -> check "atomic" write. */ kcsan_check_read(addr + BIT_WORD(nr), sizeof(long)); /* * Use generic write instrumentation, in case other sanitizers * or tools are enabled alongside KCSAN. */ instrument_write(addr + BIT_WORD(nr), sizeof(long)); } else { instrument_read_write(addr + BIT_WORD(nr), sizeof(long)); } } /** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_set_bit(nr, addr); } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_clear_bit(nr, addr); } /** * __test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_change_bit(nr, addr); } /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static inline bool test_bit(long nr, const volatile unsigned long *addr) { instrument_atomic_read(addr + BIT_WORD(nr), sizeof(long)); return arch_test_bit(nr, addr); } #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* gf128mul.h - GF(2^128) multiplication functions * * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> * * Based on Dr Brian Gladman's (GPL'd) work published at * http://fp.gladman.plus.com/cryptography_technology/index.htm * See the original copyright notice below. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ /* --------------------------------------------------------------------------- Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software in both source and binary form is allowed (with or without changes) provided that: 1. distributions of this source code include the above copyright notice, this list of conditions and the following disclaimer; 2. distributions in binary form include the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other associated materials; 3. the copyright holder's name is not used to endorse products built using this software without specific written permission. ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL apply INSTEAD OF those given above. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 31/01/2006 An implementation of field multiplication in Galois Field GF(2^128) */ #ifndef _CRYPTO_GF128MUL_H #define _CRYPTO_GF128MUL_H #include <asm/byteorder.h> #include <crypto/b128ops.h> #include <linux/slab.h> /* Comment by Rik: * * For some background on GF(2^128) see for example: * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf * * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can * be mapped to computer memory in a variety of ways. Let's examine * three common cases. * * Take a look at the 16 binary octets below in memory order. The msb's * are left and the lsb's are right. char b[16] is an array and b[0] is * the first octet. * * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 * b[0] b[1] b[2] b[3] b[13] b[14] b[15] * * Every bit is a coefficient of some power of X. We can store the bits * in every byte in little-endian order and the bytes themselves also in * little endian order. I will call this lle (little-little-endian). * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. * This format was originally implemented in gf128mul and is used * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). * * Another convention says: store the bits in bigendian order and the * bytes also. This is bbe (big-big-endian). Now the buffer above * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe * is partly implemented. * * Both of the above formats are easy to implement on big-endian * machines. * * XTS and EME (the latter of which is patent encumbered) use the ble * format (bits are stored in big endian order and the bytes in little * endian). The above buffer represents X^7 in this case and the * primitive polynomial is b[0] = 0x87. * * The common machine word-size is smaller than 128 bits, so to make * an efficient implementation we must split into machine word sizes. * This implementation uses 64-bit words for the moment. Machine * endianness comes into play. The lle format in relation to machine * endianness is discussed below by the original author of gf128mul Dr * Brian Gladman. * * Let's look at the bbe and ble format on a little endian machine. * * bbe on a little endian machine u32 x[4]: * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 * * ble on a little endian machine * * MS x[0] LS MS x[1] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 * * MS x[2] LS MS x[3] LS * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 * * Multiplications in GF(2^128) are mostly bit-shifts, so you see why * ble (and lbe also) are easier to implement on a little-endian * machine than on a big-endian machine. The converse holds for bbe * and lle. * * Note: to have good alignment, it seems to me that it is sufficient * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize * machines this will automatically aligned to wordsize and on a 64-bit * machine also. */ /* Multiply a GF(2^128) field element by x. Field elements are held in arrays of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower indexed bits placed in the more numerically significant bit positions within bytes. On little endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 On big endian machines the bit indexes translate into the bit positions within four 32-bit words in the following way MS x[0] LS MS x[1] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 MS x[2] LS MS x[3] LS ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 */ /* A slow generic version of gf_mul, implemented for lle and bbe * It multiplies a and b and puts the result in a */ void gf128mul_lle(be128 *a, const be128 *b); void gf128mul_bbe(be128 *a, const be128 *b); /* * The following functions multiply a field element by x in * the polynomial field representation. They use 64-bit word operations * to gain speed but compensate for machine endianness and hence work * correctly on both styles of machine. * * They are defined here for performance. */ static inline u64 gf128mul_mask_from_bit(u64 x, int which) { /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */ return ((s64)(x << (63 - which)) >> 63); } static inline void gf128mul_x_lle(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48 * (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56); r->b = cpu_to_be64((b >> 1) | (a << 63)); r->a = cpu_to_be64((a >> 1) ^ _tt); } static inline void gf128mul_x_bbe(be128 *r, const be128 *x) { u64 a = be64_to_cpu(x->a); u64 b = be64_to_cpu(x->b); /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_be64((a << 1) | (b >> 63)); r->b = cpu_to_be64((b << 1) ^ _tt); } /* needed by XTS */ static inline void gf128mul_x_ble(le128 *r, const le128 *x) { u64 a = le64_to_cpu(x->a); u64 b = le64_to_cpu(x->b); /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */ u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; r->a = cpu_to_le64((a << 1) | (b >> 63)); r->b = cpu_to_le64((b << 1) ^ _tt); } /* 4k table optimization */ struct gf128mul_4k { be128 t[256]; }; struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t); void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t); void gf128mul_x8_ble(le128 *r, const le128 *x); static inline void gf128mul_free_4k(struct gf128mul_4k *t) { kfree_sensitive(t); } /* 64k table optimization, implemented for bbe */ struct gf128mul_64k { struct gf128mul_4k *t[16]; }; /* First initialize with the constant factor with which you * want to multiply and then call gf128mul_64k_bbe with the other * factor in the first argument, and the table in the second. * Afterwards, the result is stored in *a. */ struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); void gf128mul_free_64k(struct gf128mul_64k *t); void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t); #endif /* _CRYPTO_GF128MUL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the AF_INET socket handler. * * Version: @(#)sock.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche <flla@stud.uni-sb.de> * * Fixes: * Alan Cox : Volatiles in skbuff pointers. See * skbuff comments. May be overdone, * better to prove they can be removed * than the reverse. * Alan Cox : Added a zapped field for tcp to note * a socket is reset and must stay shut up * Alan Cox : New fields for options * Pauline Middelink : identd support * Alan Cox : Eliminate low level recv/recvfrom * David S. Miller : New socket lookup architecture. * Steve Whitehouse: Default routines for sock_ops * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made * protinfo be just a void pointer, as the * protocol specific parts were moved to * respective headers and ipv4/v6, etc now * use private slabcaches for its socks * Pedro Hortas : New flags field for socket options */ #ifndef _SOCK_H #define _SOCK_H #include <linux/hardirq.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/list_nulls.h> #include <linux/timer.h> #include <linux/cache.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/skbuff.h> /* struct sk_buff */ #include <linux/mm.h> #include <linux/security.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/page_counter.h> #include <linux/memcontrol.h> #include <linux/static_key.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/cgroup-defs.h> #include <linux/rbtree.h> #include <linux/filter.h> #include <linux/rculist_nulls.h> #include <linux/poll.h> #include <linux/sockptr.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <net/dst.h> #include <net/checksum.h> #include <net/tcp_states.h> #include <linux/net_tstamp.h> #include <net/l3mdev.h> /* * This structure really needs to be cleaned up. * Most of it is for TCP, and not used by any of * the other protocols. */ /* Define this to get the SOCK_DBG debugging facility. */ #define SOCK_DEBUGGING #ifdef SOCK_DEBUGGING #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ printk(KERN_DEBUG msg); } while (0) #else /* Validate arguments and do nothing */ static inline __printf(2, 3) void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) { } #endif /* This is the per-socket lock. The spinlock provides a synchronization * between user contexts and software interrupt processing, whereas the * mini-semaphore synchronizes multiple users amongst themselves. */ typedef struct { spinlock_t slock; int owned; wait_queue_head_t wq; /* * We express the mutex-alike socket_lock semantics * to the lock validator by explicitly managing * the slock as a lock variant (in addition to * the slock itself): */ #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } socket_lock_t; struct sock; struct proto; struct net; typedef __u32 __bitwise __portpair; typedef __u64 __bitwise __addrpair; /** * struct sock_common - minimal network layer representation of sockets * @skc_daddr: Foreign IPv4 addr * @skc_rcv_saddr: Bound local IPv4 addr * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr * @skc_hash: hash value used with various protocol lookup tables * @skc_u16hashes: two u16 hash values used by UDP lookup tables * @skc_dport: placeholder for inet_dport/tw_dport * @skc_num: placeholder for inet_num/tw_num * @skc_portpair: __u32 union of @skc_dport & @skc_num * @skc_family: network address family * @skc_state: Connection state * @skc_reuse: %SO_REUSEADDR setting * @skc_reuseport: %SO_REUSEPORT setting * @skc_ipv6only: socket is IPV6 only * @skc_net_refcnt: socket is using net ref counting * @skc_bound_dev_if: bound device index if != 0 * @skc_bind_node: bind hash linkage for various protocol lookup tables * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol * @skc_prot: protocol handlers inside a network family * @skc_net: reference to the network namespace of this socket * @skc_v6_daddr: IPV6 destination address * @skc_v6_rcv_saddr: IPV6 source address * @skc_cookie: socket's cookie value * @skc_node: main hash linkage for various protocol lookup tables * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol * @skc_tx_queue_mapping: tx queue number for this connection * @skc_rx_queue_mapping: rx queue number for this connection * @skc_flags: place holder for sk_flags * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings * @skc_listener: connection request listener socket (aka rsk_listener) * [union with @skc_flags] * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row * [union with @skc_flags] * @skc_incoming_cpu: record/match cpu processing incoming packets * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) * [union with @skc_incoming_cpu] * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number * [union with @skc_incoming_cpu] * @skc_refcnt: reference count * * This is the minimal network layer representation of sockets, the header * for struct sock and struct inet_timewait_sock. */ struct sock_common { /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned * address on 64bit arches : cf INET_MATCH() */ union { __addrpair skc_addrpair; struct { __be32 skc_daddr; __be32 skc_rcv_saddr; }; }; union { unsigned int skc_hash; __u16 skc_u16hashes[2]; }; /* skc_dport && skc_num must be grouped as well */ union { __portpair skc_portpair; struct { __be16 skc_dport; __u16 skc_num; }; }; unsigned short skc_family; volatile unsigned char skc_state; unsigned char skc_reuse:4; unsigned char skc_reuseport:1; unsigned char skc_ipv6only:1; unsigned char skc_net_refcnt:1; int skc_bound_dev_if; union { struct hlist_node skc_bind_node; struct hlist_node skc_portaddr_node; }; struct proto *skc_prot; possible_net_t skc_net; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr skc_v6_daddr; struct in6_addr skc_v6_rcv_saddr; #endif atomic64_t skc_cookie; /* following fields are padding to force * offset(struct sock, sk_refcnt) == 128 on 64bit arches * assuming IPV6 is enabled. We use this padding differently * for different kind of 'sockets' */ union { unsigned long skc_flags; struct sock *skc_listener; /* request_sock */ struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ }; /* * fields between dontcopy_begin/dontcopy_end * are not copied in sock_copy() */ /* private: */ int skc_dontcopy_begin[0]; /* public: */ union { struct hlist_node skc_node; struct hlist_nulls_node skc_nulls_node; }; unsigned short skc_tx_queue_mapping; #ifdef CONFIG_XPS unsigned short skc_rx_queue_mapping; #endif union { int skc_incoming_cpu; u32 skc_rcv_wnd; u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ }; refcount_t skc_refcnt; /* private: */ int skc_dontcopy_end[0]; union { u32 skc_rxhash; u32 skc_window_clamp; u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ }; /* public: */ }; struct bpf_local_storage; /** * struct sock - network layer representation of sockets * @__sk_common: shared layout with inet_timewait_sock * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings * @sk_lock: synchronizer * @sk_kern_sock: True if sock is using kernel lock classes * @sk_rcvbuf: size of receive buffer in bytes * @sk_wq: sock wait queue and async head * @sk_rx_dst: receive input route used by early demux * @sk_dst_cache: destination cache * @sk_dst_pending_confirm: need to confirm neighbour * @sk_policy: flow policy * @sk_rx_skb_cache: cache copy of recently accessed RX skb * @sk_receive_queue: incoming packets * @sk_wmem_alloc: transmit queue bytes committed * @sk_tsq_flags: TCP Small Queues flags * @sk_write_queue: Packet sending queue * @sk_omem_alloc: "o" is "option" or "other" * @sk_wmem_queued: persistent queue size * @sk_forward_alloc: space allocated forward * @sk_napi_id: id of the last napi context to receive data for sk * @sk_ll_usec: usecs to busypoll when there is no data * @sk_allocation: allocation mode * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) * @sk_pacing_status: Pacing status (requested, handled by sch_fq) * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) * @sk_sndbuf: size of send buffer in bytes * @__sk_flags_offset: empty field used to determine location of bitfield * @sk_padding: unused element for alignment * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets * @sk_no_check_rx: allow zero checksum in RX packets * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) * @sk_route_forced_caps: static, forced route capabilities * (set in tcp_init_sock()) * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) * @sk_gso_max_size: Maximum GSO segment size to build * @sk_gso_max_segs: Maximum number of GSO segments * @sk_pacing_shift: scaling factor for TCP Small Queues * @sk_lingertime: %SO_LINGER l_linger setting * @sk_backlog: always used with the per-socket spinlock held * @sk_callback_lock: used with the callbacks in the end of this struct * @sk_error_queue: rarely used * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, * IPV6_ADDRFORM for instance) * @sk_err: last error * @sk_err_soft: errors that don't cause failure but are the cause of a * persistent failure not just 'timed out' * @sk_drops: raw/udp drops counter * @sk_ack_backlog: current listen backlog * @sk_max_ack_backlog: listen backlog set in listen() * @sk_uid: user id of owner * @sk_priority: %SO_PRIORITY setting * @sk_type: socket type (%SOCK_STREAM, etc) * @sk_protocol: which protocol this socket belongs in this network family * @sk_peer_pid: &struct pid for this socket's peer * @sk_peer_cred: %SO_PEERCRED setting * @sk_rcvlowat: %SO_RCVLOWAT setting * @sk_rcvtimeo: %SO_RCVTIMEO setting * @sk_sndtimeo: %SO_SNDTIMEO setting * @sk_txhash: computed flow hash for use on transmit * @sk_filter: socket filtering instructions * @sk_timer: sock cleanup timer * @sk_stamp: time stamp of last packet received * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only * @sk_tsflags: SO_TIMESTAMPING socket options * @sk_tskey: counter to disambiguate concurrent tstamp requests * @sk_zckey: counter to order MSG_ZEROCOPY notifications * @sk_socket: Identd and reporting IO signals * @sk_user_data: RPC layer private data * @sk_frag: cached page frag * @sk_peek_off: current peek_offset value * @sk_send_head: front of stuff to transmit * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] * @sk_tx_skb_cache: cache copy of recently accessed TX skb * @sk_security: used by security modules * @sk_mark: generic packet mark * @sk_cgrp_data: cgroup data for this cgroup * @sk_memcg: this socket's memory cgroup association * @sk_write_pending: a write to stream socket waits to start * @sk_state_change: callback to indicate change in the state of the sock * @sk_data_ready: callback to indicate there is data to be processed * @sk_write_space: callback to indicate there is bf sending space available * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) * @sk_backlog_rcv: callback to process the backlog * @sk_validate_xmit_skb: ptr to an optional validate function * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 * @sk_reuseport_cb: reuseport group container * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage * @sk_rcu: used during RCU grace period * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME * @sk_txtime_report_errors: set report errors mode for SO_TXTIME * @sk_txtime_unused: unused txtime flags */ struct sock { /* * Now struct inet_timewait_sock also uses sock_common, so please just * don't add nothing before this first member (__sk_common) --acme */ struct sock_common __sk_common; #define sk_node __sk_common.skc_node #define sk_nulls_node __sk_common.skc_nulls_node #define sk_refcnt __sk_common.skc_refcnt #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping #ifdef CONFIG_XPS #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping #endif #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin #define sk_dontcopy_end __sk_common.skc_dontcopy_end #define sk_hash __sk_common.skc_hash #define sk_portpair __sk_common.skc_portpair #define sk_num __sk_common.skc_num #define sk_dport __sk_common.skc_dport #define sk_addrpair __sk_common.skc_addrpair #define sk_daddr __sk_common.skc_daddr #define sk_rcv_saddr __sk_common.skc_rcv_saddr #define sk_family __sk_common.skc_family #define sk_state __sk_common.skc_state #define sk_reuse __sk_common.skc_reuse #define sk_reuseport __sk_common.skc_reuseport #define sk_ipv6only __sk_common.skc_ipv6only #define sk_net_refcnt __sk_common.skc_net_refcnt #define sk_bound_dev_if __sk_common.skc_bound_dev_if #define sk_bind_node __sk_common.skc_bind_node #define sk_prot __sk_common.skc_prot #define sk_net __sk_common.skc_net #define sk_v6_daddr __sk_common.skc_v6_daddr #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr #define sk_cookie __sk_common.skc_cookie #define sk_incoming_cpu __sk_common.skc_incoming_cpu #define sk_flags __sk_common.skc_flags #define sk_rxhash __sk_common.skc_rxhash socket_lock_t sk_lock; atomic_t sk_drops; int sk_rcvlowat; struct sk_buff_head sk_error_queue; struct sk_buff *sk_rx_skb_cache; struct sk_buff_head sk_receive_queue; /* * The backlog queue is special, it is always used with * the per-socket spinlock held and requires low latency * access. Therefore we special case it's implementation. * Note : rmem_alloc is in this structure to fill a hole * on 64bit arches, not because its logically part of * backlog. */ struct { atomic_t rmem_alloc; int len; struct sk_buff *head; struct sk_buff *tail; } sk_backlog; #define sk_rmem_alloc sk_backlog.rmem_alloc int sk_forward_alloc; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sk_ll_usec; /* ===== mostly read cache line ===== */ unsigned int sk_napi_id; #endif int sk_rcvbuf; struct sk_filter __rcu *sk_filter; union { struct socket_wq __rcu *sk_wq; /* private: */ struct socket_wq *sk_wq_raw; /* public: */ }; #ifdef CONFIG_XFRM struct xfrm_policy __rcu *sk_policy[2]; #endif struct dst_entry *sk_rx_dst; struct dst_entry __rcu *sk_dst_cache; atomic_t sk_omem_alloc; int sk_sndbuf; /* ===== cache line for TX ===== */ int sk_wmem_queued; refcount_t sk_wmem_alloc; unsigned long sk_tsq_flags; union { struct sk_buff *sk_send_head; struct rb_root tcp_rtx_queue; }; struct sk_buff *sk_tx_skb_cache; struct sk_buff_head sk_write_queue; __s32 sk_peek_off; int sk_write_pending; __u32 sk_dst_pending_confirm; u32 sk_pacing_status; /* see enum sk_pacing */ long sk_sndtimeo; struct timer_list sk_timer; __u32 sk_priority; __u32 sk_mark; unsigned long sk_pacing_rate; /* bytes per second */ unsigned long sk_max_pacing_rate; struct page_frag sk_frag; netdev_features_t sk_route_caps; netdev_features_t sk_route_nocaps; netdev_features_t sk_route_forced_caps; int sk_gso_type; unsigned int sk_gso_max_size; gfp_t sk_allocation; __u32 sk_txhash; /* * Because of non atomicity rules, all * changes are protected by socket lock. */ u8 sk_padding : 1, sk_kern_sock : 1, sk_no_check_tx : 1, sk_no_check_rx : 1, sk_userlocks : 4; u8 sk_pacing_shift; u16 sk_type; u16 sk_protocol; u16 sk_gso_max_segs; unsigned long sk_lingertime; struct proto *sk_prot_creator; rwlock_t sk_callback_lock; int sk_err, sk_err_soft; u32 sk_ack_backlog; u32 sk_max_ack_backlog; kuid_t sk_uid; spinlock_t sk_peer_lock; struct pid *sk_peer_pid; const struct cred *sk_peer_cred; long sk_rcvtimeo; ktime_t sk_stamp; #if BITS_PER_LONG==32 seqlock_t sk_stamp_seq; #endif u16 sk_tsflags; u8 sk_shutdown; u32 sk_tskey; atomic_t sk_zckey; u8 sk_clockid; u8 sk_txtime_deadline_mode : 1, sk_txtime_report_errors : 1, sk_txtime_unused : 6; struct socket *sk_socket; void *sk_user_data; #ifdef CONFIG_SECURITY void *sk_security; #endif struct sock_cgroup_data sk_cgrp_data; struct mem_cgroup *sk_memcg; void (*sk_state_change)(struct sock *sk); void (*sk_data_ready)(struct sock *sk); void (*sk_write_space)(struct sock *sk); void (*sk_error_report)(struct sock *sk); int (*sk_backlog_rcv)(struct sock *sk, struct sk_buff *skb); #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, struct net_device *dev, struct sk_buff *skb); #endif void (*sk_destruct)(struct sock *sk); struct sock_reuseport __rcu *sk_reuseport_cb; #ifdef CONFIG_BPF_SYSCALL struct bpf_local_storage __rcu *sk_bpf_storage; #endif struct rcu_head sk_rcu; }; enum sk_pacing { SK_PACING_NONE = 0, SK_PACING_NEEDED = 1, SK_PACING_FQ = 2, }; /* Pointer stored in sk_user_data might not be suitable for copying * when cloning the socket. For instance, it can point to a reference * counted object. sk_user_data bottom bit is set if pointer must not * be copied. */ #define SK_USER_DATA_NOCOPY 1UL #define SK_USER_DATA_BPF 2UL /* Managed by BPF */ #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF) /** * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied * @sk: socket */ static inline bool sk_user_data_is_nocopy(const struct sock *sk) { return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); } #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) #define rcu_dereference_sk_user_data(sk) \ ({ \ void *__tmp = rcu_dereference(__sk_user_data((sk))); \ (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \ }) #define rcu_assign_sk_user_data(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), __tmp); \ }) #define rcu_assign_sk_user_data_nocopy(sk, ptr) \ ({ \ uintptr_t __tmp = (uintptr_t)(ptr); \ WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \ rcu_assign_pointer(__sk_user_data((sk)), \ __tmp | SK_USER_DATA_NOCOPY); \ }) /* * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK * or not whether his port will be reused by someone else. SK_FORCE_REUSE * on a socket means that the socket will reuse everybody else's port * without looking at the other's sk_reuse value. */ #define SK_NO_REUSE 0 #define SK_CAN_REUSE 1 #define SK_FORCE_REUSE 2 int sk_set_peek_off(struct sock *sk, int val); static inline int sk_peek_offset(struct sock *sk, int flags) { if (unlikely(flags & MSG_PEEK)) { return READ_ONCE(sk->sk_peek_off); } return 0; } static inline void sk_peek_offset_bwd(struct sock *sk, int val) { s32 off = READ_ONCE(sk->sk_peek_off); if (unlikely(off >= 0)) { off = max_t(s32, off - val, 0); WRITE_ONCE(sk->sk_peek_off, off); } } static inline void sk_peek_offset_fwd(struct sock *sk, int val) { sk_peek_offset_bwd(sk, -val); } /* * Hashed lists helper routines */ static inline struct sock *sk_entry(const struct hlist_node *node) { return hlist_entry(node, struct sock, sk_node); } static inline struct sock *__sk_head(const struct hlist_head *head) { return hlist_entry(head->first, struct sock, sk_node); } static inline struct sock *sk_head(const struct hlist_head *head) { return hlist_empty(head) ? NULL : __sk_head(head); } static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); } static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); } static inline struct sock *sk_next(const struct sock *sk) { return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); } static inline struct sock *sk_nulls_next(const struct sock *sk) { return (!is_a_nulls(sk->sk_nulls_node.next)) ? hlist_nulls_entry(sk->sk_nulls_node.next, struct sock, sk_nulls_node) : NULL; } static inline bool sk_unhashed(const struct sock *sk) { return hlist_unhashed(&sk->sk_node); } static inline bool sk_hashed(const struct sock *sk) { return !sk_unhashed(sk); } static inline void sk_node_init(struct hlist_node *node) { node->pprev = NULL; } static inline void sk_nulls_node_init(struct hlist_nulls_node *node) { node->pprev = NULL; } static inline void __sk_del_node(struct sock *sk) { __hlist_del(&sk->sk_node); } /* NB: equivalent to hlist_del_init_rcu */ static inline bool __sk_del_node_init(struct sock *sk) { if (sk_hashed(sk)) { __sk_del_node(sk); sk_node_init(&sk->sk_node); return true; } return false; } /* Grab socket reference count. This operation is valid only when sk is ALREADY grabbed f.e. it is found in hash table or a list and the lookup is made under lock preventing hash table modifications. */ static __always_inline void sock_hold(struct sock *sk) { refcount_inc(&sk->sk_refcnt); } /* Ungrab socket in the context, which assumes that socket refcnt cannot hit zero, f.e. it is true in context of any socketcall. */ static __always_inline void __sock_put(struct sock *sk) { refcount_dec(&sk->sk_refcnt); } static inline bool sk_del_node_init(struct sock *sk) { bool rc = __sk_del_node_init(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) { if (sk_hashed(sk)) { hlist_nulls_del_init_rcu(&sk->sk_nulls_node); return true; } return false; } static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) { bool rc = __sk_nulls_del_node_init_rcu(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_node, list); } static inline void sk_add_node(struct sock *sk, struct hlist_head *list) { sock_hold(sk); __sk_add_node(sk, list); } static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && sk->sk_family == AF_INET6) hlist_add_tail_rcu(&sk->sk_node, list); else hlist_add_head_rcu(&sk->sk_node, list); } static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); hlist_add_tail_rcu(&sk->sk_node, list); } static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); } static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list); } static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { sock_hold(sk); __sk_nulls_add_node_rcu(sk, list); } static inline void __sk_del_bind_node(struct sock *sk) { __hlist_del(&sk->sk_bind_node); } static inline void sk_add_bind_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_bind_node, list); } #define sk_for_each(__sk, list) \ hlist_for_each_entry(__sk, list, sk_node) #define sk_for_each_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, sk_node) #define sk_nulls_for_each(__sk, node, list) \ hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) #define sk_nulls_for_each_rcu(__sk, node, list) \ hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) #define sk_for_each_from(__sk) \ hlist_for_each_entry_from(__sk, sk_node) #define sk_nulls_for_each_from(__sk, node) \ if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) #define sk_for_each_safe(__sk, tmp, list) \ hlist_for_each_entry_safe(__sk, tmp, list, sk_node) #define sk_for_each_bound(__sk, list) \ hlist_for_each_entry(__sk, list, sk_bind_node) /** * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @offset: offset of hlist_node within the struct. * */ #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos != NULL && \ ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ pos = rcu_dereference(hlist_next_rcu(pos))) static inline struct user_namespace *sk_user_ns(struct sock *sk) { /* Careful only use this in a context where these parameters * can not change and must all be valid, such as recvmsg from * userspace. */ return sk->sk_socket->file->f_cred->user_ns; } /* Sock flags */ enum sock_flags { SOCK_DEAD, SOCK_DONE, SOCK_URGINLINE, SOCK_KEEPOPEN, SOCK_LINGER, SOCK_DESTROY, SOCK_BROADCAST, SOCK_TIMESTAMP, SOCK_ZAPPED, SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ SOCK_DBG, /* %SO_DEBUG setting */ SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ SOCK_MEMALLOC, /* VM depends on this socket for swapping */ SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ SOCK_FASYNC, /* fasync() active */ SOCK_RXQ_OVFL, SOCK_ZEROCOPY, /* buffers from userspace */ SOCK_WIFI_STATUS, /* push wifi status to userspace */ SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. * Will use last 4 bytes of packet sent from * user-space instead. */ SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ SOCK_TXTIME, SOCK_XDP, /* XDP is attached */ SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ }; #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) { nsk->sk_flags = osk->sk_flags; } static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) { __set_bit(flag, &sk->sk_flags); } static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) { __clear_bit(flag, &sk->sk_flags); } static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, int valbool) { if (valbool) sock_set_flag(sk, bit); else sock_reset_flag(sk, bit); } static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) { return test_bit(flag, &sk->sk_flags); } #ifdef CONFIG_NET DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); static inline int sk_memalloc_socks(void) { return static_branch_unlikely(&memalloc_socks_key); } void __receive_sock(struct file *file); #else static inline int sk_memalloc_socks(void) { return 0; } static inline void __receive_sock(struct file *file) { } #endif static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) { return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); } static inline void sk_acceptq_removed(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); } static inline void sk_acceptq_added(struct sock *sk) { WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); } static inline bool sk_acceptq_is_full(const struct sock *sk) { return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); } /* * Compute minimal free write space needed to queue new packets. */ static inline int sk_stream_min_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_wmem_queued) >> 1; } static inline int sk_stream_wspace(const struct sock *sk) { return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); } static inline void sk_wmem_queued_add(struct sock *sk, int val) { WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); } void sk_stream_write_space(struct sock *sk); /* OOB backlog add */ static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) { /* dont let skb dst not refcounted, we are going to leave rcu lock */ skb_dst_force(skb); if (!sk->sk_backlog.tail) WRITE_ONCE(sk->sk_backlog.head, skb); else sk->sk_backlog.tail->next = skb; WRITE_ONCE(sk->sk_backlog.tail, skb); skb->next = NULL; } /* * Take into account size of receive queue and backlog queue * Do not take into account this skb truesize, * to allow even a single big packet to come. */ static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) { unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); return qsize > limit; } /* The per-socket spinlock must be held here. */ static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, unsigned int limit) { if (sk_rcvqueues_full(sk, limit)) return -ENOBUFS; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) return -ENOMEM; __sk_add_backlog(sk, skb); sk->sk_backlog.len += skb->truesize; return 0; } int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { if (sk_memalloc_socks() && skb_pfmemalloc(skb)) return __sk_backlog_rcv(sk, skb); return sk->sk_backlog_rcv(sk, skb); } static inline void sk_incoming_cpu_update(struct sock *sk) { int cpu = raw_smp_processor_id(); if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) WRITE_ONCE(sk->sk_incoming_cpu, cpu); } static inline void sock_rps_record_flow_hash(__u32 hash) { #ifdef CONFIG_RPS struct rps_sock_flow_table *sock_flow_table; rcu_read_lock(); sock_flow_table = rcu_dereference(rps_sock_flow_table); rps_record_sock_flow(sock_flow_table, hash); rcu_read_unlock(); #endif } static inline void sock_rps_record_flow(const struct sock *sk) { #ifdef CONFIG_RPS if (static_branch_unlikely(&rfs_needed)) { /* Reading sk->sk_rxhash might incur an expensive cache line * miss. * * TCP_ESTABLISHED does cover almost all states where RFS * might be useful, and is cheaper [1] than testing : * IPv4: inet_sk(sk)->inet_daddr * IPv6: ipv6_addr_any(&sk->sk_v6_daddr) * OR an additional socket flag * [1] : sk_state and sk_prot are in the same cache line. */ if (sk->sk_state == TCP_ESTABLISHED) sock_rps_record_flow_hash(sk->sk_rxhash); } #endif } static inline void sock_rps_save_rxhash(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_RPS if (unlikely(sk->sk_rxhash != skb->hash)) sk->sk_rxhash = skb->hash; #endif } static inline void sock_rps_reset_rxhash(struct sock *sk) { #ifdef CONFIG_RPS sk->sk_rxhash = 0; #endif } #define sk_wait_event(__sk, __timeo, __condition, __wait) \ ({ int __rc; \ release_sock(__sk); \ __rc = __condition; \ if (!__rc) { \ *(__timeo) = wait_woken(__wait, \ TASK_INTERRUPTIBLE, \ *(__timeo)); \ } \ sched_annotate_sleep(); \ lock_sock(__sk); \ __rc = __condition; \ __rc; \ }) int sk_stream_wait_connect(struct sock *sk, long *timeo_p); int sk_stream_wait_memory(struct sock *sk, long *timeo_p); void sk_stream_wait_close(struct sock *sk, long timeo_p); int sk_stream_error(struct sock *sk, int flags, int err); void sk_stream_kill_queues(struct sock *sk); void sk_set_memalloc(struct sock *sk); void sk_clear_memalloc(struct sock *sk); void __sk_flush_backlog(struct sock *sk); static inline bool sk_flush_backlog(struct sock *sk) { if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { __sk_flush_backlog(sk); return true; } return false; } int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct smc_hashinfo; struct module; /* * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes * un-modified. Special care is taken when initializing object to zero. */ static inline void sk_prot_clear_nulls(struct sock *sk, int size) { if (offsetof(struct sock, sk_node.next) != 0) memset(sk, 0, offsetof(struct sock, sk_node.next)); memset(&sk->sk_node.pprev, 0, size - offsetof(struct sock, sk_node.pprev)); } /* Networking protocol blocks we attach to sockets. * socket layer -> transport layer interface */ struct proto { void (*close)(struct sock *sk, long timeout); int (*pre_connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*disconnect)(struct sock *sk, int flags); struct sock * (*accept)(struct sock *sk, int flags, int *err, bool kern); int (*ioctl)(struct sock *sk, int cmd, unsigned long arg); int (*init)(struct sock *sk); void (*destroy)(struct sock *sk); void (*shutdown)(struct sock *sk, int how); int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); void (*keepalive)(struct sock *sk, int valbool); #ifdef CONFIG_COMPAT int (*compat_ioctl)(struct sock *sk, unsigned int cmd, unsigned long arg); #endif int (*sendmsg)(struct sock *sk, struct msghdr *msg, size_t len); int (*recvmsg)(struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len); int (*sendpage)(struct sock *sk, struct page *page, int offset, size_t size, int flags); int (*bind)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*bind_add)(struct sock *sk, struct sockaddr *addr, int addr_len); int (*backlog_rcv) (struct sock *sk, struct sk_buff *skb); void (*release_cb)(struct sock *sk); /* Keeping track of sk's, looking them up, and port selection methods. */ int (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); void (*rehash)(struct sock *sk); int (*get_port)(struct sock *sk, unsigned short snum); /* Keeping track of sockets in use */ #ifdef CONFIG_PROC_FS unsigned int inuse_idx; #endif bool (*stream_memory_free)(const struct sock *sk, int wake); bool (*stream_memory_read)(const struct sock *sk); /* Memory pressure */ void (*enter_memory_pressure)(struct sock *sk); void (*leave_memory_pressure)(struct sock *sk); atomic_long_t *memory_allocated; /* Current allocated memory. */ struct percpu_counter *sockets_allocated; /* Current number of sockets. */ /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long *memory_pressure; long *sysctl_mem; int *sysctl_wmem; int *sysctl_rmem; u32 sysctl_wmem_offset; u32 sysctl_rmem_offset; int max_header; bool no_autobind; struct kmem_cache *slab; unsigned int obj_size; slab_flags_t slab_flags; unsigned int useroffset; /* Usercopy region offset */ unsigned int usersize; /* Usercopy region size */ unsigned int __percpu *orphan_count; struct request_sock_ops *rsk_prot; struct timewait_sock_ops *twsk_prot; union { struct inet_hashinfo *hashinfo; struct udp_table *udp_table; struct raw_hashinfo *raw_hash; struct smc_hashinfo *smc_hash; } h; struct module *owner; char name[32]; struct list_head node; #ifdef SOCK_REFCNT_DEBUG atomic_t socks; #endif int (*diag_destroy)(struct sock *sk, int err); } __randomize_layout; int proto_register(struct proto *prot, int alloc_slab); void proto_unregister(struct proto *prot); int sock_load_diag_module(int family, int protocol); #ifdef SOCK_REFCNT_DEBUG static inline void sk_refcnt_debug_inc(struct sock *sk) { atomic_inc(&sk->sk_prot->socks); } static inline void sk_refcnt_debug_dec(struct sock *sk) { atomic_dec(&sk->sk_prot->socks); printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); } static inline void sk_refcnt_debug_release(const struct sock *sk) { if (refcount_read(&sk->sk_refcnt) != 1) printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt)); } #else /* SOCK_REFCNT_DEBUG */ #define sk_refcnt_debug_inc(sk) do { } while (0) #define sk_refcnt_debug_dec(sk) do { } while (0) #define sk_refcnt_debug_release(sk) do { } while (0) #endif /* SOCK_REFCNT_DEBUG */ static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) { if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) return false; return sk->sk_prot->stream_memory_free ? sk->sk_prot->stream_memory_free(sk, wake) : true; } static inline bool sk_stream_memory_free(const struct sock *sk) { return __sk_stream_memory_free(sk, 0); } static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) { return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && __sk_stream_memory_free(sk, wake); } static inline bool sk_stream_is_writeable(const struct sock *sk) { return __sk_stream_is_writeable(sk, 0); } static inline int sk_under_cgroup_hierarchy(struct sock *sk, struct cgroup *ancestor) { #ifdef CONFIG_SOCK_CGROUP_DATA return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data), ancestor); #else return -ENOTSUPP; #endif } static inline bool sk_has_memory_pressure(const struct sock *sk) { return sk->sk_prot->memory_pressure != NULL; } static inline bool sk_under_memory_pressure(const struct sock *sk) { if (!sk->sk_prot->memory_pressure) return false; if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return !!*sk->sk_prot->memory_pressure; } static inline long sk_memory_allocated(const struct sock *sk) { return atomic_long_read(sk->sk_prot->memory_allocated); } static inline long sk_memory_allocated_add(struct sock *sk, int amt) { return atomic_long_add_return(amt, sk->sk_prot->memory_allocated); } static inline void sk_memory_allocated_sub(struct sock *sk, int amt) { atomic_long_sub(amt, sk->sk_prot->memory_allocated); } static inline void sk_sockets_allocated_dec(struct sock *sk) { percpu_counter_dec(sk->sk_prot->sockets_allocated); } static inline void sk_sockets_allocated_inc(struct sock *sk) { percpu_counter_inc(sk->sk_prot->sockets_allocated); } static inline u64 sk_sockets_allocated_read_positive(struct sock *sk) { return percpu_counter_read_positive(sk->sk_prot->sockets_allocated); } static inline int proto_sockets_allocated_sum_positive(struct proto *prot) { return percpu_counter_sum_positive(prot->sockets_allocated); } static inline long proto_memory_allocated(struct proto *prot) { return atomic_long_read(prot->memory_allocated); } static inline bool proto_memory_pressure(struct proto *prot) { if (!prot->memory_pressure) return false; return !!*prot->memory_pressure; } #ifdef CONFIG_PROC_FS /* Called with local bh disabled */ void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); int sock_prot_inuse_get(struct net *net, struct proto *proto); int sock_inuse_get(struct net *net); #else static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc) { } #endif /* With per-bucket locks this operation is not-atomic, so that * this version is not worse. */ static inline int __sk_prot_rehash(struct sock *sk) { sk->sk_prot->unhash(sk); return sk->sk_prot->hash(sk); } /* About 10 seconds */ #define SOCK_DESTROY_TIME (10*HZ) /* Sockets 0-1023 can't be bound to unless you are superuser */ #define PROT_SOCK 1024 #define SHUTDOWN_MASK 3 #define RCV_SHUTDOWN 1 #define SEND_SHUTDOWN 2 #define SOCK_SNDBUF_LOCK 1 #define SOCK_RCVBUF_LOCK 2 #define SOCK_BINDADDR_LOCK 4 #define SOCK_BINDPORT_LOCK 8 struct socket_alloc { struct socket socket; struct inode vfs_inode; }; static inline struct socket *SOCKET_I(struct inode *inode) { return &container_of(inode, struct socket_alloc, vfs_inode)->socket; } static inline struct inode *SOCK_INODE(struct socket *socket) { return &container_of(socket, struct socket_alloc, socket)->vfs_inode; } /* * Functions for memory accounting */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); int __sk_mem_schedule(struct sock *sk, int size, int kind); void __sk_mem_reduce_allocated(struct sock *sk, int amount); void __sk_mem_reclaim(struct sock *sk, int amount); /* We used to have PAGE_SIZE here, but systems with 64KB pages * do not necessarily have 16x time more memory than 4KB ones. */ #define SK_MEM_QUANTUM 4096 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) #define SK_MEM_SEND 0 #define SK_MEM_RECV 1 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */ static inline long sk_prot_mem_limits(const struct sock *sk, int index) { long val = sk->sk_prot->sysctl_mem[index]; #if PAGE_SIZE > SK_MEM_QUANTUM val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT; #elif PAGE_SIZE < SK_MEM_QUANTUM val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT; #endif return val; } static inline int sk_mem_pages(int amt) { return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; } static inline bool sk_has_account(struct sock *sk) { /* return true if protocol supports memory accounting */ return !!sk->sk_prot->memory_allocated; } static inline bool sk_wmem_schedule(struct sock *sk, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_SEND); } static inline bool sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_RECV) || skb_pfmemalloc(skb); } static inline void sk_mem_reclaim(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc); } static inline void sk_mem_reclaim_partial(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc > SK_MEM_QUANTUM) __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1); } static inline void sk_mem_charge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc -= size; } static inline void sk_mem_uncharge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc += size; /* Avoid a possible overflow. * TCP send queues can make this happen, if sk_mem_reclaim() * is not called and more than 2 GBytes are released at once. * * If we reach 2 MBytes, reclaim 1 MBytes right now, there is * no need to hold that much forward allocation anyway. */ if (unlikely(sk->sk_forward_alloc >= 1 << 21)) __sk_mem_reclaim(sk, 1 << 20); } DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) { sk_wmem_queued_add(sk, -skb->truesize); sk_mem_uncharge(sk, skb->truesize); if (static_branch_unlikely(&tcp_tx_skb_cache_key) && !sk->sk_tx_skb_cache && !skb_cloned(skb)) { skb_ext_reset(skb); skb_zcopy_clear(skb, true); sk->sk_tx_skb_cache = skb; return; } __kfree_skb(skb); } static inline void sock_release_ownership(struct sock *sk) { if (sk->sk_lock.owned) { sk->sk_lock.owned = 0; /* The sk_lock has mutex_unlock() semantics: */ mutex_release(&sk->sk_lock.dep_map, _RET_IP_); } } /* * Macro so as to not evaluate some arguments when * lockdep is not enabled. * * Mark both the sk_lock and the sk_lock.slock as a * per-address-family lock class. */ #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ do { \ sk->sk_lock.owned = 0; \ init_waitqueue_head(&sk->sk_lock.wq); \ spin_lock_init(&(sk)->sk_lock.slock); \ debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ sizeof((sk)->sk_lock)); \ lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ (skey), (sname)); \ lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ } while (0) #ifdef CONFIG_LOCKDEP static inline bool lockdep_sock_is_held(const struct sock *sk) { return lockdep_is_held(&sk->sk_lock) || lockdep_is_held(&sk->sk_lock.slock); } #endif void lock_sock_nested(struct sock *sk, int subclass); static inline void lock_sock(struct sock *sk) { lock_sock_nested(sk, 0); } void __release_sock(struct sock *sk); void release_sock(struct sock *sk); /* BH context may only use the following locking interface. */ #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) #define bh_lock_sock_nested(__sk) \ spin_lock_nested(&((__sk)->sk_lock.slock), \ SINGLE_DEPTH_NESTING) #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) bool lock_sock_fast(struct sock *sk); /** * unlock_sock_fast - complement of lock_sock_fast * @sk: socket * @slow: slow mode * * fast unlock socket for user context. * If slow mode is on, we call regular release_sock() */ static inline void unlock_sock_fast(struct sock *sk, bool slow) { if (slow) release_sock(sk); else spin_unlock_bh(&sk->sk_lock.slock); } /* Used by processes to "lock" a socket state, so that * interrupts and bottom half handlers won't change it * from under us. It essentially blocks any incoming * packets, so that we won't get any new data or any * packets that change the state of the socket. * * While locked, BH processing will add new packets to * the backlog queue. This queue is processed by the * owner of the socket lock right before it is released. * * Since ~2.3.5 it is also exclusive sleep lock serializing * accesses from user process context. */ static inline void sock_owned_by_me(const struct sock *sk) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); #endif } static inline bool sock_owned_by_user(const struct sock *sk) { sock_owned_by_me(sk); return sk->sk_lock.owned; } static inline bool sock_owned_by_user_nocheck(const struct sock *sk) { return sk->sk_lock.owned; } /* no reclassification while locks are held */ static inline bool sock_allow_reclassification(const struct sock *csk) { struct sock *sk = (struct sock *)csk; return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock); } struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern); void sk_free(struct sock *sk); void sk_destruct(struct sock *sk); struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); void sk_free_unlock_clone(struct sock *sk); struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority); void __sock_wfree(struct sk_buff *skb); void sock_wfree(struct sk_buff *skb); struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority); void skb_orphan_partial(struct sk_buff *skb); void sock_rfree(struct sk_buff *skb); void sock_efree(struct sk_buff *skb); #ifdef CONFIG_INET void sock_edemux(struct sk_buff *skb); void sock_pfree(struct sk_buff *skb); #else #define sock_edemux sock_efree #endif int sock_setsockopt(struct socket *sock, int level, int op, sockptr_t optval, unsigned int optlen); int sock_getsockopt(struct socket *sock, int level, int op, char __user *optval, int __user *optlen); int sock_gettstamp(struct socket *sock, void __user *userstamp, bool timeval, bool time32); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode); struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order); void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); void sock_kfree_s(struct sock *sk, void *mem, int size); void sock_kzfree_s(struct sock *sk, void *mem, int size); void sk_send_sigurg(struct sock *sk); struct sockcm_cookie { u64 transmit_time; u32 mark; u16 tsflags; }; static inline void sockcm_init(struct sockcm_cookie *sockc, const struct sock *sk) { *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags }; } int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, struct sockcm_cookie *sockc); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc); /* * Functions to fill in entries in struct proto_ops when a protocol * does not implement a particular function. */ int sock_no_bind(struct socket *, struct sockaddr *, int); int sock_no_connect(struct socket *, struct sockaddr *, int, int); int sock_no_socketpair(struct socket *, struct socket *); int sock_no_accept(struct socket *, struct socket *, int, bool); int sock_no_getname(struct socket *, struct sockaddr *, int); int sock_no_ioctl(struct socket *, unsigned int, unsigned long); int sock_no_listen(struct socket *, int); int sock_no_shutdown(struct socket *, int); int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags); ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags); /* * Functions to fill in entries in struct proto_ops when a protocol * uses the inet style. */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags); int sock_common_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen); void sk_common_release(struct sock *sk); /* * Default socket callbacks and setup code */ /* Initialise core socket variables */ void sock_init_data(struct socket *sock, struct sock *sk); /* * Socket reference counting postulates. * * * Each user of socket SHOULD hold a reference count. * * Each access point to socket (an hash table bucket, reference from a list, * running timer, skb in flight MUST hold a reference count. * * When reference count hits 0, it means it will never increase back. * * When reference count hits 0, it means that no references from * outside exist to this socket and current process on current CPU * is last user and may/should destroy this socket. * * sk_free is called from any context: process, BH, IRQ. When * it is called, socket has no references from outside -> sk_free * may release descendant resources allocated by the socket, but * to the time when it is called, socket is NOT referenced by any * hash tables, lists etc. * * Packets, delivered from outside (from network or from another process) * and enqueued on receive/error queues SHOULD NOT grab reference count, * when they sit in queue. Otherwise, packets will leak to hole, when * socket is looked up by one cpu and unhasing is made by another CPU. * It is true for udp/raw, netlink (leak to receive and error queues), tcp * (leak to backlog). Packet socket does all the processing inside * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets * use separate SMP lock, so that they are prone too. */ /* Ungrab socket and destroy it, if it was the last reference. */ static inline void sock_put(struct sock *sk) { if (refcount_dec_and_test(&sk->sk_refcnt)) sk_free(sk); } /* Generic version of sock_put(), dealing with all sockets * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) */ void sock_gen_put(struct sock *sk); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted); static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested) { return __sk_receive_skb(sk, skb, nested, 1, true); } static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) { /* sk_tx_queue_mapping accept only upto a 16-bit value */ if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) return; sk->sk_tx_queue_mapping = tx_queue; } #define NO_QUEUE_MAPPING USHRT_MAX static inline void sk_tx_queue_clear(struct sock *sk) { sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING; } static inline int sk_tx_queue_get(const struct sock *sk) { if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_tx_queue_mapping; return -1; } static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_XPS if (skb_rx_queue_recorded(skb)) { u16 rx_queue = skb_get_rx_queue(skb); if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING)) return; sk->sk_rx_queue_mapping = rx_queue; } #endif } static inline void sk_rx_queue_clear(struct sock *sk) { #ifdef CONFIG_XPS sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING; #endif } #ifdef CONFIG_XPS static inline int sk_rx_queue_get(const struct sock *sk) { if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING) return sk->sk_rx_queue_mapping; return -1; } #endif static inline void sk_set_socket(struct sock *sk, struct socket *sock) { sk->sk_socket = sock; } static inline wait_queue_head_t *sk_sleep(struct sock *sk) { BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); return &rcu_dereference_raw(sk->sk_wq)->wait; } /* Detach socket from process context. * Announce socket dead, detach it from wait queue and inode. * Note that parent inode held reference count on this struct sock, * we do not release it in this function, because protocol * probably wants some additional cleanups or even continuing * to work with this socket (TCP). */ static inline void sock_orphan(struct sock *sk) { write_lock_bh(&sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, NULL); sk->sk_wq = NULL; write_unlock_bh(&sk->sk_callback_lock); } static inline void sock_graft(struct sock *sk, struct socket *parent) { WARN_ON(parent->sk); write_lock_bh(&sk->sk_callback_lock); rcu_assign_pointer(sk->sk_wq, &parent->wq); parent->sk = sk; sk_set_socket(sk, parent); sk->sk_uid = SOCK_INODE(parent)->i_uid; security_sock_graft(sk, parent); write_unlock_bh(&sk->sk_callback_lock); } kuid_t sock_i_uid(struct sock *sk); unsigned long sock_i_ino(struct sock *sk); static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) { return sk ? sk->sk_uid : make_kuid(net->user_ns, 0); } static inline u32 net_tx_rndhash(void) { u32 v = prandom_u32(); return v ?: 1; } static inline void sk_set_txhash(struct sock *sk) { /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); } static inline bool sk_rethink_txhash(struct sock *sk) { if (sk->sk_txhash) { sk_set_txhash(sk); return true; } return false; } static inline struct dst_entry * __sk_dst_get(struct sock *sk) { return rcu_dereference_check(sk->sk_dst_cache, lockdep_sock_is_held(sk)); } static inline struct dst_entry * sk_dst_get(struct sock *sk) { struct dst_entry *dst; rcu_read_lock(); dst = rcu_dereference(sk->sk_dst_cache); if (dst && !atomic_inc_not_zero(&dst->__refcnt)) dst = NULL; rcu_read_unlock(); return dst; } static inline void __dst_negative_advice(struct sock *sk) { struct dst_entry *ndst, *dst = __sk_dst_get(sk); if (dst && dst->ops->negative_advice) { ndst = dst->ops->negative_advice(dst); if (ndst != dst) { rcu_assign_pointer(sk->sk_dst_cache, ndst); sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; } } } static inline void dst_negative_advice(struct sock *sk) { sk_rethink_txhash(sk); __dst_negative_advice(sk); } static inline void __sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = rcu_dereference_protected(sk->sk_dst_cache, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void __sk_dst_reset(struct sock *sk) { __sk_dst_set(sk, NULL); } static inline void sk_dst_reset(struct sock *sk) { sk_dst_set(sk, NULL); } struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); static inline void sk_dst_confirm(struct sock *sk) { if (!READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 1); } static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) { if (skb_get_dst_pending_confirm(skb)) { struct sock *sk = skb->sk; unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) WRITE_ONCE(sk->sk_dst_pending_confirm, 0); } } bool sk_mc_loop(struct sock *sk); static inline bool sk_can_gso(const struct sock *sk) { return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); } void sk_setup_caps(struct sock *sk, struct dst_entry *dst); static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) { sk->sk_route_nocaps |= flags; sk->sk_route_caps &= ~flags; } static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, char *to, int copy, int offset) { if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (!csum_and_copy_from_iter_full(to, copy, &csum, from)) return -EFAULT; skb->csum = csum_block_add(skb->csum, csum, offset); } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { if (!copy_from_iter_full_nocache(to, copy, from)) return -EFAULT; } else if (!copy_from_iter_full(to, copy, from)) return -EFAULT; return 0; } static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, struct iov_iter *from, int copy) { int err, offset = skb->len; err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), copy, offset); if (err) __skb_trim(skb, offset); return err; } static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, struct sk_buff *skb, struct page *page, int off, int copy) { int err; err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, copy, skb->len); if (err) return err; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); return 0; } /** * sk_wmem_alloc_get - returns write allocations * @sk: socket * * Return: sk_wmem_alloc minus initial offset of one */ static inline int sk_wmem_alloc_get(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) - 1; } /** * sk_rmem_alloc_get - returns read allocations * @sk: socket * * Return: sk_rmem_alloc */ static inline int sk_rmem_alloc_get(const struct sock *sk) { return atomic_read(&sk->sk_rmem_alloc); } /** * sk_has_allocations - check if allocations are outstanding * @sk: socket * * Return: true if socket has write or read allocations */ static inline bool sk_has_allocations(const struct sock *sk) { return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); } /** * skwq_has_sleeper - check if there are any waiting processes * @wq: struct socket_wq * * Return: true if socket_wq has waiting processes * * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory * barrier call. They were added due to the race found within the tcp code. * * Consider following tcp code paths:: * * CPU1 CPU2 * sys_select receive packet * ... ... * __add_wait_queue update tp->rcv_nxt * ... ... * tp->rcv_nxt check sock_def_readable * ... { * schedule rcu_read_lock(); * wq = rcu_dereference(sk->sk_wq); * if (wq && waitqueue_active(&wq->wait)) * wake_up_interruptible(&wq->wait) * ... * } * * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 * could then endup calling schedule and sleep forever if there are no more * data on the socket. * */ static inline bool skwq_has_sleeper(struct socket_wq *wq) { return wq && wq_has_sleeper(&wq->wait); } /** * sock_poll_wait - place memory barrier behind the poll_wait call. * @filp: file * @sock: socket to wait on * @p: poll_table * * See the comments in the wq_has_sleeper function. */ static inline void sock_poll_wait(struct file *filp, struct socket *sock, poll_table *p) { if (!poll_does_not_wait(p)) { poll_wait(filp, &sock->wq.wait, p); /* We need to be sure we are in sync with the * socket flags modification. * * This memory barrier is paired in the wq_has_sleeper. */ smp_mb(); } } static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) { /* This pairs with WRITE_ONCE() in sk_set_txhash() */ u32 txhash = READ_ONCE(sk->sk_txhash); if (txhash) { skb->l4_hash = 1; skb->hash = txhash; } } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); /* * Queue a received datagram if it will fit. Stream and sequenced * protocols can't normally use this as they need to fit buffers in * and play with them. * * Inlined as it's very short and called for pretty much every * packet ever received. */ static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rfree; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) { if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) { skb_orphan(skb); skb->destructor = sock_efree; skb->sk = sk; return true; } return false; } void sk_reset_timer(struct sock *sk, struct timer_list *timer, unsigned long expires); void sk_stop_timer(struct sock *sk, struct timer_list *timer); void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, struct sk_buff *skb, unsigned int flags, void (*destructor)(struct sock *sk, struct sk_buff *skb)); int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); struct sk_buff *sock_dequeue_err_skb(struct sock *sk); /* * Recover an error report and clear atomically */ static inline int sock_error(struct sock *sk) { int err; /* Avoid an atomic operation for the common case. * This is racy since another cpu/thread can change sk_err under us. */ if (likely(data_race(!sk->sk_err))) return 0; err = xchg(&sk->sk_err, 0); return -err; } static inline unsigned long sock_wspace(struct sock *sk) { int amt = 0; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc); if (amt < 0) amt = 0; } return amt; } /* Note: * We use sk->sk_wq_raw, from contexts knowing this * pointer is not NULL and cannot disappear/change. */ static inline void sk_set_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; set_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_clear_bit(int nr, struct sock *sk) { if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && !sock_flag(sk, SOCK_FASYNC)) return; clear_bit(nr, &sk->sk_wq_raw->flags); } static inline void sk_wake_async(const struct sock *sk, int how, int band) { if (sock_flag(sk, SOCK_FASYNC)) { rcu_read_lock(); sock_wake_async(rcu_dereference(sk->sk_wq), how, band); rcu_read_unlock(); } } /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. * Note: for send buffers, TCP works better if we can build two skbs at * minimum. */ #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE static inline void sk_stream_moderate_sndbuf(struct sock *sk) { u32 val; if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) return; val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); } struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule); /** * sk_page_frag - return an appropriate page_frag * @sk: socket * * Use the per task page_frag instead of the per socket one for * optimization when we know that we're in process context and own * everything that's associated with %current. * * Both direct reclaim and page faults can nest inside other * socket operations and end up recursing into sk_page_frag() * while it's already in use: explicitly avoid task page_frag * usage if the caller is potentially doing any of them. * This assumes that page fault handlers use the GFP_NOFS flags. * * Return: a per task page_frag if context allows that, * otherwise a per socket one. */ static inline struct page_frag *sk_page_frag(struct sock *sk) { if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) == (__GFP_DIRECT_RECLAIM | __GFP_FS)) return &current->task_frag; return &sk->sk_frag; } bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); /* * Default write policy as shown to user space via poll/select/SIGIO */ static inline bool sock_writeable(const struct sock *sk) { return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); } static inline gfp_t gfp_any(void) { return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; } static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_rcvtimeo; } static inline long sock_sndtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_sndtimeo; } static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) { int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); return v ?: 1; } /* Alas, with timeout socket operations are not restartable. * Compare this to poll(). */ static inline int sock_intr_errno(long timeo) { return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; } struct sock_skb_cb { u32 dropcount; }; /* Store sock_skb_cb at the end of skb->cb[] so protocol families * using skb->cb[] would keep using it directly and utilize its * alignement guarantee. */ #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ sizeof(struct sock_skb_cb))) #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ SOCK_SKB_CB_OFFSET)) #define sock_skb_cb_check_size(size) \ BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) static inline void sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) { SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ? atomic_read(&sk->sk_drops) : 0; } static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) { int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); atomic_add(segs, &sk->sk_drops); } static inline ktime_t sock_read_timestamp(struct sock *sk) { #if BITS_PER_LONG==32 unsigned int seq; ktime_t kt; do { seq = read_seqbegin(&sk->sk_stamp_seq); kt = sk->sk_stamp; } while (read_seqretry(&sk->sk_stamp_seq, seq)); return kt; #else return READ_ONCE(sk->sk_stamp); #endif } static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) { #if BITS_PER_LONG==32 write_seqlock(&sk->sk_stamp_seq); sk->sk_stamp = kt; write_sequnlock(&sk->sk_stamp_seq); #else WRITE_ONCE(sk->sk_stamp, kt); #endif } void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); static inline void sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { ktime_t kt = skb->tstamp; struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); /* * generate control messages if * - receive time stamping in software requested * - software time stamp available and wanted * - hardware time stamps available and wanted */ if (sock_flag(sk, SOCK_RCVTSTAMP) || (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || (hwtstamps->hwtstamp && (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) __sock_recv_timestamp(msg, sk, skb); else sock_write_timestamp(sk, kt); if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) __sock_recv_wifi_status(msg, sk, skb); } void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ (1UL << SOCK_RCVTSTAMP)) #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ SOF_TIMESTAMPING_RAW_HARDWARE) if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) __sock_recv_ts_and_drops(msg, sk, skb); else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) sock_write_timestamp(sk, skb->tstamp); else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP)) sock_write_timestamp(sk, 0); } void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); /** * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped * @sk: socket sending this packet * @tsflags: timestamping flags to use * @tx_flags: completed with instructions for time stamping * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) * * Note: callers should take care of initial ``*tx_flags`` value (usually 0) */ static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags, __u32 *tskey) { if (unlikely(tsflags)) { __sock_tx_timestamp(tsflags, tx_flags); if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) *tskey = sk->sk_tskey++; } if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) *tx_flags |= SKBTX_WIFI_STATUS; } static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, __u8 *tx_flags) { _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); } static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) { _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags, &skb_shinfo(skb)->tskey); } DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); /** * sk_eat_skb - Release a skb if it is no longer needed * @sk: socket to eat this skb from * @skb: socket buffer to eat * * This routine must be called with interrupts disabled or with the socket * locked so that the sk_buff queue operation is ok. */ static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); if (static_branch_unlikely(&tcp_rx_skb_cache_key) && !sk->sk_rx_skb_cache) { sk->sk_rx_skb_cache = skb; skb_orphan(skb); return; } __kfree_skb(skb); } static inline struct net *sock_net(const struct sock *sk) { return read_pnet(&sk->sk_net); } static inline void sock_net_set(struct sock *sk, struct net *net) { write_pnet(&sk->sk_net, net); } static inline bool skb_sk_is_prefetched(struct sk_buff *skb) { #ifdef CONFIG_INET return skb->destructor == sock_pfree; #else return false; #endif /* CONFIG_INET */ } /* This helper checks if a socket is a full socket, * ie _not_ a timewait or request socket. */ static inline bool sk_fullsock(const struct sock *sk) { return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); } static inline bool sk_is_refcounted(struct sock *sk) { /* Only full sockets have sk->sk_flags. */ return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE); } /** * skb_steal_sock - steal a socket from an sk_buff * @skb: sk_buff to steal the socket from * @refcounted: is set to true if the socket is reference-counted */ static inline struct sock * skb_steal_sock(struct sk_buff *skb, bool *refcounted) { if (skb->sk) { struct sock *sk = skb->sk; *refcounted = true; if (skb_sk_is_prefetched(skb)) *refcounted = sk_is_refcounted(sk); skb->destructor = NULL; skb->sk = NULL; return sk; } *refcounted = false; return NULL; } /* Checks if this SKB belongs to an HW offloaded socket * and whether any SW fallbacks are required based on dev. * Check decrypted mark in case skb_orphan() cleared socket. */ static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) { #ifdef CONFIG_SOCK_VALIDATE_XMIT struct sock *sk = skb->sk; if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { skb = sk->sk_validate_xmit_skb(sk, dev, skb); #ifdef CONFIG_TLS_DEVICE } else if (unlikely(skb->decrypted)) { pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); kfree_skb(skb); skb = NULL; #endif } #endif return skb; } /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) */ static inline bool sk_listener(const struct sock *sk) { return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); } void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type); bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap); bool sk_capable(const struct sock *sk, int cap); bool sk_net_capable(const struct sock *sk, int cap); void sk_get_meminfo(const struct sock *sk, u32 *meminfo); /* Take into consideration the size of the struct sk_buff overhead in the * determination of these values, since that is non-constant across * platforms. This makes socket queueing behavior and performance * not depend upon such differences. */ #define _SK_MEM_PACKETS 256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) extern __u32 sysctl_wmem_max; extern __u32 sysctl_rmem_max; extern int sysctl_tstamp_allow_data; extern int sysctl_optmem_max; extern __u32 sysctl_wmem_default; extern __u32 sysctl_rmem_default; DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_wmem ? */ if (proto->sysctl_wmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset); return *proto->sysctl_wmem; } static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) { /* Does this proto have per netns sysctl_rmem ? */ if (proto->sysctl_rmem_offset) return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset); return *proto->sysctl_rmem; } /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) * Some wifi drivers need to tweak it to get more chunks. * They can use this helper from their ndo_start_xmit() */ static inline void sk_pacing_shift_update(struct sock *sk, int val) { if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) return; WRITE_ONCE(sk->sk_pacing_shift, val); } /* if a socket is bound to a device, check that the given device * index is either the same or that the socket is bound to an L3 * master device and the given device index is also enslaved to * that L3 master */ static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) { int mdif; if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif) return true; mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif); if (mdif && mdif == sk->sk_bound_dev_if) return true; return false; } void sock_def_readable(struct sock *sk); int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); void sock_enable_timestamps(struct sock *sk); void sock_no_linger(struct sock *sk); void sock_set_keepalive(struct sock *sk); void sock_set_priority(struct sock *sk, u32 priority); void sock_set_rcvbuf(struct sock *sk, int val); void sock_set_mark(struct sock *sk, u32 val); void sock_set_reuseaddr(struct sock *sk); void sock_set_reuseport(struct sock *sk); void sock_set_sndtimeo(struct sock *sk, s64 secs); int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); #endif /* _SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_XFRM_H #define _NET_XFRM_H #include <linux/compiler.h> #include <linux/xfrm.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/skbuff.h> #include <linux/socket.h> #include <linux/pfkeyv2.h> #include <linux/ipsec.h> #include <linux/in6.h> #include <linux/mutex.h> #include <linux/audit.h> #include <linux/slab.h> #include <linux/refcount.h> #include <linux/sockptr.h> #include <net/sock.h> #include <net/dst.h> #include <net/ip.h> #include <net/route.h> #include <net/ipv6.h> #include <net/ip6_fib.h> #include <net/flow.h> #include <net/gro_cells.h> #include <linux/interrupt.h> #ifdef CONFIG_XFRM_STATISTICS #include <net/snmp.h> #endif #define XFRM_PROTO_ESP 50 #define XFRM_PROTO_AH 51 #define XFRM_PROTO_COMP 108 #define XFRM_PROTO_IPIP 4 #define XFRM_PROTO_IPV6 41 #define XFRM_PROTO_ROUTING IPPROTO_ROUTING #define XFRM_PROTO_DSTOPTS IPPROTO_DSTOPTS #define XFRM_ALIGN4(len) (((len) + 3) & ~3) #define XFRM_ALIGN8(len) (((len) + 7) & ~7) #define MODULE_ALIAS_XFRM_MODE(family, encap) \ MODULE_ALIAS("xfrm-mode-" __stringify(family) "-" __stringify(encap)) #define MODULE_ALIAS_XFRM_TYPE(family, proto) \ MODULE_ALIAS("xfrm-type-" __stringify(family) "-" __stringify(proto)) #define MODULE_ALIAS_XFRM_OFFLOAD_TYPE(family, proto) \ MODULE_ALIAS("xfrm-offload-" __stringify(family) "-" __stringify(proto)) #ifdef CONFIG_XFRM_STATISTICS #define XFRM_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.xfrm_statistics, field) #else #define XFRM_INC_STATS(net, field) ((void)(net)) #endif /* Organization of SPD aka "XFRM rules" ------------------------------------ Basic objects: - policy rule, struct xfrm_policy (=SPD entry) - bundle of transformations, struct dst_entry == struct xfrm_dst (=SA bundle) - instance of a transformer, struct xfrm_state (=SA) - template to clone xfrm_state, struct xfrm_tmpl SPD is plain linear list of xfrm_policy rules, ordered by priority. (To be compatible with existing pfkeyv2 implementations, many rules with priority of 0x7fffffff are allowed to exist and such rules are ordered in an unpredictable way, thanks to bsd folks.) Lookup is plain linear search until the first match with selector. If "action" is "block", then we prohibit the flow, otherwise: if "xfrms_nr" is zero, the flow passes untransformed. Otherwise, policy entry has list of up to XFRM_MAX_DEPTH transformations, described by templates xfrm_tmpl. Each template is resolved to a complete xfrm_state (see below) and we pack bundle of transformations to a dst_entry returned to requestor. dst -. xfrm .-> xfrm_state #1 |---. child .-> dst -. xfrm .-> xfrm_state #2 |---. child .-> dst -. xfrm .-> xfrm_state #3 |---. child .-> NULL Bundles are cached at xrfm_policy struct (field ->bundles). Resolution of xrfm_tmpl ----------------------- Template contains: 1. ->mode Mode: transport or tunnel 2. ->id.proto Protocol: AH/ESP/IPCOMP 3. ->id.daddr Remote tunnel endpoint, ignored for transport mode. Q: allow to resolve security gateway? 4. ->id.spi If not zero, static SPI. 5. ->saddr Local tunnel endpoint, ignored for transport mode. 6. ->algos List of allowed algos. Plain bitmask now. Q: ealgos, aalgos, calgos. What a mess... 7. ->share Sharing mode. Q: how to implement private sharing mode? To add struct sock* to flow id? Having this template we search through SAD searching for entries with appropriate mode/proto/algo, permitted by selector. If no appropriate entry found, it is requested from key manager. PROBLEMS: Q: How to find all the bundles referring to a physical path for PMTU discovery? Seems, dst should contain list of all parents... and enter to infinite locking hierarchy disaster. No! It is easier, we will not search for them, let them find us. We add genid to each dst plus pointer to genid of raw IP route, pmtu disc will update pmtu on raw IP route and increase its genid. dst_check() will see this for top level and trigger resyncing metrics. Plus, it will be made via sk->sk_dst_cache. Solved. */ struct xfrm_state_walk { struct list_head all; u8 state; u8 dying; u8 proto; u32 seq; struct xfrm_address_filter *filter; }; struct xfrm_state_offload { struct net_device *dev; struct net_device *real_dev; unsigned long offload_handle; unsigned int num_exthdrs; u8 flags; }; struct xfrm_mode { u8 encap; u8 family; u8 flags; }; /* Flags for xfrm_mode. */ enum { XFRM_MODE_FLAG_TUNNEL = 1, }; /* Full description of state of transformer. */ struct xfrm_state { possible_net_t xs_net; union { struct hlist_node gclist; struct hlist_node bydst; }; struct hlist_node bysrc; struct hlist_node byspi; refcount_t refcnt; spinlock_t lock; struct xfrm_id id; struct xfrm_selector sel; struct xfrm_mark mark; u32 if_id; u32 tfcpad; u32 genid; /* Key manager bits */ struct xfrm_state_walk km; /* Parameters of this state. */ struct { u32 reqid; u8 mode; u8 replay_window; u8 aalgo, ealgo, calgo; u8 flags; u16 family; xfrm_address_t saddr; int header_len; int trailer_len; u32 extra_flags; struct xfrm_mark smark; } props; struct xfrm_lifetime_cfg lft; /* Data for transformer */ struct xfrm_algo_auth *aalg; struct xfrm_algo *ealg; struct xfrm_algo *calg; struct xfrm_algo_aead *aead; const char *geniv; /* Data for encapsulator */ struct xfrm_encap_tmpl *encap; struct sock __rcu *encap_sk; /* Data for care-of address */ xfrm_address_t *coaddr; /* IPComp needs an IPIP tunnel for handling uncompressed packets */ struct xfrm_state *tunnel; /* If a tunnel, number of users + 1 */ atomic_t tunnel_users; /* State for replay detection */ struct xfrm_replay_state replay; struct xfrm_replay_state_esn *replay_esn; /* Replay detection state at the time we sent the last notification */ struct xfrm_replay_state preplay; struct xfrm_replay_state_esn *preplay_esn; /* The functions for replay detection. */ const struct xfrm_replay *repl; /* internal flag that only holds state for delayed aevent at the * moment */ u32 xflags; /* Replay detection notification settings */ u32 replay_maxage; u32 replay_maxdiff; /* Replay detection notification timer */ struct timer_list rtimer; /* Statistics */ struct xfrm_stats stats; struct xfrm_lifetime_cur curlft; struct hrtimer mtimer; struct xfrm_state_offload xso; /* used to fix curlft->add_time when changing date */ long saved_tmo; /* Last used time */ time64_t lastused; struct page_frag xfrag; /* Reference to data common to all the instances of this * transformer. */ const struct xfrm_type *type; struct xfrm_mode inner_mode; struct xfrm_mode inner_mode_iaf; struct xfrm_mode outer_mode; const struct xfrm_type_offload *type_offload; /* Security context */ struct xfrm_sec_ctx *security; /* Private data of this transformer, format is opaque, * interpreted by xfrm_type methods. */ void *data; }; static inline struct net *xs_net(struct xfrm_state *x) { return read_pnet(&x->xs_net); } /* xflags - make enum if more show up */ #define XFRM_TIME_DEFER 1 #define XFRM_SOFT_EXPIRE 2 enum { XFRM_STATE_VOID, XFRM_STATE_ACQ, XFRM_STATE_VALID, XFRM_STATE_ERROR, XFRM_STATE_EXPIRED, XFRM_STATE_DEAD }; /* callback structure passed from either netlink or pfkey */ struct km_event { union { u32 hard; u32 proto; u32 byid; u32 aevent; u32 type; } data; u32 seq; u32 portid; u32 event; struct net *net; }; struct xfrm_replay { void (*advance)(struct xfrm_state *x, __be32 net_seq); int (*check)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); int (*recheck)(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void (*notify)(struct xfrm_state *x, int event); int (*overflow)(struct xfrm_state *x, struct sk_buff *skb); }; struct xfrm_if_cb { struct xfrm_if *(*decode_session)(struct sk_buff *skb, unsigned short family); }; void xfrm_if_register_cb(const struct xfrm_if_cb *ifcb); void xfrm_if_unregister_cb(void); struct net_device; struct xfrm_type; struct xfrm_dst; struct xfrm_policy_afinfo { struct dst_ops *dst_ops; struct dst_entry *(*dst_lookup)(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, u32 mark); int (*get_saddr)(struct net *net, int oif, xfrm_address_t *saddr, xfrm_address_t *daddr, u32 mark); int (*fill_dst)(struct xfrm_dst *xdst, struct net_device *dev, const struct flowi *fl); struct dst_entry *(*blackhole_route)(struct net *net, struct dst_entry *orig); }; int xfrm_policy_register_afinfo(const struct xfrm_policy_afinfo *afinfo, int family); void xfrm_policy_unregister_afinfo(const struct xfrm_policy_afinfo *afinfo); void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c); void km_state_notify(struct xfrm_state *x, const struct km_event *c); struct xfrm_tmpl; int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); void km_state_expired(struct xfrm_state *x, int hard, u32 portid); int __xfrm_state_delete(struct xfrm_state *x); struct xfrm_state_afinfo { u8 family; u8 proto; const struct xfrm_type_offload *type_offload_esp; const struct xfrm_type *type_esp; const struct xfrm_type *type_ipip; const struct xfrm_type *type_ipip6; const struct xfrm_type *type_comp; const struct xfrm_type *type_ah; const struct xfrm_type *type_routing; const struct xfrm_type *type_dstopts; int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*transport_finish)(struct sk_buff *skb, int async); void (*local_error)(struct sk_buff *skb, u32 mtu); }; int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo); int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo); struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family); struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family); struct xfrm_input_afinfo { u8 family; bool is_ipip; int (*callback)(struct sk_buff *skb, u8 protocol, int err); }; int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo); int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo); void xfrm_flush_gc(void); void xfrm_state_delete_tunnel(struct xfrm_state *x); struct xfrm_type { char *description; struct module *owner; u8 proto; u8 flags; #define XFRM_TYPE_NON_FRAGMENT 1 #define XFRM_TYPE_REPLAY_PROT 2 #define XFRM_TYPE_LOCAL_COADDR 4 #define XFRM_TYPE_REMOTE_COADDR 8 int (*init_state)(struct xfrm_state *x); void (*destructor)(struct xfrm_state *); int (*input)(struct xfrm_state *, struct sk_buff *skb); int (*output)(struct xfrm_state *, struct sk_buff *pskb); int (*reject)(struct xfrm_state *, struct sk_buff *, const struct flowi *); int (*hdr_offset)(struct xfrm_state *, struct sk_buff *, u8 **); }; int xfrm_register_type(const struct xfrm_type *type, unsigned short family); void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family); struct xfrm_type_offload { char *description; struct module *owner; u8 proto; void (*encap)(struct xfrm_state *, struct sk_buff *pskb); int (*input_tail)(struct xfrm_state *x, struct sk_buff *skb); int (*xmit)(struct xfrm_state *, struct sk_buff *pskb, netdev_features_t features); }; int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family); void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family); static inline int xfrm_af2proto(unsigned int family) { switch(family) { case AF_INET: return IPPROTO_IPIP; case AF_INET6: return IPPROTO_IPV6; default: return 0; } } static inline const struct xfrm_mode *xfrm_ip2inner_mode(struct xfrm_state *x, int ipproto) { if ((ipproto == IPPROTO_IPIP && x->props.family == AF_INET) || (ipproto == IPPROTO_IPV6 && x->props.family == AF_INET6)) return &x->inner_mode; else return &x->inner_mode_iaf; } struct xfrm_tmpl { /* id in template is interpreted as: * daddr - destination of tunnel, may be zero for transport mode. * spi - zero to acquire spi. Not zero if spi is static, then * daddr must be fixed too. * proto - AH/ESP/IPCOMP */ struct xfrm_id id; /* Source address of tunnel. Ignored, if it is not a tunnel. */ xfrm_address_t saddr; unsigned short encap_family; u32 reqid; /* Mode: transport, tunnel etc. */ u8 mode; /* Sharing mode: unique, this session only, this user only etc. */ u8 share; /* May skip this transfomration if no SA is found */ u8 optional; /* Skip aalgos/ealgos/calgos checks. */ u8 allalgs; /* Bit mask of algos allowed for acquisition */ u32 aalgos; u32 ealgos; u32 calgos; }; #define XFRM_MAX_DEPTH 6 #define XFRM_MAX_OFFLOAD_DEPTH 1 struct xfrm_policy_walk_entry { struct list_head all; u8 dead; }; struct xfrm_policy_walk { struct xfrm_policy_walk_entry walk; u8 type; u32 seq; }; struct xfrm_policy_queue { struct sk_buff_head hold_queue; struct timer_list hold_timer; unsigned long timeout; }; struct xfrm_policy { possible_net_t xp_net; struct hlist_node bydst; struct hlist_node byidx; /* This lock only affects elements except for entry. */ rwlock_t lock; refcount_t refcnt; u32 pos; struct timer_list timer; atomic_t genid; u32 priority; u32 index; u32 if_id; struct xfrm_mark mark; struct xfrm_selector selector; struct xfrm_lifetime_cfg lft; struct xfrm_lifetime_cur curlft; struct xfrm_policy_walk_entry walk; struct xfrm_policy_queue polq; bool bydst_reinsert; u8 type; u8 action; u8 flags; u8 xfrm_nr; u16 family; struct xfrm_sec_ctx *security; struct xfrm_tmpl xfrm_vec[XFRM_MAX_DEPTH]; struct hlist_node bydst_inexact_list; struct rcu_head rcu; }; static inline struct net *xp_net(const struct xfrm_policy *xp) { return read_pnet(&xp->xp_net); } struct xfrm_kmaddress { xfrm_address_t local; xfrm_address_t remote; u32 reserved; u16 family; }; struct xfrm_migrate { xfrm_address_t old_daddr; xfrm_address_t old_saddr; xfrm_address_t new_daddr; xfrm_address_t new_saddr; u8 proto; u8 mode; u16 reserved; u32 reqid; u16 old_family; u16 new_family; }; #define XFRM_KM_TIMEOUT 30 /* what happened */ #define XFRM_REPLAY_UPDATE XFRM_AE_CR #define XFRM_REPLAY_TIMEOUT XFRM_AE_CE /* default aevent timeout in units of 100ms */ #define XFRM_AE_ETIME 10 /* Async Event timer multiplier */ #define XFRM_AE_ETH_M 10 /* default seq threshold size */ #define XFRM_AE_SEQT_SIZE 2 struct xfrm_mgr { struct list_head list; int (*notify)(struct xfrm_state *x, const struct km_event *c); int (*acquire)(struct xfrm_state *x, struct xfrm_tmpl *, struct xfrm_policy *xp); struct xfrm_policy *(*compile_policy)(struct sock *sk, int opt, u8 *data, int len, int *dir); int (*new_mapping)(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); int (*notify_policy)(struct xfrm_policy *x, int dir, const struct km_event *c); int (*report)(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); int (*migrate)(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); bool (*is_alive)(const struct km_event *c); }; int xfrm_register_km(struct xfrm_mgr *km); int xfrm_unregister_km(struct xfrm_mgr *km); struct xfrm_tunnel_skb_cb { union { struct inet_skb_parm h4; struct inet6_skb_parm h6; } header; union { struct ip_tunnel *ip4; struct ip6_tnl *ip6; } tunnel; }; #define XFRM_TUNNEL_SKB_CB(__skb) ((struct xfrm_tunnel_skb_cb *)&((__skb)->cb[0])) /* * This structure is used for the duration where packets are being * transformed by IPsec. As soon as the packet leaves IPsec the * area beyond the generic IP part may be overwritten. */ struct xfrm_skb_cb { struct xfrm_tunnel_skb_cb header; /* Sequence number for replay protection. */ union { struct { __u32 low; __u32 hi; } output; struct { __be32 low; __be32 hi; } input; } seq; }; #define XFRM_SKB_CB(__skb) ((struct xfrm_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the afinfo prepare_input/prepare_output functions * to transmit header information to the mode input/output functions. */ struct xfrm_mode_skb_cb { struct xfrm_tunnel_skb_cb header; /* Copied from header for IPv4, always set to zero and DF for IPv6. */ __be16 id; __be16 frag_off; /* IP header length (excluding options or extension headers). */ u8 ihl; /* TOS for IPv4, class for IPv6. */ u8 tos; /* TTL for IPv4, hop limitfor IPv6. */ u8 ttl; /* Protocol for IPv4, NH for IPv6. */ u8 protocol; /* Option length for IPv4, zero for IPv6. */ u8 optlen; /* Used by IPv6 only, zero for IPv4. */ u8 flow_lbl[3]; }; #define XFRM_MODE_SKB_CB(__skb) ((struct xfrm_mode_skb_cb *)&((__skb)->cb[0])) /* * This structure is used by the input processing to locate the SPI and * related information. */ struct xfrm_spi_skb_cb { struct xfrm_tunnel_skb_cb header; unsigned int daddroff; unsigned int family; __be32 seq; }; #define XFRM_SPI_SKB_CB(__skb) ((struct xfrm_spi_skb_cb *)&((__skb)->cb[0])) #ifdef CONFIG_AUDITSYSCALL static inline struct audit_buffer *xfrm_audit_start(const char *op) { struct audit_buffer *audit_buf = NULL; if (audit_enabled == AUDIT_OFF) return NULL; audit_buf = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_MAC_IPSEC_EVENT); if (audit_buf == NULL) return NULL; audit_log_format(audit_buf, "op=%s", op); return audit_buf; } static inline void xfrm_audit_helper_usrinfo(bool task_valid, struct audit_buffer *audit_buf) { const unsigned int auid = from_kuid(&init_user_ns, task_valid ? audit_get_loginuid(current) : INVALID_UID); const unsigned int ses = task_valid ? audit_get_sessionid(current) : AUDIT_SID_UNSET; audit_log_format(audit_buf, " auid=%u ses=%u", auid, ses); audit_log_task_context(audit_buf); } void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid); void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid); void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb); void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq); void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family); void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq); void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto); #else static inline void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, bool task_valid) { } static inline void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) { } static inline void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb) { } static inline void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq) { } static inline void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) { } static inline void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq) { } static inline void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto) { } #endif /* CONFIG_AUDITSYSCALL */ static inline void xfrm_pol_hold(struct xfrm_policy *policy) { if (likely(policy != NULL)) refcount_inc(&policy->refcnt); } void xfrm_policy_destroy(struct xfrm_policy *policy); static inline void xfrm_pol_put(struct xfrm_policy *policy) { if (refcount_dec_and_test(&policy->refcnt)) xfrm_policy_destroy(policy); } static inline void xfrm_pols_put(struct xfrm_policy **pols, int npols) { int i; for (i = npols - 1; i >= 0; --i) xfrm_pol_put(pols[i]); } void __xfrm_state_destroy(struct xfrm_state *, bool); static inline void __xfrm_state_put(struct xfrm_state *x) { refcount_dec(&x->refcnt); } static inline void xfrm_state_put(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, false); } static inline void xfrm_state_put_sync(struct xfrm_state *x) { if (refcount_dec_and_test(&x->refcnt)) __xfrm_state_destroy(x, true); } static inline void xfrm_state_hold(struct xfrm_state *x) { refcount_inc(&x->refcnt); } static inline bool addr_match(const void *token1, const void *token2, unsigned int prefixlen) { const __be32 *a1 = token1; const __be32 *a2 = token2; unsigned int pdw; unsigned int pbi; pdw = prefixlen >> 5; /* num of whole u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ if (pdw) if (memcmp(a1, a2, pdw << 2)) return false; if (pbi) { __be32 mask; mask = htonl((0xffffffff) << (32 - pbi)); if ((a1[pdw] ^ a2[pdw]) & mask) return false; } return true; } static inline bool addr4_match(__be32 a1, __be32 a2, u8 prefixlen) { /* C99 6.5.7 (3): u32 << 32 is undefined behaviour */ if (sizeof(long) == 4 && prefixlen == 0) return true; return !((a1 ^ a2) & htonl(~0UL << (32 - prefixlen))); } static __inline__ __be16 xfrm_flowi_sport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.sport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.type); break; case IPPROTO_MH: port = htons(uli->mht.type); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) >> 16); break; default: port = 0; /*XXX*/ } return port; } static __inline__ __be16 xfrm_flowi_dport(const struct flowi *fl, const union flowi_uli *uli) { __be16 port; switch(fl->flowi_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_SCTP: port = uli->ports.dport; break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: port = htons(uli->icmpt.code); break; case IPPROTO_GRE: port = htons(ntohl(uli->gre_key) & 0xffff); break; default: port = 0; /*XXX*/ } return port; } bool xfrm_selector_match(const struct xfrm_selector *sel, const struct flowi *fl, unsigned short family); #ifdef CONFIG_SECURITY_NETWORK_XFRM /* If neither has a context --> match * Otherwise, both must have a context and the sids, doi, alg must match */ static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return ((!s1 && !s2) || (s1 && s2 && (s1->ctx_sid == s2->ctx_sid) && (s1->ctx_doi == s2->ctx_doi) && (s1->ctx_alg == s2->ctx_alg))); } #else static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) { return true; } #endif /* A struct encoding bundle of transformations to apply to some set of flow. * * xdst->child points to the next element of bundle. * dst->xfrm points to an instanse of transformer. * * Due to unfortunate limitations of current routing cache, which we * have no time to fix, it mirrors struct rtable and bound to the same * routing key, including saddr,daddr. However, we can have many of * bundles differing by session id. All the bundles grow from a parent * policy rule. */ struct xfrm_dst { union { struct dst_entry dst; struct rtable rt; struct rt6_info rt6; } u; struct dst_entry *route; struct dst_entry *child; struct dst_entry *path; struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; int num_pols, num_xfrms; u32 xfrm_genid; u32 policy_genid; u32 route_mtu_cached; u32 child_mtu_cached; u32 route_cookie; u32 path_cookie; }; static inline struct dst_entry *xfrm_dst_path(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { const struct xfrm_dst *xdst = (const struct xfrm_dst *) dst; return xdst->path; } #endif return (struct dst_entry *) dst; } static inline struct dst_entry *xfrm_dst_child(const struct dst_entry *dst) { #ifdef CONFIG_XFRM if (dst->xfrm || (dst->flags & DST_XFRM_QUEUE)) { struct xfrm_dst *xdst = (struct xfrm_dst *) dst; return xdst->child; } #endif return NULL; } #ifdef CONFIG_XFRM static inline void xfrm_dst_set_child(struct xfrm_dst *xdst, struct dst_entry *child) { xdst->child = child; } static inline void xfrm_dst_destroy(struct xfrm_dst *xdst) { xfrm_pols_put(xdst->pols, xdst->num_pols); dst_release(xdst->route); if (likely(xdst->u.dst.xfrm)) xfrm_state_put(xdst->u.dst.xfrm); } #endif void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev); struct xfrm_if_parms { int link; /* ifindex of underlying L2 interface */ u32 if_id; /* interface identifyer */ }; struct xfrm_if { struct xfrm_if __rcu *next; /* next interface in list */ struct net_device *dev; /* virtual device associated with interface */ struct net *net; /* netns for packet i/o */ struct xfrm_if_parms p; /* interface parms */ struct gro_cells gro_cells; }; struct xfrm_offload { /* Output sequence number for replay protection on offloading. */ struct { __u32 low; __u32 hi; } seq; __u32 flags; #define SA_DELETE_REQ 1 #define CRYPTO_DONE 2 #define CRYPTO_NEXT_DONE 4 #define CRYPTO_FALLBACK 8 #define XFRM_GSO_SEGMENT 16 #define XFRM_GRO 32 #define XFRM_ESP_NO_TRAILER 64 #define XFRM_DEV_RESUME 128 #define XFRM_XMIT 256 __u32 status; #define CRYPTO_SUCCESS 1 #define CRYPTO_GENERIC_ERROR 2 #define CRYPTO_TRANSPORT_AH_AUTH_FAILED 4 #define CRYPTO_TRANSPORT_ESP_AUTH_FAILED 8 #define CRYPTO_TUNNEL_AH_AUTH_FAILED 16 #define CRYPTO_TUNNEL_ESP_AUTH_FAILED 32 #define CRYPTO_INVALID_PACKET_SYNTAX 64 #define CRYPTO_INVALID_PROTOCOL 128 __u8 proto; }; struct sec_path { int len; int olen; struct xfrm_state *xvec[XFRM_MAX_DEPTH]; struct xfrm_offload ovec[XFRM_MAX_OFFLOAD_DEPTH]; }; struct sec_path *secpath_set(struct sk_buff *skb); static inline void secpath_reset(struct sk_buff *skb) { #ifdef CONFIG_XFRM skb_ext_del(skb, SKB_EXT_SEC_PATH); #endif } static inline int xfrm_addr_any(const xfrm_address_t *addr, unsigned short family) { switch (family) { case AF_INET: return addr->a4 == 0; case AF_INET6: return ipv6_addr_any(&addr->in6); } return 0; } static inline int __xfrm4_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (tmpl->saddr.a4 && tmpl->saddr.a4 != x->props.saddr.a4); } static inline int __xfrm6_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) { return (!ipv6_addr_any((struct in6_addr*)&tmpl->saddr) && !ipv6_addr_equal((struct in6_addr *)&tmpl->saddr, (struct in6_addr*)&x->props.saddr)); } static inline int xfrm_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_cmp(tmpl, x); case AF_INET6: return __xfrm6_state_addr_cmp(tmpl, x); } return !0; } #ifdef CONFIG_XFRM int __xfrm_policy_check(struct sock *, int dir, struct sk_buff *skb, unsigned short family); static inline int __xfrm_policy_check2(struct sock *sk, int dir, struct sk_buff *skb, unsigned int family, int reverse) { struct net *net = dev_net(skb->dev); int ndir = dir | (reverse ? XFRM_POLICY_MASK + 1 : 0); if (sk && sk->sk_policy[XFRM_POLICY_IN]) return __xfrm_policy_check(sk, ndir, skb, family); return (!net->xfrm.policy_count[dir] && !secpath_exists(skb)) || (skb_dst(skb) && (skb_dst(skb)->flags & DST_NOPOLICY)) || __xfrm_policy_check(sk, ndir, skb, family); } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return __xfrm_policy_check2(sk, dir, skb, family, 0); } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET); } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return xfrm_policy_check(sk, dir, skb, AF_INET6); } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET, 1); } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return __xfrm_policy_check2(sk, dir, skb, AF_INET6, 1); } int __xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family, int reverse); static inline int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 0); } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return __xfrm_decode_session(skb, fl, family, 1); } int __xfrm_route_forward(struct sk_buff *skb, unsigned short family); static inline int xfrm_route_forward(struct sk_buff *skb, unsigned short family) { struct net *net = dev_net(skb->dev); return !net->xfrm.policy_count[XFRM_POLICY_OUT] || (skb_dst(skb)->flags & DST_NOXFRM) || __xfrm_route_forward(skb, family); } static inline int xfrm4_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET); } static inline int xfrm6_route_forward(struct sk_buff *skb) { return xfrm_route_forward(skb, AF_INET6); } int __xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk); static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { sk->sk_policy[0] = NULL; sk->sk_policy[1] = NULL; if (unlikely(osk->sk_policy[0] || osk->sk_policy[1])) return __xfrm_sk_clone_policy(sk, osk); return 0; } int xfrm_policy_delete(struct xfrm_policy *pol, int dir); static inline void xfrm_sk_free_policy(struct sock *sk) { struct xfrm_policy *pol; pol = rcu_dereference_protected(sk->sk_policy[0], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX); sk->sk_policy[0] = NULL; } pol = rcu_dereference_protected(sk->sk_policy[1], 1); if (unlikely(pol != NULL)) { xfrm_policy_delete(pol, XFRM_POLICY_MAX+1); sk->sk_policy[1] = NULL; } } #else static inline void xfrm_sk_free_policy(struct sock *sk) {} static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { return 0; } static inline int xfrm6_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm4_route_forward(struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) { return 1; } static inline int xfrm_decode_session_reverse(struct sk_buff *skb, struct flowi *fl, unsigned int family) { return -ENOSYS; } static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, struct sk_buff *skb) { return 1; } #endif static __inline__ xfrm_address_t *xfrm_flowi_daddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.daddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.daddr; } return NULL; } static __inline__ xfrm_address_t *xfrm_flowi_saddr(const struct flowi *fl, unsigned short family) { switch (family){ case AF_INET: return (xfrm_address_t *)&fl->u.ip4.saddr; case AF_INET6: return (xfrm_address_t *)&fl->u.ip6.saddr; } return NULL; } static __inline__ void xfrm_flowi_addr_get(const struct flowi *fl, xfrm_address_t *saddr, xfrm_address_t *daddr, unsigned short family) { switch(family) { case AF_INET: memcpy(&saddr->a4, &fl->u.ip4.saddr, sizeof(saddr->a4)); memcpy(&daddr->a4, &fl->u.ip4.daddr, sizeof(daddr->a4)); break; case AF_INET6: saddr->in6 = fl->u.ip6.saddr; daddr->in6 = fl->u.ip6.daddr; break; } } static __inline__ int __xfrm4_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (daddr->a4 == x->id.daddr.a4 && (saddr->a4 == x->props.saddr.a4 || !saddr->a4 || !x->props.saddr.a4)) return 1; return 0; } static __inline__ int __xfrm6_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr) { if (ipv6_addr_equal((struct in6_addr *)daddr, (struct in6_addr *)&x->id.daddr) && (ipv6_addr_equal((struct in6_addr *)saddr, (struct in6_addr *)&x->props.saddr) || ipv6_addr_any((struct in6_addr *)saddr) || ipv6_addr_any((struct in6_addr *)&x->props.saddr))) return 1; return 0; } static __inline__ int xfrm_state_addr_check(const struct xfrm_state *x, const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, daddr, saddr); case AF_INET6: return __xfrm6_state_addr_check(x, daddr, saddr); } return 0; } static __inline__ int xfrm_state_addr_flow_check(const struct xfrm_state *x, const struct flowi *fl, unsigned short family) { switch (family) { case AF_INET: return __xfrm4_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip4.daddr, (const xfrm_address_t *)&fl->u.ip4.saddr); case AF_INET6: return __xfrm6_state_addr_check(x, (const xfrm_address_t *)&fl->u.ip6.daddr, (const xfrm_address_t *)&fl->u.ip6.saddr); } return 0; } static inline int xfrm_state_kern(const struct xfrm_state *x) { return atomic_read(&x->tunnel_users); } static inline bool xfrm_id_proto_valid(u8 proto) { switch (proto) { case IPPROTO_AH: case IPPROTO_ESP: case IPPROTO_COMP: #if IS_ENABLED(CONFIG_IPV6) case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: #endif return true; default: return false; } } /* IPSEC_PROTO_ANY only matches 3 IPsec protocols, 0 could match all. */ static inline int xfrm_id_proto_match(u8 proto, u8 userproto) { return (!userproto || proto == userproto || (userproto == IPSEC_PROTO_ANY && (proto == IPPROTO_AH || proto == IPPROTO_ESP || proto == IPPROTO_COMP))); } /* * xfrm algorithm information */ struct xfrm_algo_aead_info { char *geniv; u16 icv_truncbits; }; struct xfrm_algo_auth_info { u16 icv_truncbits; u16 icv_fullbits; }; struct xfrm_algo_encr_info { char *geniv; u16 blockbits; u16 defkeybits; }; struct xfrm_algo_comp_info { u16 threshold; }; struct xfrm_algo_desc { char *name; char *compat; u8 available:1; u8 pfkey_supported:1; union { struct xfrm_algo_aead_info aead; struct xfrm_algo_auth_info auth; struct xfrm_algo_encr_info encr; struct xfrm_algo_comp_info comp; } uinfo; struct sadb_alg desc; }; /* XFRM protocol handlers. */ struct xfrm4_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm4_protocol __rcu *next; int priority; }; struct xfrm6_protocol { int (*handler)(struct sk_buff *skb); int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_protocol __rcu *next; int priority; }; /* XFRM tunnel handlers. */ struct xfrm_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, u32 info); struct xfrm_tunnel __rcu *next; int priority; }; struct xfrm6_tunnel { int (*handler)(struct sk_buff *skb); int (*cb_handler)(struct sk_buff *skb, int err); int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info); struct xfrm6_tunnel __rcu *next; int priority; }; void xfrm_init(void); void xfrm4_init(void); int xfrm_state_init(struct net *net); void xfrm_state_fini(struct net *net); void xfrm4_state_init(void); void xfrm4_protocol_init(void); #ifdef CONFIG_XFRM int xfrm6_init(void); void xfrm6_fini(void); int xfrm6_state_init(void); void xfrm6_state_fini(void); int xfrm6_protocol_init(void); void xfrm6_protocol_fini(void); #else static inline int xfrm6_init(void) { return 0; } static inline void xfrm6_fini(void) { ; } #endif #ifdef CONFIG_XFRM_STATISTICS int xfrm_proc_init(struct net *net); void xfrm_proc_fini(struct net *net); #endif int xfrm_sysctl_init(struct net *net); #ifdef CONFIG_SYSCTL void xfrm_sysctl_fini(struct net *net); #else static inline void xfrm_sysctl_fini(struct net *net) { } #endif void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, struct xfrm_address_filter *filter); int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, int (*func)(struct xfrm_state *, int, void*), void *); void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net); struct xfrm_state *xfrm_state_alloc(struct net *net); void xfrm_state_free(struct xfrm_state *x); struct xfrm_state *xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, const struct flowi *fl, struct xfrm_tmpl *tmpl, struct xfrm_policy *pol, int *err, unsigned short family, u32 if_id); struct xfrm_state *xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, u8 mode, u8 proto, u32 reqid); struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, unsigned short family); int xfrm_state_check_expire(struct xfrm_state *x); void xfrm_state_insert(struct xfrm_state *x); int xfrm_state_add(struct xfrm_state *x); int xfrm_state_update(struct xfrm_state *x); struct xfrm_state *xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family); struct xfrm_state *xfrm_state_lookup_byaddr(struct net *net, u32 mark, const xfrm_address_t *daddr, const xfrm_address_t *saddr, u8 proto, unsigned short family); #ifdef CONFIG_XFRM_SUB_POLICY void xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, unsigned short family); void xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, unsigned short family); #else static inline void xfrm_tmpl_sort(struct xfrm_tmpl **d, struct xfrm_tmpl **s, int n, unsigned short family) { } static inline void xfrm_state_sort(struct xfrm_state **d, struct xfrm_state **s, int n, unsigned short family) { } #endif struct xfrmk_sadinfo { u32 sadhcnt; /* current hash bkts */ u32 sadhmcnt; /* max allowed hash bkts */ u32 sadcnt; /* current running count */ }; struct xfrmk_spdinfo { u32 incnt; u32 outcnt; u32 fwdcnt; u32 inscnt; u32 outscnt; u32 fwdscnt; u32 spdhcnt; u32 spdhmcnt; }; struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); int xfrm_state_delete(struct xfrm_state *x); int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync); int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid); void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si); void xfrm_spd_getinfo(struct net *net, struct xfrmk_spdinfo *si); u32 xfrm_replay_seqhi(struct xfrm_state *x, __be32 net_seq); int xfrm_init_replay(struct xfrm_state *x); u32 __xfrm_state_mtu(struct xfrm_state *x, int mtu); u32 xfrm_state_mtu(struct xfrm_state *x, int mtu); int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload); int xfrm_init_state(struct xfrm_state *x); int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm_input_resume(struct sk_buff *skb, int nexthdr); int xfrm_trans_queue_net(struct net *net, struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_trans_queue(struct sk_buff *skb, int (*finish)(struct net *, struct sock *, struct sk_buff *)); int xfrm_output_resume(struct sock *sk, struct sk_buff *skb, int err); int xfrm_output(struct sock *sk, struct sk_buff *skb); #if IS_ENABLED(CONFIG_NET_PKTGEN) int pktgen_xfrm_outer_mode_output(struct xfrm_state *x, struct sk_buff *skb); #endif void xfrm_local_error(struct sk_buff *skb, int mtu); int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm4_transport_finish(struct sk_buff *skb, int async); int xfrm4_rcv(struct sk_buff *skb); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); static inline int xfrm4_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi) { XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL; XFRM_SPI_SKB_CB(skb)->family = AF_INET; XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr); return xfrm_input(skb, nexthdr, spi, 0); } int xfrm4_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm4_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm4_protocol_register(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_protocol_deregister(struct xfrm4_protocol *handler, unsigned char protocol); int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family); int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family); void xfrm4_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_extract_input(struct xfrm_state *x, struct sk_buff *skb); int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi, struct ip6_tnl *t); int xfrm6_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); int xfrm6_transport_finish(struct sk_buff *skb, int async); int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t); int xfrm6_rcv(struct sk_buff *skb); int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr, xfrm_address_t *saddr, u8 proto); void xfrm6_local_error(struct sk_buff *skb, u32 mtu); int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol); int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family); int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family); __be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr); __be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr); int xfrm6_output(struct net *net, struct sock *sk, struct sk_buff *skb); int xfrm6_output_finish(struct sock *sk, struct sk_buff *skb); int xfrm6_find_1stfragopt(struct xfrm_state *x, struct sk_buff *skb, u8 **prevhdr); #ifdef CONFIG_XFRM void xfrm6_local_rxpmtu(struct sk_buff *skb, u32 mtu); int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen); #else static inline int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) { return -ENOPROTOOPT; } #endif struct dst_entry *__xfrm_dst_lookup(struct net *net, int tos, int oif, const xfrm_address_t *saddr, const xfrm_address_t *daddr, int family, u32 mark); struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp); void xfrm_policy_walk_init(struct xfrm_policy_walk *walk, u8 type); int xfrm_policy_walk(struct net *net, struct xfrm_policy_walk *walk, int (*func)(struct xfrm_policy *, int, int, void*), void *); void xfrm_policy_walk_done(struct xfrm_policy_walk *walk, struct net *net); int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl); struct xfrm_policy *xfrm_policy_bysel_ctx(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, struct xfrm_selector *sel, struct xfrm_sec_ctx *ctx, int delete, int *err); struct xfrm_policy *xfrm_policy_byid(struct net *net, const struct xfrm_mark *mark, u32 if_id, u8 type, int dir, u32 id, int delete, int *err); int xfrm_policy_flush(struct net *net, u8 type, bool task_valid); void xfrm_policy_hash_rebuild(struct net *net); u32 xfrm_get_acqseq(void); int verify_spi_info(u8 proto, u32 min, u32 max); int xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi); struct xfrm_state *xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, u32 if_id, u8 proto, const xfrm_address_t *daddr, const xfrm_address_t *saddr, int create, unsigned short family); int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol); #ifdef CONFIG_XFRM_MIGRATE int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_bundles, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap); struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net); struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, struct xfrm_migrate *m, struct xfrm_encap_tmpl *encap); int xfrm_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, struct xfrm_migrate *m, int num_bundles, struct xfrm_kmaddress *k, struct net *net, struct xfrm_encap_tmpl *encap); #endif int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid); int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); void xfrm_input_init(void); int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); void xfrm_probe_algs(void); int xfrm_count_pfkey_auth_supported(void); int xfrm_count_pfkey_enc_supported(void); struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx); struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id); struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe); struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe); static inline bool xfrm6_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b) { return ipv6_addr_equal((const struct in6_addr *)a, (const struct in6_addr *)b); } static inline bool xfrm_addr_equal(const xfrm_address_t *a, const xfrm_address_t *b, sa_family_t family) { switch (family) { default: case AF_INET: return ((__force u32)a->a4 ^ (__force u32)b->a4) == 0; case AF_INET6: return xfrm6_addr_equal(a, b); } } static inline int xfrm_policy_id2dir(u32 index) { return index & 7; } #ifdef CONFIG_XFRM static inline int xfrm_aevent_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_AEVENTS); rcu_read_unlock(); return ret; } static inline int xfrm_acquire_is_on(struct net *net) { struct sock *nlsk; int ret = 0; rcu_read_lock(); nlsk = rcu_dereference(net->xfrm.nlsk); if (nlsk) ret = netlink_has_listeners(nlsk, XFRMNLGRP_ACQUIRE); rcu_read_unlock(); return ret; } #endif static inline unsigned int aead_len(struct xfrm_algo_aead *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_len(const struct xfrm_algo *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_alg_auth_len(const struct xfrm_algo_auth *alg) { return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); } static inline unsigned int xfrm_replay_state_esn_len(struct xfrm_replay_state_esn *replay_esn) { return sizeof(*replay_esn) + replay_esn->bmp_len * sizeof(__u32); } #ifdef CONFIG_XFRM_MIGRATE static inline int xfrm_replay_clone(struct xfrm_state *x, struct xfrm_state *orig) { x->replay_esn = kmemdup(orig->replay_esn, xfrm_replay_state_esn_len(orig->replay_esn), GFP_KERNEL); if (!x->replay_esn) return -ENOMEM; x->preplay_esn = kmemdup(orig->preplay_esn, xfrm_replay_state_esn_len(orig->preplay_esn), GFP_KERNEL); if (!x->preplay_esn) return -ENOMEM; return 0; } static inline struct xfrm_algo_aead *xfrm_algo_aead_clone(struct xfrm_algo_aead *orig) { return kmemdup(orig, aead_len(orig), GFP_KERNEL); } static inline struct xfrm_algo *xfrm_algo_clone(struct xfrm_algo *orig) { return kmemdup(orig, xfrm_alg_len(orig), GFP_KERNEL); } static inline struct xfrm_algo_auth *xfrm_algo_auth_clone(struct xfrm_algo_auth *orig) { return kmemdup(orig, xfrm_alg_auth_len(orig), GFP_KERNEL); } static inline void xfrm_states_put(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_put(*(states + i)); } static inline void xfrm_states_delete(struct xfrm_state **states, int n) { int i; for (i = 0; i < n; i++) xfrm_state_delete(*(states + i)); } #endif #ifdef CONFIG_XFRM static inline struct xfrm_state *xfrm_input_state(struct sk_buff *skb) { struct sec_path *sp = skb_sec_path(skb); return sp->xvec[sp->len - 1]; } #endif static inline struct xfrm_offload *xfrm_offload(struct sk_buff *skb) { #ifdef CONFIG_XFRM struct sec_path *sp = skb_sec_path(skb); if (!sp || !sp->olen || sp->len != sp->olen) return NULL; return &sp->ovec[sp->olen - 1]; #else return NULL; #endif } void __init xfrm_dev_init(void); #ifdef CONFIG_XFRM_OFFLOAD void xfrm_dev_resume(struct sk_buff *skb); void xfrm_dev_backlog(struct softnet_data *sd); struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again); int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo); bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x); static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev && xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn) xso->dev->xfrmdev_ops->xdo_dev_state_advance_esn(x); } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { struct xfrm_state *x = dst->xfrm; struct xfrm_dst *xdst; if (!x || !x->type_offload) return false; xdst = (struct xfrm_dst *) dst; if (!x->xso.offload_handle && !xdst->child->xfrm) return true; if (x->xso.offload_handle && (x->xso.dev == xfrm_dst_path(dst)->dev) && !xdst->child->xfrm) return true; return false; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; if (xso->dev) xso->dev->xfrmdev_ops->xdo_dev_state_delete(x); } static inline void xfrm_dev_state_free(struct xfrm_state *x) { struct xfrm_state_offload *xso = &x->xso; struct net_device *dev = xso->dev; if (dev && dev->xfrmdev_ops) { if (dev->xfrmdev_ops->xdo_dev_state_free) dev->xfrmdev_ops->xdo_dev_state_free(x); xso->dev = NULL; dev_put(dev); } } #else static inline void xfrm_dev_resume(struct sk_buff *skb) { } static inline void xfrm_dev_backlog(struct softnet_data *sd) { } static inline struct sk_buff *validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features, bool *again) { return skb; } static inline int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo) { return 0; } static inline void xfrm_dev_state_delete(struct xfrm_state *x) { } static inline void xfrm_dev_state_free(struct xfrm_state *x) { } static inline bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x) { return false; } static inline void xfrm_dev_state_advance_esn(struct xfrm_state *x) { } static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) { return false; } #endif static inline int xfrm_mark_get(struct nlattr **attrs, struct xfrm_mark *m) { if (attrs[XFRMA_MARK]) memcpy(m, nla_data(attrs[XFRMA_MARK]), sizeof(struct xfrm_mark)); else m->v = m->m = 0; return m->v & m->m; } static inline int xfrm_mark_put(struct sk_buff *skb, const struct xfrm_mark *m) { int ret = 0; if (m->m | m->v) ret = nla_put(skb, XFRMA_MARK, sizeof(struct xfrm_mark), m); return ret; } static inline __u32 xfrm_smark_get(__u32 mark, struct xfrm_state *x) { struct xfrm_mark *m = &x->props.smark; return (m->v & m->m) | (mark & ~m->m); } static inline int xfrm_if_id_put(struct sk_buff *skb, __u32 if_id) { int ret = 0; if (if_id) ret = nla_put_u32(skb, XFRMA_IF_ID, if_id); return ret; } static inline int xfrm_tunnel_check(struct sk_buff *skb, struct xfrm_state *x, unsigned int family) { bool tunnel = false; switch(family) { case AF_INET: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4) tunnel = true; break; case AF_INET6: if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6) tunnel = true; break; } if (tunnel && !(x->outer_mode.flags & XFRM_MODE_FLAG_TUNNEL)) return -EINVAL; return 0; } extern const int xfrm_msg_min[XFRM_NR_MSGTYPES]; extern const struct nla_policy xfrma_policy[XFRMA_MAX+1]; struct xfrm_translator { /* Allocate frag_list and put compat translation there */ int (*alloc_compat)(struct sk_buff *skb, const struct nlmsghdr *src); /* Allocate nlmsg with 64-bit translaton of received 32-bit message */ struct nlmsghdr *(*rcv_msg_compat)(const struct nlmsghdr *nlh, int maxtype, const struct nla_policy *policy, struct netlink_ext_ack *extack); /* Translate 32-bit user_policy from sockptr */ int (*xlate_user_policy_sockptr)(u8 **pdata32, int optlen); struct module *owner; }; #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) extern int xfrm_register_translator(struct xfrm_translator *xtr); extern int xfrm_unregister_translator(struct xfrm_translator *xtr); extern struct xfrm_translator *xfrm_get_translator(void); extern void xfrm_put_translator(struct xfrm_translator *xtr); #else static inline struct xfrm_translator *xfrm_get_translator(void) { return NULL; } static inline void xfrm_put_translator(struct xfrm_translator *xtr) { } #endif #if IS_ENABLED(CONFIG_IPV6) static inline bool xfrm6_local_dontfrag(const struct sock *sk) { int proto; if (!sk || sk->sk_family != AF_INET6) return false; proto = sk->sk_protocol; if (proto == IPPROTO_UDP || proto == IPPROTO_RAW) return inet6_sk(sk)->dontfrag; return false; } #endif #endif /* _NET_XFRM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rpm #if !defined(_TRACE_RUNTIME_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RUNTIME_POWER_H #include <linux/ktime.h> #include <linux/tracepoint.h> struct device; /* * The rpm_internal events are used for tracing some important * runtime pm internal functions. */ DECLARE_EVENT_CLASS(rpm_internal, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags), TP_STRUCT__entry( __string( name, dev_name(dev) ) __field( int, flags ) __field( int , usage_count ) __field( int , disable_depth ) __field( int , runtime_auto ) __field( int , request_pending ) __field( int , irq_safe ) __field( int , child_count ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->flags = flags; __entry->usage_count = atomic_read( &dev->power.usage_count); __entry->disable_depth = dev->power.disable_depth; __entry->runtime_auto = dev->power.runtime_auto; __entry->request_pending = dev->power.request_pending; __entry->irq_safe = dev->power.irq_safe; __entry->child_count = atomic_read( &dev->power.child_count); ), TP_printk("%s flags-%x cnt-%-2d dep-%-2d auto-%-1d p-%-1d" " irq-%-1d child-%d", __get_str(name), __entry->flags, __entry->usage_count, __entry->disable_depth, __entry->runtime_auto, __entry->request_pending, __entry->irq_safe, __entry->child_count ) ); DEFINE_EVENT(rpm_internal, rpm_suspend, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_resume, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_idle, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_usage, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); TRACE_EVENT(rpm_return_int, TP_PROTO(struct device *dev, unsigned long ip, int ret), TP_ARGS(dev, ip, ret), TP_STRUCT__entry( __string( name, dev_name(dev)) __field( unsigned long, ip ) __field( int, ret ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->ip = ip; __entry->ret = ret; ), TP_printk("%pS:%s ret=%d", (void *)__entry->ip, __get_str(name), __entry->ret) ); #endif /* _TRACE_RUNTIME_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 #ifndef _LINUX_UNALIGNED_PACKED_STRUCT_H #define _LINUX_UNALIGNED_PACKED_STRUCT_H #include <linux/kernel.h> struct __una_u16 { u16 x; } __packed; struct __una_u32 { u32 x; } __packed; struct __una_u64 { u64 x; } __packed; static inline u16 __get_unaligned_cpu16(const void *p) { const struct __una_u16 *ptr = (const struct __una_u16 *)p; return ptr->x; } static inline u32 __get_unaligned_cpu32(const void *p) { const struct __una_u32 *ptr = (const struct __una_u32 *)p; return ptr->x; } static inline u64 __get_unaligned_cpu64(const void *p) { const struct __una_u64 *ptr = (const struct __una_u64 *)p; return ptr->x; } static inline void __put_unaligned_cpu16(u16 val, void *p) { struct __una_u16 *ptr = (struct __una_u16 *)p; ptr->x = val; } static inline void __put_unaligned_cpu32(u32 val, void *p) { struct __una_u32 *ptr = (struct __una_u32 *)p; ptr->x = val; } static inline void __put_unaligned_cpu64(u64 val, void *p) { struct __una_u64 *ptr = (struct __una_u64 *)p; ptr->x = val; } #endif /* _LINUX_UNALIGNED_PACKED_STRUCT_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 // SPDX-License-Identifier: GPL-2.0 #include <linux/export.h> #include <linux/lockref.h> #if USE_CMPXCHG_LOCKREF /* * Note that the "cmpxchg()" reloads the "old" value for the * failure case. */ #define CMPXCHG_LOOP(CODE, SUCCESS) do { \ int retry = 100; \ struct lockref old; \ BUILD_BUG_ON(sizeof(old) != 8); \ old.lock_count = READ_ONCE(lockref->lock_count); \ while (likely(arch_spin_value_unlocked(old.lock.rlock.raw_lock))) { \ struct lockref new = old, prev = old; \ CODE \ old.lock_count = cmpxchg64_relaxed(&lockref->lock_count, \ old.lock_count, \ new.lock_count); \ if (likely(old.lock_count == prev.lock_count)) { \ SUCCESS; \ } \ if (!--retry) \ break; \ cpu_relax(); \ } \ } while (0) #else #define CMPXCHG_LOOP(CODE, SUCCESS) do { } while (0) #endif /** * lockref_get - Increments reference count unconditionally * @lockref: pointer to lockref structure * * This operation is only valid if you already hold a reference * to the object, so you know the count cannot be zero. */ void lockref_get(struct lockref *lockref) { CMPXCHG_LOOP( new.count++; , return; ); spin_lock(&lockref->lock); lockref->count++; spin_unlock(&lockref->lock); } EXPORT_SYMBOL(lockref_get); /** * lockref_get_not_zero - Increments count unless the count is 0 or dead * @lockref: pointer to lockref structure * Return: 1 if count updated successfully or 0 if count was zero */ int lockref_get_not_zero(struct lockref *lockref) { int retval; CMPXCHG_LOOP( new.count++; if (old.count <= 0) return 0; , return 1; ); spin_lock(&lockref->lock); retval = 0; if (lockref->count > 0) { lockref->count++; retval = 1; } spin_unlock(&lockref->lock); return retval; } EXPORT_SYMBOL(lockref_get_not_zero); /** * lockref_put_not_zero - Decrements count unless count <= 1 before decrement * @lockref: pointer to lockref structure * Return: 1 if count updated successfully or 0 if count would become zero */ int lockref_put_not_zero(struct lockref *lockref) { int retval; CMPXCHG_LOOP( new.count--; if (old.count <= 1) return 0; , return 1; ); spin_lock(&lockref->lock); retval = 0; if (lockref->count > 1) { lockref->count--; retval = 1; } spin_unlock(&lockref->lock); return retval; } EXPORT_SYMBOL(lockref_put_not_zero); /** * lockref_get_or_lock - Increments count unless the count is 0 or dead * @lockref: pointer to lockref structure * Return: 1 if count updated successfully or 0 if count was zero * and we got the lock instead. */ int lockref_get_or_lock(struct lockref *lockref) { CMPXCHG_LOOP( new.count++; if (old.count <= 0) break; , return 1; ); spin_lock(&lockref->lock); if (lockref->count <= 0) return 0; lockref->count++; spin_unlock(&lockref->lock); return 1; } EXPORT_SYMBOL(lockref_get_or_lock); /** * lockref_put_return - Decrement reference count if possible * @lockref: pointer to lockref structure * * Decrement the reference count and return the new value. * If the lockref was dead or locked, return an error. */ int lockref_put_return(struct lockref *lockref) { CMPXCHG_LOOP( new.count--; if (old.count <= 0) return -1; , return new.count; ); return -1; } EXPORT_SYMBOL(lockref_put_return); /** * lockref_put_or_lock - decrements count unless count <= 1 before decrement * @lockref: pointer to lockref structure * Return: 1 if count updated successfully or 0 if count <= 1 and lock taken */ int lockref_put_or_lock(struct lockref *lockref) { CMPXCHG_LOOP( new.count--; if (old.count <= 1) break; , return 1; ); spin_lock(&lockref->lock); if (lockref->count <= 1) return 0; lockref->count--; spin_unlock(&lockref->lock); return 1; } EXPORT_SYMBOL(lockref_put_or_lock); /** * lockref_mark_dead - mark lockref dead * @lockref: pointer to lockref structure */ void lockref_mark_dead(struct lockref *lockref) { assert_spin_locked(&lockref->lock); lockref->count = -128; } EXPORT_SYMBOL(lockref_mark_dead); /** * lockref_get_not_dead - Increments count unless the ref is dead * @lockref: pointer to lockref structure * Return: 1 if count updated successfully or 0 if lockref was dead */ int lockref_get_not_dead(struct lockref *lockref) { int retval; CMPXCHG_LOOP( new.count++; if (old.count < 0) return 0; , return 1; ); spin_lock(&lockref->lock); retval = 0; if (lockref->count >= 0) { lockref->count++; retval = 1; } spin_unlock(&lockref->lock); return retval; } EXPORT_SYMBOL(lockref_get_not_dead);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_IVERSION_H #define _LINUX_IVERSION_H #include <linux/fs.h> /* * The inode->i_version field: * --------------------------- * The change attribute (i_version) is mandated by NFSv4 and is mostly for * knfsd, but is also used for other purposes (e.g. IMA). The i_version must * appear different to observers if there was a change to the inode's data or * metadata since it was last queried. * * Observers see the i_version as a 64-bit number that never decreases. If it * remains the same since it was last checked, then nothing has changed in the * inode. If it's different then something has changed. Observers cannot infer * anything about the nature or magnitude of the changes from the value, only * that the inode has changed in some fashion. * * Not all filesystems properly implement the i_version counter. Subsystems that * want to use i_version field on an inode should first check whether the * filesystem sets the SB_I_VERSION flag (usually via the IS_I_VERSION macro). * * Those that set SB_I_VERSION will automatically have their i_version counter * incremented on writes to normal files. If the SB_I_VERSION is not set, then * the VFS will not touch it on writes, and the filesystem can use it how it * wishes. Note that the filesystem is always responsible for updating the * i_version on namespace changes in directories (mkdir, rmdir, unlink, etc.). * We consider these sorts of filesystems to have a kernel-managed i_version. * * It may be impractical for filesystems to keep i_version updates atomic with * respect to the changes that cause them. They should, however, guarantee * that i_version updates are never visible before the changes that caused * them. Also, i_version updates should never be delayed longer than it takes * the original change to reach disk. * * This implementation uses the low bit in the i_version field as a flag to * track when the value has been queried. If it has not been queried since it * was last incremented, we can skip the increment in most cases. * * In the event that we're updating the ctime, we will usually go ahead and * bump the i_version anyway. Since that has to go to stable storage in some * fashion, we might as well increment it as well. * * With this implementation, the value should always appear to observers to * increase over time if the file has changed. It's recommended to use * inode_eq_iversion() helper to compare values. * * Note that some filesystems (e.g. NFS and AFS) just use the field to store * a server-provided value (for the most part). For that reason, those * filesystems do not set SB_I_VERSION. These filesystems are considered to * have a self-managed i_version. * * Persistently storing the i_version * ---------------------------------- * Queries of the i_version field are not gated on them hitting the backing * store. It's always possible that the host could crash after allowing * a query of the value but before it has made it to disk. * * To mitigate this problem, filesystems should always use * inode_set_iversion_queried when loading an existing inode from disk. This * ensures that the next attempted inode increment will result in the value * changing. * * Storing the value to disk therefore does not count as a query, so those * filesystems should use inode_peek_iversion to grab the value to be stored. * There is no need to flag the value as having been queried in that case. */ /* * We borrow the lowest bit in the i_version to use as a flag to tell whether * it has been queried since we last incremented it. If it has, then we must * increment it on the next change. After that, we can clear the flag and * avoid incrementing it again until it has again been queried. */ #define I_VERSION_QUERIED_SHIFT (1) #define I_VERSION_QUERIED (1ULL << (I_VERSION_QUERIED_SHIFT - 1)) #define I_VERSION_INCREMENT (1ULL << I_VERSION_QUERIED_SHIFT) /** * inode_set_iversion_raw - set i_version to the specified raw value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for use by * filesystems that self-manage the i_version. * * For example, the NFS client stores its NFSv4 change attribute in this way, * and the AFS client stores the data_version from the server here. */ static inline void inode_set_iversion_raw(struct inode *inode, u64 val) { atomic64_set(&inode->i_version, val); } /** * inode_peek_iversion_raw - grab a "raw" iversion value * @inode: inode from which i_version should be read * * Grab a "raw" inode->i_version value and return it. The i_version is not * flagged or converted in any way. This is mostly used to access a self-managed * i_version. * * With those filesystems, we want to treat the i_version as an entirely * opaque value. */ static inline u64 inode_peek_iversion_raw(const struct inode *inode) { return atomic64_read(&inode->i_version); } /** * inode_set_max_iversion_raw - update i_version new value is larger * @inode: inode to set * @val: new i_version to set * * Some self-managed filesystems (e.g Ceph) will only update the i_version * value if the new value is larger than the one we already have. */ static inline void inode_set_max_iversion_raw(struct inode *inode, u64 val) { u64 cur, old; cur = inode_peek_iversion_raw(inode); for (;;) { if (cur > val) break; old = atomic64_cmpxchg(&inode->i_version, cur, val); if (likely(old == cur)) break; cur = old; } } /** * inode_set_iversion - set i_version to a particular value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for filesystems with * a kernel-managed i_version, for initializing a newly-created inode from * scratch. * * In this case, we do not set the QUERIED flag since we know that this value * has never been queried. */ static inline void inode_set_iversion(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, val << I_VERSION_QUERIED_SHIFT); } /** * inode_set_iversion_queried - set i_version to a particular value as quereied * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val, and flag it for increment on the next * change. * * Filesystems that persistently store the i_version on disk should use this * when loading an existing inode from disk. * * When loading in an i_version value from a backing store, we can't be certain * that it wasn't previously viewed before being stored. Thus, we must assume * that it was, to ensure that we don't end up handing out the same value for * different versions of the same inode. */ static inline void inode_set_iversion_queried(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, (val << I_VERSION_QUERIED_SHIFT) | I_VERSION_QUERIED); } /** * inode_maybe_inc_iversion - increments i_version * @inode: inode with the i_version that should be updated * @force: increment the counter even if it's not necessary? * * Every time the inode is modified, the i_version field must be seen to have * changed by any observer. * * If "force" is set or the QUERIED flag is set, then ensure that we increment * the value, and clear the queried flag. * * In the common case where neither is set, then we can return "false" without * updating i_version. * * If this function returns false, and no other metadata has changed, then we * can avoid logging the metadata. */ static inline bool inode_maybe_inc_iversion(struct inode *inode, bool force) { u64 cur, old, new; /* * The i_version field is not strictly ordered with any other inode * information, but the legacy inode_inc_iversion code used a spinlock * to serialize increments. * * Here, we add full memory barriers to ensure that any de-facto * ordering with other info is preserved. * * This barrier pairs with the barrier in inode_query_iversion() */ smp_mb(); cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is clear then we needn't do anything */ if (!force && !(cur & I_VERSION_QUERIED)) return false; /* Since lowest bit is flag, add 2 to avoid it */ new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return true; } /** * inode_inc_iversion - forcibly increment i_version * @inode: inode that needs to be updated * * Forcbily increment the i_version field. This always results in a change to * the observable value. */ static inline void inode_inc_iversion(struct inode *inode) { inode_maybe_inc_iversion(inode, true); } /** * inode_iversion_need_inc - is the i_version in need of being incremented? * @inode: inode to check * * Returns whether the inode->i_version counter needs incrementing on the next * change. Just fetch the value and check the QUERIED flag. */ static inline bool inode_iversion_need_inc(struct inode *inode) { return inode_peek_iversion_raw(inode) & I_VERSION_QUERIED; } /** * inode_inc_iversion_raw - forcibly increment raw i_version * @inode: inode that needs to be updated * * Forcbily increment the raw i_version field. This always results in a change * to the raw value. * * NFS will use the i_version field to store the value from the server. It * mostly treats it as opaque, but in the case where it holds a write * delegation, it must increment the value itself. This function does that. */ static inline void inode_inc_iversion_raw(struct inode *inode) { atomic64_inc(&inode->i_version); } /** * inode_peek_iversion - read i_version without flagging it to be incremented * @inode: inode from which i_version should be read * * Read the inode i_version counter for an inode without registering it as a * query. * * This is typically used by local filesystems that need to store an i_version * on disk. In that situation, it's not necessary to flag it as having been * viewed, as the result won't be used to gauge changes from that point. */ static inline u64 inode_peek_iversion(const struct inode *inode) { return inode_peek_iversion_raw(inode) >> I_VERSION_QUERIED_SHIFT; } /** * inode_query_iversion - read i_version for later use * @inode: inode from which i_version should be read * * Read the inode i_version counter. This should be used by callers that wish * to store the returned i_version for later comparison. This will guarantee * that a later query of the i_version will result in a different value if * anything has changed. * * In this implementation, we fetch the current value, set the QUERIED flag and * then try to swap it into place with a cmpxchg, if it wasn't already set. If * that fails, we try again with the newly fetched value from the cmpxchg. */ static inline u64 inode_query_iversion(struct inode *inode) { u64 cur, old, new; cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is already set, then no need to swap */ if (cur & I_VERSION_QUERIED) { /* * This barrier (and the implicit barrier in the * cmpxchg below) pairs with the barrier in * inode_maybe_inc_iversion(). */ smp_mb(); break; } new = cur | I_VERSION_QUERIED; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return cur >> I_VERSION_QUERIED_SHIFT; } /** * inode_eq_iversion_raw - check whether the raw i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare the current raw i_version counter with a previous one. Returns true * if they are the same or false if they are different. */ static inline bool inode_eq_iversion_raw(const struct inode *inode, u64 old) { return inode_peek_iversion_raw(inode) == old; } /** * inode_eq_iversion - check whether the i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare an i_version counter with a previous one. Returns true if they are * the same, and false if they are different. * * Note that we don't need to set the QUERIED flag in this case, as the value * in the inode is not being recorded for later use. */ static inline bool inode_eq_iversion(const struct inode *inode, u64 old) { return inode_peek_iversion(inode) == old; } #endif
1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 // SPDX-License-Identifier: GPL-2.0-only /* * Simple NUMA memory policy for the Linux kernel. * * Copyright 2003,2004 Andi Kleen, SuSE Labs. * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. * * NUMA policy allows the user to give hints in which node(s) memory should * be allocated. * * Support four policies per VMA and per process: * * The VMA policy has priority over the process policy for a page fault. * * interleave Allocate memory interleaved over a set of nodes, * with normal fallback if it fails. * For VMA based allocations this interleaves based on the * offset into the backing object or offset into the mapping * for anonymous memory. For process policy an process counter * is used. * * bind Only allocate memory on a specific set of nodes, * no fallback. * FIXME: memory is allocated starting with the first node * to the last. It would be better if bind would truly restrict * the allocation to memory nodes instead * * preferred Try a specific node first before normal fallback. * As a special case NUMA_NO_NODE here means do the allocation * on the local CPU. This is normally identical to default, * but useful to set in a VMA when you have a non default * process policy. * * default Allocate on the local node first, or when on a VMA * use the process policy. This is what Linux always did * in a NUMA aware kernel and still does by, ahem, default. * * The process policy is applied for most non interrupt memory allocations * in that process' context. Interrupts ignore the policies and always * try to allocate on the local CPU. The VMA policy is only applied for memory * allocations for a VMA in the VM. * * Currently there are a few corner cases in swapping where the policy * is not applied, but the majority should be handled. When process policy * is used it is not remembered over swap outs/swap ins. * * Only the highest zone in the zone hierarchy gets policied. Allocations * requesting a lower zone just use default policy. This implies that * on systems with highmem kernel lowmem allocation don't get policied. * Same with GFP_DMA allocations. * * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between * all users and remembered even when nobody has memory mapped. */ /* Notebook: fix mmap readahead to honour policy and enable policy for any page cache object statistics for bigpages global policy for page cache? currently it uses process policy. Requires first item above. handle mremap for shared memory (currently ignored for the policy) grows down? make bind policy root only? It can trigger oom much faster and the kernel is not always grateful with that. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/mempolicy.h> #include <linux/pagewalk.h> #include <linux/highmem.h> #include <linux/hugetlb.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/nodemask.h> #include <linux/cpuset.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/export.h> #include <linux/nsproxy.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/compat.h> #include <linux/ptrace.h> #include <linux/swap.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/migrate.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/ctype.h> #include <linux/mm_inline.h> #include <linux/mmu_notifier.h> #include <linux/printk.h> #include <linux/swapops.h> #include <asm/tlbflush.h> #include <linux/uaccess.h> #include "internal.h" /* Internal flags */ #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ static struct kmem_cache *policy_cache; static struct kmem_cache *sn_cache; /* Highest zone. An specific allocation for a zone below that is not policied. */ enum zone_type policy_zone = 0; /* * run-time system-wide default policy => local allocation */ static struct mempolicy default_policy = { .refcnt = ATOMIC_INIT(1), /* never free it */ .mode = MPOL_PREFERRED, .flags = MPOL_F_LOCAL, }; static struct mempolicy preferred_node_policy[MAX_NUMNODES]; /** * numa_map_to_online_node - Find closest online node * @node: Node id to start the search * * Lookup the next closest node by distance if @nid is not online. */ int numa_map_to_online_node(int node) { int min_dist = INT_MAX, dist, n, min_node; if (node == NUMA_NO_NODE || node_online(node)) return node; min_node = node; for_each_online_node(n) { dist = node_distance(node, n); if (dist < min_dist) { min_dist = dist; min_node = n; } } return min_node; } EXPORT_SYMBOL_GPL(numa_map_to_online_node); struct mempolicy *get_task_policy(struct task_struct *p) { struct mempolicy *pol = p->mempolicy; int node; if (pol) return pol; node = numa_node_id(); if (node != NUMA_NO_NODE) { pol = &preferred_node_policy[node]; /* preferred_node_policy is not initialised early in boot */ if (pol->mode) return pol; } return &default_policy; } static const struct mempolicy_operations { int (*create)(struct mempolicy *pol, const nodemask_t *nodes); void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); } mpol_ops[MPOL_MAX]; static inline int mpol_store_user_nodemask(const struct mempolicy *pol) { return pol->flags & MPOL_MODE_FLAGS; } static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, const nodemask_t *rel) { nodemask_t tmp; nodes_fold(tmp, *orig, nodes_weight(*rel)); nodes_onto(*ret, tmp, *rel); } static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; pol->v.nodes = *nodes; return 0; } static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) { if (!nodes) pol->flags |= MPOL_F_LOCAL; /* local allocation */ else if (nodes_empty(*nodes)) return -EINVAL; /* no allowed nodes */ else pol->v.preferred_node = first_node(*nodes); return 0; } static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; pol->v.nodes = *nodes; return 0; } /* * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if * any, for the new policy. mpol_new() has already validated the nodes * parameter with respect to the policy mode and flags. But, we need to * handle an empty nodemask with MPOL_PREFERRED here. * * Must be called holding task's alloc_lock to protect task's mems_allowed * and mempolicy. May also be called holding the mmap_lock for write. */ static int mpol_set_nodemask(struct mempolicy *pol, const nodemask_t *nodes, struct nodemask_scratch *nsc) { int ret; /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ if (pol == NULL) return 0; /* Check N_MEMORY */ nodes_and(nsc->mask1, cpuset_current_mems_allowed, node_states[N_MEMORY]); VM_BUG_ON(!nodes); if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) nodes = NULL; /* explicit local allocation */ else { if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); else nodes_and(nsc->mask2, *nodes, nsc->mask1); if (mpol_store_user_nodemask(pol)) pol->w.user_nodemask = *nodes; else pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; } if (nodes) ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); else ret = mpol_ops[pol->mode].create(pol, NULL); return ret; } /* * This function just creates a new policy, does some check and simple * initialization. You must invoke mpol_set_nodemask() to set nodes. */ static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *policy; pr_debug("setting mode %d flags %d nodes[0] %lx\n", mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); if (mode == MPOL_DEFAULT) { if (nodes && !nodes_empty(*nodes)) return ERR_PTR(-EINVAL); return NULL; } VM_BUG_ON(!nodes); /* * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). * All other modes require a valid pointer to a non-empty nodemask. */ if (mode == MPOL_PREFERRED) { if (nodes_empty(*nodes)) { if (((flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES))) return ERR_PTR(-EINVAL); } } else if (mode == MPOL_LOCAL) { if (!nodes_empty(*nodes) || (flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES)) return ERR_PTR(-EINVAL); mode = MPOL_PREFERRED; } else if (nodes_empty(*nodes)) return ERR_PTR(-EINVAL); policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!policy) return ERR_PTR(-ENOMEM); atomic_set(&policy->refcnt, 1); policy->mode = mode; policy->flags = flags; return policy; } /* Slow path of a mpol destructor. */ void __mpol_put(struct mempolicy *p) { if (!atomic_dec_and_test(&p->refcnt)) return; kmem_cache_free(policy_cache, p); } static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) { } static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) { nodemask_t tmp; if (pol->flags & MPOL_F_STATIC_NODES) nodes_and(tmp, pol->w.user_nodemask, *nodes); else if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); else { nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed, *nodes); pol->w.cpuset_mems_allowed = *nodes; } if (nodes_empty(tmp)) tmp = *nodes; pol->v.nodes = tmp; } static void mpol_rebind_preferred(struct mempolicy *pol, const nodemask_t *nodes) { nodemask_t tmp; if (pol->flags & MPOL_F_STATIC_NODES) { int node = first_node(pol->w.user_nodemask); if (node_isset(node, *nodes)) { pol->v.preferred_node = node; pol->flags &= ~MPOL_F_LOCAL; } else pol->flags |= MPOL_F_LOCAL; } else if (pol->flags & MPOL_F_RELATIVE_NODES) { mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); pol->v.preferred_node = first_node(tmp); } else if (!(pol->flags & MPOL_F_LOCAL)) { pol->v.preferred_node = node_remap(pol->v.preferred_node, pol->w.cpuset_mems_allowed, *nodes); pol->w.cpuset_mems_allowed = *nodes; } } /* * mpol_rebind_policy - Migrate a policy to a different set of nodes * * Per-vma policies are protected by mmap_lock. Allocations using per-task * policies are protected by task->mems_allowed_seq to prevent a premature * OOM/allocation failure due to parallel nodemask modification. */ static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) { if (!pol) return; if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) && nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) return; mpol_ops[pol->mode].rebind(pol, newmask); } /* * Wrapper for mpol_rebind_policy() that just requires task * pointer, and updates task mempolicy. * * Called with task's alloc_lock held. */ void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { mpol_rebind_policy(tsk->mempolicy, new); } /* * Rebind each vma in mm to new nodemask. * * Call holding a reference to mm. Takes mm->mmap_lock during call. */ void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { struct vm_area_struct *vma; mmap_write_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) mpol_rebind_policy(vma->vm_policy, new); mmap_write_unlock(mm); } static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { [MPOL_DEFAULT] = { .rebind = mpol_rebind_default, }, [MPOL_INTERLEAVE] = { .create = mpol_new_interleave, .rebind = mpol_rebind_nodemask, }, [MPOL_PREFERRED] = { .create = mpol_new_preferred, .rebind = mpol_rebind_preferred, }, [MPOL_BIND] = { .create = mpol_new_bind, .rebind = mpol_rebind_nodemask, }, }; static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags); struct queue_pages { struct list_head *pagelist; unsigned long flags; nodemask_t *nmask; unsigned long start; unsigned long end; struct vm_area_struct *first; }; /* * Check if the page's nid is in qp->nmask. * * If MPOL_MF_INVERT is set in qp->flags, check if the nid is * in the invert of qp->nmask. */ static inline bool queue_pages_required(struct page *page, struct queue_pages *qp) { int nid = page_to_nid(page); unsigned long flags = qp->flags; return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); } /* * queue_pages_pmd() has four possible return values: * 0 - pages are placed on the right node or queued successfully. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 2 - THP was split. * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an * existing page was already on a node that does not follow the * policy. */ static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, unsigned long end, struct mm_walk *walk) __releases(ptl) { int ret = 0; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags; if (unlikely(is_pmd_migration_entry(*pmd))) { ret = -EIO; goto unlock; } page = pmd_page(*pmd); if (is_huge_zero_page(page)) { spin_unlock(ptl); __split_huge_pmd(walk->vma, pmd, addr, false, NULL); ret = 2; goto out; } if (!queue_pages_required(page, qp)) goto unlock; flags = qp->flags; /* go to thp migration */ if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { if (!vma_migratable(walk->vma) || migrate_page_add(page, qp->pagelist, flags)) { ret = 1; goto unlock; } } else ret = -EIO; unlock: spin_unlock(ptl); out: return ret; } /* * Scan through pages checking if pages follow certain conditions, * and move them to the pagelist if they do. * * queue_pages_pte_range() has three possible return values: * 0 - pages are placed on the right node or queued successfully. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * -EIO - only MPOL_MF_STRICT was specified and an existing page was already * on a node that does not follow the policy. */ static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags = qp->flags; int ret; bool has_unmovable = false; pte_t *pte, *mapped_pte; spinlock_t *ptl; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { ret = queue_pages_pmd(pmd, ptl, addr, end, walk); if (ret != 2) return ret; } /* THP was split, fall through to pte walk */ if (pmd_trans_unstable(pmd)) return 0; mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { if (!pte_present(*pte)) continue; page = vm_normal_page(vma, addr, *pte); if (!page) continue; /* * vm_normal_page() filters out zero pages, but there might * still be PageReserved pages to skip, perhaps in a VDSO. */ if (PageReserved(page)) continue; if (!queue_pages_required(page, qp)) continue; if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { /* MPOL_MF_STRICT must be specified if we get here */ if (!vma_migratable(vma)) { has_unmovable = true; break; } /* * Do not abort immediately since there may be * temporary off LRU pages in the range. Still * need migrate other LRU pages. */ if (migrate_page_add(page, qp->pagelist, flags)) has_unmovable = true; } else break; } pte_unmap_unlock(mapped_pte, ptl); cond_resched(); if (has_unmovable) return 1; return addr != end ? -EIO : 0; } static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { int ret = 0; #ifdef CONFIG_HUGETLB_PAGE struct queue_pages *qp = walk->private; unsigned long flags = (qp->flags & MPOL_MF_VALID); struct page *page; spinlock_t *ptl; pte_t entry; ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); entry = huge_ptep_get(pte); if (!pte_present(entry)) goto unlock; page = pte_page(entry); if (!queue_pages_required(page, qp)) goto unlock; if (flags == MPOL_MF_STRICT) { /* * STRICT alone means only detecting misplaced page and no * need to further check other vma. */ ret = -EIO; goto unlock; } if (!vma_migratable(walk->vma)) { /* * Must be STRICT with MOVE*, otherwise .test_walk() have * stopped walking current vma. * Detecting misplaced page but allow migrating pages which * have been queued. */ ret = 1; goto unlock; } /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ if (flags & (MPOL_MF_MOVE_ALL) || (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) { if (!isolate_huge_page(page, qp->pagelist) && (flags & MPOL_MF_STRICT)) /* * Failed to isolate page but allow migrating pages * which have been queued. */ ret = 1; } unlock: spin_unlock(ptl); #else BUG(); #endif return ret; } #ifdef CONFIG_NUMA_BALANCING /* * This is used to mark a range of virtual addresses to be inaccessible. * These are later cleared by a NUMA hinting fault. Depending on these * faults, pages may be migrated for better NUMA placement. * * This is assuming that NUMA faults are handled using PROT_NONE. If * an architecture makes a different choice, it will need further * changes to the core. */ unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { int nr_updated; nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); if (nr_updated) count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); return nr_updated; } #else static unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ static int queue_pages_test_walk(unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct queue_pages *qp = walk->private; unsigned long endvma = vma->vm_end; unsigned long flags = qp->flags; /* range check first */ VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma); if (!qp->first) { qp->first = vma; if (!(flags & MPOL_MF_DISCONTIG_OK) && (qp->start < vma->vm_start)) /* hole at head side of range */ return -EFAULT; } if (!(flags & MPOL_MF_DISCONTIG_OK) && ((vma->vm_end < qp->end) && (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) /* hole at middle or tail of range */ return -EFAULT; /* * Need check MPOL_MF_STRICT to return -EIO if possible * regardless of vma_migratable */ if (!vma_migratable(vma) && !(flags & MPOL_MF_STRICT)) return 1; if (endvma > end) endvma = end; if (flags & MPOL_MF_LAZY) { /* Similar to task_numa_work, skip inaccessible VMAs */ if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && !(vma->vm_flags & VM_MIXEDMAP)) change_prot_numa(vma, start, endvma); return 1; } /* queue pages from current vma */ if (flags & MPOL_MF_VALID) return 0; return 1; } static const struct mm_walk_ops queue_pages_walk_ops = { .hugetlb_entry = queue_pages_hugetlb, .pmd_entry = queue_pages_pte_range, .test_walk = queue_pages_test_walk, }; /* * Walk through page tables and collect pages to be migrated. * * If pages found in a given range are on a set of nodes (determined by * @nodes and @flags,) it's isolated and queued to the pagelist which is * passed via @private. * * queue_pages_range() has three possible return values: * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 0 - queue pages successfully or no misplaced page. * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or * memory range specified by nodemask and maxnode points outside * your accessible address space (-EFAULT) */ static int queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, nodemask_t *nodes, unsigned long flags, struct list_head *pagelist) { int err; struct queue_pages qp = { .pagelist = pagelist, .flags = flags, .nmask = nodes, .start = start, .end = end, .first = NULL, }; err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); if (!qp.first) /* whole range in hole */ err = -EFAULT; return err; } /* * Apply policy to a single VMA * This must be called with the mmap_lock held for writing. */ static int vma_replace_policy(struct vm_area_struct *vma, struct mempolicy *pol) { int err; struct mempolicy *old; struct mempolicy *new; pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", vma->vm_start, vma->vm_end, vma->vm_pgoff, vma->vm_ops, vma->vm_file, vma->vm_ops ? vma->vm_ops->set_policy : NULL); new = mpol_dup(pol); if (IS_ERR(new)) return PTR_ERR(new); if (vma->vm_ops && vma->vm_ops->set_policy) { err = vma->vm_ops->set_policy(vma, new); if (err) goto err_out; } old = vma->vm_policy; vma->vm_policy = new; /* protected by mmap_lock */ mpol_put(old); return 0; err_out: mpol_put(new); return err; } /* Step 2: apply policy to a range and do splits. */ static int mbind_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct mempolicy *new_pol) { struct vm_area_struct *next; struct vm_area_struct *prev; struct vm_area_struct *vma; int err = 0; pgoff_t pgoff; unsigned long vmstart; unsigned long vmend; vma = find_vma(mm, start); VM_BUG_ON(!vma); prev = vma->vm_prev; if (start > vma->vm_start) prev = vma; for (; vma && vma->vm_start < end; prev = vma, vma = next) { next = vma->vm_next; vmstart = max(start, vma->vm_start); vmend = min(end, vma->vm_end); if (mpol_equal(vma_policy(vma), new_pol)) continue; pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff, new_pol, vma->vm_userfaultfd_ctx); if (prev) { vma = prev; next = vma->vm_next; if (mpol_equal(vma_policy(vma), new_pol)) continue; /* vma_merge() joined vma && vma->next, case 8 */ goto replace; } if (vma->vm_start != vmstart) { err = split_vma(vma->vm_mm, vma, vmstart, 1); if (err) goto out; } if (vma->vm_end != vmend) { err = split_vma(vma->vm_mm, vma, vmend, 0); if (err) goto out; } replace: err = vma_replace_policy(vma, new_pol); if (err) goto out; } out: return err; } /* Set the process memory policy */ static long do_set_mempolicy(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *new, *old; NODEMASK_SCRATCH(scratch); int ret; if (!scratch) return -ENOMEM; new = mpol_new(mode, flags, nodes); if (IS_ERR(new)) { ret = PTR_ERR(new); goto out; } ret = mpol_set_nodemask(new, nodes, scratch); if (ret) { mpol_put(new); goto out; } task_lock(current); old = current->mempolicy; current->mempolicy = new; if (new && new->mode == MPOL_INTERLEAVE) current->il_prev = MAX_NUMNODES-1; task_unlock(current); mpol_put(old); ret = 0; out: NODEMASK_SCRATCH_FREE(scratch); return ret; } /* * Return nodemask for policy for get_mempolicy() query * * Called with task's alloc_lock held */ static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) { nodes_clear(*nodes); if (p == &default_policy) return; switch (p->mode) { case MPOL_BIND: case MPOL_INTERLEAVE: *nodes = p->v.nodes; break; case MPOL_PREFERRED: if (!(p->flags & MPOL_F_LOCAL)) node_set(p->v.preferred_node, *nodes); /* else return empty node mask for local allocation */ break; default: BUG(); } } static int lookup_node(struct mm_struct *mm, unsigned long addr) { struct page *p = NULL; int err; int locked = 1; err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); if (err > 0) { err = page_to_nid(p); put_page(p); } if (locked) mmap_read_unlock(mm); return err; } /* Retrieve NUMA policy */ static long do_get_mempolicy(int *policy, nodemask_t *nmask, unsigned long addr, unsigned long flags) { int err; struct mm_struct *mm = current->mm; struct vm_area_struct *vma = NULL; struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) return -EINVAL; if (flags & MPOL_F_MEMS_ALLOWED) { if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) return -EINVAL; *policy = 0; /* just so it's initialized */ task_lock(current); *nmask = cpuset_current_mems_allowed; task_unlock(current); return 0; } if (flags & MPOL_F_ADDR) { /* * Do NOT fall back to task policy if the * vma/shared policy at addr is NULL. We * want to return MPOL_DEFAULT in this case. */ mmap_read_lock(mm); vma = find_vma_intersection(mm, addr, addr+1); if (!vma) { mmap_read_unlock(mm); return -EFAULT; } if (vma->vm_ops && vma->vm_ops->get_policy) pol = vma->vm_ops->get_policy(vma, addr); else pol = vma->vm_policy; } else if (addr) return -EINVAL; if (!pol) pol = &default_policy; /* indicates default behavior */ if (flags & MPOL_F_NODE) { if (flags & MPOL_F_ADDR) { /* * Take a refcount on the mpol, lookup_node() * wil drop the mmap_lock, so after calling * lookup_node() only "pol" remains valid, "vma" * is stale. */ pol_refcount = pol; vma = NULL; mpol_get(pol); err = lookup_node(mm, addr); if (err < 0) goto out; *policy = err; } else if (pol == current->mempolicy && pol->mode == MPOL_INTERLEAVE) { *policy = next_node_in(current->il_prev, pol->v.nodes); } else { err = -EINVAL; goto out; } } else { *policy = pol == &default_policy ? MPOL_DEFAULT : pol->mode; /* * Internal mempolicy flags must be masked off before exposing * the policy to userspace. */ *policy |= (pol->flags & MPOL_MODE_FLAGS); } err = 0; if (nmask) { if (mpol_store_user_nodemask(pol)) { *nmask = pol->w.user_nodemask; } else { task_lock(current); get_policy_nodemask(pol, nmask); task_unlock(current); } } out: mpol_cond_put(pol); if (vma) mmap_read_unlock(mm); if (pol_refcount) mpol_put(pol_refcount); return err; } #ifdef CONFIG_MIGRATION /* * page migration, thp tail pages can be passed. */ static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { struct page *head = compound_head(page); /* * Avoid migrating a page that is shared with others. */ if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { if (!isolate_lru_page(head)) { list_add_tail(&head->lru, pagelist); mod_node_page_state(page_pgdat(head), NR_ISOLATED_ANON + page_is_file_lru(head), thp_nr_pages(head)); } else if (flags & MPOL_MF_STRICT) { /* * Non-movable page may reach here. And, there may be * temporary off LRU pages or non-LRU movable pages. * Treat them as unmovable pages since they can't be * isolated, so they can't be moved at the moment. It * should return -EIO for this case too. */ return -EIO; } } return 0; } /* * Migrate pages from one node to a target node. * Returns error or the number of pages not migrated. */ static int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags) { nodemask_t nmask; LIST_HEAD(pagelist); int err = 0; struct migration_target_control mtc = { .nid = dest, .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, }; nodes_clear(nmask); node_set(source, nmask); /* * This does not "check" the range but isolates all pages that * need migration. Between passing in the full user address * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. */ VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, flags | MPOL_MF_DISCONTIG_OK, &pagelist); if (!list_empty(&pagelist)) { err = migrate_pages(&pagelist, alloc_migration_target, NULL, (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); if (err) putback_movable_pages(&pagelist); } return err; } /* * Move pages between the two nodesets so as to preserve the physical * layout as much as possible. * * Returns the number of page that could not be moved. */ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { int busy = 0; int err; nodemask_t tmp; err = migrate_prep(); if (err) return err; mmap_read_lock(mm); /* * Find a 'source' bit set in 'tmp' whose corresponding 'dest' * bit in 'to' is not also set in 'tmp'. Clear the found 'source' * bit in 'tmp', and return that <source, dest> pair for migration. * The pair of nodemasks 'to' and 'from' define the map. * * If no pair of bits is found that way, fallback to picking some * pair of 'source' and 'dest' bits that are not the same. If the * 'source' and 'dest' bits are the same, this represents a node * that will be migrating to itself, so no pages need move. * * If no bits are left in 'tmp', or if all remaining bits left * in 'tmp' correspond to the same bit in 'to', return false * (nothing left to migrate). * * This lets us pick a pair of nodes to migrate between, such that * if possible the dest node is not already occupied by some other * source node, minimizing the risk of overloading the memory on a * node that would happen if we migrated incoming memory to a node * before migrating outgoing memory source that same node. * * A single scan of tmp is sufficient. As we go, we remember the * most recent <s, d> pair that moved (s != d). If we find a pair * that not only moved, but what's better, moved to an empty slot * (d is not set in tmp), then we break out then, with that pair. * Otherwise when we finish scanning from_tmp, we at least have the * most recent <s, d> pair that moved. If we get all the way through * the scan of tmp without finding any node that moved, much less * moved to an empty node, then there is nothing left worth migrating. */ tmp = *from; while (!nodes_empty(tmp)) { int s,d; int source = NUMA_NO_NODE; int dest = 0; for_each_node_mask(s, tmp) { /* * do_migrate_pages() tries to maintain the relative * node relationship of the pages established between * threads and memory areas. * * However if the number of source nodes is not equal to * the number of destination nodes we can not preserve * this node relative relationship. In that case, skip * copying memory from a node that is in the destination * mask. * * Example: [2,3,4] -> [3,4,5] moves everything. * [0-7] - > [3,4,5] moves only 0,1,2,6,7. */ if ((nodes_weight(*from) != nodes_weight(*to)) && (node_isset(s, *to))) continue; d = node_remap(s, *from, *to); if (s == d) continue; source = s; /* Node moved. Memorize */ dest = d; /* dest not in remaining from nodes? */ if (!node_isset(dest, tmp)) break; } if (source == NUMA_NO_NODE) break; node_clear(source, tmp); err = migrate_to_node(mm, source, dest, flags); if (err > 0) busy += err; if (err < 0) break; } mmap_read_unlock(mm); if (err < 0) return err; return busy; } /* * Allocate a new page for page migration based on vma policy. * Start by assuming the page is mapped by the same vma as contains @start. * Search forward from there, if not. N.B., this assumes that the * list of pages handed to migrate_pages()--which is how we get here-- * is in virtual address order. */ static struct page *new_page(struct page *page, unsigned long start) { struct vm_area_struct *vma; unsigned long address; vma = find_vma(current->mm, start); while (vma) { address = page_address_in_vma(page, vma); if (address != -EFAULT) break; vma = vma->vm_next; } if (PageHuge(page)) { return alloc_huge_page_vma(page_hstate(compound_head(page)), vma, address); } else if (PageTransHuge(page)) { struct page *thp; thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, HPAGE_PMD_ORDER); if (!thp) return NULL; prep_transhuge_page(thp); return thp; } /* * if !vma, alloc_page_vma() will use task or system default policy */ return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, vma, address); } #else static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { return -EIO; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return -ENOSYS; } static struct page *new_page(struct page *page, unsigned long start) { return NULL; } #endif static long do_mbind(unsigned long start, unsigned long len, unsigned short mode, unsigned short mode_flags, nodemask_t *nmask, unsigned long flags) { struct mm_struct *mm = current->mm; struct mempolicy *new; unsigned long end; int err; int ret; LIST_HEAD(pagelist); if (flags & ~(unsigned long)MPOL_MF_VALID) return -EINVAL; if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) return -EPERM; if (start & ~PAGE_MASK) return -EINVAL; if (mode == MPOL_DEFAULT) flags &= ~MPOL_MF_STRICT; len = (len + PAGE_SIZE - 1) & PAGE_MASK; end = start + len; if (end < start) return -EINVAL; if (end == start) return 0; new = mpol_new(mode, mode_flags, nmask); if (IS_ERR(new)) return PTR_ERR(new); if (flags & MPOL_MF_LAZY) new->flags |= MPOL_F_MOF; /* * If we are using the default policy then operation * on discontinuous address spaces is okay after all */ if (!new) flags |= MPOL_MF_DISCONTIG_OK; pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", start, start + len, mode, mode_flags, nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { err = migrate_prep(); if (err) goto mpol_out; } { NODEMASK_SCRATCH(scratch); if (scratch) { mmap_write_lock(mm); err = mpol_set_nodemask(new, nmask, scratch); if (err) mmap_write_unlock(mm); } else err = -ENOMEM; NODEMASK_SCRATCH_FREE(scratch); } if (err) goto mpol_out; ret = queue_pages_range(mm, start, end, nmask, flags | MPOL_MF_INVERT, &pagelist); if (ret < 0) { err = ret; goto up_out; } err = mbind_range(mm, start, end, new); if (!err) { int nr_failed = 0; if (!list_empty(&pagelist)) { WARN_ON_ONCE(flags & MPOL_MF_LAZY); nr_failed = migrate_pages(&pagelist, new_page, NULL, start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); if (nr_failed) putback_movable_pages(&pagelist); } if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) err = -EIO; } else { up_out: if (!list_empty(&pagelist)) putback_movable_pages(&pagelist); } mmap_write_unlock(mm); mpol_out: mpol_put(new); return err; } /* * User space interface with variable sized bitmaps for nodelists. */ /* Copy a node mask from user space. */ static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, unsigned long maxnode) { unsigned long k; unsigned long t; unsigned long nlongs; unsigned long endmask; --maxnode; nodes_clear(*nodes); if (maxnode == 0 || !nmask) return 0; if (maxnode > PAGE_SIZE*BITS_PER_BYTE) return -EINVAL; nlongs = BITS_TO_LONGS(maxnode); if ((maxnode % BITS_PER_LONG) == 0) endmask = ~0UL; else endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; /* * When the user specified more nodes than supported just check * if the non supported part is all zero. * * If maxnode have more longs than MAX_NUMNODES, check * the bits in that area first. And then go through to * check the rest bits which equal or bigger than MAX_NUMNODES. * Otherwise, just check bits [MAX_NUMNODES, maxnode). */ if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { if (get_user(t, nmask + k)) return -EFAULT; if (k == nlongs - 1) { if (t & endmask) return -EINVAL; } else if (t) return -EINVAL; } nlongs = BITS_TO_LONGS(MAX_NUMNODES); endmask = ~0UL; } if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) { unsigned long valid_mask = endmask; valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); if (get_user(t, nmask + nlongs - 1)) return -EFAULT; if (t & valid_mask) return -EINVAL; } if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) return -EFAULT; nodes_addr(*nodes)[nlongs-1] &= endmask; return 0; } /* Copy a kernel node mask to user space */ static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, nodemask_t *nodes) { unsigned long copy = ALIGN(maxnode-1, 64) / 8; unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); if (copy > nbytes) { if (copy > PAGE_SIZE) return -EINVAL; if (clear_user((char __user *)mask + nbytes, copy - nbytes)) return -EFAULT; copy = nbytes; } return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; } static long kernel_mbind(unsigned long start, unsigned long len, unsigned long mode, const unsigned long __user *nmask, unsigned long maxnode, unsigned int flags) { nodemask_t nodes; int err; unsigned short mode_flags; start = untagged_addr(start); mode_flags = mode & MPOL_MODE_FLAGS; mode &= ~MPOL_MODE_FLAGS; if (mode >= MPOL_MAX) return -EINVAL; if ((mode_flags & MPOL_F_STATIC_NODES) && (mode_flags & MPOL_F_RELATIVE_NODES)) return -EINVAL; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_mbind(start, len, mode, mode_flags, &nodes, flags); } SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, unsigned long, mode, const unsigned long __user *, nmask, unsigned long, maxnode, unsigned int, flags) { return kernel_mbind(start, len, mode, nmask, maxnode, flags); } /* Set the process memory policy */ static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, unsigned long maxnode) { int err; nodemask_t nodes; unsigned short flags; flags = mode & MPOL_MODE_FLAGS; mode &= ~MPOL_MODE_FLAGS; if ((unsigned int)mode >= MPOL_MAX) return -EINVAL; if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) return -EINVAL; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_set_mempolicy(mode, flags, &nodes); } SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, unsigned long, maxnode) { return kernel_set_mempolicy(mode, nmask, maxnode); } static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, const unsigned long __user *old_nodes, const unsigned long __user *new_nodes) { struct mm_struct *mm = NULL; struct task_struct *task; nodemask_t task_nodes; int err; nodemask_t *old; nodemask_t *new; NODEMASK_SCRATCH(scratch); if (!scratch) return -ENOMEM; old = &scratch->mask1; new = &scratch->mask2; err = get_nodes(old, old_nodes, maxnode); if (err) goto out; err = get_nodes(new, new_nodes, maxnode); if (err) goto out; /* Find the mm_struct */ rcu_read_lock(); task = pid ? find_task_by_vpid(pid) : current; if (!task) { rcu_read_unlock(); err = -ESRCH; goto out; } get_task_struct(task); err = -EINVAL; /* * Check if this process has the right to modify the specified process. * Use the regular "ptrace_may_access()" checks. */ if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { rcu_read_unlock(); err = -EPERM; goto out_put; } rcu_read_unlock(); task_nodes = cpuset_mems_allowed(task); /* Is the user allowed to access the target nodes? */ if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { err = -EPERM; goto out_put; } task_nodes = cpuset_mems_allowed(current); nodes_and(*new, *new, task_nodes); if (nodes_empty(*new)) goto out_put; err = security_task_movememory(task); if (err) goto out_put; mm = get_task_mm(task); put_task_struct(task); if (!mm) { err = -EINVAL; goto out; } err = do_migrate_pages(mm, old, new, capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); mmput(mm); out: NODEMASK_SCRATCH_FREE(scratch); return err; out_put: put_task_struct(task); goto out; } SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, const unsigned long __user *, old_nodes, const unsigned long __user *, new_nodes) { return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); } /* Retrieve NUMA policy */ static int kernel_get_mempolicy(int __user *policy, unsigned long __user *nmask, unsigned long maxnode, unsigned long addr, unsigned long flags) { int err; int pval; nodemask_t nodes; if (nmask != NULL && maxnode < nr_node_ids) return -EINVAL; addr = untagged_addr(addr); err = do_get_mempolicy(&pval, &nodes, addr, flags); if (err) return err; if (policy && put_user(pval, policy)) return -EFAULT; if (nmask) err = copy_nodes_to_user(nmask, maxnode, &nodes); return err; } SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, unsigned long __user *, nmask, unsigned long, maxnode, unsigned long, addr, unsigned long, flags) { return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode, compat_ulong_t, addr, compat_ulong_t, flags) { long err; unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; DECLARE_BITMAP(bm, MAX_NUMNODES); nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) nm = compat_alloc_user_space(alloc_size); err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags); if (!err && nmask) { unsigned long copy_size; copy_size = min_t(unsigned long, sizeof(bm), alloc_size); err = copy_from_user(bm, nm, copy_size); /* ensure entire bitmap is zeroed */ err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); err |= compat_put_bitmap(nmask, bm, nr_bits); } return err; } COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode) { unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; DECLARE_BITMAP(bm, MAX_NUMNODES); nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) { if (compat_get_bitmap(bm, nmask, nr_bits)) return -EFAULT; nm = compat_alloc_user_space(alloc_size); if (copy_to_user(nm, bm, alloc_size)) return -EFAULT; } return kernel_set_mempolicy(mode, nm, nr_bits+1); } COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len, compat_ulong_t, mode, compat_ulong_t __user *, nmask, compat_ulong_t, maxnode, compat_ulong_t, flags) { unsigned long __user *nm = NULL; unsigned long nr_bits, alloc_size; nodemask_t bm; nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (nmask) { if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits)) return -EFAULT; nm = compat_alloc_user_space(alloc_size); if (copy_to_user(nm, nodes_addr(bm), alloc_size)) return -EFAULT; } return kernel_mbind(start, len, mode, nm, nr_bits+1, flags); } COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid, compat_ulong_t, maxnode, const compat_ulong_t __user *, old_nodes, const compat_ulong_t __user *, new_nodes) { unsigned long __user *old = NULL; unsigned long __user *new = NULL; nodemask_t tmp_mask; unsigned long nr_bits; unsigned long size; nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES); size = ALIGN(nr_bits, BITS_PER_LONG) / 8; if (old_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits)) return -EFAULT; old = compat_alloc_user_space(new_nodes ? size * 2 : size); if (new_nodes) new = old + size / sizeof(unsigned long); if (copy_to_user(old, nodes_addr(tmp_mask), size)) return -EFAULT; } if (new_nodes) { if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits)) return -EFAULT; if (new == NULL) new = compat_alloc_user_space(size); if (copy_to_user(new, nodes_addr(tmp_mask), size)) return -EFAULT; } return kernel_migrate_pages(pid, nr_bits + 1, old, new); } #endif /* CONFIG_COMPAT */ bool vma_migratable(struct vm_area_struct *vma) { if (vma->vm_flags & (VM_IO | VM_PFNMAP)) return false; /* * DAX device mappings require predictable access latency, so avoid * incurring periodic faults. */ if (vma_is_dax(vma)) return false; if (is_vm_hugetlb_page(vma) && !hugepage_migration_supported(hstate_vma(vma))) return false; /* * Migration allocates pages in the highest zone. If we cannot * do so then migration (at least from node to node) is not * possible. */ if (vma->vm_file && gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) < policy_zone) return false; return true; } struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = NULL; if (vma) { if (vma->vm_ops && vma->vm_ops->get_policy) { pol = vma->vm_ops->get_policy(vma, addr); } else if (vma->vm_policy) { pol = vma->vm_policy; /* * shmem_alloc_page() passes MPOL_F_SHARED policy with * a pseudo vma whose vma->vm_ops=NULL. Take a reference * count on these policies which will be dropped by * mpol_cond_put() later */ if (mpol_needs_cond_ref(pol)) mpol_get(pol); } } return pol; } /* * get_vma_policy(@vma, @addr) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup * * Returns effective policy for a VMA at specified address. * Falls back to current->mempolicy or system default policy, as necessary. * Shared policies [those marked as MPOL_F_SHARED] require an extra reference * count--added by the get_policy() vm_op, as appropriate--to protect against * freeing by another task. It is the caller's responsibility to free the * extra reference for shared policies. */ static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = __get_vma_policy(vma, addr); if (!pol) pol = get_task_policy(current); return pol; } bool vma_policy_mof(struct vm_area_struct *vma) { struct mempolicy *pol; if (vma->vm_ops && vma->vm_ops->get_policy) { bool ret = false; pol = vma->vm_ops->get_policy(vma, vma->vm_start); if (pol && (pol->flags & MPOL_F_MOF)) ret = true; mpol_cond_put(pol); return ret; } pol = vma->vm_policy; if (!pol) pol = get_task_policy(current); return pol->flags & MPOL_F_MOF; } static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) { enum zone_type dynamic_policy_zone = policy_zone; BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); /* * if policy->v.nodes has movable memory only, * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. * * policy->v.nodes is intersect with node_states[N_MEMORY]. * so if the following test faile, it implies * policy->v.nodes has movable memory only. */ if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) dynamic_policy_zone = ZONE_MOVABLE; return zone >= dynamic_policy_zone; } /* * Return a nodemask representing a mempolicy for filtering nodes for * page allocation */ nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) { /* Lower zones don't get a nodemask applied for MPOL_BIND */ if (unlikely(policy->mode == MPOL_BIND) && apply_policy_zone(policy, gfp_zone(gfp)) && cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) return &policy->v.nodes; return NULL; } /* Return the node id preferred by the given mempolicy, or the given id */ static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) { if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL)) nd = policy->v.preferred_node; else { /* * __GFP_THISNODE shouldn't even be used with the bind policy * because we might easily break the expectation to stay on the * requested node and not break the policy. */ WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); } return nd; } /* Do dynamic interleaving for a process */ static unsigned interleave_nodes(struct mempolicy *policy) { unsigned next; struct task_struct *me = current; next = next_node_in(me->il_prev, policy->v.nodes); if (next < MAX_NUMNODES) me->il_prev = next; return next; } /* * Depending on the memory policy provide a node from which to allocate the * next slab entry. */ unsigned int mempolicy_slab_node(void) { struct mempolicy *policy; int node = numa_mem_id(); if (in_interrupt()) return node; policy = current->mempolicy; if (!policy || policy->flags & MPOL_F_LOCAL) return node; switch (policy->mode) { case MPOL_PREFERRED: /* * handled MPOL_F_LOCAL above */ return policy->v.preferred_node; case MPOL_INTERLEAVE: return interleave_nodes(policy); case MPOL_BIND: { struct zoneref *z; /* * Follow bind policy behavior and start allocation at the * first node. */ struct zonelist *zonelist; enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; z = first_zones_zonelist(zonelist, highest_zoneidx, &policy->v.nodes); return z->zone ? zone_to_nid(z->zone) : node; } default: BUG(); } } /* * Do static interleaving for a VMA with known offset @n. Returns the n'th * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the * number of present nodes. */ static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) { unsigned nnodes = nodes_weight(pol->v.nodes); unsigned target; int i; int nid; if (!nnodes) return numa_node_id(); target = (unsigned int)n % nnodes; nid = first_node(pol->v.nodes); for (i = 0; i < target; i++) nid = next_node(nid, pol->v.nodes); return nid; } /* Determine a node number for interleave */ static inline unsigned interleave_nid(struct mempolicy *pol, struct vm_area_struct *vma, unsigned long addr, int shift) { if (vma) { unsigned long off; /* * for small pages, there is no difference between * shift and PAGE_SHIFT, so the bit-shift is safe. * for huge pages, since vm_pgoff is in units of small * pages, we need to shift off the always 0 bits to get * a useful offset. */ BUG_ON(shift < PAGE_SHIFT); off = vma->vm_pgoff >> (shift - PAGE_SHIFT); off += (addr - vma->vm_start) >> shift; return offset_il_node(pol, off); } else return interleave_nodes(pol); } #ifdef CONFIG_HUGETLBFS /* * huge_node(@vma, @addr, @gfp_flags, @mpol) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup and interleave policy * @gfp_flags: for requested zone * @mpol: pointer to mempolicy pointer for reference counted mempolicy * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask * * Returns a nid suitable for a huge page allocation and a pointer * to the struct mempolicy for conditional unref after allocation. * If the effective policy is 'BIND, returns a pointer to the mempolicy's * @nodemask for filtering the zonelist. * * Must be protected by read_mems_allowed_begin() */ int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { int nid; *mpol = get_vma_policy(vma, addr); *nodemask = NULL; /* assume !MPOL_BIND */ if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { nid = interleave_nid(*mpol, vma, addr, huge_page_shift(hstate_vma(vma))); } else { nid = policy_node(gfp_flags, *mpol, numa_node_id()); if ((*mpol)->mode == MPOL_BIND) *nodemask = &(*mpol)->v.nodes; } return nid; } /* * init_nodemask_of_mempolicy * * If the current task's mempolicy is "default" [NULL], return 'false' * to indicate default policy. Otherwise, extract the policy nodemask * for 'bind' or 'interleave' policy into the argument nodemask, or * initialize the argument nodemask to contain the single node for * 'preferred' or 'local' policy and return 'true' to indicate presence * of non-default mempolicy. * * We don't bother with reference counting the mempolicy [mpol_get/put] * because the current task is examining it's own mempolicy and a task's * mempolicy is only ever changed by the task itself. * * N.B., it is the caller's responsibility to free a returned nodemask. */ bool init_nodemask_of_mempolicy(nodemask_t *mask) { struct mempolicy *mempolicy; int nid; if (!(mask && current->mempolicy)) return false; task_lock(current); mempolicy = current->mempolicy; switch (mempolicy->mode) { case MPOL_PREFERRED: if (mempolicy->flags & MPOL_F_LOCAL) nid = numa_node_id(); else nid = mempolicy->v.preferred_node; init_nodemask_of_node(mask, nid); break; case MPOL_BIND: case MPOL_INTERLEAVE: *mask = mempolicy->v.nodes; break; default: BUG(); } task_unlock(current); return true; } #endif /* * mempolicy_nodemask_intersects * * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default * policy. Otherwise, check for intersection between mask and the policy * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' * policy, always return true since it may allocate elsewhere on fallback. * * Takes task_lock(tsk) to prevent freeing of its mempolicy. */ bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask) { struct mempolicy *mempolicy; bool ret = true; if (!mask) return ret; task_lock(tsk); mempolicy = tsk->mempolicy; if (!mempolicy) goto out; switch (mempolicy->mode) { case MPOL_PREFERRED: /* * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to * allocate from, they may fallback to other nodes when oom. * Thus, it's possible for tsk to have allocated memory from * nodes in mask. */ break; case MPOL_BIND: case MPOL_INTERLEAVE: ret = nodes_intersects(mempolicy->v.nodes, *mask); break; default: BUG(); } out: task_unlock(tsk); return ret; } /* Allocate a page in interleaved policy. Own path because it needs to do special accounting. */ static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, unsigned nid) { struct page *page; page = __alloc_pages(gfp, order, nid); /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ if (!static_branch_likely(&vm_numa_stat_key)) return page; if (page && page_to_nid(page) == nid) { preempt_disable(); __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT); preempt_enable(); } return page; } /** * alloc_pages_vma - Allocate a page for a VMA. * * @gfp: * %GFP_USER user allocation. * %GFP_KERNEL kernel allocations, * %GFP_HIGHMEM highmem/user allocations, * %GFP_FS allocation should not call back into a file system. * %GFP_ATOMIC don't sleep. * * @order:Order of the GFP allocation. * @vma: Pointer to VMA or NULL if not available. * @addr: Virtual Address of the allocation. Must be inside the VMA. * @node: Which node to prefer for allocation (modulo policy). * @hugepage: for hugepages try only the preferred node if possible * * This function allocates a page from the kernel page pool and applies * a NUMA policy associated with the VMA or the current process. * When VMA is not NULL caller must read-lock the mmap_lock of the * mm_struct of the VMA to prevent it from going away. Should be used for * all allocations for pages that will be mapped into user space. Returns * NULL when no page can be allocated. */ struct page * alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, unsigned long addr, int node, bool hugepage) { struct mempolicy *pol; struct page *page; int preferred_nid; nodemask_t *nmask; pol = get_vma_policy(vma, addr); if (pol->mode == MPOL_INTERLEAVE) { unsigned nid; nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); mpol_cond_put(pol); page = alloc_page_interleave(gfp, order, nid); goto out; } if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { int hpage_node = node; /* * For hugepage allocation and non-interleave policy which * allows the current node (or other explicitly preferred * node) we only try to allocate from the current/preferred * node and don't fall back to other nodes, as the cost of * remote accesses would likely offset THP benefits. * * If the policy is interleave, or does not allow the current * node in its nodemask, we allocate the standard way. */ if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL)) hpage_node = pol->v.preferred_node; nmask = policy_nodemask(gfp, pol); if (!nmask || node_isset(hpage_node, *nmask)) { mpol_cond_put(pol); /* * First, try to allocate THP only on local node, but * don't reclaim unnecessarily, just compact. */ page = __alloc_pages_node(hpage_node, gfp | __GFP_THISNODE | __GFP_NORETRY, order); /* * If hugepage allocations are configured to always * synchronous compact or the vma has been madvised * to prefer hugepage backing, retry allowing remote * memory with both reclaim and compact as well. */ if (!page && (gfp & __GFP_DIRECT_RECLAIM)) page = __alloc_pages_nodemask(gfp, order, hpage_node, nmask); goto out; } } nmask = policy_nodemask(gfp, pol); preferred_nid = policy_node(gfp, pol, node); page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask); mpol_cond_put(pol); out: return page; } EXPORT_SYMBOL(alloc_pages_vma); /** * alloc_pages_current - Allocate pages. * * @gfp: * %GFP_USER user allocation, * %GFP_KERNEL kernel allocation, * %GFP_HIGHMEM highmem allocation, * %GFP_FS don't call back into a file system. * %GFP_ATOMIC don't sleep. * @order: Power of two of allocation size in pages. 0 is a single page. * * Allocate a page from the kernel page pool. When not in * interrupt context and apply the current process NUMA policy. * Returns NULL when no page can be allocated. */ struct page *alloc_pages_current(gfp_t gfp, unsigned order) { struct mempolicy *pol = &default_policy; struct page *page; if (!in_interrupt() && !(gfp & __GFP_THISNODE)) pol = get_task_policy(current); /* * No reference counting needed for current->mempolicy * nor system default_policy */ if (pol->mode == MPOL_INTERLEAVE) page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); else page = __alloc_pages_nodemask(gfp, order, policy_node(gfp, pol, numa_node_id()), policy_nodemask(gfp, pol)); return page; } EXPORT_SYMBOL(alloc_pages_current); int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { struct mempolicy *pol = mpol_dup(vma_policy(src)); if (IS_ERR(pol)) return PTR_ERR(pol); dst->vm_policy = pol; return 0; } /* * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it * rebinds the mempolicy its copying by calling mpol_rebind_policy() * with the mems_allowed returned by cpuset_mems_allowed(). This * keeps mempolicies cpuset relative after its cpuset moves. See * further kernel/cpuset.c update_nodemask(). * * current's mempolicy may be rebinded by the other task(the task that changes * cpuset's mems), so we needn't do rebind work for current task. */ /* Slow path of a mempolicy duplicate */ struct mempolicy *__mpol_dup(struct mempolicy *old) { struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* task's mempolicy is protected by alloc_lock */ if (old == current->mempolicy) { task_lock(current); *new = *old; task_unlock(current); } else *new = *old; if (current_cpuset_is_being_rebound()) { nodemask_t mems = cpuset_mems_allowed(current); mpol_rebind_policy(new, &mems); } atomic_set(&new->refcnt, 1); return new; } /* Slow path of a mempolicy comparison */ bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (!a || !b) return false; if (a->mode != b->mode) return false; if (a->flags != b->flags) return false; if (mpol_store_user_nodemask(a)) if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) return false; switch (a->mode) { case MPOL_BIND: case MPOL_INTERLEAVE: return !!nodes_equal(a->v.nodes, b->v.nodes); case MPOL_PREFERRED: /* a's ->flags is the same as b's */ if (a->flags & MPOL_F_LOCAL) return true; return a->v.preferred_node == b->v.preferred_node; default: BUG(); return false; } } /* * Shared memory backing store policy support. * * Remember policies even when nobody has shared memory mapped. * The policies are kept in Red-Black tree linked from the inode. * They are protected by the sp->lock rwlock, which should be held * for any accesses to the tree. */ /* * lookup first element intersecting start-end. Caller holds sp->lock for * reading or for writing */ static struct sp_node * sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) { struct rb_node *n = sp->root.rb_node; while (n) { struct sp_node *p = rb_entry(n, struct sp_node, nd); if (start >= p->end) n = n->rb_right; else if (end <= p->start) n = n->rb_left; else break; } if (!n) return NULL; for (;;) { struct sp_node *w = NULL; struct rb_node *prev = rb_prev(n); if (!prev) break; w = rb_entry(prev, struct sp_node, nd); if (w->end <= start) break; n = prev; } return rb_entry(n, struct sp_node, nd); } /* * Insert a new shared policy into the list. Caller holds sp->lock for * writing. */ static void sp_insert(struct shared_policy *sp, struct sp_node *new) { struct rb_node **p = &sp->root.rb_node; struct rb_node *parent = NULL; struct sp_node *nd; while (*p) { parent = *p; nd = rb_entry(parent, struct sp_node, nd); if (new->start < nd->start) p = &(*p)->rb_left; else if (new->end > nd->end) p = &(*p)->rb_right; else BUG(); } rb_link_node(&new->nd, parent, p); rb_insert_color(&new->nd, &sp->root); pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, new->policy ? new->policy->mode : 0); } /* Find shared policy intersecting idx */ struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { struct mempolicy *pol = NULL; struct sp_node *sn; if (!sp->root.rb_node) return NULL; read_lock(&sp->lock); sn = sp_lookup(sp, idx, idx+1); if (sn) { mpol_get(sn->policy); pol = sn->policy; } read_unlock(&sp->lock); return pol; } static void sp_free(struct sp_node *n) { mpol_put(n->policy); kmem_cache_free(sn_cache, n); } /** * mpol_misplaced - check whether current page node is valid in policy * * @page: page to be checked * @vma: vm area where page mapped * @addr: virtual address where page mapped * * Lookup current policy node id for vma,addr and "compare to" page's * node id. * * Returns: * -1 - not misplaced, page is in the right node * node - node id where the page should be * * Policy determination "mimics" alloc_page_vma(). * Called from fault path where we know the vma and faulting address. */ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol; struct zoneref *z; int curnid = page_to_nid(page); unsigned long pgoff; int thiscpu = raw_smp_processor_id(); int thisnid = cpu_to_node(thiscpu); int polnid = NUMA_NO_NODE; int ret = -1; pol = get_vma_policy(vma, addr); if (!(pol->flags & MPOL_F_MOF)) goto out; switch (pol->mode) { case MPOL_INTERLEAVE: pgoff = vma->vm_pgoff; pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; polnid = offset_il_node(pol, pgoff); break; case MPOL_PREFERRED: if (pol->flags & MPOL_F_LOCAL) polnid = numa_node_id(); else polnid = pol->v.preferred_node; break; case MPOL_BIND: /* * allows binding to multiple nodes. * use current page if in policy nodemask, * else select nearest allowed node, if any. * If no allowed nodes, use current [!misplaced]. */ if (node_isset(curnid, pol->v.nodes)) goto out; z = first_zones_zonelist( node_zonelist(numa_node_id(), GFP_HIGHUSER), gfp_zone(GFP_HIGHUSER), &pol->v.nodes); polnid = zone_to_nid(z->zone); break; default: BUG(); } /* Migrate the page towards the node whose CPU is referencing it */ if (pol->flags & MPOL_F_MORON) { polnid = thisnid; if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) goto out; } if (curnid != polnid) ret = polnid; out: mpol_cond_put(pol); return ret; } /* * Drop the (possibly final) reference to task->mempolicy. It needs to be * dropped after task->mempolicy is set to NULL so that any allocation done as * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed * policy. */ void mpol_put_task_policy(struct task_struct *task) { struct mempolicy *pol; task_lock(task); pol = task->mempolicy; task->mempolicy = NULL; task_unlock(task); mpol_put(pol); } static void sp_delete(struct shared_policy *sp, struct sp_node *n) { pr_debug("deleting %lx-l%lx\n", n->start, n->end); rb_erase(&n->nd, &sp->root); sp_free(n); } static void sp_node_init(struct sp_node *node, unsigned long start, unsigned long end, struct mempolicy *pol) { node->start = start; node->end = end; node->policy = pol; } static struct sp_node *sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol) { struct sp_node *n; struct mempolicy *newpol; n = kmem_cache_alloc(sn_cache, GFP_KERNEL); if (!n) return NULL; newpol = mpol_dup(pol); if (IS_ERR(newpol)) { kmem_cache_free(sn_cache, n); return NULL; } newpol->flags |= MPOL_F_SHARED; sp_node_init(n, start, end, newpol); return n; } /* Replace a policy range. */ static int shared_policy_replace(struct shared_policy *sp, unsigned long start, unsigned long end, struct sp_node *new) { struct sp_node *n; struct sp_node *n_new = NULL; struct mempolicy *mpol_new = NULL; int ret = 0; restart: write_lock(&sp->lock); n = sp_lookup(sp, start, end); /* Take care of old policies in the same range. */ while (n && n->start < end) { struct rb_node *next = rb_next(&n->nd); if (n->start >= start) { if (n->end <= end) sp_delete(sp, n); else n->start = end; } else { /* Old policy spanning whole new range. */ if (n->end > end) { if (!n_new) goto alloc_new; *mpol_new = *n->policy; atomic_set(&mpol_new->refcnt, 1); sp_node_init(n_new, end, n->end, mpol_new); n->end = start; sp_insert(sp, n_new); n_new = NULL; mpol_new = NULL; break; } else n->end = start; } if (!next) break; n = rb_entry(next, struct sp_node, nd); } if (new) sp_insert(sp, new); write_unlock(&sp->lock); ret = 0; err_out: if (mpol_new) mpol_put(mpol_new); if (n_new) kmem_cache_free(sn_cache, n_new); return ret; alloc_new: write_unlock(&sp->lock); ret = -ENOMEM; n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); if (!n_new) goto err_out; mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!mpol_new) goto err_out; goto restart; } /** * mpol_shared_policy_init - initialize shared policy for inode * @sp: pointer to inode shared policy * @mpol: struct mempolicy to install * * Install non-NULL @mpol in inode's shared policy rb-tree. * On entry, the current task has a reference on a non-NULL @mpol. * This must be released on exit. * This is called at get_inode() calls and we can use GFP_KERNEL. */ void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { int ret; sp->root = RB_ROOT; /* empty tree == default mempolicy */ rwlock_init(&sp->lock); if (mpol) { struct vm_area_struct pvma; struct mempolicy *new; NODEMASK_SCRATCH(scratch); if (!scratch) goto put_mpol; /* contextualize the tmpfs mount point mempolicy */ new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); if (IS_ERR(new)) goto free_scratch; /* no valid nodemask intersection */ task_lock(current); ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); task_unlock(current); if (ret) goto put_new; /* Create pseudo-vma that contains just the policy */ vma_init(&pvma, NULL); pvma.vm_end = TASK_SIZE; /* policy covers entire file */ mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ put_new: mpol_put(new); /* drop initial ref */ free_scratch: NODEMASK_SCRATCH_FREE(scratch); put_mpol: mpol_put(mpol); /* drop our incoming ref on sb mpol */ } } int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *npol) { int err; struct sp_node *new = NULL; unsigned long sz = vma_pages(vma); pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", vma->vm_pgoff, sz, npol ? npol->mode : -1, npol ? npol->flags : -1, npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); if (npol) { new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); if (!new) return -ENOMEM; } err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); if (err && new) sp_free(new); return err; } /* Free a backing policy store on inode delete. */ void mpol_free_shared_policy(struct shared_policy *p) { struct sp_node *n; struct rb_node *next; if (!p->root.rb_node) return; write_lock(&p->lock); next = rb_first(&p->root); while (next) { n = rb_entry(next, struct sp_node, nd); next = rb_next(&n->nd); sp_delete(p, n); } write_unlock(&p->lock); } #ifdef CONFIG_NUMA_BALANCING static int __initdata numabalancing_override; static void __init check_numabalancing_enable(void) { bool numabalancing_default = false; if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) numabalancing_default = true; /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ if (numabalancing_override) set_numabalancing_state(numabalancing_override == 1); if (num_online_nodes() > 1 && !numabalancing_override) { pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", numabalancing_default ? "Enabling" : "Disabling"); set_numabalancing_state(numabalancing_default); } } static int __init setup_numabalancing(char *str) { int ret = 0; if (!str) goto out; if (!strcmp(str, "enable")) { numabalancing_override = 1; ret = 1; } else if (!strcmp(str, "disable")) { numabalancing_override = -1; ret = 1; } out: if (!ret) pr_warn("Unable to parse numa_balancing=\n"); return ret; } __setup("numa_balancing=", setup_numabalancing); #else static inline void __init check_numabalancing_enable(void) { } #endif /* CONFIG_NUMA_BALANCING */ /* assumes fs == KERNEL_DS */ void __init numa_policy_init(void) { nodemask_t interleave_nodes; unsigned long largest = 0; int nid, prefer = 0; policy_cache = kmem_cache_create("numa_policy", sizeof(struct mempolicy), 0, SLAB_PANIC, NULL); sn_cache = kmem_cache_create("shared_policy_node", sizeof(struct sp_node), 0, SLAB_PANIC, NULL); for_each_node(nid) { preferred_node_policy[nid] = (struct mempolicy) { .refcnt = ATOMIC_INIT(1), .mode = MPOL_PREFERRED, .flags = MPOL_F_MOF | MPOL_F_MORON, .v = { .preferred_node = nid, }, }; } /* * Set interleaving policy for system init. Interleaving is only * enabled across suitably sized nodes (default is >= 16MB), or * fall back to the largest node if they're all smaller. */ nodes_clear(interleave_nodes); for_each_node_state(nid, N_MEMORY) { unsigned long total_pages = node_present_pages(nid); /* Preserve the largest node */ if (largest < total_pages) { largest = total_pages; prefer = nid; } /* Interleave this node? */ if ((total_pages << PAGE_SHIFT) >= (16 << 20)) node_set(nid, interleave_nodes); } /* All too small, use the largest */ if (unlikely(nodes_empty(interleave_nodes))) node_set(prefer, interleave_nodes); if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) pr_err("%s: interleaving failed\n", __func__); check_numabalancing_enable(); } /* Reset policy of current process to default */ void numa_default_policy(void) { do_set_mempolicy(MPOL_DEFAULT, 0, NULL); } /* * Parse and format mempolicy from/to strings */ /* * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. */ static const char * const policy_modes[] = { [MPOL_DEFAULT] = "default", [MPOL_PREFERRED] = "prefer", [MPOL_BIND] = "bind", [MPOL_INTERLEAVE] = "interleave", [MPOL_LOCAL] = "local", }; #ifdef CONFIG_TMPFS /** * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. * @str: string containing mempolicy to parse * @mpol: pointer to struct mempolicy pointer, returned on success. * * Format of input: * <mode>[=<flags>][:<nodelist>] * * On success, returns 0, else 1 */ int mpol_parse_str(char *str, struct mempolicy **mpol) { struct mempolicy *new = NULL; unsigned short mode_flags; nodemask_t nodes; char *nodelist = strchr(str, ':'); char *flags = strchr(str, '='); int err = 1, mode; if (flags) *flags++ = '\0'; /* terminate mode string */ if (nodelist) { /* NUL-terminate mode or flags string */ *nodelist++ = '\0'; if (nodelist_parse(nodelist, nodes)) goto out; if (!nodes_subset(nodes, node_states[N_MEMORY])) goto out; } else nodes_clear(nodes); mode = match_string(policy_modes, MPOL_MAX, str); if (mode < 0) goto out; switch (mode) { case MPOL_PREFERRED: /* * Insist on a nodelist of one node only, although later * we use first_node(nodes) to grab a single node, so here * nodelist (or nodes) cannot be empty. */ if (nodelist) { char *rest = nodelist; while (isdigit(*rest)) rest++; if (*rest) goto out; if (nodes_empty(nodes)) goto out; } break; case MPOL_INTERLEAVE: /* * Default to online nodes with memory if no nodelist */ if (!nodelist) nodes = node_states[N_MEMORY]; break; case MPOL_LOCAL: /* * Don't allow a nodelist; mpol_new() checks flags */ if (nodelist) goto out; mode = MPOL_PREFERRED; break; case MPOL_DEFAULT: /* * Insist on a empty nodelist */ if (!nodelist) err = 0; goto out; case MPOL_BIND: /* * Insist on a nodelist */ if (!nodelist) goto out; } mode_flags = 0; if (flags) { /* * Currently, we only support two mutually exclusive * mode flags. */ if (!strcmp(flags, "static")) mode_flags |= MPOL_F_STATIC_NODES; else if (!strcmp(flags, "relative")) mode_flags |= MPOL_F_RELATIVE_NODES; else goto out; } new = mpol_new(mode, mode_flags, &nodes); if (IS_ERR(new)) goto out; /* * Save nodes for mpol_to_str() to show the tmpfs mount options * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. */ if (mode != MPOL_PREFERRED) new->v.nodes = nodes; else if (nodelist) new->v.preferred_node = first_node(nodes); else new->flags |= MPOL_F_LOCAL; /* * Save nodes for contextualization: this will be used to "clone" * the mempolicy in a specific context [cpuset] at a later time. */ new->w.user_nodemask = nodes; err = 0; out: /* Restore string for error message */ if (nodelist) *--nodelist = ':'; if (flags) *--flags = '='; if (!err) *mpol = new; return err; } #endif /* CONFIG_TMPFS */ /** * mpol_to_str - format a mempolicy structure for printing * @buffer: to contain formatted mempolicy string * @maxlen: length of @buffer * @pol: pointer to mempolicy to be formatted * * Convert @pol into a string. If @buffer is too short, truncate the string. * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the * longest flag, "relative", and to display at least a few node ids. */ void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) { char *p = buffer; nodemask_t nodes = NODE_MASK_NONE; unsigned short mode = MPOL_DEFAULT; unsigned short flags = 0; if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) { mode = pol->mode; flags = pol->flags; } switch (mode) { case MPOL_DEFAULT: break; case MPOL_PREFERRED: if (flags & MPOL_F_LOCAL) mode = MPOL_LOCAL; else node_set(pol->v.preferred_node, nodes); break; case MPOL_BIND: case MPOL_INTERLEAVE: nodes = pol->v.nodes; break; default: WARN_ON_ONCE(1); snprintf(p, maxlen, "unknown"); return; } p += snprintf(p, maxlen, "%s", policy_modes[mode]); if (flags & MPOL_MODE_FLAGS) { p += snprintf(p, buffer + maxlen - p, "="); /* * Currently, the only defined flags are mutually exclusive */ if (flags & MPOL_F_STATIC_NODES) p += snprintf(p, buffer + maxlen - p, "static"); else if (flags & MPOL_F_RELATIVE_NODES) p += snprintf(p, buffer + maxlen - p, "relative"); } if (!nodes_empty(nodes)) p += scnprintf(p, buffer + maxlen - p, ":%*pbl", nodemask_pr_args(&nodes)); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNH_H #define __NET_RTNH_H #include <linux/rtnetlink.h> #include <net/netlink.h> static inline int rtnh_ok(const struct rtnexthop *rtnh, int remaining) { return remaining >= (int)sizeof(*rtnh) && rtnh->rtnh_len >= sizeof(*rtnh) && rtnh->rtnh_len <= remaining; } static inline struct rtnexthop *rtnh_next(const struct rtnexthop *rtnh, int *remaining) { int totlen = NLA_ALIGN(rtnh->rtnh_len); *remaining -= totlen; return (struct rtnexthop *) ((char *) rtnh + totlen); } static inline struct nlattr *rtnh_attrs(const struct rtnexthop *rtnh) { return (struct nlattr *) ((char *) rtnh + NLA_ALIGN(sizeof(*rtnh))); } static inline int rtnh_attrlen(const struct rtnexthop *rtnh) { return rtnh->rtnh_len - NLA_ALIGN(sizeof(*rtnh)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Universal TUN/TAP device driver. * Copyright (C) 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com> */ #ifndef __IF_TUN_H #define __IF_TUN_H #include <uapi/linux/if_tun.h> #include <uapi/linux/virtio_net.h> #define TUN_XDP_FLAG 0x1UL #define TUN_MSG_UBUF 1 #define TUN_MSG_PTR 2 struct tun_msg_ctl { unsigned short type; unsigned short num; void *ptr; }; struct tun_xdp_hdr { int buflen; struct virtio_net_hdr gso; }; #if defined(CONFIG_TUN) || defined(CONFIG_TUN_MODULE) struct socket *tun_get_socket(struct file *); struct ptr_ring *tun_get_tx_ring(struct file *file); static inline bool tun_is_xdp_frame(void *ptr) { return (unsigned long)ptr & TUN_XDP_FLAG; } static inline void *tun_xdp_to_ptr(struct xdp_frame *xdp) { return (void *)((unsigned long)xdp | TUN_XDP_FLAG); } static inline struct xdp_frame *tun_ptr_to_xdp(void *ptr) { return (void *)((unsigned long)ptr & ~TUN_XDP_FLAG); } void tun_ptr_free(void *ptr); #else #include <linux/err.h> #include <linux/errno.h> struct file; struct socket; static inline struct socket *tun_get_socket(struct file *f) { return ERR_PTR(-EINVAL); } static inline struct ptr_ring *tun_get_tx_ring(struct file *f) { return ERR_PTR(-EINVAL); } static inline bool tun_is_xdp_frame(void *ptr) { return false; } static inline void *tun_xdp_to_ptr(struct xdp_frame *xdp) { return NULL; } static inline struct xdp_frame *tun_ptr_to_xdp(void *ptr) { return NULL; } static inline void tun_ptr_free(void *ptr) { } #endif /* CONFIG_TUN */ #endif /* __IF_TUN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <linux/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> #include <linux/hardirq.h> /* for in_interrupt() */ #include <linux/hugetlb_inline.h> struct pagevec; /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_THP_SUPPORT = 6, /* THPs supported */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } static inline bool mapping_thp_support(struct address_space *mapping) { return test_bit(AS_THP_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } void release_pages(struct page **pages, int nr); /* * speculatively take a reference to a page. * If the page is free (_refcount == 0), then _refcount is untouched, and 0 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. * * This function must be called inside the same rcu_read_lock() section as has * been used to lookup the page in the pagecache radix-tree (or page table): * this allows allocators to use a synchronize_rcu() to stabilize _refcount. * * Unless an RCU grace period has passed, the count of all pages coming out * of the allocator must be considered unstable. page_count may return higher * than expected, and put_page must be able to do the right thing when the * page has been finished with, no matter what it is subsequently allocated * for (because put_page is what is used here to drop an invalid speculative * reference). * * This is the interesting part of the lockless pagecache (and lockless * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) * has the following pattern: * 1. find page in radix tree * 2. conditionally increment refcount * 3. check the page is still in pagecache (if no, goto 1) * * Remove-side that cares about stability of _refcount (eg. reclaim) has the * following (with the i_pages lock held): * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) * B. remove page from pagecache * C. free the page * * There are 2 critical interleavings that matter: * - 2 runs before A: in this case, A sees elevated refcount and bails out * - A runs before 2: in this case, 2 sees zero refcount and retries; * subsequently, B will complete and 1 will find no page, causing the * lookup to return NULL. * * It is possible that between 1 and 2, the page is removed then the exact same * page is inserted into the same position in pagecache. That's OK: the * old find_get_page using a lock could equally have run before or after * such a re-insertion, depending on order that locks are granted. * * Lookups racing against pagecache insertion isn't a big problem: either 1 * will find the page or it will not. Likewise, the old find_get_page could run * either before the insertion or afterwards, depending on timing. */ static inline int __page_cache_add_speculative(struct page *page, int count) { #ifdef CONFIG_TINY_RCU # ifdef CONFIG_PREEMPT_COUNT VM_BUG_ON(!in_atomic() && !irqs_disabled()); # endif /* * Preempt must be disabled here - we rely on rcu_read_lock doing * this for us. * * Pagecache won't be truncated from interrupt context, so if we have * found a page in the radix tree here, we have pinned its refcount by * disabling preempt, and hence no need for the "speculative get" that * SMP requires. */ VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, count); #else if (unlikely(!page_ref_add_unless(page, count, 0))) { /* * Either the page has been freed, or will be freed. * In either case, retry here and the caller should * do the right thing (see comments above). */ return 0; } #endif VM_BUG_ON_PAGE(PageTail(page), page); return 1; } static inline int page_cache_get_speculative(struct page *page) { return __page_cache_add_speculative(page, 1); } static inline int page_cache_add_speculative(struct page *page, int count) { return __page_cache_add_speculative(page, count); } /** * attach_page_private - Attach private data to a page. * @page: Page to attach data to. * @data: Data to attach to page. * * Attaching private data to a page increments the page's reference count. * The data must be detached before the page will be freed. */ static inline void attach_page_private(struct page *page, void *data) { get_page(page); set_page_private(page, (unsigned long)data); SetPagePrivate(page); } /** * detach_page_private - Detach private data from a page. * @page: Page to detach data from. * * Removes the data that was previously attached to the page and decrements * the refcount on the page. * * Return: Data that was attached to the page. */ static inline void *detach_page_private(struct page *page) { void *data = (void *)page_private(page); if (!PagePrivate(page)) return NULL; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); return data; } #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(void *, struct page *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); #define FGP_ACCESSED 0x00000001 #define FGP_LOCK 0x00000002 #define FGP_CREAT 0x00000004 #define FGP_WRITE 0x00000008 #define FGP_NOFS 0x00000010 #define FGP_NOWAIT 0x00000020 #define FGP_FOR_MMAP 0x00000040 #define FGP_HEAD 0x00000080 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, int fgp_flags, gfp_t cache_gfp_mask); /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, int fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %NULL if there is no page in the cache for this * index. */ static inline struct page *find_lock_page(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK, 0); } /** * find_lock_head - Locate, pin and lock a pagecache page. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, its head page is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page which is !PageTail, or %NULL if there is no page * in the cache for this index. */ static inline struct page *find_lock_head(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); } /** * find_or_create_page - locate or add a pagecache page * @mapping: the page's address_space * @index: the page's index into the mapping * @gfp_mask: page allocation mode * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned locked and with an increased * refcount. * * If the page is not present, a new page is allocated using @gfp_mask * and added to the page cache and the VM's LRU list. The page is * returned locked and with an increased refcount. * * On memory exhaustion, %NULL is returned. * * find_or_create_page() may sleep, even if @gfp_flags specifies an * atomic allocation! */ static inline struct page *find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_ACCESSED|FGP_CREAT, gfp_mask); } /** * grab_cache_page_nowait - returns locked page at given index in given cache * @mapping: target address_space * @index: the page index * * Same as grab_cache_page(), but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ static inline struct page *grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); } /* Does this page contain this index? */ static inline bool thp_contains(struct page *head, pgoff_t index) { /* HugeTLBfs indexes the page cache in units of hpage_size */ if (PageHuge(head)) return head->index == index; return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); } /* * Given the page we found in the page cache, return the page corresponding * to this index in the file */ static inline struct page *find_subpage(struct page *head, pgoff_t index) { /* HugeTLBfs wants the head page regardless */ if (PageHuge(head)) return head; return head + (index & (thp_nr_pages(head) - 1)); } unsigned find_get_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices); unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, pgoff_t end, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages(struct address_space *mapping, pgoff_t *start, unsigned int nr_pages, struct page **pages) { return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, pages); } unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, struct page **pages) { return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, nr_pages, pages); } struct page *grab_cache_page_write_begin(struct address_space *mapping, pgoff_t index, unsigned flags); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, pgoff_t index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } extern struct page * read_cache_page(struct address_space *mapping, pgoff_t index, filler_t *filler, void *data); extern struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern int read_cache_pages(struct address_space *mapping, struct list_head *pages, filler_t *filler, void *data); static inline struct page *read_mapping_page(struct address_space *mapping, pgoff_t index, void *data) { return read_cache_page(mapping, index, NULL, data); } /* * Get index of the page within radix-tree (but not for hugetlb pages). * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_index(struct page *page) { pgoff_t pgoff; if (likely(!PageTransTail(page))) return page->index; /* * We don't initialize ->index for tail pages: calculate based on * head page */ pgoff = compound_head(page)->index; pgoff += page - compound_head(page); return pgoff; } extern pgoff_t hugetlb_basepage_index(struct page *page); /* * Get the offset in PAGE_SIZE (even for hugetlb pages). * (TODO: hugetlb pages should have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_pgoff(struct page *page) { if (unlikely(PageHuge(page))) return hugetlb_basepage_index(page); return page_to_index(page); } /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_SHIFT; } static inline loff_t page_file_offset(struct page *page) { return ((loff_t)page_index(page)) << PAGE_SHIFT; } extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address); static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff; if (unlikely(is_vm_hugetlb_page(vma))) return linear_hugepage_index(vma, address); pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff; } struct wait_page_key { struct page *page; int bit_nr; int page_match; }; struct wait_page_queue { struct page *page; int bit_nr; wait_queue_entry_t wait; }; static inline bool wake_page_match(struct wait_page_queue *wait_page, struct wait_page_key *key) { if (wait_page->page != key->page) return false; key->page_match = 1; if (wait_page->bit_nr != key->bit_nr) return false; return true; } extern void __lock_page(struct page *page); extern int __lock_page_killable(struct page *page); extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags); extern void unlock_page(struct page *page); /* * Return true if the page was successfully locked */ static inline int trylock_page(struct page *page) { page = compound_head(page); return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); } /* * lock_page may only be called if we have the page's inode pinned. */ static inline void lock_page(struct page *page) { might_sleep(); if (!trylock_page(page)) __lock_page(page); } /* * lock_page_killable is like lock_page but can be interrupted by fatal * signals. It returns 0 if it locked the page and -EINTR if it was * killed while waiting. */ static inline int lock_page_killable(struct page *page) { might_sleep(); if (!trylock_page(page)) return __lock_page_killable(page); return 0; } /* * lock_page_async - Lock the page, unless this would block. If the page * is already locked, then queue a callback when the page becomes unlocked. * This callback can then retry the operation. * * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page * was already locked and the callback defined in 'wait' was queued. */ static inline int lock_page_async(struct page *page, struct wait_page_queue *wait) { if (!trylock_page(page)) return __lock_page_async(page, wait); return 0; } /* * lock_page_or_retry - Lock the page, unless this would block and the * caller indicated that it can handle a retry. * * Return value and mmap_lock implications depend on flags; see * __lock_page_or_retry(). */ static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags) { might_sleep(); return trylock_page(page) || __lock_page_or_retry(page, mm, flags); } /* * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., * and should not be used directly. */ extern void wait_on_page_bit(struct page *page, int bit_nr); extern int wait_on_page_bit_killable(struct page *page, int bit_nr); /* * Wait for a page to be unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ static inline void wait_on_page_locked(struct page *page) { if (PageLocked(page)) wait_on_page_bit(compound_head(page), PG_locked); } static inline int wait_on_page_locked_killable(struct page *page) { if (!PageLocked(page)) return 0; return wait_on_page_bit_killable(compound_head(page), PG_locked); } extern void put_and_wait_on_page_locked(struct page *page); void wait_on_page_writeback(struct page *page); extern void end_page_writeback(struct page *page); void wait_for_stable_page(struct page *page); void page_endio(struct page *page, bool is_write, int err); /* * Add an arbitrary waiter to a page's wait queue */ extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); /* * Fault everything in given userspace address range in. */ static inline int fault_in_pages_writeable(char __user *uaddr, int size) { char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ do { if (unlikely(__put_user(0, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) return __put_user(0, end); return 0; } static inline int fault_in_pages_readable(const char __user *uaddr, int size) { volatile char c; const char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; do { if (unlikely(__get_user(c, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) { return __get_user(c, end); } (void)c; return 0; } int add_to_page_cache_locked(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void delete_from_page_cache(struct page *page); extern void __delete_from_page_cache(struct page *page, void *shadow); int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); void delete_from_page_cache_batch(struct address_space *mapping, struct pagevec *pvec); /* * Like add_to_page_cache_locked, but used to add newly allocated pages: * the page is new, so we can just run __SetPageLocked() against it. */ static inline int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) { int error; __SetPageLocked(page); error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); if (unlikely(error)) __ClearPageLocked(page); return error; } /** * struct readahead_control - Describes a readahead request. * * A readahead request is for consecutive pages. Filesystems which * implement the ->readahead method should call readahead_page() or * readahead_page_batch() in a loop and attempt to start I/O against * each page in the request. * * Most of the fields in this struct are private and should be accessed * by the functions below. * * @file: The file, used primarily by network filesystems for authentication. * May be NULL if invoked internally by the filesystem. * @mapping: Readahead this filesystem object. */ struct readahead_control { struct file *file; struct address_space *mapping; /* private: use the readahead_* accessors instead */ pgoff_t _index; unsigned int _nr_pages; unsigned int _batch_count; }; #define DEFINE_READAHEAD(rac, f, m, i) \ struct readahead_control rac = { \ .file = f, \ .mapping = m, \ ._index = i, \ } #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) void page_cache_ra_unbounded(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_count); void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *, unsigned long req_count); void page_cache_async_ra(struct readahead_control *, struct file_ra_state *, struct page *, unsigned long req_count); /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ static inline void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_sync_ra(&ractl, ra, req_count); } /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @page: The page at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ static inline void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct page *page, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_async_ra(&ractl, ra, page, req_count); } /** * readahead_page - Get the next page to read. * @rac: The current readahead request. * * Context: The page is locked and has an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: A pointer to the next page, or %NULL if we are done. */ static inline struct page *readahead_page(struct readahead_control *rac) { struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; if (!rac->_nr_pages) { rac->_batch_count = 0; return NULL; } page = xa_load(&rac->mapping->i_pages, rac->_index); VM_BUG_ON_PAGE(!PageLocked(page), page); rac->_batch_count = thp_nr_pages(page); return page; } static inline unsigned int __readahead_batch(struct readahead_control *rac, struct page **array, unsigned int array_sz) { unsigned int i = 0; XA_STATE(xas, &rac->mapping->i_pages, 0); struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; rac->_batch_count = 0; xas_set(&xas, rac->_index); rcu_read_lock(); xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { if (xas_retry(&xas, page)) continue; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageTail(page), page); array[i++] = page; rac->_batch_count += thp_nr_pages(page); /* * The page cache isn't using multi-index entries yet, * so the xas cursor needs to be manually moved to the * next index. This can be removed once the page cache * is converted. */ if (PageHead(page)) xas_set(&xas, rac->_index + rac->_batch_count); if (i == array_sz) break; } rcu_read_unlock(); return i; } /** * readahead_page_batch - Get a batch of pages to read. * @rac: The current readahead request. * @array: An array of pointers to struct page. * * Context: The pages are locked and have an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: The number of pages placed in the array. 0 indicates the request * is complete. */ #define readahead_page_batch(rac, array) \ __readahead_batch(rac, array, ARRAY_SIZE(array)) /** * readahead_pos - The byte offset into the file of this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_pos(struct readahead_control *rac) { return (loff_t)rac->_index * PAGE_SIZE; } /** * readahead_length - The number of bytes in this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_length(struct readahead_control *rac) { return (loff_t)rac->_nr_pages * PAGE_SIZE; } /** * readahead_index - The index of the first page in this readahead request. * @rac: The readahead request. */ static inline pgoff_t readahead_index(struct readahead_control *rac) { return rac->_index; } /** * readahead_count - The number of pages in this readahead request. * @rac: The readahead request. */ static inline unsigned int readahead_count(struct readahead_control *rac) { return rac->_nr_pages; } static inline unsigned long dir_pages(struct inode *inode) { return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } /** * page_mkwrite_check_truncate - check if page was truncated * @page: the page to check * @inode: the inode to check the page against * * Returns the number of bytes in the page up to EOF, * or -EFAULT if the page was truncated. */ static inline int page_mkwrite_check_truncate(struct page *page, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; int offset = offset_in_page(size); if (page->mapping != inode->i_mapping) return -EFAULT; /* page is wholly inside EOF */ if (page->index < index) return PAGE_SIZE; /* page is wholly past EOF */ if (page->index > index || !offset) return -EFAULT; /* page is partially inside EOF */ return offset; } /** * i_blocks_per_page - How many blocks fit in this page. * @inode: The inode which contains the blocks. * @page: The page (head page if the page is a THP). * * If the block size is larger than the size of this page, return zero. * * Context: The caller should hold a refcount on the page to prevent it * from being split. * Return: The number of filesystem blocks covered by this page. */ static inline unsigned int i_blocks_per_page(struct inode *inode, struct page *page) { return thp_size(page) >> inode->i_blkbits; } #endif /* _LINUX_PAGEMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr, int create); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif, int create) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr, create); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr, int create) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr, create); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VIRTIO_NET_H #define _LINUX_VIRTIO_NET_H #include <linux/if_vlan.h> #include <uapi/linux/tcp.h> #include <uapi/linux/udp.h> #include <uapi/linux/virtio_net.h> static inline bool virtio_net_hdr_match_proto(__be16 protocol, __u8 gso_type) { switch (gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: return protocol == cpu_to_be16(ETH_P_IP); case VIRTIO_NET_HDR_GSO_TCPV6: return protocol == cpu_to_be16(ETH_P_IPV6); case VIRTIO_NET_HDR_GSO_UDP: return protocol == cpu_to_be16(ETH_P_IP) || protocol == cpu_to_be16(ETH_P_IPV6); default: return false; } } static inline int virtio_net_hdr_set_proto(struct sk_buff *skb, const struct virtio_net_hdr *hdr) { if (skb->protocol) return 0; switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_UDP: skb->protocol = cpu_to_be16(ETH_P_IP); break; case VIRTIO_NET_HDR_GSO_TCPV6: skb->protocol = cpu_to_be16(ETH_P_IPV6); break; default: return -EINVAL; } return 0; } static inline int virtio_net_hdr_to_skb(struct sk_buff *skb, const struct virtio_net_hdr *hdr, bool little_endian) { unsigned int gso_type = 0; unsigned int thlen = 0; unsigned int p_off = 0; unsigned int ip_proto; if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: gso_type = SKB_GSO_TCPV4; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_TCPV6: gso_type = SKB_GSO_TCPV6; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_UDP: gso_type = SKB_GSO_UDP; ip_proto = IPPROTO_UDP; thlen = sizeof(struct udphdr); break; default: return -EINVAL; } if (hdr->gso_type & VIRTIO_NET_HDR_GSO_ECN) gso_type |= SKB_GSO_TCP_ECN; if (hdr->gso_size == 0) return -EINVAL; } skb_reset_mac_header(skb); if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { u32 start = __virtio16_to_cpu(little_endian, hdr->csum_start); u32 off = __virtio16_to_cpu(little_endian, hdr->csum_offset); u32 needed = start + max_t(u32, thlen, off + sizeof(__sum16)); if (!pskb_may_pull(skb, needed)) return -EINVAL; if (!skb_partial_csum_set(skb, start, off)) return -EINVAL; p_off = skb_transport_offset(skb) + thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } else { /* gso packets without NEEDS_CSUM do not set transport_offset. * probe and drop if does not match one of the above types. */ if (gso_type && skb->network_header) { struct flow_keys_basic keys; if (!skb->protocol) { __be16 protocol = dev_parse_header_protocol(skb); if (!protocol) virtio_net_hdr_set_proto(skb, hdr); else if (!virtio_net_hdr_match_proto(protocol, hdr->gso_type)) return -EINVAL; else skb->protocol = protocol; } retry: if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) { /* UFO does not specify ipv4 or 6: try both */ if (gso_type & SKB_GSO_UDP && skb->protocol == htons(ETH_P_IP)) { skb->protocol = htons(ETH_P_IPV6); goto retry; } return -EINVAL; } p_off = keys.control.thoff + thlen; if (!pskb_may_pull(skb, p_off) || keys.basic.ip_proto != ip_proto) return -EINVAL; skb_set_transport_header(skb, keys.control.thoff); } else if (gso_type) { p_off = thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { u16 gso_size = __virtio16_to_cpu(little_endian, hdr->gso_size); unsigned int nh_off = p_off; struct skb_shared_info *shinfo = skb_shinfo(skb); /* UFO may not include transport header in gso_size. */ if (gso_type & SKB_GSO_UDP) nh_off -= thlen; /* Too small packets are not really GSO ones. */ if (skb->len - nh_off > gso_size) { shinfo->gso_size = gso_size; shinfo->gso_type = gso_type; /* Header must be checked, and gso_segs computed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } } return 0; } static inline int virtio_net_hdr_from_skb(const struct sk_buff *skb, struct virtio_net_hdr *hdr, bool little_endian, bool has_data_valid, int vlan_hlen) { memset(hdr, 0, sizeof(*hdr)); /* no info leak */ if (skb_is_gso(skb)) { struct skb_shared_info *sinfo = skb_shinfo(skb); /* This is a hint as to how much should be linear. */ hdr->hdr_len = __cpu_to_virtio16(little_endian, skb_headlen(skb)); hdr->gso_size = __cpu_to_virtio16(little_endian, sinfo->gso_size); if (sinfo->gso_type & SKB_GSO_TCPV4) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else if (sinfo->gso_type & SKB_GSO_TCPV6) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; else return -EINVAL; if (sinfo->gso_type & SKB_GSO_TCP_ECN) hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; } else hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE; if (skb->ip_summed == CHECKSUM_PARTIAL) { hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; hdr->csum_start = __cpu_to_virtio16(little_endian, skb_checksum_start_offset(skb) + vlan_hlen); hdr->csum_offset = __cpu_to_virtio16(little_endian, skb->csum_offset); } else if (has_data_valid && skb->ip_summed == CHECKSUM_UNNECESSARY) { hdr->flags = VIRTIO_NET_HDR_F_DATA_VALID; } /* else everything is zero */ return 0; } #endif /* _LINUX_VIRTIO_NET_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * RNG: Random Number Generator algorithms under the crypto API * * Copyright (c) 2008 Neil Horman <nhorman@tuxdriver.com> * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_RNG_H #define _CRYPTO_RNG_H #include <linux/crypto.h> struct crypto_rng; /** * struct rng_alg - random number generator definition * * @generate: The function defined by this variable obtains a * random number. The random number generator transform * must generate the random number out of the context * provided with this call, plus any additional data * if provided to the call. * @seed: Seed or reseed the random number generator. With the * invocation of this function call, the random number * generator shall become ready for generation. If the * random number generator requires a seed for setting * up a new state, the seed must be provided by the * consumer while invoking this function. The required * size of the seed is defined with @seedsize . * @set_ent: Set entropy that would otherwise be obtained from * entropy source. Internal use only. * @seedsize: The seed size required for a random number generator * initialization defined with this variable. Some * random number generators does not require a seed * as the seeding is implemented internally without * the need of support by the consumer. In this case, * the seed size is set to zero. * @base: Common crypto API algorithm data structure. */ struct rng_alg { int (*generate)(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen); int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); void (*set_ent)(struct crypto_rng *tfm, const u8 *data, unsigned int len); unsigned int seedsize; struct crypto_alg base; }; struct crypto_rng { struct crypto_tfm base; }; extern struct crypto_rng *crypto_default_rng; int crypto_get_default_rng(void); void crypto_put_default_rng(void); /** * DOC: Random number generator API * * The random number generator API is used with the ciphers of type * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto) */ /** * crypto_alloc_rng() -- allocate RNG handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a random number generator. The returned struct * crypto_rng is the cipher handle that is required for any subsequent * API invocation for that random number generator. * * For all random number generators, this call creates a new private copy of * the random number generator that does not share a state with other * instances. The only exception is the "krng" random number generator which * is a kernel crypto API use case for the get_random_bytes() function of the * /dev/random driver. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm) { return &tfm->base; } /** * crypto_rng_alg - obtain name of RNG * @tfm: cipher handle * * Return the generic name (cra_name) of the initialized random number generator * * Return: generic name string */ static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) { return container_of(crypto_rng_tfm(tfm)->__crt_alg, struct rng_alg, base); } /** * crypto_free_rng() - zeroize and free RNG handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_rng(struct crypto_rng *tfm) { crypto_destroy_tfm(tfm, crypto_rng_tfm(tfm)); } /** * crypto_rng_generate() - get random number * @tfm: cipher handle * @src: Input buffer holding additional data, may be NULL * @slen: Length of additional data * @dst: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random * numbers using the random number generator referenced by the * cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen) { struct crypto_alg *alg = tfm->base.__crt_alg; int ret; crypto_stats_get(alg); ret = crypto_rng_alg(tfm)->generate(tfm, src, slen, dst, dlen); crypto_stats_rng_generate(alg, dlen, ret); return ret; } /** * crypto_rng_get_bytes() - get random number * @tfm: cipher handle * @rdata: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random numbers using the * random number generator referenced by the cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { return crypto_rng_generate(tfm, NULL, 0, rdata, dlen); } /** * crypto_rng_reset() - re-initialize the RNG * @tfm: cipher handle * @seed: seed input data * @slen: length of the seed input data * * The reset function completely re-initializes the random number generator * referenced by the cipher handle by clearing the current state. The new state * is initialized with the caller provided seed or automatically, depending * on the random number generator type (the ANSI X9.31 RNG requires * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding). * The seed is provided as a parameter to this function call. The provided seed * should have the length of the seed size defined for the random number * generator as defined by crypto_rng_seedsize. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); /** * crypto_rng_seedsize() - obtain seed size of RNG * @tfm: cipher handle * * The function returns the seed size for the random number generator * referenced by the cipher handle. This value may be zero if the random * number generator does not implement or require a reseeding. For example, * the SP800-90A DRBGs implement an automated reseeding after reaching a * pre-defined threshold. * * Return: seed size for the random number generator */ static inline int crypto_rng_seedsize(struct crypto_rng *tfm) { return crypto_rng_alg(tfm)->seedsize; } #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 // SPDX-License-Identifier: GPL-2.0 #include <linux/memblock.h> #include <linux/mmdebug.h> #include <linux/export.h> #include <linux/mm.h> #include <asm/page.h> #include <linux/vmalloc.h> #include "physaddr.h" #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ VIRTUAL_BUG_ON((x > y) || !phys_addr_valid(x)); } return x; } EXPORT_SYMBOL(__phys_addr); unsigned long __phys_addr_symbol(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* only check upper bounds since lower bounds will trigger carry */ VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); return y + phys_base; } EXPORT_SYMBOL(__phys_addr_symbol); #endif bool __virt_addr_valid(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; if (y >= KERNEL_IMAGE_SIZE) return false; } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ if ((x > y) || !phys_addr_valid(x)) return false; } return pfn_valid(x >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #else #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long phys_addr = x - PAGE_OFFSET; /* VMALLOC_* aren't constants */ VIRTUAL_BUG_ON(x < PAGE_OFFSET); VIRTUAL_BUG_ON(__vmalloc_start_set && is_vmalloc_addr((void *) x)); /* max_low_pfn is set early, but not _that_ early */ if (max_low_pfn) { VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn); BUG_ON(slow_virt_to_phys((void *)x) != phys_addr); } return phys_addr; } EXPORT_SYMBOL(__phys_addr); #endif bool __virt_addr_valid(unsigned long x) { if (x < PAGE_OFFSET) return false; if (__vmalloc_start_set && is_vmalloc_addr((void *) x)) return false; if (x >= FIXADDR_START) return false; return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #endif /* CONFIG_X86_64 */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 // SPDX-License-Identifier: GPL-2.0 /* * The class-specific portions of the driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * Copyright (c) 2012-2019 Greg Kroah-Hartman <gregkh@linuxfoundation.org> * Copyright (c) 2012-2019 Linux Foundation * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_CLASS_H_ #define _DEVICE_CLASS_H_ #include <linux/kobject.h> #include <linux/klist.h> #include <linux/pm.h> #include <linux/device/bus.h> struct device; struct fwnode_handle; /** * struct class - device classes * @name: Name of the class. * @owner: The module owner. * @class_groups: Default attributes of this class. * @dev_groups: Default attributes of the devices that belong to the class. * @dev_kobj: The kobject that represents this class and links it into the hierarchy. * @dev_uevent: Called when a device is added, removed from this class, or a * few other things that generate uevents to add the environment * variables. * @devnode: Callback to provide the devtmpfs. * @class_release: Called to release this class. * @dev_release: Called to release the device. * @shutdown_pre: Called at shut-down time before driver shutdown. * @ns_type: Callbacks so sysfs can detemine namespaces. * @namespace: Namespace of the device belongs to this class. * @get_ownership: Allows class to specify uid/gid of the sysfs directories * for the devices belonging to the class. Usually tied to * device's namespace. * @pm: The default device power management operations of this class. * @p: The private data of the driver core, no one other than the * driver core can touch this. * * A class is a higher-level view of a device that abstracts out low-level * implementation details. Drivers may see a SCSI disk or an ATA disk, but, * at the class level, they are all simply disks. Classes allow user space * to work with devices based on what they do, rather than how they are * connected or how they work. */ struct class { const char *name; struct module *owner; const struct attribute_group **class_groups; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode); void (*class_release)(struct class *class); void (*dev_release)(struct device *dev); int (*shutdown_pre)(struct device *dev); const struct kobj_ns_type_operations *ns_type; const void *(*namespace)(struct device *dev); void (*get_ownership)(struct device *dev, kuid_t *uid, kgid_t *gid); const struct dev_pm_ops *pm; struct subsys_private *p; }; struct class_dev_iter { struct klist_iter ki; const struct device_type *type; }; extern struct kobject *sysfs_dev_block_kobj; extern struct kobject *sysfs_dev_char_kobj; extern int __must_check __class_register(struct class *class, struct lock_class_key *key); extern void class_unregister(struct class *class); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_register(class) \ ({ \ static struct lock_class_key __key; \ __class_register(class, &__key); \ }) struct class_compat; struct class_compat *class_compat_register(const char *name); void class_compat_unregister(struct class_compat *cls); int class_compat_create_link(struct class_compat *cls, struct device *dev, struct device *device_link); void class_compat_remove_link(struct class_compat *cls, struct device *dev, struct device *device_link); extern void class_dev_iter_init(struct class_dev_iter *iter, struct class *class, struct device *start, const struct device_type *type); extern struct device *class_dev_iter_next(struct class_dev_iter *iter); extern void class_dev_iter_exit(struct class_dev_iter *iter); extern int class_for_each_device(struct class *class, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *class_find_device(struct class *class, struct device *start, const void *data, int (*match)(struct device *, const void *)); /** * class_find_device_by_name - device iterator for locating a particular device * of a specific name. * @class: class type * @name: name of the device to match */ static inline struct device *class_find_device_by_name(struct class *class, const char *name) { return class_find_device(class, NULL, name, device_match_name); } /** * class_find_device_by_of_node : device iterator for locating a particular device * matching the of_node. * @class: class type * @np: of_node of the device to match. */ static inline struct device * class_find_device_by_of_node(struct class *class, const struct device_node *np) { return class_find_device(class, NULL, np, device_match_of_node); } /** * class_find_device_by_fwnode : device iterator for locating a particular device * matching the fwnode. * @class: class type * @fwnode: fwnode of the device to match. */ static inline struct device * class_find_device_by_fwnode(struct class *class, const struct fwnode_handle *fwnode) { return class_find_device(class, NULL, fwnode, device_match_fwnode); } /** * class_find_device_by_devt : device iterator for locating a particular device * matching the device type. * @class: class type * @devt: device type of the device to match. */ static inline struct device *class_find_device_by_devt(struct class *class, dev_t devt) { return class_find_device(class, NULL, &devt, device_match_devt); } #ifdef CONFIG_ACPI struct acpi_device; /** * class_find_device_by_acpi_dev : device iterator for locating a particular * device matching the ACPI_COMPANION device. * @class: class type * @adev: ACPI_COMPANION device to match. */ static inline struct device * class_find_device_by_acpi_dev(struct class *class, const struct acpi_device *adev) { return class_find_device(class, NULL, adev, device_match_acpi_dev); } #else static inline struct device * class_find_device_by_acpi_dev(struct class *class, const void *adev) { return NULL; } #endif struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *class, struct class_attribute *attr, char *buf); ssize_t (*store)(struct class *class, struct class_attribute *attr, const char *buf, size_t count); }; #define CLASS_ATTR_RW(_name) \ struct class_attribute class_attr_##_name = __ATTR_RW(_name) #define CLASS_ATTR_RO(_name) \ struct class_attribute class_attr_##_name = __ATTR_RO(_name) #define CLASS_ATTR_WO(_name) \ struct class_attribute class_attr_##_name = __ATTR_WO(_name) extern int __must_check class_create_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); extern void class_remove_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); static inline int __must_check class_create_file(struct class *class, const struct class_attribute *attr) { return class_create_file_ns(class, attr, NULL); } static inline void class_remove_file(struct class *class, const struct class_attribute *attr) { return class_remove_file_ns(class, attr, NULL); } /* Simple class attribute that is just a static string */ struct class_attribute_string { struct class_attribute attr; char *str; }; /* Currently read-only only */ #define _CLASS_ATTR_STRING(_name, _mode, _str) \ { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } #define CLASS_ATTR_STRING(_name, _mode, _str) \ struct class_attribute_string class_attr_##_name = \ _CLASS_ATTR_STRING(_name, _mode, _str) extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, char *buf); struct class_interface { struct list_head node; struct class *class; int (*add_dev) (struct device *, struct class_interface *); void (*remove_dev) (struct device *, struct class_interface *); }; extern int __must_check class_interface_register(struct class_interface *); extern void class_interface_unregister(struct class_interface *); extern struct class * __must_check __class_create(struct module *owner, const char *name, struct lock_class_key *key); extern void class_destroy(struct class *cls); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_create(owner, name) \ ({ \ static struct lock_class_key __key; \ __class_create(owner, name, &__key); \ }) #endif /* _DEVICE_CLASS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * This file holds USB constants and structures that are needed for * USB device APIs. These are used by the USB device model, which is * defined in chapter 9 of the USB 2.0 specification and in the * Wireless USB 1.0 (spread around). Linux has several APIs in C that * need these: * * - the master/host side Linux-USB kernel driver API; * - the "usbfs" user space API; and * - the Linux "gadget" slave/device/peripheral side driver API. * * USB 2.0 adds an additional "On The Go" (OTG) mode, which lets systems * act either as a USB master/host or as a USB slave/device. That means * the master and slave side APIs benefit from working well together. * * There's also "Wireless USB", using low power short range radios for * peripheral interconnection but otherwise building on the USB framework. * * Note all descriptors are declared '__attribute__((packed))' so that: * * [a] they never get padded, either internally (USB spec writers * probably handled that) or externally; * * [b] so that accessing bigger-than-a-bytes fields will never * generate bus errors on any platform, even when the location of * its descriptor inside a bundle isn't "naturally aligned", and * * [c] for consistency, removing all doubt even when it appears to * someone that the two other points are non-issues for that * particular descriptor type. */ #ifndef _UAPI__LINUX_USB_CH9_H #define _UAPI__LINUX_USB_CH9_H #include <linux/types.h> /* __u8 etc */ #include <asm/byteorder.h> /* le16_to_cpu */ /*-------------------------------------------------------------------------*/ /* CONTROL REQUEST SUPPORT */ /* * USB directions * * This bit flag is used in endpoint descriptors' bEndpointAddress field. * It's also one of three fields in control requests bRequestType. */ #define USB_DIR_OUT 0 /* to device */ #define USB_DIR_IN 0x80 /* to host */ /* * USB types, the second of three bRequestType fields */ #define USB_TYPE_MASK (0x03 << 5) #define USB_TYPE_STANDARD (0x00 << 5) #define USB_TYPE_CLASS (0x01 << 5) #define USB_TYPE_VENDOR (0x02 << 5) #define USB_TYPE_RESERVED (0x03 << 5) /* * USB recipients, the third of three bRequestType fields */ #define USB_RECIP_MASK 0x1f #define USB_RECIP_DEVICE 0x00 #define USB_RECIP_INTERFACE 0x01 #define USB_RECIP_ENDPOINT 0x02 #define USB_RECIP_OTHER 0x03 /* From Wireless USB 1.0 */ #define USB_RECIP_PORT 0x04 #define USB_RECIP_RPIPE 0x05 /* * Standard requests, for the bRequest field of a SETUP packet. * * These are qualified by the bRequestType field, so that for example * TYPE_CLASS or TYPE_VENDOR specific feature flags could be retrieved * by a GET_STATUS request. */ #define USB_REQ_GET_STATUS 0x00 #define USB_REQ_CLEAR_FEATURE 0x01 #define USB_REQ_SET_FEATURE 0x03 #define USB_REQ_SET_ADDRESS 0x05 #define USB_REQ_GET_DESCRIPTOR 0x06 #define USB_REQ_SET_DESCRIPTOR 0x07 #define USB_REQ_GET_CONFIGURATION 0x08 #define USB_REQ_SET_CONFIGURATION 0x09 #define USB_REQ_GET_INTERFACE 0x0A #define USB_REQ_SET_INTERFACE 0x0B #define USB_REQ_SYNCH_FRAME 0x0C #define USB_REQ_SET_SEL 0x30 #define USB_REQ_SET_ISOCH_DELAY 0x31 #define USB_REQ_SET_ENCRYPTION 0x0D /* Wireless USB */ #define USB_REQ_GET_ENCRYPTION 0x0E #define USB_REQ_RPIPE_ABORT 0x0E #define USB_REQ_SET_HANDSHAKE 0x0F #define USB_REQ_RPIPE_RESET 0x0F #define USB_REQ_GET_HANDSHAKE 0x10 #define USB_REQ_SET_CONNECTION 0x11 #define USB_REQ_SET_SECURITY_DATA 0x12 #define USB_REQ_GET_SECURITY_DATA 0x13 #define USB_REQ_SET_WUSB_DATA 0x14 #define USB_REQ_LOOPBACK_DATA_WRITE 0x15 #define USB_REQ_LOOPBACK_DATA_READ 0x16 #define USB_REQ_SET_INTERFACE_DS 0x17 /* specific requests for USB Power Delivery */ #define USB_REQ_GET_PARTNER_PDO 20 #define USB_REQ_GET_BATTERY_STATUS 21 #define USB_REQ_SET_PDO 22 #define USB_REQ_GET_VDM 23 #define USB_REQ_SEND_VDM 24 /* The Link Power Management (LPM) ECN defines USB_REQ_TEST_AND_SET command, * used by hubs to put ports into a new L1 suspend state, except that it * forgot to define its number ... */ /* * USB feature flags are written using USB_REQ_{CLEAR,SET}_FEATURE, and * are read as a bit array returned by USB_REQ_GET_STATUS. (So there * are at most sixteen features of each type.) Hubs may also support a * new USB_REQ_TEST_AND_SET_FEATURE to put ports into L1 suspend. */ #define USB_DEVICE_SELF_POWERED 0 /* (read only) */ #define USB_DEVICE_REMOTE_WAKEUP 1 /* dev may initiate wakeup */ #define USB_DEVICE_TEST_MODE 2 /* (wired high speed only) */ #define USB_DEVICE_BATTERY 2 /* (wireless) */ #define USB_DEVICE_B_HNP_ENABLE 3 /* (otg) dev may initiate HNP */ #define USB_DEVICE_WUSB_DEVICE 3 /* (wireless)*/ #define USB_DEVICE_A_HNP_SUPPORT 4 /* (otg) RH port supports HNP */ #define USB_DEVICE_A_ALT_HNP_SUPPORT 5 /* (otg) other RH port does */ #define USB_DEVICE_DEBUG_MODE 6 /* (special devices only) */ /* * Test Mode Selectors * See USB 2.0 spec Table 9-7 */ #define USB_TEST_J 1 #define USB_TEST_K 2 #define USB_TEST_SE0_NAK 3 #define USB_TEST_PACKET 4 #define USB_TEST_FORCE_ENABLE 5 /* Status Type */ #define USB_STATUS_TYPE_STANDARD 0 #define USB_STATUS_TYPE_PTM 1 /* * New Feature Selectors as added by USB 3.0 * See USB 3.0 spec Table 9-7 */ #define USB_DEVICE_U1_ENABLE 48 /* dev may initiate U1 transition */ #define USB_DEVICE_U2_ENABLE 49 /* dev may initiate U2 transition */ #define USB_DEVICE_LTM_ENABLE 50 /* dev may send LTM */ #define USB_INTRF_FUNC_SUSPEND 0 /* function suspend */ #define USB_INTR_FUNC_SUSPEND_OPT_MASK 0xFF00 /* * Suspend Options, Table 9-8 USB 3.0 spec */ #define USB_INTRF_FUNC_SUSPEND_LP (1 << (8 + 0)) #define USB_INTRF_FUNC_SUSPEND_RW (1 << (8 + 1)) /* * Interface status, Figure 9-5 USB 3.0 spec */ #define USB_INTRF_STAT_FUNC_RW_CAP 1 #define USB_INTRF_STAT_FUNC_RW 2 #define USB_ENDPOINT_HALT 0 /* IN/OUT will STALL */ /* Bit array elements as returned by the USB_REQ_GET_STATUS request. */ #define USB_DEV_STAT_U1_ENABLED 2 /* transition into U1 state */ #define USB_DEV_STAT_U2_ENABLED 3 /* transition into U2 state */ #define USB_DEV_STAT_LTM_ENABLED 4 /* Latency tolerance messages */ /* * Feature selectors from Table 9-8 USB Power Delivery spec */ #define USB_DEVICE_BATTERY_WAKE_MASK 40 #define USB_DEVICE_OS_IS_PD_AWARE 41 #define USB_DEVICE_POLICY_MODE 42 #define USB_PORT_PR_SWAP 43 #define USB_PORT_GOTO_MIN 44 #define USB_PORT_RETURN_POWER 45 #define USB_PORT_ACCEPT_PD_REQUEST 46 #define USB_PORT_REJECT_PD_REQUEST 47 #define USB_PORT_PORT_PD_RESET 48 #define USB_PORT_C_PORT_PD_CHANGE 49 #define USB_PORT_CABLE_PD_RESET 50 #define USB_DEVICE_CHARGING_POLICY 54 /** * struct usb_ctrlrequest - SETUP data for a USB device control request * @bRequestType: matches the USB bmRequestType field * @bRequest: matches the USB bRequest field * @wValue: matches the USB wValue field (le16 byte order) * @wIndex: matches the USB wIndex field (le16 byte order) * @wLength: matches the USB wLength field (le16 byte order) * * This structure is used to send control requests to a USB device. It matches * the different fields of the USB 2.0 Spec section 9.3, table 9-2. See the * USB spec for a fuller description of the different fields, and what they are * used for. * * Note that the driver for any interface can issue control requests. * For most devices, interfaces don't coordinate with each other, so * such requests may be made at any time. */ struct usb_ctrlrequest { __u8 bRequestType; __u8 bRequest; __le16 wValue; __le16 wIndex; __le16 wLength; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* * STANDARD DESCRIPTORS ... as returned by GET_DESCRIPTOR, or * (rarely) accepted by SET_DESCRIPTOR. * * Note that all multi-byte values here are encoded in little endian * byte order "on the wire". Within the kernel and when exposed * through the Linux-USB APIs, they are not converted to cpu byte * order; it is the responsibility of the client code to do this. * The single exception is when device and configuration descriptors (but * not other descriptors) are read from character devices * (i.e. /dev/bus/usb/BBB/DDD); * in this case the fields are converted to host endianness by the kernel. */ /* * Descriptor types ... USB 2.0 spec table 9.5 */ #define USB_DT_DEVICE 0x01 #define USB_DT_CONFIG 0x02 #define USB_DT_STRING 0x03 #define USB_DT_INTERFACE 0x04 #define USB_DT_ENDPOINT 0x05 #define USB_DT_DEVICE_QUALIFIER 0x06 #define USB_DT_OTHER_SPEED_CONFIG 0x07 #define USB_DT_INTERFACE_POWER 0x08 /* these are from a minor usb 2.0 revision (ECN) */ #define USB_DT_OTG 0x09 #define USB_DT_DEBUG 0x0a #define USB_DT_INTERFACE_ASSOCIATION 0x0b /* these are from the Wireless USB spec */ #define USB_DT_SECURITY 0x0c #define USB_DT_KEY 0x0d #define USB_DT_ENCRYPTION_TYPE 0x0e #define USB_DT_BOS 0x0f #define USB_DT_DEVICE_CAPABILITY 0x10 #define USB_DT_WIRELESS_ENDPOINT_COMP 0x11 #define USB_DT_WIRE_ADAPTER 0x21 #define USB_DT_RPIPE 0x22 #define USB_DT_CS_RADIO_CONTROL 0x23 /* From the T10 UAS specification */ #define USB_DT_PIPE_USAGE 0x24 /* From the USB 3.0 spec */ #define USB_DT_SS_ENDPOINT_COMP 0x30 /* From the USB 3.1 spec */ #define USB_DT_SSP_ISOC_ENDPOINT_COMP 0x31 /* Conventional codes for class-specific descriptors. The convention is * defined in the USB "Common Class" Spec (3.11). Individual class specs * are authoritative for their usage, not the "common class" writeup. */ #define USB_DT_CS_DEVICE (USB_TYPE_CLASS | USB_DT_DEVICE) #define USB_DT_CS_CONFIG (USB_TYPE_CLASS | USB_DT_CONFIG) #define USB_DT_CS_STRING (USB_TYPE_CLASS | USB_DT_STRING) #define USB_DT_CS_INTERFACE (USB_TYPE_CLASS | USB_DT_INTERFACE) #define USB_DT_CS_ENDPOINT (USB_TYPE_CLASS | USB_DT_ENDPOINT) /* All standard descriptors have these 2 fields at the beginning */ struct usb_descriptor_header { __u8 bLength; __u8 bDescriptorType; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE: Device descriptor */ struct usb_device_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __le16 idVendor; __le16 idProduct; __le16 bcdDevice; __u8 iManufacturer; __u8 iProduct; __u8 iSerialNumber; __u8 bNumConfigurations; } __attribute__ ((packed)); #define USB_DT_DEVICE_SIZE 18 /* * Device and/or Interface Class codes * as found in bDeviceClass or bInterfaceClass * and defined by www.usb.org documents */ #define USB_CLASS_PER_INTERFACE 0 /* for DeviceClass */ #define USB_CLASS_AUDIO 1 #define USB_CLASS_COMM 2 #define USB_CLASS_HID 3 #define USB_CLASS_PHYSICAL 5 #define USB_CLASS_STILL_IMAGE 6 #define USB_CLASS_PRINTER 7 #define USB_CLASS_MASS_STORAGE 8 #define USB_CLASS_HUB 9 #define USB_CLASS_CDC_DATA 0x0a #define USB_CLASS_CSCID 0x0b /* chip+ smart card */ #define USB_CLASS_CONTENT_SEC 0x0d /* content security */ #define USB_CLASS_VIDEO 0x0e #define USB_CLASS_WIRELESS_CONTROLLER 0xe0 #define USB_CLASS_PERSONAL_HEALTHCARE 0x0f #define USB_CLASS_AUDIO_VIDEO 0x10 #define USB_CLASS_BILLBOARD 0x11 #define USB_CLASS_USB_TYPE_C_BRIDGE 0x12 #define USB_CLASS_MISC 0xef #define USB_CLASS_APP_SPEC 0xfe #define USB_CLASS_VENDOR_SPEC 0xff #define USB_SUBCLASS_VENDOR_SPEC 0xff /*-------------------------------------------------------------------------*/ /* USB_DT_CONFIG: Configuration descriptor information. * * USB_DT_OTHER_SPEED_CONFIG is the same descriptor, except that the * descriptor type is different. Highspeed-capable devices can look * different depending on what speed they're currently running. Only * devices with a USB_DT_DEVICE_QUALIFIER have any OTHER_SPEED_CONFIG * descriptors. */ struct usb_config_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumInterfaces; __u8 bConfigurationValue; __u8 iConfiguration; __u8 bmAttributes; __u8 bMaxPower; } __attribute__ ((packed)); #define USB_DT_CONFIG_SIZE 9 /* from config descriptor bmAttributes */ #define USB_CONFIG_ATT_ONE (1 << 7) /* must be set */ #define USB_CONFIG_ATT_SELFPOWER (1 << 6) /* self powered */ #define USB_CONFIG_ATT_WAKEUP (1 << 5) /* can wakeup */ #define USB_CONFIG_ATT_BATTERY (1 << 4) /* battery powered */ /*-------------------------------------------------------------------------*/ /* USB String descriptors can contain at most 126 characters. */ #define USB_MAX_STRING_LEN 126 /* USB_DT_STRING: String descriptor */ struct usb_string_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wData[1]; /* UTF-16LE encoded */ } __attribute__ ((packed)); /* note that "string" zero is special, it holds language codes that * the device supports, not Unicode characters. */ /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE: Interface descriptor */ struct usb_interface_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bInterfaceNumber; __u8 bAlternateSetting; __u8 bNumEndpoints; __u8 bInterfaceClass; __u8 bInterfaceSubClass; __u8 bInterfaceProtocol; __u8 iInterface; } __attribute__ ((packed)); #define USB_DT_INTERFACE_SIZE 9 /*-------------------------------------------------------------------------*/ /* USB_DT_ENDPOINT: Endpoint descriptor */ struct usb_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEndpointAddress; __u8 bmAttributes; __le16 wMaxPacketSize; __u8 bInterval; /* NOTE: these two are _only_ in audio endpoints. */ /* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */ __u8 bRefresh; __u8 bSynchAddress; } __attribute__ ((packed)); #define USB_DT_ENDPOINT_SIZE 7 #define USB_DT_ENDPOINT_AUDIO_SIZE 9 /* Audio extension */ /* * Endpoints */ #define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress */ #define USB_ENDPOINT_DIR_MASK 0x80 #define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* in bmAttributes */ #define USB_ENDPOINT_XFER_CONTROL 0 #define USB_ENDPOINT_XFER_ISOC 1 #define USB_ENDPOINT_XFER_BULK 2 #define USB_ENDPOINT_XFER_INT 3 #define USB_ENDPOINT_MAX_ADJUSTABLE 0x80 #define USB_ENDPOINT_MAXP_MASK 0x07ff #define USB_EP_MAXP_MULT_SHIFT 11 #define USB_EP_MAXP_MULT_MASK (3 << USB_EP_MAXP_MULT_SHIFT) #define USB_EP_MAXP_MULT(m) \ (((m) & USB_EP_MAXP_MULT_MASK) >> USB_EP_MAXP_MULT_SHIFT) /* The USB 3.0 spec redefines bits 5:4 of bmAttributes as interrupt ep type. */ #define USB_ENDPOINT_INTRTYPE 0x30 #define USB_ENDPOINT_INTR_PERIODIC (0 << 4) #define USB_ENDPOINT_INTR_NOTIFICATION (1 << 4) #define USB_ENDPOINT_SYNCTYPE 0x0c #define USB_ENDPOINT_SYNC_NONE (0 << 2) #define USB_ENDPOINT_SYNC_ASYNC (1 << 2) #define USB_ENDPOINT_SYNC_ADAPTIVE (2 << 2) #define USB_ENDPOINT_SYNC_SYNC (3 << 2) #define USB_ENDPOINT_USAGE_MASK 0x30 #define USB_ENDPOINT_USAGE_DATA 0x00 #define USB_ENDPOINT_USAGE_FEEDBACK 0x10 #define USB_ENDPOINT_USAGE_IMPLICIT_FB 0x20 /* Implicit feedback Data endpoint */ /*-------------------------------------------------------------------------*/ /** * usb_endpoint_num - get the endpoint's number * @epd: endpoint to be checked * * Returns @epd's number: 0 to 15. */ static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) { return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; } /** * usb_endpoint_type - get the endpoint's transfer type * @epd: endpoint to be checked * * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according * to @epd's transfer type. */ static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; } /** * usb_endpoint_dir_in - check if the endpoint has IN direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type IN, otherwise it returns false. */ static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); } /** * usb_endpoint_dir_out - check if the endpoint has OUT direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type OUT, otherwise it returns false. */ static inline int usb_endpoint_dir_out( const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); } /** * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type bulk, otherwise it returns false. */ static inline int usb_endpoint_xfer_bulk( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK); } /** * usb_endpoint_xfer_control - check if the endpoint has control transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type control, otherwise it returns false. */ static inline int usb_endpoint_xfer_control( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL); } /** * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type interrupt, otherwise it returns * false. */ static inline int usb_endpoint_xfer_int( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT); } /** * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type isochronous, otherwise it returns * false. */ static inline int usb_endpoint_xfer_isoc( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_ISOC); } /** * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_int_in - check if the endpoint is interrupt IN * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_maxp - get endpoint's max packet size * @epd: endpoint to be checked * * Returns @epd's max packet bits [10:0] */ static inline int usb_endpoint_maxp(const struct usb_endpoint_descriptor *epd) { return __le16_to_cpu(epd->wMaxPacketSize) & USB_ENDPOINT_MAXP_MASK; } /** * usb_endpoint_maxp_mult - get endpoint's transactional opportunities * @epd: endpoint to be checked * * Return @epd's wMaxPacketSize[12:11] + 1 */ static inline int usb_endpoint_maxp_mult(const struct usb_endpoint_descriptor *epd) { int maxp = __le16_to_cpu(epd->wMaxPacketSize); return USB_EP_MAXP_MULT(maxp) + 1; } static inline int usb_endpoint_interrupt_type( const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_INTRTYPE; } /*-------------------------------------------------------------------------*/ /* USB_DT_SSP_ISOC_ENDPOINT_COMP: SuperSpeedPlus Isochronous Endpoint Companion * descriptor */ struct usb_ssp_isoc_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wReseved; __le32 dwBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SSP_ISOC_EP_COMP_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SS_ENDPOINT_COMP: SuperSpeed Endpoint Companion descriptor */ struct usb_ss_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bmAttributes; __le16 wBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SS_EP_COMP_SIZE 6 /* Bits 4:0 of bmAttributes if this is a bulk endpoint */ static inline int usb_ss_max_streams(const struct usb_ss_ep_comp_descriptor *comp) { int max_streams; if (!comp) return 0; max_streams = comp->bmAttributes & 0x1f; if (!max_streams) return 0; max_streams = 1 << max_streams; return max_streams; } /* Bits 1:0 of bmAttributes if this is an isoc endpoint */ #define USB_SS_MULT(p) (1 + ((p) & 0x3)) /* Bit 7 of bmAttributes if a SSP isoc endpoint companion descriptor exists */ #define USB_SS_SSP_ISOC_COMP(p) ((p) & (1 << 7)) /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_QUALIFIER: Device Qualifier descriptor */ struct usb_qualifier_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __u8 bNumConfigurations; __u8 bRESERVED; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_OTG (from OTG 1.0a supplement) */ struct usb_otg_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP, etc */ } __attribute__ ((packed)); /* USB_DT_OTG (from OTG 2.0 supplement) */ struct usb_otg20_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP and ADP, etc */ __le16 bcdOTG; /* OTG and EH supplement release number * in binary-coded decimal(i.e. 2.0 is 0200H) */ } __attribute__ ((packed)); /* from usb_otg_descriptor.bmAttributes */ #define USB_OTG_SRP (1 << 0) #define USB_OTG_HNP (1 << 1) /* swap host/device roles */ #define USB_OTG_ADP (1 << 2) /* support ADP */ #define OTG_STS_SELECTOR 0xF000 /* OTG status selector */ /*-------------------------------------------------------------------------*/ /* USB_DT_DEBUG: for special highspeed devices, replacing serial console */ struct usb_debug_descriptor { __u8 bLength; __u8 bDescriptorType; /* bulk endpoints with 8 byte maxpacket */ __u8 bDebugInEndpoint; __u8 bDebugOutEndpoint; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE_ASSOCIATION: groups interfaces */ struct usb_interface_assoc_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bFirstInterface; __u8 bInterfaceCount; __u8 bFunctionClass; __u8 bFunctionSubClass; __u8 bFunctionProtocol; __u8 iFunction; } __attribute__ ((packed)); #define USB_DT_INTERFACE_ASSOCIATION_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SECURITY: group of wireless security descriptors, including * encryption types available for setting up a CC/association. */ struct usb_security_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumEncryptionTypes; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_KEY: used with {GET,SET}_SECURITY_DATA; only public keys * may be retrieved. */ struct usb_key_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 tTKID[3]; __u8 bReserved; __u8 bKeyData[0]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_ENCRYPTION_TYPE: bundled in DT_SECURITY groups */ struct usb_encryption_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEncryptionType; #define USB_ENC_TYPE_UNSECURE 0 #define USB_ENC_TYPE_WIRED 1 /* non-wireless mode */ #define USB_ENC_TYPE_CCM_1 2 /* aes128/cbc session */ #define USB_ENC_TYPE_RSA_1 3 /* rsa3072/sha1 auth */ __u8 bEncryptionValue; /* use in SET_ENCRYPTION */ __u8 bAuthKeyIndex; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_BOS: group of device-level capabilities */ struct usb_bos_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumDeviceCaps; } __attribute__((packed)); #define USB_DT_BOS_SIZE 5 /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_CAPABILITY: grouped with BOS */ struct usb_dev_cap_header { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_CAP_TYPE_WIRELESS_USB 1 struct usb_wireless_cap_descriptor { /* Ultra Wide Band */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_WIRELESS_P2P_DRD (1 << 1) #define USB_WIRELESS_BEACON_MASK (3 << 2) #define USB_WIRELESS_BEACON_SELF (1 << 2) #define USB_WIRELESS_BEACON_DIRECTED (2 << 2) #define USB_WIRELESS_BEACON_NONE (3 << 2) __le16 wPHYRates; /* bit rates, Mbps */ #define USB_WIRELESS_PHY_53 (1 << 0) /* always set */ #define USB_WIRELESS_PHY_80 (1 << 1) #define USB_WIRELESS_PHY_107 (1 << 2) /* always set */ #define USB_WIRELESS_PHY_160 (1 << 3) #define USB_WIRELESS_PHY_200 (1 << 4) /* always set */ #define USB_WIRELESS_PHY_320 (1 << 5) #define USB_WIRELESS_PHY_400 (1 << 6) #define USB_WIRELESS_PHY_480 (1 << 7) __u8 bmTFITXPowerInfo; /* TFI power levels */ __u8 bmFFITXPowerInfo; /* FFI power levels */ __le16 bmBandGroup; __u8 bReserved; } __attribute__((packed)); #define USB_DT_USB_WIRELESS_CAP_SIZE 11 /* USB 2.0 Extension descriptor */ #define USB_CAP_TYPE_EXT 2 struct usb_ext_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __le32 bmAttributes; #define USB_LPM_SUPPORT (1 << 1) /* supports LPM */ #define USB_BESL_SUPPORT (1 << 2) /* supports BESL */ #define USB_BESL_BASELINE_VALID (1 << 3) /* Baseline BESL valid*/ #define USB_BESL_DEEP_VALID (1 << 4) /* Deep BESL valid */ #define USB_SET_BESL_BASELINE(p) (((p) & 0xf) << 8) #define USB_SET_BESL_DEEP(p) (((p) & 0xf) << 12) #define USB_GET_BESL_BASELINE(p) (((p) & (0xf << 8)) >> 8) #define USB_GET_BESL_DEEP(p) (((p) & (0xf << 12)) >> 12) } __attribute__((packed)); #define USB_DT_USB_EXT_CAP_SIZE 7 /* * SuperSpeed USB Capability descriptor: Defines the set of SuperSpeed USB * specific device level capabilities */ #define USB_SS_CAP_TYPE 3 struct usb_ss_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_LTM_SUPPORT (1 << 1) /* supports LTM */ __le16 wSpeedSupported; #define USB_LOW_SPEED_OPERATION (1) /* Low speed operation */ #define USB_FULL_SPEED_OPERATION (1 << 1) /* Full speed operation */ #define USB_HIGH_SPEED_OPERATION (1 << 2) /* High speed operation */ #define USB_5GBPS_OPERATION (1 << 3) /* Operation at 5Gbps */ __u8 bFunctionalitySupport; __u8 bU1devExitLat; __le16 bU2DevExitLat; } __attribute__((packed)); #define USB_DT_USB_SS_CAP_SIZE 10 /* * Container ID Capability descriptor: Defines the instance unique ID used to * identify the instance across all operating modes */ #define CONTAINER_ID_TYPE 4 struct usb_ss_container_id_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 ContainerID[16]; /* 128-bit number */ } __attribute__((packed)); #define USB_DT_USB_SS_CONTN_ID_SIZE 20 /* * SuperSpeed Plus USB Capability descriptor: Defines the set of * SuperSpeed Plus USB specific device level capabilities */ #define USB_SSP_CAP_TYPE 0xa struct usb_ssp_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __le32 bmAttributes; #define USB_SSP_SUBLINK_SPEED_ATTRIBS (0x1f << 0) /* sublink speed entries */ #define USB_SSP_SUBLINK_SPEED_IDS (0xf << 5) /* speed ID entries */ __le16 wFunctionalitySupport; #define USB_SSP_MIN_SUBLINK_SPEED_ATTRIBUTE_ID (0xf) #define USB_SSP_MIN_RX_LANE_COUNT (0xf << 8) #define USB_SSP_MIN_TX_LANE_COUNT (0xf << 12) __le16 wReserved; __le32 bmSublinkSpeedAttr[1]; /* list of sublink speed attrib entries */ #define USB_SSP_SUBLINK_SPEED_SSID (0xf) /* sublink speed ID */ #define USB_SSP_SUBLINK_SPEED_LSE (0x3 << 4) /* Lanespeed exponent */ #define USB_SSP_SUBLINK_SPEED_ST (0x3 << 6) /* Sublink type */ #define USB_SSP_SUBLINK_SPEED_RSVD (0x3f << 8) /* Reserved */ #define USB_SSP_SUBLINK_SPEED_LP (0x3 << 14) /* Link protocol */ #define USB_SSP_SUBLINK_SPEED_LSM (0xff << 16) /* Lanespeed mantissa */ } __attribute__((packed)); /* * USB Power Delivery Capability Descriptor: * Defines capabilities for PD */ /* Defines the various PD Capabilities of this device */ #define USB_PD_POWER_DELIVERY_CAPABILITY 0x06 /* Provides information on each battery supported by the device */ #define USB_PD_BATTERY_INFO_CAPABILITY 0x07 /* The Consumer characteristics of a Port on the device */ #define USB_PD_PD_CONSUMER_PORT_CAPABILITY 0x08 /* The provider characteristics of a Port on the device */ #define USB_PD_PD_PROVIDER_PORT_CAPABILITY 0x09 struct usb_pd_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* set to USB_PD_POWER_DELIVERY_CAPABILITY */ __u8 bReserved; __le32 bmAttributes; #define USB_PD_CAP_BATTERY_CHARGING (1 << 1) /* supports Battery Charging specification */ #define USB_PD_CAP_USB_PD (1 << 2) /* supports USB Power Delivery specification */ #define USB_PD_CAP_PROVIDER (1 << 3) /* can provide power */ #define USB_PD_CAP_CONSUMER (1 << 4) /* can consume power */ #define USB_PD_CAP_CHARGING_POLICY (1 << 5) /* supports CHARGING_POLICY feature */ #define USB_PD_CAP_TYPE_C_CURRENT (1 << 6) /* supports power capabilities defined in the USB Type-C Specification */ #define USB_PD_CAP_PWR_AC (1 << 8) #define USB_PD_CAP_PWR_BAT (1 << 9) #define USB_PD_CAP_PWR_USE_V_BUS (1 << 14) __le16 bmProviderPorts; /* Bit zero refers to the UFP of the device */ __le16 bmConsumerPorts; __le16 bcdBCVersion; __le16 bcdPDVersion; __le16 bcdUSBTypeCVersion; } __attribute__((packed)); struct usb_pd_cap_battery_info_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* Index of string descriptor shall contain the user friendly name for this battery */ __u8 iBattery; /* Index of string descriptor shall contain the Serial Number String for this battery */ __u8 iSerial; __u8 iManufacturer; __u8 bBatteryId; /* uniquely identifies this battery in status Messages */ __u8 bReserved; /* * Shall contain the Battery Charge value above which this * battery is considered to be fully charged but not necessarily * “topped off.” */ __le32 dwChargedThreshold; /* in mWh */ /* * Shall contain the minimum charge level of this battery such * that above this threshold, a device can be assured of being * able to power up successfully (see Battery Charging 1.2). */ __le32 dwWeakThreshold; /* in mWh */ __le32 dwBatteryDesignCapacity; /* in mWh */ __le32 dwBatteryLastFullchargeCapacity; /* in mWh */ } __attribute__((packed)); struct usb_pd_cap_consumer_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_CONSUMER_BC (1 << 0) /* BC */ #define USB_PD_CAP_CONSUMER_PD (1 << 1) /* PD */ #define USB_PD_CAP_CONSUMER_TYPE_C (1 << 2) /* USB Type-C Current */ __le16 wMinVoltage; /* in 50mV units */ __le16 wMaxVoltage; /* in 50mV units */ __u16 wReserved; __le32 dwMaxOperatingPower; /* in 10 mW - operating at steady state */ __le32 dwMaxPeakPower; /* in 10mW units - operating at peak power */ __le32 dwMaxPeakPowerTime; /* in 100ms units - duration of peak */ #define USB_PD_CAP_CONSUMER_UNKNOWN_PEAK_POWER_TIME 0xffff } __attribute__((packed)); struct usb_pd_cap_provider_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved1; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_PROVIDER_BC (1 << 0) /* BC */ #define USB_PD_CAP_PROVIDER_PD (1 << 1) /* PD */ #define USB_PD_CAP_PROVIDER_TYPE_C (1 << 2) /* USB Type-C Current */ __u8 bNumOfPDObjects; __u8 bReserved2; __le32 wPowerDataObject[]; } __attribute__((packed)); /* * Precision time measurement capability descriptor: advertised by devices and * hubs that support PTM */ #define USB_PTM_CAP_TYPE 0xb struct usb_ptm_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_DT_USB_PTM_ID_SIZE 3 /* * The size of the descriptor for the Sublink Speed Attribute Count * (SSAC) specified in bmAttributes[4:0]. SSAC is zero-based */ #define USB_DT_USB_SSP_CAP_SIZE(ssac) (12 + (ssac + 1) * 4) /*-------------------------------------------------------------------------*/ /* USB_DT_WIRELESS_ENDPOINT_COMP: companion descriptor associated with * each endpoint descriptor for a wireless device */ struct usb_wireless_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bMaxSequence; __le16 wMaxStreamDelay; __le16 wOverTheAirPacketSize; __u8 bOverTheAirInterval; __u8 bmCompAttributes; #define USB_ENDPOINT_SWITCH_MASK 0x03 /* in bmCompAttributes */ #define USB_ENDPOINT_SWITCH_NO 0 #define USB_ENDPOINT_SWITCH_SWITCH 1 #define USB_ENDPOINT_SWITCH_SCALE 2 } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_HANDSHAKE is a four-way handshake used between a wireless * host and a device for connection set up, mutual authentication, and * exchanging short lived session keys. The handshake depends on a CC. */ struct usb_handshake { __u8 bMessageNumber; __u8 bStatus; __u8 tTKID[3]; __u8 bReserved; __u8 CDID[16]; __u8 nonce[16]; __u8 MIC[8]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_CONNECTION modifies or revokes a connection context (CC). * A CC may also be set up using non-wireless secure channels (including * wired USB!), and some devices may support CCs with multiple hosts. */ struct usb_connection_context { __u8 CHID[16]; /* persistent host id */ __u8 CDID[16]; /* device id (unique w/in host context) */ __u8 CK[16]; /* connection key */ } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB 2.0 defines three speeds, here's how Linux identifies them */ enum usb_device_speed { USB_SPEED_UNKNOWN = 0, /* enumerating */ USB_SPEED_LOW, USB_SPEED_FULL, /* usb 1.1 */ USB_SPEED_HIGH, /* usb 2.0 */ USB_SPEED_WIRELESS, /* wireless (usb 2.5) */ USB_SPEED_SUPER, /* usb 3.0 */ USB_SPEED_SUPER_PLUS, /* usb 3.1 */ }; enum usb_device_state { /* NOTATTACHED isn't in the USB spec, and this state acts * the same as ATTACHED ... but it's clearer this way. */ USB_STATE_NOTATTACHED = 0, /* chapter 9 and authentication (wireless) device states */ USB_STATE_ATTACHED, USB_STATE_POWERED, /* wired */ USB_STATE_RECONNECTING, /* auth */ USB_STATE_UNAUTHENTICATED, /* auth */ USB_STATE_DEFAULT, /* limited function */ USB_STATE_ADDRESS, USB_STATE_CONFIGURED, /* most functions */ USB_STATE_SUSPENDED /* NOTE: there are actually four different SUSPENDED * states, returning to POWERED, DEFAULT, ADDRESS, or * CONFIGURED respectively when SOF tokens flow again. * At this level there's no difference between L1 and L2 * suspend states. (L2 being original USB 1.1 suspend.) */ }; enum usb3_link_state { USB3_LPM_U0 = 0, USB3_LPM_U1, USB3_LPM_U2, USB3_LPM_U3 }; /* * A U1 timeout of 0x0 means the parent hub will reject any transitions to U1. * 0xff means the parent hub will accept transitions to U1, but will not * initiate a transition. * * A U1 timeout of 0x1 to 0x7F also causes the hub to initiate a transition to * U1 after that many microseconds. Timeouts of 0x80 to 0xFE are reserved * values. * * A U2 timeout of 0x0 means the parent hub will reject any transitions to U2. * 0xff means the parent hub will accept transitions to U2, but will not * initiate a transition. * * A U2 timeout of 0x1 to 0xFE also causes the hub to initiate a transition to * U2 after N*256 microseconds. Therefore a U2 timeout value of 0x1 means a U2 * idle timer of 256 microseconds, 0x2 means 512 microseconds, 0xFE means * 65.024ms. */ #define USB3_LPM_DISABLED 0x0 #define USB3_LPM_U1_MAX_TIMEOUT 0x7F #define USB3_LPM_U2_MAX_TIMEOUT 0xFE #define USB3_LPM_DEVICE_INITIATED 0xFF struct usb_set_sel_req { __u8 u1_sel; __u8 u1_pel; __le16 u2_sel; __le16 u2_pel; } __attribute__ ((packed)); /* * The Set System Exit Latency control transfer provides one byte each for * U1 SEL and U1 PEL, so the max exit latency is 0xFF. U2 SEL and U2 PEL each * are two bytes long. */ #define USB3_LPM_MAX_U1_SEL_PEL 0xFF #define USB3_LPM_MAX_U2_SEL_PEL 0xFFFF /*-------------------------------------------------------------------------*/ /* * As per USB compliance update, a device that is actively drawing * more than 100mA from USB must report itself as bus-powered in * the GetStatus(DEVICE) call. * https://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#34 */ #define USB_SELF_POWER_VBUS_MAX_DRAW 100 #endif /* _UAPI__LINUX_USB_CH9_H */