1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BLOCK_BLK_PM_H_ #define _BLOCK_BLK_PM_H_ #include <linux/pm_runtime.h> #ifdef CONFIG_PM static inline int blk_pm_resume_queue(const bool pm, struct request_queue *q) { if (!q->dev || !blk_queue_pm_only(q)) return 1; /* Nothing to do */ if (pm && q->rpm_status != RPM_SUSPENDED) return 1; /* Request allowed */ pm_request_resume(q->dev); return 0; } static inline void blk_pm_mark_last_busy(struct request *rq) { if (rq->q->dev && !(rq->rq_flags & RQF_PM)) pm_runtime_mark_last_busy(rq->q->dev); } static inline void blk_pm_requeue_request(struct request *rq) { lockdep_assert_held(&rq->q->queue_lock); if (rq->q->dev && !(rq->rq_flags & RQF_PM)) rq->q->nr_pending--; } static inline void blk_pm_add_request(struct request_queue *q, struct request *rq) { lockdep_assert_held(&q->queue_lock); if (q->dev && !(rq->rq_flags & RQF_PM)) q->nr_pending++; } static inline void blk_pm_put_request(struct request *rq) { lockdep_assert_held(&rq->q->queue_lock); if (rq->q->dev && !(rq->rq_flags & RQF_PM)) --rq->q->nr_pending; } #else static inline int blk_pm_resume_queue(const bool pm, struct request_queue *q) { return 1; } static inline void blk_pm_mark_last_busy(struct request *rq) { } static inline void blk_pm_requeue_request(struct request *rq) { } static inline void blk_pm_add_request(struct request_queue *q, struct request *rq) { } static inline void blk_pm_put_request(struct request *rq) { } #endif #endif /* _BLOCK_BLK_PM_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2016 Qualcomm Atheros, Inc * * Based on net/sched/sch_fq_codel.c */ #ifndef __NET_SCHED_FQ_IMPL_H #define __NET_SCHED_FQ_IMPL_H #include <net/fq.h> /* functions that are embedded into includer */ static void fq_adjust_removal(struct fq *fq, struct fq_flow *flow, struct sk_buff *skb) { struct fq_tin *tin = flow->tin; tin->backlog_bytes -= skb->len; tin->backlog_packets--; flow->backlog -= skb->len; fq->backlog--; fq->memory_usage -= skb->truesize; } static void fq_rejigger_backlog(struct fq *fq, struct fq_flow *flow) { struct fq_flow *i; if (flow->backlog == 0) { list_del_init(&flow->backlogchain); } else { i = flow; list_for_each_entry_continue(i, &fq->backlogs, backlogchain) if (i->backlog < flow->backlog) break; list_move_tail(&flow->backlogchain, &i->backlogchain); } } static struct sk_buff *fq_flow_dequeue(struct fq *fq, struct fq_flow *flow) { struct sk_buff *skb; lockdep_assert_held(&fq->lock); skb = __skb_dequeue(&flow->queue); if (!skb) return NULL; fq_adjust_removal(fq, flow, skb); fq_rejigger_backlog(fq, flow); return skb; } static struct sk_buff *fq_tin_dequeue(struct fq *fq, struct fq_tin *tin, fq_tin_dequeue_t dequeue_func) { struct fq_flow *flow; struct list_head *head; struct sk_buff *skb; lockdep_assert_held(&fq->lock); begin: head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) return NULL; } flow = list_first_entry(head, struct fq_flow, flowchain); if (flow->deficit <= 0) { flow->deficit += fq->quantum; list_move_tail(&flow->flowchain, &tin->old_flows); goto begin; } skb = dequeue_func(fq, tin, flow); if (!skb) { /* force a pass through old_flows to prevent starvation */ if ((head == &tin->new_flows) && !list_empty(&tin->old_flows)) { list_move_tail(&flow->flowchain, &tin->old_flows); } else { list_del_init(&flow->flowchain); flow->tin = NULL; } goto begin; } flow->deficit -= skb->len; tin->tx_bytes += skb->len; tin->tx_packets++; return skb; } static u32 fq_flow_idx(struct fq *fq, struct sk_buff *skb) { u32 hash = skb_get_hash(skb); return reciprocal_scale(hash, fq->flows_cnt); } static struct fq_flow *fq_flow_classify(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); flow = &fq->flows[idx]; if (flow->tin && flow->tin != tin) { flow = get_default_func(fq, tin, idx, skb); tin->collisions++; fq->collisions++; } if (!flow->tin) tin->flows++; return flow; } static void fq_recalc_backlog(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct fq_flow *i; if (list_empty(&flow->backlogchain)) list_add_tail(&flow->backlogchain, &fq->backlogs); i = flow; list_for_each_entry_continue_reverse(i, &fq->backlogs, backlogchain) if (i->backlog > flow->backlog) break; list_move(&flow->backlogchain, &i->backlogchain); } static void fq_tin_enqueue(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_skb_free_t free_func, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; bool oom; lockdep_assert_held(&fq->lock); flow = fq_flow_classify(fq, tin, idx, skb, get_default_func); flow->tin = tin; flow->backlog += skb->len; tin->backlog_bytes += skb->len; tin->backlog_packets++; fq->memory_usage += skb->truesize; fq->backlog++; fq_recalc_backlog(fq, tin, flow); if (list_empty(&flow->flowchain)) { flow->deficit = fq->quantum; list_add_tail(&flow->flowchain, &tin->new_flows); } __skb_queue_tail(&flow->queue, skb); oom = (fq->memory_usage > fq->memory_limit); while (fq->backlog > fq->limit || oom) { flow = list_first_entry_or_null(&fq->backlogs, struct fq_flow, backlogchain); if (!flow) return; skb = fq_flow_dequeue(fq, flow); if (!skb) return; free_func(fq, flow->tin, flow, skb); flow->tin->overlimit++; fq->overlimit++; if (oom) { fq->overmemory++; oom = (fq->memory_usage > fq->memory_limit); } } } static void fq_flow_filter(struct fq *fq, struct fq_flow *flow, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_tin *tin = flow->tin; struct sk_buff *skb, *tmp; lockdep_assert_held(&fq->lock); skb_queue_walk_safe(&flow->queue, skb, tmp) { if (!filter_func(fq, tin, flow, skb, filter_data)) continue; __skb_unlink(skb, &flow->queue); fq_adjust_removal(fq, flow, skb); free_func(fq, tin, flow, skb); } fq_rejigger_backlog(fq, flow); } static void fq_tin_filter(struct fq *fq, struct fq_tin *tin, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); list_for_each_entry(flow, &tin->new_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); list_for_each_entry(flow, &tin->old_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); } static void fq_flow_reset(struct fq *fq, struct fq_flow *flow, fq_skb_free_t free_func) { struct sk_buff *skb; while ((skb = fq_flow_dequeue(fq, flow))) free_func(fq, flow->tin, flow, skb); if (!list_empty(&flow->flowchain)) list_del_init(&flow->flowchain); if (!list_empty(&flow->backlogchain)) list_del_init(&flow->backlogchain); flow->tin = NULL; WARN_ON_ONCE(flow->backlog); } static void fq_tin_reset(struct fq *fq, struct fq_tin *tin, fq_skb_free_t free_func) { struct list_head *head; struct fq_flow *flow; for (;;) { head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) break; } flow = list_first_entry(head, struct fq_flow, flowchain); fq_flow_reset(fq, flow, free_func); } WARN_ON_ONCE(tin->backlog_bytes); WARN_ON_ONCE(tin->backlog_packets); } static void fq_flow_init(struct fq_flow *flow) { INIT_LIST_HEAD(&flow->flowchain); INIT_LIST_HEAD(&flow->backlogchain); __skb_queue_head_init(&flow->queue); } static void fq_tin_init(struct fq_tin *tin) { INIT_LIST_HEAD(&tin->new_flows); INIT_LIST_HEAD(&tin->old_flows); } static int fq_init(struct fq *fq, int flows_cnt) { int i; memset(fq, 0, sizeof(fq[0])); INIT_LIST_HEAD(&fq->backlogs); spin_lock_init(&fq->lock); fq->flows_cnt = max_t(u32, flows_cnt, 1); fq->quantum = 300; fq->limit = 8192; fq->memory_limit = 16 << 20; /* 16 MBytes */ fq->flows = kvcalloc(fq->flows_cnt, sizeof(fq->flows[0]), GFP_KERNEL); if (!fq->flows) return -ENOMEM; for (i = 0; i < fq->flows_cnt; i++) fq_flow_init(&fq->flows[i]); return 0; } static void fq_reset(struct fq *fq, fq_skb_free_t free_func) { int i; for (i = 0; i < fq->flows_cnt; i++) fq_flow_reset(fq, &fq->flows[i], free_func); kvfree(fq->flows); fq->flows = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Internal procfs definitions * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/proc_fs.h> #include <linux/proc_ns.h> #include <linux/refcount.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/binfmts.h> #include <linux/sched/coredump.h> #include <linux/sched/task.h> struct ctl_table_header; struct mempolicy; /* * This is not completely implemented yet. The idea is to * create an in-memory tree (like the actual /proc filesystem * tree) of these proc_dir_entries, so that we can dynamically * add new files to /proc. * * parent/subdir are used for the directory structure (every /proc file has a * parent, but "subdir" is empty for all non-directory entries). * subdir_node is used to build the rb tree "subdir" of the parent. */ struct proc_dir_entry { /* * number of callers into module in progress; * negative -> it's going away RSN */ atomic_t in_use; refcount_t refcnt; struct list_head pde_openers; /* who did ->open, but not ->release */ /* protects ->pde_openers and all struct pde_opener instances */ spinlock_t pde_unload_lock; struct completion *pde_unload_completion; const struct inode_operations *proc_iops; union { const struct proc_ops *proc_ops; const struct file_operations *proc_dir_ops; }; const struct dentry_operations *proc_dops; union { const struct seq_operations *seq_ops; int (*single_show)(struct seq_file *, void *); }; proc_write_t write; void *data; unsigned int state_size; unsigned int low_ino; nlink_t nlink; kuid_t uid; kgid_t gid; loff_t size; struct proc_dir_entry *parent; struct rb_root subdir; struct rb_node subdir_node; char *name; umode_t mode; u8 flags; u8 namelen; char inline_name[]; } __randomize_layout; #define SIZEOF_PDE ( \ sizeof(struct proc_dir_entry) < 128 ? 128 : \ sizeof(struct proc_dir_entry) < 192 ? 192 : \ sizeof(struct proc_dir_entry) < 256 ? 256 : \ sizeof(struct proc_dir_entry) < 512 ? 512 : \ 0) #define SIZEOF_PDE_INLINE_NAME (SIZEOF_PDE - sizeof(struct proc_dir_entry)) static inline bool pde_is_permanent(const struct proc_dir_entry *pde) { return pde->flags & PROC_ENTRY_PERMANENT; } extern struct kmem_cache *proc_dir_entry_cache; void pde_free(struct proc_dir_entry *pde); union proc_op { int (*proc_get_link)(struct dentry *, struct path *); int (*proc_show)(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); const char *lsm; }; struct proc_inode { struct pid *pid; unsigned int fd; union proc_op op; struct proc_dir_entry *pde; struct ctl_table_header *sysctl; struct ctl_table *sysctl_entry; struct hlist_node sibling_inodes; const struct proc_ns_operations *ns_ops; struct inode vfs_inode; } __randomize_layout; /* * General functions */ static inline struct proc_inode *PROC_I(const struct inode *inode) { return container_of(inode, struct proc_inode, vfs_inode); } static inline struct proc_dir_entry *PDE(const struct inode *inode) { return PROC_I(inode)->pde; } static inline void *__PDE_DATA(const struct inode *inode) { return PDE(inode)->data; } static inline struct pid *proc_pid(const struct inode *inode) { return PROC_I(inode)->pid; } static inline struct task_struct *get_proc_task(const struct inode *inode) { return get_pid_task(proc_pid(inode), PIDTYPE_PID); } void task_dump_owner(struct task_struct *task, umode_t mode, kuid_t *ruid, kgid_t *rgid); unsigned name_to_int(const struct qstr *qstr); /* * Offset of the first process in the /proc root directory.. */ #define FIRST_PROCESS_ENTRY 256 /* Worst case buffer size needed for holding an integer. */ #define PROC_NUMBUF 13 /* * array.c */ extern const struct file_operations proc_tid_children_operations; extern void proc_task_name(struct seq_file *m, struct task_struct *p, bool escape); extern int proc_tid_stat(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_tgid_stat(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_pid_status(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); extern int proc_pid_statm(struct seq_file *, struct pid_namespace *, struct pid *, struct task_struct *); /* * base.c */ extern const struct dentry_operations pid_dentry_operations; extern int pid_getattr(const struct path *, struct kstat *, u32, unsigned int); extern int proc_setattr(struct dentry *, struct iattr *); extern void proc_pid_evict_inode(struct proc_inode *); extern struct inode *proc_pid_make_inode(struct super_block *, struct task_struct *, umode_t); extern void pid_update_inode(struct task_struct *, struct inode *); extern int pid_delete_dentry(const struct dentry *); extern int proc_pid_readdir(struct file *, struct dir_context *); struct dentry *proc_pid_lookup(struct dentry *, unsigned int); extern loff_t mem_lseek(struct file *, loff_t, int); /* Lookups */ typedef struct dentry *instantiate_t(struct dentry *, struct task_struct *, const void *); bool proc_fill_cache(struct file *, struct dir_context *, const char *, unsigned int, instantiate_t, struct task_struct *, const void *); /* * generic.c */ struct proc_dir_entry *proc_create_reg(const char *name, umode_t mode, struct proc_dir_entry **parent, void *data); struct proc_dir_entry *proc_register(struct proc_dir_entry *dir, struct proc_dir_entry *dp); extern struct dentry *proc_lookup(struct inode *, struct dentry *, unsigned int); struct dentry *proc_lookup_de(struct inode *, struct dentry *, struct proc_dir_entry *); extern int proc_readdir(struct file *, struct dir_context *); int proc_readdir_de(struct file *, struct dir_context *, struct proc_dir_entry *); static inline struct proc_dir_entry *pde_get(struct proc_dir_entry *pde) { refcount_inc(&pde->refcnt); return pde; } extern void pde_put(struct proc_dir_entry *); static inline bool is_empty_pde(const struct proc_dir_entry *pde) { return S_ISDIR(pde->mode) && !pde->proc_iops; } extern ssize_t proc_simple_write(struct file *, const char __user *, size_t, loff_t *); /* * inode.c */ struct pde_opener { struct list_head lh; struct file *file; bool closing; struct completion *c; } __randomize_layout; extern const struct inode_operations proc_link_inode_operations; extern const struct inode_operations proc_pid_link_inode_operations; extern const struct super_operations proc_sops; void proc_init_kmemcache(void); void proc_invalidate_siblings_dcache(struct hlist_head *inodes, spinlock_t *lock); void set_proc_pid_nlink(void); extern struct inode *proc_get_inode(struct super_block *, struct proc_dir_entry *); extern void proc_entry_rundown(struct proc_dir_entry *); /* * proc_namespaces.c */ extern const struct inode_operations proc_ns_dir_inode_operations; extern const struct file_operations proc_ns_dir_operations; /* * proc_net.c */ extern const struct file_operations proc_net_operations; extern const struct inode_operations proc_net_inode_operations; #ifdef CONFIG_NET extern int proc_net_init(void); #else static inline int proc_net_init(void) { return 0; } #endif /* * proc_self.c */ extern int proc_setup_self(struct super_block *); /* * proc_thread_self.c */ extern int proc_setup_thread_self(struct super_block *); extern void proc_thread_self_init(void); /* * proc_sysctl.c */ #ifdef CONFIG_PROC_SYSCTL extern int proc_sys_init(void); extern void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head); #else static inline void proc_sys_init(void) { } static inline void proc_sys_evict_inode(struct inode *inode, struct ctl_table_header *head) { } #endif /* * proc_tty.c */ #ifdef CONFIG_TTY extern void proc_tty_init(void); #else static inline void proc_tty_init(void) {} #endif /* * root.c */ extern struct proc_dir_entry proc_root; extern void proc_self_init(void); /* * task_[no]mmu.c */ struct mem_size_stats; struct proc_maps_private { struct inode *inode; struct task_struct *task; struct mm_struct *mm; #ifdef CONFIG_MMU struct vm_area_struct *tail_vma; #endif #ifdef CONFIG_NUMA struct mempolicy *task_mempolicy; #endif } __randomize_layout; struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode); extern const struct file_operations proc_pid_maps_operations; extern const struct file_operations proc_pid_numa_maps_operations; extern const struct file_operations proc_pid_smaps_operations; extern const struct file_operations proc_pid_smaps_rollup_operations; extern const struct file_operations proc_clear_refs_operations; extern const struct file_operations proc_pagemap_operations; extern unsigned long task_vsize(struct mm_struct *); extern unsigned long task_statm(struct mm_struct *, unsigned long *, unsigned long *, unsigned long *, unsigned long *); extern void task_mem(struct seq_file *, struct mm_struct *); extern const struct dentry_operations proc_net_dentry_ops; static inline void pde_force_lookup(struct proc_dir_entry *pde) { /* /proc/net/ entries can be changed under us by setns(CLONE_NEWNET) */ pde->proc_dops = &proc_net_dentry_ops; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include <linux/sched.h> #include <linux/uaccess.h> struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; struct cgroup *cgrp; struct css_set *cset; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *, unsigned long); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *fork_idle(int); struct mm_struct *copy_init_mm(void); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (refcount_dec_and_test(&t->usage)) __put_task_struct(t); } static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_CMND_H #define _SCSI_SCSI_CMND_H #include <linux/dma-mapping.h> #include <linux/blkdev.h> #include <linux/t10-pi.h> #include <linux/list.h> #include <linux/types.h> #include <linux/timer.h> #include <linux/scatterlist.h> #include <scsi/scsi_device.h> #include <scsi/scsi_request.h> struct Scsi_Host; struct scsi_driver; /* * MAX_COMMAND_SIZE is: * The longest fixed-length SCSI CDB as per the SCSI standard. * fixed-length means: commands that their size can be determined * by their opcode and the CDB does not carry a length specifier, (unlike * the VARIABLE_LENGTH_CMD(0x7f) command). This is actually not exactly * true and the SCSI standard also defines extended commands and * vendor specific commands that can be bigger than 16 bytes. The kernel * will support these using the same infrastructure used for VARLEN CDB's. * So in effect MAX_COMMAND_SIZE means the maximum size command scsi-ml * supports without specifying a cmd_len by ULD's */ #define MAX_COMMAND_SIZE 16 #if (MAX_COMMAND_SIZE > BLK_MAX_CDB) # error MAX_COMMAND_SIZE can not be bigger than BLK_MAX_CDB #endif struct scsi_data_buffer { struct sg_table table; unsigned length; }; /* embedded in scsi_cmnd */ struct scsi_pointer { char *ptr; /* data pointer */ int this_residual; /* left in this buffer */ struct scatterlist *buffer; /* which buffer */ int buffers_residual; /* how many buffers left */ dma_addr_t dma_handle; volatile int Status; volatile int Message; volatile int have_data_in; volatile int sent_command; volatile int phase; }; /* for scmd->flags */ #define SCMD_TAGGED (1 << 0) #define SCMD_UNCHECKED_ISA_DMA (1 << 1) #define SCMD_INITIALIZED (1 << 2) #define SCMD_LAST (1 << 3) /* flags preserved across unprep / reprep */ #define SCMD_PRESERVED_FLAGS (SCMD_UNCHECKED_ISA_DMA | SCMD_INITIALIZED) /* for scmd->state */ #define SCMD_STATE_COMPLETE 0 #define SCMD_STATE_INFLIGHT 1 struct scsi_cmnd { struct scsi_request req; struct scsi_device *device; struct list_head eh_entry; /* entry for the host eh_cmd_q */ struct delayed_work abort_work; struct rcu_head rcu; int eh_eflags; /* Used by error handlr */ /* * This is set to jiffies as it was when the command was first * allocated. It is used to time how long the command has * been outstanding */ unsigned long jiffies_at_alloc; int retries; int allowed; unsigned char prot_op; unsigned char prot_type; unsigned char prot_flags; unsigned short cmd_len; enum dma_data_direction sc_data_direction; /* These elements define the operation we are about to perform */ unsigned char *cmnd; /* These elements define the operation we ultimately want to perform */ struct scsi_data_buffer sdb; struct scsi_data_buffer *prot_sdb; unsigned underflow; /* Return error if less than this amount is transferred */ unsigned transfersize; /* How much we are guaranteed to transfer with each SCSI transfer (ie, between disconnect / reconnects. Probably == sector size */ struct request *request; /* The command we are working on */ unsigned char *sense_buffer; /* obtained by REQUEST SENSE when * CHECK CONDITION is received on original * command (auto-sense). Length must be * SCSI_SENSE_BUFFERSIZE bytes. */ /* Low-level done function - can be used by low-level driver to point * to completion function. Not used by mid/upper level code. */ void (*scsi_done) (struct scsi_cmnd *); /* * The following fields can be written to by the host specific code. * Everything else should be left alone. */ struct scsi_pointer SCp; /* Scratchpad used by some host adapters */ unsigned char *host_scribble; /* The host adapter is allowed to * call scsi_malloc and get some memory * and hang it here. The host adapter * is also expected to call scsi_free * to release this memory. (The memory * obtained by scsi_malloc is guaranteed * to be at an address < 16Mb). */ int result; /* Status code from lower level driver */ int flags; /* Command flags */ unsigned long state; /* Command completion state */ unsigned char tag; /* SCSI-II queued command tag */ unsigned int extra_len; /* length of alignment and padding */ }; /* * Return the driver private allocation behind the command. * Only works if cmd_size is set in the host template. */ static inline void *scsi_cmd_priv(struct scsi_cmnd *cmd) { return cmd + 1; } /* make sure not to use it with passthrough commands */ static inline struct scsi_driver *scsi_cmd_to_driver(struct scsi_cmnd *cmd) { return *(struct scsi_driver **)cmd->request->rq_disk->private_data; } extern void scsi_finish_command(struct scsi_cmnd *cmd); extern void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count, size_t *offset, size_t *len); extern void scsi_kunmap_atomic_sg(void *virt); blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd); void scsi_free_sgtables(struct scsi_cmnd *cmd); #ifdef CONFIG_SCSI_DMA extern int scsi_dma_map(struct scsi_cmnd *cmd); extern void scsi_dma_unmap(struct scsi_cmnd *cmd); #else /* !CONFIG_SCSI_DMA */ static inline int scsi_dma_map(struct scsi_cmnd *cmd) { return -ENOSYS; } static inline void scsi_dma_unmap(struct scsi_cmnd *cmd) { } #endif /* !CONFIG_SCSI_DMA */ static inline unsigned scsi_sg_count(struct scsi_cmnd *cmd) { return cmd->sdb.table.nents; } static inline struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd) { return cmd->sdb.table.sgl; } static inline unsigned scsi_bufflen(struct scsi_cmnd *cmd) { return cmd->sdb.length; } static inline void scsi_set_resid(struct scsi_cmnd *cmd, unsigned int resid) { cmd->req.resid_len = resid; } static inline unsigned int scsi_get_resid(struct scsi_cmnd *cmd) { return cmd->req.resid_len; } #define scsi_for_each_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_sglist(cmd), sg, nseg, __i) static inline int scsi_sg_copy_from_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } static inline int scsi_sg_copy_to_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_to_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } /* * The operations below are hints that tell the controller driver how * to handle I/Os with DIF or similar types of protection information. */ enum scsi_prot_operations { /* Normal I/O */ SCSI_PROT_NORMAL = 0, /* OS-HBA: Protected, HBA-Target: Unprotected */ SCSI_PROT_READ_INSERT, SCSI_PROT_WRITE_STRIP, /* OS-HBA: Unprotected, HBA-Target: Protected */ SCSI_PROT_READ_STRIP, SCSI_PROT_WRITE_INSERT, /* OS-HBA: Protected, HBA-Target: Protected */ SCSI_PROT_READ_PASS, SCSI_PROT_WRITE_PASS, }; static inline void scsi_set_prot_op(struct scsi_cmnd *scmd, unsigned char op) { scmd->prot_op = op; } static inline unsigned char scsi_get_prot_op(struct scsi_cmnd *scmd) { return scmd->prot_op; } enum scsi_prot_flags { SCSI_PROT_TRANSFER_PI = 1 << 0, SCSI_PROT_GUARD_CHECK = 1 << 1, SCSI_PROT_REF_CHECK = 1 << 2, SCSI_PROT_REF_INCREMENT = 1 << 3, SCSI_PROT_IP_CHECKSUM = 1 << 4, }; /* * The controller usually does not know anything about the target it * is communicating with. However, when DIX is enabled the controller * must be know target type so it can verify the protection * information passed along with the I/O. */ enum scsi_prot_target_type { SCSI_PROT_DIF_TYPE0 = 0, SCSI_PROT_DIF_TYPE1, SCSI_PROT_DIF_TYPE2, SCSI_PROT_DIF_TYPE3, }; static inline void scsi_set_prot_type(struct scsi_cmnd *scmd, unsigned char type) { scmd->prot_type = type; } static inline unsigned char scsi_get_prot_type(struct scsi_cmnd *scmd) { return scmd->prot_type; } static inline sector_t scsi_get_lba(struct scsi_cmnd *scmd) { return blk_rq_pos(scmd->request); } static inline unsigned int scsi_prot_interval(struct scsi_cmnd *scmd) { return scmd->device->sector_size; } static inline unsigned scsi_prot_sg_count(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.nents : 0; } static inline struct scatterlist *scsi_prot_sglist(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.sgl : NULL; } static inline struct scsi_data_buffer *scsi_prot(struct scsi_cmnd *cmd) { return cmd->prot_sdb; } #define scsi_for_each_prot_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_prot_sglist(cmd), sg, nseg, __i) static inline void set_msg_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xffff00ff) | (status << 8); } static inline void set_host_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xff00ffff) | (status << 16); } static inline void set_driver_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0x00ffffff) | (status << 24); } static inline unsigned scsi_transfer_length(struct scsi_cmnd *scmd) { unsigned int xfer_len = scmd->sdb.length; unsigned int prot_interval = scsi_prot_interval(scmd); if (scmd->prot_flags & SCSI_PROT_TRANSFER_PI) xfer_len += (xfer_len >> ilog2(prot_interval)) * 8; return xfer_len; } #endif /* _SCSI_SCSI_CMND_H */
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 // SPDX-License-Identifier: GPL-2.0-only /* * Lock-less NULL terminated single linked list * * The basic atomic operation of this list is cmpxchg on long. On * architectures that don't have NMI-safe cmpxchg implementation, the * list can NOT be used in NMI handlers. So code that uses the list in * an NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. * * Copyright 2010,2011 Intel Corp. * Author: Huang Ying <ying.huang@intel.com> */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/llist.h> /** * llist_add_batch - add several linked entries in batch * @new_first: first entry in batch to be added * @new_last: last entry in batch to be added * @head: the head for your lock-less list * * Return whether list is empty before adding. */ bool llist_add_batch(struct llist_node *new_first, struct llist_node *new_last, struct llist_head *head) { struct llist_node *first; do { new_last->next = first = READ_ONCE(head->first); } while (cmpxchg(&head->first, first, new_first) != first); return !first; } EXPORT_SYMBOL_GPL(llist_add_batch); /** * llist_del_first - delete the first entry of lock-less list * @head: the head for your lock-less list * * If list is empty, return NULL, otherwise, return the first entry * deleted, this is the newest added one. * * Only one llist_del_first user can be used simultaneously with * multiple llist_add users without lock. Because otherwise * llist_del_first, llist_add, llist_add (or llist_del_all, llist_add, * llist_add) sequence in another user may change @head->first->next, * but keep @head->first. If multiple consumers are needed, please * use llist_del_all or use lock between consumers. */ struct llist_node *llist_del_first(struct llist_head *head) { struct llist_node *entry, *old_entry, *next; entry = smp_load_acquire(&head->first); for (;;) { if (entry == NULL) return NULL; old_entry = entry; next = READ_ONCE(entry->next); entry = cmpxchg(&head->first, old_entry, next); if (entry == old_entry) break; } return entry; } EXPORT_SYMBOL_GPL(llist_del_first); /** * llist_reverse_order - reverse order of a llist chain * @head: first item of the list to be reversed * * Reverse the order of a chain of llist entries and return the * new first entry. */ struct llist_node *llist_reverse_order(struct llist_node *head) { struct llist_node *new_head = NULL; while (head) { struct llist_node *tmp = head; head = head->next; tmp->next = new_head; new_head = tmp; } return new_head; } EXPORT_SYMBOL_GPL(llist_reverse_order);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rpm #if !defined(_TRACE_RUNTIME_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RUNTIME_POWER_H #include <linux/ktime.h> #include <linux/tracepoint.h> struct device; /* * The rpm_internal events are used for tracing some important * runtime pm internal functions. */ DECLARE_EVENT_CLASS(rpm_internal, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags), TP_STRUCT__entry( __string( name, dev_name(dev) ) __field( int, flags ) __field( int , usage_count ) __field( int , disable_depth ) __field( int , runtime_auto ) __field( int , request_pending ) __field( int , irq_safe ) __field( int , child_count ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->flags = flags; __entry->usage_count = atomic_read( &dev->power.usage_count); __entry->disable_depth = dev->power.disable_depth; __entry->runtime_auto = dev->power.runtime_auto; __entry->request_pending = dev->power.request_pending; __entry->irq_safe = dev->power.irq_safe; __entry->child_count = atomic_read( &dev->power.child_count); ), TP_printk("%s flags-%x cnt-%-2d dep-%-2d auto-%-1d p-%-1d" " irq-%-1d child-%d", __get_str(name), __entry->flags, __entry->usage_count, __entry->disable_depth, __entry->runtime_auto, __entry->request_pending, __entry->irq_safe, __entry->child_count ) ); DEFINE_EVENT(rpm_internal, rpm_suspend, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_resume, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_idle, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_usage, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); TRACE_EVENT(rpm_return_int, TP_PROTO(struct device *dev, unsigned long ip, int ret), TP_ARGS(dev, ip, ret), TP_STRUCT__entry( __string( name, dev_name(dev)) __field( unsigned long, ip ) __field( int, ret ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->ip = ip; __entry->ret = ret; ), TP_printk("%pS:%s ret=%d", (void *)__entry->ip, __get_str(name), __entry->ret) ); #endif /* _TRACE_RUNTIME_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2001 Jens Axboe <axboe@suse.de> */ #ifndef __LINUX_BIO_H #define __LINUX_BIO_H #include <linux/highmem.h> #include <linux/mempool.h> #include <linux/ioprio.h> /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */ #include <linux/blk_types.h> #define BIO_DEBUG #ifdef BIO_DEBUG #define BIO_BUG_ON BUG_ON #else #define BIO_BUG_ON #endif #define BIO_MAX_PAGES 256 #define bio_prio(bio) (bio)->bi_ioprio #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio) #define bio_iter_iovec(bio, iter) \ bvec_iter_bvec((bio)->bi_io_vec, (iter)) #define bio_iter_page(bio, iter) \ bvec_iter_page((bio)->bi_io_vec, (iter)) #define bio_iter_len(bio, iter) \ bvec_iter_len((bio)->bi_io_vec, (iter)) #define bio_iter_offset(bio, iter) \ bvec_iter_offset((bio)->bi_io_vec, (iter)) #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter) #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter) #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter) #define bvec_iter_sectors(iter) ((iter).bi_size >> 9) #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter))) #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter) #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter) /* * Return the data direction, READ or WRITE. */ #define bio_data_dir(bio) \ (op_is_write(bio_op(bio)) ? WRITE : READ) /* * Check whether this bio carries any data or not. A NULL bio is allowed. */ static inline bool bio_has_data(struct bio *bio) { if (bio && bio->bi_iter.bi_size && bio_op(bio) != REQ_OP_DISCARD && bio_op(bio) != REQ_OP_SECURE_ERASE && bio_op(bio) != REQ_OP_WRITE_ZEROES) return true; return false; } static inline bool bio_no_advance_iter(const struct bio *bio) { return bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE || bio_op(bio) == REQ_OP_WRITE_SAME || bio_op(bio) == REQ_OP_WRITE_ZEROES; } static inline bool bio_mergeable(struct bio *bio) { if (bio->bi_opf & REQ_NOMERGE_FLAGS) return false; return true; } static inline unsigned int bio_cur_bytes(struct bio *bio) { if (bio_has_data(bio)) return bio_iovec(bio).bv_len; else /* dataless requests such as discard */ return bio->bi_iter.bi_size; } static inline void *bio_data(struct bio *bio) { if (bio_has_data(bio)) return page_address(bio_page(bio)) + bio_offset(bio); return NULL; } /** * bio_full - check if the bio is full * @bio: bio to check * @len: length of one segment to be added * * Return true if @bio is full and one segment with @len bytes can't be * added to the bio, otherwise return false */ static inline bool bio_full(struct bio *bio, unsigned len) { if (bio->bi_vcnt >= bio->bi_max_vecs) return true; if (bio->bi_iter.bi_size > UINT_MAX - len) return true; return false; } static inline bool bio_next_segment(const struct bio *bio, struct bvec_iter_all *iter) { if (iter->idx >= bio->bi_vcnt) return false; bvec_advance(&bio->bi_io_vec[iter->idx], iter); return true; } /* * drivers should _never_ use the all version - the bio may have been split * before it got to the driver and the driver won't own all of it */ #define bio_for_each_segment_all(bvl, bio, iter) \ for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); ) static inline void bio_advance_iter(const struct bio *bio, struct bvec_iter *iter, unsigned int bytes) { iter->bi_sector += bytes >> 9; if (bio_no_advance_iter(bio)) iter->bi_size -= bytes; else bvec_iter_advance(bio->bi_io_vec, iter, bytes); /* TODO: It is reasonable to complete bio with error here. */ } #define __bio_for_each_segment(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bio_iter_iovec((bio), (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) #define bio_for_each_segment(bvl, bio, iter) \ __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter) #define __bio_for_each_bvec(bvl, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \ bio_advance_iter((bio), &(iter), (bvl).bv_len)) /* iterate over multi-page bvec */ #define bio_for_each_bvec(bvl, bio, iter) \ __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter) /* * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the * same reasons as bio_for_each_segment_all(). */ #define bio_for_each_bvec_all(bvl, bio, i) \ for (i = 0, bvl = bio_first_bvec_all(bio); \ i < (bio)->bi_vcnt; i++, bvl++) \ #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len) static inline unsigned bio_segments(struct bio *bio) { unsigned segs = 0; struct bio_vec bv; struct bvec_iter iter; /* * We special case discard/write same/write zeroes, because they * interpret bi_size differently: */ switch (bio_op(bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: case REQ_OP_WRITE_ZEROES: return 0; case REQ_OP_WRITE_SAME: return 1; default: break; } bio_for_each_segment(bv, bio, iter) segs++; return segs; } /* * get a reference to a bio, so it won't disappear. the intended use is * something like: * * bio_get(bio); * submit_bio(rw, bio); * if (bio->bi_flags ...) * do_something * bio_put(bio); * * without the bio_get(), it could potentially complete I/O before submit_bio * returns. and then bio would be freed memory when if (bio->bi_flags ...) * runs */ static inline void bio_get(struct bio *bio) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb__before_atomic(); atomic_inc(&bio->__bi_cnt); } static inline void bio_cnt_set(struct bio *bio, unsigned int count) { if (count != 1) { bio->bi_flags |= (1 << BIO_REFFED); smp_mb(); } atomic_set(&bio->__bi_cnt, count); } static inline bool bio_flagged(struct bio *bio, unsigned int bit) { return (bio->bi_flags & (1U << bit)) != 0; } static inline void bio_set_flag(struct bio *bio, unsigned int bit) { bio->bi_flags |= (1U << bit); } static inline void bio_clear_flag(struct bio *bio, unsigned int bit) { bio->bi_flags &= ~(1U << bit); } static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline struct bio_vec *bio_first_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return bio->bi_io_vec; } static inline struct page *bio_first_page_all(struct bio *bio) { return bio_first_bvec_all(bio)->bv_page; } static inline struct bio_vec *bio_last_bvec_all(struct bio *bio) { WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); return &bio->bi_io_vec[bio->bi_vcnt - 1]; } enum bip_flags { BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */ BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */ BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */ BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */ BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */ }; /* * bio integrity payload */ struct bio_integrity_payload { struct bio *bip_bio; /* parent bio */ struct bvec_iter bip_iter; unsigned short bip_slab; /* slab the bip came from */ unsigned short bip_vcnt; /* # of integrity bio_vecs */ unsigned short bip_max_vcnt; /* integrity bio_vec slots */ unsigned short bip_flags; /* control flags */ struct bvec_iter bio_iter; /* for rewinding parent bio */ struct work_struct bip_work; /* I/O completion */ struct bio_vec *bip_vec; struct bio_vec bip_inline_vecs[];/* embedded bvec array */ }; #if defined(CONFIG_BLK_DEV_INTEGRITY) static inline struct bio_integrity_payload *bio_integrity(struct bio *bio) { if (bio->bi_opf & REQ_INTEGRITY) return bio->bi_integrity; return NULL; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { struct bio_integrity_payload *bip = bio_integrity(bio); if (bip) return bip->bip_flags & flag; return false; } static inline sector_t bip_get_seed(struct bio_integrity_payload *bip) { return bip->bip_iter.bi_sector; } static inline void bip_set_seed(struct bio_integrity_payload *bip, sector_t seed) { bip->bip_iter.bi_sector = seed; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ extern void bio_trim(struct bio *bio, int offset, int size); extern struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs); /** * bio_next_split - get next @sectors from a bio, splitting if necessary * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Returns a bio representing the next @sectors of @bio - if the bio is smaller * than @sectors, returns the original bio unchanged. */ static inline struct bio *bio_next_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { if (sectors >= bio_sectors(bio)) return bio; return bio_split(bio, sectors, gfp, bs); } enum { BIOSET_NEED_BVECS = BIT(0), BIOSET_NEED_RESCUER = BIT(1), }; extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags); extern void bioset_exit(struct bio_set *); extern int biovec_init_pool(mempool_t *pool, int pool_entries); extern int bioset_init_from_src(struct bio_set *bs, struct bio_set *src); extern struct bio *bio_alloc_bioset(gfp_t, unsigned int, struct bio_set *); extern void bio_put(struct bio *); extern void __bio_clone_fast(struct bio *, struct bio *); extern struct bio *bio_clone_fast(struct bio *, gfp_t, struct bio_set *); extern struct bio_set fs_bio_set; static inline struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, &fs_bio_set); } static inline struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) { return bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); } extern blk_qc_t submit_bio(struct bio *); extern void bio_endio(struct bio *); static inline void bio_io_error(struct bio *bio) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } static inline void bio_wouldblock_error(struct bio *bio) { bio_set_flag(bio, BIO_QUIET); bio->bi_status = BLK_STS_AGAIN; bio_endio(bio); } struct request_queue; extern int submit_bio_wait(struct bio *bio); extern void bio_advance(struct bio *, unsigned); extern void bio_init(struct bio *bio, struct bio_vec *table, unsigned short max_vecs); extern void bio_uninit(struct bio *); extern void bio_reset(struct bio *); void bio_chain(struct bio *, struct bio *); extern int bio_add_page(struct bio *, struct page *, unsigned int,unsigned int); extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *, unsigned int, unsigned int); bool __bio_try_merge_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off, bool *same_page); void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off); int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter); void bio_release_pages(struct bio *bio, bool mark_dirty); extern void bio_set_pages_dirty(struct bio *bio); extern void bio_check_pages_dirty(struct bio *bio); extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter); extern void bio_copy_data(struct bio *dst, struct bio *src); extern void bio_list_copy_data(struct bio *dst, struct bio *src); extern void bio_free_pages(struct bio *bio); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter); void bio_truncate(struct bio *bio, unsigned new_size); void guard_bio_eod(struct bio *bio); static inline void zero_fill_bio(struct bio *bio) { zero_fill_bio_iter(bio, bio->bi_iter); } extern struct bio_vec *bvec_alloc(gfp_t, int, unsigned long *, mempool_t *); extern void bvec_free(mempool_t *, struct bio_vec *, unsigned int); extern unsigned int bvec_nr_vecs(unsigned short idx); extern const char *bio_devname(struct bio *bio, char *buffer); #define bio_set_dev(bio, bdev) \ do { \ if ((bio)->bi_disk != (bdev)->bd_disk) \ bio_clear_flag(bio, BIO_THROTTLED);\ (bio)->bi_disk = (bdev)->bd_disk; \ (bio)->bi_partno = (bdev)->bd_partno; \ bio_associate_blkg(bio); \ } while (0) #define bio_copy_dev(dst, src) \ do { \ (dst)->bi_disk = (src)->bi_disk; \ (dst)->bi_partno = (src)->bi_partno; \ bio_clone_blkg_association(dst, src); \ } while (0) #define bio_dev(bio) \ disk_devt((bio)->bi_disk) #ifdef CONFIG_BLK_CGROUP void bio_associate_blkg(struct bio *bio); void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css); void bio_clone_blkg_association(struct bio *dst, struct bio *src); #else /* CONFIG_BLK_CGROUP */ static inline void bio_associate_blkg(struct bio *bio) { } static inline void bio_associate_blkg_from_css(struct bio *bio, struct cgroup_subsys_state *css) { } static inline void bio_clone_blkg_association(struct bio *dst, struct bio *src) { } #endif /* CONFIG_BLK_CGROUP */ #ifdef CONFIG_HIGHMEM /* * remember never ever reenable interrupts between a bvec_kmap_irq and * bvec_kunmap_irq! */ static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { unsigned long addr; /* * might not be a highmem page, but the preempt/irq count * balancing is a lot nicer this way */ local_irq_save(*flags); addr = (unsigned long) kmap_atomic(bvec->bv_page); BUG_ON(addr & ~PAGE_MASK); return (char *) addr + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { unsigned long ptr = (unsigned long) buffer & PAGE_MASK; kunmap_atomic((void *) ptr); local_irq_restore(*flags); } #else static inline char *bvec_kmap_irq(struct bio_vec *bvec, unsigned long *flags) { return page_address(bvec->bv_page) + bvec->bv_offset; } static inline void bvec_kunmap_irq(char *buffer, unsigned long *flags) { *flags = 0; } #endif /* * BIO list management for use by remapping drivers (e.g. DM or MD) and loop. * * A bio_list anchors a singly-linked list of bios chained through the bi_next * member of the bio. The bio_list also caches the last list member to allow * fast access to the tail. */ struct bio_list { struct bio *head; struct bio *tail; }; static inline int bio_list_empty(const struct bio_list *bl) { return bl->head == NULL; } static inline void bio_list_init(struct bio_list *bl) { bl->head = bl->tail = NULL; } #define BIO_EMPTY_LIST { NULL, NULL } #define bio_list_for_each(bio, bl) \ for (bio = (bl)->head; bio; bio = bio->bi_next) static inline unsigned bio_list_size(const struct bio_list *bl) { unsigned sz = 0; struct bio *bio; bio_list_for_each(bio, bl) sz++; return sz; } static inline void bio_list_add(struct bio_list *bl, struct bio *bio) { bio->bi_next = NULL; if (bl->tail) bl->tail->bi_next = bio; else bl->head = bio; bl->tail = bio; } static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio) { bio->bi_next = bl->head; bl->head = bio; if (!bl->tail) bl->tail = bio; } static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->tail) bl->tail->bi_next = bl2->head; else bl->head = bl2->head; bl->tail = bl2->tail; } static inline void bio_list_merge_head(struct bio_list *bl, struct bio_list *bl2) { if (!bl2->head) return; if (bl->head) bl2->tail->bi_next = bl->head; else bl->tail = bl2->tail; bl->head = bl2->head; } static inline struct bio *bio_list_peek(struct bio_list *bl) { return bl->head; } static inline struct bio *bio_list_pop(struct bio_list *bl) { struct bio *bio = bl->head; if (bio) { bl->head = bl->head->bi_next; if (!bl->head) bl->tail = NULL; bio->bi_next = NULL; } return bio; } static inline struct bio *bio_list_get(struct bio_list *bl) { struct bio *bio = bl->head; bl->head = bl->tail = NULL; return bio; } /* * Increment chain count for the bio. Make sure the CHAIN flag update * is visible before the raised count. */ static inline void bio_inc_remaining(struct bio *bio) { bio_set_flag(bio, BIO_CHAIN); smp_mb__before_atomic(); atomic_inc(&bio->__bi_remaining); } /* * bio_set is used to allow other portions of the IO system to * allocate their own private memory pools for bio and iovec structures. * These memory pools in turn all allocate from the bio_slab * and the bvec_slabs[]. */ #define BIO_POOL_SIZE 2 struct bio_set { struct kmem_cache *bio_slab; unsigned int front_pad; mempool_t bio_pool; mempool_t bvec_pool; #if defined(CONFIG_BLK_DEV_INTEGRITY) mempool_t bio_integrity_pool; mempool_t bvec_integrity_pool; #endif /* * Deadlock avoidance for stacking block drivers: see comments in * bio_alloc_bioset() for details */ spinlock_t rescue_lock; struct bio_list rescue_list; struct work_struct rescue_work; struct workqueue_struct *rescue_workqueue; }; struct biovec_slab { int nr_vecs; char *name; struct kmem_cache *slab; }; static inline bool bioset_initialized(struct bio_set *bs) { return bs->bio_slab != NULL; } /* * a small number of entries is fine, not going to be performance critical. * basically we just need to survive */ #define BIO_SPLIT_ENTRIES 2 #if defined(CONFIG_BLK_DEV_INTEGRITY) #define bip_for_each_vec(bvl, bip, iter) \ for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter) #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \ for_each_bio(_bio) \ bip_for_each_vec(_bvl, _bio->bi_integrity, _iter) extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int); extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int); extern bool bio_integrity_prep(struct bio *); extern void bio_integrity_advance(struct bio *, unsigned int); extern void bio_integrity_trim(struct bio *); extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t); extern int bioset_integrity_create(struct bio_set *, int); extern void bioset_integrity_free(struct bio_set *); extern void bio_integrity_init(void); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void *bio_integrity(struct bio *bio) { return NULL; } static inline int bioset_integrity_create(struct bio_set *bs, int pool_size) { return 0; } static inline void bioset_integrity_free (struct bio_set *bs) { return; } static inline bool bio_integrity_prep(struct bio *bio) { return true; } static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp_mask) { return 0; } static inline void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) { return; } static inline void bio_integrity_trim(struct bio *bio) { return; } static inline void bio_integrity_init(void) { return; } static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag) { return false; } static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp, unsigned int nr) { return ERR_PTR(-EINVAL); } static inline int bio_integrity_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { return 0; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ /* * Mark a bio as polled. Note that for async polled IO, the caller must * expect -EWOULDBLOCK if we cannot allocate a request (or other resources). * We cannot block waiting for requests on polled IO, as those completions * must be found by the caller. This is different than IRQ driven IO, where * it's safe to wait for IO to complete. */ static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb) { bio->bi_opf |= REQ_HIPRI; if (!is_sync_kiocb(kiocb)) bio->bi_opf |= REQ_NOWAIT; } #endif /* __LINUX_BIO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RMAP_H #define _LINUX_RMAP_H /* * Declarations for Reverse Mapping functions in mm/rmap.c */ #include <linux/list.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/rwsem.h> #include <linux/memcontrol.h> #include <linux/highmem.h> /* * The anon_vma heads a list of private "related" vmas, to scan if * an anonymous page pointing to this anon_vma needs to be unmapped: * the vmas on the list will be related by forking, or by splitting. * * Since vmas come and go as they are split and merged (particularly * in mprotect), the mapping field of an anonymous page cannot point * directly to a vma: instead it points to an anon_vma, on whose list * the related vmas can be easily linked or unlinked. * * After unlinking the last vma on the list, we must garbage collect * the anon_vma object itself: we're guaranteed no page can be * pointing to this anon_vma once its vma list is empty. */ struct anon_vma { struct anon_vma *root; /* Root of this anon_vma tree */ struct rw_semaphore rwsem; /* W: modification, R: walking the list */ /* * The refcount is taken on an anon_vma when there is no * guarantee that the vma of page tables will exist for * the duration of the operation. A caller that takes * the reference is responsible for clearing up the * anon_vma if they are the last user on release */ atomic_t refcount; /* * Count of child anon_vmas and VMAs which points to this anon_vma. * * This counter is used for making decision about reusing anon_vma * instead of forking new one. See comments in function anon_vma_clone. */ unsigned degree; struct anon_vma *parent; /* Parent of this anon_vma */ /* * NOTE: the LSB of the rb_root.rb_node is set by * mm_take_all_locks() _after_ taking the above lock. So the * rb_root must only be read/written after taking the above lock * to be sure to see a valid next pointer. The LSB bit itself * is serialized by a system wide lock only visible to * mm_take_all_locks() (mm_all_locks_mutex). */ /* Interval tree of private "related" vmas */ struct rb_root_cached rb_root; }; /* * The copy-on-write semantics of fork mean that an anon_vma * can become associated with multiple processes. Furthermore, * each child process will have its own anon_vma, where new * pages for that process are instantiated. * * This structure allows us to find the anon_vmas associated * with a VMA, or the VMAs associated with an anon_vma. * The "same_vma" list contains the anon_vma_chains linking * all the anon_vmas associated with this VMA. * The "rb" field indexes on an interval tree the anon_vma_chains * which link all the VMAs associated with this anon_vma. */ struct anon_vma_chain { struct vm_area_struct *vma; struct anon_vma *anon_vma; struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ struct rb_node rb; /* locked by anon_vma->rwsem */ unsigned long rb_subtree_last; #ifdef CONFIG_DEBUG_VM_RB unsigned long cached_vma_start, cached_vma_last; #endif }; enum ttu_flags { TTU_MIGRATION = 0x1, /* migration mode */ TTU_MUNLOCK = 0x2, /* munlock mode */ TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ TTU_IGNORE_HWPOISON = 0x20, /* corrupted page is recoverable */ TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible * and caller guarantees they will * do a final flush if necessary */ TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: * caller holds it */ TTU_SPLIT_FREEZE = 0x100, /* freeze pte under splitting thp */ }; #ifdef CONFIG_MMU static inline void get_anon_vma(struct anon_vma *anon_vma) { atomic_inc(&anon_vma->refcount); } void __put_anon_vma(struct anon_vma *anon_vma); static inline void put_anon_vma(struct anon_vma *anon_vma) { if (atomic_dec_and_test(&anon_vma->refcount)) __put_anon_vma(anon_vma); } static inline void anon_vma_lock_write(struct anon_vma *anon_vma) { down_write(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) { up_write(&anon_vma->root->rwsem); } static inline void anon_vma_lock_read(struct anon_vma *anon_vma) { down_read(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) { up_read(&anon_vma->root->rwsem); } /* * anon_vma helper functions. */ void anon_vma_init(void); /* create anon_vma_cachep */ int __anon_vma_prepare(struct vm_area_struct *); void unlink_anon_vmas(struct vm_area_struct *); int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); static inline int anon_vma_prepare(struct vm_area_struct *vma) { if (likely(vma->anon_vma)) return 0; return __anon_vma_prepare(vma); } static inline void anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) { VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); unlink_anon_vmas(next); } struct anon_vma *page_get_anon_vma(struct page *page); /* bitflags for do_page_add_anon_rmap() */ #define RMAP_EXCLUSIVE 0x01 #define RMAP_COMPOUND 0x02 /* * rmap interfaces called when adding or removing pte of page */ void page_move_anon_rmap(struct page *, struct vm_area_struct *); void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void do_page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, int); void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void page_add_file_rmap(struct page *, bool); void page_remove_rmap(struct page *, bool); void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); static inline void page_dup_rmap(struct page *page, bool compound) { atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount); } /* * Called from mm/vmscan.c to handle paging out */ int page_referenced(struct page *, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags); bool try_to_unmap(struct page *, enum ttu_flags flags); /* Avoid racy checks */ #define PVMW_SYNC (1 << 0) /* Look for migarion entries rather than present PTEs */ #define PVMW_MIGRATION (1 << 1) struct page_vma_mapped_walk { struct page *page; struct vm_area_struct *vma; unsigned long address; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; unsigned int flags; }; static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) { /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ if (pvmw->pte && !PageHuge(pvmw->page)) pte_unmap(pvmw->pte); if (pvmw->ptl) spin_unlock(pvmw->ptl); } bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); /* * Used by swapoff to help locate where page is expected in vma. */ unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); /* * Cleans the PTEs of shared mappings. * (and since clean PTEs should also be readonly, write protects them too) * * returns the number of cleaned PTEs. */ int page_mkclean(struct page *); /* * called in munlock()/munmap() path to check for other vmas holding * the page mlocked. */ void try_to_munlock(struct page *); void remove_migration_ptes(struct page *old, struct page *new, bool locked); /* * Called by memory-failure.c to kill processes. */ struct anon_vma *page_lock_anon_vma_read(struct page *page); void page_unlock_anon_vma_read(struct anon_vma *anon_vma); int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); /* * rmap_walk_control: To control rmap traversing for specific needs * * arg: passed to rmap_one() and invalid_vma() * rmap_one: executed on each vma where page is mapped * done: for checking traversing termination condition * anon_lock: for getting anon_lock by optimized way rather than default * invalid_vma: for skipping uninterested vma */ struct rmap_walk_control { void *arg; /* * Return false if page table scanning in rmap_walk should be stopped. * Otherwise, return true. */ bool (*rmap_one)(struct page *page, struct vm_area_struct *vma, unsigned long addr, void *arg); int (*done)(struct page *page); struct anon_vma *(*anon_lock)(struct page *page); bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); }; void rmap_walk(struct page *page, struct rmap_walk_control *rwc); void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc); #else /* !CONFIG_MMU */ #define anon_vma_init() do {} while (0) #define anon_vma_prepare(vma) (0) #define anon_vma_link(vma) do {} while (0) static inline int page_referenced(struct page *page, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { *vm_flags = 0; return 0; } #define try_to_unmap(page, refs) false static inline int page_mkclean(struct page *page) { return 0; } #endif /* CONFIG_MMU */ #endif /* _LINUX_RMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SMP_H #define _ASM_X86_SMP_H #ifndef __ASSEMBLY__ #include <linux/cpumask.h> #include <asm/percpu.h> #include <asm/thread_info.h> #include <asm/cpumask.h> extern int smp_num_siblings; extern unsigned int num_processors; DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); /* cpus sharing the last level cache: */ DECLARE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); DECLARE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id); DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number); static inline struct cpumask *cpu_llc_shared_mask(int cpu) { return per_cpu(cpu_llc_shared_map, cpu); } DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid); DECLARE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid); #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_X86_32) DECLARE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid); #endif struct task_struct; struct smp_ops { void (*smp_prepare_boot_cpu)(void); void (*smp_prepare_cpus)(unsigned max_cpus); void (*smp_cpus_done)(unsigned max_cpus); void (*stop_other_cpus)(int wait); void (*crash_stop_other_cpus)(void); void (*smp_send_reschedule)(int cpu); int (*cpu_up)(unsigned cpu, struct task_struct *tidle); int (*cpu_disable)(void); void (*cpu_die)(unsigned int cpu); void (*play_dead)(void); void (*send_call_func_ipi)(const struct cpumask *mask); void (*send_call_func_single_ipi)(int cpu); }; /* Globals due to paravirt */ extern void set_cpu_sibling_map(int cpu); #ifdef CONFIG_SMP extern struct smp_ops smp_ops; static inline void smp_send_stop(void) { smp_ops.stop_other_cpus(0); } static inline void stop_other_cpus(void) { smp_ops.stop_other_cpus(1); } static inline void smp_prepare_boot_cpu(void) { smp_ops.smp_prepare_boot_cpu(); } static inline void smp_prepare_cpus(unsigned int max_cpus) { smp_ops.smp_prepare_cpus(max_cpus); } static inline void smp_cpus_done(unsigned int max_cpus) { smp_ops.smp_cpus_done(max_cpus); } static inline int __cpu_up(unsigned int cpu, struct task_struct *tidle) { return smp_ops.cpu_up(cpu, tidle); } static inline int __cpu_disable(void) { return smp_ops.cpu_disable(); } static inline void __cpu_die(unsigned int cpu) { smp_ops.cpu_die(cpu); } static inline void play_dead(void) { smp_ops.play_dead(); } static inline void smp_send_reschedule(int cpu) { smp_ops.smp_send_reschedule(cpu); } static inline void arch_send_call_function_single_ipi(int cpu) { smp_ops.send_call_func_single_ipi(cpu); } static inline void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_ops.send_call_func_ipi(mask); } void cpu_disable_common(void); void native_smp_prepare_boot_cpu(void); void native_smp_prepare_cpus(unsigned int max_cpus); void calculate_max_logical_packages(void); void native_smp_cpus_done(unsigned int max_cpus); int common_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_up(unsigned int cpunum, struct task_struct *tidle); int native_cpu_disable(void); int common_cpu_die(unsigned int cpu); void native_cpu_die(unsigned int cpu); void hlt_play_dead(void); void native_play_dead(void); void play_dead_common(void); void wbinvd_on_cpu(int cpu); int wbinvd_on_all_cpus(void); void cond_wakeup_cpu0(void); void native_smp_send_reschedule(int cpu); void native_send_call_func_ipi(const struct cpumask *mask); void native_send_call_func_single_ipi(int cpu); void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle); void smp_store_boot_cpu_info(void); void smp_store_cpu_info(int id); asmlinkage __visible void smp_reboot_interrupt(void); __visible void smp_reschedule_interrupt(struct pt_regs *regs); __visible void smp_call_function_interrupt(struct pt_regs *regs); __visible void smp_call_function_single_interrupt(struct pt_regs *r); #define cpu_physical_id(cpu) per_cpu(x86_cpu_to_apicid, cpu) #define cpu_acpi_id(cpu) per_cpu(x86_cpu_to_acpiid, cpu) /* * This function is needed by all SMP systems. It must _always_ be valid * from the initial startup. We map APIC_BASE very early in page_setup(), * so this is correct in the x86 case. */ #define raw_smp_processor_id() this_cpu_read(cpu_number) #define __smp_processor_id() __this_cpu_read(cpu_number) #ifdef CONFIG_X86_32 extern int safe_smp_processor_id(void); #else # define safe_smp_processor_id() smp_processor_id() #endif #else /* !CONFIG_SMP */ #define wbinvd_on_cpu(cpu) wbinvd() static inline int wbinvd_on_all_cpus(void) { wbinvd(); return 0; } #endif /* CONFIG_SMP */ extern unsigned disabled_cpus; #ifdef CONFIG_X86_LOCAL_APIC extern int hard_smp_processor_id(void); #else /* CONFIG_X86_LOCAL_APIC */ #define hard_smp_processor_id() 0 #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_DEBUG_NMI_SELFTEST extern void nmi_selftest(void); #else #define nmi_selftest() do { } while (0) #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_SMP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #ifndef __NET_SCHED_CODEL_IMPL_H #define __NET_SCHED_CODEL_IMPL_H /* * Codel - The Controlled-Delay Active Queue Management algorithm * * Copyright (C) 2011-2012 Kathleen Nichols <nichols@pollere.com> * Copyright (C) 2011-2012 Van Jacobson <van@pollere.net> * Copyright (C) 2012 Michael D. Taht <dave.taht@bufferbloat.net> * Copyright (C) 2012,2015 Eric Dumazet <edumazet@google.com> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ /* Controlling Queue Delay (CoDel) algorithm * ========================================= * Source : Kathleen Nichols and Van Jacobson * http://queue.acm.org/detail.cfm?id=2209336 * * Implemented on linux by Dave Taht and Eric Dumazet */ static void codel_params_init(struct codel_params *params) { params->interval = MS2TIME(100); params->target = MS2TIME(5); params->ce_threshold = CODEL_DISABLED_THRESHOLD; params->ecn = false; } static void codel_vars_init(struct codel_vars *vars) { memset(vars, 0, sizeof(*vars)); } static void codel_stats_init(struct codel_stats *stats) { stats->maxpacket = 0; } /* * http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Iterative_methods_for_reciprocal_square_roots * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2) * * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32 */ static void codel_Newton_step(struct codel_vars *vars) { u32 invsqrt = ((u32)vars->rec_inv_sqrt) << REC_INV_SQRT_SHIFT; u32 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32; u64 val = (3LL << 32) - ((u64)vars->count * invsqrt2); val >>= 2; /* avoid overflow in following multiply */ val = (val * invsqrt) >> (32 - 2 + 1); vars->rec_inv_sqrt = val >> REC_INV_SQRT_SHIFT; } /* * CoDel control_law is t + interval/sqrt(count) * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid * both sqrt() and divide operation. */ static codel_time_t codel_control_law(codel_time_t t, codel_time_t interval, u32 rec_inv_sqrt) { return t + reciprocal_scale(interval, rec_inv_sqrt << REC_INV_SQRT_SHIFT); } static bool codel_should_drop(const struct sk_buff *skb, void *ctx, struct codel_vars *vars, struct codel_params *params, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, u32 *backlog, codel_time_t now) { bool ok_to_drop; u32 skb_len; if (!skb) { vars->first_above_time = 0; return false; } skb_len = skb_len_func(skb); vars->ldelay = now - skb_time_func(skb); if (unlikely(skb_len > stats->maxpacket)) stats->maxpacket = skb_len; if (codel_time_before(vars->ldelay, params->target) || *backlog <= params->mtu) { /* went below - stay below for at least interval */ vars->first_above_time = 0; return false; } ok_to_drop = false; if (vars->first_above_time == 0) { /* just went above from below. If we stay above * for at least interval we'll say it's ok to drop */ vars->first_above_time = now + params->interval; } else if (codel_time_after(now, vars->first_above_time)) { ok_to_drop = true; } return ok_to_drop; } static struct sk_buff *codel_dequeue(void *ctx, u32 *backlog, struct codel_params *params, struct codel_vars *vars, struct codel_stats *stats, codel_skb_len_t skb_len_func, codel_skb_time_t skb_time_func, codel_skb_drop_t drop_func, codel_skb_dequeue_t dequeue_func) { struct sk_buff *skb = dequeue_func(vars, ctx); codel_time_t now; bool drop; if (!skb) { vars->dropping = false; return skb; } now = codel_get_time(); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); if (vars->dropping) { if (!drop) { /* sojourn time below target - leave dropping state */ vars->dropping = false; } else if (codel_time_after_eq(now, vars->drop_next)) { /* It's time for the next drop. Drop the current * packet and dequeue the next. The dequeue might * take us out of dropping state. * If not, schedule the next drop. * A large backlog might result in drop rates so high * that the next drop should happen now, * hence the while loop. */ while (vars->dropping && codel_time_after_eq(now, vars->drop_next)) { vars->count++; /* dont care of possible wrap * since there is no more divide */ codel_Newton_step(vars); if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); goto end; } stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); if (!codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now)) { /* leave dropping state */ vars->dropping = false; } else { /* and schedule the next drop */ vars->drop_next = codel_control_law(vars->drop_next, params->interval, vars->rec_inv_sqrt); } } } } else if (drop) { u32 delta; if (params->ecn && INET_ECN_set_ce(skb)) { stats->ecn_mark++; } else { stats->drop_len += skb_len_func(skb); drop_func(skb, ctx); stats->drop_count++; skb = dequeue_func(vars, ctx); drop = codel_should_drop(skb, ctx, vars, params, stats, skb_len_func, skb_time_func, backlog, now); } vars->dropping = true; /* if min went above target close to when we last went below it * assume that the drop rate that controlled the queue on the * last cycle is a good starting point to control it now. */ delta = vars->count - vars->lastcount; if (delta > 1 && codel_time_before(now - vars->drop_next, 16 * params->interval)) { vars->count = delta; /* we dont care if rec_inv_sqrt approximation * is not very precise : * Next Newton steps will correct it quadratically. */ codel_Newton_step(vars); } else { vars->count = 1; vars->rec_inv_sqrt = ~0U >> REC_INV_SQRT_SHIFT; } vars->lastcount = vars->count; vars->drop_next = codel_control_law(now, params->interval, vars->rec_inv_sqrt); } end: if (skb && codel_time_after(vars->ldelay, params->ce_threshold) && INET_ECN_set_ce(skb)) stats->ce_mark++; return skb; } #endif
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 /* SPDX-License-Identifier: GPL-2.0+ */ #ifndef _LINUX_XARRAY_H #define _LINUX_XARRAY_H /* * eXtensible Arrays * Copyright (c) 2017 Microsoft Corporation * Author: Matthew Wilcox <willy@infradead.org> * * See Documentation/core-api/xarray.rst for how to use the XArray. */ #include <linux/bug.h> #include <linux/compiler.h> #include <linux/gfp.h> #include <linux/kconfig.h> #include <linux/kernel.h> #include <linux/rcupdate.h> #include <linux/spinlock.h> #include <linux/types.h> /* * The bottom two bits of the entry determine how the XArray interprets * the contents: * * 00: Pointer entry * 10: Internal entry * x1: Value entry or tagged pointer * * Attempting to store internal entries in the XArray is a bug. * * Most internal entries are pointers to the next node in the tree. * The following internal entries have a special meaning: * * 0-62: Sibling entries * 256: Retry entry * 257: Zero entry * * Errors are also represented as internal entries, but use the negative * space (-4094 to -2). They're never stored in the slots array; only * returned by the normal API. */ #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) /** * xa_mk_value() - Create an XArray entry from an integer. * @v: Value to store in XArray. * * Context: Any context. * Return: An entry suitable for storing in the XArray. */ static inline void *xa_mk_value(unsigned long v) { WARN_ON((long)v < 0); return (void *)((v << 1) | 1); } /** * xa_to_value() - Get value stored in an XArray entry. * @entry: XArray entry. * * Context: Any context. * Return: The value stored in the XArray entry. */ static inline unsigned long xa_to_value(const void *entry) { return (unsigned long)entry >> 1; } /** * xa_is_value() - Determine if an entry is a value. * @entry: XArray entry. * * Context: Any context. * Return: True if the entry is a value, false if it is a pointer. */ static inline bool xa_is_value(const void *entry) { return (unsigned long)entry & 1; } /** * xa_tag_pointer() - Create an XArray entry for a tagged pointer. * @p: Plain pointer. * @tag: Tag value (0, 1 or 3). * * If the user of the XArray prefers, they can tag their pointers instead * of storing value entries. Three tags are available (0, 1 and 3). * These are distinct from the xa_mark_t as they are not replicated up * through the array and cannot be searched for. * * Context: Any context. * Return: An XArray entry. */ static inline void *xa_tag_pointer(void *p, unsigned long tag) { return (void *)((unsigned long)p | tag); } /** * xa_untag_pointer() - Turn an XArray entry into a plain pointer. * @entry: XArray entry. * * If you have stored a tagged pointer in the XArray, call this function * to get the untagged version of the pointer. * * Context: Any context. * Return: A pointer. */ static inline void *xa_untag_pointer(void *entry) { return (void *)((unsigned long)entry & ~3UL); } /** * xa_pointer_tag() - Get the tag stored in an XArray entry. * @entry: XArray entry. * * If you have stored a tagged pointer in the XArray, call this function * to get the tag of that pointer. * * Context: Any context. * Return: A tag. */ static inline unsigned int xa_pointer_tag(void *entry) { return (unsigned long)entry & 3UL; } /* * xa_mk_internal() - Create an internal entry. * @v: Value to turn into an internal entry. * * Internal entries are used for a number of purposes. Entries 0-255 are * used for sibling entries (only 0-62 are used by the current code). 256 * is used for the retry entry. 257 is used for the reserved / zero entry. * Negative internal entries are used to represent errnos. Node pointers * are also tagged as internal entries in some situations. * * Context: Any context. * Return: An XArray internal entry corresponding to this value. */ static inline void *xa_mk_internal(unsigned long v) { return (void *)((v << 2) | 2); } /* * xa_to_internal() - Extract the value from an internal entry. * @entry: XArray entry. * * Context: Any context. * Return: The value which was stored in the internal entry. */ static inline unsigned long xa_to_internal(const void *entry) { return (unsigned long)entry >> 2; } /* * xa_is_internal() - Is the entry an internal entry? * @entry: XArray entry. * * Context: Any context. * Return: %true if the entry is an internal entry. */ static inline bool xa_is_internal(const void *entry) { return ((unsigned long)entry & 3) == 2; } #define XA_ZERO_ENTRY xa_mk_internal(257) /** * xa_is_zero() - Is the entry a zero entry? * @entry: Entry retrieved from the XArray * * The normal API will return NULL as the contents of a slot containing * a zero entry. You can only see zero entries by using the advanced API. * * Return: %true if the entry is a zero entry. */ static inline bool xa_is_zero(const void *entry) { return unlikely(entry == XA_ZERO_ENTRY); } /** * xa_is_err() - Report whether an XArray operation returned an error * @entry: Result from calling an XArray function * * If an XArray operation cannot complete an operation, it will return * a special value indicating an error. This function tells you * whether an error occurred; xa_err() tells you which error occurred. * * Context: Any context. * Return: %true if the entry indicates an error. */ static inline bool xa_is_err(const void *entry) { return unlikely(xa_is_internal(entry) && entry >= xa_mk_internal(-MAX_ERRNO)); } /** * xa_err() - Turn an XArray result into an errno. * @entry: Result from calling an XArray function. * * If an XArray operation cannot complete an operation, it will return * a special pointer value which encodes an errno. This function extracts * the errno from the pointer value, or returns 0 if the pointer does not * represent an errno. * * Context: Any context. * Return: A negative errno or 0. */ static inline int xa_err(void *entry) { /* xa_to_internal() would not do sign extension. */ if (xa_is_err(entry)) return (long)entry >> 2; return 0; } /** * struct xa_limit - Represents a range of IDs. * @min: The lowest ID to allocate (inclusive). * @max: The maximum ID to allocate (inclusive). * * This structure is used either directly or via the XA_LIMIT() macro * to communicate the range of IDs that are valid for allocation. * Two common ranges are predefined for you: * * xa_limit_32b - [0 - UINT_MAX] * * xa_limit_31b - [0 - INT_MAX] */ struct xa_limit { u32 max; u32 min; }; #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } #define xa_limit_32b XA_LIMIT(0, UINT_MAX) #define xa_limit_31b XA_LIMIT(0, INT_MAX) typedef unsigned __bitwise xa_mark_t; #define XA_MARK_0 ((__force xa_mark_t)0U) #define XA_MARK_1 ((__force xa_mark_t)1U) #define XA_MARK_2 ((__force xa_mark_t)2U) #define XA_PRESENT ((__force xa_mark_t)8U) #define XA_MARK_MAX XA_MARK_2 #define XA_FREE_MARK XA_MARK_0 enum xa_lock_type { XA_LOCK_IRQ = 1, XA_LOCK_BH = 2, }; /* * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, * and we remain compatible with that. */ #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ (__force unsigned)(mark))) /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) /** * struct xarray - The anchor of the XArray. * @xa_lock: Lock that protects the contents of the XArray. * * To use the xarray, define it statically or embed it in your data structure. * It is a very small data structure, so it does not usually make sense to * allocate it separately and keep a pointer to it in your data structure. * * You may use the xa_lock to protect your own data structures as well. */ /* * If all of the entries in the array are NULL, @xa_head is a NULL pointer. * If the only non-NULL entry in the array is at index 0, @xa_head is that * entry. If any other entry in the array is non-NULL, @xa_head points * to an @xa_node. */ struct xarray { spinlock_t xa_lock; /* private: The rest of the data structure is not to be used directly. */ gfp_t xa_flags; void __rcu * xa_head; }; #define XARRAY_INIT(name, flags) { \ .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ .xa_flags = flags, \ .xa_head = NULL, \ } /** * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. * @name: A string that names your XArray. * @flags: XA_FLAG values. * * This is intended for file scope definitions of XArrays. It declares * and initialises an empty XArray with the chosen name and flags. It is * equivalent to calling xa_init_flags() on the array, but it does the * initialisation at compiletime instead of runtime. */ #define DEFINE_XARRAY_FLAGS(name, flags) \ struct xarray name = XARRAY_INIT(name, flags) /** * DEFINE_XARRAY() - Define an XArray. * @name: A string that names your XArray. * * This is intended for file scope definitions of XArrays. It declares * and initialises an empty XArray with the chosen name. It is equivalent * to calling xa_init() on the array, but it does the initialisation at * compiletime instead of runtime. */ #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) /** * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. * @name: A string that names your XArray. * * This is intended for file scope definitions of allocating XArrays. * See also DEFINE_XARRAY(). */ #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) /** * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. * @name: A string that names your XArray. * * This is intended for file scope definitions of allocating XArrays. * See also DEFINE_XARRAY(). */ #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) void *xa_load(struct xarray *, unsigned long index); void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); void *xa_erase(struct xarray *, unsigned long index); void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, void *entry, gfp_t); bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); void *xa_find(struct xarray *xa, unsigned long *index, unsigned long max, xa_mark_t) __attribute__((nonnull(2))); void *xa_find_after(struct xarray *xa, unsigned long *index, unsigned long max, xa_mark_t) __attribute__((nonnull(2))); unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, unsigned long max, unsigned int n, xa_mark_t); void xa_destroy(struct xarray *); /** * xa_init_flags() - Initialise an empty XArray with flags. * @xa: XArray. * @flags: XA_FLAG values. * * If you need to initialise an XArray with special flags (eg you need * to take the lock from interrupt context), use this function instead * of xa_init(). * * Context: Any context. */ static inline void xa_init_flags(struct xarray *xa, gfp_t flags) { spin_lock_init(&xa->xa_lock); xa->xa_flags = flags; xa->xa_head = NULL; } /** * xa_init() - Initialise an empty XArray. * @xa: XArray. * * An empty XArray is full of NULL entries. * * Context: Any context. */ static inline void xa_init(struct xarray *xa) { xa_init_flags(xa, 0); } /** * xa_empty() - Determine if an array has any present entries. * @xa: XArray. * * Context: Any context. * Return: %true if the array contains only NULL pointers. */ static inline bool xa_empty(const struct xarray *xa) { return xa->xa_head == NULL; } /** * xa_marked() - Inquire whether any entry in this array has a mark set * @xa: Array * @mark: Mark value * * Context: Any context. * Return: %true if any entry has this mark set. */ static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) { return xa->xa_flags & XA_FLAGS_MARK(mark); } /** * xa_for_each_range() - Iterate over a portion of an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @start: First index to retrieve from array. * @last: Last index to retrieve from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you * want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set * to NULL and @index will have a value less than or equal to max. * * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). * xa_for_each_range() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each() iterator instead. * The xas_for_each() iterator will expand into more inline code than * xa_for_each_range(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_range(xa, index, entry, start, last) \ for (index = start, \ entry = xa_find(xa, &index, last, XA_PRESENT); \ entry; \ entry = xa_find_after(xa, &index, last, XA_PRESENT)) /** * xa_for_each_start() - Iterate over a portion of an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @start: First index to retrieve from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you * want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set * to NULL and @index will have a value less than or equal to max. * * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). * xa_for_each_start() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each() iterator instead. * The xas_for_each() iterator will expand into more inline code than * xa_for_each_start(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_start(xa, index, entry, start) \ xa_for_each_range(xa, index, entry, start, ULONG_MAX) /** * xa_for_each() - Iterate over present entries in an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you want * to skip or reprocess indices. It is safe to modify the array during the * iteration. At the end of the iteration, @entry will be set to NULL and * @index will have a value less than or equal to max. * * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). xa_for_each() * will spin if it hits a retry entry; if you intend to see retry entries, * you should use the xas_for_each() iterator instead. The xas_for_each() * iterator will expand into more inline code than xa_for_each(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each(xa, index, entry) \ xa_for_each_start(xa, index, entry, 0) /** * xa_for_each_marked() - Iterate over marked entries in an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @filter: Selection criterion. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. The iteration will skip all entries in the array * which do not match @filter. You may modify @index during the iteration * if you want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set to * NULL and @index will have a value less than or equal to max. * * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). * You have to handle your own locking with xas_for_each(), and if you have * to unlock after each iteration, it will also end up being O(n.log(n)). * xa_for_each_marked() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each_marked() iterator * instead. The xas_for_each_marked() iterator will expand into more inline * code than xa_for_each_marked(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_marked(xa, index, entry, filter) \ for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) #define xa_lock(xa) spin_lock(&(xa)->xa_lock) #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) #define xa_lock_irqsave(xa, flags) \ spin_lock_irqsave(&(xa)->xa_lock, flags) #define xa_unlock_irqrestore(xa, flags) \ spin_unlock_irqrestore(&(xa)->xa_lock, flags) #define xa_lock_nested(xa, subclass) \ spin_lock_nested(&(xa)->xa_lock, subclass) #define xa_lock_bh_nested(xa, subclass) \ spin_lock_bh_nested(&(xa)->xa_lock, subclass) #define xa_lock_irq_nested(xa, subclass) \ spin_lock_irq_nested(&(xa)->xa_lock, subclass) #define xa_lock_irqsave_nested(xa, flags, subclass) \ spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass) /* * Versions of the normal API which require the caller to hold the * xa_lock. If the GFP flags allow it, they will drop the lock to * allocate memory, then reacquire it afterwards. These functions * may also re-enable interrupts if the XArray flags indicate the * locking should be interrupt safe. */ void *__xa_erase(struct xarray *, unsigned long index); void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, void *entry, gfp_t); int __must_check __xa_insert(struct xarray *, unsigned long index, void *entry, gfp_t); int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, struct xa_limit, gfp_t); int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, struct xa_limit, u32 *next, gfp_t); void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); /** * xa_store_bh() - Store this entry in the XArray. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * This function is like calling xa_store() except it disables softirqs * while holding the array lock. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: The old entry at this index or xa_err() if an error happened. */ static inline void *xa_store_bh(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { void *curr; xa_lock_bh(xa); curr = __xa_store(xa, index, entry, gfp); xa_unlock_bh(xa); return curr; } /** * xa_store_irq() - Store this entry in the XArray. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * This function is like calling xa_store() except it disables interrupts * while holding the array lock. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: The old entry at this index or xa_err() if an error happened. */ static inline void *xa_store_irq(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { void *curr; xa_lock_irq(xa); curr = __xa_store(xa, index, entry, gfp); xa_unlock_irq(xa); return curr; } /** * xa_erase_bh() - Erase this entry from the XArray. * @xa: XArray. * @index: Index of entry. * * After this function returns, loading from @index will return %NULL. * If the index is part of a multi-index entry, all indices will be erased * and none of the entries will be part of a multi-index entry. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: The entry which used to be at this index. */ static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) { void *entry; xa_lock_bh(xa); entry = __xa_erase(xa, index); xa_unlock_bh(xa); return entry; } /** * xa_erase_irq() - Erase this entry from the XArray. * @xa: XArray. * @index: Index of entry. * * After this function returns, loading from @index will return %NULL. * If the index is part of a multi-index entry, all indices will be erased * and none of the entries will be part of a multi-index entry. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: The entry which used to be at this index. */ static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) { void *entry; xa_lock_irq(xa); entry = __xa_erase(xa, index); xa_unlock_irq(xa); return entry; } /** * xa_cmpxchg() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * If the entry at @index is the same as @old, replace it with @entry. * If the return value is equal to @old, then the exchange was successful. * * Context: Any context. Takes and releases the xa_lock. May sleep * if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; xa_lock(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock(xa); return curr; } /** * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * This function is like calling xa_cmpxchg() except it disables softirqs * while holding the array lock. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; xa_lock_bh(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock_bh(xa); return curr; } /** * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * This function is like calling xa_cmpxchg() except it disables interrupts * while holding the array lock. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; xa_lock_irq(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock_irq(xa); return curr; } /** * xa_insert() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; xa_lock(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock(xa); return err; } /** * xa_insert_bh() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert_bh(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; xa_lock_bh(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock_bh(xa); return err; } /** * xa_insert_irq() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert_irq(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; xa_lock_irq(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock_irq(xa); return err; } /** * xa_alloc() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; xa_lock(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock(xa); return err; } /** * xa_alloc_bh() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; xa_lock_bh(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock_bh(xa); return err; } /** * xa_alloc_irq() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; xa_lock_irq(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock_irq(xa); return err; } /** * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; xa_lock(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock(xa); return err; } /** * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; xa_lock_bh(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock_bh(xa); return err; } /** * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; xa_lock_irq(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock_irq(xa); return err; } /** * xa_reserve() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * Ensures there is somewhere to store an entry at @index in the array. * If there is already something stored at @index, this function does * nothing. If there was nothing there, the entry is marked as reserved. * Loading from a reserved entry returns a %NULL pointer. * * If you do not use the entry that you have reserved, call xa_release() * or xa_erase() to free any unnecessary memory. * * Context: Any context. Takes and releases the xa_lock. * May sleep if the @gfp flags permit. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_reserve_bh() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * A softirq-disabling version of xa_reserve(). * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_reserve_irq() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * An interrupt-disabling version of xa_reserve(). * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_release() - Release a reserved entry. * @xa: XArray. * @index: Index of entry. * * After calling xa_reserve(), you can call this function to release the * reservation. If the entry at @index has been stored to, this function * will do nothing. */ static inline void xa_release(struct xarray *xa, unsigned long index) { xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); } /* Everything below here is the Advanced API. Proceed with caution. */ /* * The xarray is constructed out of a set of 'chunks' of pointers. Choosing * the best chunk size requires some tradeoffs. A power of two recommends * itself so that we can walk the tree based purely on shifts and masks. * Generally, the larger the better; as the number of slots per level of the * tree increases, the less tall the tree needs to be. But that needs to be * balanced against the memory consumption of each node. On a 64-bit system, * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. */ #ifndef XA_CHUNK_SHIFT #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) #endif #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) #define XA_MAX_MARKS 3 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) /* * @count is the count of every non-NULL element in the ->slots array * whether that is a value entry, a retry entry, a user pointer, * a sibling entry or a pointer to the next level of the tree. * @nr_values is the count of every element in ->slots which is * either a value entry or a sibling of a value entry. */ struct xa_node { unsigned char shift; /* Bits remaining in each slot */ unsigned char offset; /* Slot offset in parent */ unsigned char count; /* Total entry count */ unsigned char nr_values; /* Value entry count */ struct xa_node __rcu *parent; /* NULL at top of tree */ struct xarray *array; /* The array we belong to */ union { struct list_head private_list; /* For tree user */ struct rcu_head rcu_head; /* Used when freeing node */ }; void __rcu *slots[XA_CHUNK_SIZE]; union { unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; }; }; void xa_dump(const struct xarray *); void xa_dump_node(const struct xa_node *); #ifdef XA_DEBUG #define XA_BUG_ON(xa, x) do { \ if (x) { \ xa_dump(xa); \ BUG(); \ } \ } while (0) #define XA_NODE_BUG_ON(node, x) do { \ if (x) { \ if (node) xa_dump_node(node); \ BUG(); \ } \ } while (0) #else #define XA_BUG_ON(xa, x) do { } while (0) #define XA_NODE_BUG_ON(node, x) do { } while (0) #endif /* Private */ static inline void *xa_head(const struct xarray *xa) { return rcu_dereference_check(xa->xa_head, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_head_locked(const struct xarray *xa) { return rcu_dereference_protected(xa->xa_head, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_entry(const struct xarray *xa, const struct xa_node *node, unsigned int offset) { XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); return rcu_dereference_check(node->slots[offset], lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_entry_locked(const struct xarray *xa, const struct xa_node *node, unsigned int offset) { XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); return rcu_dereference_protected(node->slots[offset], lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline struct xa_node *xa_parent(const struct xarray *xa, const struct xa_node *node) { return rcu_dereference_check(node->parent, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline struct xa_node *xa_parent_locked(const struct xarray *xa, const struct xa_node *node) { return rcu_dereference_protected(node->parent, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_mk_node(const struct xa_node *node) { return (void *)((unsigned long)node | 2); } /* Private */ static inline struct xa_node *xa_to_node(const void *entry) { return (struct xa_node *)((unsigned long)entry - 2); } /* Private */ static inline bool xa_is_node(const void *entry) { return xa_is_internal(entry) && (unsigned long)entry > 4096; } /* Private */ static inline void *xa_mk_sibling(unsigned int offset) { return xa_mk_internal(offset); } /* Private */ static inline unsigned long xa_to_sibling(const void *entry) { return xa_to_internal(entry); } /** * xa_is_sibling() - Is the entry a sibling entry? * @entry: Entry retrieved from the XArray * * Return: %true if the entry is a sibling entry. */ static inline bool xa_is_sibling(const void *entry) { return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); } #define XA_RETRY_ENTRY xa_mk_internal(256) /** * xa_is_retry() - Is the entry a retry entry? * @entry: Entry retrieved from the XArray * * Return: %true if the entry is a retry entry. */ static inline bool xa_is_retry(const void *entry) { return unlikely(entry == XA_RETRY_ENTRY); } /** * xa_is_advanced() - Is the entry only permitted for the advanced API? * @entry: Entry to be stored in the XArray. * * Return: %true if the entry cannot be stored by the normal API. */ static inline bool xa_is_advanced(const void *entry) { return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); } /** * typedef xa_update_node_t - A callback function from the XArray. * @node: The node which is being processed * * This function is called every time the XArray updates the count of * present and value entries in a node. It allows advanced users to * maintain the private_list in the node. * * Context: The xa_lock is held and interrupts may be disabled. * Implementations should not drop the xa_lock, nor re-enable * interrupts. */ typedef void (*xa_update_node_t)(struct xa_node *node); void xa_delete_node(struct xa_node *, xa_update_node_t); /* * The xa_state is opaque to its users. It contains various different pieces * of state involved in the current operation on the XArray. It should be * declared on the stack and passed between the various internal routines. * The various elements in it should not be accessed directly, but only * through the provided accessor functions. The below documentation is for * the benefit of those working on the code, not for users of the XArray. * * @xa_node usually points to the xa_node containing the slot we're operating * on (and @xa_offset is the offset in the slots array). If there is a * single entry in the array at index 0, there are no allocated xa_nodes to * point to, and so we store %NULL in @xa_node. @xa_node is set to * the value %XAS_RESTART if the xa_state is not walked to the correct * position in the tree of nodes for this operation. If an error occurs * during an operation, it is set to an %XAS_ERROR value. If we run off the * end of the allocated nodes, it is set to %XAS_BOUNDS. */ struct xa_state { struct xarray *xa; unsigned long xa_index; unsigned char xa_shift; unsigned char xa_sibs; unsigned char xa_offset; unsigned char xa_pad; /* Helps gcc generate better code */ struct xa_node *xa_node; struct xa_node *xa_alloc; xa_update_node_t xa_update; }; /* * We encode errnos in the xas->xa_node. If an error has happened, we need to * drop the lock to fix it, and once we've done so the xa_state is invalid. */ #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) #define XAS_BOUNDS ((struct xa_node *)1UL) #define XAS_RESTART ((struct xa_node *)3UL) #define __XA_STATE(array, index, shift, sibs) { \ .xa = array, \ .xa_index = index, \ .xa_shift = shift, \ .xa_sibs = sibs, \ .xa_offset = 0, \ .xa_pad = 0, \ .xa_node = XAS_RESTART, \ .xa_alloc = NULL, \ .xa_update = NULL \ } /** * XA_STATE() - Declare an XArray operation state. * @name: Name of this operation state (usually xas). * @array: Array to operate on. * @index: Initial index of interest. * * Declare and initialise an xa_state on the stack. */ #define XA_STATE(name, array, index) \ struct xa_state name = __XA_STATE(array, index, 0, 0) /** * XA_STATE_ORDER() - Declare an XArray operation state. * @name: Name of this operation state (usually xas). * @array: Array to operate on. * @index: Initial index of interest. * @order: Order of entry. * * Declare and initialise an xa_state on the stack. This variant of * XA_STATE() allows you to specify the 'order' of the element you * want to operate on.` */ #define XA_STATE_ORDER(name, array, index, order) \ struct xa_state name = __XA_STATE(array, \ (index >> order) << order, \ order - (order % XA_CHUNK_SHIFT), \ (1U << (order % XA_CHUNK_SHIFT)) - 1) #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) #define xas_trylock(xas) xa_trylock((xas)->xa) #define xas_lock(xas) xa_lock((xas)->xa) #define xas_unlock(xas) xa_unlock((xas)->xa) #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) #define xas_lock_irqsave(xas, flags) \ xa_lock_irqsave((xas)->xa, flags) #define xas_unlock_irqrestore(xas, flags) \ xa_unlock_irqrestore((xas)->xa, flags) /** * xas_error() - Return an errno stored in the xa_state. * @xas: XArray operation state. * * Return: 0 if no error has been noted. A negative errno if one has. */ static inline int xas_error(const struct xa_state *xas) { return xa_err(xas->xa_node); } /** * xas_set_err() - Note an error in the xa_state. * @xas: XArray operation state. * @err: Negative error number. * * Only call this function with a negative @err; zero or positive errors * will probably not behave the way you think they should. If you want * to clear the error from an xa_state, use xas_reset(). */ static inline void xas_set_err(struct xa_state *xas, long err) { xas->xa_node = XA_ERROR(err); } /** * xas_invalid() - Is the xas in a retry or error state? * @xas: XArray operation state. * * Return: %true if the xas cannot be used for operations. */ static inline bool xas_invalid(const struct xa_state *xas) { return (unsigned long)xas->xa_node & 3; } /** * xas_valid() - Is the xas a valid cursor into the array? * @xas: XArray operation state. * * Return: %true if the xas can be used for operations. */ static inline bool xas_valid(const struct xa_state *xas) { return !xas_invalid(xas); } /** * xas_is_node() - Does the xas point to a node? * @xas: XArray operation state. * * Return: %true if the xas currently references a node. */ static inline bool xas_is_node(const struct xa_state *xas) { return xas_valid(xas) && xas->xa_node; } /* True if the pointer is something other than a node */ static inline bool xas_not_node(struct xa_node *node) { return ((unsigned long)node & 3) || !node; } /* True if the node represents RESTART or an error */ static inline bool xas_frozen(struct xa_node *node) { return (unsigned long)node & 2; } /* True if the node represents head-of-tree, RESTART or BOUNDS */ static inline bool xas_top(struct xa_node *node) { return node <= XAS_RESTART; } /** * xas_reset() - Reset an XArray operation state. * @xas: XArray operation state. * * Resets the error or walk state of the @xas so future walks of the * array will start from the root. Use this if you have dropped the * xarray lock and want to reuse the xa_state. * * Context: Any context. */ static inline void xas_reset(struct xa_state *xas) { xas->xa_node = XAS_RESTART; } /** * xas_retry() - Retry the operation if appropriate. * @xas: XArray operation state. * @entry: Entry from xarray. * * The advanced functions may sometimes return an internal entry, such as * a retry entry or a zero entry. This function sets up the @xas to restart * the walk from the head of the array if needed. * * Context: Any context. * Return: true if the operation needs to be retried. */ static inline bool xas_retry(struct xa_state *xas, const void *entry) { if (xa_is_zero(entry)) return true; if (!xa_is_retry(entry)) return false; xas_reset(xas); return true; } void *xas_load(struct xa_state *); void *xas_store(struct xa_state *, void *entry); void *xas_find(struct xa_state *, unsigned long max); void *xas_find_conflict(struct xa_state *); bool xas_get_mark(const struct xa_state *, xa_mark_t); void xas_set_mark(const struct xa_state *, xa_mark_t); void xas_clear_mark(const struct xa_state *, xa_mark_t); void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); void xas_init_marks(const struct xa_state *); bool xas_nomem(struct xa_state *, gfp_t); void xas_pause(struct xa_state *); void xas_create_range(struct xa_state *); #ifdef CONFIG_XARRAY_MULTI int xa_get_order(struct xarray *, unsigned long index); void xas_split(struct xa_state *, void *entry, unsigned int order); void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t); #else static inline int xa_get_order(struct xarray *xa, unsigned long index) { return 0; } static inline void xas_split(struct xa_state *xas, void *entry, unsigned int order) { xas_store(xas, entry); } static inline void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, gfp_t gfp) { } #endif /** * xas_reload() - Refetch an entry from the xarray. * @xas: XArray operation state. * * Use this function to check that a previously loaded entry still has * the same value. This is useful for the lockless pagecache lookup where * we walk the array with only the RCU lock to protect us, lock the page, * then check that the page hasn't moved since we looked it up. * * The caller guarantees that @xas is still valid. If it may be in an * error or restart state, call xas_load() instead. * * Return: The entry at this location in the xarray. */ static inline void *xas_reload(struct xa_state *xas) { struct xa_node *node = xas->xa_node; void *entry; char offset; if (!node) return xa_head(xas->xa); if (IS_ENABLED(CONFIG_XARRAY_MULTI)) { offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK; entry = xa_entry(xas->xa, node, offset); if (!xa_is_sibling(entry)) return entry; offset = xa_to_sibling(entry); } else { offset = xas->xa_offset; } return xa_entry(xas->xa, node, offset); } /** * xas_set() - Set up XArray operation state for a different index. * @xas: XArray operation state. * @index: New index into the XArray. * * Move the operation state to refer to a different index. This will * have the effect of starting a walk from the top; see xas_next() * to move to an adjacent index. */ static inline void xas_set(struct xa_state *xas, unsigned long index) { xas->xa_index = index; xas->xa_node = XAS_RESTART; } /** * xas_set_order() - Set up XArray operation state for a multislot entry. * @xas: XArray operation state. * @index: Target of the operation. * @order: Entry occupies 2^@order indices. */ static inline void xas_set_order(struct xa_state *xas, unsigned long index, unsigned int order) { #ifdef CONFIG_XARRAY_MULTI xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; xas->xa_shift = order - (order % XA_CHUNK_SHIFT); xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; xas->xa_node = XAS_RESTART; #else BUG_ON(order > 0); xas_set(xas, index); #endif } /** * xas_set_update() - Set up XArray operation state for a callback. * @xas: XArray operation state. * @update: Function to call when updating a node. * * The XArray can notify a caller after it has updated an xa_node. * This is advanced functionality and is only needed by the page cache. */ static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) { xas->xa_update = update; } /** * xas_next_entry() - Advance iterator to next present entry. * @xas: XArray operation state. * @max: Highest index to return. * * xas_next_entry() is an inline function to optimise xarray traversal for * speed. It is equivalent to calling xas_find(), and will call xas_find() * for all the hard cases. * * Return: The next present entry after the one currently referred to by @xas. */ static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) { struct xa_node *node = xas->xa_node; void *entry; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) return xas_find(xas, max); do { if (unlikely(xas->xa_index >= max)) return xas_find(xas, max); if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) return xas_find(xas, max); entry = xa_entry(xas->xa, node, xas->xa_offset + 1); if (unlikely(xa_is_internal(entry))) return xas_find(xas, max); xas->xa_offset++; xas->xa_index++; } while (!entry); return entry; } /* Private */ static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, xa_mark_t mark) { unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; unsigned int offset = xas->xa_offset; if (advance) offset++; if (XA_CHUNK_SIZE == BITS_PER_LONG) { if (offset < XA_CHUNK_SIZE) { unsigned long data = *addr & (~0UL << offset); if (data) return __ffs(data); } return XA_CHUNK_SIZE; } return find_next_bit(addr, XA_CHUNK_SIZE, offset); } /** * xas_next_marked() - Advance iterator to next marked entry. * @xas: XArray operation state. * @max: Highest index to return. * @mark: Mark to search for. * * xas_next_marked() is an inline function to optimise xarray traversal for * speed. It is equivalent to calling xas_find_marked(), and will call * xas_find_marked() for all the hard cases. * * Return: The next marked entry after the one currently referred to by @xas. */ static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) { struct xa_node *node = xas->xa_node; void *entry; unsigned int offset; if (unlikely(xas_not_node(node) || node->shift)) return xas_find_marked(xas, max, mark); offset = xas_find_chunk(xas, true, mark); xas->xa_offset = offset; xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; if (xas->xa_index > max) return NULL; if (offset == XA_CHUNK_SIZE) return xas_find_marked(xas, max, mark); entry = xa_entry(xas->xa, node, offset); if (!entry) return xas_find_marked(xas, max, mark); return entry; } /* * If iterating while holding a lock, drop the lock and reschedule * every %XA_CHECK_SCHED loops. */ enum { XA_CHECK_SCHED = 4096, }; /** * xas_for_each() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * @max: Maximum index to retrieve from array. * * The loop body will be executed for each entry present in the xarray * between the current xas position and @max. @entry will be set to * the entry retrieved from the xarray. It is safe to delete entries * from the array in the loop body. You should hold either the RCU lock * or the xa_lock while iterating. If you need to drop the lock, call * xas_pause() first. */ #define xas_for_each(xas, entry, max) \ for (entry = xas_find(xas, max); entry; \ entry = xas_next_entry(xas, max)) /** * xas_for_each_marked() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * @max: Maximum index to retrieve from array. * @mark: Mark to search for. * * The loop body will be executed for each marked entry in the xarray * between the current xas position and @max. @entry will be set to * the entry retrieved from the xarray. It is safe to delete entries * from the array in the loop body. You should hold either the RCU lock * or the xa_lock while iterating. If you need to drop the lock, call * xas_pause() first. */ #define xas_for_each_marked(xas, entry, max, mark) \ for (entry = xas_find_marked(xas, max, mark); entry; \ entry = xas_next_marked(xas, max, mark)) /** * xas_for_each_conflict() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * * The loop body will be executed for each entry in the XArray that * lies within the range specified by @xas. If the loop terminates * normally, @entry will be %NULL. The user may break out of the loop, * which will leave @entry set to the conflicting entry. The caller * may also call xa_set_err() to exit the loop while setting an error * to record the reason. */ #define xas_for_each_conflict(xas, entry) \ while ((entry = xas_find_conflict(xas))) void *__xas_next(struct xa_state *); void *__xas_prev(struct xa_state *); /** * xas_prev() - Move iterator to previous index. * @xas: XArray operation state. * * If the @xas was in an error state, it will remain in an error state * and this function will return %NULL. If the @xas has never been walked, * it will have the effect of calling xas_load(). Otherwise one will be * subtracted from the index and the state will be walked to the correct * location in the array for the next operation. * * If the iterator was referencing index 0, this function wraps * around to %ULONG_MAX. * * Return: The entry at the new index. This may be %NULL or an internal * entry. */ static inline void *xas_prev(struct xa_state *xas) { struct xa_node *node = xas->xa_node; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset == 0)) return __xas_prev(xas); xas->xa_index--; xas->xa_offset--; return xa_entry(xas->xa, node, xas->xa_offset); } /** * xas_next() - Move state to next index. * @xas: XArray operation state. * * If the @xas was in an error state, it will remain in an error state * and this function will return %NULL. If the @xas has never been walked, * it will have the effect of calling xas_load(). Otherwise one will be * added to the index and the state will be walked to the correct * location in the array for the next operation. * * If the iterator was referencing index %ULONG_MAX, this function wraps * around to 0. * * Return: The entry at the new index. This may be %NULL or an internal * entry. */ static inline void *xas_next(struct xa_state *xas) { struct xa_node *node = xas->xa_node; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset == XA_CHUNK_MASK)) return __xas_next(xas); xas->xa_index++; xas->xa_offset++; return xa_entry(xas->xa, node, xas->xa_offset); } #endif /* _LINUX_XARRAY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved. * Authors: David Chinner and Glauber Costa * * Generic LRU infrastructure */ #ifndef _LRU_LIST_H #define _LRU_LIST_H #include <linux/list.h> #include <linux/nodemask.h> #include <linux/shrinker.h> struct mem_cgroup; /* list_lru_walk_cb has to always return one of those */ enum lru_status { LRU_REMOVED, /* item removed from list */ LRU_REMOVED_RETRY, /* item removed, but lock has been dropped and reacquired */ LRU_ROTATE, /* item referenced, give another pass */ LRU_SKIP, /* item cannot be locked, skip */ LRU_RETRY, /* item not freeable. May drop the lock internally, but has to return locked. */ }; struct list_lru_one { struct list_head list; /* may become negative during memcg reparenting */ long nr_items; }; struct list_lru_memcg { struct rcu_head rcu; /* array of per cgroup lists, indexed by memcg_cache_id */ struct list_lru_one *lru[]; }; struct list_lru_node { /* protects all lists on the node, including per cgroup */ spinlock_t lock; /* global list, used for the root cgroup in cgroup aware lrus */ struct list_lru_one lru; #ifdef CONFIG_MEMCG_KMEM /* for cgroup aware lrus points to per cgroup lists, otherwise NULL */ struct list_lru_memcg __rcu *memcg_lrus; #endif long nr_items; } ____cacheline_aligned_in_smp; struct list_lru { struct list_lru_node *node; #ifdef CONFIG_MEMCG_KMEM struct list_head list; int shrinker_id; bool memcg_aware; #endif }; void list_lru_destroy(struct list_lru *lru); int __list_lru_init(struct list_lru *lru, bool memcg_aware, struct lock_class_key *key, struct shrinker *shrinker); #define list_lru_init(lru) \ __list_lru_init((lru), false, NULL, NULL) #define list_lru_init_key(lru, key) \ __list_lru_init((lru), false, (key), NULL) #define list_lru_init_memcg(lru, shrinker) \ __list_lru_init((lru), true, NULL, shrinker) int memcg_update_all_list_lrus(int num_memcgs); void memcg_drain_all_list_lrus(int src_idx, struct mem_cgroup *dst_memcg); /** * list_lru_add: add an element to the lru list's tail * @list_lru: the lru pointer * @item: the item to be added. * * If the element is already part of a list, this function returns doing * nothing. Therefore the caller does not need to keep state about whether or * not the element already belongs in the list and is allowed to lazy update * it. Note however that this is valid for *a* list, not *this* list. If * the caller organize itself in a way that elements can be in more than * one type of list, it is up to the caller to fully remove the item from * the previous list (with list_lru_del() for instance) before moving it * to @list_lru * * Return value: true if the list was updated, false otherwise */ bool list_lru_add(struct list_lru *lru, struct list_head *item); /** * list_lru_del: delete an element to the lru list * @list_lru: the lru pointer * @item: the item to be deleted. * * This function works analogously as list_lru_add in terms of list * manipulation. The comments about an element already pertaining to * a list are also valid for list_lru_del. * * Return value: true if the list was updated, false otherwise */ bool list_lru_del(struct list_lru *lru, struct list_head *item); /** * list_lru_count_one: return the number of objects currently held by @lru * @lru: the lru pointer. * @nid: the node id to count from. * @memcg: the cgroup to count from. * * Always return a non-negative number, 0 for empty lists. There is no * guarantee that the list is not updated while the count is being computed. * Callers that want such a guarantee need to provide an outer lock. */ unsigned long list_lru_count_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg); unsigned long list_lru_count_node(struct list_lru *lru, int nid); static inline unsigned long list_lru_shrink_count(struct list_lru *lru, struct shrink_control *sc) { return list_lru_count_one(lru, sc->nid, sc->memcg); } static inline unsigned long list_lru_count(struct list_lru *lru) { long count = 0; int nid; for_each_node_state(nid, N_NORMAL_MEMORY) count += list_lru_count_node(lru, nid); return count; } void list_lru_isolate(struct list_lru_one *list, struct list_head *item); void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item, struct list_head *head); typedef enum lru_status (*list_lru_walk_cb)(struct list_head *item, struct list_lru_one *list, spinlock_t *lock, void *cb_arg); /** * list_lru_walk_one: walk a list_lru, isolating and disposing freeable items. * @lru: the lru pointer. * @nid: the node id to scan from. * @memcg: the cgroup to scan from. * @isolate: callback function that is resposible for deciding what to do with * the item currently being scanned * @cb_arg: opaque type that will be passed to @isolate * @nr_to_walk: how many items to scan. * * This function will scan all elements in a particular list_lru, calling the * @isolate callback for each of those items, along with the current list * spinlock and a caller-provided opaque. The @isolate callback can choose to * drop the lock internally, but *must* return with the lock held. The callback * will return an enum lru_status telling the list_lru infrastructure what to * do with the object being scanned. * * Please note that nr_to_walk does not mean how many objects will be freed, * just how many objects will be scanned. * * Return value: the number of objects effectively removed from the LRU. */ unsigned long list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); /** * list_lru_walk_one_irq: walk a list_lru, isolating and disposing freeable items. * @lru: the lru pointer. * @nid: the node id to scan from. * @memcg: the cgroup to scan from. * @isolate: callback function that is resposible for deciding what to do with * the item currently being scanned * @cb_arg: opaque type that will be passed to @isolate * @nr_to_walk: how many items to scan. * * Same as @list_lru_walk_one except that the spinlock is acquired with * spin_lock_irq(). */ unsigned long list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); unsigned long list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); static inline unsigned long list_lru_shrink_walk(struct list_lru *lru, struct shrink_control *sc, list_lru_walk_cb isolate, void *cb_arg) { return list_lru_walk_one(lru, sc->nid, sc->memcg, isolate, cb_arg, &sc->nr_to_scan); } static inline unsigned long list_lru_shrink_walk_irq(struct list_lru *lru, struct shrink_control *sc, list_lru_walk_cb isolate, void *cb_arg) { return list_lru_walk_one_irq(lru, sc->nid, sc->memcg, isolate, cb_arg, &sc->nr_to_scan); } static inline unsigned long list_lru_walk(struct list_lru *lru, list_lru_walk_cb isolate, void *cb_arg, unsigned long nr_to_walk) { long isolated = 0; int nid; for_each_node_state(nid, N_NORMAL_MEMORY) { isolated += list_lru_walk_node(lru, nid, isolate, cb_arg, &nr_to_walk); if (nr_to_walk <= 0) break; } return isolated; } #endif /* _LRU_LIST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 // SPDX-License-Identifier: GPL-2.0 /* * The class-specific portions of the driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * Copyright (c) 2012-2019 Greg Kroah-Hartman <gregkh@linuxfoundation.org> * Copyright (c) 2012-2019 Linux Foundation * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_CLASS_H_ #define _DEVICE_CLASS_H_ #include <linux/kobject.h> #include <linux/klist.h> #include <linux/pm.h> #include <linux/device/bus.h> struct device; struct fwnode_handle; /** * struct class - device classes * @name: Name of the class. * @owner: The module owner. * @class_groups: Default attributes of this class. * @dev_groups: Default attributes of the devices that belong to the class. * @dev_kobj: The kobject that represents this class and links it into the hierarchy. * @dev_uevent: Called when a device is added, removed from this class, or a * few other things that generate uevents to add the environment * variables. * @devnode: Callback to provide the devtmpfs. * @class_release: Called to release this class. * @dev_release: Called to release the device. * @shutdown_pre: Called at shut-down time before driver shutdown. * @ns_type: Callbacks so sysfs can detemine namespaces. * @namespace: Namespace of the device belongs to this class. * @get_ownership: Allows class to specify uid/gid of the sysfs directories * for the devices belonging to the class. Usually tied to * device's namespace. * @pm: The default device power management operations of this class. * @p: The private data of the driver core, no one other than the * driver core can touch this. * * A class is a higher-level view of a device that abstracts out low-level * implementation details. Drivers may see a SCSI disk or an ATA disk, but, * at the class level, they are all simply disks. Classes allow user space * to work with devices based on what they do, rather than how they are * connected or how they work. */ struct class { const char *name; struct module *owner; const struct attribute_group **class_groups; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode); void (*class_release)(struct class *class); void (*dev_release)(struct device *dev); int (*shutdown_pre)(struct device *dev); const struct kobj_ns_type_operations *ns_type; const void *(*namespace)(struct device *dev); void (*get_ownership)(struct device *dev, kuid_t *uid, kgid_t *gid); const struct dev_pm_ops *pm; struct subsys_private *p; }; struct class_dev_iter { struct klist_iter ki; const struct device_type *type; }; extern struct kobject *sysfs_dev_block_kobj; extern struct kobject *sysfs_dev_char_kobj; extern int __must_check __class_register(struct class *class, struct lock_class_key *key); extern void class_unregister(struct class *class); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_register(class) \ ({ \ static struct lock_class_key __key; \ __class_register(class, &__key); \ }) struct class_compat; struct class_compat *class_compat_register(const char *name); void class_compat_unregister(struct class_compat *cls); int class_compat_create_link(struct class_compat *cls, struct device *dev, struct device *device_link); void class_compat_remove_link(struct class_compat *cls, struct device *dev, struct device *device_link); extern void class_dev_iter_init(struct class_dev_iter *iter, struct class *class, struct device *start, const struct device_type *type); extern struct device *class_dev_iter_next(struct class_dev_iter *iter); extern void class_dev_iter_exit(struct class_dev_iter *iter); extern int class_for_each_device(struct class *class, struct device *start, void *data, int (*fn)(struct device *dev, void *data)); extern struct device *class_find_device(struct class *class, struct device *start, const void *data, int (*match)(struct device *, const void *)); /** * class_find_device_by_name - device iterator for locating a particular device * of a specific name. * @class: class type * @name: name of the device to match */ static inline struct device *class_find_device_by_name(struct class *class, const char *name) { return class_find_device(class, NULL, name, device_match_name); } /** * class_find_device_by_of_node : device iterator for locating a particular device * matching the of_node. * @class: class type * @np: of_node of the device to match. */ static inline struct device * class_find_device_by_of_node(struct class *class, const struct device_node *np) { return class_find_device(class, NULL, np, device_match_of_node); } /** * class_find_device_by_fwnode : device iterator for locating a particular device * matching the fwnode. * @class: class type * @fwnode: fwnode of the device to match. */ static inline struct device * class_find_device_by_fwnode(struct class *class, const struct fwnode_handle *fwnode) { return class_find_device(class, NULL, fwnode, device_match_fwnode); } /** * class_find_device_by_devt : device iterator for locating a particular device * matching the device type. * @class: class type * @devt: device type of the device to match. */ static inline struct device *class_find_device_by_devt(struct class *class, dev_t devt) { return class_find_device(class, NULL, &devt, device_match_devt); } #ifdef CONFIG_ACPI struct acpi_device; /** * class_find_device_by_acpi_dev : device iterator for locating a particular * device matching the ACPI_COMPANION device. * @class: class type * @adev: ACPI_COMPANION device to match. */ static inline struct device * class_find_device_by_acpi_dev(struct class *class, const struct acpi_device *adev) { return class_find_device(class, NULL, adev, device_match_acpi_dev); } #else static inline struct device * class_find_device_by_acpi_dev(struct class *class, const void *adev) { return NULL; } #endif struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *class, struct class_attribute *attr, char *buf); ssize_t (*store)(struct class *class, struct class_attribute *attr, const char *buf, size_t count); }; #define CLASS_ATTR_RW(_name) \ struct class_attribute class_attr_##_name = __ATTR_RW(_name) #define CLASS_ATTR_RO(_name) \ struct class_attribute class_attr_##_name = __ATTR_RO(_name) #define CLASS_ATTR_WO(_name) \ struct class_attribute class_attr_##_name = __ATTR_WO(_name) extern int __must_check class_create_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); extern void class_remove_file_ns(struct class *class, const struct class_attribute *attr, const void *ns); static inline int __must_check class_create_file(struct class *class, const struct class_attribute *attr) { return class_create_file_ns(class, attr, NULL); } static inline void class_remove_file(struct class *class, const struct class_attribute *attr) { return class_remove_file_ns(class, attr, NULL); } /* Simple class attribute that is just a static string */ struct class_attribute_string { struct class_attribute attr; char *str; }; /* Currently read-only only */ #define _CLASS_ATTR_STRING(_name, _mode, _str) \ { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } #define CLASS_ATTR_STRING(_name, _mode, _str) \ struct class_attribute_string class_attr_##_name = \ _CLASS_ATTR_STRING(_name, _mode, _str) extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, char *buf); struct class_interface { struct list_head node; struct class *class; int (*add_dev) (struct device *, struct class_interface *); void (*remove_dev) (struct device *, struct class_interface *); }; extern int __must_check class_interface_register(struct class_interface *); extern void class_interface_unregister(struct class_interface *); extern struct class * __must_check __class_create(struct module *owner, const char *name, struct lock_class_key *key); extern void class_destroy(struct class *cls); /* This is a #define to keep the compiler from merging different * instances of the __key variable */ #define class_create(owner, name) \ ({ \ static struct lock_class_key __key; \ __class_create(owner, name, &__key); \ }) #endif /* _DEVICE_CLASS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NVRAM_H #define _LINUX_NVRAM_H #include <linux/errno.h> #include <uapi/linux/nvram.h> #ifdef CONFIG_PPC #include <asm/machdep.h> #endif /** * struct nvram_ops - NVRAM functionality made available to drivers * @read: validate checksum (if any) then load a range of bytes from NVRAM * @write: store a range of bytes to NVRAM then update checksum (if any) * @read_byte: load a single byte from NVRAM * @write_byte: store a single byte to NVRAM * @get_size: return the fixed number of bytes in the NVRAM * * Architectures which provide an nvram ops struct need not implement all * of these methods. If the NVRAM hardware can be accessed only one byte * at a time then it may be sufficient to provide .read_byte and .write_byte. * If the NVRAM has a checksum (and it is to be checked) the .read and * .write methods can be used to implement that efficiently. * * Portable drivers may use the wrapper functions defined here. * The nvram_read() and nvram_write() functions call the .read and .write * methods when available and fall back on the .read_byte and .write_byte * methods otherwise. */ struct nvram_ops { ssize_t (*get_size)(void); unsigned char (*read_byte)(int); void (*write_byte)(unsigned char, int); ssize_t (*read)(char *, size_t, loff_t *); ssize_t (*write)(char *, size_t, loff_t *); #if defined(CONFIG_X86) || defined(CONFIG_M68K) long (*initialize)(void); long (*set_checksum)(void); #endif }; extern const struct nvram_ops arch_nvram_ops; static inline ssize_t nvram_get_size(void) { #ifdef CONFIG_PPC if (ppc_md.nvram_size) return ppc_md.nvram_size(); #else if (arch_nvram_ops.get_size) return arch_nvram_ops.get_size(); #endif return -ENODEV; } static inline unsigned char nvram_read_byte(int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_read_val) return ppc_md.nvram_read_val(addr); #else if (arch_nvram_ops.read_byte) return arch_nvram_ops.read_byte(addr); #endif return 0xFF; } static inline void nvram_write_byte(unsigned char val, int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_write_val) ppc_md.nvram_write_val(addr, val); #else if (arch_nvram_ops.write_byte) arch_nvram_ops.write_byte(val, addr); #endif } static inline ssize_t nvram_read_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) *p = nvram_read_byte(i); *ppos = i; return p - buf; } static inline ssize_t nvram_write_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) nvram_write_byte(*p, i); *ppos = i; return p - buf; } static inline ssize_t nvram_read(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_read) return ppc_md.nvram_read(buf, count, ppos); #else if (arch_nvram_ops.read) return arch_nvram_ops.read(buf, count, ppos); #endif return nvram_read_bytes(buf, count, ppos); } static inline ssize_t nvram_write(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_write) return ppc_md.nvram_write(buf, count, ppos); #else if (arch_nvram_ops.write) return arch_nvram_ops.write(buf, count, ppos); #endif return nvram_write_bytes(buf, count, ppos); } #endif /* _LINUX_NVRAM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Symmetric key ciphers. * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SKCIPHER_H #define _CRYPTO_SKCIPHER_H #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/slab.h> /** * struct skcipher_request - Symmetric key cipher request * @cryptlen: Number of bytes to encrypt or decrypt * @iv: Initialisation Vector * @src: Source SG list * @dst: Destination SG list * @base: Underlying async request * @__ctx: Start of private context data */ struct skcipher_request { unsigned int cryptlen; u8 *iv; struct scatterlist *src; struct scatterlist *dst; struct crypto_async_request base; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_skcipher { unsigned int reqsize; struct crypto_tfm base; }; struct crypto_sync_skcipher { struct crypto_skcipher base; }; /** * struct skcipher_alg - symmetric key cipher definition * @min_keysize: Minimum key size supported by the transformation. This is the * smallest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MIN_KEY_SIZE" include/crypto/ * @max_keysize: Maximum key size supported by the transformation. This is the * largest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MAX_KEY_SIZE" include/crypto/ * @setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function can * be called multiple times during the existence of the transformation * object, so one must make sure the key is properly reprogrammed into * the hardware. This function is also responsible for checking the key * length for validity. In case a software fallback was put in place in * the @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt * the supplied scatterlist containing the blocks of data. The crypto * API consumer is responsible for aligning the entries of the * scatterlist properly and making sure the chunks are correctly * sized. In case a software fallback was put in place in the * @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. In case the * key was stored in transformation context, the key might need to be * re-programmed into the hardware in this function. This function * shall not modify the transformation context, as this function may * be called in parallel with the same transformation object. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt * and the conditions are exactly the same. * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @ivsize: IV size applicable for transformation. The consumer must provide an * IV of exactly that size to perform the encrypt or decrypt operation. * @chunksize: Equal to the block size except for stream ciphers such as * CTR where it is set to the underlying block size. * @walksize: Equal to the chunk size except in cases where the algorithm is * considerably more efficient if it can operate on multiple chunks * in parallel. Should be a multiple of chunksize. * @base: Definition of a generic crypto algorithm. * * All fields except @ivsize are mandatory and must be filled. */ struct skcipher_alg { int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct skcipher_request *req); int (*decrypt)(struct skcipher_request *req); int (*init)(struct crypto_skcipher *tfm); void (*exit)(struct crypto_skcipher *tfm); unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; unsigned int chunksize; unsigned int walksize; struct crypto_alg base; }; #define MAX_SYNC_SKCIPHER_REQSIZE 384 /* * This performs a type-check against the "tfm" argument to make sure * all users have the correct skcipher tfm for doing on-stack requests. */ #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \ char __##name##_desc[sizeof(struct skcipher_request) + \ MAX_SYNC_SKCIPHER_REQSIZE + \ (!(sizeof((struct crypto_sync_skcipher *)1 == \ (typeof(tfm))1))) \ ] CRYPTO_MINALIGN_ATTR; \ struct skcipher_request *name = (void *)__##name##_desc /** * DOC: Symmetric Key Cipher API * * Symmetric key cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). * * Asynchronous cipher operations imply that the function invocation for a * cipher request returns immediately before the completion of the operation. * The cipher request is scheduled as a separate kernel thread and therefore * load-balanced on the different CPUs via the process scheduler. To allow * the kernel crypto API to inform the caller about the completion of a cipher * request, the caller must provide a callback function. That function is * invoked with the cipher handle when the request completes. * * To support the asynchronous operation, additional information than just the * cipher handle must be supplied to the kernel crypto API. That additional * information is given by filling in the skcipher_request data structure. * * For the symmetric key cipher API, the state is maintained with the tfm * cipher handle. A single tfm can be used across multiple calls and in * parallel. For asynchronous block cipher calls, context data supplied and * only used by the caller can be referenced the request data structure in * addition to the IV used for the cipher request. The maintenance of such * state information would be important for a crypto driver implementer to * have, because when calling the callback function upon completion of the * cipher operation, that callback function may need some information about * which operation just finished if it invoked multiple in parallel. This * state information is unused by the kernel crypto API. */ static inline struct crypto_skcipher *__crypto_skcipher_cast( struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_skcipher, base); } /** * crypto_alloc_skcipher() - allocate symmetric key cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * skcipher cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an skcipher. The returned struct * crypto_skcipher is the cipher handle that is required for any subsequent * API invocation for that skcipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u32 type, u32 mask); struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_skcipher_tfm( struct crypto_skcipher *tfm) { return &tfm->base; } /** * crypto_free_skcipher() - zeroize and free cipher handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) { crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); } static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm) { crypto_free_skcipher(&tfm->base); } /** * crypto_has_skcipher() - Search for the availability of an skcipher. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * skcipher * @type: specifies the type of the skcipher * @mask: specifies the mask for the skcipher * * Return: true when the skcipher is known to the kernel crypto API; false * otherwise */ int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask); static inline const char *crypto_skcipher_driver_name( struct crypto_skcipher *tfm) { return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); } static inline struct skcipher_alg *crypto_skcipher_alg( struct crypto_skcipher *tfm) { return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, struct skcipher_alg, base); } static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg) { return alg->ivsize; } /** * crypto_skcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the skcipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) { return crypto_skcipher_alg(tfm)->ivsize; } static inline unsigned int crypto_sync_skcipher_ivsize( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_ivsize(&tfm->base); } /** * crypto_skcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the skcipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_skcipher_blocksize( struct crypto_skcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); } static inline unsigned int crypto_skcipher_alg_chunksize( struct skcipher_alg *alg) { return alg->chunksize; } /** * crypto_skcipher_chunksize() - obtain chunk size * @tfm: cipher handle * * The block size is set to one for ciphers such as CTR. However, * you still need to provide incremental updates in multiples of * the underlying block size as the IV does not have sub-block * granularity. This is known in this API as the chunk size. * * Return: chunk size in bytes */ static inline unsigned int crypto_skcipher_chunksize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm)); } static inline unsigned int crypto_sync_skcipher_blocksize( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_blocksize(&tfm->base); } static inline unsigned int crypto_skcipher_alignmask( struct crypto_skcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); } static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) { return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); } static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); } static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); } static inline u32 crypto_sync_skcipher_get_flags( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_get_flags(&tfm->base); } static inline void crypto_sync_skcipher_set_flags( struct crypto_sync_skcipher *tfm, u32 flags) { crypto_skcipher_set_flags(&tfm->base, flags); } static inline void crypto_sync_skcipher_clear_flags( struct crypto_sync_skcipher *tfm, u32 flags) { crypto_skcipher_clear_flags(&tfm->base, flags); } /** * crypto_skcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the skcipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen); static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm, const u8 *key, unsigned int keylen) { return crypto_skcipher_setkey(&tfm->base, key, keylen); } static inline unsigned int crypto_skcipher_min_keysize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg(tfm)->min_keysize; } static inline unsigned int crypto_skcipher_max_keysize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg(tfm)->max_keysize; } /** * crypto_skcipher_reqtfm() - obtain cipher handle from request * @req: skcipher_request out of which the cipher handle is to be obtained * * Return the crypto_skcipher handle when furnishing an skcipher_request * data structure. * * Return: crypto_skcipher handle */ static inline struct crypto_skcipher *crypto_skcipher_reqtfm( struct skcipher_request *req) { return __crypto_skcipher_cast(req->base.tfm); } static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm( struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); return container_of(tfm, struct crypto_sync_skcipher, base); } /** * crypto_skcipher_encrypt() - encrypt plaintext * @req: reference to the skcipher_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the skcipher_request handle. That data * structure and how it is filled with data is discussed with the * skcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_encrypt(struct skcipher_request *req); /** * crypto_skcipher_decrypt() - decrypt ciphertext * @req: reference to the skcipher_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the skcipher_request handle. That data * structure and how it is filled with data is discussed with the * skcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_decrypt(struct skcipher_request *req); /** * DOC: Symmetric Key Cipher Request Handle * * The skcipher_request data structure contains all pointers to data * required for the symmetric key cipher operation. This includes the cipher * handle (which can be used by multiple skcipher_request instances), pointer * to plaintext and ciphertext, asynchronous callback function, etc. It acts * as a handle to the skcipher_request_* API calls in a similar way as * skcipher handle to the crypto_skcipher_* API calls. */ /** * crypto_skcipher_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) { return tfm->reqsize; } /** * skcipher_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing skcipher handle in the request * data structure with a different one. */ static inline void skcipher_request_set_tfm(struct skcipher_request *req, struct crypto_skcipher *tfm) { req->base.tfm = crypto_skcipher_tfm(tfm); } static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req, struct crypto_sync_skcipher *tfm) { skcipher_request_set_tfm(req, &tfm->base); } static inline struct skcipher_request *skcipher_request_cast( struct crypto_async_request *req) { return container_of(req, struct skcipher_request, base); } /** * skcipher_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the skcipher * encrypt and decrypt API calls. During the allocation, the provided skcipher * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct skcipher_request *skcipher_request_alloc( struct crypto_skcipher *tfm, gfp_t gfp) { struct skcipher_request *req; req = kmalloc(sizeof(struct skcipher_request) + crypto_skcipher_reqsize(tfm), gfp); if (likely(req)) skcipher_request_set_tfm(req, tfm); return req; } /** * skcipher_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void skcipher_request_free(struct skcipher_request *req) { kfree_sensitive(req); } static inline void skcipher_request_zero(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm)); } /** * skcipher_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once the * cipher operation completes. * * The callback function is registered with the skcipher_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void skcipher_request_set_callback(struct skcipher_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * skcipher_request_set_crypt() - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_skcipher_ivsize * * This function allows setting of the source data and destination data * scatter / gather lists. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. */ static inline void skcipher_request_set_crypt( struct skcipher_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, void *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } #endif /* _CRYPTO_SKCIPHER_H */
1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 // SPDX-License-Identifier: GPL-2.0-only /* * Implementation of the policy database. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> * * Added conditional policy language extensions * * Updated: Hewlett-Packard <paul@paul-moore.com> * * Added support for the policy capability bitmap * * Update: Mellanox Techonologies * * Added Infiniband support * * Copyright (C) 2016 Mellanox Techonologies * Copyright (C) 2007 Hewlett-Packard Development Company, L.P. * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * Copyright (C) 2003 - 2004 Tresys Technology, LLC */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/audit.h> #include "security.h" #include "policydb.h" #include "conditional.h" #include "mls.h" #include "services.h" #define _DEBUG_HASHES #ifdef DEBUG_HASHES static const char *symtab_name[SYM_NUM] = { "common prefixes", "classes", "roles", "types", "users", "bools", "levels", "categories", }; #endif struct policydb_compat_info { int version; int sym_num; int ocon_num; }; /* These need to be updated if SYM_NUM or OCON_NUM changes */ static struct policydb_compat_info policydb_compat[] = { { .version = POLICYDB_VERSION_BASE, .sym_num = SYM_NUM - 3, .ocon_num = OCON_NUM - 3, }, { .version = POLICYDB_VERSION_BOOL, .sym_num = SYM_NUM - 2, .ocon_num = OCON_NUM - 3, }, { .version = POLICYDB_VERSION_IPV6, .sym_num = SYM_NUM - 2, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_NLCLASS, .sym_num = SYM_NUM - 2, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_MLS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_AVTAB, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_RANGETRANS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_POLCAP, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_PERMISSIVE, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_BOUNDARY, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_FILENAME_TRANS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_ROLETRANS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_NEW_OBJECT_DEFAULTS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_DEFAULT_TYPE, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_CONSTRAINT_NAMES, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_XPERMS_IOCTL, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 2, }, { .version = POLICYDB_VERSION_INFINIBAND, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_GLBLUB, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, { .version = POLICYDB_VERSION_COMP_FTRANS, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, }; static struct policydb_compat_info *policydb_lookup_compat(int version) { int i; struct policydb_compat_info *info = NULL; for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) { if (policydb_compat[i].version == version) { info = &policydb_compat[i]; break; } } return info; } /* * The following *_destroy functions are used to * free any memory allocated for each kind of * symbol data in the policy database. */ static int perm_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int common_destroy(void *key, void *datum, void *p) { struct common_datum *comdatum; kfree(key); if (datum) { comdatum = datum; hashtab_map(&comdatum->permissions.table, perm_destroy, NULL); hashtab_destroy(&comdatum->permissions.table); } kfree(datum); return 0; } static void constraint_expr_destroy(struct constraint_expr *expr) { if (expr) { ebitmap_destroy(&expr->names); if (expr->type_names) { ebitmap_destroy(&expr->type_names->types); ebitmap_destroy(&expr->type_names->negset); kfree(expr->type_names); } kfree(expr); } } static int cls_destroy(void *key, void *datum, void *p) { struct class_datum *cladatum; struct constraint_node *constraint, *ctemp; struct constraint_expr *e, *etmp; kfree(key); if (datum) { cladatum = datum; hashtab_map(&cladatum->permissions.table, perm_destroy, NULL); hashtab_destroy(&cladatum->permissions.table); constraint = cladatum->constraints; while (constraint) { e = constraint->expr; while (e) { etmp = e; e = e->next; constraint_expr_destroy(etmp); } ctemp = constraint; constraint = constraint->next; kfree(ctemp); } constraint = cladatum->validatetrans; while (constraint) { e = constraint->expr; while (e) { etmp = e; e = e->next; constraint_expr_destroy(etmp); } ctemp = constraint; constraint = constraint->next; kfree(ctemp); } kfree(cladatum->comkey); } kfree(datum); return 0; } static int role_destroy(void *key, void *datum, void *p) { struct role_datum *role; kfree(key); if (datum) { role = datum; ebitmap_destroy(&role->dominates); ebitmap_destroy(&role->types); } kfree(datum); return 0; } static int type_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int user_destroy(void *key, void *datum, void *p) { struct user_datum *usrdatum; kfree(key); if (datum) { usrdatum = datum; ebitmap_destroy(&usrdatum->roles); ebitmap_destroy(&usrdatum->range.level[0].cat); ebitmap_destroy(&usrdatum->range.level[1].cat); ebitmap_destroy(&usrdatum->dfltlevel.cat); } kfree(datum); return 0; } static int sens_destroy(void *key, void *datum, void *p) { struct level_datum *levdatum; kfree(key); if (datum) { levdatum = datum; if (levdatum->level) ebitmap_destroy(&levdatum->level->cat); kfree(levdatum->level); } kfree(datum); return 0; } static int cat_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_destroy, cls_destroy, role_destroy, type_destroy, user_destroy, cond_destroy_bool, sens_destroy, cat_destroy, }; static int filenametr_destroy(void *key, void *datum, void *p) { struct filename_trans_key *ft = key; struct filename_trans_datum *next, *d = datum; kfree(ft->name); kfree(key); do { ebitmap_destroy(&d->stypes); next = d->next; kfree(d); d = next; } while (unlikely(d)); cond_resched(); return 0; } static int range_tr_destroy(void *key, void *datum, void *p) { struct mls_range *rt = datum; kfree(key); ebitmap_destroy(&rt->level[0].cat); ebitmap_destroy(&rt->level[1].cat); kfree(datum); cond_resched(); return 0; } static int role_tr_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static void ocontext_destroy(struct ocontext *c, int i) { if (!c) return; context_destroy(&c->context[0]); context_destroy(&c->context[1]); if (i == OCON_ISID || i == OCON_FS || i == OCON_NETIF || i == OCON_FSUSE) kfree(c->u.name); kfree(c); } /* * Initialize the role table. */ static int roles_init(struct policydb *p) { char *key = NULL; int rc; struct role_datum *role; role = kzalloc(sizeof(*role), GFP_KERNEL); if (!role) return -ENOMEM; rc = -EINVAL; role->value = ++p->p_roles.nprim; if (role->value != OBJECT_R_VAL) goto out; rc = -ENOMEM; key = kstrdup(OBJECT_R, GFP_KERNEL); if (!key) goto out; rc = symtab_insert(&p->p_roles, key, role); if (rc) goto out; return 0; out: kfree(key); kfree(role); return rc; } static u32 filenametr_hash(const void *k) { const struct filename_trans_key *ft = k; unsigned long hash; unsigned int byte_num; unsigned char focus; hash = ft->ttype ^ ft->tclass; byte_num = 0; while ((focus = ft->name[byte_num++])) hash = partial_name_hash(focus, hash); return hash; } static int filenametr_cmp(const void *k1, const void *k2) { const struct filename_trans_key *ft1 = k1; const struct filename_trans_key *ft2 = k2; int v; v = ft1->ttype - ft2->ttype; if (v) return v; v = ft1->tclass - ft2->tclass; if (v) return v; return strcmp(ft1->name, ft2->name); } static const struct hashtab_key_params filenametr_key_params = { .hash = filenametr_hash, .cmp = filenametr_cmp, }; struct filename_trans_datum *policydb_filenametr_search( struct policydb *p, struct filename_trans_key *key) { return hashtab_search(&p->filename_trans, key, filenametr_key_params); } static u32 rangetr_hash(const void *k) { const struct range_trans *key = k; return key->source_type + (key->target_type << 3) + (key->target_class << 5); } static int rangetr_cmp(const void *k1, const void *k2) { const struct range_trans *key1 = k1, *key2 = k2; int v; v = key1->source_type - key2->source_type; if (v) return v; v = key1->target_type - key2->target_type; if (v) return v; v = key1->target_class - key2->target_class; return v; } static const struct hashtab_key_params rangetr_key_params = { .hash = rangetr_hash, .cmp = rangetr_cmp, }; struct mls_range *policydb_rangetr_search(struct policydb *p, struct range_trans *key) { return hashtab_search(&p->range_tr, key, rangetr_key_params); } static u32 role_trans_hash(const void *k) { const struct role_trans_key *key = k; return key->role + (key->type << 3) + (key->tclass << 5); } static int role_trans_cmp(const void *k1, const void *k2) { const struct role_trans_key *key1 = k1, *key2 = k2; int v; v = key1->role - key2->role; if (v) return v; v = key1->type - key2->type; if (v) return v; return key1->tclass - key2->tclass; } static const struct hashtab_key_params roletr_key_params = { .hash = role_trans_hash, .cmp = role_trans_cmp, }; struct role_trans_datum *policydb_roletr_search(struct policydb *p, struct role_trans_key *key) { return hashtab_search(&p->role_tr, key, roletr_key_params); } /* * Initialize a policy database structure. */ static void policydb_init(struct policydb *p) { memset(p, 0, sizeof(*p)); avtab_init(&p->te_avtab); cond_policydb_init(p); ebitmap_init(&p->filename_trans_ttypes); ebitmap_init(&p->policycaps); ebitmap_init(&p->permissive_map); } /* * The following *_index functions are used to * define the val_to_name and val_to_struct arrays * in a policy database structure. The val_to_name * arrays are used when converting security context * structures into string representations. The * val_to_struct arrays are used when the attributes * of a class, role, or user are needed. */ static int common_index(void *key, void *datum, void *datap) { struct policydb *p; struct common_datum *comdatum; comdatum = datum; p = datap; if (!comdatum->value || comdatum->value > p->p_commons.nprim) return -EINVAL; p->sym_val_to_name[SYM_COMMONS][comdatum->value - 1] = key; return 0; } static int class_index(void *key, void *datum, void *datap) { struct policydb *p; struct class_datum *cladatum; cladatum = datum; p = datap; if (!cladatum->value || cladatum->value > p->p_classes.nprim) return -EINVAL; p->sym_val_to_name[SYM_CLASSES][cladatum->value - 1] = key; p->class_val_to_struct[cladatum->value - 1] = cladatum; return 0; } static int role_index(void *key, void *datum, void *datap) { struct policydb *p; struct role_datum *role; role = datum; p = datap; if (!role->value || role->value > p->p_roles.nprim || role->bounds > p->p_roles.nprim) return -EINVAL; p->sym_val_to_name[SYM_ROLES][role->value - 1] = key; p->role_val_to_struct[role->value - 1] = role; return 0; } static int type_index(void *key, void *datum, void *datap) { struct policydb *p; struct type_datum *typdatum; typdatum = datum; p = datap; if (typdatum->primary) { if (!typdatum->value || typdatum->value > p->p_types.nprim || typdatum->bounds > p->p_types.nprim) return -EINVAL; p->sym_val_to_name[SYM_TYPES][typdatum->value - 1] = key; p->type_val_to_struct[typdatum->value - 1] = typdatum; } return 0; } static int user_index(void *key, void *datum, void *datap) { struct policydb *p; struct user_datum *usrdatum; usrdatum = datum; p = datap; if (!usrdatum->value || usrdatum->value > p->p_users.nprim || usrdatum->bounds > p->p_users.nprim) return -EINVAL; p->sym_val_to_name[SYM_USERS][usrdatum->value - 1] = key; p->user_val_to_struct[usrdatum->value - 1] = usrdatum; return 0; } static int sens_index(void *key, void *datum, void *datap) { struct policydb *p; struct level_datum *levdatum; levdatum = datum; p = datap; if (!levdatum->isalias) { if (!levdatum->level->sens || levdatum->level->sens > p->p_levels.nprim) return -EINVAL; p->sym_val_to_name[SYM_LEVELS][levdatum->level->sens - 1] = key; } return 0; } static int cat_index(void *key, void *datum, void *datap) { struct policydb *p; struct cat_datum *catdatum; catdatum = datum; p = datap; if (!catdatum->isalias) { if (!catdatum->value || catdatum->value > p->p_cats.nprim) return -EINVAL; p->sym_val_to_name[SYM_CATS][catdatum->value - 1] = key; } return 0; } static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_index, class_index, role_index, type_index, user_index, cond_index_bool, sens_index, cat_index, }; #ifdef DEBUG_HASHES static void hash_eval(struct hashtab *h, const char *hash_name) { struct hashtab_info info; hashtab_stat(h, &info); pr_debug("SELinux: %s: %d entries and %d/%d buckets used, longest chain length %d\n", hash_name, h->nel, info.slots_used, h->size, info.max_chain_len); } static void symtab_hash_eval(struct symtab *s) { int i; for (i = 0; i < SYM_NUM; i++) hash_eval(&s[i].table, symtab_name[i]); } #else static inline void hash_eval(struct hashtab *h, char *hash_name) { } #endif /* * Define the other val_to_name and val_to_struct arrays * in a policy database structure. * * Caller must clean up on failure. */ static int policydb_index(struct policydb *p) { int i, rc; if (p->mls_enabled) pr_debug("SELinux: %d users, %d roles, %d types, %d bools, %d sens, %d cats\n", p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim, p->p_levels.nprim, p->p_cats.nprim); else pr_debug("SELinux: %d users, %d roles, %d types, %d bools\n", p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); pr_debug("SELinux: %d classes, %d rules\n", p->p_classes.nprim, p->te_avtab.nel); #ifdef DEBUG_HASHES avtab_hash_eval(&p->te_avtab, "rules"); symtab_hash_eval(p->symtab); #endif p->class_val_to_struct = kcalloc(p->p_classes.nprim, sizeof(*p->class_val_to_struct), GFP_KERNEL); if (!p->class_val_to_struct) return -ENOMEM; p->role_val_to_struct = kcalloc(p->p_roles.nprim, sizeof(*p->role_val_to_struct), GFP_KERNEL); if (!p->role_val_to_struct) return -ENOMEM; p->user_val_to_struct = kcalloc(p->p_users.nprim, sizeof(*p->user_val_to_struct), GFP_KERNEL); if (!p->user_val_to_struct) return -ENOMEM; p->type_val_to_struct = kvcalloc(p->p_types.nprim, sizeof(*p->type_val_to_struct), GFP_KERNEL); if (!p->type_val_to_struct) return -ENOMEM; rc = cond_init_bool_indexes(p); if (rc) goto out; for (i = 0; i < SYM_NUM; i++) { p->sym_val_to_name[i] = kvcalloc(p->symtab[i].nprim, sizeof(char *), GFP_KERNEL); if (!p->sym_val_to_name[i]) return -ENOMEM; rc = hashtab_map(&p->symtab[i].table, index_f[i], p); if (rc) goto out; } rc = 0; out: return rc; } /* * Free any memory allocated by a policy database structure. */ void policydb_destroy(struct policydb *p) { struct ocontext *c, *ctmp; struct genfs *g, *gtmp; int i; struct role_allow *ra, *lra = NULL; for (i = 0; i < SYM_NUM; i++) { cond_resched(); hashtab_map(&p->symtab[i].table, destroy_f[i], NULL); hashtab_destroy(&p->symtab[i].table); } for (i = 0; i < SYM_NUM; i++) kvfree(p->sym_val_to_name[i]); kfree(p->class_val_to_struct); kfree(p->role_val_to_struct); kfree(p->user_val_to_struct); kvfree(p->type_val_to_struct); avtab_destroy(&p->te_avtab); for (i = 0; i < OCON_NUM; i++) { cond_resched(); c = p->ocontexts[i]; while (c) { ctmp = c; c = c->next; ocontext_destroy(ctmp, i); } p->ocontexts[i] = NULL; } g = p->genfs; while (g) { cond_resched(); kfree(g->fstype); c = g->head; while (c) { ctmp = c; c = c->next; ocontext_destroy(ctmp, OCON_FSUSE); } gtmp = g; g = g->next; kfree(gtmp); } p->genfs = NULL; cond_policydb_destroy(p); hashtab_map(&p->role_tr, role_tr_destroy, NULL); hashtab_destroy(&p->role_tr); for (ra = p->role_allow; ra; ra = ra->next) { cond_resched(); kfree(lra); lra = ra; } kfree(lra); hashtab_map(&p->filename_trans, filenametr_destroy, NULL); hashtab_destroy(&p->filename_trans); hashtab_map(&p->range_tr, range_tr_destroy, NULL); hashtab_destroy(&p->range_tr); if (p->type_attr_map_array) { for (i = 0; i < p->p_types.nprim; i++) ebitmap_destroy(&p->type_attr_map_array[i]); kvfree(p->type_attr_map_array); } ebitmap_destroy(&p->filename_trans_ttypes); ebitmap_destroy(&p->policycaps); ebitmap_destroy(&p->permissive_map); } /* * Load the initial SIDs specified in a policy database * structure into a SID table. */ int policydb_load_isids(struct policydb *p, struct sidtab *s) { struct ocontext *head, *c; int rc; rc = sidtab_init(s); if (rc) { pr_err("SELinux: out of memory on SID table init\n"); return rc; } head = p->ocontexts[OCON_ISID]; for (c = head; c; c = c->next) { u32 sid = c->sid[0]; const char *name = security_get_initial_sid_context(sid); if (sid == SECSID_NULL) { pr_err("SELinux: SID 0 was assigned a context.\n"); sidtab_destroy(s); return -EINVAL; } /* Ignore initial SIDs unused by this kernel. */ if (!name) continue; rc = sidtab_set_initial(s, sid, &c->context[0]); if (rc) { pr_err("SELinux: unable to load initial SID %s.\n", name); sidtab_destroy(s); return rc; } } return 0; } int policydb_class_isvalid(struct policydb *p, unsigned int class) { if (!class || class > p->p_classes.nprim) return 0; return 1; } int policydb_role_isvalid(struct policydb *p, unsigned int role) { if (!role || role > p->p_roles.nprim) return 0; return 1; } int policydb_type_isvalid(struct policydb *p, unsigned int type) { if (!type || type > p->p_types.nprim) return 0; return 1; } /* * Return 1 if the fields in the security context * structure `c' are valid. Return 0 otherwise. */ int policydb_context_isvalid(struct policydb *p, struct context *c) { struct role_datum *role; struct user_datum *usrdatum; if (!c->role || c->role > p->p_roles.nprim) return 0; if (!c->user || c->user > p->p_users.nprim) return 0; if (!c->type || c->type > p->p_types.nprim) return 0; if (c->role != OBJECT_R_VAL) { /* * Role must be authorized for the type. */ role = p->role_val_to_struct[c->role - 1]; if (!role || !ebitmap_get_bit(&role->types, c->type - 1)) /* role may not be associated with type */ return 0; /* * User must be authorized for the role. */ usrdatum = p->user_val_to_struct[c->user - 1]; if (!usrdatum) return 0; if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1)) /* user may not be associated with role */ return 0; } if (!mls_context_isvalid(p, c)) return 0; return 1; } /* * Read a MLS range structure from a policydb binary * representation file. */ static int mls_read_range_helper(struct mls_range *r, void *fp) { __le32 buf[2]; u32 items; int rc; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; rc = -EINVAL; items = le32_to_cpu(buf[0]); if (items > ARRAY_SIZE(buf)) { pr_err("SELinux: mls: range overflow\n"); goto out; } rc = next_entry(buf, fp, sizeof(u32) * items); if (rc) { pr_err("SELinux: mls: truncated range\n"); goto out; } r->level[0].sens = le32_to_cpu(buf[0]); if (items > 1) r->level[1].sens = le32_to_cpu(buf[1]); else r->level[1].sens = r->level[0].sens; rc = ebitmap_read(&r->level[0].cat, fp); if (rc) { pr_err("SELinux: mls: error reading low categories\n"); goto out; } if (items > 1) { rc = ebitmap_read(&r->level[1].cat, fp); if (rc) { pr_err("SELinux: mls: error reading high categories\n"); goto bad_high; } } else { rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat); if (rc) { pr_err("SELinux: mls: out of memory\n"); goto bad_high; } } return 0; bad_high: ebitmap_destroy(&r->level[0].cat); out: return rc; } /* * Read and validate a security context structure * from a policydb binary representation file. */ static int context_read_and_validate(struct context *c, struct policydb *p, void *fp) { __le32 buf[3]; int rc; rc = next_entry(buf, fp, sizeof buf); if (rc) { pr_err("SELinux: context truncated\n"); goto out; } c->user = le32_to_cpu(buf[0]); c->role = le32_to_cpu(buf[1]); c->type = le32_to_cpu(buf[2]); if (p->policyvers >= POLICYDB_VERSION_MLS) { rc = mls_read_range_helper(&c->range, fp); if (rc) { pr_err("SELinux: error reading MLS range of context\n"); goto out; } } rc = -EINVAL; if (!policydb_context_isvalid(p, c)) { pr_err("SELinux: invalid security context\n"); context_destroy(c); goto out; } rc = 0; out: return rc; } /* * The following *_read functions are used to * read the symbol data from a policy database * binary representation file. */ static int str_read(char **strp, gfp_t flags, void *fp, u32 len) { int rc; char *str; if ((len == 0) || (len == (u32)-1)) return -EINVAL; str = kmalloc(len + 1, flags | __GFP_NOWARN); if (!str) return -ENOMEM; rc = next_entry(str, fp, len); if (rc) { kfree(str); return rc; } str[len] = '\0'; *strp = str; return 0; } static int perm_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct perm_datum *perdatum; int rc; __le32 buf[2]; u32 len; perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL); if (!perdatum) return -ENOMEM; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); perdatum->value = le32_to_cpu(buf[1]); rc = str_read(&key, GFP_KERNEL, fp, len); if (rc) goto bad; rc = symtab_insert(s, key, perdatum); if (rc) goto bad; return 0; bad: perm_destroy(key, perdatum, NULL); return rc; } static int common_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct common_datum *comdatum; __le32 buf[4]; u32 len, nel; int i, rc; comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL); if (!comdatum) return -ENOMEM; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); comdatum->value = le32_to_cpu(buf[1]); nel = le32_to_cpu(buf[3]); rc = symtab_init(&comdatum->permissions, nel); if (rc) goto bad; comdatum->permissions.nprim = le32_to_cpu(buf[2]); rc = str_read(&key, GFP_KERNEL, fp, len); if (rc) goto bad; for (i = 0; i < nel; i++) { rc = perm_read(p, &comdatum->permissions, fp); if (rc) goto bad; } rc = symtab_insert(s, key, comdatum); if (rc) goto bad; return 0; bad: common_destroy(key, comdatum, NULL); return rc; } static void type_set_init(struct type_set *t) { ebitmap_init(&t->types); ebitmap_init(&t->negset); } static int type_set_read(struct type_set *t, void *fp) { __le32 buf[1]; int rc; if (ebitmap_read(&t->types, fp)) return -EINVAL; if (ebitmap_read(&t->negset, fp)) return -EINVAL; rc = next_entry(buf, fp, sizeof(u32)); if (rc < 0) return -EINVAL; t->flags = le32_to_cpu(buf[0]); return 0; } static int read_cons_helper(struct policydb *p, struct constraint_node **nodep, int ncons, int allowxtarget, void *fp) { struct constraint_node *c, *lc; struct constraint_expr *e, *le; __le32 buf[3]; u32 nexpr; int rc, i, j, depth; lc = NULL; for (i = 0; i < ncons; i++) { c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; if (lc) lc->next = c; else *nodep = c; rc = next_entry(buf, fp, (sizeof(u32) * 2)); if (rc) return rc; c->permissions = le32_to_cpu(buf[0]); nexpr = le32_to_cpu(buf[1]); le = NULL; depth = -1; for (j = 0; j < nexpr; j++) { e = kzalloc(sizeof(*e), GFP_KERNEL); if (!e) return -ENOMEM; if (le) le->next = e; else c->expr = e; rc = next_entry(buf, fp, (sizeof(u32) * 3)); if (rc) return rc; e->expr_type = le32_to_cpu(buf[0]); e->attr = le32_to_cpu(buf[1]); e->op = le32_to_cpu(buf[2]); switch (e->expr_type) { case CEXPR_NOT: if (depth < 0) return -EINVAL; break; case CEXPR_AND: case CEXPR_OR: if (depth < 1) return -EINVAL; depth--; break; case CEXPR_ATTR: if (depth == (CEXPR_MAXDEPTH - 1)) return -EINVAL; depth++; break; case CEXPR_NAMES: if (!allowxtarget && (e->attr & CEXPR_XTARGET)) return -EINVAL; if (depth == (CEXPR_MAXDEPTH - 1)) return -EINVAL; depth++; rc = ebitmap_read(&e->names, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES) { e->type_names = kzalloc(sizeof (*e->type_names), GFP_KERNEL); if (!e->type_names) return -ENOMEM; type_set_init(e->type_names); rc = type_set_read(e->type_names, fp); if (rc) return rc; } break; default: return -EINVAL; } le = e; } if (depth != 0) return -EINVAL; lc = c; } return 0; } static int class_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct class_datum *cladatum; __le32 buf[6]; u32 len, len2, ncons, nel; int i, rc; cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL); if (!cladatum) return -ENOMEM; rc = next_entry(buf, fp, sizeof(u32)*6); if (rc) goto bad; len = le32_to_cpu(buf[0]); len2 = le32_to_cpu(buf[1]); cladatum->value = le32_to_cpu(buf[2]); nel = le32_to_cpu(buf[4]); rc = symtab_init(&cladatum->permissions, nel); if (rc) goto bad; cladatum->permissions.nprim = le32_to_cpu(buf[3]); ncons = le32_to_cpu(buf[5]); rc = str_read(&key, GFP_KERNEL, fp, len); if (rc) goto bad; if (len2) { rc = str_read(&cladatum->comkey, GFP_KERNEL, fp, len2); if (rc) goto bad; rc = -EINVAL; cladatum->comdatum = symtab_search(&p->p_commons, cladatum->comkey); if (!cladatum->comdatum) { pr_err("SELinux: unknown common %s\n", cladatum->comkey); goto bad; } } for (i = 0; i < nel; i++) { rc = perm_read(p, &cladatum->permissions, fp); if (rc) goto bad; } rc = read_cons_helper(p, &cladatum->constraints, ncons, 0, fp); if (rc) goto bad; if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) { /* grab the validatetrans rules */ rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; ncons = le32_to_cpu(buf[0]); rc = read_cons_helper(p, &cladatum->validatetrans, ncons, 1, fp); if (rc) goto bad; } if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) { rc = next_entry(buf, fp, sizeof(u32) * 3); if (rc) goto bad; cladatum->default_user = le32_to_cpu(buf[0]); cladatum->default_role = le32_to_cpu(buf[1]); cladatum->default_range = le32_to_cpu(buf[2]); } if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) { rc = next_entry(buf, fp, sizeof(u32) * 1); if (rc) goto bad; cladatum->default_type = le32_to_cpu(buf[0]); } rc = symtab_insert(s, key, cladatum); if (rc) goto bad; return 0; bad: cls_destroy(key, cladatum, NULL); return rc; } static int role_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct role_datum *role; int rc, to_read = 2; __le32 buf[3]; u32 len; role = kzalloc(sizeof(*role), GFP_KERNEL); if (!role) return -ENOMEM; if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) to_read = 3; rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); if (rc) goto bad; len = le32_to_cpu(buf[0]); role->value = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) role->bounds = le32_to_cpu(buf[2]); rc = str_read(&key, GFP_KERNEL, fp, len); if (rc) goto bad; rc = ebitmap_read(&role->dominates, fp); if (rc) goto bad; rc = ebitmap_read(&role->types, fp); if (rc) goto bad; if (strcmp(key, OBJECT_R) == 0) { rc = -EINVAL; if (role->value != OBJECT_R_VAL) { pr_err("SELinux: Role %s has wrong value %d\n", OBJECT_R, role->value); goto bad; } rc = 0; goto bad; } rc = symtab_insert(s, key, role); if (rc) goto bad; return 0; bad: role_destroy(key, role, NULL); return rc; } static int type_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct type_datum *typdatum; int rc, to_read = 3; __le32 buf[4]; u32 len; typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL); if (!typdatum) return -ENOMEM; if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) to_read = 4; rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); if (rc) goto bad; len = le32_to_cpu(buf[0]); typdatum->value = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) { u32 prop = le32_to_cpu(buf[2]); if (prop & TYPEDATUM_PROPERTY_PRIMARY) typdatum->primary = 1; if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE) typdatum->attribute = 1; typdatum->bounds = le32_to_cpu(buf[3]); } else { typdatum->primary = le32_to_cpu(buf[2]); } rc = str_read(&key, GFP_KERNEL, fp, len); if (rc) goto bad; rc = symtab_insert(s, key, typdatum); if (rc) goto bad; return 0; bad: type_destroy(key, typdatum, NULL); return rc; } /* * Read a MLS level structure from a policydb binary * representation file. */ static int mls_read_level(struct mls_level *lp, void *fp) { __le32 buf[1]; int rc; memset(lp, 0, sizeof(*lp)); rc = next_entry(buf, fp, sizeof buf); if (rc) { pr_err("SELinux: mls: truncated level\n"); return rc; } lp->sens = le32_to_cpu(buf[0]); rc = ebitmap_read(&lp->cat, fp); if (rc) { pr_err("SELinux: mls: error reading level categories\n"); return rc; } return 0; } static int user_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct user_datum *usrdatum; int rc, to_read = 2; __le32 buf[3]; u32 len; usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL); if (!usrdatum) return -ENOMEM; if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) to_read = 3; rc = next_entry(buf, fp, sizeof(buf[0]) * to_read); if (rc) goto bad; len = le32_to_cpu(buf[0]); usrdatum->value = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) usrdatum->bounds = le32_to_cpu(buf[2]); rc = str_read(&key, GFP_KERNEL, fp, len); if (rc) goto bad; rc = ebitmap_read(&usrdatum->roles, fp); if (rc) goto bad; if (p->policyvers >= POLICYDB_VERSION_MLS) { rc = mls_read_range_helper(&usrdatum->range, fp); if (rc) goto bad; rc = mls_read_level(&usrdatum->dfltlevel, fp); if (rc) goto bad; } rc = symtab_insert(s, key, usrdatum); if (rc) goto bad; return 0; bad: user_destroy(key, usrdatum, NULL); return rc; } static int sens_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct level_datum *levdatum; int rc; __le32 buf[2]; u32 len; levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC); if (!levdatum) return -ENOMEM; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); levdatum->isalias = le32_to_cpu(buf[1]); rc = str_read(&key, GFP_ATOMIC, fp, len); if (rc) goto bad; rc = -ENOMEM; levdatum->level = kmalloc(sizeof(*levdatum->level), GFP_ATOMIC); if (!levdatum->level) goto bad; rc = mls_read_level(levdatum->level, fp); if (rc) goto bad; rc = symtab_insert(s, key, levdatum); if (rc) goto bad; return 0; bad: sens_destroy(key, levdatum, NULL); return rc; } static int cat_read(struct policydb *p, struct symtab *s, void *fp) { char *key = NULL; struct cat_datum *catdatum; int rc; __le32 buf[3]; u32 len; catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC); if (!catdatum) return -ENOMEM; rc = next_entry(buf, fp, sizeof buf); if (rc) goto bad; len = le32_to_cpu(buf[0]); catdatum->value = le32_to_cpu(buf[1]); catdatum->isalias = le32_to_cpu(buf[2]); rc = str_read(&key, GFP_ATOMIC, fp, len); if (rc) goto bad; rc = symtab_insert(s, key, catdatum); if (rc) goto bad; return 0; bad: cat_destroy(key, catdatum, NULL); return rc; } static int (*read_f[SYM_NUM]) (struct policydb *p, struct symtab *s, void *fp) = { common_read, class_read, role_read, type_read, user_read, cond_read_bool, sens_read, cat_read, }; static int user_bounds_sanity_check(void *key, void *datum, void *datap) { struct user_datum *upper, *user; struct policydb *p = datap; int depth = 0; upper = user = datum; while (upper->bounds) { struct ebitmap_node *node; unsigned long bit; if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { pr_err("SELinux: user %s: " "too deep or looped boundary", (char *) key); return -EINVAL; } upper = p->user_val_to_struct[upper->bounds - 1]; ebitmap_for_each_positive_bit(&user->roles, node, bit) { if (ebitmap_get_bit(&upper->roles, bit)) continue; pr_err("SELinux: boundary violated policy: " "user=%s role=%s bounds=%s\n", sym_name(p, SYM_USERS, user->value - 1), sym_name(p, SYM_ROLES, bit), sym_name(p, SYM_USERS, upper->value - 1)); return -EINVAL; } } return 0; } static int role_bounds_sanity_check(void *key, void *datum, void *datap) { struct role_datum *upper, *role; struct policydb *p = datap; int depth = 0; upper = role = datum; while (upper->bounds) { struct ebitmap_node *node; unsigned long bit; if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { pr_err("SELinux: role %s: " "too deep or looped bounds\n", (char *) key); return -EINVAL; } upper = p->role_val_to_struct[upper->bounds - 1]; ebitmap_for_each_positive_bit(&role->types, node, bit) { if (ebitmap_get_bit(&upper->types, bit)) continue; pr_err("SELinux: boundary violated policy: " "role=%s type=%s bounds=%s\n", sym_name(p, SYM_ROLES, role->value - 1), sym_name(p, SYM_TYPES, bit), sym_name(p, SYM_ROLES, upper->value - 1)); return -EINVAL; } } return 0; } static int type_bounds_sanity_check(void *key, void *datum, void *datap) { struct type_datum *upper; struct policydb *p = datap; int depth = 0; upper = datum; while (upper->bounds) { if (++depth == POLICYDB_BOUNDS_MAXDEPTH) { pr_err("SELinux: type %s: " "too deep or looped boundary\n", (char *) key); return -EINVAL; } upper = p->type_val_to_struct[upper->bounds - 1]; BUG_ON(!upper); if (upper->attribute) { pr_err("SELinux: type %s: " "bounded by attribute %s", (char *) key, sym_name(p, SYM_TYPES, upper->value - 1)); return -EINVAL; } } return 0; } static int policydb_bounds_sanity_check(struct policydb *p) { int rc; if (p->policyvers < POLICYDB_VERSION_BOUNDARY) return 0; rc = hashtab_map(&p->p_users.table, user_bounds_sanity_check, p); if (rc) return rc; rc = hashtab_map(&p->p_roles.table, role_bounds_sanity_check, p); if (rc) return rc; rc = hashtab_map(&p->p_types.table, type_bounds_sanity_check, p); if (rc) return rc; return 0; } u16 string_to_security_class(struct policydb *p, const char *name) { struct class_datum *cladatum; cladatum = symtab_search(&p->p_classes, name); if (!cladatum) return 0; return cladatum->value; } u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name) { struct class_datum *cladatum; struct perm_datum *perdatum = NULL; struct common_datum *comdatum; if (!tclass || tclass > p->p_classes.nprim) return 0; cladatum = p->class_val_to_struct[tclass-1]; comdatum = cladatum->comdatum; if (comdatum) perdatum = symtab_search(&comdatum->permissions, name); if (!perdatum) perdatum = symtab_search(&cladatum->permissions, name); if (!perdatum) return 0; return 1U << (perdatum->value-1); } static int range_read(struct policydb *p, void *fp) { struct range_trans *rt = NULL; struct mls_range *r = NULL; int i, rc; __le32 buf[2]; u32 nel; if (p->policyvers < POLICYDB_VERSION_MLS) return 0; rc = next_entry(buf, fp, sizeof(u32)); if (rc) return rc; nel = le32_to_cpu(buf[0]); rc = hashtab_init(&p->range_tr, nel); if (rc) return rc; for (i = 0; i < nel; i++) { rc = -ENOMEM; rt = kzalloc(sizeof(*rt), GFP_KERNEL); if (!rt) goto out; rc = next_entry(buf, fp, (sizeof(u32) * 2)); if (rc) goto out; rt->source_type = le32_to_cpu(buf[0]); rt->target_type = le32_to_cpu(buf[1]); if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; rt->target_class = le32_to_cpu(buf[0]); } else rt->target_class = p->process_class; rc = -EINVAL; if (!policydb_type_isvalid(p, rt->source_type) || !policydb_type_isvalid(p, rt->target_type) || !policydb_class_isvalid(p, rt->target_class)) goto out; rc = -ENOMEM; r = kzalloc(sizeof(*r), GFP_KERNEL); if (!r) goto out; rc = mls_read_range_helper(r, fp); if (rc) goto out; rc = -EINVAL; if (!mls_range_isvalid(p, r)) { pr_warn("SELinux: rangetrans: invalid range\n"); goto out; } rc = hashtab_insert(&p->range_tr, rt, r, rangetr_key_params); if (rc) goto out; rt = NULL; r = NULL; } hash_eval(&p->range_tr, "rangetr"); rc = 0; out: kfree(rt); kfree(r); return rc; } static int filename_trans_read_helper_compat(struct policydb *p, void *fp) { struct filename_trans_key key, *ft = NULL; struct filename_trans_datum *last, *datum = NULL; char *name = NULL; u32 len, stype, otype; __le32 buf[4]; int rc; /* length of the path component string */ rc = next_entry(buf, fp, sizeof(u32)); if (rc) return rc; len = le32_to_cpu(buf[0]); /* path component string */ rc = str_read(&name, GFP_KERNEL, fp, len); if (rc) return rc; rc = next_entry(buf, fp, sizeof(u32) * 4); if (rc) goto out; stype = le32_to_cpu(buf[0]); key.ttype = le32_to_cpu(buf[1]); key.tclass = le32_to_cpu(buf[2]); key.name = name; otype = le32_to_cpu(buf[3]); last = NULL; datum = policydb_filenametr_search(p, &key); while (datum) { if (unlikely(ebitmap_get_bit(&datum->stypes, stype - 1))) { /* conflicting/duplicate rules are ignored */ datum = NULL; goto out; } if (likely(datum->otype == otype)) break; last = datum; datum = datum->next; } if (!datum) { rc = -ENOMEM; datum = kmalloc(sizeof(*datum), GFP_KERNEL); if (!datum) goto out; ebitmap_init(&datum->stypes); datum->otype = otype; datum->next = NULL; if (unlikely(last)) { last->next = datum; } else { rc = -ENOMEM; ft = kmemdup(&key, sizeof(key), GFP_KERNEL); if (!ft) goto out; rc = hashtab_insert(&p->filename_trans, ft, datum, filenametr_key_params); if (rc) goto out; name = NULL; rc = ebitmap_set_bit(&p->filename_trans_ttypes, key.ttype, 1); if (rc) return rc; } } kfree(name); return ebitmap_set_bit(&datum->stypes, stype - 1, 1); out: kfree(ft); kfree(name); kfree(datum); return rc; } static int filename_trans_read_helper(struct policydb *p, void *fp) { struct filename_trans_key *ft = NULL; struct filename_trans_datum **dst, *datum, *first = NULL; char *name = NULL; u32 len, ttype, tclass, ndatum, i; __le32 buf[3]; int rc; /* length of the path component string */ rc = next_entry(buf, fp, sizeof(u32)); if (rc) return rc; len = le32_to_cpu(buf[0]); /* path component string */ rc = str_read(&name, GFP_KERNEL, fp, len); if (rc) return rc; rc = next_entry(buf, fp, sizeof(u32) * 3); if (rc) goto out; ttype = le32_to_cpu(buf[0]); tclass = le32_to_cpu(buf[1]); ndatum = le32_to_cpu(buf[2]); if (ndatum == 0) { pr_err("SELinux: Filename transition key with no datum\n"); rc = -ENOENT; goto out; } dst = &first; for (i = 0; i < ndatum; i++) { rc = -ENOMEM; datum = kmalloc(sizeof(*datum), GFP_KERNEL); if (!datum) goto out; *dst = datum; /* ebitmap_read() will at least init the bitmap */ rc = ebitmap_read(&datum->stypes, fp); if (rc) goto out; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; datum->otype = le32_to_cpu(buf[0]); datum->next = NULL; dst = &datum->next; } rc = -ENOMEM; ft = kmalloc(sizeof(*ft), GFP_KERNEL); if (!ft) goto out; ft->ttype = ttype; ft->tclass = tclass; ft->name = name; rc = hashtab_insert(&p->filename_trans, ft, first, filenametr_key_params); if (rc == -EEXIST) pr_err("SELinux: Duplicate filename transition key\n"); if (rc) goto out; return ebitmap_set_bit(&p->filename_trans_ttypes, ttype, 1); out: kfree(ft); kfree(name); while (first) { datum = first; first = first->next; ebitmap_destroy(&datum->stypes); kfree(datum); } return rc; } static int filename_trans_read(struct policydb *p, void *fp) { u32 nel; __le32 buf[1]; int rc, i; if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS) return 0; rc = next_entry(buf, fp, sizeof(u32)); if (rc) return rc; nel = le32_to_cpu(buf[0]); if (p->policyvers < POLICYDB_VERSION_COMP_FTRANS) { p->compat_filename_trans_count = nel; rc = hashtab_init(&p->filename_trans, (1 << 11)); if (rc) return rc; for (i = 0; i < nel; i++) { rc = filename_trans_read_helper_compat(p, fp); if (rc) return rc; } } else { rc = hashtab_init(&p->filename_trans, nel); if (rc) return rc; for (i = 0; i < nel; i++) { rc = filename_trans_read_helper(p, fp); if (rc) return rc; } } hash_eval(&p->filename_trans, "filenametr"); return 0; } static int genfs_read(struct policydb *p, void *fp) { int i, j, rc; u32 nel, nel2, len, len2; __le32 buf[1]; struct ocontext *l, *c; struct ocontext *newc = NULL; struct genfs *genfs_p, *genfs; struct genfs *newgenfs = NULL; rc = next_entry(buf, fp, sizeof(u32)); if (rc) return rc; nel = le32_to_cpu(buf[0]); for (i = 0; i < nel; i++) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = -ENOMEM; newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL); if (!newgenfs) goto out; rc = str_read(&newgenfs->fstype, GFP_KERNEL, fp, len); if (rc) goto out; for (genfs_p = NULL, genfs = p->genfs; genfs; genfs_p = genfs, genfs = genfs->next) { rc = -EINVAL; if (strcmp(newgenfs->fstype, genfs->fstype) == 0) { pr_err("SELinux: dup genfs fstype %s\n", newgenfs->fstype); goto out; } if (strcmp(newgenfs->fstype, genfs->fstype) < 0) break; } newgenfs->next = genfs; if (genfs_p) genfs_p->next = newgenfs; else p->genfs = newgenfs; genfs = newgenfs; newgenfs = NULL; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; nel2 = le32_to_cpu(buf[0]); for (j = 0; j < nel2; j++) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = -ENOMEM; newc = kzalloc(sizeof(*newc), GFP_KERNEL); if (!newc) goto out; rc = str_read(&newc->u.name, GFP_KERNEL, fp, len); if (rc) goto out; rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; newc->v.sclass = le32_to_cpu(buf[0]); rc = context_read_and_validate(&newc->context[0], p, fp); if (rc) goto out; for (l = NULL, c = genfs->head; c; l = c, c = c->next) { rc = -EINVAL; if (!strcmp(newc->u.name, c->u.name) && (!c->v.sclass || !newc->v.sclass || newc->v.sclass == c->v.sclass)) { pr_err("SELinux: dup genfs entry (%s,%s)\n", genfs->fstype, c->u.name); goto out; } len = strlen(newc->u.name); len2 = strlen(c->u.name); if (len > len2) break; } newc->next = c; if (l) l->next = newc; else genfs->head = newc; newc = NULL; } } rc = 0; out: if (newgenfs) { kfree(newgenfs->fstype); kfree(newgenfs); } ocontext_destroy(newc, OCON_FSUSE); return rc; } static int ocontext_read(struct policydb *p, struct policydb_compat_info *info, void *fp) { int i, j, rc; u32 nel, len; __be64 prefixbuf[1]; __le32 buf[3]; struct ocontext *l, *c; u32 nodebuf[8]; for (i = 0; i < info->ocon_num; i++) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; nel = le32_to_cpu(buf[0]); l = NULL; for (j = 0; j < nel; j++) { rc = -ENOMEM; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) goto out; if (l) l->next = c; else p->ocontexts[i] = c; l = c; switch (i) { case OCON_ISID: rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; c->sid[0] = le32_to_cpu(buf[0]); rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_FS: case OCON_NETIF: rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = str_read(&c->u.name, GFP_KERNEL, fp, len); if (rc) goto out; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; rc = context_read_and_validate(&c->context[1], p, fp); if (rc) goto out; break; case OCON_PORT: rc = next_entry(buf, fp, sizeof(u32)*3); if (rc) goto out; c->u.port.protocol = le32_to_cpu(buf[0]); c->u.port.low_port = le32_to_cpu(buf[1]); c->u.port.high_port = le32_to_cpu(buf[2]); rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_NODE: rc = next_entry(nodebuf, fp, sizeof(u32) * 2); if (rc) goto out; c->u.node.addr = nodebuf[0]; /* network order */ c->u.node.mask = nodebuf[1]; /* network order */ rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_FSUSE: rc = next_entry(buf, fp, sizeof(u32)*2); if (rc) goto out; rc = -EINVAL; c->v.behavior = le32_to_cpu(buf[0]); /* Determined at runtime, not in policy DB. */ if (c->v.behavior == SECURITY_FS_USE_MNTPOINT) goto out; if (c->v.behavior > SECURITY_FS_USE_MAX) goto out; len = le32_to_cpu(buf[1]); rc = str_read(&c->u.name, GFP_KERNEL, fp, len); if (rc) goto out; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; case OCON_NODE6: { int k; rc = next_entry(nodebuf, fp, sizeof(u32) * 8); if (rc) goto out; for (k = 0; k < 4; k++) c->u.node6.addr[k] = nodebuf[k]; for (k = 0; k < 4; k++) c->u.node6.mask[k] = nodebuf[k+4]; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; } case OCON_IBPKEY: { u32 pkey_lo, pkey_hi; rc = next_entry(prefixbuf, fp, sizeof(u64)); if (rc) goto out; /* we need to have subnet_prefix in CPU order */ c->u.ibpkey.subnet_prefix = be64_to_cpu(prefixbuf[0]); rc = next_entry(buf, fp, sizeof(u32) * 2); if (rc) goto out; pkey_lo = le32_to_cpu(buf[0]); pkey_hi = le32_to_cpu(buf[1]); if (pkey_lo > U16_MAX || pkey_hi > U16_MAX) { rc = -EINVAL; goto out; } c->u.ibpkey.low_pkey = pkey_lo; c->u.ibpkey.high_pkey = pkey_hi; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; } case OCON_IBENDPORT: { u32 port; rc = next_entry(buf, fp, sizeof(u32) * 2); if (rc) goto out; len = le32_to_cpu(buf[0]); rc = str_read(&c->u.ibendport.dev_name, GFP_KERNEL, fp, len); if (rc) goto out; port = le32_to_cpu(buf[1]); if (port > U8_MAX || port == 0) { rc = -EINVAL; goto out; } c->u.ibendport.port = port; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto out; break; } /* end case */ } /* end switch */ } } rc = 0; out: return rc; } /* * Read the configuration data from a policy database binary * representation file into a policy database structure. */ int policydb_read(struct policydb *p, void *fp) { struct role_allow *ra, *lra; struct role_trans_key *rtk = NULL; struct role_trans_datum *rtd = NULL; int i, j, rc; __le32 buf[4]; u32 len, nprim, nel, perm; char *policydb_str; struct policydb_compat_info *info; policydb_init(p); /* Read the magic number and string length. */ rc = next_entry(buf, fp, sizeof(u32) * 2); if (rc) goto bad; rc = -EINVAL; if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) { pr_err("SELinux: policydb magic number 0x%x does " "not match expected magic number 0x%x\n", le32_to_cpu(buf[0]), POLICYDB_MAGIC); goto bad; } rc = -EINVAL; len = le32_to_cpu(buf[1]); if (len != strlen(POLICYDB_STRING)) { pr_err("SELinux: policydb string length %d does not " "match expected length %zu\n", len, strlen(POLICYDB_STRING)); goto bad; } rc = -ENOMEM; policydb_str = kmalloc(len + 1, GFP_KERNEL); if (!policydb_str) { pr_err("SELinux: unable to allocate memory for policydb " "string of length %d\n", len); goto bad; } rc = next_entry(policydb_str, fp, len); if (rc) { pr_err("SELinux: truncated policydb string identifier\n"); kfree(policydb_str); goto bad; } rc = -EINVAL; policydb_str[len] = '\0'; if (strcmp(policydb_str, POLICYDB_STRING)) { pr_err("SELinux: policydb string %s does not match " "my string %s\n", policydb_str, POLICYDB_STRING); kfree(policydb_str); goto bad; } /* Done with policydb_str. */ kfree(policydb_str); policydb_str = NULL; /* Read the version and table sizes. */ rc = next_entry(buf, fp, sizeof(u32)*4); if (rc) goto bad; rc = -EINVAL; p->policyvers = le32_to_cpu(buf[0]); if (p->policyvers < POLICYDB_VERSION_MIN || p->policyvers > POLICYDB_VERSION_MAX) { pr_err("SELinux: policydb version %d does not match " "my version range %d-%d\n", le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); goto bad; } if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) { p->mls_enabled = 1; rc = -EINVAL; if (p->policyvers < POLICYDB_VERSION_MLS) { pr_err("SELinux: security policydb version %d " "(MLS) not backwards compatible\n", p->policyvers); goto bad; } } p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN); p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN); if (p->policyvers >= POLICYDB_VERSION_POLCAP) { rc = ebitmap_read(&p->policycaps, fp); if (rc) goto bad; } if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) { rc = ebitmap_read(&p->permissive_map, fp); if (rc) goto bad; } rc = -EINVAL; info = policydb_lookup_compat(p->policyvers); if (!info) { pr_err("SELinux: unable to find policy compat info " "for version %d\n", p->policyvers); goto bad; } rc = -EINVAL; if (le32_to_cpu(buf[2]) != info->sym_num || le32_to_cpu(buf[3]) != info->ocon_num) { pr_err("SELinux: policydb table sizes (%d,%d) do " "not match mine (%d,%d)\n", le32_to_cpu(buf[2]), le32_to_cpu(buf[3]), info->sym_num, info->ocon_num); goto bad; } for (i = 0; i < info->sym_num; i++) { rc = next_entry(buf, fp, sizeof(u32)*2); if (rc) goto bad; nprim = le32_to_cpu(buf[0]); nel = le32_to_cpu(buf[1]); rc = symtab_init(&p->symtab[i], nel); if (rc) goto out; if (i == SYM_ROLES) { rc = roles_init(p); if (rc) goto out; } for (j = 0; j < nel; j++) { rc = read_f[i](p, &p->symtab[i], fp); if (rc) goto bad; } p->symtab[i].nprim = nprim; } rc = -EINVAL; p->process_class = string_to_security_class(p, "process"); if (!p->process_class) { pr_err("SELinux: process class is required, not defined in policy\n"); goto bad; } rc = avtab_read(&p->te_avtab, fp, p); if (rc) goto bad; if (p->policyvers >= POLICYDB_VERSION_BOOL) { rc = cond_read_list(p, fp); if (rc) goto bad; } rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; nel = le32_to_cpu(buf[0]); rc = hashtab_init(&p->role_tr, nel); if (rc) goto bad; for (i = 0; i < nel; i++) { rc = -ENOMEM; rtk = kmalloc(sizeof(*rtk), GFP_KERNEL); if (!rtk) goto bad; rc = -ENOMEM; rtd = kmalloc(sizeof(*rtd), GFP_KERNEL); if (!rtd) goto bad; rc = next_entry(buf, fp, sizeof(u32)*3); if (rc) goto bad; rc = -EINVAL; rtk->role = le32_to_cpu(buf[0]); rtk->type = le32_to_cpu(buf[1]); rtd->new_role = le32_to_cpu(buf[2]); if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) { rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; rtk->tclass = le32_to_cpu(buf[0]); } else rtk->tclass = p->process_class; rc = -EINVAL; if (!policydb_role_isvalid(p, rtk->role) || !policydb_type_isvalid(p, rtk->type) || !policydb_class_isvalid(p, rtk->tclass) || !policydb_role_isvalid(p, rtd->new_role)) goto bad; rc = hashtab_insert(&p->role_tr, rtk, rtd, roletr_key_params); if (rc) goto bad; rtk = NULL; rtd = NULL; } rc = next_entry(buf, fp, sizeof(u32)); if (rc) goto bad; nel = le32_to_cpu(buf[0]); lra = NULL; for (i = 0; i < nel; i++) { rc = -ENOMEM; ra = kzalloc(sizeof(*ra), GFP_KERNEL); if (!ra) goto bad; if (lra) lra->next = ra; else p->role_allow = ra; rc = next_entry(buf, fp, sizeof(u32)*2); if (rc) goto bad; rc = -EINVAL; ra->role = le32_to_cpu(buf[0]); ra->new_role = le32_to_cpu(buf[1]); if (!policydb_role_isvalid(p, ra->role) || !policydb_role_isvalid(p, ra->new_role)) goto bad; lra = ra; } rc = filename_trans_read(p, fp); if (rc) goto bad; rc = policydb_index(p); if (rc) goto bad; rc = -EINVAL; perm = string_to_av_perm(p, p->process_class, "transition"); if (!perm) { pr_err("SELinux: process transition permission is required, not defined in policy\n"); goto bad; } p->process_trans_perms = perm; perm = string_to_av_perm(p, p->process_class, "dyntransition"); if (!perm) { pr_err("SELinux: process dyntransition permission is required, not defined in policy\n"); goto bad; } p->process_trans_perms |= perm; rc = ocontext_read(p, info, fp); if (rc) goto bad; rc = genfs_read(p, fp); if (rc) goto bad; rc = range_read(p, fp); if (rc) goto bad; rc = -ENOMEM; p->type_attr_map_array = kvcalloc(p->p_types.nprim, sizeof(*p->type_attr_map_array), GFP_KERNEL); if (!p->type_attr_map_array) goto bad; /* just in case ebitmap_init() becomes more than just a memset(0): */ for (i = 0; i < p->p_types.nprim; i++) ebitmap_init(&p->type_attr_map_array[i]); for (i = 0; i < p->p_types.nprim; i++) { struct ebitmap *e = &p->type_attr_map_array[i]; if (p->policyvers >= POLICYDB_VERSION_AVTAB) { rc = ebitmap_read(e, fp); if (rc) goto bad; } /* add the type itself as the degenerate case */ rc = ebitmap_set_bit(e, i, 1); if (rc) goto bad; } rc = policydb_bounds_sanity_check(p); if (rc) goto bad; rc = 0; out: return rc; bad: kfree(rtk); kfree(rtd); policydb_destroy(p); goto out; } /* * Write a MLS level structure to a policydb binary * representation file. */ static int mls_write_level(struct mls_level *l, void *fp) { __le32 buf[1]; int rc; buf[0] = cpu_to_le32(l->sens); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = ebitmap_write(&l->cat, fp); if (rc) return rc; return 0; } /* * Write a MLS range structure to a policydb binary * representation file. */ static int mls_write_range_helper(struct mls_range *r, void *fp) { __le32 buf[3]; size_t items; int rc, eq; eq = mls_level_eq(&r->level[1], &r->level[0]); if (eq) items = 2; else items = 3; buf[0] = cpu_to_le32(items-1); buf[1] = cpu_to_le32(r->level[0].sens); if (!eq) buf[2] = cpu_to_le32(r->level[1].sens); BUG_ON(items > ARRAY_SIZE(buf)); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = ebitmap_write(&r->level[0].cat, fp); if (rc) return rc; if (!eq) { rc = ebitmap_write(&r->level[1].cat, fp); if (rc) return rc; } return 0; } static int sens_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct level_datum *levdatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; __le32 buf[2]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(levdatum->isalias); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = mls_write_level(levdatum->level, fp); if (rc) return rc; return 0; } static int cat_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct cat_datum *catdatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; __le32 buf[3]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(catdatum->value); buf[2] = cpu_to_le32(catdatum->isalias); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; return 0; } static int role_trans_write_one(void *key, void *datum, void *ptr) { struct role_trans_key *rtk = key; struct role_trans_datum *rtd = datum; struct policy_data *pd = ptr; void *fp = pd->fp; struct policydb *p = pd->p; __le32 buf[3]; int rc; buf[0] = cpu_to_le32(rtk->role); buf[1] = cpu_to_le32(rtk->type); buf[2] = cpu_to_le32(rtd->new_role); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) { buf[0] = cpu_to_le32(rtk->tclass); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; } return 0; } static int role_trans_write(struct policydb *p, void *fp) { struct policy_data pd = { .p = p, .fp = fp }; __le32 buf[1]; int rc; buf[0] = cpu_to_le32(p->role_tr.nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; return hashtab_map(&p->role_tr, role_trans_write_one, &pd); } static int role_allow_write(struct role_allow *r, void *fp) { struct role_allow *ra; __le32 buf[2]; size_t nel; int rc; nel = 0; for (ra = r; ra; ra = ra->next) nel++; buf[0] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (ra = r; ra; ra = ra->next) { buf[0] = cpu_to_le32(ra->role); buf[1] = cpu_to_le32(ra->new_role); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; } return 0; } /* * Write a security context structure * to a policydb binary representation file. */ static int context_write(struct policydb *p, struct context *c, void *fp) { int rc; __le32 buf[3]; buf[0] = cpu_to_le32(c->user); buf[1] = cpu_to_le32(c->role); buf[2] = cpu_to_le32(c->type); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; rc = mls_write_range_helper(&c->range, fp); if (rc) return rc; return 0; } /* * The following *_write functions are used to * write the symbol data to a policy database * binary representation file. */ static int perm_write(void *vkey, void *datum, void *fp) { char *key = vkey; struct perm_datum *perdatum = datum; __le32 buf[2]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(perdatum->value); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; return 0; } static int common_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct common_datum *comdatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; __le32 buf[4]; size_t len; int rc; len = strlen(key); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(comdatum->value); buf[2] = cpu_to_le32(comdatum->permissions.nprim); buf[3] = cpu_to_le32(comdatum->permissions.table.nel); rc = put_entry(buf, sizeof(u32), 4, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = hashtab_map(&comdatum->permissions.table, perm_write, fp); if (rc) return rc; return 0; } static int type_set_write(struct type_set *t, void *fp) { int rc; __le32 buf[1]; if (ebitmap_write(&t->types, fp)) return -EINVAL; if (ebitmap_write(&t->negset, fp)) return -EINVAL; buf[0] = cpu_to_le32(t->flags); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return -EINVAL; return 0; } static int write_cons_helper(struct policydb *p, struct constraint_node *node, void *fp) { struct constraint_node *c; struct constraint_expr *e; __le32 buf[3]; u32 nel; int rc; for (c = node; c; c = c->next) { nel = 0; for (e = c->expr; e; e = e->next) nel++; buf[0] = cpu_to_le32(c->permissions); buf[1] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; for (e = c->expr; e; e = e->next) { buf[0] = cpu_to_le32(e->expr_type); buf[1] = cpu_to_le32(e->attr); buf[2] = cpu_to_le32(e->op); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; switch (e->expr_type) { case CEXPR_NAMES: rc = ebitmap_write(&e->names, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES) { rc = type_set_write(e->type_names, fp); if (rc) return rc; } break; default: break; } } } return 0; } static int class_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct class_datum *cladatum = datum; struct policy_data *pd = ptr; void *fp = pd->fp; struct policydb *p = pd->p; struct constraint_node *c; __le32 buf[6]; u32 ncons; size_t len, len2; int rc; len = strlen(key); if (cladatum->comkey) len2 = strlen(cladatum->comkey); else len2 = 0; ncons = 0; for (c = cladatum->constraints; c; c = c->next) ncons++; buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(len2); buf[2] = cpu_to_le32(cladatum->value); buf[3] = cpu_to_le32(cladatum->permissions.nprim); buf[4] = cpu_to_le32(cladatum->permissions.table.nel); buf[5] = cpu_to_le32(ncons); rc = put_entry(buf, sizeof(u32), 6, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; if (cladatum->comkey) { rc = put_entry(cladatum->comkey, 1, len2, fp); if (rc) return rc; } rc = hashtab_map(&cladatum->permissions.table, perm_write, fp); if (rc) return rc; rc = write_cons_helper(p, cladatum->constraints, fp); if (rc) return rc; /* write out the validatetrans rule */ ncons = 0; for (c = cladatum->validatetrans; c; c = c->next) ncons++; buf[0] = cpu_to_le32(ncons); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = write_cons_helper(p, cladatum->validatetrans, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) { buf[0] = cpu_to_le32(cladatum->default_user); buf[1] = cpu_to_le32(cladatum->default_role); buf[2] = cpu_to_le32(cladatum->default_range); rc = put_entry(buf, sizeof(uint32_t), 3, fp); if (rc) return rc; } if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) { buf[0] = cpu_to_le32(cladatum->default_type); rc = put_entry(buf, sizeof(uint32_t), 1, fp); if (rc) return rc; } return 0; } static int role_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct role_datum *role = datum; struct policy_data *pd = ptr; void *fp = pd->fp; struct policydb *p = pd->p; __le32 buf[3]; size_t items, len; int rc; len = strlen(key); items = 0; buf[items++] = cpu_to_le32(len); buf[items++] = cpu_to_le32(role->value); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) buf[items++] = cpu_to_le32(role->bounds); BUG_ON(items > ARRAY_SIZE(buf)); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = ebitmap_write(&role->dominates, fp); if (rc) return rc; rc = ebitmap_write(&role->types, fp); if (rc) return rc; return 0; } static int type_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct type_datum *typdatum = datum; struct policy_data *pd = ptr; struct policydb *p = pd->p; void *fp = pd->fp; __le32 buf[4]; int rc; size_t items, len; len = strlen(key); items = 0; buf[items++] = cpu_to_le32(len); buf[items++] = cpu_to_le32(typdatum->value); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) { u32 properties = 0; if (typdatum->primary) properties |= TYPEDATUM_PROPERTY_PRIMARY; if (typdatum->attribute) properties |= TYPEDATUM_PROPERTY_ATTRIBUTE; buf[items++] = cpu_to_le32(properties); buf[items++] = cpu_to_le32(typdatum->bounds); } else { buf[items++] = cpu_to_le32(typdatum->primary); } BUG_ON(items > ARRAY_SIZE(buf)); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; return 0; } static int user_write(void *vkey, void *datum, void *ptr) { char *key = vkey; struct user_datum *usrdatum = datum; struct policy_data *pd = ptr; struct policydb *p = pd->p; void *fp = pd->fp; __le32 buf[3]; size_t items, len; int rc; len = strlen(key); items = 0; buf[items++] = cpu_to_le32(len); buf[items++] = cpu_to_le32(usrdatum->value); if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) buf[items++] = cpu_to_le32(usrdatum->bounds); BUG_ON(items > ARRAY_SIZE(buf)); rc = put_entry(buf, sizeof(u32), items, fp); if (rc) return rc; rc = put_entry(key, 1, len, fp); if (rc) return rc; rc = ebitmap_write(&usrdatum->roles, fp); if (rc) return rc; rc = mls_write_range_helper(&usrdatum->range, fp); if (rc) return rc; rc = mls_write_level(&usrdatum->dfltlevel, fp); if (rc) return rc; return 0; } static int (*write_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_write, class_write, role_write, type_write, user_write, cond_write_bool, sens_write, cat_write, }; static int ocontext_write(struct policydb *p, struct policydb_compat_info *info, void *fp) { unsigned int i, j, rc; size_t nel, len; __be64 prefixbuf[1]; __le32 buf[3]; u32 nodebuf[8]; struct ocontext *c; for (i = 0; i < info->ocon_num; i++) { nel = 0; for (c = p->ocontexts[i]; c; c = c->next) nel++; buf[0] = cpu_to_le32(nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (c = p->ocontexts[i]; c; c = c->next) { switch (i) { case OCON_ISID: buf[0] = cpu_to_le32(c->sid[0]); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_FS: case OCON_NETIF: len = strlen(c->u.name); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(c->u.name, 1, len, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; rc = context_write(p, &c->context[1], fp); if (rc) return rc; break; case OCON_PORT: buf[0] = cpu_to_le32(c->u.port.protocol); buf[1] = cpu_to_le32(c->u.port.low_port); buf[2] = cpu_to_le32(c->u.port.high_port); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_NODE: nodebuf[0] = c->u.node.addr; /* network order */ nodebuf[1] = c->u.node.mask; /* network order */ rc = put_entry(nodebuf, sizeof(u32), 2, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_FSUSE: buf[0] = cpu_to_le32(c->v.behavior); len = strlen(c->u.name); buf[1] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(c->u.name, 1, len, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_NODE6: for (j = 0; j < 4; j++) nodebuf[j] = c->u.node6.addr[j]; /* network order */ for (j = 0; j < 4; j++) nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */ rc = put_entry(nodebuf, sizeof(u32), 8, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_IBPKEY: /* subnet_prefix is in CPU order */ prefixbuf[0] = cpu_to_be64(c->u.ibpkey.subnet_prefix); rc = put_entry(prefixbuf, sizeof(u64), 1, fp); if (rc) return rc; buf[0] = cpu_to_le32(c->u.ibpkey.low_pkey); buf[1] = cpu_to_le32(c->u.ibpkey.high_pkey); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; case OCON_IBENDPORT: len = strlen(c->u.ibendport.dev_name); buf[0] = cpu_to_le32(len); buf[1] = cpu_to_le32(c->u.ibendport.port); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(c->u.ibendport.dev_name, 1, len, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; break; } } } return 0; } static int genfs_write(struct policydb *p, void *fp) { struct genfs *genfs; struct ocontext *c; size_t len; __le32 buf[1]; int rc; len = 0; for (genfs = p->genfs; genfs; genfs = genfs->next) len++; buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (genfs = p->genfs; genfs; genfs = genfs->next) { len = strlen(genfs->fstype); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(genfs->fstype, 1, len, fp); if (rc) return rc; len = 0; for (c = genfs->head; c; c = c->next) len++; buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; for (c = genfs->head; c; c = c->next) { len = strlen(c->u.name); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(c->u.name, 1, len, fp); if (rc) return rc; buf[0] = cpu_to_le32(c->v.sclass); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = context_write(p, &c->context[0], fp); if (rc) return rc; } } return 0; } static int range_write_helper(void *key, void *data, void *ptr) { __le32 buf[2]; struct range_trans *rt = key; struct mls_range *r = data; struct policy_data *pd = ptr; void *fp = pd->fp; struct policydb *p = pd->p; int rc; buf[0] = cpu_to_le32(rt->source_type); buf[1] = cpu_to_le32(rt->target_type); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) { buf[0] = cpu_to_le32(rt->target_class); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; } rc = mls_write_range_helper(r, fp); if (rc) return rc; return 0; } static int range_write(struct policydb *p, void *fp) { __le32 buf[1]; int rc; struct policy_data pd; pd.p = p; pd.fp = fp; buf[0] = cpu_to_le32(p->range_tr.nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; /* actually write all of the entries */ rc = hashtab_map(&p->range_tr, range_write_helper, &pd); if (rc) return rc; return 0; } static int filename_write_helper_compat(void *key, void *data, void *ptr) { struct filename_trans_key *ft = key; struct filename_trans_datum *datum = data; struct ebitmap_node *node; void *fp = ptr; __le32 buf[4]; int rc; u32 bit, len = strlen(ft->name); do { ebitmap_for_each_positive_bit(&datum->stypes, node, bit) { buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(ft->name, sizeof(char), len, fp); if (rc) return rc; buf[0] = cpu_to_le32(bit + 1); buf[1] = cpu_to_le32(ft->ttype); buf[2] = cpu_to_le32(ft->tclass); buf[3] = cpu_to_le32(datum->otype); rc = put_entry(buf, sizeof(u32), 4, fp); if (rc) return rc; } datum = datum->next; } while (unlikely(datum)); return 0; } static int filename_write_helper(void *key, void *data, void *ptr) { struct filename_trans_key *ft = key; struct filename_trans_datum *datum; void *fp = ptr; __le32 buf[3]; int rc; u32 ndatum, len = strlen(ft->name); buf[0] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = put_entry(ft->name, sizeof(char), len, fp); if (rc) return rc; ndatum = 0; datum = data; do { ndatum++; datum = datum->next; } while (unlikely(datum)); buf[0] = cpu_to_le32(ft->ttype); buf[1] = cpu_to_le32(ft->tclass); buf[2] = cpu_to_le32(ndatum); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; datum = data; do { rc = ebitmap_write(&datum->stypes, fp); if (rc) return rc; buf[0] = cpu_to_le32(datum->otype); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; datum = datum->next; } while (unlikely(datum)); return 0; } static int filename_trans_write(struct policydb *p, void *fp) { __le32 buf[1]; int rc; if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS) return 0; if (p->policyvers < POLICYDB_VERSION_COMP_FTRANS) { buf[0] = cpu_to_le32(p->compat_filename_trans_count); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = hashtab_map(&p->filename_trans, filename_write_helper_compat, fp); } else { buf[0] = cpu_to_le32(p->filename_trans.nel); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; rc = hashtab_map(&p->filename_trans, filename_write_helper, fp); } return rc; } /* * Write the configuration data in a policy database * structure to a policy database binary representation * file. */ int policydb_write(struct policydb *p, void *fp) { unsigned int i, num_syms; int rc; __le32 buf[4]; u32 config; size_t len; struct policydb_compat_info *info; /* * refuse to write policy older than compressed avtab * to simplify the writer. There are other tests dropped * since we assume this throughout the writer code. Be * careful if you ever try to remove this restriction */ if (p->policyvers < POLICYDB_VERSION_AVTAB) { pr_err("SELinux: refusing to write policy version %d." " Because it is less than version %d\n", p->policyvers, POLICYDB_VERSION_AVTAB); return -EINVAL; } config = 0; if (p->mls_enabled) config |= POLICYDB_CONFIG_MLS; if (p->reject_unknown) config |= REJECT_UNKNOWN; if (p->allow_unknown) config |= ALLOW_UNKNOWN; /* Write the magic number and string identifiers. */ buf[0] = cpu_to_le32(POLICYDB_MAGIC); len = strlen(POLICYDB_STRING); buf[1] = cpu_to_le32(len); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = put_entry(POLICYDB_STRING, 1, len, fp); if (rc) return rc; /* Write the version, config, and table sizes. */ info = policydb_lookup_compat(p->policyvers); if (!info) { pr_err("SELinux: compatibility lookup failed for policy " "version %d", p->policyvers); return -EINVAL; } buf[0] = cpu_to_le32(p->policyvers); buf[1] = cpu_to_le32(config); buf[2] = cpu_to_le32(info->sym_num); buf[3] = cpu_to_le32(info->ocon_num); rc = put_entry(buf, sizeof(u32), 4, fp); if (rc) return rc; if (p->policyvers >= POLICYDB_VERSION_POLCAP) { rc = ebitmap_write(&p->policycaps, fp); if (rc) return rc; } if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) { rc = ebitmap_write(&p->permissive_map, fp); if (rc) return rc; } num_syms = info->sym_num; for (i = 0; i < num_syms; i++) { struct policy_data pd; pd.fp = fp; pd.p = p; buf[0] = cpu_to_le32(p->symtab[i].nprim); buf[1] = cpu_to_le32(p->symtab[i].table.nel); rc = put_entry(buf, sizeof(u32), 2, fp); if (rc) return rc; rc = hashtab_map(&p->symtab[i].table, write_f[i], &pd); if (rc) return rc; } rc = avtab_write(p, &p->te_avtab, fp); if (rc) return rc; rc = cond_write_list(p, fp); if (rc) return rc; rc = role_trans_write(p, fp); if (rc) return rc; rc = role_allow_write(p->role_allow, fp); if (rc) return rc; rc = filename_trans_write(p, fp); if (rc) return rc; rc = ocontext_write(p, info, fp); if (rc) return rc; rc = genfs_write(p, fp); if (rc) return rc; rc = range_write(p, fp); if (rc) return rc; for (i = 0; i < p->p_types.nprim; i++) { struct ebitmap *e = &p->type_attr_map_array[i]; rc = ebitmap_write(e, fp); if (rc) return rc; } return 0; }
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM pagemap #if !defined(_TRACE_PAGEMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PAGEMAP_H #include <linux/tracepoint.h> #include <linux/mm.h> #define PAGEMAP_MAPPED 0x0001u #define PAGEMAP_ANONYMOUS 0x0002u #define PAGEMAP_FILE 0x0004u #define PAGEMAP_SWAPCACHE 0x0008u #define PAGEMAP_SWAPBACKED 0x0010u #define PAGEMAP_MAPPEDDISK 0x0020u #define PAGEMAP_BUFFERS 0x0040u #define trace_pagemap_flags(page) ( \ (PageAnon(page) ? PAGEMAP_ANONYMOUS : PAGEMAP_FILE) | \ (page_mapped(page) ? PAGEMAP_MAPPED : 0) | \ (PageSwapCache(page) ? PAGEMAP_SWAPCACHE : 0) | \ (PageSwapBacked(page) ? PAGEMAP_SWAPBACKED : 0) | \ (PageMappedToDisk(page) ? PAGEMAP_MAPPEDDISK : 0) | \ (page_has_private(page) ? PAGEMAP_BUFFERS : 0) \ ) TRACE_EVENT(mm_lru_insertion, TP_PROTO( struct page *page, int lru ), TP_ARGS(page, lru), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) __field(int, lru ) __field(unsigned long, flags ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); __entry->lru = lru; __entry->flags = trace_pagemap_flags(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu lru=%d flags=%s%s%s%s%s%s", __entry->page, __entry->pfn, __entry->lru, __entry->flags & PAGEMAP_MAPPED ? "M" : " ", __entry->flags & PAGEMAP_ANONYMOUS ? "a" : "f", __entry->flags & PAGEMAP_SWAPCACHE ? "s" : " ", __entry->flags & PAGEMAP_SWAPBACKED ? "b" : " ", __entry->flags & PAGEMAP_MAPPEDDISK ? "d" : " ", __entry->flags & PAGEMAP_BUFFERS ? "B" : " ") ); TRACE_EVENT(mm_lru_activate, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(struct page *, page ) __field(unsigned long, pfn ) ), TP_fast_assign( __entry->page = page; __entry->pfn = page_to_pfn(page); ), /* Flag format is based on page-types.c formatting for pagemap */ TP_printk("page=%p pfn=%lu", __entry->page, __entry->pfn) ); #endif /* _TRACE_PAGEMAP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ERR_H #define _LINUX_ERR_H #include <linux/compiler.h> #include <linux/types.h> #include <asm/errno.h> /* * Kernel pointers have redundant information, so we can use a * scheme where we can return either an error code or a normal * pointer with the same return value. * * This should be a per-architecture thing, to allow different * error and pointer decisions. */ #define MAX_ERRNO 4095 #ifndef __ASSEMBLY__ #define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >= (unsigned long)-MAX_ERRNO) static inline void * __must_check ERR_PTR(long error) { return (void *) error; } static inline long __must_check PTR_ERR(__force const void *ptr) { return (long) ptr; } static inline bool __must_check IS_ERR(__force const void *ptr) { return IS_ERR_VALUE((unsigned long)ptr); } static inline bool __must_check IS_ERR_OR_NULL(__force const void *ptr) { return unlikely(!ptr) || IS_ERR_VALUE((unsigned long)ptr); } /** * ERR_CAST - Explicitly cast an error-valued pointer to another pointer type * @ptr: The pointer to cast. * * Explicitly cast an error-valued pointer to another pointer type in such a * way as to make it clear that's what's going on. */ static inline void * __must_check ERR_CAST(__force const void *ptr) { /* cast away the const */ return (void *) ptr; } static inline int __must_check PTR_ERR_OR_ZERO(__force const void *ptr) { if (IS_ERR(ptr)) return PTR_ERR(ptr); else return 0; } #endif #endif /* _LINUX_ERR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _IP6_FIB_H #define _IP6_FIB_H #include <linux/ipv6_route.h> #include <linux/rtnetlink.h> #include <linux/spinlock.h> #include <linux/notifier.h> #include <net/dst.h> #include <net/flow.h> #include <net/ip_fib.h> #include <net/netlink.h> #include <net/inetpeer.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_HASHSZ 256 #else #define FIB6_TABLE_HASHSZ 1 #endif #define RT6_DEBUG 2 #if RT6_DEBUG >= 3 #define RT6_TRACE(x...) pr_debug(x) #else #define RT6_TRACE(x...) do { ; } while (0) #endif struct rt6_info; struct fib6_info; struct fib6_config { u32 fc_table; u32 fc_metric; int fc_dst_len; int fc_src_len; int fc_ifindex; u32 fc_flags; u32 fc_protocol; u16 fc_type; /* only 8 bits are used */ u16 fc_delete_all_nh : 1, fc_ignore_dev_down:1, __unused : 14; u32 fc_nh_id; struct in6_addr fc_dst; struct in6_addr fc_src; struct in6_addr fc_prefsrc; struct in6_addr fc_gateway; unsigned long fc_expires; struct nlattr *fc_mx; int fc_mx_len; int fc_mp_len; struct nlattr *fc_mp; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; bool fc_is_fdb; }; struct fib6_node { struct fib6_node __rcu *parent; struct fib6_node __rcu *left; struct fib6_node __rcu *right; #ifdef CONFIG_IPV6_SUBTREES struct fib6_node __rcu *subtree; #endif struct fib6_info __rcu *leaf; __u16 fn_bit; /* bit key */ __u16 fn_flags; int fn_sernum; struct fib6_info __rcu *rr_ptr; struct rcu_head rcu; }; struct fib6_gc_args { int timeout; int more; }; #ifndef CONFIG_IPV6_SUBTREES #define FIB6_SUBTREE(fn) NULL static inline bool fib6_routes_require_src(const struct net *net) { return false; } static inline void fib6_routes_require_src_inc(struct net *net) {} static inline void fib6_routes_require_src_dec(struct net *net) {} #else static inline bool fib6_routes_require_src(const struct net *net) { return net->ipv6.fib6_routes_require_src > 0; } static inline void fib6_routes_require_src_inc(struct net *net) { net->ipv6.fib6_routes_require_src++; } static inline void fib6_routes_require_src_dec(struct net *net) { net->ipv6.fib6_routes_require_src--; } #define FIB6_SUBTREE(fn) (rcu_dereference_protected((fn)->subtree, 1)) #endif /* * routing information * */ struct rt6key { struct in6_addr addr; int plen; }; struct fib6_table; struct rt6_exception_bucket { struct hlist_head chain; int depth; }; struct rt6_exception { struct hlist_node hlist; struct rt6_info *rt6i; unsigned long stamp; struct rcu_head rcu; }; #define FIB6_EXCEPTION_BUCKET_SIZE_SHIFT 10 #define FIB6_EXCEPTION_BUCKET_SIZE (1 << FIB6_EXCEPTION_BUCKET_SIZE_SHIFT) #define FIB6_MAX_DEPTH 5 struct fib6_nh { struct fib_nh_common nh_common; #ifdef CONFIG_IPV6_ROUTER_PREF unsigned long last_probe; #endif struct rt6_info * __percpu *rt6i_pcpu; struct rt6_exception_bucket __rcu *rt6i_exception_bucket; }; struct fib6_info { struct fib6_table *fib6_table; struct fib6_info __rcu *fib6_next; struct fib6_node __rcu *fib6_node; /* Multipath routes: * siblings is a list of fib6_info that have the same metric/weight, * destination, but not the same gateway. nsiblings is just a cache * to speed up lookup. */ union { struct list_head fib6_siblings; struct list_head nh_list; }; unsigned int fib6_nsiblings; refcount_t fib6_ref; unsigned long expires; struct dst_metrics *fib6_metrics; #define fib6_pmtu fib6_metrics->metrics[RTAX_MTU-1] struct rt6key fib6_dst; u32 fib6_flags; struct rt6key fib6_src; struct rt6key fib6_prefsrc; u32 fib6_metric; u8 fib6_protocol; u8 fib6_type; u8 should_flush:1, dst_nocount:1, dst_nopolicy:1, fib6_destroying:1, offload:1, trap:1, unused:2; struct rcu_head rcu; struct nexthop *nh; struct fib6_nh fib6_nh[]; }; struct rt6_info { struct dst_entry dst; struct fib6_info __rcu *from; int sernum; struct rt6key rt6i_dst; struct rt6key rt6i_src; struct in6_addr rt6i_gateway; struct inet6_dev *rt6i_idev; u32 rt6i_flags; struct list_head rt6i_uncached; struct uncached_list *rt6i_uncached_list; /* more non-fragment space at head required */ unsigned short rt6i_nfheader_len; }; struct fib6_result { struct fib6_nh *nh; struct fib6_info *f6i; u32 fib6_flags; u8 fib6_type; struct rt6_info *rt6; }; #define for_each_fib6_node_rt_rcu(fn) \ for (rt = rcu_dereference((fn)->leaf); rt; \ rt = rcu_dereference(rt->fib6_next)) #define for_each_fib6_walker_rt(w) \ for (rt = (w)->leaf; rt; \ rt = rcu_dereference_protected(rt->fib6_next, 1)) static inline struct inet6_dev *ip6_dst_idev(struct dst_entry *dst) { return ((struct rt6_info *)dst)->rt6i_idev; } static inline bool fib6_requires_src(const struct fib6_info *rt) { return rt->fib6_src.plen > 0; } static inline void fib6_clean_expires(struct fib6_info *f6i) { f6i->fib6_flags &= ~RTF_EXPIRES; f6i->expires = 0; } static inline void fib6_set_expires(struct fib6_info *f6i, unsigned long expires) { f6i->expires = expires; f6i->fib6_flags |= RTF_EXPIRES; } static inline bool fib6_check_expired(const struct fib6_info *f6i) { if (f6i->fib6_flags & RTF_EXPIRES) return time_after(jiffies, f6i->expires); return false; } /* Function to safely get fn->sernum for passed in rt * and store result in passed in cookie. * Return true if we can get cookie safely * Return false if not */ static inline bool fib6_get_cookie_safe(const struct fib6_info *f6i, u32 *cookie) { struct fib6_node *fn; bool status = false; fn = rcu_dereference(f6i->fib6_node); if (fn) { *cookie = fn->fn_sernum; /* pairs with smp_wmb() in fib6_update_sernum_upto_root() */ smp_rmb(); status = true; } return status; } static inline u32 rt6_get_cookie(const struct rt6_info *rt) { struct fib6_info *from; u32 cookie = 0; if (rt->sernum) return rt->sernum; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) fib6_get_cookie_safe(from, &cookie); rcu_read_unlock(); return cookie; } static inline void ip6_rt_put(struct rt6_info *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rt6_info */ BUILD_BUG_ON(offsetof(struct rt6_info, dst) != 0); dst_release(&rt->dst); } struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh); void fib6_info_destroy_rcu(struct rcu_head *head); static inline void fib6_info_hold(struct fib6_info *f6i) { refcount_inc(&f6i->fib6_ref); } static inline bool fib6_info_hold_safe(struct fib6_info *f6i) { return refcount_inc_not_zero(&f6i->fib6_ref); } static inline void fib6_info_release(struct fib6_info *f6i) { if (f6i && refcount_dec_and_test(&f6i->fib6_ref)) call_rcu(&f6i->rcu, fib6_info_destroy_rcu); } static inline void fib6_info_hw_flags_set(struct fib6_info *f6i, bool offload, bool trap) { f6i->offload = offload; f6i->trap = trap; } enum fib6_walk_state { #ifdef CONFIG_IPV6_SUBTREES FWS_S, #endif FWS_L, FWS_R, FWS_C, FWS_U }; struct fib6_walker { struct list_head lh; struct fib6_node *root, *node; struct fib6_info *leaf; enum fib6_walk_state state; unsigned int skip; unsigned int count; unsigned int skip_in_node; int (*func)(struct fib6_walker *); void *args; }; struct rt6_statistics { __u32 fib_nodes; /* all fib6 nodes */ __u32 fib_route_nodes; /* intermediate nodes */ __u32 fib_rt_entries; /* rt entries in fib table */ __u32 fib_rt_cache; /* cached rt entries in exception table */ __u32 fib_discarded_routes; /* total number of routes delete */ /* The following stats are not protected by any lock */ atomic_t fib_rt_alloc; /* total number of routes alloced */ atomic_t fib_rt_uncache; /* rt entries in uncached list */ }; #define RTN_TL_ROOT 0x0001 #define RTN_ROOT 0x0002 /* tree root node */ #define RTN_RTINFO 0x0004 /* node with valid routing info */ /* * priority levels (or metrics) * */ struct fib6_table { struct hlist_node tb6_hlist; u32 tb6_id; spinlock_t tb6_lock; struct fib6_node tb6_root; struct inet_peer_base tb6_peers; unsigned int flags; unsigned int fib_seq; #define RT6_TABLE_HAS_DFLT_ROUTER BIT(0) }; #define RT6_TABLE_UNSPEC RT_TABLE_UNSPEC #define RT6_TABLE_MAIN RT_TABLE_MAIN #define RT6_TABLE_DFLT RT6_TABLE_MAIN #define RT6_TABLE_INFO RT6_TABLE_MAIN #define RT6_TABLE_PREFIX RT6_TABLE_MAIN #ifdef CONFIG_IPV6_MULTIPLE_TABLES #define FIB6_TABLE_MIN 1 #define FIB6_TABLE_MAX RT_TABLE_MAX #define RT6_TABLE_LOCAL RT_TABLE_LOCAL #else #define FIB6_TABLE_MIN RT_TABLE_MAIN #define FIB6_TABLE_MAX FIB6_TABLE_MIN #define RT6_TABLE_LOCAL RT6_TABLE_MAIN #endif typedef struct rt6_info *(*pol_lookup_t)(struct net *, struct fib6_table *, struct flowi6 *, const struct sk_buff *, int); struct fib6_entry_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib6_info *rt; unsigned int nsiblings; }; /* * exported functions */ struct fib6_table *fib6_get_table(struct net *net, u32 id); struct fib6_table *fib6_new_table(struct net *net, u32 id); struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags, pol_lookup_t lookup); /* called with rcu lock held; can return error pointer * caller needs to select path */ int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, struct fib6_result *res, int flags); /* called with rcu lock held; caller needs to select path */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict); void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict); struct fib6_node *fib6_node_lookup(struct fib6_node *root, const struct in6_addr *daddr, const struct in6_addr *saddr); struct fib6_node *fib6_locate(struct fib6_node *root, const struct in6_addr *daddr, int dst_len, const struct in6_addr *saddr, int src_len, bool exact_match); void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); void fib6_clean_all_skip_notify(struct net *net, int (*func)(struct fib6_info *, void *arg), void *arg); int fib6_add(struct fib6_node *root, struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack); int fib6_del(struct fib6_info *rt, struct nl_info *info); static inline void rt6_get_prefsrc(const struct rt6_info *rt, struct in6_addr *addr) { const struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { *addr = from->fib6_prefsrc.addr; } else { struct in6_addr in6_zero = {}; *addr = in6_zero; } rcu_read_unlock(); } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib6_nh_release(struct fib6_nh *fib6_nh); void fib6_nh_release_dsts(struct fib6_nh *fib6_nh); int call_fib6_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, struct netlink_ext_ack *extack); int call_fib6_multipath_entry_notifiers(struct net *net, enum fib_event_type event_type, struct fib6_info *rt, unsigned int nsiblings, struct netlink_ext_ack *extack); int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt); void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info); void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int flags); void fib6_run_gc(unsigned long expires, struct net *net, bool force); void fib6_gc_cleanup(void); int fib6_init(void); struct ipv6_route_iter { struct seq_net_private p; struct fib6_walker w; loff_t skip; struct fib6_table *tbl; int sernum; }; extern const struct seq_operations ipv6_route_seq_ops; int call_fib6_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib6_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib6_notifier_init(struct net *net); void __net_exit fib6_notifier_exit(struct net *net); unsigned int fib6_tables_seq_read(struct net *net); int fib6_tables_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); void fib6_update_sernum(struct net *net, struct fib6_info *rt); void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt); void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i); void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val); static inline bool fib6_metric_locked(struct fib6_info *f6i, int metric) { return !!(f6i->fib6_metrics->metrics[RTAX_LOCK - 1] & (1 << metric)); } #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) struct bpf_iter__ipv6_route { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct fib6_info *, rt); }; #endif INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); INDIRECT_CALLABLE_DECLARE(struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags)); static inline struct rt6_info *pol_lookup_func(pol_lookup_t lookup, struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return INDIRECT_CALL_4(lookup, ip6_pol_route_output, ip6_pol_route_input, ip6_pol_route_lookup, __ip6_route_redirect, net, table, fl6, skb, flags); } #ifdef CONFIG_IPV6_MULTIPLE_TABLES static inline bool fib6_has_custom_rules(const struct net *net) { return net->ipv6.fib6_has_custom_rules; } int fib6_rules_init(void); void fib6_rules_cleanup(void); bool fib6_rule_default(const struct fib_rule *rule); int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib6_rules_seq_read(struct net *net); static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv6.fib6_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl6->fl6_sport = flkeys->ports.src; fl6->fl6_dport = flkeys->ports.dst; fl6->flowi6_proto = flkeys->basic.ip_proto; return true; } #else static inline bool fib6_has_custom_rules(const struct net *net) { return false; } static inline int fib6_rules_init(void) { return 0; } static inline void fib6_rules_cleanup(void) { return ; } static inline bool fib6_rule_default(const struct fib_rule *rule) { return true; } static inline int fib6_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib6_rules_seq_read(struct net *net) { return 0; } static inline bool fib6_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi6 *fl6, struct flow_keys *flkeys) { return false; } #endif #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMSTAT_H #define _LINUX_VMSTAT_H #include <linux/types.h> #include <linux/percpu.h> #include <linux/mmzone.h> #include <linux/vm_event_item.h> #include <linux/atomic.h> #include <linux/static_key.h> #include <linux/mmdebug.h> extern int sysctl_stat_interval; #ifdef CONFIG_NUMA #define ENABLE_NUMA_STAT 1 #define DISABLE_NUMA_STAT 0 extern int sysctl_vm_numa_stat; DECLARE_STATIC_KEY_TRUE(vm_numa_stat_key); int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); #endif struct reclaim_stat { unsigned nr_dirty; unsigned nr_unqueued_dirty; unsigned nr_congested; unsigned nr_writeback; unsigned nr_immediate; unsigned nr_pageout; unsigned nr_activate[ANON_AND_FILE]; unsigned nr_ref_keep; unsigned nr_unmap_fail; unsigned nr_lazyfree_fail; }; enum writeback_stat_item { NR_DIRTY_THRESHOLD, NR_DIRTY_BG_THRESHOLD, NR_VM_WRITEBACK_STAT_ITEMS, }; #ifdef CONFIG_VM_EVENT_COUNTERS /* * Light weight per cpu counter implementation. * * Counters should only be incremented and no critical kernel component * should rely on the counter values. * * Counters are handled completely inline. On many platforms the code * generated will simply be the increment of a global address. */ struct vm_event_state { unsigned long event[NR_VM_EVENT_ITEMS]; }; DECLARE_PER_CPU(struct vm_event_state, vm_event_states); /* * vm counters are allowed to be racy. Use raw_cpu_ops to avoid the * local_irq_disable overhead. */ static inline void __count_vm_event(enum vm_event_item item) { raw_cpu_inc(vm_event_states.event[item]); } static inline void count_vm_event(enum vm_event_item item) { this_cpu_inc(vm_event_states.event[item]); } static inline void __count_vm_events(enum vm_event_item item, long delta) { raw_cpu_add(vm_event_states.event[item], delta); } static inline void count_vm_events(enum vm_event_item item, long delta) { this_cpu_add(vm_event_states.event[item], delta); } extern void all_vm_events(unsigned long *); extern void vm_events_fold_cpu(int cpu); #else /* Disable counters */ static inline void count_vm_event(enum vm_event_item item) { } static inline void count_vm_events(enum vm_event_item item, long delta) { } static inline void __count_vm_event(enum vm_event_item item) { } static inline void __count_vm_events(enum vm_event_item item, long delta) { } static inline void all_vm_events(unsigned long *ret) { } static inline void vm_events_fold_cpu(int cpu) { } #endif /* CONFIG_VM_EVENT_COUNTERS */ #ifdef CONFIG_NUMA_BALANCING #define count_vm_numa_event(x) count_vm_event(x) #define count_vm_numa_events(x, y) count_vm_events(x, y) #else #define count_vm_numa_event(x) do {} while (0) #define count_vm_numa_events(x, y) do { (void)(y); } while (0) #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_DEBUG_TLBFLUSH #define count_vm_tlb_event(x) count_vm_event(x) #define count_vm_tlb_events(x, y) count_vm_events(x, y) #else #define count_vm_tlb_event(x) do {} while (0) #define count_vm_tlb_events(x, y) do { (void)(y); } while (0) #endif #ifdef CONFIG_DEBUG_VM_VMACACHE #define count_vm_vmacache_event(x) count_vm_event(x) #else #define count_vm_vmacache_event(x) do {} while (0) #endif #define __count_zid_vm_events(item, zid, delta) \ __count_vm_events(item##_NORMAL - ZONE_NORMAL + zid, delta) /* * Zone and node-based page accounting with per cpu differentials. */ extern atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS]; extern atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; extern atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS]; #ifdef CONFIG_NUMA static inline void zone_numa_state_add(long x, struct zone *zone, enum numa_stat_item item) { atomic_long_add(x, &zone->vm_numa_stat[item]); atomic_long_add(x, &vm_numa_stat[item]); } static inline unsigned long global_numa_state(enum numa_stat_item item) { long x = atomic_long_read(&vm_numa_stat[item]); return x; } static inline unsigned long zone_numa_state_snapshot(struct zone *zone, enum numa_stat_item item) { long x = atomic_long_read(&zone->vm_numa_stat[item]); int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]; return x; } #endif /* CONFIG_NUMA */ static inline void zone_page_state_add(long x, struct zone *zone, enum zone_stat_item item) { atomic_long_add(x, &zone->vm_stat[item]); atomic_long_add(x, &vm_zone_stat[item]); } static inline void node_page_state_add(long x, struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_add(x, &pgdat->vm_stat[item]); atomic_long_add(x, &vm_node_stat[item]); } static inline unsigned long global_zone_page_state(enum zone_stat_item item) { long x = atomic_long_read(&vm_zone_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state_pages(enum node_stat_item item) { long x = atomic_long_read(&vm_node_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state(enum node_stat_item item) { VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); return global_node_page_state_pages(item); } static inline unsigned long zone_page_state(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * More accurate version that also considers the currently pending * deltas. For that we need to loop over all cpus to find the current * deltas. There is no synchronization so the result cannot be * exactly accurate either. */ static inline unsigned long zone_page_state_snapshot(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->pageset, cpu)->vm_stat_diff[item]; if (x < 0) x = 0; #endif return x; } #ifdef CONFIG_NUMA extern void __inc_numa_state(struct zone *zone, enum numa_stat_item item); extern unsigned long sum_zone_node_page_state(int node, enum zone_stat_item item); extern unsigned long sum_zone_numa_state(int node, enum numa_stat_item item); extern unsigned long node_page_state(struct pglist_data *pgdat, enum node_stat_item item); extern unsigned long node_page_state_pages(struct pglist_data *pgdat, enum node_stat_item item); #else #define sum_zone_node_page_state(node, item) global_zone_page_state(item) #define node_page_state(node, item) global_node_page_state(item) #define node_page_state_pages(node, item) global_node_page_state_pages(item) #endif /* CONFIG_NUMA */ #ifdef CONFIG_SMP void __mod_zone_page_state(struct zone *, enum zone_stat_item item, long); void __inc_zone_page_state(struct page *, enum zone_stat_item); void __dec_zone_page_state(struct page *, enum zone_stat_item); void __mod_node_page_state(struct pglist_data *, enum node_stat_item item, long); void __inc_node_page_state(struct page *, enum node_stat_item); void __dec_node_page_state(struct page *, enum node_stat_item); void mod_zone_page_state(struct zone *, enum zone_stat_item, long); void inc_zone_page_state(struct page *, enum zone_stat_item); void dec_zone_page_state(struct page *, enum zone_stat_item); void mod_node_page_state(struct pglist_data *, enum node_stat_item, long); void inc_node_page_state(struct page *, enum node_stat_item); void dec_node_page_state(struct page *, enum node_stat_item); extern void inc_node_state(struct pglist_data *, enum node_stat_item); extern void __inc_zone_state(struct zone *, enum zone_stat_item); extern void __inc_node_state(struct pglist_data *, enum node_stat_item); extern void dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_node_state(struct pglist_data *, enum node_stat_item); void quiet_vmstat(void); void cpu_vm_stats_fold(int cpu); void refresh_zone_stat_thresholds(void); struct ctl_table; int vmstat_refresh(struct ctl_table *, int write, void *buffer, size_t *lenp, loff_t *ppos); void drain_zonestat(struct zone *zone, struct per_cpu_pageset *); int calculate_pressure_threshold(struct zone *zone); int calculate_normal_threshold(struct zone *zone); void set_pgdat_percpu_threshold(pg_data_t *pgdat, int (*calculate_pressure)(struct zone *)); #else /* CONFIG_SMP */ /* * We do not maintain differentials in a single processor configuration. * The functions directly modify the zone and global counters. */ static inline void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, long delta) { zone_page_state_add(delta, zone, item); } static inline void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, int delta) { if (vmstat_item_in_bytes(item)) { VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); delta >>= PAGE_SHIFT; } node_page_state_add(delta, pgdat, item); } static inline void __inc_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_inc(&zone->vm_stat[item]); atomic_long_inc(&vm_zone_stat[item]); } static inline void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_inc(&pgdat->vm_stat[item]); atomic_long_inc(&vm_node_stat[item]); } static inline void __dec_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_dec(&zone->vm_stat[item]); atomic_long_dec(&vm_zone_stat[item]); } static inline void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_dec(&pgdat->vm_stat[item]); atomic_long_dec(&vm_node_stat[item]); } static inline void __inc_zone_page_state(struct page *page, enum zone_stat_item item) { __inc_zone_state(page_zone(page), item); } static inline void __inc_node_page_state(struct page *page, enum node_stat_item item) { __inc_node_state(page_pgdat(page), item); } static inline void __dec_zone_page_state(struct page *page, enum zone_stat_item item) { __dec_zone_state(page_zone(page), item); } static inline void __dec_node_page_state(struct page *page, enum node_stat_item item) { __dec_node_state(page_pgdat(page), item); } /* * We only use atomic operations to update counters. So there is no need to * disable interrupts. */ #define inc_zone_page_state __inc_zone_page_state #define dec_zone_page_state __dec_zone_page_state #define mod_zone_page_state __mod_zone_page_state #define inc_node_page_state __inc_node_page_state #define dec_node_page_state __dec_node_page_state #define mod_node_page_state __mod_node_page_state #define inc_zone_state __inc_zone_state #define inc_node_state __inc_node_state #define dec_zone_state __dec_zone_state #define set_pgdat_percpu_threshold(pgdat, callback) { } static inline void refresh_zone_stat_thresholds(void) { } static inline void cpu_vm_stats_fold(int cpu) { } static inline void quiet_vmstat(void) { } static inline void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) { } #endif /* CONFIG_SMP */ static inline void __mod_zone_freepage_state(struct zone *zone, int nr_pages, int migratetype) { __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); if (is_migrate_cma(migratetype)) __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); } extern const char * const vmstat_text[]; static inline const char *zone_stat_name(enum zone_stat_item item) { return vmstat_text[item]; } #ifdef CONFIG_NUMA static inline const char *numa_stat_name(enum numa_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + item]; } #endif /* CONFIG_NUMA */ static inline const char *node_stat_name(enum node_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + item]; } static inline const char *lru_list_name(enum lru_list lru) { return node_stat_name(NR_LRU_BASE + lru) + 3; // skip "nr_" } static inline const char *writeback_stat_name(enum writeback_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + item]; } #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) static inline const char *vm_event_name(enum vm_event_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_STAT_ITEMS + NR_VM_NODE_STAT_ITEMS + NR_VM_WRITEBACK_STAT_ITEMS + item]; } #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ #endif /* _LINUX_VMSTAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 /* SPDX-License-Identifier: GPL-2.0-only */ /* * A policy database (policydb) specifies the * configuration data for the security policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> * * Added conditional policy language extensions * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * Copyright (C) 2003 - 2004 Tresys Technology, LLC */ #ifndef _SS_POLICYDB_H_ #define _SS_POLICYDB_H_ #include "symtab.h" #include "avtab.h" #include "sidtab.h" #include "ebitmap.h" #include "mls_types.h" #include "context.h" #include "constraint.h" /* * A datum type is defined for each kind of symbol * in the configuration data: individual permissions, * common prefixes for access vectors, classes, * users, roles, types, sensitivities, categories, etc. */ /* Permission attributes */ struct perm_datum { u32 value; /* permission bit + 1 */ }; /* Attributes of a common prefix for access vectors */ struct common_datum { u32 value; /* internal common value */ struct symtab permissions; /* common permissions */ }; /* Class attributes */ struct class_datum { u32 value; /* class value */ char *comkey; /* common name */ struct common_datum *comdatum; /* common datum */ struct symtab permissions; /* class-specific permission symbol table */ struct constraint_node *constraints; /* constraints on class permissions */ struct constraint_node *validatetrans; /* special transition rules */ /* Options how a new object user, role, and type should be decided */ #define DEFAULT_SOURCE 1 #define DEFAULT_TARGET 2 char default_user; char default_role; char default_type; /* Options how a new object range should be decided */ #define DEFAULT_SOURCE_LOW 1 #define DEFAULT_SOURCE_HIGH 2 #define DEFAULT_SOURCE_LOW_HIGH 3 #define DEFAULT_TARGET_LOW 4 #define DEFAULT_TARGET_HIGH 5 #define DEFAULT_TARGET_LOW_HIGH 6 #define DEFAULT_GLBLUB 7 char default_range; }; /* Role attributes */ struct role_datum { u32 value; /* internal role value */ u32 bounds; /* boundary of role */ struct ebitmap dominates; /* set of roles dominated by this role */ struct ebitmap types; /* set of authorized types for role */ }; struct role_trans_key { u32 role; /* current role */ u32 type; /* program executable type, or new object type */ u32 tclass; /* process class, or new object class */ }; struct role_trans_datum { u32 new_role; /* new role */ }; struct filename_trans_key { u32 ttype; /* parent dir context */ u16 tclass; /* class of new object */ const char *name; /* last path component */ }; struct filename_trans_datum { struct ebitmap stypes; /* bitmap of source types for this otype */ u32 otype; /* resulting type of new object */ struct filename_trans_datum *next; /* record for next otype*/ }; struct role_allow { u32 role; /* current role */ u32 new_role; /* new role */ struct role_allow *next; }; /* Type attributes */ struct type_datum { u32 value; /* internal type value */ u32 bounds; /* boundary of type */ unsigned char primary; /* primary name? */ unsigned char attribute;/* attribute ?*/ }; /* User attributes */ struct user_datum { u32 value; /* internal user value */ u32 bounds; /* bounds of user */ struct ebitmap roles; /* set of authorized roles for user */ struct mls_range range; /* MLS range (min - max) for user */ struct mls_level dfltlevel; /* default login MLS level for user */ }; /* Sensitivity attributes */ struct level_datum { struct mls_level *level; /* sensitivity and associated categories */ unsigned char isalias; /* is this sensitivity an alias for another? */ }; /* Category attributes */ struct cat_datum { u32 value; /* internal category bit + 1 */ unsigned char isalias; /* is this category an alias for another? */ }; struct range_trans { u32 source_type; u32 target_type; u32 target_class; }; /* Boolean data type */ struct cond_bool_datum { __u32 value; /* internal type value */ int state; }; struct cond_node; /* * type set preserves data needed to determine constraint info from * policy source. This is not used by the kernel policy but allows * utilities such as audit2allow to determine constraint denials. */ struct type_set { struct ebitmap types; struct ebitmap negset; u32 flags; }; /* * The configuration data includes security contexts for * initial SIDs, unlabeled file systems, TCP and UDP port numbers, * network interfaces, and nodes. This structure stores the * relevant data for one such entry. Entries of the same kind * (e.g. all initial SIDs) are linked together into a list. */ struct ocontext { union { char *name; /* name of initial SID, fs, netif, fstype, path */ struct { u8 protocol; u16 low_port; u16 high_port; } port; /* TCP or UDP port information */ struct { u32 addr; u32 mask; } node; /* node information */ struct { u32 addr[4]; u32 mask[4]; } node6; /* IPv6 node information */ struct { u64 subnet_prefix; u16 low_pkey; u16 high_pkey; } ibpkey; struct { char *dev_name; u8 port; } ibendport; } u; union { u32 sclass; /* security class for genfs */ u32 behavior; /* labeling behavior for fs_use */ } v; struct context context[2]; /* security context(s) */ u32 sid[2]; /* SID(s) */ struct ocontext *next; }; struct genfs { char *fstype; struct ocontext *head; struct genfs *next; }; /* symbol table array indices */ #define SYM_COMMONS 0 #define SYM_CLASSES 1 #define SYM_ROLES 2 #define SYM_TYPES 3 #define SYM_USERS 4 #define SYM_BOOLS 5 #define SYM_LEVELS 6 #define SYM_CATS 7 #define SYM_NUM 8 /* object context array indices */ #define OCON_ISID 0 /* initial SIDs */ #define OCON_FS 1 /* unlabeled file systems */ #define OCON_PORT 2 /* TCP and UDP port numbers */ #define OCON_NETIF 3 /* network interfaces */ #define OCON_NODE 4 /* nodes */ #define OCON_FSUSE 5 /* fs_use */ #define OCON_NODE6 6 /* IPv6 nodes */ #define OCON_IBPKEY 7 /* Infiniband PKeys */ #define OCON_IBENDPORT 8 /* Infiniband end ports */ #define OCON_NUM 9 /* The policy database */ struct policydb { int mls_enabled; /* symbol tables */ struct symtab symtab[SYM_NUM]; #define p_commons symtab[SYM_COMMONS] #define p_classes symtab[SYM_CLASSES] #define p_roles symtab[SYM_ROLES] #define p_types symtab[SYM_TYPES] #define p_users symtab[SYM_USERS] #define p_bools symtab[SYM_BOOLS] #define p_levels symtab[SYM_LEVELS] #define p_cats symtab[SYM_CATS] /* symbol names indexed by (value - 1) */ char **sym_val_to_name[SYM_NUM]; /* class, role, and user attributes indexed by (value - 1) */ struct class_datum **class_val_to_struct; struct role_datum **role_val_to_struct; struct user_datum **user_val_to_struct; struct type_datum **type_val_to_struct; /* type enforcement access vectors and transitions */ struct avtab te_avtab; /* role transitions */ struct hashtab role_tr; /* file transitions with the last path component */ /* quickly exclude lookups when parent ttype has no rules */ struct ebitmap filename_trans_ttypes; /* actual set of filename_trans rules */ struct hashtab filename_trans; /* only used if policyvers < POLICYDB_VERSION_COMP_FTRANS */ u32 compat_filename_trans_count; /* bools indexed by (value - 1) */ struct cond_bool_datum **bool_val_to_struct; /* type enforcement conditional access vectors and transitions */ struct avtab te_cond_avtab; /* array indexing te_cond_avtab by conditional */ struct cond_node *cond_list; u32 cond_list_len; /* role allows */ struct role_allow *role_allow; /* security contexts of initial SIDs, unlabeled file systems, TCP or UDP port numbers, network interfaces and nodes */ struct ocontext *ocontexts[OCON_NUM]; /* security contexts for files in filesystems that cannot support a persistent label mapping or use another fixed labeling behavior. */ struct genfs *genfs; /* range transitions table (range_trans_key -> mls_range) */ struct hashtab range_tr; /* type -> attribute reverse mapping */ struct ebitmap *type_attr_map_array; struct ebitmap policycaps; struct ebitmap permissive_map; /* length of this policy when it was loaded */ size_t len; unsigned int policyvers; unsigned int reject_unknown : 1; unsigned int allow_unknown : 1; u16 process_class; u32 process_trans_perms; } __randomize_layout; extern void policydb_destroy(struct policydb *p); extern int policydb_load_isids(struct policydb *p, struct sidtab *s); extern int policydb_context_isvalid(struct policydb *p, struct context *c); extern int policydb_class_isvalid(struct policydb *p, unsigned int class); extern int policydb_type_isvalid(struct policydb *p, unsigned int type); extern int policydb_role_isvalid(struct policydb *p, unsigned int role); extern int policydb_read(struct policydb *p, void *fp); extern int policydb_write(struct policydb *p, void *fp); extern struct filename_trans_datum *policydb_filenametr_search( struct policydb *p, struct filename_trans_key *key); extern struct mls_range *policydb_rangetr_search( struct policydb *p, struct range_trans *key); extern struct role_trans_datum *policydb_roletr_search( struct policydb *p, struct role_trans_key *key); #define POLICYDB_CONFIG_MLS 1 /* the config flags related to unknown classes/perms are bits 2 and 3 */ #define REJECT_UNKNOWN 0x00000002 #define ALLOW_UNKNOWN 0x00000004 #define OBJECT_R "object_r" #define OBJECT_R_VAL 1 #define POLICYDB_MAGIC SELINUX_MAGIC #define POLICYDB_STRING "SE Linux" struct policy_file { char *data; size_t len; }; struct policy_data { struct policydb *p; void *fp; }; static inline int next_entry(void *buf, struct policy_file *fp, size_t bytes) { if (bytes > fp->len) return -EINVAL; memcpy(buf, fp->data, bytes); fp->data += bytes; fp->len -= bytes; return 0; } static inline int put_entry(const void *buf, size_t bytes, int num, struct policy_file *fp) { size_t len = bytes * num; memcpy(fp->data, buf, len); fp->data += len; fp->len -= len; return 0; } static inline char *sym_name(struct policydb *p, unsigned int sym_num, unsigned int element_nr) { return p->sym_val_to_name[sym_num][element_nr]; } extern u16 string_to_security_class(struct policydb *p, const char *name); extern u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name); #endif /* _SS_POLICYDB_H_ */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 // SPDX-License-Identifier: GPL-2.0 /* * Implementation of the extensible bitmap type. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Hewlett-Packard <paul@paul-moore.com> * * Added support to import/export the NetLabel category bitmap * * (c) Copyright Hewlett-Packard Development Company, L.P., 2006 */ /* * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com> * Applied standard bit operations to improve bitmap scanning. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/jhash.h> #include <net/netlabel.h> #include "ebitmap.h" #include "policydb.h" #define BITS_PER_U64 (sizeof(u64) * 8) static struct kmem_cache *ebitmap_node_cachep; int ebitmap_cmp(struct ebitmap *e1, struct ebitmap *e2) { struct ebitmap_node *n1, *n2; if (e1->highbit != e2->highbit) return 0; n1 = e1->node; n2 = e2->node; while (n1 && n2 && (n1->startbit == n2->startbit) && !memcmp(n1->maps, n2->maps, EBITMAP_SIZE / 8)) { n1 = n1->next; n2 = n2->next; } if (n1 || n2) return 0; return 1; } int ebitmap_cpy(struct ebitmap *dst, struct ebitmap *src) { struct ebitmap_node *n, *new, *prev; ebitmap_init(dst); n = src->node; prev = NULL; while (n) { new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC); if (!new) { ebitmap_destroy(dst); return -ENOMEM; } new->startbit = n->startbit; memcpy(new->maps, n->maps, EBITMAP_SIZE / 8); new->next = NULL; if (prev) prev->next = new; else dst->node = new; prev = new; n = n->next; } dst->highbit = src->highbit; return 0; } int ebitmap_and(struct ebitmap *dst, struct ebitmap *e1, struct ebitmap *e2) { struct ebitmap_node *n; int bit, rc; ebitmap_init(dst); ebitmap_for_each_positive_bit(e1, n, bit) { if (ebitmap_get_bit(e2, bit)) { rc = ebitmap_set_bit(dst, bit, 1); if (rc < 0) return rc; } } return 0; } #ifdef CONFIG_NETLABEL /** * ebitmap_netlbl_export - Export an ebitmap into a NetLabel category bitmap * @ebmap: the ebitmap to export * @catmap: the NetLabel category bitmap * * Description: * Export a SELinux extensibile bitmap into a NetLabel category bitmap. * Returns zero on success, negative values on error. * */ int ebitmap_netlbl_export(struct ebitmap *ebmap, struct netlbl_lsm_catmap **catmap) { struct ebitmap_node *e_iter = ebmap->node; unsigned long e_map; u32 offset; unsigned int iter; int rc; if (e_iter == NULL) { *catmap = NULL; return 0; } if (*catmap != NULL) netlbl_catmap_free(*catmap); *catmap = NULL; while (e_iter) { offset = e_iter->startbit; for (iter = 0; iter < EBITMAP_UNIT_NUMS; iter++) { e_map = e_iter->maps[iter]; if (e_map != 0) { rc = netlbl_catmap_setlong(catmap, offset, e_map, GFP_ATOMIC); if (rc != 0) goto netlbl_export_failure; } offset += EBITMAP_UNIT_SIZE; } e_iter = e_iter->next; } return 0; netlbl_export_failure: netlbl_catmap_free(*catmap); return -ENOMEM; } /** * ebitmap_netlbl_import - Import a NetLabel category bitmap into an ebitmap * @ebmap: the ebitmap to import * @catmap: the NetLabel category bitmap * * Description: * Import a NetLabel category bitmap into a SELinux extensibile bitmap. * Returns zero on success, negative values on error. * */ int ebitmap_netlbl_import(struct ebitmap *ebmap, struct netlbl_lsm_catmap *catmap) { int rc; struct ebitmap_node *e_iter = NULL; struct ebitmap_node *e_prev = NULL; u32 offset = 0, idx; unsigned long bitmap; for (;;) { rc = netlbl_catmap_getlong(catmap, &offset, &bitmap); if (rc < 0) goto netlbl_import_failure; if (offset == (u32)-1) return 0; /* don't waste ebitmap space if the netlabel bitmap is empty */ if (bitmap == 0) { offset += EBITMAP_UNIT_SIZE; continue; } if (e_iter == NULL || offset >= e_iter->startbit + EBITMAP_SIZE) { e_prev = e_iter; e_iter = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC); if (e_iter == NULL) goto netlbl_import_failure; e_iter->startbit = offset - (offset % EBITMAP_SIZE); if (e_prev == NULL) ebmap->node = e_iter; else e_prev->next = e_iter; ebmap->highbit = e_iter->startbit + EBITMAP_SIZE; } /* offset will always be aligned to an unsigned long */ idx = EBITMAP_NODE_INDEX(e_iter, offset); e_iter->maps[idx] = bitmap; /* next */ offset += EBITMAP_UNIT_SIZE; } /* NOTE: we should never reach this return */ return 0; netlbl_import_failure: ebitmap_destroy(ebmap); return -ENOMEM; } #endif /* CONFIG_NETLABEL */ /* * Check to see if all the bits set in e2 are also set in e1. Optionally, * if last_e2bit is non-zero, the highest set bit in e2 cannot exceed * last_e2bit. */ int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2, u32 last_e2bit) { struct ebitmap_node *n1, *n2; int i; if (e1->highbit < e2->highbit) return 0; n1 = e1->node; n2 = e2->node; while (n1 && n2 && (n1->startbit <= n2->startbit)) { if (n1->startbit < n2->startbit) { n1 = n1->next; continue; } for (i = EBITMAP_UNIT_NUMS - 1; (i >= 0) && !n2->maps[i]; ) i--; /* Skip trailing NULL map entries */ if (last_e2bit && (i >= 0)) { u32 lastsetbit = n2->startbit + i * EBITMAP_UNIT_SIZE + __fls(n2->maps[i]); if (lastsetbit > last_e2bit) return 0; } while (i >= 0) { if ((n1->maps[i] & n2->maps[i]) != n2->maps[i]) return 0; i--; } n1 = n1->next; n2 = n2->next; } if (n2) return 0; return 1; } int ebitmap_get_bit(struct ebitmap *e, unsigned long bit) { struct ebitmap_node *n; if (e->highbit < bit) return 0; n = e->node; while (n && (n->startbit <= bit)) { if ((n->startbit + EBITMAP_SIZE) > bit) return ebitmap_node_get_bit(n, bit); n = n->next; } return 0; } int ebitmap_set_bit(struct ebitmap *e, unsigned long bit, int value) { struct ebitmap_node *n, *prev, *new; prev = NULL; n = e->node; while (n && n->startbit <= bit) { if ((n->startbit + EBITMAP_SIZE) > bit) { if (value) { ebitmap_node_set_bit(n, bit); } else { unsigned int s; ebitmap_node_clr_bit(n, bit); s = find_first_bit(n->maps, EBITMAP_SIZE); if (s < EBITMAP_SIZE) return 0; /* drop this node from the bitmap */ if (!n->next) { /* * this was the highest map * within the bitmap */ if (prev) e->highbit = prev->startbit + EBITMAP_SIZE; else e->highbit = 0; } if (prev) prev->next = n->next; else e->node = n->next; kmem_cache_free(ebitmap_node_cachep, n); } return 0; } prev = n; n = n->next; } if (!value) return 0; new = kmem_cache_zalloc(ebitmap_node_cachep, GFP_ATOMIC); if (!new) return -ENOMEM; new->startbit = bit - (bit % EBITMAP_SIZE); ebitmap_node_set_bit(new, bit); if (!n) /* this node will be the highest map within the bitmap */ e->highbit = new->startbit + EBITMAP_SIZE; if (prev) { new->next = prev->next; prev->next = new; } else { new->next = e->node; e->node = new; } return 0; } void ebitmap_destroy(struct ebitmap *e) { struct ebitmap_node *n, *temp; if (!e) return; n = e->node; while (n) { temp = n; n = n->next; kmem_cache_free(ebitmap_node_cachep, temp); } e->highbit = 0; e->node = NULL; return; } int ebitmap_read(struct ebitmap *e, void *fp) { struct ebitmap_node *n = NULL; u32 mapunit, count, startbit, index; __le32 ebitmap_start; u64 map; __le64 mapbits; __le32 buf[3]; int rc, i; ebitmap_init(e); rc = next_entry(buf, fp, sizeof buf); if (rc < 0) goto out; mapunit = le32_to_cpu(buf[0]); e->highbit = le32_to_cpu(buf[1]); count = le32_to_cpu(buf[2]); if (mapunit != BITS_PER_U64) { pr_err("SELinux: ebitmap: map size %u does not " "match my size %zd (high bit was %d)\n", mapunit, BITS_PER_U64, e->highbit); goto bad; } /* round up e->highbit */ e->highbit += EBITMAP_SIZE - 1; e->highbit -= (e->highbit % EBITMAP_SIZE); if (!e->highbit) { e->node = NULL; goto ok; } if (e->highbit && !count) goto bad; for (i = 0; i < count; i++) { rc = next_entry(&ebitmap_start, fp, sizeof(u32)); if (rc < 0) { pr_err("SELinux: ebitmap: truncated map\n"); goto bad; } startbit = le32_to_cpu(ebitmap_start); if (startbit & (mapunit - 1)) { pr_err("SELinux: ebitmap start bit (%d) is " "not a multiple of the map unit size (%u)\n", startbit, mapunit); goto bad; } if (startbit > e->highbit - mapunit) { pr_err("SELinux: ebitmap start bit (%d) is " "beyond the end of the bitmap (%u)\n", startbit, (e->highbit - mapunit)); goto bad; } if (!n || startbit >= n->startbit + EBITMAP_SIZE) { struct ebitmap_node *tmp; tmp = kmem_cache_zalloc(ebitmap_node_cachep, GFP_KERNEL); if (!tmp) { pr_err("SELinux: ebitmap: out of memory\n"); rc = -ENOMEM; goto bad; } /* round down */ tmp->startbit = startbit - (startbit % EBITMAP_SIZE); if (n) n->next = tmp; else e->node = tmp; n = tmp; } else if (startbit <= n->startbit) { pr_err("SELinux: ebitmap: start bit %d" " comes after start bit %d\n", startbit, n->startbit); goto bad; } rc = next_entry(&mapbits, fp, sizeof(u64)); if (rc < 0) { pr_err("SELinux: ebitmap: truncated map\n"); goto bad; } map = le64_to_cpu(mapbits); index = (startbit - n->startbit) / EBITMAP_UNIT_SIZE; while (map) { n->maps[index++] = map & (-1UL); map = EBITMAP_SHIFT_UNIT_SIZE(map); } } ok: rc = 0; out: return rc; bad: if (!rc) rc = -EINVAL; ebitmap_destroy(e); goto out; } int ebitmap_write(struct ebitmap *e, void *fp) { struct ebitmap_node *n; u32 count; __le32 buf[3]; u64 map; int bit, last_bit, last_startbit, rc; buf[0] = cpu_to_le32(BITS_PER_U64); count = 0; last_bit = 0; last_startbit = -1; ebitmap_for_each_positive_bit(e, n, bit) { if (rounddown(bit, (int)BITS_PER_U64) > last_startbit) { count++; last_startbit = rounddown(bit, BITS_PER_U64); } last_bit = roundup(bit + 1, BITS_PER_U64); } buf[1] = cpu_to_le32(last_bit); buf[2] = cpu_to_le32(count); rc = put_entry(buf, sizeof(u32), 3, fp); if (rc) return rc; map = 0; last_startbit = INT_MIN; ebitmap_for_each_positive_bit(e, n, bit) { if (rounddown(bit, (int)BITS_PER_U64) > last_startbit) { __le64 buf64[1]; /* this is the very first bit */ if (!map) { last_startbit = rounddown(bit, BITS_PER_U64); map = (u64)1 << (bit - last_startbit); continue; } /* write the last node */ buf[0] = cpu_to_le32(last_startbit); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; buf64[0] = cpu_to_le64(map); rc = put_entry(buf64, sizeof(u64), 1, fp); if (rc) return rc; /* set up for the next node */ map = 0; last_startbit = rounddown(bit, BITS_PER_U64); } map |= (u64)1 << (bit - last_startbit); } /* write the last node */ if (map) { __le64 buf64[1]; /* write the last node */ buf[0] = cpu_to_le32(last_startbit); rc = put_entry(buf, sizeof(u32), 1, fp); if (rc) return rc; buf64[0] = cpu_to_le64(map); rc = put_entry(buf64, sizeof(u64), 1, fp); if (rc) return rc; } return 0; } u32 ebitmap_hash(const struct ebitmap *e, u32 hash) { struct ebitmap_node *node; /* need to change hash even if ebitmap is empty */ hash = jhash_1word(e->highbit, hash); for (node = e->node; node; node = node->next) { hash = jhash_1word(node->startbit, hash); hash = jhash(node->maps, sizeof(node->maps), hash); } return hash; } void __init ebitmap_cache_init(void) { ebitmap_node_cachep = kmem_cache_create("ebitmap_node", sizeof(struct ebitmap_node), 0, SLAB_PANIC, NULL); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 /* SPDX-License-Identifier: GPL-2.0 */ /* include/net/dsfield.h - Manipulation of the Differentiated Services field */ /* Written 1998-2000 by Werner Almesberger, EPFL ICA */ #ifndef __NET_DSFIELD_H #define __NET_DSFIELD_H #include <linux/types.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <asm/byteorder.h> static inline __u8 ipv4_get_dsfield(const struct iphdr *iph) { return iph->tos; } static inline __u8 ipv6_get_dsfield(const struct ipv6hdr *ipv6h) { return ntohs(*(__force const __be16 *)ipv6h) >> 4; } static inline void ipv4_change_dsfield(struct iphdr *iph,__u8 mask, __u8 value) { __u32 check = ntohs((__force __be16)iph->check); __u8 dsfield; dsfield = (iph->tos & mask) | value; check += iph->tos; if ((check+1) >> 16) check = (check+1) & 0xffff; check -= dsfield; check += check >> 16; /* adjust carry */ iph->check = (__force __sum16)htons(check); iph->tos = dsfield; } static inline void ipv6_change_dsfield(struct ipv6hdr *ipv6h,__u8 mask, __u8 value) { __be16 *p = (__force __be16 *)ipv6h; *p = (*p & htons((((u16)mask << 4) | 0xf00f))) | htons((u16)value << 4); } #endif
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 // SPDX-License-Identifier: GPL-2.0-only /* * fs/fs-writeback.c * * Copyright (C) 2002, Linus Torvalds. * * Contains all the functions related to writing back and waiting * upon dirty inodes against superblocks, and writing back dirty * pages against inodes. ie: data writeback. Writeout of the * inode itself is not handled here. * * 10Apr2002 Andrew Morton * Split out of fs/inode.c * Additions for address_space-based writeback */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/kthread.h> #include <linux/writeback.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/tracepoint.h> #include <linux/device.h> #include <linux/memcontrol.h> #include "internal.h" /* * 4MB minimal write chunk size */ #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) /* * Passed into wb_writeback(), essentially a subset of writeback_control */ struct wb_writeback_work { long nr_pages; struct super_block *sb; enum writeback_sync_modes sync_mode; unsigned int tagged_writepages:1; unsigned int for_kupdate:1; unsigned int range_cyclic:1; unsigned int for_background:1; unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ unsigned int auto_free:1; /* free on completion */ enum wb_reason reason; /* why was writeback initiated? */ struct list_head list; /* pending work list */ struct wb_completion *done; /* set if the caller waits */ }; /* * If an inode is constantly having its pages dirtied, but then the * updates stop dirtytime_expire_interval seconds in the past, it's * possible for the worst case time between when an inode has its * timestamps updated and when they finally get written out to be two * dirtytime_expire_intervals. We set the default to 12 hours (in * seconds), which means most of the time inodes will have their * timestamps written to disk after 12 hours, but in the worst case a * few inodes might not their timestamps updated for 24 hours. */ unsigned int dirtytime_expire_interval = 12 * 60 * 60; static inline struct inode *wb_inode(struct list_head *head) { return list_entry(head, struct inode, i_io_list); } /* * Include the creation of the trace points after defining the * wb_writeback_work structure and inline functions so that the definition * remains local to this file. */ #define CREATE_TRACE_POINTS #include <trace/events/writeback.h> EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); static bool wb_io_lists_populated(struct bdi_writeback *wb) { if (wb_has_dirty_io(wb)) { return false; } else { set_bit(WB_has_dirty_io, &wb->state); WARN_ON_ONCE(!wb->avg_write_bandwidth); atomic_long_add(wb->avg_write_bandwidth, &wb->bdi->tot_write_bandwidth); return true; } } static void wb_io_lists_depopulated(struct bdi_writeback *wb) { if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { clear_bit(WB_has_dirty_io, &wb->state); WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, &wb->bdi->tot_write_bandwidth) < 0); } } /** * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list * @inode: inode to be moved * @wb: target bdi_writeback * @head: one of @wb->b_{dirty|io|more_io|dirty_time} * * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. * Returns %true if @inode is the first occupant of the !dirty_time IO * lists; otherwise, %false. */ static bool inode_io_list_move_locked(struct inode *inode, struct bdi_writeback *wb, struct list_head *head) { assert_spin_locked(&wb->list_lock); list_move(&inode->i_io_list, head); /* dirty_time doesn't count as dirty_io until expiration */ if (head != &wb->b_dirty_time) return wb_io_lists_populated(wb); wb_io_lists_depopulated(wb); return false; } /** * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list * @inode: inode to be removed * @wb: bdi_writeback @inode is being removed from * * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and * clear %WB_has_dirty_io if all are empty afterwards. */ static void inode_io_list_del_locked(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&wb->list_lock); assert_spin_locked(&inode->i_lock); inode->i_state &= ~I_SYNC_QUEUED; list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); } static void wb_wakeup(struct bdi_writeback *wb) { spin_lock_bh(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) mod_delayed_work(bdi_wq, &wb->dwork, 0); spin_unlock_bh(&wb->work_lock); } static void finish_writeback_work(struct bdi_writeback *wb, struct wb_writeback_work *work) { struct wb_completion *done = work->done; if (work->auto_free) kfree(work); if (done) { wait_queue_head_t *waitq = done->waitq; /* @done can't be accessed after the following dec */ if (atomic_dec_and_test(&done->cnt)) wake_up_all(waitq); } } static void wb_queue_work(struct bdi_writeback *wb, struct wb_writeback_work *work) { trace_writeback_queue(wb, work); if (work->done) atomic_inc(&work->done->cnt); spin_lock_bh(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) { list_add_tail(&work->list, &wb->work_list); mod_delayed_work(bdi_wq, &wb->dwork, 0); } else finish_writeback_work(wb, work); spin_unlock_bh(&wb->work_lock); } /** * wb_wait_for_completion - wait for completion of bdi_writeback_works * @done: target wb_completion * * Wait for one or more work items issued to @bdi with their ->done field * set to @done, which should have been initialized with * DEFINE_WB_COMPLETION(). This function returns after all such work items * are completed. Work items which are waited upon aren't freed * automatically on completion. */ void wb_wait_for_completion(struct wb_completion *done) { atomic_dec(&done->cnt); /* put down the initial count */ wait_event(*done->waitq, !atomic_read(&done->cnt)); } #ifdef CONFIG_CGROUP_WRITEBACK /* * Parameters for foreign inode detection, see wbc_detach_inode() to see * how they're used. * * These paramters are inherently heuristical as the detection target * itself is fuzzy. All we want to do is detaching an inode from the * current owner if it's being written to by some other cgroups too much. * * The current cgroup writeback is built on the assumption that multiple * cgroups writing to the same inode concurrently is very rare and a mode * of operation which isn't well supported. As such, the goal is not * taking too long when a different cgroup takes over an inode while * avoiding too aggressive flip-flops from occasional foreign writes. * * We record, very roughly, 2s worth of IO time history and if more than * half of that is foreign, trigger the switch. The recording is quantized * to 16 slots. To avoid tiny writes from swinging the decision too much, * writes smaller than 1/8 of avg size are ignored. */ #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) /* each slot's duration is 2s / 16 */ #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) /* if foreign slots >= 8, switch */ #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) /* one round can affect upto 5 slots */ #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); static struct workqueue_struct *isw_wq; void __inode_attach_wb(struct inode *inode, struct page *page) { struct backing_dev_info *bdi = inode_to_bdi(inode); struct bdi_writeback *wb = NULL; if (inode_cgwb_enabled(inode)) { struct cgroup_subsys_state *memcg_css; if (page) { memcg_css = mem_cgroup_css_from_page(page); wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); } else { /* must pin memcg_css, see wb_get_create() */ memcg_css = task_get_css(current, memory_cgrp_id); wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); css_put(memcg_css); } } if (!wb) wb = &bdi->wb; /* * There may be multiple instances of this function racing to * update the same inode. Use cmpxchg() to tell the winner. */ if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) wb_put(wb); } EXPORT_SYMBOL_GPL(__inode_attach_wb); /** * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it * @inode: inode of interest with i_lock held * * Returns @inode's wb with its list_lock held. @inode->i_lock must be * held on entry and is released on return. The returned wb is guaranteed * to stay @inode's associated wb until its list_lock is released. */ static struct bdi_writeback * locked_inode_to_wb_and_lock_list(struct inode *inode) __releases(&inode->i_lock) __acquires(&wb->list_lock) { while (true) { struct bdi_writeback *wb = inode_to_wb(inode); /* * inode_to_wb() association is protected by both * @inode->i_lock and @wb->list_lock but list_lock nests * outside i_lock. Drop i_lock and verify that the * association hasn't changed after acquiring list_lock. */ wb_get(wb); spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock); /* i_wb may have changed inbetween, can't use inode_to_wb() */ if (likely(wb == inode->i_wb)) { wb_put(wb); /* @inode already has ref */ return wb; } spin_unlock(&wb->list_lock); wb_put(wb); cpu_relax(); spin_lock(&inode->i_lock); } } /** * inode_to_wb_and_lock_list - determine an inode's wb and lock it * @inode: inode of interest * * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held * on entry. */ static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) __acquires(&wb->list_lock) { spin_lock(&inode->i_lock); return locked_inode_to_wb_and_lock_list(inode); } struct inode_switch_wbs_context { struct inode *inode; struct bdi_writeback *new_wb; struct rcu_head rcu_head; struct work_struct work; }; static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { down_write(&bdi->wb_switch_rwsem); } static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { up_write(&bdi->wb_switch_rwsem); } static void inode_switch_wbs_work_fn(struct work_struct *work) { struct inode_switch_wbs_context *isw = container_of(work, struct inode_switch_wbs_context, work); struct inode *inode = isw->inode; struct backing_dev_info *bdi = inode_to_bdi(inode); struct address_space *mapping = inode->i_mapping; struct bdi_writeback *old_wb = inode->i_wb; struct bdi_writeback *new_wb = isw->new_wb; XA_STATE(xas, &mapping->i_pages, 0); struct page *page; bool switched = false; /* * If @inode switches cgwb membership while sync_inodes_sb() is * being issued, sync_inodes_sb() might miss it. Synchronize. */ down_read(&bdi->wb_switch_rwsem); /* * By the time control reaches here, RCU grace period has passed * since I_WB_SWITCH assertion and all wb stat update transactions * between unlocked_inode_to_wb_begin/end() are guaranteed to be * synchronizing against the i_pages lock. * * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock * gives us exclusion against all wb related operations on @inode * including IO list manipulations and stat updates. */ if (old_wb < new_wb) { spin_lock(&old_wb->list_lock); spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); } else { spin_lock(&new_wb->list_lock); spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); } spin_lock(&inode->i_lock); xa_lock_irq(&mapping->i_pages); /* * Once I_FREEING is visible under i_lock, the eviction path owns * the inode and we shouldn't modify ->i_io_list. */ if (unlikely(inode->i_state & I_FREEING)) goto skip_switch; trace_inode_switch_wbs(inode, old_wb, new_wb); /* * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to * pages actually under writeback. */ xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { if (PageDirty(page)) { dec_wb_stat(old_wb, WB_RECLAIMABLE); inc_wb_stat(new_wb, WB_RECLAIMABLE); } } xas_set(&xas, 0); xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { WARN_ON_ONCE(!PageWriteback(page)); dec_wb_stat(old_wb, WB_WRITEBACK); inc_wb_stat(new_wb, WB_WRITEBACK); } wb_get(new_wb); /* * Transfer to @new_wb's IO list if necessary. The specific list * @inode was on is ignored and the inode is put on ->b_dirty which * is always correct including from ->b_dirty_time. The transfer * preserves @inode->dirtied_when ordering. */ if (!list_empty(&inode->i_io_list)) { struct inode *pos; inode_io_list_del_locked(inode, old_wb); inode->i_wb = new_wb; list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) if (time_after_eq(inode->dirtied_when, pos->dirtied_when)) break; inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); } else { inode->i_wb = new_wb; } /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ inode->i_wb_frn_winner = 0; inode->i_wb_frn_avg_time = 0; inode->i_wb_frn_history = 0; switched = true; skip_switch: /* * Paired with load_acquire in unlocked_inode_to_wb_begin() and * ensures that the new wb is visible if they see !I_WB_SWITCH. */ smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); xa_unlock_irq(&mapping->i_pages); spin_unlock(&inode->i_lock); spin_unlock(&new_wb->list_lock); spin_unlock(&old_wb->list_lock); up_read(&bdi->wb_switch_rwsem); if (switched) { wb_wakeup(new_wb); wb_put(old_wb); } wb_put(new_wb); iput(inode); kfree(isw); atomic_dec(&isw_nr_in_flight); } static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) { struct inode_switch_wbs_context *isw = container_of(rcu_head, struct inode_switch_wbs_context, rcu_head); /* needs to grab bh-unsafe locks, bounce to work item */ INIT_WORK(&isw->work, inode_switch_wbs_work_fn); queue_work(isw_wq, &isw->work); } /** * inode_switch_wbs - change the wb association of an inode * @inode: target inode * @new_wb_id: ID of the new wb * * Switch @inode's wb association to the wb identified by @new_wb_id. The * switching is performed asynchronously and may fail silently. */ static void inode_switch_wbs(struct inode *inode, int new_wb_id) { struct backing_dev_info *bdi = inode_to_bdi(inode); struct cgroup_subsys_state *memcg_css; struct inode_switch_wbs_context *isw; /* noop if seems to be already in progress */ if (inode->i_state & I_WB_SWITCH) return; /* avoid queueing a new switch if too many are already in flight */ if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) return; isw = kzalloc(sizeof(*isw), GFP_ATOMIC); if (!isw) return; atomic_inc(&isw_nr_in_flight); /* find and pin the new wb */ rcu_read_lock(); memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); if (memcg_css && !css_tryget(memcg_css)) memcg_css = NULL; rcu_read_unlock(); if (!memcg_css) goto out_free; isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); css_put(memcg_css); if (!isw->new_wb) goto out_free; /* while holding I_WB_SWITCH, no one else can update the association */ spin_lock(&inode->i_lock); if (!(inode->i_sb->s_flags & SB_ACTIVE) || inode->i_state & (I_WB_SWITCH | I_FREEING) || inode_to_wb(inode) == isw->new_wb) { spin_unlock(&inode->i_lock); goto out_free; } inode->i_state |= I_WB_SWITCH; __iget(inode); spin_unlock(&inode->i_lock); isw->inode = inode; /* * In addition to synchronizing among switchers, I_WB_SWITCH tells * the RCU protected stat update paths to grab the i_page * lock so that stat transfer can synchronize against them. * Let's continue after I_WB_SWITCH is guaranteed to be visible. */ call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); return; out_free: atomic_dec(&isw_nr_in_flight); if (isw->new_wb) wb_put(isw->new_wb); kfree(isw); } /** * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it * @wbc: writeback_control of interest * @inode: target inode * * @inode is locked and about to be written back under the control of @wbc. * Record @inode's writeback context into @wbc and unlock the i_lock. On * writeback completion, wbc_detach_inode() should be called. This is used * to track the cgroup writeback context. */ void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) { if (!inode_cgwb_enabled(inode)) { spin_unlock(&inode->i_lock); return; } wbc->wb = inode_to_wb(inode); wbc->inode = inode; wbc->wb_id = wbc->wb->memcg_css->id; wbc->wb_lcand_id = inode->i_wb_frn_winner; wbc->wb_tcand_id = 0; wbc->wb_bytes = 0; wbc->wb_lcand_bytes = 0; wbc->wb_tcand_bytes = 0; wb_get(wbc->wb); spin_unlock(&inode->i_lock); /* * A dying wb indicates that either the blkcg associated with the * memcg changed or the associated memcg is dying. In the first * case, a replacement wb should already be available and we should * refresh the wb immediately. In the second case, trying to * refresh will keep failing. */ if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) inode_switch_wbs(inode, wbc->wb_id); } EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); /** * wbc_detach_inode - disassociate wbc from inode and perform foreign detection * @wbc: writeback_control of the just finished writeback * * To be called after a writeback attempt of an inode finishes and undoes * wbc_attach_and_unlock_inode(). Can be called under any context. * * As concurrent write sharing of an inode is expected to be very rare and * memcg only tracks page ownership on first-use basis severely confining * the usefulness of such sharing, cgroup writeback tracks ownership * per-inode. While the support for concurrent write sharing of an inode * is deemed unnecessary, an inode being written to by different cgroups at * different points in time is a lot more common, and, more importantly, * charging only by first-use can too readily lead to grossly incorrect * behaviors (single foreign page can lead to gigabytes of writeback to be * incorrectly attributed). * * To resolve this issue, cgroup writeback detects the majority dirtier of * an inode and transfers the ownership to it. To avoid unnnecessary * oscillation, the detection mechanism keeps track of history and gives * out the switch verdict only if the foreign usage pattern is stable over * a certain amount of time and/or writeback attempts. * * On each writeback attempt, @wbc tries to detect the majority writer * using Boyer-Moore majority vote algorithm. In addition to the byte * count from the majority voting, it also counts the bytes written for the * current wb and the last round's winner wb (max of last round's current * wb, the winner from two rounds ago, and the last round's majority * candidate). Keeping track of the historical winner helps the algorithm * to semi-reliably detect the most active writer even when it's not the * absolute majority. * * Once the winner of the round is determined, whether the winner is * foreign or not and how much IO time the round consumed is recorded in * inode->i_wb_frn_history. If the amount of recorded foreign IO time is * over a certain threshold, the switch verdict is given. */ void wbc_detach_inode(struct writeback_control *wbc) { struct bdi_writeback *wb = wbc->wb; struct inode *inode = wbc->inode; unsigned long avg_time, max_bytes, max_time; u16 history; int max_id; if (!wb) return; history = inode->i_wb_frn_history; avg_time = inode->i_wb_frn_avg_time; /* pick the winner of this round */ if (wbc->wb_bytes >= wbc->wb_lcand_bytes && wbc->wb_bytes >= wbc->wb_tcand_bytes) { max_id = wbc->wb_id; max_bytes = wbc->wb_bytes; } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { max_id = wbc->wb_lcand_id; max_bytes = wbc->wb_lcand_bytes; } else { max_id = wbc->wb_tcand_id; max_bytes = wbc->wb_tcand_bytes; } /* * Calculate the amount of IO time the winner consumed and fold it * into the running average kept per inode. If the consumed IO * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for * deciding whether to switch or not. This is to prevent one-off * small dirtiers from skewing the verdict. */ max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, wb->avg_write_bandwidth); if (avg_time) avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - (avg_time >> WB_FRN_TIME_AVG_SHIFT); else avg_time = max_time; /* immediate catch up on first run */ if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { int slots; /* * The switch verdict is reached if foreign wb's consume * more than a certain proportion of IO time in a * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot * history mask where each bit represents one sixteenth of * the period. Determine the number of slots to shift into * history from @max_time. */ slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), (unsigned long)WB_FRN_HIST_MAX_SLOTS); history <<= slots; if (wbc->wb_id != max_id) history |= (1U << slots) - 1; if (history) trace_inode_foreign_history(inode, wbc, history); /* * Switch if the current wb isn't the consistent winner. * If there are multiple closely competing dirtiers, the * inode may switch across them repeatedly over time, which * is okay. The main goal is avoiding keeping an inode on * the wrong wb for an extended period of time. */ if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) inode_switch_wbs(inode, max_id); } /* * Multiple instances of this function may race to update the * following fields but we don't mind occassional inaccuracies. */ inode->i_wb_frn_winner = max_id; inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); inode->i_wb_frn_history = history; wb_put(wbc->wb); wbc->wb = NULL; } EXPORT_SYMBOL_GPL(wbc_detach_inode); /** * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership * @wbc: writeback_control of the writeback in progress * @page: page being written out * @bytes: number of bytes being written out * * @bytes from @page are about to written out during the writeback * controlled by @wbc. Keep the book for foreign inode detection. See * wbc_detach_inode(). */ void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, size_t bytes) { struct cgroup_subsys_state *css; int id; /* * pageout() path doesn't attach @wbc to the inode being written * out. This is intentional as we don't want the function to block * behind a slow cgroup. Ultimately, we want pageout() to kick off * regular writeback instead of writing things out itself. */ if (!wbc->wb || wbc->no_cgroup_owner) return; css = mem_cgroup_css_from_page(page); /* dead cgroups shouldn't contribute to inode ownership arbitration */ if (!(css->flags & CSS_ONLINE)) return; id = css->id; if (id == wbc->wb_id) { wbc->wb_bytes += bytes; return; } if (id == wbc->wb_lcand_id) wbc->wb_lcand_bytes += bytes; /* Boyer-Moore majority vote algorithm */ if (!wbc->wb_tcand_bytes) wbc->wb_tcand_id = id; if (id == wbc->wb_tcand_id) wbc->wb_tcand_bytes += bytes; else wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); } EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); /** * inode_congested - test whether an inode is congested * @inode: inode to test for congestion (may be NULL) * @cong_bits: mask of WB_[a]sync_congested bits to test * * Tests whether @inode is congested. @cong_bits is the mask of congestion * bits to test and the return value is the mask of set bits. * * If cgroup writeback is enabled for @inode, the congestion state is * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg * associated with @inode is congested; otherwise, the root wb's congestion * state is used. * * @inode is allowed to be NULL as this function is often called on * mapping->host which is NULL for the swapper space. */ int inode_congested(struct inode *inode, int cong_bits) { /* * Once set, ->i_wb never becomes NULL while the inode is alive. * Start transaction iff ->i_wb is visible. */ if (inode && inode_to_wb_is_valid(inode)) { struct bdi_writeback *wb; struct wb_lock_cookie lock_cookie = {}; bool congested; wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); congested = wb_congested(wb, cong_bits); unlocked_inode_to_wb_end(inode, &lock_cookie); return congested; } return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); } EXPORT_SYMBOL_GPL(inode_congested); /** * wb_split_bdi_pages - split nr_pages to write according to bandwidth * @wb: target bdi_writeback to split @nr_pages to * @nr_pages: number of pages to write for the whole bdi * * Split @wb's portion of @nr_pages according to @wb's write bandwidth in * relation to the total write bandwidth of all wb's w/ dirty inodes on * @wb->bdi. */ static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) { unsigned long this_bw = wb->avg_write_bandwidth; unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); if (nr_pages == LONG_MAX) return LONG_MAX; /* * This may be called on clean wb's and proportional distribution * may not make sense, just use the original @nr_pages in those * cases. In general, we wanna err on the side of writing more. */ if (!tot_bw || this_bw >= tot_bw) return nr_pages; else return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); } /** * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi * @bdi: target backing_dev_info * @base_work: wb_writeback_work to issue * @skip_if_busy: skip wb's which already have writeback in progress * * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's * distributed to the busy wbs according to each wb's proportion in the * total active write bandwidth of @bdi. */ static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, struct wb_writeback_work *base_work, bool skip_if_busy) { struct bdi_writeback *last_wb = NULL; struct bdi_writeback *wb = list_entry(&bdi->wb_list, struct bdi_writeback, bdi_node); might_sleep(); restart: rcu_read_lock(); list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { DEFINE_WB_COMPLETION(fallback_work_done, bdi); struct wb_writeback_work fallback_work; struct wb_writeback_work *work; long nr_pages; if (last_wb) { wb_put(last_wb); last_wb = NULL; } /* SYNC_ALL writes out I_DIRTY_TIME too */ if (!wb_has_dirty_io(wb) && (base_work->sync_mode == WB_SYNC_NONE || list_empty(&wb->b_dirty_time))) continue; if (skip_if_busy && writeback_in_progress(wb)) continue; nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); work = kmalloc(sizeof(*work), GFP_ATOMIC); if (work) { *work = *base_work; work->nr_pages = nr_pages; work->auto_free = 1; wb_queue_work(wb, work); continue; } /* alloc failed, execute synchronously using on-stack fallback */ work = &fallback_work; *work = *base_work; work->nr_pages = nr_pages; work->auto_free = 0; work->done = &fallback_work_done; wb_queue_work(wb, work); /* * Pin @wb so that it stays on @bdi->wb_list. This allows * continuing iteration from @wb after dropping and * regrabbing rcu read lock. */ wb_get(wb); last_wb = wb; rcu_read_unlock(); wb_wait_for_completion(&fallback_work_done); goto restart; } rcu_read_unlock(); if (last_wb) wb_put(last_wb); } /** * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs * @bdi_id: target bdi id * @memcg_id: target memcg css id * @nr: number of pages to write, 0 for best-effort dirty flushing * @reason: reason why some writeback work initiated * @done: target wb_completion * * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id * with the specified parameters. */ int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, enum wb_reason reason, struct wb_completion *done) { struct backing_dev_info *bdi; struct cgroup_subsys_state *memcg_css; struct bdi_writeback *wb; struct wb_writeback_work *work; int ret; /* lookup bdi and memcg */ bdi = bdi_get_by_id(bdi_id); if (!bdi) return -ENOENT; rcu_read_lock(); memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); if (memcg_css && !css_tryget(memcg_css)) memcg_css = NULL; rcu_read_unlock(); if (!memcg_css) { ret = -ENOENT; goto out_bdi_put; } /* * And find the associated wb. If the wb isn't there already * there's nothing to flush, don't create one. */ wb = wb_get_lookup(bdi, memcg_css); if (!wb) { ret = -ENOENT; goto out_css_put; } /* * If @nr is zero, the caller is attempting to write out most of * the currently dirty pages. Let's take the current dirty page * count and inflate it by 25% which should be large enough to * flush out most dirty pages while avoiding getting livelocked by * concurrent dirtiers. */ if (!nr) { unsigned long filepages, headroom, dirty, writeback; mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, &writeback); nr = dirty * 10 / 8; } /* issue the writeback work */ work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); if (work) { work->nr_pages = nr; work->sync_mode = WB_SYNC_NONE; work->range_cyclic = 1; work->reason = reason; work->done = done; work->auto_free = 1; wb_queue_work(wb, work); ret = 0; } else { ret = -ENOMEM; } wb_put(wb); out_css_put: css_put(memcg_css); out_bdi_put: bdi_put(bdi); return ret; } /** * cgroup_writeback_umount - flush inode wb switches for umount * * This function is called when a super_block is about to be destroyed and * flushes in-flight inode wb switches. An inode wb switch goes through * RCU and then workqueue, so the two need to be flushed in order to ensure * that all previously scheduled switches are finished. As wb switches are * rare occurrences and synchronize_rcu() can take a while, perform * flushing iff wb switches are in flight. */ void cgroup_writeback_umount(void) { if (atomic_read(&isw_nr_in_flight)) { /* * Use rcu_barrier() to wait for all pending callbacks to * ensure that all in-flight wb switches are in the workqueue. */ rcu_barrier(); flush_workqueue(isw_wq); } } static int __init cgroup_writeback_init(void) { isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); if (!isw_wq) return -ENOMEM; return 0; } fs_initcall(cgroup_writeback_init); #else /* CONFIG_CGROUP_WRITEBACK */ static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } static struct bdi_writeback * locked_inode_to_wb_and_lock_list(struct inode *inode) __releases(&inode->i_lock) __acquires(&wb->list_lock) { struct bdi_writeback *wb = inode_to_wb(inode); spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock); return wb; } static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) __acquires(&wb->list_lock) { struct bdi_writeback *wb = inode_to_wb(inode); spin_lock(&wb->list_lock); return wb; } static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) { return nr_pages; } static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, struct wb_writeback_work *base_work, bool skip_if_busy) { might_sleep(); if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { base_work->auto_free = 0; wb_queue_work(&bdi->wb, base_work); } } #endif /* CONFIG_CGROUP_WRITEBACK */ /* * Add in the number of potentially dirty inodes, because each inode * write can dirty pagecache in the underlying blockdev. */ static unsigned long get_nr_dirty_pages(void) { return global_node_page_state(NR_FILE_DIRTY) + get_nr_dirty_inodes(); } static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) { if (!wb_has_dirty_io(wb)) return; /* * All callers of this function want to start writeback of all * dirty pages. Places like vmscan can call this at a very * high frequency, causing pointless allocations of tons of * work items and keeping the flusher threads busy retrieving * that work. Ensure that we only allow one of them pending and * inflight at the time. */ if (test_bit(WB_start_all, &wb->state) || test_and_set_bit(WB_start_all, &wb->state)) return; wb->start_all_reason = reason; wb_wakeup(wb); } /** * wb_start_background_writeback - start background writeback * @wb: bdi_writback to write from * * Description: * This makes sure WB_SYNC_NONE background writeback happens. When * this function returns, it is only guaranteed that for given wb * some IO is happening if we are over background dirty threshold. * Caller need not hold sb s_umount semaphore. */ void wb_start_background_writeback(struct bdi_writeback *wb) { /* * We just wake up the flusher thread. It will perform background * writeback as soon as there is no other work to do. */ trace_writeback_wake_background(wb); wb_wakeup(wb); } /* * Remove the inode from the writeback list it is on. */ void inode_io_list_del(struct inode *inode) { struct bdi_writeback *wb; wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); inode_io_list_del_locked(inode, wb); spin_unlock(&inode->i_lock); spin_unlock(&wb->list_lock); } EXPORT_SYMBOL(inode_io_list_del); /* * mark an inode as under writeback on the sb */ void sb_mark_inode_writeback(struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned long flags; if (list_empty(&inode->i_wb_list)) { spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); if (list_empty(&inode->i_wb_list)) { list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); trace_sb_mark_inode_writeback(inode); } spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); } } /* * clear an inode as under writeback on the sb */ void sb_clear_inode_writeback(struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned long flags; if (!list_empty(&inode->i_wb_list)) { spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); if (!list_empty(&inode->i_wb_list)) { list_del_init(&inode->i_wb_list); trace_sb_clear_inode_writeback(inode); } spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); } } /* * Redirty an inode: set its when-it-was dirtied timestamp and move it to the * furthest end of its superblock's dirty-inode list. * * Before stamping the inode's ->dirtied_when, we check to see whether it is * already the most-recently-dirtied inode on the b_dirty list. If that is * the case then the inode must have been redirtied while it was being written * out and we don't reset its dirtied_when. */ static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&inode->i_lock); if (!list_empty(&wb->b_dirty)) { struct inode *tail; tail = wb_inode(wb->b_dirty.next); if (time_before(inode->dirtied_when, tail->dirtied_when)) inode->dirtied_when = jiffies; } inode_io_list_move_locked(inode, wb, &wb->b_dirty); inode->i_state &= ~I_SYNC_QUEUED; } static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) { spin_lock(&inode->i_lock); redirty_tail_locked(inode, wb); spin_unlock(&inode->i_lock); } /* * requeue inode for re-scanning after bdi->b_io list is exhausted. */ static void requeue_io(struct inode *inode, struct bdi_writeback *wb) { inode_io_list_move_locked(inode, wb, &wb->b_more_io); } static void inode_sync_complete(struct inode *inode) { inode->i_state &= ~I_SYNC; /* If inode is clean an unused, put it into LRU now... */ inode_add_lru(inode); /* Waiters must see I_SYNC cleared before being woken up */ smp_mb(); wake_up_bit(&inode->i_state, __I_SYNC); } static bool inode_dirtied_after(struct inode *inode, unsigned long t) { bool ret = time_after(inode->dirtied_when, t); #ifndef CONFIG_64BIT /* * For inodes being constantly redirtied, dirtied_when can get stuck. * It _appears_ to be in the future, but is actually in distant past. * This test is necessary to prevent such wrapped-around relative times * from permanently stopping the whole bdi writeback. */ ret = ret && time_before_eq(inode->dirtied_when, jiffies); #endif return ret; } #define EXPIRE_DIRTY_ATIME 0x0001 /* * Move expired (dirtied before dirtied_before) dirty inodes from * @delaying_queue to @dispatch_queue. */ static int move_expired_inodes(struct list_head *delaying_queue, struct list_head *dispatch_queue, unsigned long dirtied_before) { LIST_HEAD(tmp); struct list_head *pos, *node; struct super_block *sb = NULL; struct inode *inode; int do_sb_sort = 0; int moved = 0; while (!list_empty(delaying_queue)) { inode = wb_inode(delaying_queue->prev); if (inode_dirtied_after(inode, dirtied_before)) break; list_move(&inode->i_io_list, &tmp); moved++; spin_lock(&inode->i_lock); inode->i_state |= I_SYNC_QUEUED; spin_unlock(&inode->i_lock); if (sb_is_blkdev_sb(inode->i_sb)) continue; if (sb && sb != inode->i_sb) do_sb_sort = 1; sb = inode->i_sb; } /* just one sb in list, splice to dispatch_queue and we're done */ if (!do_sb_sort) { list_splice(&tmp, dispatch_queue); goto out; } /* Move inodes from one superblock together */ while (!list_empty(&tmp)) { sb = wb_inode(tmp.prev)->i_sb; list_for_each_prev_safe(pos, node, &tmp) { inode = wb_inode(pos); if (inode->i_sb == sb) list_move(&inode->i_io_list, dispatch_queue); } } out: return moved; } /* * Queue all expired dirty inodes for io, eldest first. * Before * newly dirtied b_dirty b_io b_more_io * =============> gf edc BA * After * newly dirtied b_dirty b_io b_more_io * =============> g fBAedc * | * +--> dequeue for IO */ static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before) { int moved; unsigned long time_expire_jif = dirtied_before; assert_spin_locked(&wb->list_lock); list_splice_init(&wb->b_more_io, &wb->b_io); moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); if (!work->for_sync) time_expire_jif = jiffies - dirtytime_expire_interval * HZ; moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, time_expire_jif); if (moved) wb_io_lists_populated(wb); trace_writeback_queue_io(wb, work, dirtied_before, moved); } static int write_inode(struct inode *inode, struct writeback_control *wbc) { int ret; if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { trace_writeback_write_inode_start(inode, wbc); ret = inode->i_sb->s_op->write_inode(inode, wbc); trace_writeback_write_inode(inode, wbc); return ret; } return 0; } /* * Wait for writeback on an inode to complete. Called with i_lock held. * Caller must make sure inode cannot go away when we drop i_lock. */ static void __inode_wait_for_writeback(struct inode *inode) __releases(inode->i_lock) __acquires(inode->i_lock) { DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); wait_queue_head_t *wqh; wqh = bit_waitqueue(&inode->i_state, __I_SYNC); while (inode->i_state & I_SYNC) { spin_unlock(&inode->i_lock); __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE); spin_lock(&inode->i_lock); } } /* * Wait for writeback on an inode to complete. Caller must have inode pinned. */ void inode_wait_for_writeback(struct inode *inode) { spin_lock(&inode->i_lock); __inode_wait_for_writeback(inode); spin_unlock(&inode->i_lock); } /* * Sleep until I_SYNC is cleared. This function must be called with i_lock * held and drops it. It is aimed for callers not holding any inode reference * so once i_lock is dropped, inode can go away. */ static void inode_sleep_on_writeback(struct inode *inode) __releases(inode->i_lock) { DEFINE_WAIT(wait); wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); int sleep; prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); sleep = inode->i_state & I_SYNC; spin_unlock(&inode->i_lock); if (sleep) schedule(); finish_wait(wqh, &wait); } /* * Find proper writeback list for the inode depending on its current state and * possibly also change of its state while we were doing writeback. Here we * handle things such as livelock prevention or fairness of writeback among * inodes. This function can be called only by flusher thread - noone else * processes all inodes in writeback lists and requeueing inodes behind flusher * thread's back can have unexpected consequences. */ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, struct writeback_control *wbc) { if (inode->i_state & I_FREEING) return; /* * Sync livelock prevention. Each inode is tagged and synced in one * shot. If still dirty, it will be redirty_tail()'ed below. Update * the dirty time to prevent enqueue and sync it again. */ if ((inode->i_state & I_DIRTY) && (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) inode->dirtied_when = jiffies; if (wbc->pages_skipped) { /* * writeback is not making progress due to locked * buffers. Skip this inode for now. */ redirty_tail_locked(inode, wb); return; } if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { /* * We didn't write back all the pages. nfs_writepages() * sometimes bales out without doing anything. */ if (wbc->nr_to_write <= 0) { /* Slice used up. Queue for next turn. */ requeue_io(inode, wb); } else { /* * Writeback blocked by something other than * congestion. Delay the inode for some time to * avoid spinning on the CPU (100% iowait) * retrying writeback of the dirty page/inode * that cannot be performed immediately. */ redirty_tail_locked(inode, wb); } } else if (inode->i_state & I_DIRTY) { /* * Filesystems can dirty the inode during writeback operations, * such as delayed allocation during submission or metadata * updates after data IO completion. */ redirty_tail_locked(inode, wb); } else if (inode->i_state & I_DIRTY_TIME) { inode->dirtied_when = jiffies; inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); inode->i_state &= ~I_SYNC_QUEUED; } else { /* The inode is clean. Remove from writeback lists. */ inode_io_list_del_locked(inode, wb); } } /* * Write out an inode and its dirty pages. Do not update the writeback list * linkage. That is left to the caller. The caller is also responsible for * setting I_SYNC flag and calling inode_sync_complete() to clear it. */ static int __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) { struct address_space *mapping = inode->i_mapping; long nr_to_write = wbc->nr_to_write; unsigned dirty; int ret; WARN_ON(!(inode->i_state & I_SYNC)); trace_writeback_single_inode_start(inode, wbc, nr_to_write); ret = do_writepages(mapping, wbc); /* * Make sure to wait on the data before writing out the metadata. * This is important for filesystems that modify metadata on data * I/O completion. We don't do it for sync(2) writeback because it has a * separate, external IO completion path and ->sync_fs for guaranteeing * inode metadata is written back correctly. */ if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { int err = filemap_fdatawait(mapping); if (ret == 0) ret = err; } /* * If the inode has dirty timestamps and we need to write them, call * mark_inode_dirty_sync() to notify the filesystem about it and to * change I_DIRTY_TIME into I_DIRTY_SYNC. */ if ((inode->i_state & I_DIRTY_TIME) && (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync || time_after(jiffies, inode->dirtied_time_when + dirtytime_expire_interval * HZ))) { trace_writeback_lazytime(inode); mark_inode_dirty_sync(inode); } /* * Some filesystems may redirty the inode during the writeback * due to delalloc, clear dirty metadata flags right before * write_inode() */ spin_lock(&inode->i_lock); dirty = inode->i_state & I_DIRTY; inode->i_state &= ~dirty; /* * Paired with smp_mb() in __mark_inode_dirty(). This allows * __mark_inode_dirty() to test i_state without grabbing i_lock - * either they see the I_DIRTY bits cleared or we see the dirtied * inode. * * I_DIRTY_PAGES is always cleared together above even if @mapping * still has dirty pages. The flag is reinstated after smp_mb() if * necessary. This guarantees that either __mark_inode_dirty() * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. */ smp_mb(); if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) inode->i_state |= I_DIRTY_PAGES; spin_unlock(&inode->i_lock); /* Don't write the inode if only I_DIRTY_PAGES was set */ if (dirty & ~I_DIRTY_PAGES) { int err = write_inode(inode, wbc); if (ret == 0) ret = err; } trace_writeback_single_inode(inode, wbc, nr_to_write); return ret; } /* * Write out an inode's dirty pages. Either the caller has an active reference * on the inode or the inode has I_WILL_FREE set. * * This function is designed to be called for writing back one inode which * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() * and does more profound writeback list handling in writeback_sb_inodes(). */ static int writeback_single_inode(struct inode *inode, struct writeback_control *wbc) { struct bdi_writeback *wb; int ret = 0; spin_lock(&inode->i_lock); if (!atomic_read(&inode->i_count)) WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); else WARN_ON(inode->i_state & I_WILL_FREE); if (inode->i_state & I_SYNC) { if (wbc->sync_mode != WB_SYNC_ALL) goto out; /* * It's a data-integrity sync. We must wait. Since callers hold * inode reference or inode has I_WILL_FREE set, it cannot go * away under us. */ __inode_wait_for_writeback(inode); } WARN_ON(inode->i_state & I_SYNC); /* * Skip inode if it is clean and we have no outstanding writeback in * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this * function since flusher thread may be doing for example sync in * parallel and if we move the inode, it could get skipped. So here we * make sure inode is on some writeback list and leave it there unless * we have completely cleaned the inode. */ if (!(inode->i_state & I_DIRTY_ALL) && (wbc->sync_mode != WB_SYNC_ALL || !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) goto out; inode->i_state |= I_SYNC; wbc_attach_and_unlock_inode(wbc, inode); ret = __writeback_single_inode(inode, wbc); wbc_detach_inode(wbc); wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); /* * If inode is clean, remove it from writeback lists. Otherwise don't * touch it. See comment above for explanation. */ if (!(inode->i_state & I_DIRTY_ALL)) inode_io_list_del_locked(inode, wb); spin_unlock(&wb->list_lock); inode_sync_complete(inode); out: spin_unlock(&inode->i_lock); return ret; } static long writeback_chunk_size(struct bdi_writeback *wb, struct wb_writeback_work *work) { long pages; /* * WB_SYNC_ALL mode does livelock avoidance by syncing dirty * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX * here avoids calling into writeback_inodes_wb() more than once. * * The intended call sequence for WB_SYNC_ALL writeback is: * * wb_writeback() * writeback_sb_inodes() <== called only once * write_cache_pages() <== called once for each inode * (quickly) tag currently dirty pages * (maybe slowly) sync all tagged pages */ if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) pages = LONG_MAX; else { pages = min(wb->avg_write_bandwidth / 2, global_wb_domain.dirty_limit / DIRTY_SCOPE); pages = min(pages, work->nr_pages); pages = round_down(pages + MIN_WRITEBACK_PAGES, MIN_WRITEBACK_PAGES); } return pages; } /* * Write a portion of b_io inodes which belong to @sb. * * Return the number of pages and/or inodes written. * * NOTE! This is called with wb->list_lock held, and will * unlock and relock that for each inode it ends up doing * IO for. */ static long writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, struct wb_writeback_work *work) { struct writeback_control wbc = { .sync_mode = work->sync_mode, .tagged_writepages = work->tagged_writepages, .for_kupdate = work->for_kupdate, .for_background = work->for_background, .for_sync = work->for_sync, .range_cyclic = work->range_cyclic, .range_start = 0, .range_end = LLONG_MAX, }; unsigned long start_time = jiffies; long write_chunk; long wrote = 0; /* count both pages and inodes */ while (!list_empty(&wb->b_io)) { struct inode *inode = wb_inode(wb->b_io.prev); struct bdi_writeback *tmp_wb; if (inode->i_sb != sb) { if (work->sb) { /* * We only want to write back data for this * superblock, move all inodes not belonging * to it back onto the dirty list. */ redirty_tail(inode, wb); continue; } /* * The inode belongs to a different superblock. * Bounce back to the caller to unpin this and * pin the next superblock. */ break; } /* * Don't bother with new inodes or inodes being freed, first * kind does not need periodic writeout yet, and for the latter * kind writeout is handled by the freer. */ spin_lock(&inode->i_lock); if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { redirty_tail_locked(inode, wb); spin_unlock(&inode->i_lock); continue; } if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { /* * If this inode is locked for writeback and we are not * doing writeback-for-data-integrity, move it to * b_more_io so that writeback can proceed with the * other inodes on s_io. * * We'll have another go at writing back this inode * when we completed a full scan of b_io. */ spin_unlock(&inode->i_lock); requeue_io(inode, wb); trace_writeback_sb_inodes_requeue(inode); continue; } spin_unlock(&wb->list_lock); /* * We already requeued the inode if it had I_SYNC set and we * are doing WB_SYNC_NONE writeback. So this catches only the * WB_SYNC_ALL case. */ if (inode->i_state & I_SYNC) { /* Wait for I_SYNC. This function drops i_lock... */ inode_sleep_on_writeback(inode); /* Inode may be gone, start again */ spin_lock(&wb->list_lock);