1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCATTERLIST_H #define _LINUX_SCATTERLIST_H #include <linux/string.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/mm.h> #include <asm/io.h> struct scatterlist { unsigned long page_link; unsigned int offset; unsigned int length; dma_addr_t dma_address; #ifdef CONFIG_NEED_SG_DMA_LENGTH unsigned int dma_length; #endif }; /* * Since the above length field is an unsigned int, below we define the maximum * length in bytes that can be stored in one scatterlist entry. */ #define SCATTERLIST_MAX_SEGMENT (UINT_MAX & PAGE_MASK) /* * These macros should be used after a dma_map_sg call has been done * to get bus addresses of each of the SG entries and their lengths. * You should only work with the number of sg entries dma_map_sg * returns, or alternatively stop on the first sg_dma_len(sg) which * is 0. */ #define sg_dma_address(sg) ((sg)->dma_address) #ifdef CONFIG_NEED_SG_DMA_LENGTH #define sg_dma_len(sg) ((sg)->dma_length) #else #define sg_dma_len(sg) ((sg)->length) #endif struct sg_table { struct scatterlist *sgl; /* the list */ unsigned int nents; /* number of mapped entries */ unsigned int orig_nents; /* original size of list */ }; /* * Notes on SG table design. * * We use the unsigned long page_link field in the scatterlist struct to place * the page pointer AND encode information about the sg table as well. The two * lower bits are reserved for this information. * * If bit 0 is set, then the page_link contains a pointer to the next sg * table list. Otherwise the next entry is at sg + 1. * * If bit 1 is set, then this sg entry is the last element in a list. * * See sg_next(). * */ #define SG_CHAIN 0x01UL #define SG_END 0x02UL /* * We overload the LSB of the page pointer to indicate whether it's * a valid sg entry, or whether it points to the start of a new scatterlist. * Those low bits are there for everyone! (thanks mason :-) */ #define sg_is_chain(sg) ((sg)->page_link & SG_CHAIN) #define sg_is_last(sg) ((sg)->page_link & SG_END) #define sg_chain_ptr(sg) \ ((struct scatterlist *) ((sg)->page_link & ~(SG_CHAIN | SG_END))) /** * sg_assign_page - Assign a given page to an SG entry * @sg: SG entry * @page: The page * * Description: * Assign page to sg entry. Also see sg_set_page(), the most commonly used * variant. * **/ static inline void sg_assign_page(struct scatterlist *sg, struct page *page) { unsigned long page_link = sg->page_link & (SG_CHAIN | SG_END); /* * In order for the low bit stealing approach to work, pages * must be aligned at a 32-bit boundary as a minimum. */ BUG_ON((unsigned long) page & (SG_CHAIN | SG_END)); #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif sg->page_link = page_link | (unsigned long) page; } /** * sg_set_page - Set sg entry to point at given page * @sg: SG entry * @page: The page * @len: Length of data * @offset: Offset into page * * Description: * Use this function to set an sg entry pointing at a page, never assign * the page directly. We encode sg table information in the lower bits * of the page pointer. See sg_page() for looking up the page belonging * to an sg entry. * **/ static inline void sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, unsigned int offset) { sg_assign_page(sg, page); sg->offset = offset; sg->length = len; } static inline struct page *sg_page(struct scatterlist *sg) { #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif return (struct page *)((sg)->page_link & ~(SG_CHAIN | SG_END)); } /** * sg_set_buf - Set sg entry to point at given data * @sg: SG entry * @buf: Data * @buflen: Data length * **/ static inline void sg_set_buf(struct scatterlist *sg, const void *buf, unsigned int buflen) { #ifdef CONFIG_DEBUG_SG BUG_ON(!virt_addr_valid(buf)); #endif sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf)); } /* * Loop over each sg element, following the pointer to a new list if necessary */ #define for_each_sg(sglist, sg, nr, __i) \ for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg)) /* * Loop over each sg element in the given sg_table object. */ #define for_each_sgtable_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->orig_nents, i) /* * Loop over each sg element in the given *DMA mapped* sg_table object. * Please use sg_dma_address(sg) and sg_dma_len(sg) to extract DMA addresses * of the each element. */ #define for_each_sgtable_dma_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->nents, i) static inline void __sg_chain(struct scatterlist *chain_sg, struct scatterlist *sgl) { /* * offset and length are unused for chain entry. Clear them. */ chain_sg->offset = 0; chain_sg->length = 0; /* * Set lowest bit to indicate a link pointer, and make sure to clear * the termination bit if it happens to be set. */ chain_sg->page_link = ((unsigned long) sgl | SG_CHAIN) & ~SG_END; } /** * sg_chain - Chain two sglists together * @prv: First scatterlist * @prv_nents: Number of entries in prv * @sgl: Second scatterlist * * Description: * Links @prv@ and @sgl@ together, to form a longer scatterlist. * **/ static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents, struct scatterlist *sgl) { __sg_chain(&prv[prv_nents - 1], sgl); } /** * sg_mark_end - Mark the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Marks the passed in sg entry as the termination point for the sg * table. A call to sg_next() on this entry will return NULL. * **/ static inline void sg_mark_end(struct scatterlist *sg) { /* * Set termination bit, clear potential chain bit */ sg->page_link |= SG_END; sg->page_link &= ~SG_CHAIN; } /** * sg_unmark_end - Undo setting the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Removes the termination marker from the given entry of the scatterlist. * **/ static inline void sg_unmark_end(struct scatterlist *sg) { sg->page_link &= ~SG_END; } /** * sg_phys - Return physical address of an sg entry * @sg: SG entry * * Description: * This calls page_to_phys() on the page in this sg entry, and adds the * sg offset. The caller must know that it is legal to call page_to_phys() * on the sg page. * **/ static inline dma_addr_t sg_phys(struct scatterlist *sg) { return page_to_phys(sg_page(sg)) + sg->offset; } /** * sg_virt - Return virtual address of an sg entry * @sg: SG entry * * Description: * This calls page_address() on the page in this sg entry, and adds the * sg offset. The caller must know that the sg page has a valid virtual * mapping. * **/ static inline void *sg_virt(struct scatterlist *sg) { return page_address(sg_page(sg)) + sg->offset; } /** * sg_init_marker - Initialize markers in sg table * @sgl: The SG table * @nents: Number of entries in table * **/ static inline void sg_init_marker(struct scatterlist *sgl, unsigned int nents) { sg_mark_end(&sgl[nents - 1]); } int sg_nents(struct scatterlist *sg); int sg_nents_for_len(struct scatterlist *sg, u64 len); struct scatterlist *sg_next(struct scatterlist *); struct scatterlist *sg_last(struct scatterlist *s, unsigned int); void sg_init_table(struct scatterlist *, unsigned int); void sg_init_one(struct scatterlist *, const void *, unsigned int); int sg_split(struct scatterlist *in, const int in_mapped_nents, const off_t skip, const int nb_splits, const size_t *split_sizes, struct scatterlist **out, int *out_mapped_nents, gfp_t gfp_mask); typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t); typedef void (sg_free_fn)(struct scatterlist *, unsigned int); void __sg_free_table(struct sg_table *, unsigned int, unsigned int, sg_free_fn *); void sg_free_table(struct sg_table *); int __sg_alloc_table(struct sg_table *, unsigned int, unsigned int, struct scatterlist *, unsigned int, gfp_t, sg_alloc_fn *); int sg_alloc_table(struct sg_table *, unsigned int, gfp_t); struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, struct scatterlist *prv, unsigned int left_pages, gfp_t gfp_mask); int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, gfp_t gfp_mask); #ifdef CONFIG_SGL_ALLOC struct scatterlist *sgl_alloc_order(unsigned long long length, unsigned int order, bool chainable, gfp_t gfp, unsigned int *nent_p); struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp, unsigned int *nent_p); void sgl_free_n_order(struct scatterlist *sgl, int nents, int order); void sgl_free_order(struct scatterlist *sgl, int order); void sgl_free(struct scatterlist *sgl); #endif /* CONFIG_SGL_ALLOC */ size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip, bool to_buffer); size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen); size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen); size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen, off_t skip); size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip); size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, size_t buflen, off_t skip); /* * Maximum number of entries that will be allocated in one piece, if * a list larger than this is required then chaining will be utilized. */ #define SG_MAX_SINGLE_ALLOC (PAGE_SIZE / sizeof(struct scatterlist)) /* * The maximum number of SG segments that we will put inside a * scatterlist (unless chaining is used). Should ideally fit inside a * single page, to avoid a higher order allocation. We could define this * to SG_MAX_SINGLE_ALLOC to pack correctly at the highest order. The * minimum value is 32 */ #define SG_CHUNK_SIZE 128 /* * Like SG_CHUNK_SIZE, but for archs that have sg chaining. This limit * is totally arbitrary, a setting of 2048 will get you at least 8mb ios. */ #ifdef CONFIG_ARCH_NO_SG_CHAIN #define SG_MAX_SEGMENTS SG_CHUNK_SIZE #else #define SG_MAX_SEGMENTS 2048 #endif #ifdef CONFIG_SG_POOL void sg_free_table_chained(struct sg_table *table, unsigned nents_first_chunk); int sg_alloc_table_chained(struct sg_table *table, int nents, struct scatterlist *first_chunk, unsigned nents_first_chunk); #endif /* * sg page iterator * * Iterates over sg entries page-by-page. On each successful iteration, you * can call sg_page_iter_page(@piter) to get the current page. * @piter->sg will point to the sg holding this page and @piter->sg_pgoffset to * the page's page offset within the sg. The iteration will stop either when a * maximum number of sg entries was reached or a terminating sg * (sg_last(sg) == true) was reached. */ struct sg_page_iter { struct scatterlist *sg; /* sg holding the page */ unsigned int sg_pgoffset; /* page offset within the sg */ /* these are internal states, keep away */ unsigned int __nents; /* remaining sg entries */ int __pg_advance; /* nr pages to advance at the * next step */ }; /* * sg page iterator for DMA addresses * * This is the same as sg_page_iter however you can call * sg_page_iter_dma_address(@dma_iter) to get the page's DMA * address. sg_page_iter_page() cannot be called on this iterator. */ struct sg_dma_page_iter { struct sg_page_iter base; }; bool __sg_page_iter_next(struct sg_page_iter *piter); bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter); void __sg_page_iter_start(struct sg_page_iter *piter, struct scatterlist *sglist, unsigned int nents, unsigned long pgoffset); /** * sg_page_iter_page - get the current page held by the page iterator * @piter: page iterator holding the page */ static inline struct page *sg_page_iter_page(struct sg_page_iter *piter) { return nth_page(sg_page(piter->sg), piter->sg_pgoffset); } /** * sg_page_iter_dma_address - get the dma address of the current page held by * the page iterator. * @dma_iter: page iterator holding the page */ static inline dma_addr_t sg_page_iter_dma_address(struct sg_dma_page_iter *dma_iter) { return sg_dma_address(dma_iter->base.sg) + (dma_iter->base.sg_pgoffset << PAGE_SHIFT); } /** * for_each_sg_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @piter: page iterator to hold current page, sg, sg_pgoffset * @nents: maximum number of sg entries to iterate over * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_page() to get each page pointer. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_page(sglist, piter, nents, pgoffset) \ for (__sg_page_iter_start((piter), (sglist), (nents), (pgoffset)); \ __sg_page_iter_next(piter);) /** * for_each_sg_dma_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @dma_iter: DMA page iterator to hold current page * @dma_nents: maximum number of sg entries to iterate over, this is the value * returned from dma_map_sg * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_dma_address() to get each page's DMA address. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_dma_page(sglist, dma_iter, dma_nents, pgoffset) \ for (__sg_page_iter_start(&(dma_iter)->base, sglist, dma_nents, \ pgoffset); \ __sg_page_iter_dma_next(dma_iter);) /** * for_each_sgtable_page - iterate over all pages in the sg_table object * @sgt: sg_table object to iterate over * @piter: page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all memory pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_page(). In each loop it operates on PAGE_SIZE unit. */ #define for_each_sgtable_page(sgt, piter, pgoffset) \ for_each_sg_page((sgt)->sgl, piter, (sgt)->orig_nents, pgoffset) /** * for_each_sgtable_dma_page - iterate over the DMA mapped sg_table object * @sgt: sg_table object to iterate over * @dma_iter: DMA page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all DMA mapped pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_dma_page(). In each loop it operates on PAGE_SIZE * unit. */ #define for_each_sgtable_dma_page(sgt, dma_iter, pgoffset) \ for_each_sg_dma_page((sgt)->sgl, dma_iter, (sgt)->nents, pgoffset) /* * Mapping sg iterator * * Iterates over sg entries mapping page-by-page. On each successful * iteration, @miter->page points to the mapped page and * @miter->length bytes of data can be accessed at @miter->addr. As * long as an interation is enclosed between start and stop, the user * is free to choose control structure and when to stop. * * @miter->consumed is set to @miter->length on each iteration. It * can be adjusted if the user can't consume all the bytes in one go. * Also, a stopped iteration can be resumed by calling next on it. * This is useful when iteration needs to release all resources and * continue later (e.g. at the next interrupt). */ #define SG_MITER_ATOMIC (1 << 0) /* use kmap_atomic */ #define SG_MITER_TO_SG (1 << 1) /* flush back to phys on unmap */ #define SG_MITER_FROM_SG (1 << 2) /* nop */ struct sg_mapping_iter { /* the following three fields can be accessed directly */ struct page *page; /* currently mapped page */ void *addr; /* pointer to the mapped area */ size_t length; /* length of the mapped area */ size_t consumed; /* number of consumed bytes */ struct sg_page_iter piter; /* page iterator */ /* these are internal states, keep away */ unsigned int __offset; /* offset within page */ unsigned int __remaining; /* remaining bytes on page */ unsigned int __flags; }; void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, unsigned int nents, unsigned int flags); bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset); bool sg_miter_next(struct sg_mapping_iter *miter); void sg_miter_stop(struct sg_mapping_iter *miter); #endif /* _LINUX_SCATTERLIST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MATH64_H #define _LINUX_MATH64_H #include <linux/types.h> #include <vdso/math64.h> #include <asm/div64.h> #if BITS_PER_LONG == 64 #define div64_long(x, y) div64_s64((x), (y)) #define div64_ul(x, y) div64_u64((x), (y)) /** * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder * @dividend: unsigned 64bit dividend * @divisor: unsigned 32bit divisor * @remainder: pointer to unsigned 32bit remainder * * Return: sets ``*remainder``, then returns dividend / divisor * * This is commonly provided by 32bit archs to provide an optimized 64bit * divide. */ static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } /* * div_s64_rem - signed 64bit divide with 32bit divisor with remainder * @dividend: signed 64bit dividend * @divisor: signed 32bit divisor * @remainder: pointer to signed 32bit remainder * * Return: sets ``*remainder``, then returns dividend / divisor */ static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } /* * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder * @dividend: unsigned 64bit dividend * @divisor: unsigned 64bit divisor * @remainder: pointer to unsigned 64bit remainder * * Return: sets ``*remainder``, then returns dividend / divisor */ static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } /* * div64_u64 - unsigned 64bit divide with 64bit divisor * @dividend: unsigned 64bit dividend * @divisor: unsigned 64bit divisor * * Return: dividend / divisor */ static inline u64 div64_u64(u64 dividend, u64 divisor) { return dividend / divisor; } /* * div64_s64 - signed 64bit divide with 64bit divisor * @dividend: signed 64bit dividend * @divisor: signed 64bit divisor * * Return: dividend / divisor */ static inline s64 div64_s64(s64 dividend, s64 divisor) { return dividend / divisor; } #elif BITS_PER_LONG == 32 #define div64_long(x, y) div_s64((x), (y)) #define div64_ul(x, y) div_u64((x), (y)) #ifndef div_u64_rem static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) { *remainder = do_div(dividend, divisor); return dividend; } #endif #ifndef div_s64_rem extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder); #endif #ifndef div64_u64_rem extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder); #endif #ifndef div64_u64 extern u64 div64_u64(u64 dividend, u64 divisor); #endif #ifndef div64_s64 extern s64 div64_s64(s64 dividend, s64 divisor); #endif #endif /* BITS_PER_LONG */ /** * div_u64 - unsigned 64bit divide with 32bit divisor * @dividend: unsigned 64bit dividend * @divisor: unsigned 32bit divisor * * This is the most common 64bit divide and should be used if possible, * as many 32bit archs can optimize this variant better than a full 64bit * divide. */ #ifndef div_u64 static inline u64 div_u64(u64 dividend, u32 divisor) { u32 remainder; return div_u64_rem(dividend, divisor, &remainder); } #endif /** * div_s64 - signed 64bit divide with 32bit divisor * @dividend: signed 64bit dividend * @divisor: signed 32bit divisor */ #ifndef div_s64 static inline s64 div_s64(s64 dividend, s32 divisor) { s32 remainder; return div_s64_rem(dividend, divisor, &remainder); } #endif u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder); #ifndef mul_u32_u32 /* * Many a GCC version messes this up and generates a 64x64 mult :-( */ static inline u64 mul_u32_u32(u32 a, u32 b) { return (u64)a * b; } #endif #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__) #ifndef mul_u64_u32_shr static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) { return (u64)(((unsigned __int128)a * mul) >> shift); } #endif /* mul_u64_u32_shr */ #ifndef mul_u64_u64_shr static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift) { return (u64)(((unsigned __int128)a * mul) >> shift); } #endif /* mul_u64_u64_shr */ #else #ifndef mul_u64_u32_shr static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift) { u32 ah, al; u64 ret; al = a; ah = a >> 32; ret = mul_u32_u32(al, mul) >> shift; if (ah) ret += mul_u32_u32(ah, mul) << (32 - shift); return ret; } #endif /* mul_u64_u32_shr */ #ifndef mul_u64_u64_shr static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift) { union { u64 ll; struct { #ifdef __BIG_ENDIAN u32 high, low; #else u32 low, high; #endif } l; } rl, rm, rn, rh, a0, b0; u64 c; a0.ll = a; b0.ll = b; rl.ll = mul_u32_u32(a0.l.low, b0.l.low); rm.ll = mul_u32_u32(a0.l.low, b0.l.high); rn.ll = mul_u32_u32(a0.l.high, b0.l.low); rh.ll = mul_u32_u32(a0.l.high, b0.l.high); /* * Each of these lines computes a 64-bit intermediate result into "c", * starting at bits 32-95. The low 32-bits go into the result of the * multiplication, the high 32-bits are carried into the next step. */ rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low; rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low; rh.l.high = (c >> 32) + rh.l.high; /* * The 128-bit result of the multiplication is in rl.ll and rh.ll, * shift it right and throw away the high part of the result. */ if (shift == 0) return rl.ll; if (shift < 64) return (rl.ll >> shift) | (rh.ll << (64 - shift)); return rh.ll >> (shift & 63); } #endif /* mul_u64_u64_shr */ #endif #ifndef mul_u64_u32_div static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor) { union { u64 ll; struct { #ifdef __BIG_ENDIAN u32 high, low; #else u32 low, high; #endif } l; } u, rl, rh; u.ll = a; rl.ll = mul_u32_u32(u.l.low, mul); rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high; /* Bits 32-63 of the result will be in rh.l.low. */ rl.l.high = do_div(rh.ll, divisor); /* Bits 0-31 of the result will be in rl.l.low. */ do_div(rl.ll, divisor); rl.l.high = rh.l.low; return rl.ll; } #endif /* mul_u64_u32_div */ u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div); #define DIV64_U64_ROUND_UP(ll, d) \ ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); }) /** * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer * @dividend: unsigned 64bit dividend * @divisor: unsigned 64bit divisor * * Divide unsigned 64bit dividend by unsigned 64bit divisor * and round to closest integer. * * Return: dividend / divisor rounded to nearest integer */ #define DIV64_U64_ROUND_CLOSEST(dividend, divisor) \ ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); }) /* * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer * @dividend: signed 64bit dividend * @divisor: signed 32bit divisor * * Divide signed 64bit dividend by signed 32bit divisor * and round to closest integer. * * Return: dividend / divisor rounded to nearest integer */ #define DIV_S64_ROUND_CLOSEST(dividend, divisor)( \ { \ s64 __x = (dividend); \ s32 __d = (divisor); \ ((__x > 0) == (__d > 0)) ? \ div_s64((__x + (__d / 2)), __d) : \ div_s64((__x - (__d / 2)), __d); \ } \ ) #endif /* _LINUX_MATH64_H */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 // SPDX-License-Identifier: GPL-2.0-or-later /* * Linux Socket Filter - Kernel level socket filtering * * Based on the design of the Berkeley Packet Filter. The new * internal format has been designed by PLUMgrid: * * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com * * Authors: * * Jay Schulist <jschlst@samba.org> * Alexei Starovoitov <ast@plumgrid.com> * Daniel Borkmann <dborkman@redhat.com> * * Andi Kleen - Fix a few bad bugs and races. * Kris Katterjohn - Added many additional checks in bpf_check_classic() */ #include <linux/module.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/fcntl.h> #include <linux/socket.h> #include <linux/sock_diag.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/if_packet.h> #include <linux/if_arp.h> #include <linux/gfp.h> #include <net/inet_common.h> #include <net/ip.h> #include <net/protocol.h> #include <net/netlink.h> #include <linux/skbuff.h> #include <linux/skmsg.h> #include <net/sock.h> #include <net/flow_dissector.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/uaccess.h> #include <asm/unaligned.h> #include <asm/cmpxchg.h> #include <linux/filter.h> #include <linux/ratelimit.h> #include <linux/seccomp.h> #include <linux/if_vlan.h> #include <linux/bpf.h> #include <linux/btf.h> #include <net/sch_generic.h> #include <net/cls_cgroup.h> #include <net/dst_metadata.h> #include <net/dst.h> #include <net/sock_reuseport.h> #include <net/busy_poll.h> #include <net/tcp.h> #include <net/xfrm.h> #include <net/udp.h> #include <linux/bpf_trace.h> #include <net/xdp_sock.h> #include <linux/inetdevice.h> #include <net/inet_hashtables.h> #include <net/inet6_hashtables.h> #include <net/ip_fib.h> #include <net/nexthop.h> #include <net/flow.h> #include <net/arp.h> #include <net/ipv6.h> #include <net/net_namespace.h> #include <linux/seg6_local.h> #include <net/seg6.h> #include <net/seg6_local.h> #include <net/lwtunnel.h> #include <net/ipv6_stubs.h> #include <net/bpf_sk_storage.h> #include <net/transp_v6.h> #include <linux/btf_ids.h> #include <net/tls.h> /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */ static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check"); static const struct bpf_func_proto * bpf_sk_base_func_proto(enum bpf_func_id func_id); int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len) { if (in_compat_syscall()) { struct compat_sock_fprog f32; if (len != sizeof(f32)) return -EINVAL; if (copy_from_sockptr(&f32, src, sizeof(f32))) return -EFAULT; memset(dst, 0, sizeof(*dst)); dst->len = f32.len; dst->filter = compat_ptr(f32.filter); } else { if (len != sizeof(*dst)) return -EINVAL; if (copy_from_sockptr(dst, src, sizeof(*dst))) return -EFAULT; } return 0; } EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user); /** * sk_filter_trim_cap - run a packet through a socket filter * @sk: sock associated with &sk_buff * @skb: buffer to filter * @cap: limit on how short the eBPF program may trim the packet * * Run the eBPF program and then cut skb->data to correct size returned by * the program. If pkt_len is 0 we toss packet. If skb->len is smaller * than pkt_len we keep whole skb->data. This is the socket level * wrapper to BPF_PROG_RUN. It returns 0 if the packet should * be accepted or -EPERM if the packet should be tossed. * */ int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap) { int err; struct sk_filter *filter; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP); return -ENOMEM; } err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb); if (err) return err; err = security_sock_rcv_skb(sk, skb); if (err) return err; rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter) { struct sock *save_sk = skb->sk; unsigned int pkt_len; skb->sk = sk; pkt_len = bpf_prog_run_save_cb(filter->prog, skb); skb->sk = save_sk; err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM; } rcu_read_unlock(); return err; } EXPORT_SYMBOL(sk_filter_trim_cap); BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb) { return skb_get_poff(skb); } BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x) { struct nlattr *nla; if (skb_is_nonlinear(skb)) return 0; if (skb->len < sizeof(struct nlattr)) return 0; if (a > skb->len - sizeof(struct nlattr)) return 0; nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x); if (nla) return (void *) nla - (void *) skb->data; return 0; } BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x) { struct nlattr *nla; if (skb_is_nonlinear(skb)) return 0; if (skb->len < sizeof(struct nlattr)) return 0; if (a > skb->len - sizeof(struct nlattr)) return 0; nla = (struct nlattr *) &skb->data[a]; if (nla->nla_len > skb->len - a) return 0; nla = nla_find_nested(nla, x); if (nla) return (void *) nla - (void *) skb->data; return 0; } static int bpf_skb_load_helper_convert_offset(const struct sk_buff *skb, int offset) { if (likely(offset >= 0)) return offset; if (offset >= SKF_NET_OFF) return offset - SKF_NET_OFF + skb_network_offset(skb); if (offset >= SKF_LL_OFF && skb_mac_header_was_set(skb)) return offset - SKF_LL_OFF + skb_mac_offset(skb); return INT_MIN; } BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { u8 tmp; const int len = sizeof(tmp); offset = bpf_skb_load_helper_convert_offset(skb, offset); if (offset == INT_MIN) return -EFAULT; if (headlen - offset >= len) return *(u8 *)(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return tmp; else return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len, offset); } BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { __be16 tmp; const int len = sizeof(tmp); offset = bpf_skb_load_helper_convert_offset(skb, offset); if (offset == INT_MIN) return -EFAULT; if (headlen - offset >= len) return get_unaligned_be16(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return be16_to_cpu(tmp); else return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len, offset); } BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { __be32 tmp; const int len = sizeof(tmp); offset = bpf_skb_load_helper_convert_offset(skb, offset); if (offset == INT_MIN) return -EFAULT; if (headlen - offset >= len) return get_unaligned_be32(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return be32_to_cpu(tmp); else return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len, offset); } static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; switch (skb_field) { case SKF_AD_MARK: BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4); *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, offsetof(struct sk_buff, mark)); break; case SKF_AD_PKTTYPE: *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET()); *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX); #ifdef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5); #endif break; case SKF_AD_QUEUE: BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2); *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, offsetof(struct sk_buff, queue_mapping)); break; case SKF_AD_VLAN_TAG: BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2); /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */ *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, offsetof(struct sk_buff, vlan_tci)); break; case SKF_AD_VLAN_TAG_PRESENT: *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET()); if (PKT_VLAN_PRESENT_BIT) *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT); if (PKT_VLAN_PRESENT_BIT < 7) *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1); break; } return insn - insn_buf; } static bool convert_bpf_extensions(struct sock_filter *fp, struct bpf_insn **insnp) { struct bpf_insn *insn = *insnp; u32 cnt; switch (fp->k) { case SKF_AD_OFF + SKF_AD_PROTOCOL: BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2); /* A = *(u16 *) (CTX + offsetof(protocol)) */ *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, protocol)); /* A = ntohs(A) [emitting a nop or swap16] */ *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); break; case SKF_AD_OFF + SKF_AD_PKTTYPE: cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_IFINDEX: case SKF_AD_OFF + SKF_AD_HATYPE: BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4); BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), BPF_REG_TMP, BPF_REG_CTX, offsetof(struct sk_buff, dev)); /* if (tmp != 0) goto pc + 1 */ *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1); *insn++ = BPF_EXIT_INSN(); if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX) *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP, offsetof(struct net_device, ifindex)); else *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP, offsetof(struct net_device, type)); break; case SKF_AD_OFF + SKF_AD_MARK: cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_RXHASH: BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4); *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, hash)); break; case SKF_AD_OFF + SKF_AD_QUEUE: cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TAG: cnt = convert_skb_access(SKF_AD_VLAN_TAG, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT: cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TPID: BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2); /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */ *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, vlan_proto)); /* A = ntohs(A) [emitting a nop or swap16] */ *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); break; case SKF_AD_OFF + SKF_AD_PAY_OFFSET: case SKF_AD_OFF + SKF_AD_NLATTR: case SKF_AD_OFF + SKF_AD_NLATTR_NEST: case SKF_AD_OFF + SKF_AD_CPU: case SKF_AD_OFF + SKF_AD_RANDOM: /* arg1 = CTX */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); /* arg2 = A */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A); /* arg3 = X */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X); /* Emit call(arg1=CTX, arg2=A, arg3=X) */ switch (fp->k) { case SKF_AD_OFF + SKF_AD_PAY_OFFSET: *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset); break; case SKF_AD_OFF + SKF_AD_NLATTR: *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr); break; case SKF_AD_OFF + SKF_AD_NLATTR_NEST: *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest); break; case SKF_AD_OFF + SKF_AD_CPU: *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id); break; case SKF_AD_OFF + SKF_AD_RANDOM: *insn = BPF_EMIT_CALL(bpf_user_rnd_u32); bpf_user_rnd_init_once(); break; } break; case SKF_AD_OFF + SKF_AD_ALU_XOR_X: /* A ^= X */ *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X); break; default: /* This is just a dummy call to avoid letting the compiler * evict __bpf_call_base() as an optimization. Placed here * where no-one bothers. */ BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0); return false; } *insnp = insn; return true; } static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp) { const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS); int size = bpf_size_to_bytes(BPF_SIZE(fp->code)); bool endian = BPF_SIZE(fp->code) == BPF_H || BPF_SIZE(fp->code) == BPF_W; bool indirect = BPF_MODE(fp->code) == BPF_IND; const int ip_align = NET_IP_ALIGN; struct bpf_insn *insn = *insnp; int offset = fp->k; if (!indirect && ((unaligned_ok && offset >= 0) || (!unaligned_ok && offset >= 0 && offset + ip_align >= 0 && offset + ip_align % size == 0))) { bool ldx_off_ok = offset <= S16_MAX; *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H); if (offset) *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset); *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, size, 2 + endian + (!ldx_off_ok * 2)); if (ldx_off_ok) { *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_D, offset); } else { *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D); *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset); *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_TMP, 0); } if (endian) *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8); *insn++ = BPF_JMP_A(8); } *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D); *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H); if (!indirect) { *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset); } else { *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X); if (fp->k) *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset); } switch (BPF_SIZE(fp->code)) { case BPF_B: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8); break; case BPF_H: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16); break; case BPF_W: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32); break; default: return false; } *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *insn = BPF_EXIT_INSN(); *insnp = insn; return true; } /** * bpf_convert_filter - convert filter program * @prog: the user passed filter program * @len: the length of the user passed filter program * @new_prog: allocated 'struct bpf_prog' or NULL * @new_len: pointer to store length of converted program * @seen_ld_abs: bool whether we've seen ld_abs/ind * * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn' * style extended BPF (eBPF). * Conversion workflow: * * 1) First pass for calculating the new program length: * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs) * * 2) 2nd pass to remap in two passes: 1st pass finds new * jump offsets, 2nd pass remapping: * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs) */ static int bpf_convert_filter(struct sock_filter *prog, int len, struct bpf_prog *new_prog, int *new_len, bool *seen_ld_abs) { int new_flen = 0, pass = 0, target, i, stack_off; struct bpf_insn *new_insn, *first_insn = NULL; struct sock_filter *fp; int *addrs = NULL; u8 bpf_src; BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK); BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); if (len <= 0 || len > BPF_MAXINSNS) return -EINVAL; if (new_prog) { first_insn = new_prog->insnsi; addrs = kcalloc(len, sizeof(*addrs), GFP_KERNEL | __GFP_NOWARN); if (!addrs) return -ENOMEM; } do_pass: new_insn = first_insn; fp = prog; /* Classic BPF related prologue emission. */ if (new_prog) { /* Classic BPF expects A and X to be reset first. These need * to be guaranteed to be the first two instructions. */ *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X); /* All programs must keep CTX in callee saved BPF_REG_CTX. * In eBPF case it's done by the compiler, here we need to * do this ourself. Initial CTX is present in BPF_REG_ARG1. */ *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1); if (*seen_ld_abs) { /* For packet access in classic BPF, cache skb->data * in callee-saved BPF R8 and skb->len - skb->data_len * (headlen) in BPF R9. Since classic BPF is read-only * on CTX, we only need to cache it once. */ *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), BPF_REG_D, BPF_REG_CTX, offsetof(struct sk_buff, data)); *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX, offsetof(struct sk_buff, len)); *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX, offsetof(struct sk_buff, data_len)); *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP); } } else { new_insn += 3; } for (i = 0; i < len; fp++, i++) { struct bpf_insn tmp_insns[32] = { }; struct bpf_insn *insn = tmp_insns; if (addrs) addrs[i] = new_insn - first_insn; switch (fp->code) { /* All arithmetic insns and skb loads map as-is. */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_NEG: case BPF_LD | BPF_ABS | BPF_W: case BPF_LD | BPF_ABS | BPF_H: case BPF_LD | BPF_ABS | BPF_B: case BPF_LD | BPF_IND | BPF_W: case BPF_LD | BPF_IND | BPF_H: case BPF_LD | BPF_IND | BPF_B: /* Check for overloaded BPF extension and * directly convert it if found, otherwise * just move on with mapping. */ if (BPF_CLASS(fp->code) == BPF_LD && BPF_MODE(fp->code) == BPF_ABS && convert_bpf_extensions(fp, &insn)) break; if (BPF_CLASS(fp->code) == BPF_LD && convert_bpf_ld_abs(fp, &insn)) { *seen_ld_abs = true; break; } if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) || fp->code == (BPF_ALU | BPF_MOD | BPF_X)) { *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X); /* Error with exception code on div/mod by 0. * For cBPF programs, this was always return 0. */ *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *insn++ = BPF_EXIT_INSN(); } *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k); break; /* Jump transformation cannot use BPF block macros * everywhere as offset calculation and target updates * require a bit more work than the rest, i.e. jump * opcodes map as-is, but offsets need adjustment. */ #define BPF_EMIT_JMP \ do { \ const s32 off_min = S16_MIN, off_max = S16_MAX; \ s32 off; \ \ if (target >= len || target < 0) \ goto err; \ off = addrs ? addrs[target] - addrs[i] - 1 : 0; \ /* Adjust pc relative offset for 2nd or 3rd insn. */ \ off -= insn - tmp_insns; \ /* Reject anything not fitting into insn->off. */ \ if (off < off_min || off > off_max) \ goto err; \ insn->off = off; \ } while (0) case BPF_JMP | BPF_JA: target = i + fp->k + 1; insn->code = fp->code; BPF_EMIT_JMP; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) { /* BPF immediates are signed, zero extend * immediate into tmp register and use it * in compare insn. */ *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k); insn->dst_reg = BPF_REG_A; insn->src_reg = BPF_REG_TMP; bpf_src = BPF_X; } else { insn->dst_reg = BPF_REG_A; insn->imm = fp->k; bpf_src = BPF_SRC(fp->code); insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0; } /* Common case where 'jump_false' is next insn. */ if (fp->jf == 0) { insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; target = i + fp->jt + 1; BPF_EMIT_JMP; break; } /* Convert some jumps when 'jump_true' is next insn. */ if (fp->jt == 0) { switch (BPF_OP(fp->code)) { case BPF_JEQ: insn->code = BPF_JMP | BPF_JNE | bpf_src; break; case BPF_JGT: insn->code = BPF_JMP | BPF_JLE | bpf_src; break; case BPF_JGE: insn->code = BPF_JMP | BPF_JLT | bpf_src; break; default: goto jmp_rest; } target = i + fp->jf + 1; BPF_EMIT_JMP; break; } jmp_rest: /* Other jumps are mapped into two insns: Jxx and JA. */ target = i + fp->jt + 1; insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; BPF_EMIT_JMP; insn++; insn->code = BPF_JMP | BPF_JA; target = i + fp->jf + 1; BPF_EMIT_JMP; break; /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */ case BPF_LDX | BPF_MSH | BPF_B: { struct sock_filter tmp = { .code = BPF_LD | BPF_ABS | BPF_B, .k = fp->k, }; *seen_ld_abs = true; /* X = A */ *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); /* A = BPF_R0 = *(u8 *) (skb->data + K) */ convert_bpf_ld_abs(&tmp, &insn); insn++; /* A &= 0xf */ *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf); /* A <<= 2 */ *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2); /* tmp = X */ *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X); /* X = A */ *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); /* A = tmp */ *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP); break; } /* RET_K is remaped into 2 insns. RET_A case doesn't need an * extra mov as BPF_REG_0 is already mapped into BPF_REG_A. */ case BPF_RET | BPF_A: case BPF_RET | BPF_K: if (BPF_RVAL(fp->code) == BPF_K) *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0, 0, fp->k); *insn = BPF_EXIT_INSN(); break; /* Store to stack. */ case BPF_ST: case BPF_STX: stack_off = fp->k * 4 + 4; *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) == BPF_ST ? BPF_REG_A : BPF_REG_X, -stack_off); /* check_load_and_stores() verifies that classic BPF can * load from stack only after write, so tracking * stack_depth for ST|STX insns is enough */ if (new_prog && new_prog->aux->stack_depth < stack_off) new_prog->aux->stack_depth = stack_off; break; /* Load from stack. */ case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: stack_off = fp->k * 4 + 4; *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, BPF_REG_FP, -stack_off); break; /* A = K or X = K */ case BPF_LD | BPF_IMM: case BPF_LDX | BPF_IMM: *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, fp->k); break; /* X = A */ case BPF_MISC | BPF_TAX: *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); break; /* A = X */ case BPF_MISC | BPF_TXA: *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X); break; /* A = skb->len or X = skb->len */ case BPF_LD | BPF_W | BPF_LEN: case BPF_LDX | BPF_W | BPF_LEN: *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, BPF_REG_CTX, offsetof(struct sk_buff, len)); break; /* Access seccomp_data fields. */ case BPF_LDX | BPF_ABS | BPF_W: /* A = *(u32 *) (ctx + K) */ *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k); break; /* Unknown instruction. */ default: goto err; } insn++; if (new_prog) memcpy(new_insn, tmp_insns, sizeof(*insn) * (insn - tmp_insns)); new_insn += insn - tmp_insns; } if (!new_prog) { /* Only calculating new length. */ *new_len = new_insn - first_insn; if (*seen_ld_abs) *new_len += 4; /* Prologue bits. */ return 0; } pass++; if (new_flen != new_insn - first_insn) { new_flen = new_insn - first_insn; if (pass > 2) goto err; goto do_pass; } kfree(addrs); BUG_ON(*new_len != new_flen); return 0; err: kfree(addrs); return -EINVAL; } /* Security: * * As we dont want to clear mem[] array for each packet going through * __bpf_prog_run(), we check that filter loaded by user never try to read * a cell if not previously written, and we check all branches to be sure * a malicious user doesn't try to abuse us. */ static int check_load_and_stores(const struct sock_filter *filter, int flen) { u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */ int pc, ret = 0; BUILD_BUG_ON(BPF_MEMWORDS > 16); masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL); if (!masks) return -ENOMEM; memset(masks, 0xff, flen * sizeof(*masks)); for (pc = 0; pc < flen; pc++) { memvalid &= masks[pc]; switch (filter[pc].code) { case BPF_ST: case BPF_STX: memvalid |= (1 << filter[pc].k); break; case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: if (!(memvalid & (1 << filter[pc].k))) { ret = -EINVAL; goto error; } break; case BPF_JMP | BPF_JA: /* A jump must set masks on target */ masks[pc + 1 + filter[pc].k] &= memvalid; memvalid = ~0; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: /* A jump must set masks on targets */ masks[pc + 1 + filter[pc].jt] &= memvalid; masks[pc + 1 + filter[pc].jf] &= memvalid; memvalid = ~0; break; } } error: kfree(masks); return ret; } static bool chk_code_allowed(u16 code_to_probe) { static const bool codes[] = { /* 32 bit ALU operations */ [BPF_ALU | BPF_ADD | BPF_K] = true, [BPF_ALU | BPF_ADD | BPF_X] = true, [BPF_ALU | BPF_SUB | BPF_K] = true, [BPF_ALU | BPF_SUB | BPF_X] = true, [BPF_ALU | BPF_MUL | BPF_K] = true, [BPF_ALU | BPF_MUL | BPF_X] = true, [BPF_ALU | BPF_DIV | BPF_K] = true, [BPF_ALU | BPF_DIV | BPF_X] = true, [BPF_ALU | BPF_MOD | BPF_K] = true, [BPF_ALU | BPF_MOD | BPF_X] = true, [BPF_ALU | BPF_AND | BPF_K] = true, [BPF_ALU | BPF_AND | BPF_X] = true, [BPF_ALU | BPF_OR | BPF_K] = true, [BPF_ALU | BPF_OR | BPF_X] = true, [BPF_ALU | BPF_XOR | BPF_K] = true, [BPF_ALU | BPF_XOR | BPF_X] = true, [BPF_ALU | BPF_LSH | BPF_K] = true, [BPF_ALU | BPF_LSH | BPF_X] = true, [BPF_ALU | BPF_RSH | BPF_K] = true, [BPF_ALU | BPF_RSH | BPF_X] = true, [BPF_ALU | BPF_NEG] = true, /* Load instructions */ [BPF_LD | BPF_W | BPF_ABS] = true, [BPF_LD | BPF_H | BPF_ABS] = true, [BPF_LD | BPF_B | BPF_ABS] = true, [BPF_LD | BPF_W | BPF_LEN] = true, [BPF_LD | BPF_W | BPF_IND] = true, [BPF_LD | BPF_H | BPF_IND] = true, [BPF_LD | BPF_B | BPF_IND] = true, [BPF_LD | BPF_IMM] = true, [BPF_LD | BPF_MEM] = true, [BPF_LDX | BPF_W | BPF_LEN] = true, [BPF_LDX | BPF_B | BPF_MSH] = true, [BPF_LDX | BPF_IMM] = true, [BPF_LDX | BPF_MEM] = true, /* Store instructions */ [BPF_ST] = true, [BPF_STX] = true, /* Misc instructions */ [BPF_MISC | BPF_TAX] = true, [BPF_MISC | BPF_TXA] = true, /* Return instructions */ [BPF_RET | BPF_K] = true, [BPF_RET | BPF_A] = true, /* Jump instructions */ [BPF_JMP | BPF_JA] = true, [BPF_JMP | BPF_JEQ | BPF_K] = true, [BPF_JMP | BPF_JEQ | BPF_X] = true, [BPF_JMP | BPF_JGE | BPF_K] = true, [BPF_JMP | BPF_JGE | BPF_X] = true, [BPF_JMP | BPF_JGT | BPF_K] = true, [BPF_JMP | BPF_JGT | BPF_X] = true, [BPF_JMP | BPF_JSET | BPF_K] = true, [BPF_JMP | BPF_JSET | BPF_X] = true, }; if (code_to_probe >= ARRAY_SIZE(codes)) return false; return codes[code_to_probe]; } static bool bpf_check_basics_ok(const struct sock_filter *filter, unsigned int flen) { if (filter == NULL) return false; if (flen == 0 || flen > BPF_MAXINSNS) return false; return true; } /** * bpf_check_classic - verify socket filter code * @filter: filter to verify * @flen: length of filter * * Check the user's filter code. If we let some ugly * filter code slip through kaboom! The filter must contain * no references or jumps that are out of range, no illegal * instructions, and must end with a RET instruction. * * All jumps are forward as they are not signed. * * Returns 0 if the rule set is legal or -EINVAL if not. */ static int bpf_check_classic(const struct sock_filter *filter, unsigned int flen) { bool anc_found; int pc; /* Check the filter code now */ for (pc = 0; pc < flen; pc++) { const struct sock_filter *ftest = &filter[pc]; /* May we actually operate on this code? */ if (!chk_code_allowed(ftest->code)) return -EINVAL; /* Some instructions need special checks */ switch (ftest->code) { case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: /* Check for division by zero */ if (ftest->k == 0) return -EINVAL; break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: if (ftest->k >= 32) return -EINVAL; break; case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: case BPF_ST: case BPF_STX: /* Check for invalid memory addresses */ if (ftest->k >= BPF_MEMWORDS) return -EINVAL; break; case BPF_JMP | BPF_JA: /* Note, the large ftest->k might cause loops. * Compare this with conditional jumps below, * where offsets are limited. --ANK (981016) */ if (ftest->k >= (unsigned int)(flen - pc - 1)) return -EINVAL; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: /* Both conditionals must be safe */ if (pc + ftest->jt + 1 >= flen || pc + ftest->jf + 1 >= flen) return -EINVAL; break; case BPF_LD | BPF_W | BPF_ABS: case BPF_LD | BPF_H | BPF_ABS: case BPF_LD | BPF_B | BPF_ABS: anc_found = false; if (bpf_anc_helper(ftest) & BPF_ANC) anc_found = true; /* Ancillary operation unknown or unsupported */ if (anc_found == false && ftest->k >= SKF_AD_OFF) return -EINVAL; } } /* Last instruction must be a RET code */ switch (filter[flen - 1].code) { case BPF_RET | BPF_K: case BPF_RET | BPF_A: return check_load_and_stores(filter, flen); } return -EINVAL; } static int bpf_prog_store_orig_filter(struct bpf_prog *fp, const struct sock_fprog *fprog) { unsigned int fsize = bpf_classic_proglen(fprog); struct sock_fprog_kern *fkprog; fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL); if (!fp->orig_prog) return -ENOMEM; fkprog = fp->orig_prog; fkprog->len = fprog->len; fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL | __GFP_NOWARN); if (!fkprog->filter) { kfree(fp->orig_prog); return -ENOMEM; } return 0; } static void bpf_release_orig_filter(struct bpf_prog *fp) { struct sock_fprog_kern *fprog = fp->orig_prog; if (fprog) { kfree(fprog->filter); kfree(fprog); } } static void __bpf_prog_release(struct bpf_prog *prog) { if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) { bpf_prog_put(prog); } else { bpf_release_orig_filter(prog); bpf_prog_free(prog); } } static void __sk_filter_release(struct sk_filter *fp) { __bpf_prog_release(fp->prog); kfree(fp); } /** * sk_filter_release_rcu - Release a socket filter by rcu_head * @rcu: rcu_head that contains the sk_filter to free */ static void sk_filter_release_rcu(struct rcu_head *rcu) { struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); __sk_filter_release(fp); } /** * sk_filter_release - release a socket filter * @fp: filter to remove * * Remove a filter from a socket and release its resources. */ static void sk_filter_release(struct sk_filter *fp) { if (refcount_dec_and_test(&fp->refcnt)) call_rcu(&fp->rcu, sk_filter_release_rcu); } void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) { u32 filter_size = bpf_prog_size(fp->prog->len); atomic_sub(filter_size, &sk->sk_omem_alloc); sk_filter_release(fp); } /* try to charge the socket memory if there is space available * return true on success */ static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp) { u32 filter_size = bpf_prog_size(fp->prog->len); int optmem_max = READ_ONCE(sysctl_optmem_max); /* same check as in sock_kmalloc() */ if (filter_size <= optmem_max && atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) { atomic_add(filter_size, &sk->sk_omem_alloc); return true; } return false; } bool sk_filter_charge(struct sock *sk, struct sk_filter *fp) { if (!refcount_inc_not_zero(&fp->refcnt)) return false; if (!__sk_filter_charge(sk, fp)) { sk_filter_release(fp); return false; } return true; } static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp) { struct sock_filter *old_prog; struct bpf_prog *old_fp; int err, new_len, old_len = fp->len; bool seen_ld_abs = false; /* We are free to overwrite insns et al right here as it * won't be used at this point in time anymore internally * after the migration to the internal BPF instruction * representation. */ BUILD_BUG_ON(sizeof(struct sock_filter) != sizeof(struct bpf_insn)); /* Conversion cannot happen on overlapping memory areas, * so we need to keep the user BPF around until the 2nd * pass. At this time, the user BPF is stored in fp->insns. */ old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter), GFP_KERNEL | __GFP_NOWARN); if (!old_prog) { err = -ENOMEM; goto out_err; } /* 1st pass: calculate the new program length. */ err = bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs); if (err) goto out_err_free; /* Expand fp for appending the new filter representation. */ old_fp = fp; fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0); if (!fp) { /* The old_fp is still around in case we couldn't * allocate new memory, so uncharge on that one. */ fp = old_fp; err = -ENOMEM; goto out_err_free; } fp->len = new_len; /* 2nd pass: remap sock_filter insns into bpf_insn insns. */ err = bpf_convert_filter(old_prog, old_len, fp, &new_len, &seen_ld_abs); if (err) /* 2nd bpf_convert_filter() can fail only if it fails * to allocate memory, remapping must succeed. Note, * that at this time old_fp has already been released * by krealloc(). */ goto out_err_free; fp = bpf_prog_select_runtime(fp, &err); if (err) goto out_err_free; kfree(old_prog); return fp; out_err_free: kfree(old_prog); out_err: __bpf_prog_release(fp); return ERR_PTR(err); } static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp, bpf_aux_classic_check_t trans) { int err; fp->bpf_func = NULL; fp->jited = 0; err = bpf_check_classic(fp->insns, fp->len); if (err) { __bpf_prog_release(fp); return ERR_PTR(err); } /* There might be additional checks and transformations * needed on classic filters, f.e. in case of seccomp. */ if (trans) { err = trans(fp->insns, fp->len); if (err) { __bpf_prog_release(fp); return ERR_PTR(err); } } /* Probe if we can JIT compile the filter and if so, do * the compilation of the filter. */ bpf_jit_compile(fp); /* JIT compiler couldn't process this filter, so do the * internal BPF translation for the optimized interpreter. */ if (!fp->jited) fp = bpf_migrate_filter(fp); return fp; } /** * bpf_prog_create - create an unattached filter * @pfp: the unattached filter that is created * @fprog: the filter program * * Create a filter independent of any socket. We first run some * sanity checks on it to make sure it does not explode on us later. * If an error occurs or there is insufficient memory for the filter * a negative errno code is returned. On success the return is zero. */ int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *fp; /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return -EINVAL; fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!fp) return -ENOMEM; memcpy(fp->insns, fprog->filter, fsize); fp->len = fprog->len; /* Since unattached filters are not copied back to user * space through sk_get_filter(), we do not need to hold * a copy here, and can spare us the work. */ fp->orig_prog = NULL; /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ fp = bpf_prepare_filter(fp, NULL); if (IS_ERR(fp)) return PTR_ERR(fp); *pfp = fp; return 0; } EXPORT_SYMBOL_GPL(bpf_prog_create); /** * bpf_prog_create_from_user - create an unattached filter from user buffer * @pfp: the unattached filter that is created * @fprog: the filter program * @trans: post-classic verifier transformation handler * @save_orig: save classic BPF program * * This function effectively does the same as bpf_prog_create(), only * that it builds up its insns buffer from user space provided buffer. * It also allows for passing a bpf_aux_classic_check_t handler. */ int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, bpf_aux_classic_check_t trans, bool save_orig) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *fp; int err; /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return -EINVAL; fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!fp) return -ENOMEM; if (copy_from_user(fp->insns, fprog->filter, fsize)) { __bpf_prog_free(fp); return -EFAULT; } fp->len = fprog->len; fp->orig_prog = NULL; if (save_orig) { err = bpf_prog_store_orig_filter(fp, fprog); if (err) { __bpf_prog_free(fp); return -ENOMEM; } } /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ fp = bpf_prepare_filter(fp, trans); if (IS_ERR(fp)) return PTR_ERR(fp); *pfp = fp; return 0; } EXPORT_SYMBOL_GPL(bpf_prog_create_from_user); void bpf_prog_destroy(struct bpf_prog *fp) { __bpf_prog_release(fp); } EXPORT_SYMBOL_GPL(bpf_prog_destroy); static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk) { struct sk_filter *fp, *old_fp; fp = kmalloc(sizeof(*fp), GFP_KERNEL); if (!fp) return -ENOMEM; fp->prog = prog; if (!__sk_filter_charge(sk, fp)) { kfree(fp); return -ENOMEM; } refcount_set(&fp->refcnt, 1); old_fp = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_filter, fp); if (old_fp) sk_filter_uncharge(sk, old_fp); return 0; } static struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *prog; int err; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return ERR_PTR(-EPERM); /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return ERR_PTR(-EINVAL); prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!prog) return ERR_PTR(-ENOMEM); if (copy_from_user(prog->insns, fprog->filter, fsize)) { __bpf_prog_free(prog); return ERR_PTR(-EFAULT); } prog->len = fprog->len; err = bpf_prog_store_orig_filter(prog, fprog); if (err) { __bpf_prog_free(prog); return ERR_PTR(-ENOMEM); } /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ return bpf_prepare_filter(prog, NULL); } /** * sk_attach_filter - attach a socket filter * @fprog: the filter program * @sk: the socket to use * * Attach the user's filter code. We first run some sanity checks on * it to make sure it does not explode on us later. If an error * occurs or there is insufficient memory for the filter a negative * errno code is returned. On success the return is zero. */ int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) { struct bpf_prog *prog = __get_filter(fprog, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); err = __sk_attach_prog(prog, sk); if (err < 0) { __bpf_prog_release(prog); return err; } return 0; } EXPORT_SYMBOL_GPL(sk_attach_filter); int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk) { struct bpf_prog *prog = __get_filter(fprog, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) err = -ENOMEM; else err = reuseport_attach_prog(sk, prog); if (err) __bpf_prog_release(prog); return err; } static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk) { if (sock_flag(sk, SOCK_FILTER_LOCKED)) return ERR_PTR(-EPERM); return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); } int sk_attach_bpf(u32 ufd, struct sock *sk) { struct bpf_prog *prog = __get_bpf(ufd, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); err = __sk_attach_prog(prog, sk); if (err < 0) { bpf_prog_put(prog); return err; } return 0; } int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk) { struct bpf_prog *prog; int err; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return -EPERM; prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); if (PTR_ERR(prog) == -EINVAL) prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT); if (IS_ERR(prog)) return PTR_ERR(prog); if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) { /* Like other non BPF_PROG_TYPE_SOCKET_FILTER * bpf prog (e.g. sockmap). It depends on the * limitation imposed by bpf_prog_load(). * Hence, sysctl_optmem_max is not checked. */ if ((sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_DGRAM) || (sk->sk_protocol != IPPROTO_UDP && sk->sk_protocol != IPPROTO_TCP) || (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) { err = -ENOTSUPP; goto err_prog_put; } } else { /* BPF_PROG_TYPE_SOCKET_FILTER */ if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) { err = -ENOMEM; goto err_prog_put; } } err = reuseport_attach_prog(sk, prog); err_prog_put: if (err) bpf_prog_put(prog); return err; } void sk_reuseport_prog_free(struct bpf_prog *prog) { if (!prog) return; if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) bpf_prog_put(prog); else bpf_prog_destroy(prog); } struct bpf_scratchpad { union { __be32 diff[MAX_BPF_STACK / sizeof(__be32)]; u8 buff[MAX_BPF_STACK]; }; }; static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp); static inline int __bpf_try_make_writable(struct sk_buff *skb, unsigned int write_len) { return skb_ensure_writable(skb, write_len); } static inline int bpf_try_make_writable(struct sk_buff *skb, unsigned int write_len) { int err = __bpf_try_make_writable(skb, write_len); bpf_compute_data_pointers(skb); return err; } static int bpf_try_make_head_writable(struct sk_buff *skb) { return bpf_try_make_writable(skb, skb_headlen(skb)); } static inline void bpf_push_mac_rcsum(struct sk_buff *skb) { if (skb_at_tc_ingress(skb)) skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len); } static inline void bpf_pull_mac_rcsum(struct sk_buff *skb) { if (skb_at_tc_ingress(skb)) skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len); } BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset, const void *, from, u32, len, u64, flags) { void *ptr; if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH))) return -EINVAL; if (unlikely(offset > INT_MAX)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + len))) return -EFAULT; ptr = skb->data + offset; if (flags & BPF_F_RECOMPUTE_CSUM) __skb_postpull_rcsum(skb, ptr, len, offset); memcpy(ptr, from, len); if (flags & BPF_F_RECOMPUTE_CSUM) __skb_postpush_rcsum(skb, ptr, len, offset); if (flags & BPF_F_INVALIDATE_HASH) skb_clear_hash(skb); return 0; } static const struct bpf_func_proto bpf_skb_store_bytes_proto = { .func = bpf_skb_store_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset, void *, to, u32, len) { void *ptr; if (unlikely(offset > INT_MAX)) goto err_clear; ptr = skb_header_pointer(skb, offset, len, to); if (unlikely(!ptr)) goto err_clear; if (ptr != to) memcpy(to, ptr, len); return 0; err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_skb_load_bytes_proto = { .func = bpf_skb_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; BPF_CALL_4(bpf_flow_dissector_load_bytes, const struct bpf_flow_dissector *, ctx, u32, offset, void *, to, u32, len) { void *ptr; if (unlikely(offset > 0xffff)) goto err_clear; if (unlikely(!ctx->skb)) goto err_clear; ptr = skb_header_pointer(ctx->skb, offset, len, to); if (unlikely(!ptr)) goto err_clear; if (ptr != to) memcpy(to, ptr, len); return 0; err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = { .func = bpf_flow_dissector_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb, u32, offset, void *, to, u32, len, u32, start_header) { u8 *end = skb_tail_pointer(skb); u8 *start, *ptr; if (unlikely(offset > 0xffff)) goto err_clear; switch (start_header) { case BPF_HDR_START_MAC: if (unlikely(!skb_mac_header_was_set(skb))) goto err_clear; start = skb_mac_header(skb); break; case BPF_HDR_START_NET: start = skb_network_header(skb); break; default: goto err_clear; } ptr = start + offset; if (likely(ptr + len <= end)) { memcpy(to, ptr, len); return 0; } err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = { .func = bpf_skb_load_bytes_relative, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len) { /* Idea is the following: should the needed direct read/write * test fail during runtime, we can pull in more data and redo * again, since implicitly, we invalidate previous checks here. * * Or, since we know how much we need to make read/writeable, * this can be done once at the program beginning for direct * access case. By this we overcome limitations of only current * headroom being accessible. */ return bpf_try_make_writable(skb, len ? : skb_headlen(skb)); } static const struct bpf_func_proto bpf_skb_pull_data_proto = { .func = bpf_skb_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk) { return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL; } static const struct bpf_func_proto bpf_sk_fullsock_proto = { .func = bpf_sk_fullsock, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_SOCK_COMMON, }; static inline int sk_skb_try_make_writable(struct sk_buff *skb, unsigned int write_len) { int err = __bpf_try_make_writable(skb, write_len); bpf_compute_data_end_sk_skb(skb); return err; } BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len) { /* Idea is the following: should the needed direct read/write * test fail during runtime, we can pull in more data and redo * again, since implicitly, we invalidate previous checks here. * * Or, since we know how much we need to make read/writeable, * this can be done once at the program beginning for direct * access case. By this we overcome limitations of only current * headroom being accessible. */ return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb)); } static const struct bpf_func_proto sk_skb_pull_data_proto = { .func = sk_skb_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset, u64, from, u64, to, u64, flags) { __sum16 *ptr; if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK))) return -EINVAL; if (unlikely(offset > 0xffff || offset & 1)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) return -EFAULT; ptr = (__sum16 *)(skb->data + offset); switch (flags & BPF_F_HDR_FIELD_MASK) { case 0: if (unlikely(from != 0)) return -EINVAL; csum_replace_by_diff(ptr, to); break; case 2: csum_replace2(ptr, from, to); break; case 4: csum_replace4(ptr, from, to); break; default: return -EINVAL; } return 0; } static const struct bpf_func_proto bpf_l3_csum_replace_proto = { .func = bpf_l3_csum_replace, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset, u64, from, u64, to, u64, flags) { bool is_pseudo = flags & BPF_F_PSEUDO_HDR; bool is_mmzero = flags & BPF_F_MARK_MANGLED_0; bool do_mforce = flags & BPF_F_MARK_ENFORCE; __sum16 *ptr; if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE | BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK))) return -EINVAL; if (unlikely(offset > 0xffff || offset & 1)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) return -EFAULT; ptr = (__sum16 *)(skb->data + offset); if (is_mmzero && !do_mforce && !*ptr) return 0; switch (flags & BPF_F_HDR_FIELD_MASK) { case 0: if (unlikely(from != 0)) return -EINVAL; inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo); break; case 2: inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo); break; case 4: inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo); break; default: return -EINVAL; } if (is_mmzero && !*ptr) *ptr = CSUM_MANGLED_0; return 0; } static const struct bpf_func_proto bpf_l4_csum_replace_proto = { .func = bpf_l4_csum_replace, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size, __be32 *, to, u32, to_size, __wsum, seed) { struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp); u32 diff_size = from_size + to_size; int i, j = 0; /* This is quite flexible, some examples: * * from_size == 0, to_size > 0, seed := csum --> pushing data * from_size > 0, to_size == 0, seed := csum --> pulling data * from_size > 0, to_size > 0, seed := 0 --> diffing data * * Even for diffing, from_size and to_size don't need to be equal. */ if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) || diff_size > sizeof(sp->diff))) return -EINVAL; for (i = 0; i < from_size / sizeof(__be32); i++, j++) sp->diff[j] = ~from[i]; for (i = 0; i < to_size / sizeof(__be32); i++, j++) sp->diff[j] = to[i]; return csum_partial(sp->diff, diff_size, seed); } static const struct bpf_func_proto bpf_csum_diff_proto = { .func = bpf_csum_diff, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM_OR_NULL, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_MEM_OR_NULL, .arg4_type = ARG_CONST_SIZE_OR_ZERO, .arg5_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum) { /* The interface is to be used in combination with bpf_csum_diff() * for direct packet writes. csum rotation for alignment as well * as emulating csum_sub() can be done from the eBPF program. */ if (skb->ip_summed == CHECKSUM_COMPLETE) return (skb->csum = csum_add(skb->csum, csum)); return -ENOTSUPP; } static const struct bpf_func_proto bpf_csum_update_proto = { .func = bpf_csum_update, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level) { /* The interface is to be used in combination with bpf_skb_adjust_room() * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET * is passed as flags, for example. */ switch (level) { case BPF_CSUM_LEVEL_INC: __skb_incr_checksum_unnecessary(skb); break; case BPF_CSUM_LEVEL_DEC: __skb_decr_checksum_unnecessary(skb); break; case BPF_CSUM_LEVEL_RESET: __skb_reset_checksum_unnecessary(skb); break; case BPF_CSUM_LEVEL_QUERY: return skb->ip_summed == CHECKSUM_UNNECESSARY ? skb->csum_level : -EACCES; default: return -EINVAL; } return 0; } static const struct bpf_func_proto bpf_csum_level_proto = { .func = bpf_csum_level, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb) { return dev_forward_skb(dev, skb); } static inline int __bpf_rx_skb_no_mac(struct net_device *dev, struct sk_buff *skb) { int ret = ____dev_forward_skb(dev, skb); if (likely(!ret)) { skb->dev = dev; ret = netif_rx(skb); } return ret; } static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb) { int ret; if (dev_xmit_recursion()) { net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); kfree_skb(skb); return -ENETDOWN; } skb->dev = dev; skb->tstamp = 0; dev_xmit_recursion_inc(); ret = dev_queue_xmit(skb); dev_xmit_recursion_dec(); return ret; } static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev, u32 flags) { unsigned int mlen = skb_network_offset(skb); if (unlikely(skb->len <= mlen)) { kfree_skb(skb); return -ERANGE; } if (mlen) { __skb_pull(skb, mlen); if (unlikely(!skb->len)) { kfree_skb(skb); return -ERANGE; } /* At ingress, the mac header has already been pulled once. * At egress, skb_pospull_rcsum has to be done in case that * the skb is originated from ingress (i.e. a forwarded skb) * to ensure that rcsum starts at net header. */ if (!skb_at_tc_ingress(skb)) skb_postpull_rcsum(skb, skb_mac_header(skb), mlen); } skb_pop_mac_header(skb); skb_reset_mac_len(skb); return flags & BPF_F_INGRESS ? __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb); } static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev, u32 flags) { /* Verify that a link layer header is carried */ if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) { kfree_skb(skb); return -ERANGE; } bpf_push_mac_rcsum(skb); return flags & BPF_F_INGRESS ? __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb); } static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev, u32 flags) { if (dev_is_mac_header_xmit(dev)) return __bpf_redirect_common(skb, dev, flags); else return __bpf_redirect_no_mac(skb, dev, flags); } #if IS_ENABLED(CONFIG_IPV6) static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { u32 hh_len = LL_RESERVED_SPACE(dev); const struct in6_addr *nexthop; struct dst_entry *dst = NULL; struct neighbour *neigh; if (dev_xmit_recursion()) { net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); goto out_drop; } skb->dev = dev; skb->tstamp = 0; if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { struct sk_buff *skb2; skb2 = skb_realloc_headroom(skb, hh_len); if (unlikely(!skb2)) { kfree_skb(skb); return -ENOMEM; } if (skb->sk) skb_set_owner_w(skb2, skb->sk); consume_skb(skb); skb = skb2; } rcu_read_lock_bh(); if (!nh) { dst = skb_dst(skb); nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst), &ipv6_hdr(skb)->daddr); } else { nexthop = &nh->ipv6_nh; } neigh = ip_neigh_gw6(dev, nexthop); if (likely(!IS_ERR(neigh))) { int ret; sock_confirm_neigh(skb, neigh); dev_xmit_recursion_inc(); ret = neigh_output(neigh, skb, false); dev_xmit_recursion_dec(); rcu_read_unlock_bh(); return ret; } rcu_read_unlock_bh(); if (dst) IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); out_drop: kfree_skb(skb); return -ENETDOWN; } static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); struct net *net = dev_net(dev); int err, ret = NET_XMIT_DROP; if (!nh) { struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_flags = FLOWI_FLAG_ANYSRC, .flowi6_mark = skb->mark, .flowlabel = ip6_flowinfo(ip6h), .flowi6_oif = dev->ifindex, .flowi6_proto = ip6h->nexthdr, .daddr = ip6h->daddr, .saddr = ip6h->saddr, }; dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL); if (IS_ERR(dst)) goto out_drop; skb_dst_set(skb, dst); } else if (nh->nh_family != AF_INET6) { goto out_drop; } err = bpf_out_neigh_v6(net, skb, dev, nh); if (unlikely(net_xmit_eval(err))) dev->stats.tx_errors++; else ret = NET_XMIT_SUCCESS; goto out_xmit; out_drop: dev->stats.tx_errors++; kfree_skb(skb); out_xmit: return ret; } #else static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { kfree_skb(skb); return NET_XMIT_DROP; } #endif /* CONFIG_IPV6 */ #if IS_ENABLED(CONFIG_INET) static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { u32 hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; bool is_v6gw = false; if (dev_xmit_recursion()) { net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); goto out_drop; } skb->dev = dev; skb->tstamp = 0; if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { struct sk_buff *skb2; skb2 = skb_realloc_headroom(skb, hh_len); if (unlikely(!skb2)) { kfree_skb(skb); return -ENOMEM; } if (skb->sk) skb_set_owner_w(skb2, skb->sk); consume_skb(skb); skb = skb2; } rcu_read_lock_bh(); if (!nh) { struct dst_entry *dst = skb_dst(skb); struct rtable *rt = container_of(dst, struct rtable, dst); neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); } else if (nh->nh_family == AF_INET6) { neigh = ip_neigh_gw6(dev, &nh->ipv6_nh); is_v6gw = true; } else if (nh->nh_family == AF_INET) { neigh = ip_neigh_gw4(dev, nh->ipv4_nh); } else { rcu_read_unlock_bh(); goto out_drop; } if (likely(!IS_ERR(neigh))) { int ret; sock_confirm_neigh(skb, neigh); dev_xmit_recursion_inc(); ret = neigh_output(neigh, skb, is_v6gw); dev_xmit_recursion_dec(); rcu_read_unlock_bh(); return ret; } rcu_read_unlock_bh(); out_drop: kfree_skb(skb); return -ENETDOWN; } static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { const struct iphdr *ip4h = ip_hdr(skb); struct net *net = dev_net(dev); int err, ret = NET_XMIT_DROP; if (!nh) { struct flowi4 fl4 = { .flowi4_flags = FLOWI_FLAG_ANYSRC, .flowi4_mark = skb->mark, .flowi4_tos = RT_TOS(ip4h->tos), .flowi4_oif = dev->ifindex, .flowi4_proto = ip4h->protocol, .daddr = ip4h->daddr, .saddr = ip4h->saddr, }; struct rtable *rt; rt = ip_route_output_flow(net, &fl4, NULL); if (IS_ERR(rt)) goto out_drop; if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { ip_rt_put(rt); goto out_drop; } skb_dst_set(skb, &rt->dst); } err = bpf_out_neigh_v4(net, skb, dev, nh); if (unlikely(net_xmit_eval(err))) dev->stats.tx_errors++; else ret = NET_XMIT_SUCCESS; goto out_xmit; out_drop: dev->stats.tx_errors++; kfree_skb(skb); out_xmit: return ret; } #else static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { kfree_skb(skb); return NET_XMIT_DROP; } #endif /* CONFIG_INET */ static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { struct ethhdr *ethh = eth_hdr(skb); if (unlikely(skb->mac_header >= skb->network_header)) goto out; bpf_push_mac_rcsum(skb); if (is_multicast_ether_addr(ethh->h_dest)) goto out; skb_pull(skb, sizeof(*ethh)); skb_unset_mac_header(skb); skb_reset_network_header(skb); if (skb->protocol == htons(ETH_P_IP)) return __bpf_redirect_neigh_v4(skb, dev, nh); else if (skb->protocol == htons(ETH_P_IPV6)) return __bpf_redirect_neigh_v6(skb, dev, nh); out: kfree_skb(skb); return -ENOTSUPP; } /* Internal, non-exposed redirect flags. */ enum { BPF_F_NEIGH = (1ULL << 1), BPF_F_PEER = (1ULL << 2), BPF_F_NEXTHOP = (1ULL << 3), #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP) }; BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags) { struct net_device *dev; struct sk_buff *clone; int ret; if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) return -EINVAL; dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex); if (unlikely(!dev)) return -EINVAL; clone = skb_clone(skb, GFP_ATOMIC); if (unlikely(!clone)) return -ENOMEM; /* For direct write, we need to keep the invariant that the skbs * we're dealing with need to be uncloned. Should uncloning fail * here, we need to free the just generated clone to unclone once * again. */ ret = bpf_try_make_head_writable(skb); if (unlikely(ret)) { kfree_skb(clone); return -ENOMEM; } return __bpf_redirect(clone, dev, flags); } static const struct bpf_func_proto bpf_clone_redirect_proto = { .func = bpf_clone_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info); int skb_do_redirect(struct sk_buff *skb) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); struct net *net = dev_net(skb->dev); struct net_device *dev; u32 flags = ri->flags; dev = dev_get_by_index_rcu(net, ri->tgt_index); ri->tgt_index = 0; ri->flags = 0; if (unlikely(!dev)) goto out_drop; if (flags & BPF_F_PEER) { const struct net_device_ops *ops = dev->netdev_ops; if (unlikely(!ops->ndo_get_peer_dev || !skb_at_tc_ingress(skb))) goto out_drop; dev = ops->ndo_get_peer_dev(dev); if (unlikely(!dev || !is_skb_forwardable(dev, skb) || net_eq(net, dev_net(dev)))) goto out_drop; skb->dev = dev; return -EAGAIN; } return flags & BPF_F_NEIGH ? __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ? &ri->nh : NULL) : __bpf_redirect(skb, dev, flags); out_drop: kfree_skb(skb); return -EINVAL; } BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) return TC_ACT_SHOT; ri->flags = flags; ri->tgt_index = ifindex; return TC_ACT_REDIRECT; } static const struct bpf_func_proto bpf_redirect_proto = { .func = bpf_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); if (unlikely(flags)) return TC_ACT_SHOT; ri->flags = BPF_F_PEER; ri->tgt_index = ifindex; return TC_ACT_REDIRECT; } static const struct bpf_func_proto bpf_redirect_peer_proto = { .func = bpf_redirect_peer, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params, int, plen, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); if (unlikely((plen && plen < sizeof(*params)) || flags)) return TC_ACT_SHOT; ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0); ri->tgt_index = ifindex; BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params)); if (plen) memcpy(&ri->nh, params, sizeof(ri->nh)); return TC_ACT_REDIRECT; } static const struct bpf_func_proto bpf_redirect_neigh_proto = { .func = bpf_redirect_neigh, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_PTR_TO_MEM_OR_NULL, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes) { msg->apply_bytes = bytes; return 0; } static const struct bpf_func_proto bpf_msg_apply_bytes_proto = { .func = bpf_msg_apply_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes) { msg->cork_bytes = bytes; return 0; } static void sk_msg_reset_curr(struct sk_msg *msg) { if (!msg->sg.size) { msg->sg.curr = msg->sg.start; msg->sg.copybreak = 0; } else { u32 i = msg->sg.end; sk_msg_iter_var_prev(i); msg->sg.curr = i; msg->sg.copybreak = msg->sg.data[i].length; } } static const struct bpf_func_proto bpf_msg_cork_bytes_proto = { .func = bpf_msg_cork_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start, u32, end, u64, flags) { u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start; u32 first_sge, last_sge, i, shift, bytes_sg_total; struct scatterlist *sge; u8 *raw, *to, *from; struct page *page; if (unlikely(flags || end <= start)) return -EINVAL; /* First find the starting scatterlist element */ i = msg->sg.start; do { offset += len; len = sk_msg_elem(msg, i)->length; if (start < offset + len) break; sk_msg_iter_var_next(i); } while (i != msg->sg.end); if (unlikely(start >= offset + len)) return -EINVAL; first_sge = i; /* The start may point into the sg element so we need to also * account for the headroom. */ bytes_sg_total = start - offset + bytes; if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len) goto out; /* At this point we need to linearize multiple scatterlist * elements or a single shared page. Either way we need to * copy into a linear buffer exclusively owned by BPF. Then * place the buffer in the scatterlist and fixup the original * entries by removing the entries now in the linear buffer * and shifting the remaining entries. For now we do not try * to copy partial entries to avoid complexity of running out * of sg_entry slots. The downside is reading a single byte * will copy the entire sg entry. */ do { copy += sk_msg_elem(msg, i)->length; sk_msg_iter_var_next(i); if (bytes_sg_total <= copy) break; } while (i != msg->sg.end); last_sge = i; if (unlikely(bytes_sg_total > copy)) return -EINVAL; page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, get_order(copy)); if (unlikely(!page)) return -ENOMEM; raw = page_address(page); i = first_sge; do { sge = sk_msg_elem(msg, i); from = sg_virt(sge); len = sge->length; to = raw + poffset; memcpy(to, from, len); poffset += len; sge->length = 0; put_page(sg_page(sge)); sk_msg_iter_var_next(i); } while (i != last_sge); sg_set_page(&msg->sg.data[first_sge], page, copy, 0); /* To repair sg ring we need to shift entries. If we only * had a single entry though we can just replace it and * be done. Otherwise walk the ring and shift the entries. */ WARN_ON_ONCE(last_sge == first_sge); shift = last_sge > first_sge ? last_sge - first_sge - 1 : NR_MSG_FRAG_IDS - first_sge + last_sge - 1; if (!shift) goto out; i = first_sge; sk_msg_iter_var_next(i); do { u32 move_from; if (i + shift >= NR_MSG_FRAG_IDS) move_from = i + shift - NR_MSG_FRAG_IDS; else move_from = i + shift; if (move_from == msg->sg.end) break; msg->sg.data[i] = msg->sg.data[move_from]; msg->sg.data[move_from].length = 0; msg->sg.data[move_from].page_link = 0; msg->sg.data[move_from].offset = 0; sk_msg_iter_var_next(i); } while (1); msg->sg.end = msg->sg.end - shift > msg->sg.end ? msg->sg.end - shift + NR_MSG_FRAG_IDS : msg->sg.end - shift; out: sk_msg_reset_curr(msg); msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset; msg->data_end = msg->data + bytes; return 0; } static const struct bpf_func_proto bpf_msg_pull_data_proto = { .func = bpf_msg_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start, u32, len, u64, flags) { struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge; u32 new, i = 0, l = 0, space, copy = 0, offset = 0; u8 *raw, *to, *from; struct page *page; if (unlikely(flags)) return -EINVAL; if (unlikely(len == 0)) return 0; /* First find the starting scatterlist element */ i = msg->sg.start; do { offset += l; l = sk_msg_elem(msg, i)->length; if (start < offset + l) break; sk_msg_iter_var_next(i); } while (i != msg->sg.end); if (start > offset + l) return -EINVAL; space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); /* If no space available will fallback to copy, we need at * least one scatterlist elem available to push data into * when start aligns to the beginning of an element or two * when it falls inside an element. We handle the start equals * offset case because its the common case for inserting a * header. */ if (!space || (space == 1 && start != offset)) copy = msg->sg.data[i].length; page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, get_order(copy + len)); if (unlikely(!page)) return -ENOMEM; if (copy) { int front, back; raw = page_address(page); if (i == msg->sg.end) sk_msg_iter_var_prev(i); psge = sk_msg_elem(msg, i); front = start - offset; back = psge->length - front; from = sg_virt(psge); if (front) memcpy(raw, from, front); if (back) { from += front; to = raw + front + len; memcpy(to, from, back); } put_page(sg_page(psge)); new = i; goto place_new; } if (start - offset) { if (i == msg->sg.end) sk_msg_iter_var_prev(i); psge = sk_msg_elem(msg, i); rsge = sk_msg_elem_cpy(msg, i); psge->length = start - offset; rsge.length -= psge->length; rsge.offset += start; sk_msg_iter_var_next(i); sg_unmark_end(psge); sg_unmark_end(&rsge); } /* Slot(s) to place newly allocated data */ sk_msg_iter_next(msg, end); new = i; sk_msg_iter_var_next(i); if (i == msg->sg.end) { if (!rsge.length) goto place_new; sk_msg_iter_next(msg, end); goto place_new; } /* Shift one or two slots as needed */ sge = sk_msg_elem_cpy(msg, new); sg_unmark_end(&sge); nsge = sk_msg_elem_cpy(msg, i); if (rsge.length) { sk_msg_iter_var_next(i); nnsge = sk_msg_elem_cpy(msg, i); sk_msg_iter_next(msg, end); } while (i != msg->sg.end) { msg->sg.data[i] = sge; sge = nsge; sk_msg_iter_var_next(i); if (rsge.length) { nsge = nnsge; nnsge = sk_msg_elem_cpy(msg, i); } else { nsge = sk_msg_elem_cpy(msg, i); } } place_new: /* Place newly allocated data buffer */ sk_mem_charge(msg->sk, len); msg->sg.size += len; __clear_bit(new, &msg->sg.copy); sg_set_page(&msg->sg.data[new], page, len + copy, 0); if (rsge.length) { get_page(sg_page(&rsge)); sk_msg_iter_var_next(new); msg->sg.data[new] = rsge; } sk_msg_reset_curr(msg); sk_msg_compute_data_pointers(msg); return 0; } static const struct bpf_func_proto bpf_msg_push_data_proto = { .func = bpf_msg_push_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; static void sk_msg_shift_left(struct sk_msg *msg, int i) { struct scatterlist *sge = sk_msg_elem(msg, i); int prev; put_page(sg_page(sge)); do { prev = i; sk_msg_iter_var_next(i); msg->sg.data[prev] = msg->sg.data[i]; } while (i != msg->sg.end); sk_msg_iter_prev(msg, end); } static void sk_msg_shift_right(struct sk_msg *msg, int i) { struct scatterlist tmp, sge; sk_msg_iter_next(msg, end); sge = sk_msg_elem_cpy(msg, i); sk_msg_iter_var_next(i); tmp = sk_msg_elem_cpy(msg, i); while (i != msg->sg.end) { msg->sg.data[i] = sge; sk_msg_iter_var_next(i); sge = tmp; tmp = sk_msg_elem_cpy(msg, i); } } BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start, u32, len, u64, flags) { u32 i = 0, l = 0, space, offset = 0; u64 last = start + len; int pop; if (unlikely(flags)) return -EINVAL; if (unlikely(len == 0)) return 0; /* First find the starting scatterlist element */ i = msg->sg.start; do { offset += l; l = sk_msg_elem(msg, i)->length; if (start < offset + l) break; sk_msg_iter_var_next(i); } while (i != msg->sg.end); /* Bounds checks: start and pop must be inside message */ if (start >= offset + l || last > msg->sg.size) return -EINVAL; space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); pop = len; /* --------------| offset * -| start |-------- len -------| * * |----- a ----|-------- pop -------|----- b ----| * |______________________________________________| length * * * a: region at front of scatter element to save * b: region at back of scatter element to save when length > A + pop * pop: region to pop from element, same as input 'pop' here will be * decremented below per iteration. * * Two top-level cases to handle when start != offset, first B is non * zero and second B is zero corresponding to when a pop includes more * than one element. * * Then if B is non-zero AND there is no space allocate space and * compact A, B regions into page. If there is space shift ring to * the rigth free'ing the next element in ring to place B, leaving * A untouched except to reduce length. */ if (start != offset) { struct scatterlist *nsge, *sge = sk_msg_elem(msg, i); int a = start - offset; int b = sge->length - pop - a; sk_msg_iter_var_next(i); if (b > 0) { if (space) { sge->length = a; sk_msg_shift_right(msg, i); nsge = sk_msg_elem(msg, i); get_page(sg_page(sge)); sg_set_page(nsge, sg_page(sge), b, sge->offset + pop + a); } else { struct page *page, *orig; u8 *to, *from; page = alloc_pages(__GFP_NOWARN | __GFP_COMP | GFP_ATOMIC, get_order(a + b)); if (unlikely(!page)) return -ENOMEM; orig = sg_page(sge); from = sg_virt(sge); to = page_address(page); memcpy(to, from, a); memcpy(to + a, from + a + pop, b); sg_set_page(sge, page, a + b, 0); put_page(orig); } pop = 0; } else { pop -= (sge->length - a); sge->length = a; } } /* From above the current layout _must_ be as follows, * * -| offset * -| start * * |---- pop ---|---------------- b ------------| * |____________________________________________| length * * Offset and start of the current msg elem are equal because in the * previous case we handled offset != start and either consumed the * entire element and advanced to the next element OR pop == 0. * * Two cases to handle here are first pop is less than the length * leaving some remainder b above. Simply adjust the element's layout * in this case. Or pop >= length of the element so that b = 0. In this * case advance to next element decrementing pop. */ while (pop) { struct scatterlist *sge = sk_msg_elem(msg, i); if (pop < sge->length) { sge->length -= pop; sge->offset += pop; pop = 0; } else { pop -= sge->length; sk_msg_shift_left(msg, i); } } sk_mem_uncharge(msg->sk, len - pop); msg->sg.size -= (len - pop); sk_msg_reset_curr(msg); sk_msg_compute_data_pointers(msg); return 0; } static const struct bpf_func_proto bpf_msg_pop_data_proto = { .func = bpf_msg_pop_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; #ifdef CONFIG_CGROUP_NET_CLASSID BPF_CALL_0(bpf_get_cgroup_classid_curr) { return __task_get_classid(current); } static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = { .func = bpf_get_cgroup_classid_curr, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb) { struct sock *sk = skb_to_full_sk(skb); if (!sk || !sk_fullsock(sk)) return 0; return sock_cgroup_classid(&sk->sk_cgrp_data); } static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = { .func = bpf_skb_cgroup_classid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; #endif BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb) { return task_get_classid(skb); } static const struct bpf_func_proto bpf_get_cgroup_classid_proto = { .func = bpf_get_cgroup_classid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb) { return dst_tclassid(skb); } static const struct bpf_func_proto bpf_get_route_realm_proto = { .func = bpf_get_route_realm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb) { /* If skb_clear_hash() was called due to mangling, we can * trigger SW recalculation here. Later access to hash * can then use the inline skb->hash via context directly * instead of calling this helper again. */ return skb_get_hash(skb); } static const struct bpf_func_proto bpf_get_hash_recalc_proto = { .func = bpf_get_hash_recalc, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb) { /* After all direct packet write, this can be used once for * triggering a lazy recalc on next skb_get_hash() invocation. */ skb_clear_hash(skb); return 0; } static const struct bpf_func_proto bpf_set_hash_invalid_proto = { .func = bpf_set_hash_invalid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash) { /* Set user specified hash as L4(+), so that it gets returned * on skb_get_hash() call unless BPF prog later on triggers a * skb_clear_hash(). */ __skb_set_sw_hash(skb, hash, true); return 0; } static const struct bpf_func_proto bpf_set_hash_proto = { .func = bpf_set_hash, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto, u16, vlan_tci) { int ret; if (unlikely(vlan_proto != htons(ETH_P_8021Q) && vlan_proto != htons(ETH_P_8021AD))) vlan_proto = htons(ETH_P_8021Q); bpf_push_mac_rcsum(skb); ret = skb_vlan_push(skb, vlan_proto, vlan_tci); bpf_pull_mac_rcsum(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_vlan_push_proto = { .func = bpf_skb_vlan_push, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb) { int ret; bpf_push_mac_rcsum(skb); ret = skb_vlan_pop(skb); bpf_pull_mac_rcsum(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_vlan_pop_proto = { .func = bpf_skb_vlan_pop, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len) { /* Caller already did skb_cow() with len as headroom, * so no need to do it here. */ skb_push(skb, len); memmove(skb->data, skb->data + len, off); memset(skb->data + off, 0, len); /* No skb_postpush_rcsum(skb, skb->data + off, len) * needed here as it does not change the skb->csum * result for checksum complete when summing over * zeroed blocks. */ return 0; } static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len) { void *old_data; /* skb_ensure_writable() is not needed here, as we're * already working on an uncloned skb. */ if (unlikely(!pskb_may_pull(skb, off + len))) return -ENOMEM; old_data = skb->data; __skb_pull(skb, len); skb_postpull_rcsum(skb, old_data + off, len); memmove(skb->data, old_data, off); return 0; } static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len) { bool trans_same = skb->transport_header == skb->network_header; int ret; /* There's no need for __skb_push()/__skb_pull() pair to * get to the start of the mac header as we're guaranteed * to always start from here under eBPF. */ ret = bpf_skb_generic_push(skb, off, len); if (likely(!ret)) { skb->mac_header -= len; skb->network_header -= len; if (trans_same) skb->transport_header = skb->network_header; } return ret; } static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len) { bool trans_same = skb->transport_header == skb->network_header; int ret; /* Same here, __skb_push()/__skb_pull() pair not needed. */ ret = bpf_skb_generic_pop(skb, off, len); if (likely(!ret)) { skb->mac_header += len; skb->network_header += len; if (trans_same) skb->transport_header = skb->network_header; } return ret; } static int bpf_skb_proto_4_to_6(struct sk_buff *skb) { const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); u32 off = skb_mac_header_len(skb); int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) return -ENOTSUPP; ret = skb_cow(skb, len_diff); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_push(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* SKB_GSO_TCPV4 needs to be changed into * SKB_GSO_TCPV6. */ if (shinfo->gso_type & SKB_GSO_TCPV4) { shinfo->gso_type &= ~SKB_GSO_TCPV4; shinfo->gso_type |= SKB_GSO_TCPV6; } /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } skb->protocol = htons(ETH_P_IPV6); skb_clear_hash(skb); return 0; } static int bpf_skb_proto_6_to_4(struct sk_buff *skb) { const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); u32 off = skb_mac_header_len(skb); int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) return -ENOTSUPP; ret = skb_unclone(skb, GFP_ATOMIC); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_pop(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* SKB_GSO_TCPV6 needs to be changed into * SKB_GSO_TCPV4. */ if (shinfo->gso_type & SKB_GSO_TCPV6) { shinfo->gso_type &= ~SKB_GSO_TCPV6; shinfo->gso_type |= SKB_GSO_TCPV4; } /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } skb->protocol = htons(ETH_P_IP); skb_clear_hash(skb); return 0; } static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto) { __be16 from_proto = skb->protocol; if (from_proto == htons(ETH_P_IP) && to_proto == htons(ETH_P_IPV6)) return bpf_skb_proto_4_to_6(skb); if (from_proto == htons(ETH_P_IPV6) && to_proto == htons(ETH_P_IP)) return bpf_skb_proto_6_to_4(skb); return -ENOTSUPP; } BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto, u64, flags) { int ret; if (unlikely(flags)) return -EINVAL; /* General idea is that this helper does the basic groundwork * needed for changing the protocol, and eBPF program fills the * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace() * and other helpers, rather than passing a raw buffer here. * * The rationale is to keep this minimal and without a need to * deal with raw packet data. F.e. even if we would pass buffers * here, the program still needs to call the bpf_lX_csum_replace() * helpers anyway. Plus, this way we keep also separation of * concerns, since f.e. bpf_skb_store_bytes() should only take * care of stores. * * Currently, additional options and extension header space are * not supported, but flags register is reserved so we can adapt * that. For offloads, we mark packet as dodgy, so that headers * need to be verified first. */ ret = bpf_skb_proto_xlat(skb, proto); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_proto_proto = { .func = bpf_skb_change_proto, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type) { /* We only allow a restricted subset to be changed for now. */ if (unlikely(!skb_pkt_type_ok(skb->pkt_type) || !skb_pkt_type_ok(pkt_type))) return -EINVAL; skb->pkt_type = pkt_type; return 0; } static const struct bpf_func_proto bpf_skb_change_type_proto = { .func = bpf_skb_change_type, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static u32 bpf_skb_net_base_len(const struct sk_buff *skb) { switch (skb->protocol) { case htons(ETH_P_IP): return sizeof(struct iphdr); case htons(ETH_P_IPV6): return sizeof(struct ipv6hdr); default: return ~0U; } } #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \ BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \ BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \ BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \ BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \ BPF_F_ADJ_ROOM_ENCAP_L2( \ BPF_ADJ_ROOM_ENCAP_L2_MASK)) static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff, u64 flags) { u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT; bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK; u16 mac_len = 0, inner_net = 0, inner_trans = 0; unsigned int gso_type = SKB_GSO_DODGY; int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { /* udp gso_size delineates datagrams, only allow if fixed */ if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) return -ENOTSUPP; } ret = skb_cow_head(skb, len_diff); if (unlikely(ret < 0)) return ret; if (encap) { if (skb->protocol != htons(ETH_P_IP) && skb->protocol != htons(ETH_P_IPV6)) return -ENOTSUPP; if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 && flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) return -EINVAL; if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE && flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) return -EINVAL; if (skb->encapsulation) return -EALREADY; mac_len = skb->network_header - skb->mac_header; inner_net = skb->network_header; if (inner_mac_len > len_diff) return -EINVAL; inner_trans = skb->transport_header; } ret = bpf_skb_net_hdr_push(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (encap) { skb->inner_mac_header = inner_net - inner_mac_len; skb->inner_network_header = inner_net; skb->inner_transport_header = inner_trans; skb_set_inner_protocol(skb, skb->protocol); skb->encapsulation = 1; skb_set_network_header(skb, mac_len); if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) gso_type |= SKB_GSO_UDP_TUNNEL; else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE) gso_type |= SKB_GSO_GRE; else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) gso_type |= SKB_GSO_IPXIP6; else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) gso_type |= SKB_GSO_IPXIP4; if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE || flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) { int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ? sizeof(struct ipv6hdr) : sizeof(struct iphdr); skb_set_transport_header(skb, mac_len + nh_len); } /* Match skb->protocol to new outer l3 protocol */ if (skb->protocol == htons(ETH_P_IP) && flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) skb->protocol = htons(ETH_P_IPV6); else if (skb->protocol == htons(ETH_P_IPV6) && flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) skb->protocol = htons(ETH_P_IP); } if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= gso_type; shinfo->gso_segs = 0; /* Due to header growth, MSS needs to be downgraded. * There is a BUG_ON() when segmenting the frag_list with * head_frag true, so linearize the skb after downgrading * the MSS. */ if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) { skb_decrease_gso_size(shinfo, len_diff); if (shinfo->frag_list) return skb_linearize(skb); } } return 0; } static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff, u64 flags) { int ret; if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO | BPF_F_ADJ_ROOM_NO_CSUM_RESET))) return -EINVAL; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { /* udp gso_size delineates datagrams, only allow if fixed */ if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) return -ENOTSUPP; } ret = skb_unclone(skb, GFP_ATOMIC); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_pop(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* Due to header shrink, MSS can be upgraded. */ if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) skb_increase_gso_size(shinfo, len_diff); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } return 0; } #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, u32, mode, u64, flags) { u32 len_diff_abs = abs(len_diff); bool shrink = len_diff < 0; int ret = 0; if (unlikely(flags || mode)) return -EINVAL; if (unlikely(len_diff_abs > 0xfffU)) return -EFAULT; if (!shrink) { ret = skb_cow(skb, len_diff); if (unlikely(ret < 0)) return ret; __skb_push(skb, len_diff_abs); memset(skb->data, 0, len_diff_abs); } else { if (unlikely(!pskb_may_pull(skb, len_diff_abs))) return -ENOMEM; __skb_pull(skb, len_diff_abs); } bpf_compute_data_end_sk_skb(skb); if (tls_sw_has_ctx_rx(skb->sk)) { struct strp_msg *rxm = strp_msg(skb); rxm->full_len += len_diff; } return ret; } static const struct bpf_func_proto sk_skb_adjust_room_proto = { .func = sk_skb_adjust_room, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, u32, mode, u64, flags) { u32 len_cur, len_diff_abs = abs(len_diff); u32 len_min = bpf_skb_net_base_len(skb); u32 len_max = BPF_SKB_MAX_LEN; __be16 proto = skb->protocol; bool shrink = len_diff < 0; u32 off; int ret; if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK | BPF_F_ADJ_ROOM_NO_CSUM_RESET))) return -EINVAL; if (unlikely(len_diff_abs > 0xfffU)) return -EFAULT; if (unlikely(proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))) return -ENOTSUPP; off = skb_mac_header_len(skb); switch (mode) { case BPF_ADJ_ROOM_NET: off += bpf_skb_net_base_len(skb); break; case BPF_ADJ_ROOM_MAC: break; default: return -ENOTSUPP; } len_cur = skb->len - skb_network_offset(skb); if ((shrink && (len_diff_abs >= len_cur || len_cur - len_diff_abs < len_min)) || (!shrink && (skb->len + len_diff_abs > len_max && !skb_is_gso(skb)))) return -ENOTSUPP; ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) : bpf_skb_net_grow(skb, off, len_diff_abs, flags); if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET)) __skb_reset_checksum_unnecessary(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_adjust_room_proto = { .func = bpf_skb_adjust_room, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; static u32 __bpf_skb_min_len(const struct sk_buff *skb) { int offset = skb_network_offset(skb); u32 min_len = 0; if (offset > 0) min_len = offset; if (skb_transport_header_was_set(skb)) { offset = skb_transport_offset(skb); if (offset > 0) min_len = offset; } if (skb->ip_summed == CHECKSUM_PARTIAL) { offset = skb_checksum_start_offset(skb) + skb->csum_offset + sizeof(__sum16); if (offset > 0) min_len = offset; } return min_len; } static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len) { unsigned int old_len = skb->len; int ret; ret = __skb_grow_rcsum(skb, new_len); if (!ret) memset(skb->data + old_len, 0, new_len - old_len); return ret; } static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len) { return __skb_trim_rcsum(skb, new_len); } static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len, u64 flags) { u32 max_len = BPF_SKB_MAX_LEN; u32 min_len = __bpf_skb_min_len(skb); int ret; if (unlikely(flags || new_len > max_len || new_len < min_len)) return -EINVAL; if (skb->encapsulation) return -ENOTSUPP; /* The basic idea of this helper is that it's performing the * needed work to either grow or trim an skb, and eBPF program * rewrites the rest via helpers like bpf_skb_store_bytes(), * bpf_lX_csum_replace() and others rather than passing a raw * buffer here. This one is a slow path helper and intended * for replies with control messages. * * Like in bpf_skb_change_proto(), we want to keep this rather * minimal and without protocol specifics so that we are able * to separate concerns as in bpf_skb_store_bytes() should only * be the one responsible for writing buffers. * * It's really expected to be a slow path operation here for * control message replies, so we're implicitly linearizing, * uncloning and drop offloads from the skb by this. */ ret = __bpf_try_make_writable(skb, skb->len); if (!ret) { if (new_len > skb->len) ret = bpf_skb_grow_rcsum(skb, new_len); else if (new_len < skb->len) ret = bpf_skb_trim_rcsum(skb, new_len); if (!ret && skb_is_gso(skb)) skb_gso_reset(skb); } return ret; } BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len, u64, flags) { int ret = __bpf_skb_change_tail(skb, new_len, flags); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_tail_proto = { .func = bpf_skb_change_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len, u64, flags) { int ret = __bpf_skb_change_tail(skb, new_len, flags); bpf_compute_data_end_sk_skb(skb); return ret; } static const struct bpf_func_proto sk_skb_change_tail_proto = { .func = sk_skb_change_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room, u64 flags) { u32 max_len = BPF_SKB_MAX_LEN; u32 new_len = skb->len + head_room; int ret; if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) || new_len < skb->len)) return -EINVAL; ret = skb_cow(skb, head_room); if (likely(!ret)) { /* Idea for this helper is that we currently only * allow to expand on mac header. This means that * skb->protocol network header, etc, stay as is. * Compared to bpf_skb_change_tail(), we're more * flexible due to not needing to linearize or * reset GSO. Intention for this helper is to be * used by an L3 skb that needs to push mac header * for redirection into L2 device. */ __skb_push(skb, head_room); memset(skb->data, 0, head_room); skb_reset_mac_header(skb); skb_reset_mac_len(skb); } return ret; } BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room, u64, flags) { int ret = __bpf_skb_change_head(skb, head_room, flags); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_head_proto = { .func = bpf_skb_change_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room, u64, flags) { int ret = __bpf_skb_change_head(skb, head_room, flags); bpf_compute_data_end_sk_skb(skb); return ret; } static const struct bpf_func_proto sk_skb_change_head_proto = { .func = sk_skb_change_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static unsigned long xdp_get_metalen(const struct xdp_buff *xdp) { return xdp_data_meta_unsupported(xdp) ? 0 : xdp->data - xdp->data_meta; } BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset) { void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); unsigned long metalen = xdp_get_metalen(xdp); void *data_start = xdp_frame_end + metalen; void *data = xdp->data + offset; if (unlikely(data < data_start || data > xdp->data_end - ETH_HLEN)) return -EINVAL; if (metalen) memmove(xdp->data_meta + offset, xdp->data_meta, metalen); xdp->data_meta += offset; xdp->data = data; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_head_proto = { .func = bpf_xdp_adjust_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset) { void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */ void *data_end = xdp->data_end + offset; /* Notice that xdp_data_hard_end have reserved some tailroom */ if (unlikely(data_end > data_hard_end)) return -EINVAL; /* ALL drivers MUST init xdp->frame_sz, chicken check below */ if (unlikely(xdp->frame_sz > PAGE_SIZE)) { WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz); return -EINVAL; } if (unlikely(data_end < xdp->data + ETH_HLEN)) return -EINVAL; /* Clear memory area on grow, can contain uninit kernel memory */ if (offset > 0) memset(xdp->data_end, 0, offset); xdp->data_end = data_end; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = { .func = bpf_xdp_adjust_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset) { void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); void *meta = xdp->data_meta + offset; unsigned long metalen = xdp->data - meta; if (xdp_data_meta_unsupported(xdp)) return -ENOTSUPP; if (unlikely(meta < xdp_frame_end || meta > xdp->data)) return -EINVAL; if (unlikely((metalen & (sizeof(__u32) - 1)) || (metalen > 32))) return -EACCES; xdp->data_meta = meta; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = { .func = bpf_xdp_adjust_meta, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd, struct bpf_map *map, struct xdp_buff *xdp) { switch (map->map_type) { case BPF_MAP_TYPE_DEVMAP: case BPF_MAP_TYPE_DEVMAP_HASH: return dev_map_enqueue(fwd, xdp, dev_rx); case BPF_MAP_TYPE_CPUMAP: return cpu_map_enqueue(fwd, xdp, dev_rx); case BPF_MAP_TYPE_XSKMAP: return __xsk_map_redirect(fwd, xdp); default: return -EBADRQC; } return 0; } void xdp_do_flush(void) { __dev_flush(); __cpu_map_flush(); __xsk_map_flush(); } EXPORT_SYMBOL_GPL(xdp_do_flush); static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index) { switch (map->map_type) { case BPF_MAP_TYPE_DEVMAP: return __dev_map_lookup_elem(map, index); case BPF_MAP_TYPE_DEVMAP_HASH: return __dev_map_hash_lookup_elem(map, index); case BPF_MAP_TYPE_CPUMAP: return __cpu_map_lookup_elem(map, index); case BPF_MAP_TYPE_XSKMAP: return __xsk_map_lookup_elem(map, index); default: return NULL; } } void bpf_clear_redirect_map(struct bpf_map *map) { struct bpf_redirect_info *ri; int cpu; for_each_possible_cpu(cpu) { ri = per_cpu_ptr(&bpf_redirect_info, cpu); /* Avoid polluting remote cacheline due to writes if * not needed. Once we pass this test, we need the * cmpxchg() to make sure it hasn't been changed in * the meantime by remote CPU. */ if (unlikely(READ_ONCE(ri->map) == map)) cmpxchg(&ri->map, map, NULL); } } int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); struct bpf_map *map = READ_ONCE(ri->map); u32 index = ri->tgt_index; void *fwd = ri->tgt_value; int err; ri->tgt_index = 0; ri->tgt_value = NULL; WRITE_ONCE(ri->map, NULL); if (unlikely(!map)) { fwd = dev_get_by_index_rcu(dev_net(dev), index); if (unlikely(!fwd)) { err = -EINVAL; goto err; } err = dev_xdp_enqueue(fwd, xdp, dev); } else { err = __bpf_tx_xdp_map(dev, fwd, map, xdp); } if (unlikely(err)) goto err; _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index); return 0; err: _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err); return err; } EXPORT_SYMBOL_GPL(xdp_do_redirect); static int xdp_do_generic_redirect_map(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog, struct bpf_map *map) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); u32 index = ri->tgt_index; void *fwd = ri->tgt_value; int err = 0; ri->tgt_index = 0; ri->tgt_value = NULL; WRITE_ONCE(ri->map, NULL); if (map->map_type == BPF_MAP_TYPE_DEVMAP || map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) { struct bpf_dtab_netdev *dst = fwd; err = dev_map_generic_redirect(dst, skb, xdp_prog); if (unlikely(err)) goto err; } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { struct xdp_sock *xs = fwd; err = xsk_generic_rcv(xs, xdp); if (err) goto err; consume_skb(skb); } else { /* TODO: Handle BPF_MAP_TYPE_CPUMAP */ err = -EBADRQC; goto err; } _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index); return 0; err: _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err); return err; } int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); struct bpf_map *map = READ_ONCE(ri->map); u32 index = ri->tgt_index; struct net_device *fwd; int err = 0; if (map) return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, map); ri->tgt_index = 0; fwd = dev_get_by_index_rcu(dev_net(dev), index); if (unlikely(!fwd)) { err = -EINVAL; goto err; } err = xdp_ok_fwd_dev(fwd, skb->len); if (unlikely(err)) goto err; skb->dev = fwd; _trace_xdp_redirect(dev, xdp_prog, index); generic_xdp_tx(skb, xdp_prog); return 0; err: _trace_xdp_redirect_err(dev, xdp_prog, index, err); return err; } BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); if (unlikely(flags)) return XDP_ABORTED; ri->flags = flags; ri->tgt_index = ifindex; ri->tgt_value = NULL; WRITE_ONCE(ri->map, NULL); return XDP_REDIRECT; } static const struct bpf_func_proto bpf_xdp_redirect_proto = { .func = bpf_xdp_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); /* Lower bits of the flags are used as return code on lookup failure */ if (unlikely(flags > XDP_TX)) return XDP_ABORTED; ri->tgt_value = __xdp_map_lookup_elem(map, ifindex); if (unlikely(!ri->tgt_value)) { /* If the lookup fails we want to clear out the state in the * redirect_info struct completely, so that if an eBPF program * performs multiple lookups, the last one always takes * precedence. */ WRITE_ONCE(ri->map, NULL); return flags; } ri->flags = flags; ri->tgt_index = ifindex; WRITE_ONCE(ri->map, map); return XDP_REDIRECT; } static const struct bpf_func_proto bpf_xdp_redirect_map_proto = { .func = bpf_xdp_redirect_map, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static unsigned long bpf_skb_copy(void *dst_buff, const void *skb, unsigned long off, unsigned long len) { void *ptr = skb_header_pointer(skb, off, len, dst_buff); if (unlikely(!ptr)) return len; if (ptr != dst_buff) memcpy(dst_buff, ptr, len); return 0; } BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map, u64, flags, void *, meta, u64, meta_size) { u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32; if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) return -EINVAL; if (unlikely(!skb || skb_size > skb->len)) return -EFAULT; return bpf_event_output(map, flags, meta, meta_size, skb, skb_size, bpf_skb_copy); } static const struct bpf_func_proto bpf_skb_event_output_proto = { .func = bpf_skb_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff) const struct bpf_func_proto bpf_skb_output_proto = { .func = bpf_skb_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &bpf_skb_output_btf_ids[0], .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; static unsigned short bpf_tunnel_key_af(u64 flags) { return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET; } BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to, u32, size, u64, flags) { const struct ip_tunnel_info *info = skb_tunnel_info(skb); u8 compat[sizeof(struct bpf_tunnel_key)]; void *to_orig = to; int err; if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) { err = -EINVAL; goto err_clear; } if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) { err = -EPROTO; goto err_clear; } if (unlikely(size != sizeof(struct bpf_tunnel_key))) { err = -EINVAL; switch (size) { case offsetof(struct bpf_tunnel_key, tunnel_label): case offsetof(struct bpf_tunnel_key, tunnel_ext): goto set_compat; case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): /* Fixup deprecated structure layouts here, so we have * a common path later on. */ if (ip_tunnel_info_af(info) != AF_INET) goto err_clear; set_compat: to = (struct bpf_tunnel_key *)compat; break; default: goto err_clear; } } to->tunnel_id = be64_to_cpu(info->key.tun_id); to->tunnel_tos = info->key.tos; to->tunnel_ttl = info->key.ttl; to->tunnel_ext = 0; if (flags & BPF_F_TUNINFO_IPV6) { memcpy(to->remote_ipv6, &info->key.u.ipv6.src, sizeof(to->remote_ipv6)); to->tunnel_label = be32_to_cpu(info->key.label); } else { to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src); memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); to->tunnel_label = 0; } if (unlikely(size != sizeof(struct bpf_tunnel_key))) memcpy(to_orig, to, size); return 0; err_clear: memset(to_orig, 0, size); return err; } static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = { .func = bpf_skb_get_tunnel_key, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size) { const struct ip_tunnel_info *info = skb_tunnel_info(skb); int err; if (unlikely(!info || !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) { err = -ENOENT; goto err_clear; } if (unlikely(size < info->options_len)) { err = -ENOMEM; goto err_clear; } ip_tunnel_info_opts_get(to, info); if (size > info->options_len) memset(to + info->options_len, 0, size - info->options_len); return info->options_len; err_clear: memset(to, 0, size); return err; } static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = { .func = bpf_skb_get_tunnel_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE, }; static struct metadata_dst __percpu *md_dst; BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb, const struct bpf_tunnel_key *, from, u32, size, u64, flags) { struct metadata_dst *md = this_cpu_ptr(md_dst); u8 compat[sizeof(struct bpf_tunnel_key)]; struct ip_tunnel_info *info; if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX | BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER))) return -EINVAL; if (unlikely(size != sizeof(struct bpf_tunnel_key))) { switch (size) { case offsetof(struct bpf_tunnel_key, tunnel_label): case offsetof(struct bpf_tunnel_key, tunnel_ext): case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): /* Fixup deprecated structure layouts here, so we have * a common path later on. */ memcpy(compat, from, size); memset(compat + size, 0, sizeof(compat) - size); from = (const struct bpf_tunnel_key *) compat; break; default: return -EINVAL; } } if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) || from->tunnel_ext)) return -EINVAL; skb_dst_drop(skb); dst_hold((struct dst_entry *) md); skb_dst_set(skb, (struct dst_entry *) md); info = &md->u.tun_info; memset(info, 0, sizeof(*info)); info->mode = IP_TUNNEL_INFO_TX; info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE; if (flags & BPF_F_DONT_FRAGMENT) info->key.tun_flags |= TUNNEL_DONT_FRAGMENT; if (flags & BPF_F_ZERO_CSUM_TX) info->key.tun_flags &= ~TUNNEL_CSUM; if (flags & BPF_F_SEQ_NUMBER) info->key.tun_flags |= TUNNEL_SEQ; info->key.tun_id = cpu_to_be64(from->tunnel_id); info->key.tos = from->tunnel_tos; info->key.ttl = from->tunnel_ttl; if (flags & BPF_F_TUNINFO_IPV6) { info->mode |= IP_TUNNEL_INFO_IPV6; memcpy(&info->key.u.ipv6.dst, from->remote_ipv6, sizeof(from->remote_ipv6)); info->key.label = cpu_to_be32(from->tunnel_label) & IPV6_FLOWLABEL_MASK; } else { info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4); } return 0; } static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = { .func = bpf_skb_set_tunnel_key, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb, const u8 *, from, u32, size) { struct ip_tunnel_info *info = skb_tunnel_info(skb); const struct metadata_dst *md = this_cpu_ptr(md_dst); if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1)))) return -EINVAL; if (unlikely(size > IP_TUNNEL_OPTS_MAX)) return -ENOMEM; ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT); return 0; } static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = { .func = bpf_skb_set_tunnel_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto * bpf_get_skb_set_tunnel_proto(enum bpf_func_id which) { if (!md_dst) { struct metadata_dst __percpu *tmp; tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX, METADATA_IP_TUNNEL, GFP_KERNEL); if (!tmp) return NULL; if (cmpxchg(&md_dst, NULL, tmp)) metadata_dst_free_percpu(tmp); } switch (which) { case BPF_FUNC_skb_set_tunnel_key: return &bpf_skb_set_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_opt: return &bpf_skb_set_tunnel_opt_proto; default: return NULL; } } BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map, u32, idx) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct cgroup *cgrp; struct sock *sk; sk = skb_to_full_sk(skb); if (!sk || !sk_fullsock(sk)) return -ENOENT; if (unlikely(idx >= array->map.max_entries)) return -E2BIG; cgrp = READ_ONCE(array->ptrs[idx]); if (unlikely(!cgrp)) return -EAGAIN; return sk_under_cgroup_hierarchy(sk, cgrp); } static const struct bpf_func_proto bpf_skb_under_cgroup_proto = { .func = bpf_skb_under_cgroup, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; #ifdef CONFIG_SOCK_CGROUP_DATA static inline u64 __bpf_sk_cgroup_id(struct sock *sk) { struct cgroup *cgrp; sk = sk_to_full_sk(sk); if (!sk || !sk_fullsock(sk)) return 0; cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); return cgroup_id(cgrp); } BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb) { return __bpf_sk_cgroup_id(skb->sk); } static const struct bpf_func_proto bpf_skb_cgroup_id_proto = { .func = bpf_skb_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk, int ancestor_level) { struct cgroup *ancestor; struct cgroup *cgrp; sk = sk_to_full_sk(sk); if (!sk || !sk_fullsock(sk)) return 0; cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); ancestor = cgroup_ancestor(cgrp, ancestor_level); if (!ancestor) return 0; return cgroup_id(ancestor); } BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int, ancestor_level) { return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level); } static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = { .func = bpf_skb_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk) { return __bpf_sk_cgroup_id(sk); } static const struct bpf_func_proto bpf_sk_cgroup_id_proto = { .func = bpf_sk_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, }; BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level) { return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level); } static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = { .func = bpf_sk_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_ANYTHING, }; #endif static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff, unsigned long off, unsigned long len) { memcpy(dst_buff, src_buff + off, len); return 0; } BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map, u64, flags, void *, meta, u64, meta_size) { u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32; if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) return -EINVAL; if (unlikely(!xdp || xdp_size > (unsigned long)(xdp->data_end - xdp->data))) return -EFAULT; return bpf_event_output(map, flags, meta, meta_size, xdp->data, xdp_size, bpf_xdp_copy); } static const struct bpf_func_proto bpf_xdp_event_output_proto = { .func = bpf_xdp_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff) const struct bpf_func_proto bpf_xdp_output_proto = { .func = bpf_xdp_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &bpf_xdp_output_btf_ids[0], .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb) { return skb->sk ? __sock_gen_cookie(skb->sk) : 0; } static const struct bpf_func_proto bpf_get_socket_cookie_proto = { .func = bpf_get_socket_cookie, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) { return __sock_gen_cookie(ctx->sk); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = { .func = bpf_get_socket_cookie_sock_addr, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx) { return __sock_gen_cookie(ctx); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = { .func = bpf_get_socket_cookie_sock, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) { return __sock_gen_cookie(ctx->sk); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = { .func = bpf_get_socket_cookie_sock_ops, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static u64 __bpf_get_netns_cookie(struct sock *sk) { #ifdef CONFIG_NET_NS return __net_gen_cookie(sk ? sk->sk_net.net : &init_net); #else return 0; #endif } BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx) { return __bpf_get_netns_cookie(ctx); } static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = { .func = bpf_get_netns_cookie_sock, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX_OR_NULL, }; BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) { return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); } static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = { .func = bpf_get_netns_cookie_sock_addr, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX_OR_NULL, }; BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb) { struct sock *sk = sk_to_full_sk(skb->sk); kuid_t kuid; if (!sk || !sk_fullsock(sk)) return overflowuid; kuid = sock_net_uid(sock_net(sk), sk); return from_kuid_munged(sock_net(sk)->user_ns, kuid); } static const struct bpf_func_proto bpf_get_socket_uid_proto = { .func = bpf_get_socket_uid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static int _bpf_setsockopt(struct sock *sk, int level, int optname, char *optval, int optlen) { char devname[IFNAMSIZ]; int val, valbool; struct net *net; int ifindex; int ret = 0; if (!sk_fullsock(sk)) return -EINVAL; sock_owned_by_me(sk); if (level == SOL_SOCKET) { if (optlen != sizeof(int) && optname != SO_BINDTODEVICE) return -EINVAL; val = *((int *)optval); valbool = val ? 1 : 0; /* Only some socketops are supported */ switch (optname) { case SO_RCVBUF: val = min_t(u32, val, READ_ONCE(sysctl_rmem_max)); val = min_t(int, val, INT_MAX / 2); sk->sk_userlocks |= SOCK_RCVBUF_LOCK; WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); break; case SO_SNDBUF: val = min_t(u32, val, READ_ONCE(sysctl_wmem_max)); val = min_t(int, val, INT_MAX / 2); sk->sk_userlocks |= SOCK_SNDBUF_LOCK; WRITE_ONCE(sk->sk_sndbuf, max_t(int, val * 2, SOCK_MIN_SNDBUF)); break; case SO_MAX_PACING_RATE: /* 32bit version */ if (val != ~0U) cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED); sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : (unsigned int)val; sk->sk_pacing_rate = min(sk->sk_pacing_rate, sk->sk_max_pacing_rate); break; case SO_PRIORITY: sk->sk_priority = val; break; case SO_RCVLOWAT: if (val < 0) val = INT_MAX; WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); break; case SO_MARK: if (sk->sk_mark != val) { sk->sk_mark = val; sk_dst_reset(sk); } break; case SO_BINDTODEVICE: optlen = min_t(long, optlen, IFNAMSIZ - 1); strncpy(devname, optval, optlen); devname[optlen] = 0; ifindex = 0; if (devname[0] != '\0') { struct net_device *dev; ret = -ENODEV; net = sock_net(sk); dev = dev_get_by_name(net, devname); if (!dev) break; ifindex = dev->ifindex; dev_put(dev); } ret = sock_bindtoindex(sk, ifindex, false); break; case SO_KEEPALIVE: if (sk->sk_prot->keepalive) sk->sk_prot->keepalive(sk, valbool); sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); break; default: ret = -EINVAL; } #ifdef CONFIG_INET } else if (level == SOL_IP) { if (optlen != sizeof(int) || sk->sk_family != AF_INET) return -EINVAL; val = *((int *)optval); /* Only some options are supported */ switch (optname) { case IP_TOS: if (val < -1 || val > 0xff) { ret = -EINVAL; } else { struct inet_sock *inet = inet_sk(sk); if (val == -1) val = 0; inet->tos = val; } break; default: ret = -EINVAL; } #if IS_ENABLED(CONFIG_IPV6) } else if (level == SOL_IPV6) { if (optlen != sizeof(int) || sk->sk_family != AF_INET6) return -EINVAL; val = *((int *)optval); /* Only some options are supported */ switch (optname) { case IPV6_TCLASS: if (val < -1 || val > 0xff) { ret = -EINVAL; } else { struct ipv6_pinfo *np = inet6_sk(sk); if (val == -1) val = 0; np->tclass = val; } break; default: ret = -EINVAL; } #endif } else if (level == SOL_TCP && sk->sk_prot->setsockopt == tcp_setsockopt) { if (optname == TCP_CONGESTION) { char name[TCP_CA_NAME_MAX]; strncpy(name, optval, min_t(long, optlen, TCP_CA_NAME_MAX-1)); name[TCP_CA_NAME_MAX-1] = 0; ret = tcp_set_congestion_control(sk, name, false, true); } else { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); unsigned long timeout; if (optlen != sizeof(int)) return -EINVAL; val = *((int *)optval); /* Only some options are supported */ switch (optname) { case TCP_BPF_IW: if (val <= 0 || tp->data_segs_out > tp->syn_data) ret = -EINVAL; else tp->snd_cwnd = val; break; case TCP_BPF_SNDCWND_CLAMP: if (val <= 0) { ret = -EINVAL; } else { tp->snd_cwnd_clamp = val; tp->snd_ssthresh = val; } break; case TCP_BPF_DELACK_MAX: timeout = usecs_to_jiffies(val); if (timeout > TCP_DELACK_MAX || timeout < TCP_TIMEOUT_MIN) return -EINVAL; inet_csk(sk)->icsk_delack_max = timeout; break; case TCP_BPF_RTO_MIN: timeout = usecs_to_jiffies(val); if (timeout > TCP_RTO_MIN || timeout < TCP_TIMEOUT_MIN) return -EINVAL; inet_csk(sk)->icsk_rto_min = timeout; break; case TCP_SAVE_SYN: if (val < 0 || val > 1) ret = -EINVAL; else tp->save_syn = val; break; case TCP_KEEPIDLE: ret = tcp_sock_set_keepidle_locked(sk, val); break; case TCP_KEEPINTVL: if (val < 1 || val > MAX_TCP_KEEPINTVL) ret = -EINVAL; else tp->keepalive_intvl = val * HZ; break; case TCP_KEEPCNT: if (val < 1 || val > MAX_TCP_KEEPCNT) ret = -EINVAL; else tp->keepalive_probes = val; break; case TCP_SYNCNT: if (val < 1 || val > MAX_TCP_SYNCNT) ret = -EINVAL; else icsk->icsk_syn_retries = val; break; case TCP_USER_TIMEOUT: if (val < 0) ret = -EINVAL; else icsk->icsk_user_timeout = val; break; case TCP_NOTSENT_LOWAT: tp->notsent_lowat = val; sk->sk_write_space(sk); break; default: ret = -EINVAL; } } #endif } else { ret = -EINVAL; } return ret; } static int _bpf_getsockopt(struct sock *sk, int level, int optname, char *optval, int optlen) { if (!sk_fullsock(sk)) goto err_clear; sock_owned_by_me(sk); #ifdef CONFIG_INET if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) { struct inet_connection_sock *icsk; struct tcp_sock *tp; switch (optname) { case TCP_CONGESTION: icsk = inet_csk(sk); if (!icsk->icsk_ca_ops || optlen <= 1) goto err_clear; strncpy(optval, icsk->icsk_ca_ops->name, optlen); optval[optlen - 1] = 0; break; case TCP_SAVED_SYN: tp = tcp_sk(sk); if (optlen <= 0 || !tp->saved_syn || optlen > tcp_saved_syn_len(tp->saved_syn)) goto err_clear; memcpy(optval, tp->saved_syn->data, optlen); break; default: goto err_clear; } } else if (level == SOL_IP) { struct inet_sock *inet = inet_sk(sk); if (optlen != sizeof(int) || sk->sk_family != AF_INET) goto err_clear; /* Only some options are supported */ switch (optname) { case IP_TOS: *((int *)optval) = (int)inet->tos; break; default: goto err_clear; } #if IS_ENABLED(CONFIG_IPV6) } else if (level == SOL_IPV6) { struct ipv6_pinfo *np = inet6_sk(sk); if (optlen != sizeof(int) || sk->sk_family != AF_INET6) goto err_clear; /* Only some options are supported */ switch (optname) { case IPV6_TCLASS: *((int *)optval) = (int)np->tclass; break; default: goto err_clear; } #endif } else { goto err_clear; } return 0; #endif err_clear: memset(optval, 0, optlen); return -EINVAL; } BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx, int, level, int, optname, char *, optval, int, optlen) { return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = { .func = bpf_sock_addr_setsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx, int, level, int, optname, char *, optval, int, optlen) { return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = { .func = bpf_sock_addr_getsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_UNINIT_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock, int, level, int, optname, char *, optval, int, optlen) { return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = { .func = bpf_sock_ops_setsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE, }; static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock, int optname, const u8 **start) { struct sk_buff *syn_skb = bpf_sock->syn_skb; const u8 *hdr_start; int ret; if (syn_skb) { /* sk is a request_sock here */ if (optname == TCP_BPF_SYN) { hdr_start = syn_skb->data; ret = tcp_hdrlen(syn_skb); } else if (optname == TCP_BPF_SYN_IP) { hdr_start = skb_network_header(syn_skb); ret = skb_network_header_len(syn_skb) + tcp_hdrlen(syn_skb); } else { /* optname == TCP_BPF_SYN_MAC */ hdr_start = skb_mac_header(syn_skb); ret = skb_mac_header_len(syn_skb) + skb_network_header_len(syn_skb) + tcp_hdrlen(syn_skb); } } else { struct sock *sk = bpf_sock->sk; struct saved_syn *saved_syn; if (sk->sk_state == TCP_NEW_SYN_RECV) /* synack retransmit. bpf_sock->syn_skb will * not be available. It has to resort to * saved_syn (if it is saved). */ saved_syn = inet_reqsk(sk)->saved_syn; else saved_syn = tcp_sk(sk)->saved_syn; if (!saved_syn) return -ENOENT; if (optname == TCP_BPF_SYN) { hdr_start = saved_syn->data + saved_syn->mac_hdrlen + saved_syn->network_hdrlen; ret = saved_syn->tcp_hdrlen; } else if (optname == TCP_BPF_SYN_IP) { hdr_start = saved_syn->data + saved_syn->mac_hdrlen; ret = saved_syn->network_hdrlen + saved_syn->tcp_hdrlen; } else { /* optname == TCP_BPF_SYN_MAC */ /* TCP_SAVE_SYN may not have saved the mac hdr */ if (!saved_syn->mac_hdrlen) return -ENOENT; hdr_start = saved_syn->data; ret = saved_syn->mac_hdrlen + saved_syn->network_hdrlen + saved_syn->tcp_hdrlen; } } *start = hdr_start; return ret; } BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock, int, level, int, optname, char *, optval, int, optlen) { if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP && optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) { int ret, copy_len = 0; const u8 *start; ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start); if (ret > 0) { copy_len = ret; if (optlen < copy_len) { copy_len = optlen; ret = -ENOSPC; } memcpy(optval, start, copy_len); } /* Zero out unused buffer at the end */ memset(optval + copy_len, 0, optlen - copy_len); return ret; } return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = { .func = bpf_sock_ops_getsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_UNINIT_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock, int, argval) { struct sock *sk = bpf_sock->sk; int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS; if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk)) return -EINVAL; tcp_sk(sk)->bpf_sock_ops_cb_flags = val; return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS); } static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = { .func = bpf_sock_ops_cb_flags_set, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly; EXPORT_SYMBOL_GPL(ipv6_bpf_stub); BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr, int, addr_len) { #ifdef CONFIG_INET struct sock *sk = ctx->sk; u32 flags = BIND_FROM_BPF; int err; err = -EINVAL; if (addr_len < offsetofend(struct sockaddr, sa_family)) return err; if (addr->sa_family == AF_INET) { if (addr_len < sizeof(struct sockaddr_in)) return err; if (((struct sockaddr_in *)addr)->sin_port == htons(0)) flags |= BIND_FORCE_ADDRESS_NO_PORT; return __inet_bind(sk, addr, addr_len, flags); #if IS_ENABLED(CONFIG_IPV6) } else if (addr->sa_family == AF_INET6) { if (addr_len < SIN6_LEN_RFC2133) return err; if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0)) flags |= BIND_FORCE_ADDRESS_NO_PORT; /* ipv6_bpf_stub cannot be NULL, since it's called from * bpf_cgroup_inet6_connect hook and ipv6 is already loaded */ return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags); #endif /* CONFIG_IPV6 */ } #endif /* CONFIG_INET */ return -EAFNOSUPPORT; } static const struct bpf_func_proto bpf_bind_proto = { .func = bpf_bind, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, }; #ifdef CONFIG_XFRM BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index, struct bpf_xfrm_state *, to, u32, size, u64, flags) { const struct sec_path *sp = skb_sec_path(skb); const struct xfrm_state *x; if (!sp || unlikely(index >= sp->len || flags)) goto err_clear; x = sp->xvec[index]; if (unlikely(size != sizeof(struct bpf_xfrm_state))) goto err_clear; to->reqid = x->props.reqid; to->spi = x->id.spi; to->family = x->props.family; to->ext = 0; if (to->family == AF_INET6) { memcpy(to->remote_ipv6, x->props.saddr.a6, sizeof(to->remote_ipv6)); } else { to->remote_ipv4 = x->props.saddr.a4; memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); } return 0; err_clear: memset(to, 0, size); return -EINVAL; } static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = { .func = bpf_skb_get_xfrm_state, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; #endif #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6) static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, const struct neighbour *neigh, const struct net_device *dev) { memcpy(params->dmac, neigh->ha, ETH_ALEN); memcpy(params->smac, dev->dev_addr, ETH_ALEN); params->h_vlan_TCI = 0; params->h_vlan_proto = 0; return 0; } #endif #if IS_ENABLED(CONFIG_INET) static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params, u32 flags, bool check_mtu) { struct fib_nh_common *nhc; struct in_device *in_dev; struct neighbour *neigh; struct net_device *dev; struct fib_result res; struct flowi4 fl4; int err; u32 mtu; dev = dev_get_by_index_rcu(net, params->ifindex); if (unlikely(!dev)) return -ENODEV; /* verify forwarding is enabled on this interface */ in_dev = __in_dev_get_rcu(dev); if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev))) return BPF_FIB_LKUP_RET_FWD_DISABLED; if (flags & BPF_FIB_LOOKUP_OUTPUT) { fl4.flowi4_iif = 1; fl4.flowi4_oif = params->ifindex; } else { fl4.flowi4_iif = params->ifindex; fl4.flowi4_oif = 0; } fl4.flowi4_tos = params->tos & IPTOS_RT_MASK; fl4.flowi4_scope = RT_SCOPE_UNIVERSE; fl4.flowi4_flags = 0; fl4.flowi4_proto = params->l4_protocol; fl4.daddr = params->ipv4_dst; fl4.saddr = params->ipv4_src; fl4.fl4_sport = params->sport; fl4.fl4_dport = params->dport; fl4.flowi4_multipath_hash = 0; if (flags & BPF_FIB_LOOKUP_DIRECT) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; struct fib_table *tb; tb = fib_get_table(net, tbid); if (unlikely(!tb)) return BPF_FIB_LKUP_RET_NOT_FWDED; err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF); } else { fl4.flowi4_mark = 0; fl4.flowi4_secid = 0; fl4.flowi4_tun_key.tun_id = 0; fl4.flowi4_uid = sock_net_uid(net, NULL); err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF); } if (err) { /* map fib lookup errors to RTN_ type */ if (err == -EINVAL) return BPF_FIB_LKUP_RET_BLACKHOLE; if (err == -EHOSTUNREACH) return BPF_FIB_LKUP_RET_UNREACHABLE; if (err == -EACCES) return BPF_FIB_LKUP_RET_PROHIBIT; return BPF_FIB_LKUP_RET_NOT_FWDED; } if (res.type != RTN_UNICAST) return BPF_FIB_LKUP_RET_NOT_FWDED; if (fib_info_num_path(res.fi) > 1) fib_select_path(net, &res, &fl4, NULL); if (check_mtu) { mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst); if (params->tot_len > mtu) return BPF_FIB_LKUP_RET_FRAG_NEEDED; } nhc = res.nhc; /* do not handle lwt encaps right now */ if (nhc->nhc_lwtstate) return BPF_FIB_LKUP_RET_UNSUPP_LWT; dev = nhc->nhc_dev; params->rt_metric = res.fi->fib_priority; params->ifindex = dev->ifindex; /* xdp and cls_bpf programs are run in RCU-bh so * rcu_read_lock_bh is not needed here */ if (likely(nhc->nhc_gw_family != AF_INET6)) { if (nhc->nhc_gw_family) params->ipv4_dst = nhc->nhc_gw.ipv4; neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst); } else { struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst; params->family = AF_INET6; *dst = nhc->nhc_gw.ipv6; neigh = __ipv6_neigh_lookup_noref_stub(dev, dst); } if (!neigh || !(neigh->nud_state & NUD_VALID)) return BPF_FIB_LKUP_RET_NO_NEIGH; return bpf_fib_set_fwd_params(params, neigh, dev); } #endif #if IS_ENABLED(CONFIG_IPV6) static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params, u32 flags, bool check_mtu) { struct in6_addr *src = (struct in6_addr *) params->ipv6_src; struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst; struct fib6_result res = {}; struct neighbour *neigh; struct net_device *dev; struct inet6_dev *idev; struct flowi6 fl6; int strict = 0; int oif, err; u32 mtu; /* link local addresses are never forwarded */ if (rt6_need_strict(dst) || rt6_need_strict(src)) return BPF_FIB_LKUP_RET_NOT_FWDED; dev = dev_get_by_index_rcu(net, params->ifindex); if (unlikely(!dev)) return -ENODEV; idev = __in6_dev_get_safely(dev); if (unlikely(!idev || !idev->cnf.forwarding)) return BPF_FIB_LKUP_RET_FWD_DISABLED; if (flags & BPF_FIB_LOOKUP_OUTPUT) { fl6.flowi6_iif = 1; oif = fl6.flowi6_oif = params->ifindex; } else { oif = fl6.flowi6_iif = params->ifindex; fl6.flowi6_oif = 0; strict = RT6_LOOKUP_F_HAS_SADDR; } fl6.flowlabel = params->flowinfo; fl6.flowi6_scope = 0; fl6.flowi6_flags = 0; fl6.mp_hash = 0; fl6.flowi6_proto = params->l4_protocol; fl6.daddr = *dst; fl6.saddr = *src; fl6.fl6_sport = params->sport; fl6.fl6_dport = params->dport; if (flags & BPF_FIB_LOOKUP_DIRECT) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; struct fib6_table *tb; tb = ipv6_stub->fib6_get_table(net, tbid); if (unlikely(!tb)) return BPF_FIB_LKUP_RET_NOT_FWDED; err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res, strict); } else { fl6.flowi6_mark = 0; fl6.flowi6_secid = 0; fl6.flowi6_tun_key.tun_id = 0; fl6.flowi6_uid = sock_net_uid(net, NULL); err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict); } if (unlikely(err || IS_ERR_OR_NULL(res.f6i) || res.f6i == net->ipv6.fib6_null_entry)) return BPF_FIB_LKUP_RET_NOT_FWDED; switch (res.fib6_type) { /* only unicast is forwarded */ case RTN_UNICAST: break; case RTN_BLACKHOLE: return BPF_FIB_LKUP_RET_BLACKHOLE; case RTN_UNREACHABLE: return BPF_FIB_LKUP_RET_UNREACHABLE; case RTN_PROHIBIT: return BPF_FIB_LKUP_RET_PROHIBIT; default: return BPF_FIB_LKUP_RET_NOT_FWDED; } ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif, fl6.flowi6_oif != 0, NULL, strict); if (check_mtu) { mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src); if (params->tot_len > mtu) return BPF_FIB_LKUP_RET_FRAG_NEEDED; } if (res.nh->fib_nh_lws) return BPF_FIB_LKUP_RET_UNSUPP_LWT; if (res.nh->fib_nh_gw_family) *dst = res.nh->fib_nh_gw6; dev = res.nh->fib_nh_dev; params->rt_metric = res.f6i->fib6_metric; params->ifindex = dev->ifindex; /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is * not needed here. */ neigh = __ipv6_neigh_lookup_noref_stub(dev, dst); if (!neigh || !(neigh->nud_state & NUD_VALID)) return BPF_FIB_LKUP_RET_NO_NEIGH; return bpf_fib_set_fwd_params(params, neigh, dev); } #endif BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx, struct bpf_fib_lookup *, params, int, plen, u32, flags) { if (plen < sizeof(*params)) return -EINVAL; if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT)) return -EINVAL; switch (params->family) { #if IS_ENABLED(CONFIG_INET) case AF_INET: return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params, flags, true); #endif #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params, flags, true); #endif } return -EAFNOSUPPORT; } static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = { .func = bpf_xdp_fib_lookup, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb, struct bpf_fib_lookup *, params, int, plen, u32, flags) { struct net *net = dev_net(skb->dev); int rc = -EAFNOSUPPORT; bool check_mtu = false; if (plen < sizeof(*params)) return -EINVAL; if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT)) return -EINVAL; if (params->tot_len) check_mtu = true; switch (params->family) { #if IS_ENABLED(CONFIG_INET) case AF_INET: rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu); break; #endif #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu); break; #endif } if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) { struct net_device *dev; /* When tot_len isn't provided by user, check skb * against MTU of FIB lookup resulting net_device */ dev = dev_get_by_index_rcu(net, params->ifindex); if (!is_skb_forwardable(dev, skb)) rc = BPF_FIB_LKUP_RET_FRAG_NEEDED; } return rc; } static const struct bpf_func_proto bpf_skb_fib_lookup_proto = { .func = bpf_skb_fib_lookup, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) { int err; struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr; if (!seg6_validate_srh(srh, len, false)) return -EINVAL; switch (type) { case BPF_LWT_ENCAP_SEG6_INLINE: if (skb->protocol != htons(ETH_P_IPV6)) return -EBADMSG; err = seg6_do_srh_inline(skb, srh); break; case BPF_LWT_ENCAP_SEG6: skb_reset_inner_headers(skb); skb->encapsulation = 1; err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6); break; default: return -EINVAL; } bpf_compute_data_pointers(skb); if (err) return err; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); return seg6_lookup_nexthop(skb, NULL, 0); } #endif /* CONFIG_IPV6_SEG6_BPF */ #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress) { return bpf_lwt_push_ip_encap(skb, hdr, len, ingress); } #endif BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr, u32, len) { switch (type) { #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) case BPF_LWT_ENCAP_SEG6: case BPF_LWT_ENCAP_SEG6_INLINE: return bpf_push_seg6_encap(skb, type, hdr, len); #endif #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) case BPF_LWT_ENCAP_IP: return bpf_push_ip_encap(skb, hdr, len, true /* ingress */); #endif default: return -EINVAL; } } BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type, void *, hdr, u32, len) { switch (type) { #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) case BPF_LWT_ENCAP_IP: return bpf_push_ip_encap(skb, hdr, len, false /* egress */); #endif default: return -EINVAL; } } static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = { .func = bpf_lwt_in_push_encap, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE }; static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = { .func = bpf_lwt_xmit_push_encap, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE }; #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset, const void *, from, u32, len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh = srh_state->srh; void *srh_tlvs, *srh_end, *ptr; int srhoff = 0; if (srh == NULL) return -EINVAL; srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4)); srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen); ptr = skb->data + offset; if (ptr >= srh_tlvs && ptr + len <= srh_end) srh_state->valid = false; else if (ptr < (void *)&srh->flags || ptr + len > (void *)&srh->segments) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + len))) return -EFAULT; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return -EINVAL; srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); memcpy(skb->data + offset, from, len); return 0; } static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = { .func = bpf_lwt_seg6_store_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE }; static void bpf_update_srh_state(struct sk_buff *skb) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); int srhoff = 0; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) { srh_state->srh = NULL; } else { srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srh_state->hdrlen = srh_state->srh->hdrlen << 3; srh_state->valid = true; } } BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb, u32, action, void *, param, u32, param_len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); int hdroff = 0; int err; switch (action) { case SEG6_LOCAL_ACTION_END_X: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(struct in6_addr)) return -EINVAL; return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0); case SEG6_LOCAL_ACTION_END_T: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(int)) return -EINVAL; return seg6_lookup_nexthop(skb, NULL, *(int *)param); case SEG6_LOCAL_ACTION_END_DT6: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(int)) return -EINVAL; if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0) return -EBADMSG; if (!pskb_pull(skb, hdroff)) return -EBADMSG; skb_postpull_rcsum(skb, skb_network_header(skb), hdroff); skb_reset_network_header(skb); skb_reset_transport_header(skb); skb->encapsulation = 0; bpf_compute_data_pointers(skb); bpf_update_srh_state(skb); return seg6_lookup_nexthop(skb, NULL, *(int *)param); case SEG6_LOCAL_ACTION_END_B6: if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) return -EBADMSG; err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE, param, param_len); if (!err) bpf_update_srh_state(skb); return err; case SEG6_LOCAL_ACTION_END_B6_ENCAP: if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) return -EBADMSG; err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6, param, param_len); if (!err) bpf_update_srh_state(skb); return err; default: return -EINVAL; } } static const struct bpf_func_proto bpf_lwt_seg6_action_proto = { .func = bpf_lwt_seg6_action, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE }; BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset, s32, len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh = srh_state->srh; void *srh_end, *srh_tlvs, *ptr; struct ipv6hdr *hdr; int srhoff = 0; int ret; if (unlikely(srh == NULL)) return -EINVAL; srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) + ((srh->first_segment + 1) << 4)); srh_end = (void *)((unsigned char *)srh + sizeof(*srh) + srh_state->hdrlen); ptr = skb->data + offset; if (unlikely(ptr < srh_tlvs || ptr > srh_end)) return -EFAULT; if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end)) return -EFAULT; if (len > 0) { ret = skb_cow_head(skb, len); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_push(skb, offset, len); } else { ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len); } bpf_compute_data_pointers(skb); if (unlikely(ret < 0)) return ret; hdr = (struct ipv6hdr *)skb->data; hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return -EINVAL; srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srh_state->hdrlen += len; srh_state->valid = false; return 0; } static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = { .func = bpf_lwt_seg6_adjust_srh, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; #endif /* CONFIG_IPV6_SEG6_BPF */ #ifdef CONFIG_INET static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple, int dif, int sdif, u8 family, u8 proto) { bool refcounted = false; struct sock *sk = NULL; if (family == AF_INET) { __be32 src4 = tuple->ipv4.saddr; __be32 dst4 = tuple->ipv4.daddr; if (proto == IPPROTO_TCP) sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0, src4, tuple->ipv4.sport, dst4, tuple->ipv4.dport, dif, sdif, &refcounted); else sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport, dst4, tuple->ipv4.dport, dif, sdif, &udp_table, NULL); #if IS_ENABLED(CONFIG_IPV6) } else { struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr; struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr; if (proto == IPPROTO_TCP) sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0, src6, tuple->ipv6.sport, dst6, ntohs(tuple->ipv6.dport), dif, sdif, &refcounted); else if (likely(ipv6_bpf_stub)) sk = ipv6_bpf_stub->udp6_lib_lookup(net, src6, tuple->ipv6.sport, dst6, tuple->ipv6.dport, dif, sdif, &udp_table, NULL); #endif } if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) { WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); sk = NULL; } return sk; } /* bpf_skc_lookup performs the core lookup for different types of sockets, * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE. * Returns the socket as an 'unsigned long' to simplify the casting in the * callers to satisfy BPF_CALL declarations. */ static struct sock * __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, u64 flags) { struct sock *sk = NULL; u8 family = AF_UNSPEC; struct net *net; int sdif; if (len == sizeof(tuple->ipv4)) family = AF_INET; else if (len == sizeof(tuple->ipv6)) family = AF_INET6; else return NULL; if (unlikely(family == AF_UNSPEC || flags || !((s32)netns_id < 0 || netns_id <= S32_MAX))) goto out; if (family == AF_INET) sdif = inet_sdif(skb); else sdif = inet6_sdif(skb); if ((s32)netns_id < 0) { net = caller_net; sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); } else { net = get_net_ns_by_id(caller_net, netns_id); if (unlikely(!net)) goto out; sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); put_net(net); } out: return sk; } static struct sock * __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, u64 flags) { struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto, netns_id, flags); if (sk) { struct sock *sk2 = sk_to_full_sk(sk); /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk * sock refcnt is decremented to prevent a request_sock leak. */ if (!sk_fullsock(sk2)) sk2 = NULL; if (sk2 != sk) { sock_gen_put(sk); /* Ensure there is no need to bump sk2 refcnt */ if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); return NULL; } sk = sk2; } } return sk; } static struct sock * bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, u8 proto, u64 netns_id, u64 flags) { struct net *caller_net; int ifindex; if (skb->dev) { caller_net = dev_net(skb->dev); ifindex = skb->dev->ifindex; } else { caller_net = sock_net(skb->sk); ifindex = 0; } return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto, netns_id, flags); } static struct sock * bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, u8 proto, u64 netns_id, u64 flags) { struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id, flags); if (sk) { struct sock *sk2 = sk_to_full_sk(sk); /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk * sock refcnt is decremented to prevent a request_sock leak. */ if (!sk_fullsock(sk2)) sk2 = NULL; if (sk2 != sk) { sock_gen_put(sk); /* Ensure there is no need to bump sk2 refcnt */ if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); return NULL; } sk = sk2; } } return sk; } BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = { .func = bpf_skc_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = { .func = bpf_sk_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP, netns_id, flags); } static const struct bpf_func_proto bpf_sk_lookup_udp_proto = { .func = bpf_sk_lookup_udp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_sk_release, struct sock *, sk) { if (sk && sk_is_refcounted(sk)) sock_gen_put(sk); return 0; } static const struct bpf_func_proto bpf_sk_release_proto = { .func = bpf_sk_release, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, }; BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) { struct net *caller_net = dev_net(ctx->rxq->dev); int ifindex = ctx->rxq->dev->ifindex; return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex, IPPROTO_UDP, netns_id, flags); } static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = { .func = bpf_xdp_sk_lookup_udp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) { struct net *caller_net = dev_net(ctx->rxq->dev); int ifindex = ctx->rxq->dev->ifindex; return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net, ifindex, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = { .func = bpf_xdp_skc_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) { struct net *caller_net = dev_net(ctx->rxq->dev); int ifindex = ctx->rxq->dev->ifindex; return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = { .func = bpf_xdp_sk_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, sock_net(ctx->sk), 0, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = { .func = bpf_sock_addr_skc_lookup_tcp, .gpl_only = false, .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = { .func = bpf_sock_addr_sk_lookup_tcp, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0, IPPROTO_UDP, netns_id, flags); } static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = { .func = bpf_sock_addr_sk_lookup_udp, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { if (off < 0 || off >= offsetofend(struct bpf_tcp_sock, icsk_retransmits)) return false; if (off % size != 0) return false; switch (off) { case offsetof(struct bpf_tcp_sock, bytes_received): case offsetof(struct bpf_tcp_sock, bytes_acked): return size == sizeof(__u64); default: return size == sizeof(__u32); } } u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; #define BPF_TCP_SOCK_GET_COMMON(FIELD) \ do { \ BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \ sizeof_field(struct bpf_tcp_sock, FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\ si->dst_reg, si->src_reg, \ offsetof(struct tcp_sock, FIELD)); \ } while (0) #define BPF_INET_SOCK_GET_COMMON(FIELD) \ do { \ BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \ FIELD) > \ sizeof_field(struct bpf_tcp_sock, FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct inet_connection_sock, \ FIELD), \ si->dst_reg, si->src_reg, \ offsetof( \ struct inet_connection_sock, \ FIELD)); \ } while (0) if (insn > insn_buf) return insn - insn_buf; switch (si->off) { case offsetof(struct bpf_tcp_sock, rtt_min): BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != sizeof(struct minmax)); BUILD_BUG_ON(sizeof(struct minmax) < sizeof(struct minmax_sample)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct tcp_sock, rtt_min) + offsetof(struct minmax_sample, v)); break; case offsetof(struct bpf_tcp_sock, snd_cwnd): BPF_TCP_SOCK_GET_COMMON(snd_cwnd); break; case offsetof(struct bpf_tcp_sock, srtt_us): BPF_TCP_SOCK_GET_COMMON(srtt_us); break; case offsetof(struct bpf_tcp_sock, snd_ssthresh): BPF_TCP_SOCK_GET_COMMON(snd_ssthresh); break; case offsetof(struct bpf_tcp_sock, rcv_nxt): BPF_TCP_SOCK_GET_COMMON(rcv_nxt); break; case offsetof(struct bpf_tcp_sock, snd_nxt): BPF_TCP_SOCK_GET_COMMON(snd_nxt); break; case offsetof(struct bpf_tcp_sock, snd_una): BPF_TCP_SOCK_GET_COMMON(snd_una); break; case offsetof(struct bpf_tcp_sock, mss_cache): BPF_TCP_SOCK_GET_COMMON(mss_cache); break; case offsetof(struct bpf_tcp_sock, ecn_flags): BPF_TCP_SOCK_GET_COMMON(ecn_flags); break; case offsetof(struct bpf_tcp_sock, rate_delivered): BPF_TCP_SOCK_GET_COMMON(rate_delivered); break; case offsetof(struct bpf_tcp_sock, rate_interval_us): BPF_TCP_SOCK_GET_COMMON(rate_interval_us); break; case offsetof(struct bpf_tcp_sock, packets_out): BPF_TCP_SOCK_GET_COMMON(packets_out); break; case offsetof(struct bpf_tcp_sock, retrans_out): BPF_TCP_SOCK_GET_COMMON(retrans_out); break; case offsetof(struct bpf_tcp_sock, total_retrans): BPF_TCP_SOCK_GET_COMMON(total_retrans); break; case offsetof(struct bpf_tcp_sock, segs_in): BPF_TCP_SOCK_GET_COMMON(segs_in); break; case offsetof(struct bpf_tcp_sock, data_segs_in): BPF_TCP_SOCK_GET_COMMON(data_segs_in); break; case offsetof(struct bpf_tcp_sock, segs_out): BPF_TCP_SOCK_GET_COMMON(segs_out); break; case offsetof(struct bpf_tcp_sock, data_segs_out): BPF_TCP_SOCK_GET_COMMON(data_segs_out); break; case offsetof(struct bpf_tcp_sock, lost_out): BPF_TCP_SOCK_GET_COMMON(lost_out); break; case offsetof(struct bpf_tcp_sock, sacked_out): BPF_TCP_SOCK_GET_COMMON(sacked_out); break; case offsetof(struct bpf_tcp_sock, bytes_received): BPF_TCP_SOCK_GET_COMMON(bytes_received); break; case offsetof(struct bpf_tcp_sock, bytes_acked): BPF_TCP_SOCK_GET_COMMON(bytes_acked); break; case offsetof(struct bpf_tcp_sock, dsack_dups): BPF_TCP_SOCK_GET_COMMON(dsack_dups); break; case offsetof(struct bpf_tcp_sock, delivered): BPF_TCP_SOCK_GET_COMMON(delivered); break; case offsetof(struct bpf_tcp_sock, delivered_ce): BPF_TCP_SOCK_GET_COMMON(delivered_ce); break; case offsetof(struct bpf_tcp_sock, icsk_retransmits): BPF_INET_SOCK_GET_COMMON(icsk_retransmits); break; } return insn - insn_buf; } BPF_CALL_1(bpf_tcp_sock, struct sock *, sk) { if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_tcp_sock_proto = { .func = bpf_tcp_sock, .gpl_only = false, .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL, .arg1_type = ARG_PTR_TO_SOCK_COMMON, }; BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk) { sk = sk_to_full_sk(sk); if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE)) return (unsigned long)sk; return (unsigned long)NULL; } static const struct bpf_func_proto bpf_get_listener_sock_proto = { .func = bpf_get_listener_sock, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_SOCK_COMMON, }; BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb) { unsigned int iphdr_len; switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): iphdr_len = sizeof(struct iphdr); break; case cpu_to_be16(ETH_P_IPV6): iphdr_len = sizeof(struct ipv6hdr); break; default: return 0; } if (skb_headlen(skb) < iphdr_len) return 0; if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len)) return 0; return INET_ECN_set_ce(skb); } bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id)) return false; if (off % size != 0) return false; switch (off) { default: return size == sizeof(__u32); } } u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; #define BPF_XDP_SOCK_GET(FIELD) \ do { \ BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \ sizeof_field(struct bpf_xdp_sock, FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\ si->dst_reg, si->src_reg, \ offsetof(struct xdp_sock, FIELD)); \ } while (0) switch (si->off) { case offsetof(struct bpf_xdp_sock, queue_id): BPF_XDP_SOCK_GET(queue_id); break; } return insn - insn_buf; } static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = { .func = bpf_skb_ecn_set_ce, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len, struct tcphdr *, th, u32, th_len) { #ifdef CONFIG_SYN_COOKIES u32 cookie; int ret; if (unlikely(!sk || th_len < sizeof(*th))) return -EINVAL; /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */ if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) return -EINVAL; if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) return -EINVAL; if (!th->ack || th->rst || th->syn) return -ENOENT; if (unlikely(iph_len < sizeof(struct iphdr))) return -EINVAL; if (tcp_synq_no_recent_overflow(sk)) return -ENOENT; cookie = ntohl(th->ack_seq) - 1; /* Both struct iphdr and struct ipv6hdr have the version field at the * same offset so we can cast to the shorter header (struct iphdr). */ switch (((struct iphdr *)iph)->version) { case 4: if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk)) return -EINVAL; ret = __cookie_v4_check((struct iphdr *)iph, th, cookie); break; #if IS_BUILTIN(CONFIG_IPV6) case 6: if (unlikely(iph_len < sizeof(struct ipv6hdr))) return -EINVAL; if (sk->sk_family != AF_INET6) return -EINVAL; ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie); break; #endif /* CONFIG_IPV6 */ default: return -EPROTONOSUPPORT; } if (ret > 0) return 0; return -ENOENT; #else return -ENOTSUPP; #endif } static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = { .func = bpf_tcp_check_syncookie, .gpl_only = true, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len, struct tcphdr *, th, u32, th_len) { #ifdef CONFIG_SYN_COOKIES u32 cookie; u16 mss; if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4)) return -EINVAL; if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) return -EINVAL; if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) return -ENOENT; if (!th->syn || th->ack || th->fin || th->rst) return -EINVAL; if (unlikely(iph_len < sizeof(struct iphdr))) return -EINVAL; /* Both struct iphdr and struct ipv6hdr have the version field at the * same offset so we can cast to the shorter header (struct iphdr). */ switch (((struct iphdr *)iph)->version) { case 4: if (sk->sk_family == AF_INET6 && sk->sk_ipv6only) return -EINVAL; mss = tcp_v4_get_syncookie(sk, iph, th, &cookie); break; #if IS_BUILTIN(CONFIG_IPV6) case 6: if (unlikely(iph_len < sizeof(struct ipv6hdr))) return -EINVAL; if (sk->sk_family != AF_INET6) return -EINVAL; mss = tcp_v6_get_syncookie(sk, iph, th, &cookie); break; #endif /* CONFIG_IPV6 */ default: return -EPROTONOSUPPORT; } if (mss == 0) return -ENOENT; return cookie | ((u64)mss << 32); #else return -EOPNOTSUPP; #endif /* CONFIG_SYN_COOKIES */ } static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = { .func = bpf_tcp_gen_syncookie, .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */ .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags) { if (!sk || flags != 0) return -EINVAL; if (!skb_at_tc_ingress(skb)) return -EOPNOTSUPP; if (unlikely(dev_net(skb->dev) != sock_net(sk))) return -ENETUNREACH; if (unlikely(sk_fullsock(sk) && sk->sk_reuseport)) return -ESOCKTNOSUPPORT; if (sk_unhashed(sk)) return -EOPNOTSUPP; if (sk_is_refcounted(sk) && unlikely(!refcount_inc_not_zero(&sk->sk_refcnt))) return -ENOENT; skb_orphan(skb); skb->sk = sk; skb->destructor = sock_pfree; return 0; } static const struct bpf_func_proto bpf_sk_assign_proto = { .func = bpf_sk_assign, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg3_type = ARG_ANYTHING, }; static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend, u8 search_kind, const u8 *magic, u8 magic_len, bool *eol) { u8 kind, kind_len; *eol = false; while (op < opend) { kind = op[0]; if (kind == TCPOPT_EOL) { *eol = true; return ERR_PTR(-ENOMSG); } else if (kind == TCPOPT_NOP) { op++; continue; } if (opend - op < 2 || opend - op < op[1] || op[1] < 2) /* Something is wrong in the received header. * Follow the TCP stack's tcp_parse_options() * and just bail here. */ return ERR_PTR(-EFAULT); kind_len = op[1]; if (search_kind == kind) { if (!magic_len) return op; if (magic_len > kind_len - 2) return ERR_PTR(-ENOMSG); if (!memcmp(&op[2], magic, magic_len)) return op; } op += kind_len; } return ERR_PTR(-ENOMSG); } BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, void *, search_res, u32, len, u64, flags) { bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN; const u8 *op, *opend, *magic, *search = search_res; u8 search_kind, search_len, copy_len, magic_len; int ret; /* 2 byte is the minimal option len except TCPOPT_NOP and * TCPOPT_EOL which are useless for the bpf prog to learn * and this helper disallow loading them also. */ if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN) return -EINVAL; search_kind = search[0]; search_len = search[1]; if (search_len > len || search_kind == TCPOPT_NOP || search_kind == TCPOPT_EOL) return -EINVAL; if (search_kind == TCPOPT_EXP || search_kind == 253) { /* 16 or 32 bit magic. +2 for kind and kind length */ if (search_len != 4 && search_len != 6) return -EINVAL; magic = &search[2]; magic_len = search_len - 2; } else { if (search_len) return -EINVAL; magic = NULL; magic_len = 0; } if (load_syn) { ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op); if (ret < 0) return ret; opend = op + ret; op += sizeof(struct tcphdr); } else { if (!bpf_sock->skb || bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB) /* This bpf_sock->op cannot call this helper */ return -EPERM; opend = bpf_sock->skb_data_end; op = bpf_sock->skb->data + sizeof(struct tcphdr); } op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len, &eol); if (IS_ERR(op)) return PTR_ERR(op); copy_len = op[1]; ret = copy_len; if (copy_len > len) { ret = -ENOSPC; copy_len = len; } memcpy(search_res, op, copy_len); return ret; } static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = { .func = bpf_sock_ops_load_hdr_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, const void *, from, u32, len, u64, flags) { u8 new_kind, new_kind_len, magic_len = 0, *opend; const u8 *op, *new_op, *magic = NULL; struct sk_buff *skb; bool eol; if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB) return -EPERM; if (len < 2 || flags) return -EINVAL; new_op = from; new_kind = new_op[0]; new_kind_len = new_op[1]; if (new_kind_len > len || new_kind == TCPOPT_NOP || new_kind == TCPOPT_EOL) return -EINVAL; if (new_kind_len > bpf_sock->remaining_opt_len) return -ENOSPC; /* 253 is another experimental kind */ if (new_kind == TCPOPT_EXP || new_kind == 253) { if (new_kind_len < 4) return -EINVAL; /* Match for the 2 byte magic also. * RFC 6994: the magic could be 2 or 4 bytes. * Hence, matching by 2 byte only is on the * conservative side but it is the right * thing to do for the 'search-for-duplication' * purpose. */ magic = &new_op[2]; magic_len = 2; } /* Check for duplication */ skb = bpf_sock->skb; op = skb->data + sizeof(struct tcphdr); opend = bpf_sock->skb_data_end; op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len, &eol); if (!IS_ERR(op)) return -EEXIST; if (PTR_ERR(op) != -ENOMSG) return PTR_ERR(op); if (eol) /* The option has been ended. Treat it as no more * header option can be written. */ return -ENOSPC; /* No duplication found. Store the header option. */ memcpy(opend, from, new_kind_len); bpf_sock->remaining_opt_len -= new_kind_len; bpf_sock->skb_data_end += new_kind_len; return 0; } static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = { .func = bpf_sock_ops_store_hdr_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, u32, len, u64, flags) { if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB) return -EPERM; if (flags || len < 2) return -EINVAL; if (len > bpf_sock->remaining_opt_len) return -ENOSPC; bpf_sock->remaining_opt_len -= len; return 0; } static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = { .func = bpf_sock_ops_reserve_hdr_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; #endif /* CONFIG_INET */ bool bpf_helper_changes_pkt_data(void *func) { if (func == bpf_skb_vlan_push || func == bpf_skb_vlan_pop || func == bpf_skb_store_bytes || func == bpf_skb_change_proto || func == bpf_skb_change_head || func == sk_skb_change_head || func == bpf_skb_change_tail || func == sk_skb_change_tail || func == bpf_skb_adjust_room || func == sk_skb_adjust_room || func == bpf_skb_pull_data || func == sk_skb_pull_data || func == bpf_clone_redirect || func == bpf_l3_csum_replace || func == bpf_l4_csum_replace || func == bpf_xdp_adjust_head || func == bpf_xdp_adjust_meta || func == bpf_msg_pull_data || func == bpf_msg_push_data || func == bpf_msg_pop_data || func == bpf_xdp_adjust_tail || #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) func == bpf_lwt_seg6_store_bytes || func == bpf_lwt_seg6_adjust_srh || func == bpf_lwt_seg6_action || #endif #ifdef CONFIG_INET func == bpf_sock_ops_store_hdr_opt || #endif func == bpf_lwt_in_push_encap || func == bpf_lwt_xmit_push_encap) return true; return false; } const struct bpf_func_proto bpf_event_output_data_proto __weak; const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak; static const struct bpf_func_proto * sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { /* inet and inet6 sockets are created in a process * context so there is always a valid uid/gid */ case BPF_FUNC_get_current_uid_gid: return &bpf_get_current_uid_gid_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_proto; case BPF_FUNC_get_netns_cookie: return &bpf_get_netns_cookie_sock_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_get_current_pid_tgid: return &bpf_get_current_pid_tgid_proto; case BPF_FUNC_get_current_comm: return &bpf_get_current_comm_proto; #ifdef CONFIG_CGROUPS case BPF_FUNC_get_current_cgroup_id: return &bpf_get_current_cgroup_id_proto; case BPF_FUNC_get_current_ancestor_cgroup_id: return &bpf_get_current_ancestor_cgroup_id_proto; #endif #ifdef CONFIG_CGROUP_NET_CLASSID case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_curr_proto; #endif case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_cg_sock_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { /* inet and inet6 sockets are created in a process * context so there is always a valid uid/gid */ case BPF_FUNC_get_current_uid_gid: return &bpf_get_current_uid_gid_proto; case BPF_FUNC_bind: switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: return &bpf_bind_proto; default: return NULL; } case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_addr_proto; case BPF_FUNC_get_netns_cookie: return &bpf_get_netns_cookie_sock_addr_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_get_current_pid_tgid: return &bpf_get_current_pid_tgid_proto; case BPF_FUNC_get_current_comm: return &bpf_get_current_comm_proto; #ifdef CONFIG_CGROUPS case BPF_FUNC_get_current_cgroup_id: return &bpf_get_current_cgroup_id_proto; case BPF_FUNC_get_current_ancestor_cgroup_id: return &bpf_get_current_ancestor_cgroup_id_proto; #endif #ifdef CONFIG_CGROUP_NET_CLASSID case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_curr_proto; #endif #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_sock_addr_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_sock_addr_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_sock_addr_skc_lookup_tcp_proto; #endif /* CONFIG_INET */ case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; case BPF_FUNC_setsockopt: switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: return &bpf_sock_addr_setsockopt_proto; default: return NULL; } case BPF_FUNC_getsockopt: switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: return &bpf_sock_addr_getsockopt_proto; default: return NULL; } default: return bpf_sk_base_func_proto(func_id); } } static const struct bpf_func_proto * sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &bpf_skb_load_bytes_relative_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; default: return bpf_sk_base_func_proto(func_id); } } const struct bpf_func_proto bpf_sk_storage_get_proto __weak; const struct bpf_func_proto bpf_sk_storage_delete_proto __weak; static const struct bpf_func_proto * cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; case BPF_FUNC_sk_fullsock: return &bpf_sk_fullsock_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; #ifdef CONFIG_SOCK_CGROUP_DATA case BPF_FUNC_skb_cgroup_id: return &bpf_skb_cgroup_id_proto; case BPF_FUNC_skb_ancestor_cgroup_id: return &bpf_skb_ancestor_cgroup_id_proto; case BPF_FUNC_sk_cgroup_id: return &bpf_sk_cgroup_id_proto; case BPF_FUNC_sk_ancestor_cgroup_id: return &bpf_sk_ancestor_cgroup_id_proto; #endif #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_skc_lookup_tcp_proto; case BPF_FUNC_tcp_sock: return &bpf_tcp_sock_proto; case BPF_FUNC_get_listener_sock: return &bpf_get_listener_sock_proto; case BPF_FUNC_skb_ecn_set_ce: return &bpf_skb_ecn_set_ce_proto; #endif default: return sk_filter_func_proto(func_id, prog); } } static const struct bpf_func_proto * tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &bpf_skb_load_bytes_relative_proto; case BPF_FUNC_skb_pull_data: return &bpf_skb_pull_data_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_csum_update: return &bpf_csum_update_proto; case BPF_FUNC_csum_level: return &bpf_csum_level_proto; case BPF_FUNC_l3_csum_replace: return &bpf_l3_csum_replace_proto; case BPF_FUNC_l4_csum_replace: return &bpf_l4_csum_replace_proto; case BPF_FUNC_clone_redirect: return &bpf_clone_redirect_proto; case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_proto; case BPF_FUNC_skb_vlan_push: return &bpf_skb_vlan_push_proto; case BPF_FUNC_skb_vlan_pop: return &bpf_skb_vlan_pop_proto; case BPF_FUNC_skb_change_proto: return &bpf_skb_change_proto_proto; case BPF_FUNC_skb_change_type: return &bpf_skb_change_type_proto; case BPF_FUNC_skb_adjust_room: return &bpf_skb_adjust_room_proto; case BPF_FUNC_skb_change_tail: return &bpf_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &bpf_skb_change_head_proto; case BPF_FUNC_skb_get_tunnel_key: return &bpf_skb_get_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_key: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_skb_get_tunnel_opt: return &bpf_skb_get_tunnel_opt_proto; case BPF_FUNC_skb_set_tunnel_opt: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_redirect: return &bpf_redirect_proto; case BPF_FUNC_redirect_neigh: return &bpf_redirect_neigh_proto; case BPF_FUNC_redirect_peer: return &bpf_redirect_peer_proto; case BPF_FUNC_get_route_realm: return &bpf_get_route_realm_proto; case BPF_FUNC_get_hash_recalc: return &bpf_get_hash_recalc_proto; case BPF_FUNC_set_hash_invalid: return &bpf_set_hash_invalid_proto; case BPF_FUNC_set_hash: return &bpf_set_hash_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_skb_under_cgroup: return &bpf_skb_under_cgroup_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_fib_lookup: return &bpf_skb_fib_lookup_proto; case BPF_FUNC_sk_fullsock: return &bpf_sk_fullsock_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; #ifdef CONFIG_XFRM case BPF_FUNC_skb_get_xfrm_state: return &bpf_skb_get_xfrm_state_proto; #endif #ifdef CONFIG_CGROUP_NET_CLASSID case BPF_FUNC_skb_cgroup_classid: return &bpf_skb_cgroup_classid_proto; #endif #ifdef CONFIG_SOCK_CGROUP_DATA case BPF_FUNC_skb_cgroup_id: return &bpf_skb_cgroup_id_proto; case BPF_FUNC_skb_ancestor_cgroup_id: return &bpf_skb_ancestor_cgroup_id_proto; #endif #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_tcp_sock: return &bpf_tcp_sock_proto; case BPF_FUNC_get_listener_sock: return &bpf_get_listener_sock_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_skc_lookup_tcp_proto; case BPF_FUNC_tcp_check_syncookie: return &bpf_tcp_check_syncookie_proto; case BPF_FUNC_skb_ecn_set_ce: return &bpf_skb_ecn_set_ce_proto; case BPF_FUNC_tcp_gen_syncookie: return &bpf_tcp_gen_syncookie_proto; case BPF_FUNC_sk_assign: return &bpf_sk_assign_proto; #endif default: return bpf_sk_base_func_proto(func_id); } } static const struct bpf_func_proto * xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_xdp_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_xdp_adjust_head: return &bpf_xdp_adjust_head_proto; case BPF_FUNC_xdp_adjust_meta: return &bpf_xdp_adjust_meta_proto; case BPF_FUNC_redirect: return &bpf_xdp_redirect_proto; case BPF_FUNC_redirect_map: return &bpf_xdp_redirect_map_proto; case BPF_FUNC_xdp_adjust_tail: return &bpf_xdp_adjust_tail_proto; case BPF_FUNC_fib_lookup: return &bpf_xdp_fib_lookup_proto; #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_udp: return &bpf_xdp_sk_lookup_udp_proto; case BPF_FUNC_sk_lookup_tcp: return &bpf_xdp_sk_lookup_tcp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_xdp_skc_lookup_tcp_proto; case BPF_FUNC_tcp_check_syncookie: return &bpf_tcp_check_syncookie_proto; case BPF_FUNC_tcp_gen_syncookie: return &bpf_tcp_gen_syncookie_proto; #endif default: return bpf_sk_base_func_proto(func_id); } } const struct bpf_func_proto bpf_sock_map_update_proto __weak; const struct bpf_func_proto bpf_sock_hash_update_proto __weak; static const struct bpf_func_proto * sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_setsockopt: return &bpf_sock_ops_setsockopt_proto; case BPF_FUNC_getsockopt: return &bpf_sock_ops_getsockopt_proto; case BPF_FUNC_sock_ops_cb_flags_set: return &bpf_sock_ops_cb_flags_set_proto; case BPF_FUNC_sock_map_update: return &bpf_sock_map_update_proto; case BPF_FUNC_sock_hash_update: return &bpf_sock_hash_update_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_ops_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; #ifdef CONFIG_INET case BPF_FUNC_load_hdr_opt: return &bpf_sock_ops_load_hdr_opt_proto; case BPF_FUNC_store_hdr_opt: return &bpf_sock_ops_store_hdr_opt_proto; case BPF_FUNC_reserve_hdr_opt: return &bpf_sock_ops_reserve_hdr_opt_proto; case BPF_FUNC_tcp_sock: return &bpf_tcp_sock_proto; #endif /* CONFIG_INET */ default: return bpf_sk_base_func_proto(func_id); } } const struct bpf_func_proto bpf_msg_redirect_map_proto __weak; const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak; static const struct bpf_func_proto * sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_msg_redirect_map: return &bpf_msg_redirect_map_proto; case BPF_FUNC_msg_redirect_hash: return &bpf_msg_redirect_hash_proto; case BPF_FUNC_msg_apply_bytes: return &bpf_msg_apply_bytes_proto; case BPF_FUNC_msg_cork_bytes: return &bpf_msg_cork_bytes_proto; case BPF_FUNC_msg_pull_data: return &bpf_msg_pull_data_proto; case BPF_FUNC_msg_push_data: return &bpf_msg_push_data_proto; case BPF_FUNC_msg_pop_data: return &bpf_msg_pop_data_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_get_current_uid_gid: return &bpf_get_current_uid_gid_proto; case BPF_FUNC_get_current_pid_tgid: return &bpf_get_current_pid_tgid_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; #ifdef CONFIG_CGROUPS case BPF_FUNC_get_current_cgroup_id: return &bpf_get_current_cgroup_id_proto; case BPF_FUNC_get_current_ancestor_cgroup_id: return &bpf_get_current_ancestor_cgroup_id_proto; #endif #ifdef CONFIG_CGROUP_NET_CLASSID case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_curr_proto; #endif default: return bpf_sk_base_func_proto(func_id); } } const struct bpf_func_proto bpf_sk_redirect_map_proto __weak; const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak; static const struct bpf_func_proto * sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_pull_data: return &sk_skb_pull_data_proto; case BPF_FUNC_skb_change_tail: return &sk_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &sk_skb_change_head_proto; case BPF_FUNC_skb_adjust_room: return &sk_skb_adjust_room_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_sk_redirect_map: return &bpf_sk_redirect_map_proto; case BPF_FUNC_sk_redirect_hash: return &bpf_sk_redirect_hash_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_skc_lookup_tcp_proto; #endif default: return bpf_sk_base_func_proto(func_id); } } static const struct bpf_func_proto * flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_flow_dissector_load_bytes_proto; default: return bpf_sk_base_func_proto(func_id); } } static const struct bpf_func_proto * lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_pull_data: return &bpf_skb_pull_data_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_proto; case BPF_FUNC_get_route_realm: return &bpf_get_route_realm_proto; case BPF_FUNC_get_hash_recalc: return &bpf_get_hash_recalc_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_skb_under_cgroup: return &bpf_skb_under_cgroup_proto; default: return bpf_sk_base_func_proto(func_id); } } static const struct bpf_func_proto * lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_lwt_push_encap: return &bpf_lwt_in_push_encap_proto; default: return lwt_out_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_get_tunnel_key: return &bpf_skb_get_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_key: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_skb_get_tunnel_opt: return &bpf_skb_get_tunnel_opt_proto; case BPF_FUNC_skb_set_tunnel_opt: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_redirect: return &bpf_redirect_proto; case BPF_FUNC_clone_redirect: return &bpf_clone_redirect_proto; case BPF_FUNC_skb_change_tail: return &bpf_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &bpf_skb_change_head_proto; case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_csum_update: return &bpf_csum_update_proto; case BPF_FUNC_csum_level: return &bpf_csum_level_proto; case BPF_FUNC_l3_csum_replace: return &bpf_l3_csum_replace_proto; case BPF_FUNC_l4_csum_replace: return &bpf_l4_csum_replace_proto; case BPF_FUNC_set_hash_invalid: return &bpf_set_hash_invalid_proto; case BPF_FUNC_lwt_push_encap: return &bpf_lwt_xmit_push_encap_proto; default: return lwt_out_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) case BPF_FUNC_lwt_seg6_store_bytes: return &bpf_lwt_seg6_store_bytes_proto; case BPF_FUNC_lwt_seg6_action: return &bpf_lwt_seg6_action_proto; case BPF_FUNC_lwt_seg6_adjust_srh: return &bpf_lwt_seg6_adjust_srh_proto; #endif default: return lwt_out_func_proto(func_id, prog); } } static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct __sk_buff)) return false; /* The verifier guarantees that size > 0. */ if (off % size != 0) return false; switch (off) { case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): if (off + size > offsetofend(struct __sk_buff, cb[4])) return false; break; case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]): case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]): case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4): case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4): case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, data_end): if (size != size_default) return false; break; case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): return false; case bpf_ctx_range(struct __sk_buff, tstamp): if (size != sizeof(__u64)) return false; break; case offsetof(struct __sk_buff, sk): if (type == BPF_WRITE || size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL; break; default: /* Only narrow read access allowed for now. */ if (type == BPF_WRITE) { if (size != size_default) return false; } else { bpf_ctx_record_field_size(info, size_default); if (!bpf_ctx_narrow_access_ok(off, size, size_default)) return false; } } return true; } static bool sk_filter_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, data_end): case bpf_ctx_range_till(struct __sk_buff, family, local_port): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, wire_len): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; default: return false; } } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool cg_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, wire_len): return false; case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_end): if (!bpf_capable()) return false; break; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; case bpf_ctx_range(struct __sk_buff, tstamp): if (!bpf_capable()) return false; break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool lwt_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range_till(struct __sk_buff, family, local_port): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, wire_len): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } /* Attach type specific accesses */ static bool __sock_filter_check_attach_type(int off, enum bpf_access_type access_type, enum bpf_attach_type attach_type) { switch (off) { case offsetof(struct bpf_sock, bound_dev_if): case offsetof(struct bpf_sock, mark): case offsetof(struct bpf_sock, priority): switch (attach_type) { case BPF_CGROUP_INET_SOCK_CREATE: case BPF_CGROUP_INET_SOCK_RELEASE: goto full_access; default: return false; } case bpf_ctx_range(struct bpf_sock, src_ip4): switch (attach_type) { case BPF_CGROUP_INET4_POST_BIND: goto read_only; default: return false; } case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): switch (attach_type) { case BPF_CGROUP_INET6_POST_BIND: goto read_only; default: return false; } case bpf_ctx_range(struct bpf_sock, src_port): switch (attach_type) { case BPF_CGROUP_INET4_POST_BIND: case BPF_CGROUP_INET6_POST_BIND: goto read_only; default: return false; } } read_only: return access_type == BPF_READ; full_access: return true; } bool bpf_sock_common_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range_till(struct bpf_sock, type, priority): return false; default: return bpf_sock_is_valid_access(off, size, type, info); } } bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); int field_size; if (off < 0 || off >= sizeof(struct bpf_sock)) return false; if (off % size != 0) return false; switch (off) { case offsetof(struct bpf_sock, state): case offsetof(struct bpf_sock, family): case offsetof(struct bpf_sock, type): case offsetof(struct bpf_sock, protocol): case offsetof(struct bpf_sock, src_port): case offsetof(struct bpf_sock, rx_queue_mapping): case bpf_ctx_range(struct bpf_sock, src_ip4): case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): case bpf_ctx_range(struct bpf_sock, dst_ip4): case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); case bpf_ctx_range(struct bpf_sock, dst_port): field_size = size == size_default ? size_default : sizeof_field(struct bpf_sock, dst_port); bpf_ctx_record_field_size(info, field_size); return bpf_ctx_narrow_access_ok(off, size, field_size); case offsetofend(struct bpf_sock, dst_port) ... offsetof(struct bpf_sock, dst_ip4) - 1: return false; } return size == size_default; } static bool sock_filter_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (!bpf_sock_is_valid_access(off, size, type, info)) return false; return __sock_filter_check_attach_type(off, type, prog->expected_attach_type); } static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { /* Neither direct read nor direct write requires any preliminary * action. */ return 0; } static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog, int drop_verdict) { struct bpf_insn *insn = insn_buf; if (!direct_write) return 0; /* if (!skb->cloned) * goto start; * * (Fast-path, otherwise approximation that we might be * a clone, do the rest in helper.) */ *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET()); *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK); *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7); /* ret = bpf_skb_pull_data(skb, 0); */ *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2); *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_pull_data); /* if (!ret) * goto restore; * return TC_ACT_SHOT; */ *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2); *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict); *insn++ = BPF_EXIT_INSN(); /* restore: */ *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); /* start: */ *insn++ = prog->insnsi[0]; return insn - insn_buf; } static int bpf_gen_ld_abs(const struct bpf_insn *orig, struct bpf_insn *insn_buf) { bool indirect = BPF_MODE(orig->code) == BPF_IND; struct bpf_insn *insn = insn_buf; if (!indirect) { *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm); } else { *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg); if (orig->imm) *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm); } /* We're guaranteed here that CTX is in R6. */ *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX); switch (BPF_SIZE(orig->code)) { case BPF_B: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache); break; case BPF_H: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache); break; case BPF_W: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache); break; } *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); *insn++ = BPF_EXIT_INSN(); return insn - insn_buf; } static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT); } static bool tc_cls_act_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, tc_index): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, queue_mapping): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_meta): info->reg_type = PTR_TO_PACKET_META; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; case bpf_ctx_range_till(struct __sk_buff, family, local_port): return false; } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool __is_valid_xdp_access(int off, int size) { if (off < 0 || off >= sizeof(struct xdp_md)) return false; if (off % size != 0) return false; if (size != sizeof(__u32)) return false; return true; } static bool xdp_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (prog->expected_attach_type != BPF_XDP_DEVMAP) { switch (off) { case offsetof(struct xdp_md, egress_ifindex): return false; } } if (type == BPF_WRITE) { if (bpf_prog_is_dev_bound(prog->aux)) { switch (off) { case offsetof(struct xdp_md, rx_queue_index): return __is_valid_xdp_access(off, size); } } return false; } switch (off) { case offsetof(struct xdp_md, data): info->reg_type = PTR_TO_PACKET; break; case offsetof(struct xdp_md, data_meta): info->reg_type = PTR_TO_PACKET_META; break; case offsetof(struct xdp_md, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return __is_valid_xdp_access(off, size); } void bpf_warn_invalid_xdp_action(u32 act) { const u32 act_max = XDP_REDIRECT; pr_warn_once("%s XDP return value %u, expect packet loss!\n", act > act_max ? "Illegal" : "Driver unsupported", act); } EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action); static bool sock_addr_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct bpf_sock_addr)) return false; if (off % size != 0) return false; /* Disallow access to IPv6 fields from IPv4 contex and vise * versa. */ switch (off) { case bpf_ctx_range(struct bpf_sock_addr, user_ip4): switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET4_GETPEERNAME: case BPF_CGROUP_INET4_GETSOCKNAME: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP4_RECVMSG: break; default: return false; } break; case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): switch (prog->expected_attach_type) { case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_INET6_GETPEERNAME: case BPF_CGROUP_INET6_GETSOCKNAME: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UDP6_RECVMSG: break; default: return false; } break; case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): switch (prog->expected_attach_type) { case BPF_CGROUP_UDP4_SENDMSG: break; default: return false; } break; case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): switch (prog->expected_attach_type) { case BPF_CGROUP_UDP6_SENDMSG: break; default: return false; } break; } switch (off) { case bpf_ctx_range(struct bpf_sock_addr, user_ip4): case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): case bpf_ctx_range(struct bpf_sock_addr, user_port): if (type == BPF_READ) { bpf_ctx_record_field_size(info, size_default); if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, user_ip6)) return true; if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, msg_src_ip6)) return true; if (!bpf_ctx_narrow_access_ok(off, size, size_default)) return false; } else { if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, user_ip6)) return true; if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, msg_src_ip6)) return true; if (size != size_default) return false; } break; case offsetof(struct bpf_sock_addr, sk): if (type != BPF_READ) return false; if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCKET; break; default: if (type == BPF_READ) { if (size != size_default) return false; } else { return false; } } return true; } static bool sock_ops_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct bpf_sock_ops)) return false; /* The verifier guarantees that size > 0. */ if (off % size != 0) return false; if (type == BPF_WRITE) { switch (off) { case offsetof(struct bpf_sock_ops, reply): case offsetof(struct bpf_sock_ops, sk_txhash): if (size != size_default) return false; break; default: return false; } } else { switch (off) { case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received, bytes_acked): if (size != sizeof(__u64)) return false; break; case offsetof(struct bpf_sock_ops, sk): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCKET_OR_NULL; break; case offsetof(struct bpf_sock_ops, skb_data): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_PACKET; break; case offsetof(struct bpf_sock_ops, skb_data_end): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_PACKET_END; break; case offsetof(struct bpf_sock_ops, skb_tcp_flags): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); default: if (size != size_default) return false; break; } } return true; } static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP); } static bool sk_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, wire_len): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_index): case bpf_ctx_range(struct __sk_buff, priority): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, mark): return false; case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool sk_msg_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type == BPF_WRITE) return false; if (off % size != 0) return false; switch (off) { case offsetof(struct sk_msg_md, data): info->reg_type = PTR_TO_PACKET; if (size != sizeof(__u64)) return false; break; case offsetof(struct sk_msg_md, data_end): info->reg_type = PTR_TO_PACKET_END; if (size != sizeof(__u64)) return false; break; case offsetof(struct sk_msg_md, sk): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCKET; break; case bpf_ctx_range(struct sk_msg_md, family): case bpf_ctx_range(struct sk_msg_md, remote_ip4): case bpf_ctx_range(struct sk_msg_md, local_ip4): case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]): case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]): case bpf_ctx_range(struct sk_msg_md, remote_port): case bpf_ctx_range(struct sk_msg_md, local_port): case bpf_ctx_range(struct sk_msg_md, size): if (size != sizeof(__u32)) return false; break; default: return false; } return true; } static bool flow_dissector_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct __sk_buff)) return false; if (type == BPF_WRITE) return false; switch (off) { case bpf_ctx_range(struct __sk_buff, data): if (size != size_default) return false; info->reg_type = PTR_TO_PACKET; return true; case bpf_ctx_range(struct __sk_buff, data_end): if (size != size_default) return false; info->reg_type = PTR_TO_PACKET_END; return true; case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_FLOW_KEYS; return true; default: return false; } } static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct __sk_buff, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data), si->dst_reg, si->src_reg, offsetof(struct bpf_flow_dissector, data)); break; case offsetof(struct __sk_buff, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end), si->dst_reg, si->src_reg, offsetof(struct bpf_flow_dissector, data_end)); break; case offsetof(struct __sk_buff, flow_keys): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys), si->dst_reg, si->src_reg, offsetof(struct bpf_flow_dissector, flow_keys)); break; } return insn - insn_buf; } static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si, struct bpf_insn *insn) { /* si->dst_reg = skb_shinfo(SKB); */ #ifdef NET_SKBUFF_DATA_USES_OFFSET *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), BPF_REG_AX, si->src_reg, offsetof(struct sk_buff, end)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head), si->dst_reg, si->src_reg, offsetof(struct sk_buff, head)); *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX); #else *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), si->dst_reg, si->src_reg, offsetof(struct sk_buff, end)); #endif return insn; } static u32 bpf_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct __sk_buff, len): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, len, 4, target_size)); break; case offsetof(struct __sk_buff, protocol): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, protocol, 2, target_size)); break; case offsetof(struct __sk_buff, vlan_proto): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, vlan_proto, 2, target_size)); break; case offsetof(struct __sk_buff, priority): if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, priority, 4, target_size)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, priority, 4, target_size)); break; case offsetof(struct __sk_buff, ingress_ifindex): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, skb_iif, 4, target_size)); break; case offsetof(struct __sk_buff, ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), si->dst_reg, si->src_reg, offsetof(struct sk_buff, dev)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct net_device, ifindex, 4, target_size)); break; case offsetof(struct __sk_buff, hash): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, hash, 4, target_size)); break; case offsetof(struct __sk_buff, mark): if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, mark, 4, target_size)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, mark, 4, target_size)); break; case offsetof(struct __sk_buff, pkt_type): *target_size = 1; *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg, PKT_TYPE_OFFSET()); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX); #ifdef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5); #endif break; case offsetof(struct __sk_buff, queue_mapping): if (type == BPF_WRITE) { *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1); *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, queue_mapping, 2, target_size)); } else { *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, queue_mapping, 2, target_size)); } break; case offsetof(struct __sk_buff, vlan_present): *target_size = 1; *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg, PKT_VLAN_PRESENT_OFFSET()); if (PKT_VLAN_PRESENT_BIT) *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT); if (PKT_VLAN_PRESENT_BIT < 7) *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1); break; case offsetof(struct __sk_buff, vlan_tci): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, vlan_tci, 2, target_size)); break; case offsetof(struct __sk_buff, cb[0]) ... offsetofend(struct __sk_buff, cb[4]) - 1: BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20); BUILD_BUG_ON((offsetof(struct sk_buff, cb) + offsetof(struct qdisc_skb_cb, data)) % sizeof(__u64)); prog->cb_access = 1; off = si->off; off -= offsetof(struct __sk_buff, cb[0]); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, data); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); else *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, tc_classid): BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2); off = si->off; off -= offsetof(struct __sk_buff, tc_classid); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, tc_classid); *target_size = 2; if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg, off); else *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), si->dst_reg, si->src_reg, offsetof(struct sk_buff, data)); break; case offsetof(struct __sk_buff, data_meta): off = si->off; off -= offsetof(struct __sk_buff, data_meta); off += offsetof(struct sk_buff, cb); off += offsetof(struct bpf_skb_data_end, data_meta); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, data_end): off = si->off; off -= offsetof(struct __sk_buff, data_end); off += offsetof(struct sk_buff, cb); off += offsetof(struct bpf_skb_data_end, data_end); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, tc_index): #ifdef CONFIG_NET_SCHED if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, tc_index, 2, target_size)); else *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, tc_index, 2, target_size)); #else *target_size = 2; if (type == BPF_WRITE) *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg); else *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, napi_id): #if defined(CONFIG_NET_RX_BUSY_POLL) *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, napi_id, 4, target_size)); *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1); *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #else *target_size = 4; *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, family): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_family, 2, target_size)); break; case offsetof(struct __sk_buff, remote_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_daddr, 4, target_size)); break; case offsetof(struct __sk_buff, local_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_rcv_saddr, 4, target_size)); break; case offsetof(struct __sk_buff, remote_ip6[0]) ... offsetof(struct __sk_buff, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct __sk_buff, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, local_ip6[0]) ... offsetof(struct __sk_buff, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct __sk_buff, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, remote_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_dport, 2, target_size)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct __sk_buff, local_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_num, 2, target_size)); break; case offsetof(struct __sk_buff, tstamp): BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, tstamp, 8, target_size)); else *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, tstamp, 8, target_size)); break; case offsetof(struct __sk_buff, gso_segs): insn = bpf_convert_shinfo_access(si, insn); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs), si->dst_reg, si->dst_reg, bpf_target_off(struct skb_shared_info, gso_segs, 2, target_size)); break; case offsetof(struct __sk_buff, gso_size): insn = bpf_convert_shinfo_access(si, insn); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size), si->dst_reg, si->dst_reg, bpf_target_off(struct skb_shared_info, gso_size, 2, target_size)); break; case offsetof(struct __sk_buff, wire_len): BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4); off = si->off; off -= offsetof(struct __sk_buff, wire_len); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, pkt_len); *target_size = 4; *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, sk): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); break; } return insn - insn_buf; } u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct bpf_sock, bound_dev_if): BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_bound_dev_if)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_bound_dev_if)); break; case offsetof(struct bpf_sock, mark): BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_mark)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_mark)); break; case offsetof(struct bpf_sock, priority): BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_priority)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_priority)); break; case offsetof(struct bpf_sock, family): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_family), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_family, sizeof_field(struct sock_common, skc_family), target_size)); break; case offsetof(struct bpf_sock, type): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock, sk_type), si->dst_reg, si->src_reg, bpf_target_off(struct sock, sk_type, sizeof_field(struct sock, sk_type), target_size)); break; case offsetof(struct bpf_sock, protocol): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock, sk_protocol), si->dst_reg, si->src_reg, bpf_target_off(struct sock, sk_protocol, sizeof_field(struct sock, sk_protocol), target_size)); break; case offsetof(struct bpf_sock, src_ip4): *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_rcv_saddr, sizeof_field(struct sock_common, skc_rcv_saddr), target_size)); break; case offsetof(struct bpf_sock, dst_ip4): *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_daddr, sizeof_field(struct sock_common, skc_daddr), target_size)); break; case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) off = si->off; off -= offsetof(struct bpf_sock, src_ip6[0]); *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off( struct sock_common, skc_v6_rcv_saddr.s6_addr32[0], sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]), target_size) + off); #else (void)off; *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) off = si->off; off -= offsetof(struct bpf_sock, dst_ip6[0]); *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_v6_daddr.s6_addr32[0], sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]), target_size) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); *target_size = 4; #endif break; case offsetof(struct bpf_sock, src_port): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_num), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_num, sizeof_field(struct sock_common, skc_num), target_size)); break; case offsetof(struct bpf_sock, dst_port): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_dport), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_dport, sizeof_field(struct sock_common, skc_dport), target_size)); break; case offsetof(struct bpf_sock, state): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_state), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_state, sizeof_field(struct sock_common, skc_state), target_size)); break; case offsetof(struct bpf_sock, rx_queue_mapping): #ifdef CONFIG_XPS *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping), si->dst_reg, si->src_reg, bpf_target_off(struct sock, sk_rx_queue_mapping, sizeof_field(struct sock, sk_rx_queue_mapping), target_size)); *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING, 1); *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); #else *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); *target_size = 2; #endif break; } return insn - insn_buf; } static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct __sk_buff, ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), si->dst_reg, si->src_reg, offsetof(struct sk_buff, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct net_device, ifindex, 4, target_size)); break; default: return bpf_convert_ctx_access(type, si, insn_buf, prog, target_size); } return insn - insn_buf; } static u32 xdp_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct xdp_md, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data)); break; case offsetof(struct xdp_md, data_meta): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data_meta)); break; case offsetof(struct xdp_md, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data_end)); break; case offsetof(struct xdp_md, ingress_ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, rxq)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev), si->dst_reg, si->dst_reg, offsetof(struct xdp_rxq_info, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct net_device, ifindex)); break; case offsetof(struct xdp_md, rx_queue_index): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, rxq)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct xdp_rxq_info, queue_index)); break; case offsetof(struct xdp_md, egress_ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, txq)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev), si->dst_reg, si->dst_reg, offsetof(struct xdp_txq_info, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct net_device, ifindex)); break; } return insn - insn_buf; } /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of * context Structure, F is Field in context structure that contains a pointer * to Nested Structure of type NS that has the field NF. * * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make * sure that SIZE is not greater than actual size of S.F.NF. * * If offset OFF is provided, the load happens from that offset relative to * offset of NF. */ #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \ do { \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \ si->src_reg, offsetof(S, F)); \ *insn++ = BPF_LDX_MEM( \ SIZE, si->dst_reg, si->dst_reg, \ bpf_target_off(NS, NF, sizeof_field(NS, NF), \ target_size) \ + OFF); \ } while (0) #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \ SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \ BPF_FIELD_SIZEOF(NS, NF), 0) /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation. * * In addition it uses Temporary Field TF (member of struct S) as the 3rd * "register" since two registers available in convert_ctx_access are not * enough: we can't override neither SRC, since it contains value to store, nor * DST since it contains pointer to context that may be used by later * instructions. But we need a temporary place to save pointer to nested * structure whose field we want to store to. */ #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \ do { \ int tmp_reg = BPF_REG_9; \ if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ --tmp_reg; \ if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ --tmp_reg; \ *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \ offsetof(S, TF)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \ si->dst_reg, offsetof(S, F)); \ *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg, \ bpf_target_off(NS, NF, sizeof_field(NS, NF), \ target_size) \ + OFF); \ *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \ offsetof(S, TF)); \ } while (0) #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \ TF) \ do { \ if (type == BPF_WRITE) { \ SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \ OFF, TF); \ } else { \ SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \ S, NS, F, NF, SIZE, OFF); \ } \ } while (0) #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \ S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF) static u32 sock_addr_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port); struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct bpf_sock_addr, user_family): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sockaddr, uaddr, sa_family); break; case offsetof(struct bpf_sock_addr, user_ip4): SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in, uaddr, sin_addr, BPF_SIZE(si->code), 0, tmp_reg); break; case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): off = si->off; off -= offsetof(struct bpf_sock_addr, user_ip6[0]); SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); break; case offsetof(struct bpf_sock_addr, user_port): /* To get port we need to know sa_family first and then treat * sockaddr as either sockaddr_in or sockaddr_in6. * Though we can simplify since port field has same offset and * size in both structures. * Here we check this invariant and use just one of the * structures if it's true. */ BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) != offsetof(struct sockaddr_in6, sin6_port)); BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) != sizeof_field(struct sockaddr_in6, sin6_port)); /* Account for sin6_port being smaller than user_port. */ port_size = min(port_size, BPF_LDST_BYTES(si)); SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg); break; case offsetof(struct bpf_sock_addr, family): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sock, sk, sk_family); break; case offsetof(struct bpf_sock_addr, type): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sock, sk, sk_type); break; case offsetof(struct bpf_sock_addr, protocol): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sock, sk, sk_protocol); break; case offsetof(struct bpf_sock_addr, msg_src_ip4): /* Treat t_ctx as struct in_addr for msg_src_ip4. */ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct in_addr, t_ctx, s_addr, BPF_SIZE(si->code), 0, tmp_reg); break; case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): off = si->off; off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]); /* Treat t_ctx as struct in6_addr for msg_src_ip6. */ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct in6_addr, t_ctx, s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); break; case offsetof(struct bpf_sock_addr, sk): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_addr_kern, sk)); break; } return insn - insn_buf; } static u32 sock_ops_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; /* Helper macro for adding read access to tcp_sock or sock fields. */ #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ do { \ int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \ BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ fullsock_reg = reg; \ jmp += 2; \ } \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ fullsock_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ if (si->dst_reg == si->src_reg) \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ si->dst_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \ OBJ_FIELD), \ si->dst_reg, si->dst_reg, \ offsetof(OBJ, OBJ_FIELD)); \ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_JMP_A(1); \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ } \ } while (0) #define SOCK_OPS_GET_SK() \ do { \ int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ fullsock_reg = reg; \ jmp += 2; \ } \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ fullsock_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ if (si->dst_reg == si->src_reg) \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ si->dst_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_JMP_A(1); \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ } \ } while (0) #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \ SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock) /* Helper macro for adding write access to tcp_sock or sock fields. * The macro is called with two registers, dst_reg which contains a pointer * to ctx (context) and src_reg which contains the value that should be * stored. However, we need an additional register since we cannot overwrite * dst_reg because it may be used later in the program. * Instead we "borrow" one of the other register. We first save its value * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore * it at the end of the macro. */ #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ do { \ int reg = BPF_REG_9; \ BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \ reg, si->src_reg, \ offsetof(OBJ, OBJ_FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ } while (0) #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \ do { \ if (TYPE == BPF_WRITE) \ SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ else \ SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ } while (0) if (insn > insn_buf) return insn - insn_buf; switch (si->off) { case offsetof(struct bpf_sock_ops, op): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, op), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, op)); break; case offsetof(struct bpf_sock_ops, replylong[0]) ... offsetof(struct bpf_sock_ops, replylong[3]): BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) != sizeof_field(struct bpf_sock_ops_kern, reply)); BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) != sizeof_field(struct bpf_sock_ops_kern, replylong)); off = si->off; off -= offsetof(struct bpf_sock_ops, replylong[0]); off += offsetof(struct bpf_sock_ops_kern, replylong[0]); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, off); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off); break; case offsetof(struct bpf_sock_ops, family): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_family)); break; case offsetof(struct bpf_sock_ops, remote_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_daddr)); break; case offsetof(struct bpf_sock_ops, local_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_rcv_saddr)); break; case offsetof(struct bpf_sock_ops, remote_ip6[0]) ... offsetof(struct bpf_sock_ops, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct bpf_sock_ops, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct bpf_sock_ops, local_ip6[0]) ... offsetof(struct bpf_sock_ops, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct bpf_sock_ops, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct bpf_sock_ops, remote_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_dport)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct bpf_sock_ops, local_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_num)); break; case offsetof(struct bpf_sock_ops, is_fullsock): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, is_fullsock), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, is_fullsock)); break; case offsetof(struct bpf_sock_ops, state): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_state)); break; case offsetof(struct bpf_sock_ops, rtt_min): BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != sizeof(struct minmax)); BUILD_BUG_ON(sizeof(struct minmax) < sizeof(struct minmax_sample)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct tcp_sock, rtt_min) + sizeof_field(struct minmax_sample, t)); break; case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags): SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, sk_txhash): SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash, struct sock, type); break; case offsetof(struct bpf_sock_ops, snd_cwnd): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd); break; case offsetof(struct bpf_sock_ops, srtt_us): SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us); break; case offsetof(struct bpf_sock_ops, snd_ssthresh): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh); break; case offsetof(struct bpf_sock_ops, rcv_nxt): SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt); break; case offsetof(struct bpf_sock_ops, snd_nxt): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt); break; case offsetof(struct bpf_sock_ops, snd_una): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una); break; case offsetof(struct bpf_sock_ops, mss_cache): SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache); break; case offsetof(struct bpf_sock_ops, ecn_flags): SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags); break; case offsetof(struct bpf_sock_ops, rate_delivered): SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered); break; case offsetof(struct bpf_sock_ops, rate_interval_us): SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us); break; case offsetof(struct bpf_sock_ops, packets_out): SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out); break; case offsetof(struct bpf_sock_ops, retrans_out): SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out); break; case offsetof(struct bpf_sock_ops, total_retrans): SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans); break; case offsetof(struct bpf_sock_ops, segs_in): SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in); break; case offsetof(struct bpf_sock_ops, data_segs_in): SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in); break; case offsetof(struct bpf_sock_ops, segs_out): SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out); break; case offsetof(struct bpf_sock_ops, data_segs_out): SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out); break; case offsetof(struct bpf_sock_ops, lost_out): SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out); break; case offsetof(struct bpf_sock_ops, sacked_out): SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out); break; case offsetof(struct bpf_sock_ops, bytes_received): SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received); break; case offsetof(struct bpf_sock_ops, bytes_acked): SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked); break; case offsetof(struct bpf_sock_ops, sk): SOCK_OPS_GET_SK(); break; case offsetof(struct bpf_sock_ops, skb_data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb_data_end), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb_data_end)); break; case offsetof(struct bpf_sock_ops, skb_data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), si->dst_reg, si->dst_reg, offsetof(struct sk_buff, data)); break; case offsetof(struct bpf_sock_ops, skb_len): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len), si->dst_reg, si->dst_reg, offsetof(struct sk_buff, len)); break; case offsetof(struct bpf_sock_ops, skb_tcp_flags): off = offsetof(struct sk_buff, cb); off += offsetof(struct tcp_skb_cb, tcp_flags); *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb, tcp_flags), si->dst_reg, si->dst_reg, off); break; } return insn - insn_buf; } static u32 sk_skb_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct __sk_buff, data_end): off = si->off; off -= offsetof(struct __sk_buff, data_end); off += offsetof(struct sk_buff, cb); off += offsetof(struct tcp_skb_cb, bpf.data_end); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, cb[0]) ... offsetofend(struct __sk_buff, cb[4]) - 1: BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20); BUILD_BUG_ON((offsetof(struct sk_buff, cb) + offsetof(struct sk_skb_cb, data)) % sizeof(__u64)); prog->cb_access = 1; off = si->off; off -= offsetof(struct __sk_buff, cb[0]); off += offsetof(struct sk_buff, cb); off += offsetof(struct sk_skb_cb, data); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); else *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); break; default: return bpf_convert_ctx_access(type, si, insn_buf, prog, target_size); } return insn - insn_buf; } static u32 sk_msg_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; #if IS_ENABLED(CONFIG_IPV6) int off; #endif /* convert ctx uses the fact sg element is first in struct */ BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0); switch (si->off) { case offsetof(struct sk_msg_md, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data), si->dst_reg, si->src_reg, offsetof(struct sk_msg, data)); break; case offsetof(struct sk_msg_md, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end), si->dst_reg, si->src_reg, offsetof(struct sk_msg, data_end)); break; case offsetof(struct sk_msg_md, family): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_family)); break; case offsetof(struct sk_msg_md, remote_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_daddr)); break; case offsetof(struct sk_msg_md, local_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_rcv_saddr)); break; case offsetof(struct sk_msg_md, remote_ip6[0]) ... offsetof(struct sk_msg_md, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct sk_msg_md, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct sk_msg_md, local_ip6[0]) ... offsetof(struct sk_msg_md, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct sk_msg_md, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct sk_msg_md, remote_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_dport)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct sk_msg_md, local_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_num)); break; case offsetof(struct sk_msg_md, size): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size), si->dst_reg, si->src_reg, offsetof(struct sk_msg_sg, size)); break; case offsetof(struct sk_msg_md, sk): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); break; } return insn - insn_buf; } const struct bpf_verifier_ops sk_filter_verifier_ops = { .get_func_proto = sk_filter_func_proto, .is_valid_access = sk_filter_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, .gen_ld_abs = bpf_gen_ld_abs, }; const struct bpf_prog_ops sk_filter_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops tc_cls_act_verifier_ops = { .get_func_proto = tc_cls_act_func_proto, .is_valid_access = tc_cls_act_is_valid_access, .convert_ctx_access = tc_cls_act_convert_ctx_access, .gen_prologue = tc_cls_act_prologue, .gen_ld_abs = bpf_gen_ld_abs, }; const struct bpf_prog_ops tc_cls_act_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops xdp_verifier_ops = { .get_func_proto = xdp_func_proto, .is_valid_access = xdp_is_valid_access, .convert_ctx_access = xdp_convert_ctx_access, .gen_prologue = bpf_noop_prologue, }; const struct bpf_prog_ops xdp_prog_ops = { .test_run = bpf_prog_test_run_xdp, }; const struct bpf_verifier_ops cg_skb_verifier_ops = { .get_func_proto = cg_skb_func_proto, .is_valid_access = cg_skb_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops cg_skb_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_in_verifier_ops = { .get_func_proto = lwt_in_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_in_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_out_verifier_ops = { .get_func_proto = lwt_out_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_out_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_xmit_verifier_ops = { .get_func_proto = lwt_xmit_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, .gen_prologue = tc_cls_act_prologue, }; const struct bpf_prog_ops lwt_xmit_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_seg6local_verifier_ops = { .get_func_proto = lwt_seg6local_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_seg6local_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops cg_sock_verifier_ops = { .get_func_proto = sock_filter_func_proto, .is_valid_access = sock_filter_is_valid_access, .convert_ctx_access = bpf_sock_convert_ctx_access, }; const struct bpf_prog_ops cg_sock_prog_ops = { }; const struct bpf_verifier_ops cg_sock_addr_verifier_ops = { .get_func_proto = sock_addr_func_proto, .is_valid_access = sock_addr_is_valid_access, .convert_ctx_access = sock_addr_convert_ctx_access, }; const struct bpf_prog_ops cg_sock_addr_prog_ops = { }; const struct bpf_verifier_ops sock_ops_verifier_ops = { .get_func_proto = sock_ops_func_proto, .is_valid_access = sock_ops_is_valid_access, .convert_ctx_access = sock_ops_convert_ctx_access, }; const struct bpf_prog_ops sock_ops_prog_ops = { }; const struct bpf_verifier_ops sk_skb_verifier_ops = { .get_func_proto = sk_skb_func_proto, .is_valid_access = sk_skb_is_valid_access, .convert_ctx_access = sk_skb_convert_ctx_access, .gen_prologue = sk_skb_prologue, }; const struct bpf_prog_ops sk_skb_prog_ops = { }; const struct bpf_verifier_ops sk_msg_verifier_ops = { .get_func_proto = sk_msg_func_proto, .is_valid_access = sk_msg_is_valid_access, .convert_ctx_access = sk_msg_convert_ctx_access, .gen_prologue = bpf_noop_prologue, }; const struct bpf_prog_ops sk_msg_prog_ops = { }; const struct bpf_verifier_ops flow_dissector_verifier_ops = { .get_func_proto = flow_dissector_func_proto, .is_valid_access = flow_dissector_is_valid_access, .convert_ctx_access = flow_dissector_convert_ctx_access, }; const struct bpf_prog_ops flow_dissector_prog_ops = { .test_run = bpf_prog_test_run_flow_dissector, }; int sk_detach_filter(struct sock *sk) { int ret = -ENOENT; struct sk_filter *filter; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return -EPERM; filter = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); if (filter) { RCU_INIT_POINTER(sk->sk_filter, NULL); sk_filter_uncharge(sk, filter); ret = 0; } return ret; } EXPORT_SYMBOL_GPL(sk_detach_filter); int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len) { struct sock_fprog_kern *fprog; struct sk_filter *filter; int ret = 0; lock_sock(sk); filter = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); if (!filter) goto out; /* We're copying the filter that has been originally attached, * so no conversion/decode needed anymore. eBPF programs that * have no original program cannot be dumped through this. */ ret = -EACCES; fprog = filter->prog->orig_prog; if (!fprog) goto out; ret = fprog->len; if (!len) /* User space only enquires number of filter blocks. */ goto out; ret = -EINVAL; if (len < fprog->len) goto out; ret = -EFAULT; if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog))) goto out; /* Instead of bytes, the API requests to return the number * of filter blocks. */ ret = fprog->len; out: release_sock(sk); return ret; } #ifdef CONFIG_INET static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern, struct sock_reuseport *reuse, struct sock *sk, struct sk_buff *skb, u32 hash) { reuse_kern->skb = skb; reuse_kern->sk = sk; reuse_kern->selected_sk = NULL; reuse_kern->data_end = skb->data + skb_headlen(skb); reuse_kern->hash = hash; reuse_kern->reuseport_id = reuse->reuseport_id; reuse_kern->bind_inany = reuse->bind_inany; } struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, struct bpf_prog *prog, struct sk_buff *skb, u32 hash) { struct sk_reuseport_kern reuse_kern; enum sk_action action; bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash); action = BPF_PROG_RUN(prog, &reuse_kern); if (action == SK_PASS) return reuse_kern.selected_sk; else return ERR_PTR(-ECONNREFUSED); } BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern, struct bpf_map *, map, void *, key, u32, flags) { bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY; struct sock_reuseport *reuse; struct sock *selected_sk; int err; selected_sk = map->ops->map_lookup_elem(map, key); if (!selected_sk) return -ENOENT; reuse = rcu_dereference(selected_sk->sk_reuseport_cb); if (!reuse) { /* reuseport_array has only sk with non NULL sk_reuseport_cb. * The only (!reuse) case here is - the sk has already been * unhashed (e.g. by close()), so treat it as -ENOENT. * * Other maps (e.g. sock_map) do not provide this guarantee and * the sk may never be in the reuseport group to begin with. */ err = is_sockarray ? -ENOENT : -EINVAL; goto error; } if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) { struct sock *sk = reuse_kern->sk; if (sk->sk_protocol != selected_sk->sk_protocol) { err = -EPROTOTYPE; } else if (sk->sk_family != selected_sk->sk_family) { err = -EAFNOSUPPORT; } else { /* Catch all. Likely bound to a different sockaddr. */ err = -EBADFD; } goto error; } reuse_kern->selected_sk = selected_sk; return 0; error: /* Lookup in sock_map can return TCP ESTABLISHED sockets. */ if (sk_is_refcounted(selected_sk)) sock_put(selected_sk); return err; } static const struct bpf_func_proto sk_select_reuseport_proto = { .func = sk_select_reuseport, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_PTR_TO_MAP_KEY, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(sk_reuseport_load_bytes, const struct sk_reuseport_kern *, reuse_kern, u32, offset, void *, to, u32, len) { return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len); } static const struct bpf_func_proto sk_reuseport_load_bytes_proto = { .func = sk_reuseport_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; BPF_CALL_5(sk_reuseport_load_bytes_relative, const struct sk_reuseport_kern *, reuse_kern, u32, offset, void *, to, u32, len, u32, start_header) { return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to, len, start_header); } static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = { .func = sk_reuseport_load_bytes_relative, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; static const struct bpf_func_proto * sk_reuseport_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_sk_select_reuseport: return &sk_select_reuseport_proto; case BPF_FUNC_skb_load_bytes: return &sk_reuseport_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &sk_reuseport_load_bytes_relative_proto; default: return bpf_base_func_proto(func_id); } } static bool sk_reuseport_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const u32 size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct sk_reuseport_md) || off % size || type != BPF_READ) return false; switch (off) { case offsetof(struct sk_reuseport_md, data): info->reg_type = PTR_TO_PACKET; return size == sizeof(__u64); case offsetof(struct sk_reuseport_md, data_end): info->reg_type = PTR_TO_PACKET_END; return size == sizeof(__u64); case offsetof(struct sk_reuseport_md, hash): return size == size_default; /* Fields that allow narrowing */ case bpf_ctx_range(struct sk_reuseport_md, eth_protocol): if (size < sizeof_field(struct sk_buff, protocol)) return false; fallthrough; case bpf_ctx_range(struct sk_reuseport_md, ip_protocol): case bpf_ctx_range(struct sk_reuseport_md, bind_inany): case bpf_ctx_range(struct sk_reuseport_md, len): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); default: return false; } } #define SK_REUSEPORT_LOAD_FIELD(F) ({ \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \ si->dst_reg, si->src_reg, \ bpf_target_off(struct sk_reuseport_kern, F, \ sizeof_field(struct sk_reuseport_kern, F), \ target_size)); \ }) #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \ SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ struct sk_buff, \ skb, \ SKB_FIELD) #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \ SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ struct sock, \ sk, \ SK_FIELD) static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct sk_reuseport_md, data): SK_REUSEPORT_LOAD_SKB_FIELD(data); break; case offsetof(struct sk_reuseport_md, len): SK_REUSEPORT_LOAD_SKB_FIELD(len); break; case offsetof(struct sk_reuseport_md, eth_protocol): SK_REUSEPORT_LOAD_SKB_FIELD(protocol); break; case offsetof(struct sk_reuseport_md, ip_protocol): SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol); break; case offsetof(struct sk_reuseport_md, data_end): SK_REUSEPORT_LOAD_FIELD(data_end); break; case offsetof(struct sk_reuseport_md, hash): SK_REUSEPORT_LOAD_FIELD(hash); break; case offsetof(struct sk_reuseport_md, bind_inany): SK_REUSEPORT_LOAD_FIELD(bind_inany); break; } return insn - insn_buf; } const struct bpf_verifier_ops sk_reuseport_verifier_ops = { .get_func_proto = sk_reuseport_func_proto, .is_valid_access = sk_reuseport_is_valid_access, .convert_ctx_access = sk_reuseport_convert_ctx_access, }; const struct bpf_prog_ops sk_reuseport_prog_ops = { }; DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled); EXPORT_SYMBOL(bpf_sk_lookup_enabled); BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx, struct sock *, sk, u64, flags) { if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE | BPF_SK_LOOKUP_F_NO_REUSEPORT))) return -EINVAL; if (unlikely(sk && sk_is_refcounted(sk))) return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */ if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED)) return -ESOCKTNOSUPPORT; /* reject connected sockets */ /* Check if socket is suitable for packet L3/L4 protocol */ if (sk && sk->sk_protocol != ctx->protocol) return -EPROTOTYPE; if (sk && sk->sk_family != ctx->family && (sk->sk_family == AF_INET || ipv6_only_sock(sk))) return -EAFNOSUPPORT; if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE)) return -EEXIST; /* Select socket as lookup result */ ctx->selected_sk = sk; ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT; return 0; } static const struct bpf_func_proto bpf_sk_lookup_assign_proto = { .func = bpf_sk_lookup_assign, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL, .arg3_type = ARG_ANYTHING, }; static const struct bpf_func_proto * sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_sk_assign: return &bpf_sk_lookup_assign_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; default: return bpf_sk_base_func_proto(func_id); } } static bool sk_lookup_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < 0 || off >= sizeof(struct bpf_sk_lookup)) return false; if (off % size != 0) return false; if (type != BPF_READ) return false; switch (off) { case offsetof(struct bpf_sk_lookup, sk): info->reg_type = PTR_TO_SOCKET_OR_NULL; return size == sizeof(__u64); case bpf_ctx_range(struct bpf_sk_lookup, family): case bpf_ctx_range(struct bpf_sk_lookup, protocol): case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4): case bpf_ctx_range(struct bpf_sk_lookup, local_ip4): case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]): case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]): case bpf_ctx_range(struct bpf_sk_lookup, remote_port): case bpf_ctx_range(struct bpf_sk_lookup, local_port): bpf_ctx_record_field_size(info, sizeof(__u32)); return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32)); default: return false; } } static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct bpf_sk_lookup, sk): *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, offsetof(struct bpf_sk_lookup_kern, selected_sk)); break; case offsetof(struct bpf_sk_lookup, family): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, family, 2, target_size)); break; case offsetof(struct bpf_sk_lookup, protocol): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, protocol, 2, target_size)); break; case offsetof(struct bpf_sk_lookup, remote_ip4): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, v4.saddr, 4, target_size)); break; case offsetof(struct bpf_sk_lookup, local_ip4): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, v4.daddr, 4, target_size)); break; case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]): { #if IS_ENABLED(CONFIG_IPV6) int off = si->off; off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]); off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, offsetof(struct bpf_sk_lookup_kern, v6.saddr)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; } case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]): { #if IS_ENABLED(CONFIG_IPV6) int off = si->off; off -= offsetof(struct bpf_sk_lookup, local_ip6[0]); off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, offsetof(struct bpf_sk_lookup_kern, v6.daddr)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; } case offsetof(struct bpf_sk_lookup, remote_port): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, sport, 2, target_size)); break; case offsetof(struct bpf_sk_lookup, local_port): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, dport, 2, target_size)); break; } return insn - insn_buf; } const struct bpf_prog_ops sk_lookup_prog_ops = { .test_run = bpf_prog_test_run_sk_lookup, }; const struct bpf_verifier_ops sk_lookup_verifier_ops = { .get_func_proto = sk_lookup_func_proto, .is_valid_access = sk_lookup_is_valid_access, .convert_ctx_access = sk_lookup_convert_ctx_access, }; #endif /* CONFIG_INET */ DEFINE_BPF_DISPATCHER(xdp) void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog) { bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog); } #ifdef CONFIG_DEBUG_INFO_BTF BTF_ID_LIST_GLOBAL(btf_sock_ids) #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type) BTF_SOCK_TYPE_xxx #undef BTF_SOCK_TYPE #else u32 btf_sock_ids[MAX_BTF_SOCK_TYPE]; #endif BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk) { /* tcp6_sock type is not generated in dwarf and hence btf, * trigger an explicit type generation here. */ BTF_TYPE_EMIT(struct tcp6_sock); if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP && sk->sk_family == AF_INET6) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = { .func = bpf_skc_to_tcp6_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6], }; BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk) { if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = { .func = bpf_skc_to_tcp_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP], }; BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk) { /* BTF types for tcp_timewait_sock and inet_timewait_sock are not * generated if CONFIG_INET=n. Trigger an explicit generation here. */ BTF_TYPE_EMIT(struct inet_timewait_sock); BTF_TYPE_EMIT(struct tcp_timewait_sock); #ifdef CONFIG_INET if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT) return (unsigned long)sk; #endif #if IS_BUILTIN(CONFIG_IPV6) if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT) return (unsigned long)sk; #endif return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = { .func = bpf_skc_to_tcp_timewait_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW], }; BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk) { #ifdef CONFIG_INET if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV) return (unsigned long)sk; #endif #if IS_BUILTIN(CONFIG_IPV6) if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV) return (unsigned long)sk; #endif return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = { .func = bpf_skc_to_tcp_request_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ], }; BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk) { /* udp6_sock type is not generated in dwarf and hence btf, * trigger an explicit type generation here. */ BTF_TYPE_EMIT(struct udp6_sock); if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP && sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = { .func = bpf_skc_to_udp6_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6], }; static const struct bpf_func_proto * bpf_sk_base_func_proto(enum bpf_func_id func_id) { const struct bpf_func_proto *func; switch (func_id) { case BPF_FUNC_skc_to_tcp6_sock: func = &bpf_skc_to_tcp6_sock_proto; break; case BPF_FUNC_skc_to_tcp_sock: func = &bpf_skc_to_tcp_sock_proto; break; case BPF_FUNC_skc_to_tcp_timewait_sock: func = &bpf_skc_to_tcp_timewait_sock_proto; break; case BPF_FUNC_skc_to_tcp_request_sock: func = &bpf_skc_to_tcp_request_sock_proto; break; case BPF_FUNC_skc_to_udp6_sock: func = &bpf_skc_to_udp6_sock_proto; break; default: return bpf_base_func_proto(func_id); } if (!perfmon_capable()) return NULL; return func; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NVRAM_H #define _LINUX_NVRAM_H #include <linux/errno.h> #include <uapi/linux/nvram.h> #ifdef CONFIG_PPC #include <asm/machdep.h> #endif /** * struct nvram_ops - NVRAM functionality made available to drivers * @read: validate checksum (if any) then load a range of bytes from NVRAM * @write: store a range of bytes to NVRAM then update checksum (if any) * @read_byte: load a single byte from NVRAM * @write_byte: store a single byte to NVRAM * @get_size: return the fixed number of bytes in the NVRAM * * Architectures which provide an nvram ops struct need not implement all * of these methods. If the NVRAM hardware can be accessed only one byte * at a time then it may be sufficient to provide .read_byte and .write_byte. * If the NVRAM has a checksum (and it is to be checked) the .read and * .write methods can be used to implement that efficiently. * * Portable drivers may use the wrapper functions defined here. * The nvram_read() and nvram_write() functions call the .read and .write * methods when available and fall back on the .read_byte and .write_byte * methods otherwise. */ struct nvram_ops { ssize_t (*get_size)(void); unsigned char (*read_byte)(int); void (*write_byte)(unsigned char, int); ssize_t (*read)(char *, size_t, loff_t *); ssize_t (*write)(char *, size_t, loff_t *); #if defined(CONFIG_X86) || defined(CONFIG_M68K) long (*initialize)(void); long (*set_checksum)(void); #endif }; extern const struct nvram_ops arch_nvram_ops; static inline ssize_t nvram_get_size(void) { #ifdef CONFIG_PPC if (ppc_md.nvram_size) return ppc_md.nvram_size(); #else if (arch_nvram_ops.get_size) return arch_nvram_ops.get_size(); #endif return -ENODEV; } static inline unsigned char nvram_read_byte(int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_read_val) return ppc_md.nvram_read_val(addr); #else if (arch_nvram_ops.read_byte) return arch_nvram_ops.read_byte(addr); #endif return 0xFF; } static inline void nvram_write_byte(unsigned char val, int addr) { #ifdef CONFIG_PPC if (ppc_md.nvram_write_val) ppc_md.nvram_write_val(addr, val); #else if (arch_nvram_ops.write_byte) arch_nvram_ops.write_byte(val, addr); #endif } static inline ssize_t nvram_read_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) *p = nvram_read_byte(i); *ppos = i; return p - buf; } static inline ssize_t nvram_write_bytes(char *buf, size_t count, loff_t *ppos) { ssize_t nvram_size = nvram_get_size(); loff_t i; char *p = buf; if (nvram_size < 0) return nvram_size; for (i = *ppos; count > 0 && i < nvram_size; ++i, ++p, --count) nvram_write_byte(*p, i); *ppos = i; return p - buf; } static inline ssize_t nvram_read(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_read) return ppc_md.nvram_read(buf, count, ppos); #else if (arch_nvram_ops.read) return arch_nvram_ops.read(buf, count, ppos); #endif return nvram_read_bytes(buf, count, ppos); } static inline ssize_t nvram_write(char *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_PPC if (ppc_md.nvram_write) return ppc_md.nvram_write(buf, count, ppos); #else if (arch_nvram_ops.write) return arch_nvram_ops.write(buf, count, ppos); #endif return nvram_write_bytes(buf, count, ppos); } #endif /* _LINUX_NVRAM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_ATOMIC64_64_H #define _ASM_X86_ATOMIC64_64_H #include <linux/types.h> #include <asm/alternative.h> #include <asm/cmpxchg.h> /* The 64-bit atomic type */ #define ATOMIC64_INIT(i) { (i) } /** * arch_atomic64_read - read atomic64 variable * @v: pointer of type atomic64_t * * Atomically reads the value of @v. * Doesn't imply a read memory barrier. */ static inline s64 arch_atomic64_read(const atomic64_t *v) { return __READ_ONCE((v)->counter); } /** * arch_atomic64_set - set atomic64 variable * @v: pointer to type atomic64_t * @i: required value * * Atomically sets the value of @v to @i. */ static inline void arch_atomic64_set(atomic64_t *v, s64 i) { __WRITE_ONCE(v->counter, i); } /** * arch_atomic64_add - add integer to atomic64 variable * @i: integer value to add * @v: pointer to type atomic64_t * * Atomically adds @i to @v. */ static __always_inline void arch_atomic64_add(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "addq %1,%0" : "=m" (v->counter) : "er" (i), "m" (v->counter) : "memory"); } /** * arch_atomic64_sub - subtract the atomic64 variable * @i: integer value to subtract * @v: pointer to type atomic64_t * * Atomically subtracts @i from @v. */ static inline void arch_atomic64_sub(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "subq %1,%0" : "=m" (v->counter) : "er" (i), "m" (v->counter) : "memory"); } /** * arch_atomic64_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer to type atomic64_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static inline bool arch_atomic64_sub_and_test(s64 i, atomic64_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "subq", v->counter, e, "er", i); } #define arch_atomic64_sub_and_test arch_atomic64_sub_and_test /** * arch_atomic64_inc - increment atomic64 variable * @v: pointer to type atomic64_t * * Atomically increments @v by 1. */ static __always_inline void arch_atomic64_inc(atomic64_t *v) { asm volatile(LOCK_PREFIX "incq %0" : "=m" (v->counter) : "m" (v->counter) : "memory"); } #define arch_atomic64_inc arch_atomic64_inc /** * arch_atomic64_dec - decrement atomic64 variable * @v: pointer to type atomic64_t * * Atomically decrements @v by 1. */ static __always_inline void arch_atomic64_dec(atomic64_t *v) { asm volatile(LOCK_PREFIX "decq %0" : "=m" (v->counter) : "m" (v->counter) : "memory"); } #define arch_atomic64_dec arch_atomic64_dec /** * arch_atomic64_dec_and_test - decrement and test * @v: pointer to type atomic64_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static inline bool arch_atomic64_dec_and_test(atomic64_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "decq", v->counter, e); } #define arch_atomic64_dec_and_test arch_atomic64_dec_and_test /** * arch_atomic64_inc_and_test - increment and test * @v: pointer to type atomic64_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static inline bool arch_atomic64_inc_and_test(atomic64_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "incq", v->counter, e); } #define arch_atomic64_inc_and_test arch_atomic64_inc_and_test /** * arch_atomic64_add_negative - add and test if negative * @i: integer value to add * @v: pointer to type atomic64_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static inline bool arch_atomic64_add_negative(s64 i, atomic64_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "addq", v->counter, s, "er", i); } #define arch_atomic64_add_negative arch_atomic64_add_negative /** * arch_atomic64_add_return - add and return * @i: integer value to add * @v: pointer to type atomic64_t * * Atomically adds @i to @v and returns @i + @v */ static __always_inline s64 arch_atomic64_add_return(s64 i, atomic64_t *v) { return i + xadd(&v->counter, i); } #define arch_atomic64_add_return arch_atomic64_add_return static inline s64 arch_atomic64_sub_return(s64 i, atomic64_t *v) { return arch_atomic64_add_return(-i, v); } #define arch_atomic64_sub_return arch_atomic64_sub_return static inline s64 arch_atomic64_fetch_add(s64 i, atomic64_t *v) { return xadd(&v->counter, i); } #define arch_atomic64_fetch_add arch_atomic64_fetch_add static inline s64 arch_atomic64_fetch_sub(s64 i, atomic64_t *v) { return xadd(&v->counter, -i); } #define arch_atomic64_fetch_sub arch_atomic64_fetch_sub static inline s64 arch_atomic64_cmpxchg(atomic64_t *v, s64 old, s64 new) { return arch_cmpxchg(&v->counter, old, new); } #define arch_atomic64_cmpxchg arch_atomic64_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { return try_cmpxchg(&v->counter, old, new); } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg static inline s64 arch_atomic64_xchg(atomic64_t *v, s64 new) { return arch_xchg(&v->counter, new); } #define arch_atomic64_xchg arch_atomic64_xchg static inline void arch_atomic64_and(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "andq %1,%0" : "+m" (v->counter) : "er" (i) : "memory"); } static inline s64 arch_atomic64_fetch_and(s64 i, atomic64_t *v) { s64 val = arch_atomic64_read(v); do { } while (!arch_atomic64_try_cmpxchg(v, &val, val & i)); return val; } #define arch_atomic64_fetch_and arch_atomic64_fetch_and static inline void arch_atomic64_or(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "orq %1,%0" : "+m" (v->counter) : "er" (i) : "memory"); } static inline s64 arch_atomic64_fetch_or(s64 i, atomic64_t *v) { s64 val = arch_atomic64_read(v); do { } while (!arch_atomic64_try_cmpxchg(v, &val, val | i)); return val; } #define arch_atomic64_fetch_or arch_atomic64_fetch_or static inline void arch_atomic64_xor(s64 i, atomic64_t *v) { asm volatile(LOCK_PREFIX "xorq %1,%0" : "+m" (v->counter) : "er" (i) : "memory"); } static inline s64 arch_atomic64_fetch_xor(s64 i, atomic64_t *v) { s64 val = arch_atomic64_read(v); do { } while (!arch_atomic64_try_cmpxchg(v, &val, val ^ i)); return val; } #define arch_atomic64_fetch_xor arch_atomic64_fetch_xor #endif /* _ASM_X86_ATOMIC64_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux NET3: Internet Group Management Protocol [IGMP] * * Authors: * Alan Cox <alan@lxorguk.ukuu.org.uk> * * Extended to talk the BSD extended IGMP protocol of mrouted 3.6 */ #ifndef _LINUX_IGMP_H #define _LINUX_IGMP_H #include <linux/skbuff.h> #include <linux/timer.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/refcount.h> #include <uapi/linux/igmp.h> static inline struct igmphdr *igmp_hdr(const struct sk_buff *skb) { return (struct igmphdr *)skb_transport_header(skb); } static inline struct igmpv3_report * igmpv3_report_hdr(const struct sk_buff *skb) { return (struct igmpv3_report *)skb_transport_header(skb); } static inline struct igmpv3_query * igmpv3_query_hdr(const struct sk_buff *skb) { return (struct igmpv3_query *)skb_transport_header(skb); } struct ip_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct rcu_head rcu; __be32 sl_addr[]; }; #define IP_SFLSIZE(count) (sizeof(struct ip_sf_socklist) + \ (count) * sizeof(__be32)) #define IP_SFBLOCK 10 /* allocate this many at once */ /* ip_mc_socklist is real list now. Speed is not argument; this list never used in fast path code */ struct ip_mc_socklist { struct ip_mc_socklist __rcu *next_rcu; struct ip_mreqn multi; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ip_sf_socklist __rcu *sflist; struct rcu_head rcu; }; struct ip_sf_list { struct ip_sf_list *sf_next; unsigned long sf_count[2]; /* include/exclude counts */ __be32 sf_inaddr; unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; struct ip_mc_list { struct in_device *interface; __be32 multiaddr; unsigned int sfmode; struct ip_sf_list *sources; struct ip_sf_list *tomb; unsigned long sfcount[2]; union { struct ip_mc_list *next; struct ip_mc_list __rcu *next_rcu; }; struct ip_mc_list __rcu *next_hash; struct timer_list timer; int users; refcount_t refcnt; spinlock_t lock; char tm_running; char reporter; char unsolicit_count; char loaded; unsigned char gsquery; /* check source marks? */ unsigned char crcount; struct rcu_head rcu; }; /* V3 exponential field decoding */ #define IGMPV3_MASK(value, nb) ((nb)>=32 ? (value) : ((1<<(nb))-1) & (value)) #define IGMPV3_EXP(thresh, nbmant, nbexp, value) \ ((value) < (thresh) ? (value) : \ ((IGMPV3_MASK(value, nbmant) | (1<<(nbmant))) << \ (IGMPV3_MASK((value) >> (nbmant), nbexp) + (nbexp)))) #define IGMPV3_QQIC(value) IGMPV3_EXP(0x80, 4, 3, value) #define IGMPV3_MRC(value) IGMPV3_EXP(0x80, 4, 3, value) static inline int ip_mc_may_pull(struct sk_buff *skb, unsigned int len) { if (skb_transport_offset(skb) + ip_transport_len(skb) < len) return 0; return pskb_may_pull(skb, len); } extern int ip_check_mc_rcu(struct in_device *dev, __be32 mc_addr, __be32 src_addr, u8 proto); extern int igmp_rcv(struct sk_buff *); extern int ip_mc_join_group(struct sock *sk, struct ip_mreqn *imr); extern int ip_mc_join_group_ssm(struct sock *sk, struct ip_mreqn *imr, unsigned int mode); extern int ip_mc_leave_group(struct sock *sk, struct ip_mreqn *imr); extern void ip_mc_drop_socket(struct sock *sk); extern int ip_mc_source(int add, int omode, struct sock *sk, struct ip_mreq_source *mreqs, int ifindex); extern int ip_mc_msfilter(struct sock *sk, struct ip_msfilter *msf,int ifindex); extern int ip_mc_msfget(struct sock *sk, struct ip_msfilter *msf, sockptr_t optval, sockptr_t optlen); extern int ip_mc_gsfget(struct sock *sk, struct group_filter *gsf, sockptr_t optval, size_t offset); extern int ip_mc_sf_allow(struct sock *sk, __be32 local, __be32 rmt, int dif, int sdif); extern void ip_mc_init_dev(struct in_device *); extern void ip_mc_destroy_dev(struct in_device *); extern void ip_mc_up(struct in_device *); extern void ip_mc_down(struct in_device *); extern void ip_mc_unmap(struct in_device *); extern void ip_mc_remap(struct in_device *); extern void __ip_mc_dec_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); static inline void ip_mc_dec_group(struct in_device *in_dev, __be32 addr) { return __ip_mc_dec_group(in_dev, addr, GFP_KERNEL); } extern void __ip_mc_inc_group(struct in_device *in_dev, __be32 addr, gfp_t gfp); extern void ip_mc_inc_group(struct in_device *in_dev, __be32 addr); int ip_mc_check_igmp(struct sk_buff *skb); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 /* SPDX-License-Identifier: GPL-2.0 */ /* * Internal header to deal with irq_desc->status which will be renamed * to irq_desc->settings. */ enum { _IRQ_DEFAULT_INIT_FLAGS = IRQ_DEFAULT_INIT_FLAGS, _IRQ_PER_CPU = IRQ_PER_CPU, _IRQ_LEVEL = IRQ_LEVEL, _IRQ_NOPROBE = IRQ_NOPROBE, _IRQ_NOREQUEST = IRQ_NOREQUEST, _IRQ_NOTHREAD = IRQ_NOTHREAD, _IRQ_NOAUTOEN = IRQ_NOAUTOEN, _IRQ_MOVE_PCNTXT = IRQ_MOVE_PCNTXT, _IRQ_NO_BALANCING = IRQ_NO_BALANCING, _IRQ_NESTED_THREAD = IRQ_NESTED_THREAD, _IRQ_PER_CPU_DEVID = IRQ_PER_CPU_DEVID, _IRQ_IS_POLLED = IRQ_IS_POLLED, _IRQ_DISABLE_UNLAZY = IRQ_DISABLE_UNLAZY, _IRQ_HIDDEN = IRQ_HIDDEN, _IRQF_MODIFY_MASK = IRQF_MODIFY_MASK, }; #define IRQ_PER_CPU GOT_YOU_MORON #define IRQ_NO_BALANCING GOT_YOU_MORON #define IRQ_LEVEL GOT_YOU_MORON #define IRQ_NOPROBE GOT_YOU_MORON #define IRQ_NOREQUEST GOT_YOU_MORON #define IRQ_NOTHREAD GOT_YOU_MORON #define IRQ_NOAUTOEN GOT_YOU_MORON #define IRQ_NESTED_THREAD GOT_YOU_MORON #define IRQ_PER_CPU_DEVID GOT_YOU_MORON #define IRQ_IS_POLLED GOT_YOU_MORON #define IRQ_DISABLE_UNLAZY GOT_YOU_MORON #define IRQ_HIDDEN GOT_YOU_MORON #undef IRQF_MODIFY_MASK #define IRQF_MODIFY_MASK GOT_YOU_MORON static inline void irq_settings_clr_and_set(struct irq_desc *desc, u32 clr, u32 set) { desc->status_use_accessors &= ~(clr & _IRQF_MODIFY_MASK); desc->status_use_accessors |= (set & _IRQF_MODIFY_MASK); } static inline bool irq_settings_is_per_cpu(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU; } static inline bool irq_settings_is_per_cpu_devid(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_PER_CPU_DEVID; } static inline void irq_settings_set_per_cpu(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_PER_CPU; } static inline void irq_settings_set_no_balancing(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NO_BALANCING; } static inline bool irq_settings_has_no_balance_set(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NO_BALANCING; } static inline u32 irq_settings_get_trigger_mask(struct irq_desc *desc) { return desc->status_use_accessors & IRQ_TYPE_SENSE_MASK; } static inline void irq_settings_set_trigger_mask(struct irq_desc *desc, u32 mask) { desc->status_use_accessors &= ~IRQ_TYPE_SENSE_MASK; desc->status_use_accessors |= mask & IRQ_TYPE_SENSE_MASK; } static inline bool irq_settings_is_level(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_LEVEL; } static inline void irq_settings_clr_level(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_LEVEL; } static inline void irq_settings_set_level(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_LEVEL; } static inline bool irq_settings_can_request(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOREQUEST); } static inline void irq_settings_clr_norequest(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOREQUEST; } static inline void irq_settings_set_norequest(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOREQUEST; } static inline bool irq_settings_can_thread(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOTHREAD); } static inline void irq_settings_clr_nothread(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOTHREAD; } static inline void irq_settings_set_nothread(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOTHREAD; } static inline bool irq_settings_can_probe(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOPROBE); } static inline void irq_settings_clr_noprobe(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_NOPROBE; } static inline void irq_settings_set_noprobe(struct irq_desc *desc) { desc->status_use_accessors |= _IRQ_NOPROBE; } static inline bool irq_settings_can_move_pcntxt(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_MOVE_PCNTXT; } static inline bool irq_settings_can_autoenable(struct irq_desc *desc) { return !(desc->status_use_accessors & _IRQ_NOAUTOEN); } static inline bool irq_settings_is_nested_thread(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_NESTED_THREAD; } static inline bool irq_settings_is_polled(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_IS_POLLED; } static inline bool irq_settings_disable_unlazy(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_DISABLE_UNLAZY; } static inline void irq_settings_clr_disable_unlazy(struct irq_desc *desc) { desc->status_use_accessors &= ~_IRQ_DISABLE_UNLAZY; } static inline bool irq_settings_is_hidden(struct irq_desc *desc) { return desc->status_use_accessors & _IRQ_HIDDEN; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Global definitions for the ARP (RFC 826) protocol. * * Version: @(#)if_arp.h 1.0.1 04/16/93 * * Authors: Original taken from Berkeley UNIX 4.3, (c) UCB 1986-1988 * Portions taken from the KA9Q/NOS (v2.00m PA0GRI) source. * Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Florian La Roche, * Jonathan Layes <layes@loran.com> * Arnaldo Carvalho de Melo <acme@conectiva.com.br> ARPHRD_HWX25 */ #ifndef _LINUX_IF_ARP_H #define _LINUX_IF_ARP_H #include <linux/skbuff.h> #include <uapi/linux/if_arp.h> static inline struct arphdr *arp_hdr(const struct sk_buff *skb) { return (struct arphdr *)skb_network_header(skb); } static inline unsigned int arp_hdr_len(const struct net_device *dev) { switch (dev->type) { #if IS_ENABLED(CONFIG_FIREWIRE_NET) case ARPHRD_IEEE1394: /* ARP header, device address and 2 IP addresses */ return sizeof(struct arphdr) + dev->addr_len + sizeof(u32) * 2; #endif default: /* ARP header, plus 2 device addresses, plus 2 IP addresses. */ return sizeof(struct arphdr) + (dev->addr_len + sizeof(u32)) * 2; } } static inline bool dev_is_mac_header_xmit(const struct net_device *dev) { switch (dev->type) { case ARPHRD_TUNNEL: case ARPHRD_TUNNEL6: case ARPHRD_SIT: case ARPHRD_IPGRE: case ARPHRD_VOID: case ARPHRD_NONE: case ARPHRD_RAWIP: case ARPHRD_PIMREG: /* PPP adds its l2 header automatically in ppp_start_xmit(). * This makes it look like an l3 device to __bpf_redirect() and tcf_mirred_init(). */ case ARPHRD_PPP: return false; default: return true; } } #endif /* _LINUX_IF_ARP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0-only */ /* * NSA Security-Enhanced Linux (SELinux) security module * * This file contains the SELinux security data structures for kernel objects. * * Author(s): Stephen Smalley, <sds@tycho.nsa.gov> * Chris Vance, <cvance@nai.com> * Wayne Salamon, <wsalamon@nai.com> * James Morris <jmorris@redhat.com> * * Copyright (C) 2001,2002 Networks Associates Technology, Inc. * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> * Copyright (C) 2016 Mellanox Technologies */ #ifndef _SELINUX_OBJSEC_H_ #define _SELINUX_OBJSEC_H_ #include <linux/list.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/binfmts.h> #include <linux/in.h> #include <linux/spinlock.h> #include <linux/lsm_hooks.h> #include <linux/msg.h> #include <net/net_namespace.h> #include "flask.h" #include "avc.h" struct task_security_struct { u32 osid; /* SID prior to last execve */ u32 sid; /* current SID */ u32 exec_sid; /* exec SID */ u32 create_sid; /* fscreate SID */ u32 keycreate_sid; /* keycreate SID */ u32 sockcreate_sid; /* fscreate SID */ } __randomize_layout; enum label_initialized { LABEL_INVALID, /* invalid or not initialized */ LABEL_INITIALIZED, /* initialized */ LABEL_PENDING }; struct inode_security_struct { struct inode *inode; /* back pointer to inode object */ struct list_head list; /* list of inode_security_struct */ u32 task_sid; /* SID of creating task */ u32 sid; /* SID of this object */ u16 sclass; /* security class of this object */ unsigned char initialized; /* initialization flag */ spinlock_t lock; }; struct file_security_struct { u32 sid; /* SID of open file description */ u32 fown_sid; /* SID of file owner (for SIGIO) */ u32 isid; /* SID of inode at the time of file open */ u32 pseqno; /* Policy seqno at the time of file open */ }; struct superblock_security_struct { struct super_block *sb; /* back pointer to sb object */ u32 sid; /* SID of file system superblock */ u32 def_sid; /* default SID for labeling */ u32 mntpoint_sid; /* SECURITY_FS_USE_MNTPOINT context for files */ unsigned short behavior; /* labeling behavior */ unsigned short flags; /* which mount options were specified */ struct mutex lock; struct list_head isec_head; spinlock_t isec_lock; }; struct msg_security_struct { u32 sid; /* SID of message */ }; struct ipc_security_struct { u16 sclass; /* security class of this object */ u32 sid; /* SID of IPC resource */ }; struct netif_security_struct { struct net *ns; /* network namespace */ int ifindex; /* device index */ u32 sid; /* SID for this interface */ }; struct netnode_security_struct { union { __be32 ipv4; /* IPv4 node address */ struct in6_addr ipv6; /* IPv6 node address */ } addr; u32 sid; /* SID for this node */ u16 family; /* address family */ }; struct netport_security_struct { u32 sid; /* SID for this node */ u16 port; /* port number */ u8 protocol; /* transport protocol */ }; struct sk_security_struct { #ifdef CONFIG_NETLABEL enum { /* NetLabel state */ NLBL_UNSET = 0, NLBL_REQUIRE, NLBL_LABELED, NLBL_REQSKB, NLBL_CONNLABELED, } nlbl_state; struct netlbl_lsm_secattr *nlbl_secattr; /* NetLabel sec attributes */ #endif u32 sid; /* SID of this object */ u32 peer_sid; /* SID of peer */ u16 sclass; /* sock security class */ enum { /* SCTP association state */ SCTP_ASSOC_UNSET = 0, SCTP_ASSOC_SET, } sctp_assoc_state; }; struct tun_security_struct { u32 sid; /* SID for the tun device sockets */ }; struct key_security_struct { u32 sid; /* SID of key */ }; struct ib_security_struct { u32 sid; /* SID of the queue pair or MAD agent */ }; struct pkey_security_struct { u64 subnet_prefix; /* Port subnet prefix */ u16 pkey; /* PKey number */ u32 sid; /* SID of pkey */ }; struct bpf_security_struct { u32 sid; /* SID of bpf obj creator */ }; struct perf_event_security_struct { u32 sid; /* SID of perf_event obj creator */ }; extern struct lsm_blob_sizes selinux_blob_sizes; static inline struct task_security_struct *selinux_cred(const struct cred *cred) { return cred->security + selinux_blob_sizes.lbs_cred; } static inline struct file_security_struct *selinux_file(const struct file *file) { return file->f_security + selinux_blob_sizes.lbs_file; } static inline struct inode_security_struct *selinux_inode( const struct inode *inode) { if (unlikely(!inode->i_security)) return NULL; return inode->i_security + selinux_blob_sizes.lbs_inode; } static inline struct msg_security_struct *selinux_msg_msg( const struct msg_msg *msg_msg) { return msg_msg->security + selinux_blob_sizes.lbs_msg_msg; } static inline struct ipc_security_struct *selinux_ipc( const struct kern_ipc_perm *ipc) { return ipc->security + selinux_blob_sizes.lbs_ipc; } /* * get the subjective security ID of the current task */ static inline u32 current_sid(void) { const struct task_security_struct *tsec = selinux_cred(current_cred()); return tsec->sid; } #endif /* _SELINUX_OBJSEC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 /* SPDX-License-Identifier: GPL-2.0-only */ /* * fs/kernfs/kernfs-internal.h - kernfs internal header file * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007, 2013 Tejun Heo <teheo@suse.de> */ #ifndef __KERNFS_INTERNAL_H #define __KERNFS_INTERNAL_H #include <linux/lockdep.h> #include <linux/fs.h> #include <linux/mutex.h> #include <linux/xattr.h> #include <linux/kernfs.h> #include <linux/fs_context.h> struct kernfs_iattrs { kuid_t ia_uid; kgid_t ia_gid; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; struct simple_xattrs xattrs; atomic_t nr_user_xattrs; atomic_t user_xattr_size; }; /* +1 to avoid triggering overflow warning when negating it */ #define KN_DEACTIVATED_BIAS (INT_MIN + 1) /* KERNFS_TYPE_MASK and types are defined in include/linux/kernfs.h */ /** * kernfs_root - find out the kernfs_root a kernfs_node belongs to * @kn: kernfs_node of interest * * Return the kernfs_root @kn belongs to. */ static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn) { /* if parent exists, it's always a dir; otherwise, @sd is a dir */ if (kn->parent) kn = kn->parent; return kn->dir.root; } /* * mount.c */ struct kernfs_super_info { struct super_block *sb; /* * The root associated with this super_block. Each super_block is * identified by the root and ns it's associated with. */ struct kernfs_root *root; /* * Each sb is associated with one namespace tag, currently the * network namespace of the task which mounted this kernfs * instance. If multiple tags become necessary, make the following * an array and compare kernfs_node tag against every entry. */ const void *ns; /* anchored at kernfs_root->supers, protected by kernfs_mutex */ struct list_head node; }; #define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info)) static inline struct kernfs_node *kernfs_dentry_node(struct dentry *dentry) { if (d_really_is_negative(dentry)) return NULL; return d_inode(dentry)->i_private; } extern const struct super_operations kernfs_sops; extern struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; /* * inode.c */ extern const struct xattr_handler *kernfs_xattr_handlers[]; void kernfs_evict_inode(struct inode *inode); int kernfs_iop_permission(struct inode *inode, int mask); int kernfs_iop_setattr(struct dentry *dentry, struct iattr *iattr); int kernfs_iop_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags); ssize_t kernfs_iop_listxattr(struct dentry *dentry, char *buf, size_t size); int __kernfs_setattr(struct kernfs_node *kn, const struct iattr *iattr); /* * dir.c */ extern struct mutex kernfs_mutex; extern const struct dentry_operations kernfs_dops; extern const struct file_operations kernfs_dir_fops; extern const struct inode_operations kernfs_dir_iops; struct kernfs_node *kernfs_get_active(struct kernfs_node *kn); void kernfs_put_active(struct kernfs_node *kn); int kernfs_add_one(struct kernfs_node *kn); struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, const char *name, umode_t mode, kuid_t uid, kgid_t gid, unsigned flags); /* * file.c */ extern const struct file_operations kernfs_file_fops; void kernfs_drain_open_files(struct kernfs_node *kn); /* * symlink.c */ extern const struct inode_operations kernfs_symlink_iops; #endif /* __KERNFS_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { if (ns) { if (refcount_inc_not_zero(&ns->count)) return ns; } return NULL; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Descending-priority-sorted double-linked list * * (C) 2002-2003 Intel Corp * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>. * * 2001-2005 (c) MontaVista Software, Inc. * Daniel Walker <dwalker@mvista.com> * * (C) 2005 Thomas Gleixner <tglx@linutronix.de> * * Simplifications of the original code by * Oleg Nesterov <oleg@tv-sign.ru> * * Based on simple lists (include/linux/list.h). * * This is a priority-sorted list of nodes; each node has a * priority from INT_MIN (highest) to INT_MAX (lowest). * * Addition is O(K), removal is O(1), change of priority of a node is * O(K) and K is the number of RT priority levels used in the system. * (1 <= K <= 99) * * This list is really a list of lists: * * - The tier 1 list is the prio_list, different priority nodes. * * - The tier 2 list is the node_list, serialized nodes. * * Simple ASCII art explanation: * * pl:prio_list (only for plist_node) * nl:node_list * HEAD| NODE(S) * | * ||------------------------------------| * ||->|pl|<->|pl|<--------------->|pl|<-| * | |10| |21| |21| |21| |40| (prio) * | | | | | | | | | | | * | | | | | | | | | | | * |->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<-| * |-------------------------------------------| * * The nodes on the prio_list list are sorted by priority to simplify * the insertion of new nodes. There are no nodes with duplicate * priorites on the list. * * The nodes on the node_list are ordered by priority and can contain * entries which have the same priority. Those entries are ordered * FIFO * * Addition means: look for the prio_list node in the prio_list * for the priority of the node and insert it before the node_list * entry of the next prio_list node. If it is the first node of * that priority, add it to the prio_list in the right position and * insert it into the serialized node_list list * * Removal means remove it from the node_list and remove it from * the prio_list if the node_list list_head is non empty. In case * of removal from the prio_list it must be checked whether other * entries of the same priority are on the list or not. If there * is another entry of the same priority then this entry has to * replace the removed entry on the prio_list. If the entry which * is removed is the only entry of this priority then a simple * remove from both list is sufficient. * * INT_MIN is the highest priority, 0 is the medium highest, INT_MAX * is lowest priority. * * No locking is done, up to the caller. */ #ifndef _LINUX_PLIST_H_ #define _LINUX_PLIST_H_ #include <linux/kernel.h> #include <linux/list.h> struct plist_head { struct list_head node_list; }; struct plist_node { int prio; struct list_head prio_list; struct list_head node_list; }; /** * PLIST_HEAD_INIT - static struct plist_head initializer * @head: struct plist_head variable name */ #define PLIST_HEAD_INIT(head) \ { \ .node_list = LIST_HEAD_INIT((head).node_list) \ } /** * PLIST_HEAD - declare and init plist_head * @head: name for struct plist_head variable */ #define PLIST_HEAD(head) \ struct plist_head head = PLIST_HEAD_INIT(head) /** * PLIST_NODE_INIT - static struct plist_node initializer * @node: struct plist_node variable name * @__prio: initial node priority */ #define PLIST_NODE_INIT(node, __prio) \ { \ .prio = (__prio), \ .prio_list = LIST_HEAD_INIT((node).prio_list), \ .node_list = LIST_HEAD_INIT((node).node_list), \ } /** * plist_head_init - dynamic struct plist_head initializer * @head: &struct plist_head pointer */ static inline void plist_head_init(struct plist_head *head) { INIT_LIST_HEAD(&head->node_list); } /** * plist_node_init - Dynamic struct plist_node initializer * @node: &struct plist_node pointer * @prio: initial node priority */ static inline void plist_node_init(struct plist_node *node, int prio) { node->prio = prio; INIT_LIST_HEAD(&node->prio_list); INIT_LIST_HEAD(&node->node_list); } extern void plist_add(struct plist_node *node, struct plist_head *head); extern void plist_del(struct plist_node *node, struct plist_head *head); extern void plist_requeue(struct plist_node *node, struct plist_head *head); /** * plist_for_each - iterate over the plist * @pos: the type * to use as a loop counter * @head: the head for your list */ #define plist_for_each(pos, head) \ list_for_each_entry(pos, &(head)->node_list, node_list) /** * plist_for_each_continue - continue iteration over the plist * @pos: the type * to use as a loop cursor * @head: the head for your list * * Continue to iterate over plist, continuing after the current position. */ #define plist_for_each_continue(pos, head) \ list_for_each_entry_continue(pos, &(head)->node_list, node_list) /** * plist_for_each_safe - iterate safely over a plist of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * * Iterate over a plist of given type, safe against removal of list entry. */ #define plist_for_each_safe(pos, n, head) \ list_for_each_entry_safe(pos, n, &(head)->node_list, node_list) /** * plist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop counter * @head: the head for your list * @mem: the name of the list_head within the struct */ #define plist_for_each_entry(pos, head, mem) \ list_for_each_entry(pos, &(head)->node_list, mem.node_list) /** * plist_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor * @head: the head for your list * @m: the name of the list_head within the struct * * Continue to iterate over list of given type, continuing after * the current position. */ #define plist_for_each_entry_continue(pos, head, m) \ list_for_each_entry_continue(pos, &(head)->node_list, m.node_list) /** * plist_for_each_entry_safe - iterate safely over list of given type * @pos: the type * to use as a loop counter * @n: another type * to use as temporary storage * @head: the head for your list * @m: the name of the list_head within the struct * * Iterate over list of given type, safe against removal of list entry. */ #define plist_for_each_entry_safe(pos, n, head, m) \ list_for_each_entry_safe(pos, n, &(head)->node_list, m.node_list) /** * plist_head_empty - return !0 if a plist_head is empty * @head: &struct plist_head pointer */ static inline int plist_head_empty(const struct plist_head *head) { return list_empty(&head->node_list); } /** * plist_node_empty - return !0 if plist_node is not on a list * @node: &struct plist_node pointer */ static inline int plist_node_empty(const struct plist_node *node) { return list_empty(&node->node_list); } /* All functions below assume the plist_head is not empty. */ /** * plist_first_entry - get the struct for the first entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_first_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_first(head), type, member); \ }) #else # define plist_first_entry(head, type, member) \ container_of(plist_first(head), type, member) #endif /** * plist_last_entry - get the struct for the last entry * @head: the &struct plist_head pointer * @type: the type of the struct this is embedded in * @member: the name of the list_head within the struct */ #ifdef CONFIG_DEBUG_PLIST # define plist_last_entry(head, type, member) \ ({ \ WARN_ON(plist_head_empty(head)); \ container_of(plist_last(head), type, member); \ }) #else # define plist_last_entry(head, type, member) \ container_of(plist_last(head), type, member) #endif /** * plist_next - get the next entry in list * @pos: the type * to cursor */ #define plist_next(pos) \ list_next_entry(pos, node_list) /** * plist_prev - get the prev entry in list * @pos: the type * to cursor */ #define plist_prev(pos) \ list_prev_entry(pos, node_list) /** * plist_first - return the first node (and thus, highest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_first(const struct plist_head *head) { return list_entry(head->node_list.next, struct plist_node, node_list); } /** * plist_last - return the last node (and thus, lowest priority) * @head: the &struct plist_head pointer * * Assumes the plist is _not_ empty. */ static inline struct plist_node *plist_last(const struct plist_head *head) { return list_entry(head->node_list.prev, struct plist_node, node_list); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* md.h : kernel internal structure of the Linux MD driver Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman */ #ifndef _MD_MD_H #define _MD_MD_H #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/badblocks.h> #include <linux/kobject.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/wait.h> #include <linux/workqueue.h> #include "md-cluster.h" #define MaxSector (~(sector_t)0) /* * These flags should really be called "NO_RETRY" rather than * "FAILFAST" because they don't make any promise about time lapse, * only about the number of retries, which will be zero. * REQ_FAILFAST_DRIVER is not included because * Commit: 4a27446f3e39 ("[SCSI] modify scsi to handle new fail fast flags.") * seems to suggest that the errors it avoids retrying should usually * be retried. */ #define MD_FAILFAST (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT) /* * The struct embedded in rdev is used to serialize IO. */ struct serial_in_rdev { struct rb_root_cached serial_rb; spinlock_t serial_lock; wait_queue_head_t serial_io_wait; }; /* * MD's 'extended' device */ struct md_rdev { struct list_head same_set; /* RAID devices within the same set */ sector_t sectors; /* Device size (in 512bytes sectors) */ struct mddev *mddev; /* RAID array if running */ int last_events; /* IO event timestamp */ /* * If meta_bdev is non-NULL, it means that a separate device is * being used to store the metadata (superblock/bitmap) which * would otherwise be contained on the same device as the data (bdev). */ struct block_device *meta_bdev; struct block_device *bdev; /* block device handle */ struct page *sb_page, *bb_page; int sb_loaded; __u64 sb_events; sector_t data_offset; /* start of data in array */ sector_t new_data_offset;/* only relevant while reshaping */ sector_t sb_start; /* offset of the super block (in 512byte sectors) */ int sb_size; /* bytes in the superblock */ int preferred_minor; /* autorun support */ struct kobject kobj; /* A device can be in one of three states based on two flags: * Not working: faulty==1 in_sync==0 * Fully working: faulty==0 in_sync==1 * Working, but not * in sync with array * faulty==0 in_sync==0 * * It can never have faulty==1, in_sync==1 * This reduces the burden of testing multiple flags in many cases */ unsigned long flags; /* bit set of 'enum flag_bits' bits. */ wait_queue_head_t blocked_wait; int desc_nr; /* descriptor index in the superblock */ int raid_disk; /* role of device in array */ int new_raid_disk; /* role that the device will have in * the array after a level-change completes. */ int saved_raid_disk; /* role that device used to have in the * array and could again if we did a partial * resync from the bitmap */ union { sector_t recovery_offset;/* If this device has been partially * recovered, this is where we were * up to. */ sector_t journal_tail; /* If this device is a journal device, * this is the journal tail (journal * recovery start point) */ }; atomic_t nr_pending; /* number of pending requests. * only maintained for arrays that * support hot removal */ atomic_t read_errors; /* number of consecutive read errors that * we have tried to ignore. */ time64_t last_read_error; /* monotonic time since our * last read error */ atomic_t corrected_errors; /* number of corrected read errors, * for reporting to userspace and storing * in superblock. */ struct serial_in_rdev *serial; /* used for raid1 io serialization */ struct work_struct del_work; /* used for delayed sysfs removal */ struct kernfs_node *sysfs_state; /* handle for 'state' * sysfs entry */ /* handle for 'unacknowledged_bad_blocks' sysfs dentry */ struct kernfs_node *sysfs_unack_badblocks; /* handle for 'bad_blocks' sysfs dentry */ struct kernfs_node *sysfs_badblocks; struct badblocks badblocks; struct { short offset; /* Offset from superblock to start of PPL. * Not used by external metadata. */ unsigned int size; /* Size in sectors of the PPL space */ sector_t sector; /* First sector of the PPL space */ } ppl; }; enum flag_bits { Faulty, /* device is known to have a fault */ In_sync, /* device is in_sync with rest of array */ Bitmap_sync, /* ..actually, not quite In_sync. Need a * bitmap-based recovery to get fully in sync. * The bit is only meaningful before device * has been passed to pers->hot_add_disk. */ WriteMostly, /* Avoid reading if at all possible */ AutoDetected, /* added by auto-detect */ Blocked, /* An error occurred but has not yet * been acknowledged by the metadata * handler, so don't allow writes * until it is cleared */ WriteErrorSeen, /* A write error has been seen on this * device */ FaultRecorded, /* Intermediate state for clearing * Blocked. The Fault is/will-be * recorded in the metadata, but that * metadata hasn't been stored safely * on disk yet. */ BlockedBadBlocks, /* A writer is blocked because they * found an unacknowledged bad-block. * This can safely be cleared at any * time, and the writer will re-check. * It may be set at any time, and at * worst the writer will timeout and * re-check. So setting it as * accurately as possible is good, but * not absolutely critical. */ WantReplacement, /* This device is a candidate to be * hot-replaced, either because it has * reported some faults, or because * of explicit request. */ Replacement, /* This device is a replacement for * a want_replacement device with same * raid_disk number. */ Candidate, /* For clustered environments only: * This device is seen locally but not * by the whole cluster */ Journal, /* This device is used as journal for * raid-5/6. * Usually, this device should be faster * than other devices in the array */ ClusterRemove, RemoveSynchronized, /* synchronize_rcu() was called after * this device was known to be faulty, * so it is safe to remove without * another synchronize_rcu() call. */ ExternalBbl, /* External metadata provides bad * block management for a disk */ FailFast, /* Minimal retries should be attempted on * this device, so use REQ_FAILFAST_DEV. * Also don't try to repair failed reads. * It is expects that no bad block log * is present. */ LastDev, /* Seems to be the last working dev as * it didn't fail, so don't use FailFast * any more for metadata */ CollisionCheck, /* * check if there is collision between raid1 * serial bios. */ }; static inline int is_badblock(struct md_rdev *rdev, sector_t s, int sectors, sector_t *first_bad, int *bad_sectors) { if (unlikely(rdev->badblocks.count)) { int rv = badblocks_check(&rdev->badblocks, rdev->data_offset + s, sectors, first_bad, bad_sectors); if (rv) *first_bad -= rdev->data_offset; return rv; } return 0; } extern int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, int is_new); extern int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, int is_new); struct md_cluster_info; /* change UNSUPPORTED_MDDEV_FLAGS for each array type if new flag is added */ enum mddev_flags { MD_ARRAY_FIRST_USE, /* First use of array, needs initialization */ MD_CLOSING, /* If set, we are closing the array, do not open * it then */ MD_JOURNAL_CLEAN, /* A raid with journal is already clean */ MD_HAS_JOURNAL, /* The raid array has journal feature set */ MD_CLUSTER_RESYNC_LOCKED, /* cluster raid only, which means node * already took resync lock, need to * release the lock */ MD_FAILFAST_SUPPORTED, /* Using MD_FAILFAST on metadata writes is * supported as calls to md_error() will * never cause the array to become failed. */ MD_HAS_PPL, /* The raid array has PPL feature set */ MD_HAS_MULTIPLE_PPLS, /* The raid array has multiple PPLs feature set */ MD_ALLOW_SB_UPDATE, /* md_check_recovery is allowed to update * the metadata without taking reconfig_mutex. */ MD_UPDATING_SB, /* md_check_recovery is updating the metadata * without explicitly holding reconfig_mutex. */ MD_NOT_READY, /* do_md_run() is active, so 'array_state' * must not report that array is ready yet */ MD_BROKEN, /* This is used in RAID-0/LINEAR only, to stop * I/O in case an array member is gone/failed. */ }; enum mddev_sb_flags { MD_SB_CHANGE_DEVS, /* Some device status has changed */ MD_SB_CHANGE_CLEAN, /* transition to or from 'clean' */ MD_SB_CHANGE_PENDING, /* switch from 'clean' to 'active' in progress */ MD_SB_NEED_REWRITE, /* metadata write needs to be repeated */ }; #define NR_SERIAL_INFOS 8 /* record current range of serialize IOs */ struct serial_info { struct rb_node node; sector_t start; /* start sector of rb node */ sector_t last; /* end sector of rb node */ sector_t _subtree_last; /* highest sector in subtree of rb node */ }; struct mddev { void *private; struct md_personality *pers; dev_t unit; int md_minor; struct list_head disks; unsigned long flags; unsigned long sb_flags; int suspended; atomic_t active_io; int ro; int sysfs_active; /* set when sysfs deletes * are happening, so run/ * takeover/stop are not safe */ struct gendisk *gendisk; struct kobject kobj; int hold_active; #define UNTIL_IOCTL 1 #define UNTIL_STOP 2 /* Superblock information */ int major_version, minor_version, patch_version; int persistent; int external; /* metadata is * managed externally */ char metadata_type[17]; /* externally set*/ int chunk_sectors; time64_t ctime, utime; int level, layout; char clevel[16]; int raid_disks; int max_disks; sector_t dev_sectors; /* used size of * component devices */ sector_t array_sectors; /* exported array size */ int external_size; /* size managed * externally */ __u64 events; /* If the last 'event' was simply a clean->dirty transition, and * we didn't write it to the spares, then it is safe and simple * to just decrement the event count on a dirty->clean transition. * So we record that possibility here. */ int can_decrease_events; char uuid[16]; /* If the array is being reshaped, we need to record the * new shape and an indication of where we are up to. * This is written to the superblock. * If reshape_position is MaxSector, then no reshape is happening (yet). */ sector_t reshape_position; int delta_disks, new_level, new_layout; int new_chunk_sectors; int reshape_backwards; struct md_thread *thread; /* management thread */ struct md_thread *sync_thread; /* doing resync or reconstruct */ /* 'last_sync_action' is initialized to "none". It is set when a * sync operation (i.e "data-check", "requested-resync", "resync", * "recovery", or "reshape") is started. It holds this value even * when the sync thread is "frozen" (interrupted) or "idle" (stopped * or finished). It is overwritten when a new sync operation is begun. */ char *last_sync_action; sector_t curr_resync; /* last block scheduled */ /* As resync requests can complete out of order, we cannot easily track * how much resync has been completed. So we occasionally pause until * everything completes, then set curr_resync_completed to curr_resync. * As such it may be well behind the real resync mark, but it is a value * we are certain of. */ sector_t curr_resync_completed; unsigned long resync_mark; /* a recent timestamp */ sector_t resync_mark_cnt;/* blocks written at resync_mark */ sector_t curr_mark_cnt; /* blocks scheduled now */ sector_t resync_max_sectors; /* may be set by personality */ atomic64_t resync_mismatches; /* count of sectors where * parity/replica mismatch found */ /* allow user-space to request suspension of IO to regions of the array */ sector_t suspend_lo; sector_t suspend_hi; /* if zero, use the system-wide default */ int sync_speed_min; int sync_speed_max; /* resync even though the same disks are shared among md-devices */ int parallel_resync; int ok_start_degraded; unsigned long recovery; /* If a RAID personality determines that recovery (of a particular * device) will fail due to a read error on the source device, it * takes a copy of this number and does not attempt recovery again * until this number changes. */ int recovery_disabled; int in_sync; /* know to not need resync */ /* 'open_mutex' avoids races between 'md_open' and 'do_md_stop', so * that we are never stopping an array while it is open. * 'reconfig_mutex' protects all other reconfiguration. * These locks are separate due to conflicting interactions * with bdev->bd_mutex. * Lock ordering is: * reconfig_mutex -> bd_mutex * bd_mutex -> open_mutex: e.g. __blkdev_get -> md_open */ struct mutex open_mutex; struct mutex reconfig_mutex; atomic_t active; /* general refcount */ atomic_t openers; /* number of active opens */ int changed; /* True if we might need to * reread partition info */ int degraded; /* whether md should consider * adding a spare */ atomic_t recovery_active; /* blocks scheduled, but not written */ wait_queue_head_t recovery_wait; sector_t recovery_cp; sector_t resync_min; /* user requested sync * starts here */ sector_t resync_max; /* resync should pause * when it gets here */ struct kernfs_node *sysfs_state; /* handle for 'array_state' * file in sysfs. */ struct kernfs_node *sysfs_action; /* handle for 'sync_action' */ struct kernfs_node *sysfs_completed; /*handle for 'sync_completed' */ struct kernfs_node *sysfs_degraded; /*handle for 'degraded' */ struct kernfs_node *sysfs_level; /*handle for 'level' */ struct work_struct del_work; /* used for delayed sysfs removal */ /* "lock" protects: * flush_bio transition from NULL to !NULL * rdev superblocks, events * clearing MD_CHANGE_* * in_sync - and related safemode and MD_CHANGE changes * pers (also protected by reconfig_mutex and pending IO). * clearing ->bitmap * clearing ->bitmap_info.file * changing ->resync_{min,max} * setting MD_RECOVERY_RUNNING (which interacts with resync_{min,max}) */ spinlock_t lock; wait_queue_head_t sb_wait; /* for waiting on superblock updates */ atomic_t pending_writes; /* number of active superblock writes */ unsigned int safemode; /* if set, update "clean" superblock * when no writes pending. */ unsigned int safemode_delay; struct timer_list safemode_timer; struct percpu_ref writes_pending; int sync_checkers; /* # of threads checking writes_pending */ struct request_queue *queue; /* for plugging ... */ struct bitmap *bitmap; /* the bitmap for the device */ struct { struct file *file; /* the bitmap file */ loff_t offset; /* offset from superblock of * start of bitmap. May be * negative, but not '0' * For external metadata, offset * from start of device. */ unsigned long space; /* space available at this offset */ loff_t default_offset; /* this is the offset to use when * hot-adding a bitmap. It should * eventually be settable by sysfs. */ unsigned long default_space; /* space available at * default offset */ struct mutex mutex; unsigned long chunksize; unsigned long daemon_sleep; /* how many jiffies between updates? */ unsigned long max_write_behind; /* write-behind mode */ int external; int nodes; /* Maximum number of nodes in the cluster */ char cluster_name[64]; /* Name of the cluster */ } bitmap_info; atomic_t max_corr_read_errors; /* max read retries */ struct list_head all_mddevs; struct attribute_group *to_remove; struct bio_set bio_set; struct bio_set sync_set; /* for sync operations like * metadata and bitmap writes */ /* Generic flush handling. * The last to finish preflush schedules a worker to submit * the rest of the request (without the REQ_PREFLUSH flag). */ struct bio *flush_bio; atomic_t flush_pending; ktime_t start_flush, last_flush; /* last_flush is when the last completed * flush was started. */ struct work_struct flush_work; struct work_struct event_work; /* used by dm to report failure event */ mempool_t *serial_info_pool; void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev); struct md_cluster_info *cluster_info; unsigned int good_device_nr; /* good device num within cluster raid */ unsigned int noio_flag; /* for memalloc scope API */ bool has_superblocks:1; bool fail_last_dev:1; bool serialize_policy:1; }; enum recovery_flags { /* * If neither SYNC or RESHAPE are set, then it is a recovery. */ MD_RECOVERY_RUNNING, /* a thread is running, or about to be started */ MD_RECOVERY_SYNC, /* actually doing a resync, not a recovery */ MD_RECOVERY_RECOVER, /* doing recovery, or need to try it. */ MD_RECOVERY_INTR, /* resync needs to be aborted for some reason */ MD_RECOVERY_DONE, /* thread is done and is waiting to be reaped */ MD_RECOVERY_NEEDED, /* we might need to start a resync/recover */ MD_RECOVERY_REQUESTED, /* user-space has requested a sync (used with SYNC) */ MD_RECOVERY_CHECK, /* user-space request for check-only, no repair */ MD_RECOVERY_RESHAPE, /* A reshape is happening */ MD_RECOVERY_FROZEN, /* User request to abort, and not restart, any action */ MD_RECOVERY_ERROR, /* sync-action interrupted because io-error */ MD_RECOVERY_WAIT, /* waiting for pers->start() to finish */ MD_RESYNCING_REMOTE, /* remote node is running resync thread */ }; static inline int __must_check mddev_lock(struct mddev *mddev) { return mutex_lock_interruptible(&mddev->reconfig_mutex); } /* Sometimes we need to take the lock in a situation where * failure due to interrupts is not acceptable. */ static inline void mddev_lock_nointr(struct mddev *mddev) { mutex_lock(&mddev->reconfig_mutex); } static inline int mddev_trylock(struct mddev *mddev) { return mutex_trylock(&mddev->reconfig_mutex); } extern void mddev_unlock(struct mddev *mddev); static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors) { atomic_add(nr_sectors, &bdev->bd_disk->sync_io); } static inline void md_sync_acct_bio(struct bio *bio, unsigned long nr_sectors) { atomic_add(nr_sectors, &bio->bi_disk->sync_io); } struct md_personality { char *name; int level; struct list_head list; struct module *owner; bool __must_check (*make_request)(struct mddev *mddev, struct bio *bio); /* * start up works that do NOT require md_thread. tasks that * requires md_thread should go into start() */ int (*run)(struct mddev *mddev); /* start up works that require md threads */ int (*start)(struct mddev *mddev); void (*free)(struct mddev *mddev, void *priv); void (*status)(struct seq_file *seq, struct mddev *mddev); /* error_handler must set ->faulty and clear ->in_sync * if appropriate, and should abort recovery if needed */ void (*error_handler)(struct mddev *mddev, struct md_rdev *rdev); int (*hot_add_disk) (struct mddev *mddev, struct md_rdev *rdev); int (*hot_remove_disk) (struct mddev *mddev, struct md_rdev *rdev); int (*spare_active) (struct mddev *mddev); sector_t (*sync_request)(struct mddev *mddev, sector_t sector_nr, int *skipped); int (*resize) (struct mddev *mddev, sector_t sectors); sector_t (*size) (struct mddev *mddev, sector_t sectors, int raid_disks); int (*check_reshape) (struct mddev *mddev); int (*start_reshape) (struct mddev *mddev); void (*finish_reshape) (struct mddev *mddev); void (*update_reshape_pos) (struct mddev *mddev); /* quiesce suspends or resumes internal processing. * 1 - stop new actions and wait for action io to complete * 0 - return to normal behaviour */ void (*quiesce) (struct mddev *mddev, int quiesce); /* takeover is used to transition an array from one * personality to another. The new personality must be able * to handle the data in the current layout. * e.g. 2drive raid1 -> 2drive raid5 * ndrive raid5 -> degraded n+1drive raid6 with special layout * If the takeover succeeds, a new 'private' structure is returned. * This needs to be installed and then ->run used to activate the * array. */ void *(*takeover) (struct mddev *mddev); /* Changes the consistency policy of an active array. */ int (*change_consistency_policy)(struct mddev *mddev, const char *buf); }; struct md_sysfs_entry { struct attribute attr; ssize_t (*show)(struct mddev *, char *); ssize_t (*store)(struct mddev *, const char *, size_t); }; extern struct attribute_group md_bitmap_group; static inline struct kernfs_node *sysfs_get_dirent_safe(struct kernfs_node *sd, char *name) { if (sd) return sysfs_get_dirent(sd, name); return sd; } static inline void sysfs_notify_dirent_safe(struct kernfs_node *sd) { if (sd) sysfs_notify_dirent(sd); } static inline char * mdname (struct mddev * mddev) { return mddev->gendisk ? mddev->gendisk->disk_name : "mdX"; } static inline int sysfs_link_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; if (!test_bit(Replacement, &rdev->flags) && !test_bit(Journal, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); return sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); } else return 0; } static inline void sysfs_unlink_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; if (!test_bit(Replacement, &rdev->flags) && !test_bit(Journal, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); } } /* * iterates through some rdev ringlist. It's safe to remove the * current 'rdev'. Dont touch 'tmp' though. */ #define rdev_for_each_list(rdev, tmp, head) \ list_for_each_entry_safe(rdev, tmp, head, same_set) /* * iterates through the 'same array disks' ringlist */ #define rdev_for_each(rdev, mddev) \ list_for_each_entry(rdev, &((mddev)->disks), same_set) #define rdev_for_each_safe(rdev, tmp, mddev) \ list_for_each_entry_safe(rdev, tmp, &((mddev)->disks), same_set) #define rdev_for_each_rcu(rdev, mddev) \ list_for_each_entry_rcu(rdev, &((mddev)->disks), same_set) struct md_thread { void (*run) (struct md_thread *thread); struct mddev *mddev; wait_queue_head_t wqueue; unsigned long flags; struct task_struct *tsk; unsigned long timeout; void *private; }; #define THREAD_WAKEUP 0 static inline void safe_put_page(struct page *p) { if (p) put_page(p); } extern int register_md_personality(struct md_personality *p); extern int unregister_md_personality(struct md_personality *p); extern int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module); extern int unregister_md_cluster_operations(void); extern int md_setup_cluster(struct mddev *mddev, int nodes); extern void md_cluster_stop(struct mddev *mddev); extern struct md_thread *md_register_thread( void (*run)(struct md_thread *thread), struct mddev *mddev, const char *name); extern void md_unregister_thread(struct md_thread **threadp); extern void md_wakeup_thread(struct md_thread *thread); extern void md_check_recovery(struct mddev *mddev); extern void md_reap_sync_thread(struct mddev *mddev); extern int mddev_init_writes_pending(struct mddev *mddev); extern bool md_write_start(struct mddev *mddev, struct bio *bi); extern void md_write_inc(struct mddev *mddev, struct bio *bi); extern void md_write_end(struct mddev *mddev); extern void md_done_sync(struct mddev *mddev, int blocks, int ok); extern void md_error(struct mddev *mddev, struct md_rdev *rdev); extern void md_finish_reshape(struct mddev *mddev); extern bool __must_check md_flush_request(struct mddev *mddev, struct bio *bio); extern void md_super_write(struct mddev *mddev, struct md_rdev *rdev, sector_t sector, int size, struct page *page); extern int md_super_wait(struct mddev *mddev); extern int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, struct page *page, int op, int op_flags, bool metadata_op); extern void md_do_sync(struct md_thread *thread); extern void md_new_event(struct mddev *mddev); extern void md_allow_write(struct mddev *mddev); extern void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev); extern void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors); extern int md_check_no_bitmap(struct mddev *mddev); extern int md_integrity_register(struct mddev *mddev); extern int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev); extern int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale); extern void mddev_init(struct mddev *mddev); extern int md_run(struct mddev *mddev); extern int md_start(struct mddev *mddev); extern void md_stop(struct mddev *mddev); extern void md_stop_writes(struct mddev *mddev); extern int md_rdev_init(struct md_rdev *rdev); extern void md_rdev_clear(struct md_rdev *rdev); extern void md_handle_request(struct mddev *mddev, struct bio *bio); extern void mddev_suspend(struct mddev *mddev); extern void mddev_resume(struct mddev *mddev); extern struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, struct mddev *mddev); extern void md_reload_sb(struct mddev *mddev, int raid_disk); extern void md_update_sb(struct mddev *mddev, int force); extern void md_kick_rdev_from_array(struct md_rdev * rdev); extern void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, bool is_suspend); extern void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, bool is_suspend); struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr); struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev); static inline bool is_mddev_broken(struct md_rdev *rdev, const char *md_type) { int flags = rdev->bdev->bd_disk->flags; if (!(flags & GENHD_FL_UP)) { if (!test_and_set_bit(MD_BROKEN, &rdev->mddev->flags)) pr_warn("md: %s: %s array has a missing/failed member\n", mdname(rdev->mddev), md_type); return true; } return false; } static inline void rdev_dec_pending(struct md_rdev *rdev, struct mddev *mddev) { int faulty = test_bit(Faulty, &rdev->flags); if (atomic_dec_and_test(&rdev->nr_pending) && faulty) { set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } } extern struct md_cluster_operations *md_cluster_ops; static inline int mddev_is_clustered(struct mddev *mddev) { return mddev->cluster_info && mddev->bitmap_info.nodes > 1; } /* clear unsupported mddev_flags */ static inline void mddev_clear_unsupported_flags(struct mddev *mddev, unsigned long unsupported_flags) { mddev->flags &= ~unsupported_flags; } static inline void mddev_check_writesame(struct mddev *mddev, struct bio *bio) { if (bio_op(bio) == REQ_OP_WRITE_SAME && !bio->bi_disk->queue->limits.max_write_same_sectors) mddev->queue->limits.max_write_same_sectors = 0; } static inline void mddev_check_write_zeroes(struct mddev *mddev, struct bio *bio) { if (bio_op(bio) == REQ_OP_WRITE_ZEROES && !bio->bi_disk->queue->limits.max_write_zeroes_sectors) mddev->queue->limits.max_write_zeroes_sectors = 0; } struct mdu_array_info_s; struct mdu_disk_info_s; extern int mdp_major; void md_autostart_arrays(int part); int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info); int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info); int do_md_run(struct mddev *mddev); extern const struct block_device_operations md_fops; #endif /* _MD_MD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_STAT_H #define BLK_STAT_H #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/ktime.h> #include <linux/rcupdate.h> #include <linux/timer.h> /** * struct blk_stat_callback - Block statistics callback. * * A &struct blk_stat_callback is associated with a &struct request_queue. While * @timer is active, that queue's request completion latencies are sorted into * buckets by @bucket_fn and added to a per-cpu buffer, @cpu_stat. When the * timer fires, @cpu_stat is flushed to @stat and @timer_fn is invoked. */ struct blk_stat_callback { /* * @list: RCU list of callbacks for a &struct request_queue. */ struct list_head list; /** * @timer: Timer for the next callback invocation. */ struct timer_list timer; /** * @cpu_stat: Per-cpu statistics buckets. */ struct blk_rq_stat __percpu *cpu_stat; /** * @bucket_fn: Given a request, returns which statistics bucket it * should be accounted under. Return -1 for no bucket for this * request. */ int (*bucket_fn)(const struct request *); /** * @buckets: Number of statistics buckets. */ unsigned int buckets; /** * @stat: Array of statistics buckets. */ struct blk_rq_stat *stat; /** * @fn: Callback function. */ void (*timer_fn)(struct blk_stat_callback *); /** * @data: Private pointer for the user. */ void *data; struct rcu_head rcu; }; struct blk_queue_stats *blk_alloc_queue_stats(void); void blk_free_queue_stats(struct blk_queue_stats *); void blk_stat_add(struct request *rq, u64 now); /* record time/size info in request but not add a callback */ void blk_stat_enable_accounting(struct request_queue *q); /** * blk_stat_alloc_callback() - Allocate a block statistics callback. * @timer_fn: Timer callback function. * @bucket_fn: Bucket callback function. * @buckets: Number of statistics buckets. * @data: Value for the @data field of the &struct blk_stat_callback. * * See &struct blk_stat_callback for details on the callback functions. * * Return: &struct blk_stat_callback on success or NULL on ENOMEM. */ struct blk_stat_callback * blk_stat_alloc_callback(void (*timer_fn)(struct blk_stat_callback *), int (*bucket_fn)(const struct request *), unsigned int buckets, void *data); /** * blk_stat_add_callback() - Add a block statistics callback to be run on a * request queue. * @q: The request queue. * @cb: The callback. * * Note that a single &struct blk_stat_callback can only be added to a single * &struct request_queue. */ void blk_stat_add_callback(struct request_queue *q, struct blk_stat_callback *cb); /** * blk_stat_remove_callback() - Remove a block statistics callback from a * request queue. * @q: The request queue. * @cb: The callback. * * When this returns, the callback is not running on any CPUs and will not be * called again unless readded. */ void blk_stat_remove_callback(struct request_queue *q, struct blk_stat_callback *cb); /** * blk_stat_free_callback() - Free a block statistics callback. * @cb: The callback. * * @cb may be NULL, in which case this does nothing. If it is not NULL, @cb must * not be associated with a request queue. I.e., if it was previously added with * blk_stat_add_callback(), it must also have been removed since then with * blk_stat_remove_callback(). */ void blk_stat_free_callback(struct blk_stat_callback *cb); /** * blk_stat_is_active() - Check if a block statistics callback is currently * gathering statistics. * @cb: The callback. */ static inline bool blk_stat_is_active(struct blk_stat_callback *cb) { return timer_pending(&cb->timer); } /** * blk_stat_activate_nsecs() - Gather block statistics during a time window in * nanoseconds. * @cb: The callback. * @nsecs: Number of nanoseconds to gather statistics for. * * The timer callback will be called when the window expires. */ static inline void blk_stat_activate_nsecs(struct blk_stat_callback *cb, u64 nsecs) { mod_timer(&cb->timer, jiffies + nsecs_to_jiffies(nsecs)); } static inline void blk_stat_deactivate(struct blk_stat_callback *cb) { del_timer_sync(&cb->timer); } /** * blk_stat_activate_msecs() - Gather block statistics during a time window in * milliseconds. * @cb: The callback. * @msecs: Number of milliseconds to gather statistics for. * * The timer callback will be called when the window expires. */ static inline void blk_stat_activate_msecs(struct blk_stat_callback *cb, unsigned int msecs) { mod_timer(&cb->timer, jiffies + msecs_to_jiffies(msecs)); } void blk_rq_stat_add(struct blk_rq_stat *, u64); void blk_rq_stat_sum(struct blk_rq_stat *, struct blk_rq_stat *); void blk_rq_stat_init(struct blk_rq_stat *); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * VLAN An implementation of 802.1Q VLAN tagging. * * Authors: Ben Greear <greearb@candelatech.com> */ #ifndef _LINUX_IF_VLAN_H_ #define _LINUX_IF_VLAN_H_ #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <linux/bug.h> #include <uapi/linux/if_vlan.h> #define VLAN_HLEN 4 /* The additional bytes required by VLAN * (in addition to the Ethernet header) */ #define VLAN_ETH_HLEN 18 /* Total octets in header. */ #define VLAN_ETH_ZLEN 64 /* Min. octets in frame sans FCS */ /* * According to 802.3ac, the packet can be 4 bytes longer. --Klika Jan */ #define VLAN_ETH_DATA_LEN 1500 /* Max. octets in payload */ #define VLAN_ETH_FRAME_LEN 1518 /* Max. octets in frame sans FCS */ #define VLAN_MAX_DEPTH 8 /* Max. number of nested VLAN tags parsed */ /* * struct vlan_hdr - vlan header * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_hdr { __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; /** * struct vlan_ethhdr - vlan ethernet header (ethhdr + vlan_hdr) * @h_dest: destination ethernet address * @h_source: source ethernet address * @h_vlan_proto: ethernet protocol * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_ethhdr { unsigned char h_dest[ETH_ALEN]; unsigned char h_source[ETH_ALEN]; __be16 h_vlan_proto; __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; #include <linux/skbuff.h> static inline struct vlan_ethhdr *vlan_eth_hdr(const struct sk_buff *skb) { return (struct vlan_ethhdr *)skb_mac_header(skb); } /* Prefer this version in TX path, instead of * skb_reset_mac_header() + vlan_eth_hdr() */ static inline struct vlan_ethhdr *skb_vlan_eth_hdr(const struct sk_buff *skb) { return (struct vlan_ethhdr *)skb->data; } #define VLAN_PRIO_MASK 0xe000 /* Priority Code Point */ #define VLAN_PRIO_SHIFT 13 #define VLAN_CFI_MASK 0x1000 /* Canonical Format Indicator / Drop Eligible Indicator */ #define VLAN_VID_MASK 0x0fff /* VLAN Identifier */ #define VLAN_N_VID 4096 /* found in socket.c */ extern void vlan_ioctl_set(int (*hook)(struct net *, void __user *)); static inline bool is_vlan_dev(const struct net_device *dev) { return dev->priv_flags & IFF_802_1Q_VLAN; } #define skb_vlan_tag_present(__skb) ((__skb)->vlan_present) #define skb_vlan_tag_get(__skb) ((__skb)->vlan_tci) #define skb_vlan_tag_get_id(__skb) ((__skb)->vlan_tci & VLAN_VID_MASK) #define skb_vlan_tag_get_cfi(__skb) (!!((__skb)->vlan_tci & VLAN_CFI_MASK)) #define skb_vlan_tag_get_prio(__skb) (((__skb)->vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT) static inline int vlan_get_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_CVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_CVLAN_FILTER_DROP_INFO, dev); } static inline int vlan_get_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_SVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_SVLAN_FILTER_DROP_INFO, dev); } /** * struct vlan_pcpu_stats - VLAN percpu rx/tx stats * @rx_packets: number of received packets * @rx_bytes: number of received bytes * @rx_multicast: number of received multicast packets * @tx_packets: number of transmitted packets * @tx_bytes: number of transmitted bytes * @syncp: synchronization point for 64bit counters * @rx_errors: number of rx errors * @tx_dropped: number of tx drops */ struct vlan_pcpu_stats { u64 rx_packets; u64 rx_bytes; u64 rx_multicast; u64 tx_packets; u64 tx_bytes; struct u64_stats_sync syncp; u32 rx_errors; u32 tx_dropped; }; #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) extern struct net_device *__vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id); extern int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg); extern struct net_device *vlan_dev_real_dev(const struct net_device *dev); extern u16 vlan_dev_vlan_id(const struct net_device *dev); extern __be16 vlan_dev_vlan_proto(const struct net_device *dev); /** * struct vlan_priority_tci_mapping - vlan egress priority mappings * @priority: skb priority * @vlan_qos: vlan priority: (skb->priority << 13) & 0xE000 * @next: pointer to next struct */ struct vlan_priority_tci_mapping { u32 priority; u16 vlan_qos; struct vlan_priority_tci_mapping *next; }; struct proc_dir_entry; struct netpoll; /** * struct vlan_dev_priv - VLAN private device data * @nr_ingress_mappings: number of ingress priority mappings * @ingress_priority_map: ingress priority mappings * @nr_egress_mappings: number of egress priority mappings * @egress_priority_map: hash of egress priority mappings * @vlan_proto: VLAN encapsulation protocol * @vlan_id: VLAN identifier * @flags: device flags * @real_dev: underlying netdevice * @real_dev_addr: address of underlying netdevice * @dent: proc dir entry * @vlan_pcpu_stats: ptr to percpu rx stats */ struct vlan_dev_priv { unsigned int nr_ingress_mappings; u32 ingress_priority_map[8]; unsigned int nr_egress_mappings; struct vlan_priority_tci_mapping *egress_priority_map[16]; __be16 vlan_proto; u16 vlan_id; u16 flags; struct net_device *real_dev; unsigned char real_dev_addr[ETH_ALEN]; struct proc_dir_entry *dent; struct vlan_pcpu_stats __percpu *vlan_pcpu_stats; #ifdef CONFIG_NET_POLL_CONTROLLER struct netpoll *netpoll; #endif }; static inline struct vlan_dev_priv *vlan_dev_priv(const struct net_device *dev) { return netdev_priv(dev); } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { struct vlan_priority_tci_mapping *mp; smp_rmb(); /* coupled with smp_wmb() in vlan_dev_set_egress_priority() */ mp = vlan_dev_priv(dev)->egress_priority_map[(skprio & 0xF)]; while (mp) { if (mp->priority == skprio) { return mp->vlan_qos; /* This should already be shifted * to mask correctly with the * VLAN's TCI */ } mp = mp->next; } return 0; } extern bool vlan_do_receive(struct sk_buff **skb); extern int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid); extern void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid); extern int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev); extern void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev); extern bool vlan_uses_dev(const struct net_device *dev); #else static inline struct net_device * __vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id) { return NULL; } static inline int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg) { return 0; } static inline struct net_device *vlan_dev_real_dev(const struct net_device *dev) { BUG(); return NULL; } static inline u16 vlan_dev_vlan_id(const struct net_device *dev) { BUG(); return 0; } static inline __be16 vlan_dev_vlan_proto(const struct net_device *dev) { BUG(); return 0; } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { return 0; } static inline bool vlan_do_receive(struct sk_buff **skb) { return false; } static inline int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid) { return 0; } static inline void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid) { } static inline int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev) { return 0; } static inline void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev) { } static inline bool vlan_uses_dev(const struct net_device *dev) { return false; } #endif /** * eth_type_vlan - check for valid vlan ether type. * @ethertype: ether type to check * * Returns true if the ether type is a vlan ether type. */ static inline bool eth_type_vlan(__be16 ethertype) { switch (ethertype) { case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): return true; default: return false; } } static inline bool vlan_hw_offload_capable(netdev_features_t features, __be16 proto) { if (proto == htons(ETH_P_8021Q) && features & NETIF_F_HW_VLAN_CTAG_TX) return true; if (proto == htons(ETH_P_8021AD) && features & NETIF_F_HW_VLAN_STAG_TX) return true; return false; } /** * __vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { struct vlan_ethhdr *veth; if (skb_cow_head(skb, VLAN_HLEN) < 0) return -ENOMEM; skb_push(skb, VLAN_HLEN); /* Move the mac header sans proto to the beginning of the new header. */ if (likely(mac_len > ETH_TLEN)) memmove(skb->data, skb->data + VLAN_HLEN, mac_len - ETH_TLEN); skb->mac_header -= VLAN_HLEN; veth = (struct vlan_ethhdr *)(skb->data + mac_len - ETH_HLEN); /* first, the ethernet type */ if (likely(mac_len >= ETH_TLEN)) { /* h_vlan_encapsulated_proto should already be populated, and * skb->data has space for h_vlan_proto */ veth->h_vlan_proto = vlan_proto; } else { /* h_vlan_encapsulated_proto should not be populated, and * skb->data has no space for h_vlan_proto */ veth->h_vlan_encapsulated_proto = skb->protocol; } /* now, the TCI */ veth->h_vlan_TCI = htons(vlan_tci); return 0; } /** * __vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { int err; err = __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, mac_len); if (err) { dev_kfree_skb_any(skb); return NULL; } return skb; } /** * vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_tag_set_proto - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *vlan_insert_tag_set_proto(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb = vlan_insert_tag(skb, vlan_proto, vlan_tci); if (skb) skb->protocol = vlan_proto; return skb; } /** * __vlan_hwaccel_clear_tag - clear hardware accelerated VLAN info * @skb: skbuff to clear * * Clears the VLAN information from @skb */ static inline void __vlan_hwaccel_clear_tag(struct sk_buff *skb) { skb->vlan_present = 0; } /** * __vlan_hwaccel_copy_tag - copy hardware accelerated VLAN info from another skb * @dst: skbuff to copy to * @src: skbuff to copy from * * Copies VLAN information from @src to @dst (for branchless code) */ static inline void __vlan_hwaccel_copy_tag(struct sk_buff *dst, const struct sk_buff *src) { dst->vlan_present = src->vlan_present; dst->vlan_proto = src->vlan_proto; dst->vlan_tci = src->vlan_tci; } /* * __vlan_hwaccel_push_inside - pushes vlan tag to the payload * @skb: skbuff to tag * * Pushes the VLAN tag from @skb->vlan_tci inside to the payload. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *__vlan_hwaccel_push_inside(struct sk_buff *skb) { skb = vlan_insert_tag_set_proto(skb, skb->vlan_proto, skb_vlan_tag_get(skb)); if (likely(skb)) __vlan_hwaccel_clear_tag(skb); return skb; } /** * __vlan_hwaccel_put_tag - hardware accelerated VLAN inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Puts the VLAN TCI in @skb->vlan_tci and lets the device do the rest */ static inline void __vlan_hwaccel_put_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb->vlan_proto = vlan_proto; skb->vlan_tci = vlan_tci; skb->vlan_present = 1; } /** * __vlan_get_tag - get the VLAN ID that is part of the payload * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not of VLAN type */ static inline int __vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb); if (!eth_type_vlan(veth->h_vlan_proto)) return -EINVAL; *vlan_tci = ntohs(veth->h_vlan_TCI); return 0; } /** * __vlan_hwaccel_get_tag - get the VLAN ID that is in @skb->cb[] * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if @skb->vlan_tci is not set correctly */ static inline int __vlan_hwaccel_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb_vlan_tag_present(skb)) { *vlan_tci = skb_vlan_tag_get(skb); return 0; } else { *vlan_tci = 0; return -EINVAL; } } /** * vlan_get_tag - get the VLAN ID from the skb * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not VLAN tagged */ static inline int vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX) { return __vlan_hwaccel_get_tag(skb, vlan_tci); } else { return __vlan_get_tag(skb, vlan_tci); } } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * @type: first vlan protocol * @mac_offset: MAC offset * @depth: buffer to store length of eth and vlan tags in bytes * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 __vlan_get_protocol_offset(const struct sk_buff *skb, __be16 type, int mac_offset, int *depth) { unsigned int vlan_depth = skb->mac_len, parse_depth = VLAN_MAX_DEPTH; /* if type is 802.1Q/AD then the header should already be * present at mac_len - VLAN_HLEN (if mac_len > 0), or at * ETH_HLEN otherwise */ if (eth_type_vlan(type)) { if (vlan_depth) { if (WARN_ON(vlan_depth < VLAN_HLEN)) return 0; vlan_depth -= VLAN_HLEN; } else { vlan_depth = ETH_HLEN; } do { struct vlan_hdr vhdr, *vh; vh = skb_header_pointer(skb, mac_offset + vlan_depth, sizeof(vhdr), &vhdr); if (unlikely(!vh || !--parse_depth)) return 0; type = vh->h_vlan_encapsulated_proto; vlan_depth += VLAN_HLEN; } while (eth_type_vlan(type)); } if (depth) *depth = vlan_depth; return type; } static inline __be16 __vlan_get_protocol(const struct sk_buff *skb, __be16 type, int *depth) { return __vlan_get_protocol_offset(skb, type, 0, depth); } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 vlan_get_protocol(const struct sk_buff *skb) { return __vlan_get_protocol(skb, skb->protocol, NULL); } /* This version of __vlan_get_protocol() also pulls mac header in skb->head */ static inline __be16 vlan_get_protocol_and_depth(struct sk_buff *skb, __be16 type, int *depth) { int maclen; type = __vlan_get_protocol(skb, type, &maclen); if (type) { if (!pskb_may_pull(skb, maclen)) type = 0; else if (depth) *depth = maclen; } return type; } /* A getter for the SKB protocol field which will handle VLAN tags consistently * whether VLAN acceleration is enabled or not. */ static inline __be16 skb_protocol(const struct sk_buff *skb, bool skip_vlan) { if (!skip_vlan) /* VLAN acceleration strips the VLAN header from the skb and * moves it to skb->vlan_proto */ return skb_vlan_tag_present(skb) ? skb->vlan_proto : skb->protocol; return vlan_get_protocol(skb); } static inline void vlan_set_encap_proto(struct sk_buff *skb, struct vlan_hdr *vhdr) { __be16 proto; unsigned short *rawp; /* * Was a VLAN packet, grab the encapsulated protocol, which the layer * three protocols care about. */ proto = vhdr->h_vlan_encapsulated_proto; if (eth_proto_is_802_3(proto)) { skb->protocol = proto; return; } rawp = (unsigned short *)(vhdr + 1); if (*rawp == 0xFFFF) /* * This is a magic hack to spot IPX packets. Older Novell * breaks the protocol design and runs IPX over 802.3 without * an 802.2 LLC layer. We look for FFFF which isn't a used * 802.2 SSAP/DSAP. This won't work for fault tolerant netware * but does for the rest. */ skb->protocol = htons(ETH_P_802_3); else /* * Real 802.2 LLC */ skb->protocol = htons(ETH_P_802_2); } /** * skb_vlan_tagged - check if skb is vlan tagged. * @skb: skbuff to query * * Returns true if the skb is tagged, regardless of whether it is hardware * accelerated or not. */ static inline bool skb_vlan_tagged(const struct sk_buff *skb) { if (!skb_vlan_tag_present(skb) && likely(!eth_type_vlan(skb->protocol))) return false; return true; } /** * skb_vlan_tagged_multi - check if skb is vlan tagged with multiple headers. * @skb: skbuff to query * * Returns true if the skb is tagged with multiple vlan headers, regardless * of whether it is hardware accelerated or not. */ static inline bool skb_vlan_tagged_multi(struct sk_buff *skb) { __be16 protocol = skb->protocol; if (!skb_vlan_tag_present(skb)) { struct vlan_ethhdr *veh; if (likely(!eth_type_vlan(protocol))) return false; if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) return false; veh = skb_vlan_eth_hdr(skb); protocol = veh->h_vlan_encapsulated_proto; } if (!eth_type_vlan(protocol)) return false; return true; } /** * vlan_features_check - drop unsafe features for skb with multiple tags. * @skb: skbuff to query * @features: features to be checked * * Returns features without unsafe ones if the skb has multiple tags. */ static inline netdev_features_t vlan_features_check(struct sk_buff *skb, netdev_features_t features) { if (skb_vlan_tagged_multi(skb)) { /* In the case of multi-tagged packets, use a direct mask * instead of using netdev_interesect_features(), to make * sure that only devices supporting NETIF_F_HW_CSUM will * have checksum offloading support. */ features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | NETIF_F_FRAGLIST | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; } return features; } /** * compare_vlan_header - Compare two vlan headers * @h1: Pointer to vlan header * @h2: Pointer to vlan header * * Compare two vlan headers, returns 0 if equal. * * Please note that alignment of h1 & h2 are only guaranteed to be 16 bits. */ static inline unsigned long compare_vlan_header(const struct vlan_hdr *h1, const struct vlan_hdr *h2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return *(u32 *)h1 ^ *(u32 *)h2; #else return ((__force u32)h1->h_vlan_TCI ^ (__force u32)h2->h_vlan_TCI) | ((__force u32)h1->h_vlan_encapsulated_proto ^ (__force u32)h2->h_vlan_encapsulated_proto); #endif } #endif /* !(_LINUX_IF_VLAN_H_) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 /* SPDX-License-Identifier: GPL-2.0 */ /* * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). * * (C) SGI 2006, Christoph Lameter * Cleaned up and restructured to ease the addition of alternative * implementations of SLAB allocators. * (C) Linux Foundation 2008-2013 * Unified interface for all slab allocators */ #ifndef _LINUX_SLAB_H #define _LINUX_SLAB_H #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/percpu-refcount.h> /* * Flags to pass to kmem_cache_create(). * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. */ /* DEBUG: Perform (expensive) checks on alloc/free */ #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) /* DEBUG: Red zone objs in a cache */ #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) /* DEBUG: Poison objects */ #define SLAB_POISON ((slab_flags_t __force)0x00000800U) /* Align objs on cache lines */ #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) /* Use GFP_DMA memory */ #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) /* Use GFP_DMA32 memory */ #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) /* DEBUG: Store the last owner for bug hunting */ #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) /* Panic if kmem_cache_create() fails */ #define SLAB_PANIC ((slab_flags_t __force)0x00040000U) /* * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! * * This delays freeing the SLAB page by a grace period, it does _NOT_ * delay object freeing. This means that if you do kmem_cache_free() * that memory location is free to be reused at any time. Thus it may * be possible to see another object there in the same RCU grace period. * * This feature only ensures the memory location backing the object * stays valid, the trick to using this is relying on an independent * object validation pass. Something like: * * rcu_read_lock() * again: * obj = lockless_lookup(key); * if (obj) { * if (!try_get_ref(obj)) // might fail for free objects * goto again; * * if (obj->key != key) { // not the object we expected * put_ref(obj); * goto again; * } * } * rcu_read_unlock(); * * This is useful if we need to approach a kernel structure obliquely, * from its address obtained without the usual locking. We can lock * the structure to stabilize it and check it's still at the given address, * only if we can be sure that the memory has not been meanwhile reused * for some other kind of object (which our subsystem's lock might corrupt). * * rcu_read_lock before reading the address, then rcu_read_unlock after * taking the spinlock within the structure expected at that address. * * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. */ /* Defer freeing slabs to RCU */ #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) /* Spread some memory over cpuset */ #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) /* Trace allocations and frees */ #define SLAB_TRACE ((slab_flags_t __force)0x00200000U) /* Flag to prevent checks on free */ #ifdef CONFIG_DEBUG_OBJECTS # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) #else # define SLAB_DEBUG_OBJECTS 0 #endif /* Avoid kmemleak tracing */ #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) /* Fault injection mark */ #ifdef CONFIG_FAILSLAB # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) #else # define SLAB_FAILSLAB 0 #endif /* Account to memcg */ #ifdef CONFIG_MEMCG_KMEM # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) #else # define SLAB_ACCOUNT 0 #endif #ifdef CONFIG_KASAN #define SLAB_KASAN ((slab_flags_t __force)0x08000000U) #else #define SLAB_KASAN 0 #endif /* The following flags affect the page allocator grouping pages by mobility */ /* Objects are reclaimable */ #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ /* Slab deactivation flag */ #define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U) /* * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. * * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. * * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. * Both make kfree a no-op. */ #define ZERO_SIZE_PTR ((void *)16) #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ (unsigned long)ZERO_SIZE_PTR) #include <linux/kasan.h> struct mem_cgroup; /* * struct kmem_cache related prototypes */ void __init kmem_cache_init(void); bool slab_is_available(void); extern bool usercopy_fallback; struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); struct kmem_cache *kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)); void kmem_cache_destroy(struct kmem_cache *); int kmem_cache_shrink(struct kmem_cache *); /* * Please use this macro to create slab caches. Simply specify the * name of the structure and maybe some flags that are listed above. * * The alignment of the struct determines object alignment. If you * f.e. add ____cacheline_aligned_in_smp to the struct declaration * then the objects will be properly aligned in SMP configurations. */ #define KMEM_CACHE(__struct, __flags) \ kmem_cache_create(#__struct, sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), NULL) /* * To whitelist a single field for copying to/from usercopy, use this * macro instead for KMEM_CACHE() above. */ #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ kmem_cache_create_usercopy(#__struct, \ sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), \ offsetof(struct __struct, __field), \ sizeof_field(struct __struct, __field), NULL) /* * Common kmalloc functions provided by all allocators */ void * __must_check krealloc(const void *, size_t, gfp_t); void kfree(const void *); void kfree_sensitive(const void *); size_t __ksize(const void *); size_t ksize(const void *); #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user); #else static inline void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user) { } #endif /* * Some archs want to perform DMA into kmalloc caches and need a guaranteed * alignment larger than the alignment of a 64-bit integer. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. */ #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) #else #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) #endif /* * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. * Intended for arches that get misalignment faults even for 64 bit integer * aligned buffers. */ #ifndef ARCH_SLAB_MINALIGN #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) #endif /* * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN * aligned pointers. */ #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) #define __assume_page_alignment __assume_aligned(PAGE_SIZE) /* * Kmalloc array related definitions */ #ifdef CONFIG_SLAB /* * The largest kmalloc size supported by the SLAB allocators is * 32 megabyte (2^25) or the maximum allocatable page order if that is * less than 32 MB. * * WARNING: Its not easy to increase this value since the allocators have * to do various tricks to work around compiler limitations in order to * ensure proper constant folding. */ #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ (MAX_ORDER + PAGE_SHIFT - 1) : 25) #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 5 #endif #endif #ifdef CONFIG_SLUB /* * SLUB directly allocates requests fitting in to an order-1 page * (PAGE_SIZE*2). Larger requests are passed to the page allocator. */ #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif #ifdef CONFIG_SLOB /* * SLOB passes all requests larger than one page to the page allocator. * No kmalloc array is necessary since objects of different sizes can * be allocated from the same page. */ #define KMALLOC_SHIFT_HIGH PAGE_SHIFT #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif /* Maximum allocatable size */ #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) /* Maximum size for which we actually use a slab cache */ #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) /* Maximum order allocatable via the slab allocator */ #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) /* * Kmalloc subsystem. */ #ifndef KMALLOC_MIN_SIZE #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) #endif /* * This restriction comes from byte sized index implementation. * Page size is normally 2^12 bytes and, in this case, if we want to use * byte sized index which can represent 2^8 entries, the size of the object * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. * If minimum size of kmalloc is less than 16, we use it as minimum object * size and give up to use byte sized index. */ #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ (KMALLOC_MIN_SIZE) : 16) /* * Whenever changing this, take care of that kmalloc_type() and * create_kmalloc_caches() still work as intended. */ enum kmalloc_cache_type { KMALLOC_NORMAL = 0, KMALLOC_RECLAIM, #ifdef CONFIG_ZONE_DMA KMALLOC_DMA, #endif NR_KMALLOC_TYPES }; #ifndef CONFIG_SLOB extern struct kmem_cache * kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) { #ifdef CONFIG_ZONE_DMA /* * The most common case is KMALLOC_NORMAL, so test for it * with a single branch for both flags. */ if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0)) return KMALLOC_NORMAL; /* * At least one of the flags has to be set. If both are, __GFP_DMA * is more important. */ return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM; #else return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL; #endif } /* * Figure out which kmalloc slab an allocation of a certain size * belongs to. * 0 = zero alloc * 1 = 65 .. 96 bytes * 2 = 129 .. 192 bytes * n = 2^(n-1)+1 .. 2^n */ static __always_inline unsigned int kmalloc_index(size_t size) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (size <= 4 * 1024 * 1024) return 22; if (size <= 8 * 1024 * 1024) return 23; if (size <= 16 * 1024 * 1024) return 24; if (size <= 32 * 1024 * 1024) return 25; if (size <= 64 * 1024 * 1024) return 26; BUG(); /* Will never be reached. Needed because the compiler may complain */ return -1; } #endif /* !CONFIG_SLOB */ void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; void kmem_cache_free(struct kmem_cache *, void *); /* * Bulk allocation and freeing operations. These are accelerated in an * allocator specific way to avoid taking locks repeatedly or building * metadata structures unnecessarily. * * Note that interrupts must be enabled when calling these functions. */ void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); /* * Caller must not use kfree_bulk() on memory not originally allocated * by kmalloc(), because the SLOB allocator cannot handle this. */ static __always_inline void kfree_bulk(size_t size, void **p) { kmem_cache_free_bulk(NULL, size, p); } #ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; #else static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) { return __kmalloc(size, flags); } static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) { return kmem_cache_alloc(s, flags); } #endif #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; #ifdef CONFIG_NUMA extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) __assume_slab_alignment __malloc; #else static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_trace(s, gfpflags, size); } #endif /* CONFIG_NUMA */ #else /* CONFIG_TRACING */ static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) { void *ret = kmem_cache_alloc(s, flags); ret = kasan_kmalloc(s, ret, size, flags); return ret; } static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { void *ret = kmem_cache_alloc_node(s, gfpflags, node); ret = kasan_kmalloc(s, ret, size, gfpflags); return ret; } #endif /* CONFIG_TRACING */ extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #ifdef CONFIG_TRACING extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #else static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); } #endif static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); } /** * kmalloc - allocate memory * @size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * kmalloc is the normal method of allocating memory * for objects smaller than page size in the kernel. * * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN * bytes. For @size of power of two bytes, the alignment is also guaranteed * to be at least to the size. * * The @flags argument may be one of the GFP flags defined at * include/linux/gfp.h and described at * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` * * The recommended usage of the @flags is described at * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` * * Below is a brief outline of the most useful GFP flags * * %GFP_KERNEL * Allocate normal kernel ram. May sleep. * * %GFP_NOWAIT * Allocation will not sleep. * * %GFP_ATOMIC * Allocation will not sleep. May use emergency pools. * * %GFP_HIGHUSER * Allocate memory from high memory on behalf of user. * * Also it is possible to set different flags by OR'ing * in one or more of the following additional @flags: * * %__GFP_HIGH * This allocation has high priority and may use emergency pools. * * %__GFP_NOFAIL * Indicate that this allocation is in no way allowed to fail * (think twice before using). * * %__GFP_NORETRY * If memory is not immediately available, * then give up at once. * * %__GFP_NOWARN * If allocation fails, don't issue any warnings. * * %__GFP_RETRY_MAYFAIL * Try really hard to succeed the allocation but fail * eventually. */ static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { #ifndef CONFIG_SLOB unsigned int index; #endif if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); #ifndef CONFIG_SLOB index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace( kmalloc_caches[kmalloc_type(flags)][index], flags, size); #endif } return __kmalloc(size, flags); } static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { #ifndef CONFIG_SLOB if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE) { unsigned int i = kmalloc_index(size); if (!i) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace( kmalloc_caches[kmalloc_type(flags)][i], flags, node, size); } #endif return __kmalloc_node(size, flags, node); } /** * kmalloc_array - allocate memory for an array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc(bytes, flags); return __kmalloc(bytes, flags); } /** * kcalloc - allocate memory for an array. The memory is set to zero. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kcalloc(size_t n, size_t size, gfp_t flags) { return kmalloc_array(n, size, flags | __GFP_ZERO); } /* * kmalloc_track_caller is a special version of kmalloc that records the * calling function of the routine calling it for slab leak tracking instead * of just the calling function (confusing, eh?). * It's useful when the call to kmalloc comes from a widely-used standard * allocator where we care about the real place the memory allocation * request comes from. */ extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); #define kmalloc_track_caller(size, flags) \ __kmalloc_track_caller(size, flags, _RET_IP_) static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, int node) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc_node(bytes, flags, node); return __kmalloc_node(bytes, flags, node); } static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) { return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); } #ifdef CONFIG_NUMA extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); #define kmalloc_node_track_caller(size, flags, node) \ __kmalloc_node_track_caller(size, flags, node, \ _RET_IP_) #else /* CONFIG_NUMA */ #define kmalloc_node_track_caller(size, flags, node) \ kmalloc_track_caller(size, flags) #endif /* CONFIG_NUMA */ /* * Shortcuts */ static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) { return kmem_cache_alloc(k, flags | __GFP_ZERO); } /** * kzalloc - allocate memory. The memory is set to zero. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kzalloc(size_t size, gfp_t flags) { return kmalloc(size, flags | __GFP_ZERO); } /** * kzalloc_node - allocate zeroed memory from a particular memory node. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). * @node: memory node from which to allocate */ static inline void *kzalloc_node(size_t size, gfp_t flags, int node) { return kmalloc_node(size, flags | __GFP_ZERO, node); } unsigned int kmem_cache_size(struct kmem_cache *s); void __init kmem_cache_init_late(void); #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) int slab_prepare_cpu(unsigned int cpu); int slab_dead_cpu(unsigned int cpu); #else #define slab_prepare_cpu NULL #define slab_dead_cpu NULL #endif #endif /* _LINUX_SLAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Driver for 8250/16550-type serial ports * * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. * * Copyright (C) 2001 Russell King. */ #include <linux/serial_8250.h> #include <linux/serial_reg.h> #include <linux/dmaengine.h> #include "../serial_mctrl_gpio.h" struct uart_8250_dma { int (*tx_dma)(struct uart_8250_port *p); int (*rx_dma)(struct uart_8250_port *p); /* Filter function */ dma_filter_fn fn; /* Parameter to the filter function */ void *rx_param; void *tx_param; struct dma_slave_config rxconf; struct dma_slave_config txconf; struct dma_chan *rxchan; struct dma_chan *txchan; /* Device address base for DMA operations */ phys_addr_t rx_dma_addr; phys_addr_t tx_dma_addr; /* DMA address of the buffer in memory */ dma_addr_t rx_addr; dma_addr_t tx_addr; dma_cookie_t rx_cookie; dma_cookie_t tx_cookie; void *rx_buf; size_t rx_size; size_t tx_size; unsigned char tx_running; unsigned char tx_err; unsigned char rx_running; }; struct old_serial_port { unsigned int uart; unsigned int baud_base; unsigned int port; unsigned int irq; upf_t flags; unsigned char io_type; unsigned char __iomem *iomem_base; unsigned short iomem_reg_shift; }; struct serial8250_config { const char *name; unsigned short fifo_size; unsigned short tx_loadsz; unsigned char fcr; unsigned char rxtrig_bytes[UART_FCR_R_TRIG_MAX_STATE]; unsigned int flags; }; #define UART_CAP_FIFO (1 << 8) /* UART has FIFO */ #define UART_CAP_EFR (1 << 9) /* UART has EFR */ #define UART_CAP_SLEEP (1 << 10) /* UART has IER sleep */ #define UART_CAP_AFE (1 << 11) /* MCR-based hw flow control */ #define UART_CAP_UUE (1 << 12) /* UART needs IER bit 6 set (Xscale) */ #define UART_CAP_RTOIE (1 << 13) /* UART needs IER bit 4 set (Xscale, Tegra) */ #define UART_CAP_HFIFO (1 << 14) /* UART has a "hidden" FIFO */ #define UART_CAP_RPM (1 << 15) /* Runtime PM is active while idle */ #define UART_CAP_IRDA (1 << 16) /* UART supports IrDA line discipline */ #define UART_CAP_MINI (1 << 17) /* Mini UART on BCM283X family lacks: * STOP PARITY EPAR SPAR WLEN5 WLEN6 */ #define UART_BUG_QUOT (1 << 0) /* UART has buggy quot LSB */ #define UART_BUG_TXEN (1 << 1) /* UART has buggy TX IIR status */ #define UART_BUG_NOMSR (1 << 2) /* UART has buggy MSR status bits (Au1x00) */ #define UART_BUG_THRE (1 << 3) /* UART has buggy THRE reassertion */ #define UART_BUG_TXRACE (1 << 5) /* UART Tx fails to set remote DR */ #ifdef CONFIG_SERIAL_8250_SHARE_IRQ #define SERIAL8250_SHARE_IRQS 1 #else #define SERIAL8250_SHARE_IRQS 0 #endif #define SERIAL8250_PORT_FLAGS(_base, _irq, _flags) \ { \ .iobase = _base, \ .irq = _irq, \ .uartclk = 1843200, \ .iotype = UPIO_PORT, \ .flags = UPF_BOOT_AUTOCONF | (_flags), \ } #define SERIAL8250_PORT(_base, _irq) SERIAL8250_PORT_FLAGS(_base, _irq, 0) static inline int serial_in(struct uart_8250_port *up, int offset) { return up->port.serial_in(&up->port, offset); } static inline void serial_out(struct uart_8250_port *up, int offset, int value) { up->port.serial_out(&up->port, offset, value); } /* * For the 16C950 */ static void serial_icr_write(struct uart_8250_port *up, int offset, int value) { serial_out(up, UART_SCR, offset); serial_out(up, UART_ICR, value); } static unsigned int __maybe_unused serial_icr_read(struct uart_8250_port *up, int offset) { unsigned int value; serial_icr_write(up, UART_ACR, up->acr | UART_ACR_ICRRD); serial_out(up, UART_SCR, offset); value = serial_in(up, UART_ICR); serial_icr_write(up, UART_ACR, up->acr); return value; } void serial8250_clear_and_reinit_fifos(struct uart_8250_port *p); static inline int serial_dl_read(struct uart_8250_port *up) { return up->dl_read(up); } static inline void serial_dl_write(struct uart_8250_port *up, int value) { up->dl_write(up, value); } static inline bool serial8250_set_THRI(struct uart_8250_port *up) { if (up->ier & UART_IER_THRI) return false; up->ier |= UART_IER_THRI; serial_out(up, UART_IER, up->ier); return true; } static inline bool serial8250_clear_THRI(struct uart_8250_port *up) { if (!(up->ier & UART_IER_THRI)) return false; up->ier &= ~UART_IER_THRI; serial_out(up, UART_IER, up->ier); return true; } struct uart_8250_port *serial8250_get_port(int line); void serial8250_rpm_get(struct uart_8250_port *p); void serial8250_rpm_put(struct uart_8250_port *p); void serial8250_rpm_get_tx(struct uart_8250_port *p); void serial8250_rpm_put_tx(struct uart_8250_port *p); int serial8250_em485_config(struct uart_port *port, struct serial_rs485 *rs485); void serial8250_em485_start_tx(struct uart_8250_port *p); void serial8250_em485_stop_tx(struct uart_8250_port *p); void serial8250_em485_destroy(struct uart_8250_port *p); /* MCR <-> TIOCM conversion */ static inline int serial8250_TIOCM_to_MCR(int tiocm) { int mcr = 0; if (tiocm & TIOCM_RTS) mcr |= UART_MCR_RTS; if (tiocm & TIOCM_DTR) mcr |= UART_MCR_DTR; if (tiocm & TIOCM_OUT1) mcr |= UART_MCR_OUT1; if (tiocm & TIOCM_OUT2) mcr |= UART_MCR_OUT2; if (tiocm & TIOCM_LOOP) mcr |= UART_MCR_LOOP; return mcr; } static inline int serial8250_MCR_to_TIOCM(int mcr) { int tiocm = 0; if (mcr & UART_MCR_RTS) tiocm |= TIOCM_RTS; if (mcr & UART_MCR_DTR) tiocm |= TIOCM_DTR; if (mcr & UART_MCR_OUT1) tiocm |= TIOCM_OUT1; if (mcr & UART_MCR_OUT2) tiocm |= TIOCM_OUT2; if (mcr & UART_MCR_LOOP) tiocm |= TIOCM_LOOP; return tiocm; } /* MSR <-> TIOCM conversion */ static inline int serial8250_MSR_to_TIOCM(int msr) { int tiocm = 0; if (msr & UART_MSR_DCD) tiocm |= TIOCM_CAR; if (msr & UART_MSR_RI) tiocm |= TIOCM_RNG; if (msr & UART_MSR_DSR) tiocm |= TIOCM_DSR; if (msr & UART_MSR_CTS) tiocm |= TIOCM_CTS; return tiocm; } static inline void serial8250_out_MCR(struct uart_8250_port *up, int value) { serial_out(up, UART_MCR, value); if (up->gpios) mctrl_gpio_set(up->gpios, serial8250_MCR_to_TIOCM(value)); } static inline int serial8250_in_MCR(struct uart_8250_port *up) { int mctrl; mctrl = serial_in(up, UART_MCR); if (up->gpios) { unsigned int mctrl_gpio = 0; mctrl_gpio = mctrl_gpio_get_outputs(up->gpios, &mctrl_gpio); mctrl |= serial8250_TIOCM_to_MCR(mctrl_gpio); } return mctrl; } #if defined(__alpha__) && !defined(CONFIG_PCI) /* * Digital did something really horribly wrong with the OUT1 and OUT2 * lines on at least some ALPHA's. The failure mode is that if either * is cleared, the machine locks up with endless interrupts. */ #define ALPHA_KLUDGE_MCR (UART_MCR_OUT2 | UART_MCR_OUT1) #else #define ALPHA_KLUDGE_MCR 0 #endif #ifdef CONFIG_SERIAL_8250_PNP int serial8250_pnp_init(void); void serial8250_pnp_exit(void); #else static inline int serial8250_pnp_init(void) { return 0; } static inline void serial8250_pnp_exit(void) { } #endif #ifdef CONFIG_SERIAL_8250_FINTEK int fintek_8250_probe(struct uart_8250_port *uart); #else static inline int fintek_8250_probe(struct uart_8250_port *uart) { return 0; } #endif #ifdef CONFIG_ARCH_OMAP1 static inline int is_omap1_8250(struct uart_8250_port *pt) { int res; switch (pt->port.mapbase) { case OMAP1_UART1_BASE: case OMAP1_UART2_BASE: case OMAP1_UART3_BASE: res = 1; break; default: res = 0; break; } return res; } static inline int is_omap1510_8250(struct uart_8250_port *pt) { if (!cpu_is_omap1510()) return 0; return is_omap1_8250(pt); } #else static inline int is_omap1_8250(struct uart_8250_port *pt) { return 0; } static inline int is_omap1510_8250(struct uart_8250_port *pt) { return 0; } #endif #ifdef CONFIG_SERIAL_8250_DMA extern int serial8250_tx_dma(struct uart_8250_port *); extern void serial8250_tx_dma_flush(struct uart_8250_port *); extern int serial8250_rx_dma(struct uart_8250_port *); extern void serial8250_rx_dma_flush(struct uart_8250_port *); extern int serial8250_request_dma(struct uart_8250_port *); extern void serial8250_release_dma(struct uart_8250_port *); static inline bool serial8250_tx_dma_running(struct uart_8250_port *p) { struct uart_8250_dma *dma = p->dma; return dma && dma->tx_running; } #else static inline int serial8250_tx_dma(struct uart_8250_port *p) { return -1; } static inline void serial8250_tx_dma_flush(struct uart_8250_port *p) { } static inline int serial8250_rx_dma(struct uart_8250_port *p) { return -1; } static inline void serial8250_rx_dma_flush(struct uart_8250_port *p) { } static inline int serial8250_request_dma(struct uart_8250_port *p) { return -1; } static inline void serial8250_release_dma(struct uart_8250_port *p) { } static inline bool serial8250_tx_dma_running(struct uart_8250_port *p) { return false; } #endif static inline int ns16550a_goto_highspeed(struct uart_8250_port *up) { unsigned char status; status = serial_in(up, 0x04); /* EXCR2 */ #define PRESL(x) ((x) & 0x30) if (PRESL(status) == 0x10) { /* already in high speed mode */ return 0; } else { status &= ~0xB0; /* Disable LOCK, mask out PRESL[01] */ status |= 0x10; /* 1.625 divisor for baud_base --> 921600 */ serial_out(up, 0x04, status); } return 1; } static inline int serial_index(struct uart_port *port) { return port->minor - 64; }
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 // SPDX-License-Identifier: GPL-2.0 #include <linux/memblock.h> #include <linux/mmdebug.h> #include <linux/export.h> #include <linux/mm.h> #include <asm/page.h> #include <linux/vmalloc.h> #include "physaddr.h" #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ VIRTUAL_BUG_ON((x > y) || !phys_addr_valid(x)); } return x; } EXPORT_SYMBOL(__phys_addr); unsigned long __phys_addr_symbol(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* only check upper bounds since lower bounds will trigger carry */ VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); return y + phys_base; } EXPORT_SYMBOL(__phys_addr_symbol); #endif bool __virt_addr_valid(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; if (y >= KERNEL_IMAGE_SIZE) return false; } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ if ((x > y) || !phys_addr_valid(x)) return false; } return pfn_valid(x >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #else #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long phys_addr = x - PAGE_OFFSET; /* VMALLOC_* aren't constants */ VIRTUAL_BUG_ON(x < PAGE_OFFSET); VIRTUAL_BUG_ON(__vmalloc_start_set && is_vmalloc_addr((void *) x)); /* max_low_pfn is set early, but not _that_ early */ if (max_low_pfn) { VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn); BUG_ON(slow_virt_to_phys((void *)x) != phys_addr); } return phys_addr; } EXPORT_SYMBOL(__phys_addr); #endif bool __virt_addr_valid(unsigned long x) { if (x < PAGE_OFFSET) return false; if (__vmalloc_start_set && is_vmalloc_addr((void *) x)) return false; if (x >= FIXADDR_START) return false; return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #endif /* CONFIG_X86_64 */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_PREEMPT_H #define __ASM_PREEMPT_H #include <asm/rmwcc.h> #include <asm/percpu.h> #include <linux/thread_info.h> DECLARE_PER_CPU(int, __preempt_count); /* We use the MSB mostly because its available */ #define PREEMPT_NEED_RESCHED 0x80000000 /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. */ #define PREEMPT_ENABLED (0 + PREEMPT_NEED_RESCHED) /* * We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users * that think a non-zero value indicates we cannot preempt. */ static __always_inline int preempt_count(void) { return raw_cpu_read_4(__preempt_count) & ~PREEMPT_NEED_RESCHED; } static __always_inline void preempt_count_set(int pc) { int old, new; do { old = raw_cpu_read_4(__preempt_count); new = (old & PREEMPT_NEED_RESCHED) | (pc & ~PREEMPT_NEED_RESCHED); } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old); } /* * must be macros to avoid header recursion hell */ #define init_task_preempt_count(p) do { } while (0) #define init_idle_preempt_count(p, cpu) do { \ per_cpu(__preempt_count, (cpu)) = PREEMPT_DISABLED; \ } while (0) /* * We fold the NEED_RESCHED bit into the preempt count such that * preempt_enable() can decrement and test for needing to reschedule with a * single instruction. * * We invert the actual bit, so that when the decrement hits 0 we know we both * need to resched (the bit is cleared) and can resched (no preempt count). */ static __always_inline void set_preempt_need_resched(void) { raw_cpu_and_4(__preempt_count, ~PREEMPT_NEED_RESCHED); } static __always_inline void clear_preempt_need_resched(void) { raw_cpu_or_4(__preempt_count, PREEMPT_NEED_RESCHED); } static __always_inline bool test_preempt_need_resched(void) { return !(raw_cpu_read_4(__preempt_count) & PREEMPT_NEED_RESCHED); } /* * The various preempt_count add/sub methods */ static __always_inline void __preempt_count_add(int val) { raw_cpu_add_4(__preempt_count, val); } static __always_inline void __preempt_count_sub(int val) { raw_cpu_add_4(__preempt_count, -val); } /* * Because we keep PREEMPT_NEED_RESCHED set when we do _not_ need to reschedule * a decrement which hits zero means we have no preempt_count and should * reschedule. */ static __always_inline bool __preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPTION extern asmlinkage void preempt_schedule_thunk(void); # define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule(void); extern asmlinkage void preempt_schedule_notrace_thunk(void); # define __preempt_schedule_notrace() \ asm volatile ("call preempt_schedule_notrace_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule_notrace(void); #endif #endif /* __ASM_PREEMPT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 /* SPDX-License-Identifier: GPL-2.0 */ /* * connection tracking expectations. */ #ifndef _NF_CONNTRACK_EXPECT_H #define _NF_CONNTRACK_EXPECT_H #include <linux/refcount.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_zones.h> extern unsigned int nf_ct_expect_hsize; extern unsigned int nf_ct_expect_max; extern struct hlist_head *nf_ct_expect_hash; struct nf_conntrack_expect { /* Conntrack expectation list member */ struct hlist_node lnode; /* Hash member */ struct hlist_node hnode; /* We expect this tuple, with the following mask */ struct nf_conntrack_tuple tuple; struct nf_conntrack_tuple_mask mask; /* Function to call after setup and insertion */ void (*expectfn)(struct nf_conn *new, struct nf_conntrack_expect *this); /* Helper to assign to new connection */ struct nf_conntrack_helper *helper; /* The conntrack of the master connection */ struct nf_conn *master; /* Timer function; deletes the expectation. */ struct timer_list timeout; /* Usage count. */ refcount_t use; /* Flags */ unsigned int flags; /* Expectation class */ unsigned int class; #if IS_ENABLED(CONFIG_NF_NAT) union nf_inet_addr saved_addr; /* This is the original per-proto part, used to map the * expected connection the way the recipient expects. */ union nf_conntrack_man_proto saved_proto; /* Direction relative to the master connection. */ enum ip_conntrack_dir dir; #endif struct rcu_head rcu; }; static inline struct net *nf_ct_exp_net(struct nf_conntrack_expect *exp) { return nf_ct_net(exp->master); } #define NF_CT_EXP_POLICY_NAME_LEN 16 struct nf_conntrack_expect_policy { unsigned int max_expected; unsigned int timeout; char name[NF_CT_EXP_POLICY_NAME_LEN]; }; #define NF_CT_EXPECT_CLASS_DEFAULT 0 #define NF_CT_EXPECT_MAX_CNT 255 /* Allow to reuse expectations with the same tuples from different master * conntracks. */ #define NF_CT_EXP_F_SKIP_MASTER 0x1 int nf_conntrack_expect_pernet_init(struct net *net); void nf_conntrack_expect_pernet_fini(struct net *net); int nf_conntrack_expect_init(void); void nf_conntrack_expect_fini(void); struct nf_conntrack_expect * __nf_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple); struct nf_conntrack_expect * nf_ct_expect_find_get(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple); struct nf_conntrack_expect * nf_ct_find_expectation(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple); void nf_ct_unlink_expect_report(struct nf_conntrack_expect *exp, u32 portid, int report); static inline void nf_ct_unlink_expect(struct nf_conntrack_expect *exp) { nf_ct_unlink_expect_report(exp, 0, 0); } void nf_ct_remove_expectations(struct nf_conn *ct); void nf_ct_unexpect_related(struct nf_conntrack_expect *exp); bool nf_ct_remove_expect(struct nf_conntrack_expect *exp); void nf_ct_expect_iterate_destroy(bool (*iter)(struct nf_conntrack_expect *e, void *data), void *data); void nf_ct_expect_iterate_net(struct net *net, bool (*iter)(struct nf_conntrack_expect *e, void *data), void *data, u32 portid, int report); /* Allocate space for an expectation: this is mandatory before calling nf_ct_expect_related. You will have to call put afterwards. */ struct nf_conntrack_expect *nf_ct_expect_alloc(struct nf_conn *me); void nf_ct_expect_init(struct nf_conntrack_expect *, unsigned int, u_int8_t, const union nf_inet_addr *, const union nf_inet_addr *, u_int8_t, const __be16 *, const __be16 *); void nf_ct_expect_put(struct nf_conntrack_expect *exp); int nf_ct_expect_related_report(struct nf_conntrack_expect *expect, u32 portid, int report, unsigned int flags); static inline int nf_ct_expect_related(struct nf_conntrack_expect *expect, unsigned int flags) { return nf_ct_expect_related_report(expect, 0, 0, flags); } #endif /*_NF_CONNTRACK_EXPECT_H*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_RTNH_H #define __NET_RTNH_H #include <linux/rtnetlink.h> #include <net/netlink.h> static inline int rtnh_ok(const struct rtnexthop *rtnh, int remaining) { return remaining >= (int)sizeof(*rtnh) && rtnh->rtnh_len >= sizeof(*rtnh) && rtnh->rtnh_len <= remaining; } static inline struct rtnexthop *rtnh_next(const struct rtnexthop *rtnh, int *remaining) { int totlen = NLA_ALIGN(rtnh->rtnh_len); *remaining -= totlen; return (struct rtnexthop *) ((char *) rtnh + totlen); } static inline struct nlattr *rtnh_attrs(const struct rtnexthop *rtnh) { return (struct nlattr *) ((char *) rtnh + NLA_ALIGN(sizeof(*rtnh))); } static inline int rtnh_attrlen(const struct rtnexthop *rtnh) { return rtnh->rtnh_len - NLA_ALIGN(sizeof(*rtnh)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IP, TCP, UDP and so on * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ #ifndef _CHECKSUM_H #define _CHECKSUM_H #include <linux/errno.h> #include <asm/types.h> #include <asm/byteorder.h> #include <linux/uaccess.h> #include <asm/checksum.h> #ifndef _HAVE_ARCH_COPY_AND_CSUM_FROM_USER static __always_inline __wsum csum_and_copy_from_user (const void __user *src, void *dst, int len) { if (copy_from_user(dst, src, len)) return 0; return csum_partial(dst, len, ~0U); } #endif #ifndef HAVE_CSUM_COPY_USER static __always_inline __wsum csum_and_copy_to_user (const void *src, void __user *dst, int len) { __wsum sum = csum_partial(src, len, ~0U); if (copy_to_user(dst, src, len) == 0) return sum; return 0; } #endif #ifndef _HAVE_ARCH_CSUM_AND_COPY static __always_inline __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len) { memcpy(dst, src, len); return csum_partial(dst, len, 0); } #endif #ifndef HAVE_ARCH_CSUM_ADD static __always_inline __wsum csum_add(__wsum csum, __wsum addend) { u32 res = (__force u32)csum; res += (__force u32)addend; return (__force __wsum)(res + (res < (__force u32)addend)); } #endif static __always_inline __wsum csum_sub(__wsum csum, __wsum addend) { return csum_add(csum, ~addend); } static __always_inline __sum16 csum16_add(__sum16 csum, __be16 addend) { u16 res = (__force u16)csum; res += (__force u16)addend; return (__force __sum16)(res + (res < (__force u16)addend)); } static __always_inline __sum16 csum16_sub(__sum16 csum, __be16 addend) { return csum16_add(csum, ~addend); } static __always_inline __wsum csum_block_add(__wsum csum, __wsum csum2, int offset) { u32 sum = (__force u32)csum2; /* rotate sum to align it with a 16b boundary */ if (offset & 1) sum = ror32(sum, 8); return csum_add(csum, (__force __wsum)sum); } static __always_inline __wsum csum_block_add_ext(__wsum csum, __wsum csum2, int offset, int len) { return csum_block_add(csum, csum2, offset); } static __always_inline __wsum csum_block_sub(__wsum csum, __wsum csum2, int offset) { return csum_block_add(csum, ~csum2, offset); } static __always_inline __wsum csum_unfold(__sum16 n) { return (__force __wsum)n; } static __always_inline __wsum csum_partial_ext(const void *buff, int len, __wsum sum) { return csum_partial(buff, len, sum); } #define CSUM_MANGLED_0 ((__force __sum16)0xffff) static __always_inline void csum_replace_by_diff(__sum16 *sum, __wsum diff) { *sum = csum_fold(csum_add(diff, ~csum_unfold(*sum))); } static __always_inline void csum_replace4(__sum16 *sum, __be32 from, __be32 to) { __wsum tmp = csum_sub(~csum_unfold(*sum), (__force __wsum)from); *sum = csum_fold(csum_add(tmp, (__force __wsum)to)); } /* Implements RFC 1624 (Incremental Internet Checksum) * 3. Discussion states : * HC' = ~(~HC + ~m + m') * m : old value of a 16bit field * m' : new value of a 16bit field */ static __always_inline void csum_replace2(__sum16 *sum, __be16 old, __be16 new) { *sum = ~csum16_add(csum16_sub(~(*sum), old), new); } static inline void csum_replace(__wsum *csum, __wsum old, __wsum new) { *csum = csum_add(csum_sub(*csum, old), new); } struct sk_buff; void inet_proto_csum_replace4(__sum16 *sum, struct sk_buff *skb, __be32 from, __be32 to, bool pseudohdr); void inet_proto_csum_replace16(__sum16 *sum, struct sk_buff *skb, const __be32 *from, const __be32 *to, bool pseudohdr); void inet_proto_csum_replace_by_diff(__sum16 *sum, struct sk_buff *skb, __wsum diff, bool pseudohdr); static __always_inline void inet_proto_csum_replace2(__sum16 *sum, struct sk_buff *skb, __be16 from, __be16 to, bool pseudohdr) { inet_proto_csum_replace4(sum, skb, (__force __be32)from, (__force __be32)to, pseudohdr); } static __always_inline __wsum remcsum_adjust(void *ptr, __wsum csum, int start, int offset) { __sum16 *psum = (__sum16 *)(ptr + offset); __wsum delta; /* Subtract out checksum up to start */ csum = csum_sub(csum, csum_partial(ptr, start, 0)); /* Set derived checksum in packet */ delta = csum_sub((__force __wsum)csum_fold(csum), (__force __wsum)*psum); *psum = csum_fold(csum); return delta; } static __always_inline void remcsum_unadjust(__sum16 *psum, __wsum delta) { *psum = csum_fold(csum_sub(delta, (__force __wsum)*psum)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_PKT_CLS_H #define __NET_PKT_CLS_H #include <linux/pkt_cls.h> #include <linux/workqueue.h> #include <net/sch_generic.h> #include <net/act_api.h> #include <net/net_namespace.h> /* TC action not accessible from user space */ #define TC_ACT_CONSUMED (TC_ACT_VALUE_MAX + 1) /* Basic packet classifier frontend definitions. */ struct tcf_walker { int stop; int skip; int count; bool nonempty; unsigned long cookie; int (*fn)(struct tcf_proto *, void *node, struct tcf_walker *); }; int register_tcf_proto_ops(struct tcf_proto_ops *ops); int unregister_tcf_proto_ops(struct tcf_proto_ops *ops); struct tcf_block_ext_info { enum flow_block_binder_type binder_type; tcf_chain_head_change_t *chain_head_change; void *chain_head_change_priv; u32 block_index; }; struct tcf_qevent { struct tcf_block *block; struct tcf_block_ext_info info; struct tcf_proto __rcu *filter_chain; }; struct tcf_block_cb; bool tcf_queue_work(struct rcu_work *rwork, work_func_t func); #ifdef CONFIG_NET_CLS struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index); void tcf_chain_put_by_act(struct tcf_chain *chain); struct tcf_chain *tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain); struct tcf_proto *tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp, bool rtnl_held); void tcf_block_netif_keep_dst(struct tcf_block *block); int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack); int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack); void tcf_block_put(struct tcf_block *block); void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei); static inline bool tcf_block_shared(struct tcf_block *block) { return block->index; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return block && block->index; } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { WARN_ON(tcf_block_shared(block)); return block->q; } int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode); #else static inline bool tcf_block_shared(struct tcf_block *block) { return false; } static inline bool tcf_block_non_null_shared(struct tcf_block *block) { return false; } static inline int tcf_block_get(struct tcf_block **p_block, struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q, struct netlink_ext_ack *extack) { return 0; } static inline int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q, struct tcf_block_ext_info *ei, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_block_put(struct tcf_block *block) { } static inline void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q, struct tcf_block_ext_info *ei) { } static inline struct Qdisc *tcf_block_q(struct tcf_block *block) { return NULL; } static inline int tc_setup_cb_block_register(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { return 0; } static inline void tc_setup_cb_block_unregister(struct tcf_block *block, flow_setup_cb_t *cb, void *cb_priv) { } static inline int tcf_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } static inline int tcf_classify_ingress(struct sk_buff *skb, const struct tcf_block *ingress_block, const struct tcf_proto *tp, struct tcf_result *res, bool compat_mode) { return TC_ACT_UNSPEC; } #endif static inline unsigned long __cls_set_class(unsigned long *clp, unsigned long cl) { return xchg(clp, cl); } static inline void __tcf_bind_filter(struct Qdisc *q, struct tcf_result *r, unsigned long base) { unsigned long cl; cl = q->ops->cl_ops->bind_tcf(q, base, r->classid); cl = __cls_set_class(&r->class, cl); if (cl) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_bind_filter(struct tcf_proto *tp, struct tcf_result *r, unsigned long base) { struct Qdisc *q = tp->chain->block->q; /* Check q as it is not set for shared blocks. In that case, * setting class is not supported. */ if (!q) return; sch_tree_lock(q); __tcf_bind_filter(q, r, base); sch_tree_unlock(q); } static inline void __tcf_unbind_filter(struct Qdisc *q, struct tcf_result *r) { unsigned long cl; if ((cl = __cls_set_class(&r->class, 0)) != 0) q->ops->cl_ops->unbind_tcf(q, cl); } static inline void tcf_unbind_filter(struct tcf_proto *tp, struct tcf_result *r) { struct Qdisc *q = tp->chain->block->q; if (!q) return; __tcf_unbind_filter(q, r); } struct tcf_exts { #ifdef CONFIG_NET_CLS_ACT __u32 type; /* for backward compat(TCA_OLD_COMPAT) */ int nr_actions; struct tc_action **actions; struct net *net; #endif /* Map to export classifier specific extension TLV types to the * generic extensions API. Unsupported extensions must be set to 0. */ int action; int police; }; static inline int tcf_exts_init(struct tcf_exts *exts, struct net *net, int action, int police) { #ifdef CONFIG_NET_CLS_ACT exts->type = 0; exts->nr_actions = 0; exts->net = net; exts->actions = kcalloc(TCA_ACT_MAX_PRIO, sizeof(struct tc_action *), GFP_KERNEL); if (!exts->actions) return -ENOMEM; #endif exts->action = action; exts->police = police; return 0; } /* Return false if the netns is being destroyed in cleanup_net(). Callers * need to do cleanup synchronously in this case, otherwise may race with * tc_action_net_exit(). Return true for other cases. */ static inline bool tcf_exts_get_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT exts->net = maybe_get_net(exts->net); return exts->net != NULL; #else return true; #endif } static inline void tcf_exts_put_net(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT if (exts->net) put_net(exts->net); #endif } #ifdef CONFIG_NET_CLS_ACT #define tcf_exts_for_each_action(i, a, exts) \ for (i = 0; i < TCA_ACT_MAX_PRIO && ((a) = (exts)->actions[i]); i++) #else #define tcf_exts_for_each_action(i, a, exts) \ for (; 0; (void)(i), (void)(a), (void)(exts)) #endif static inline void tcf_exts_stats_update(const struct tcf_exts *exts, u64 bytes, u64 packets, u64 drops, u64 lastuse, u8 used_hw_stats, bool used_hw_stats_valid) { #ifdef CONFIG_NET_CLS_ACT int i; preempt_disable(); for (i = 0; i < exts->nr_actions; i++) { struct tc_action *a = exts->actions[i]; tcf_action_stats_update(a, bytes, packets, drops, lastuse, true); a->used_hw_stats = used_hw_stats; a->used_hw_stats_valid = used_hw_stats_valid; } preempt_enable(); #endif } /** * tcf_exts_has_actions - check if at least one action is present * @exts: tc filter extensions handle * * Returns true if at least one action is present. */ static inline bool tcf_exts_has_actions(struct tcf_exts *exts) { #ifdef CONFIG_NET_CLS_ACT return exts->nr_actions; #else return false; #endif } /** * tcf_exts_exec - execute tc filter extensions * @skb: socket buffer * @exts: tc filter extensions handle * @res: desired result * * Executes all configured extensions. Returns TC_ACT_OK on a normal execution, * a negative number if the filter must be considered unmatched or * a positive action code (TC_ACT_*) which must be returned to the * underlying layer. */ static inline int tcf_exts_exec(struct sk_buff *skb, struct tcf_exts *exts, struct tcf_result *res) { #ifdef CONFIG_NET_CLS_ACT return tcf_action_exec(skb, exts->actions, exts->nr_actions, res); #endif return TC_ACT_OK; } int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb, struct nlattr *rate_tlv, struct tcf_exts *exts, bool ovr, bool rtnl_held, struct netlink_ext_ack *extack); void tcf_exts_destroy(struct tcf_exts *exts); void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src); int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_terse_dump(struct sk_buff *skb, struct tcf_exts *exts); int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts); /** * struct tcf_pkt_info - packet information */ struct tcf_pkt_info { unsigned char * ptr; int nexthdr; }; #ifdef CONFIG_NET_EMATCH struct tcf_ematch_ops; /** * struct tcf_ematch - extended match (ematch) * * @matchid: identifier to allow userspace to reidentify a match * @flags: flags specifying attributes and the relation to other matches * @ops: the operations lookup table of the corresponding ematch module * @datalen: length of the ematch specific configuration data * @data: ematch specific data */ struct tcf_ematch { struct tcf_ematch_ops * ops; unsigned long data; unsigned int datalen; u16 matchid; u16 flags; struct net *net; }; static inline int tcf_em_is_container(struct tcf_ematch *em) { return !em->ops; } static inline int tcf_em_is_simple(struct tcf_ematch *em) { return em->flags & TCF_EM_SIMPLE; } static inline int tcf_em_is_inverted(struct tcf_ematch *em) { return em->flags & TCF_EM_INVERT; } static inline int tcf_em_last_match(struct tcf_ematch *em) { return (em->flags & TCF_EM_REL_MASK) == TCF_EM_REL_END; } static inline int tcf_em_early_end(struct tcf_ematch *em, int result) { if (tcf_em_last_match(em)) return 1; if (result == 0 && em->flags & TCF_EM_REL_AND) return 1; if (result != 0 && em->flags & TCF_EM_REL_OR) return 1; return 0; } /** * struct tcf_ematch_tree - ematch tree handle * * @hdr: ematch tree header supplied by userspace * @matches: array of ematches */ struct tcf_ematch_tree { struct tcf_ematch_tree_hdr hdr; struct tcf_ematch * matches; }; /** * struct tcf_ematch_ops - ematch module operations * * @kind: identifier (kind) of this ematch module * @datalen: length of expected configuration data (optional) * @change: called during validation (optional) * @match: called during ematch tree evaluation, must return 1/0 * @destroy: called during destroyage (optional) * @dump: called during dumping process (optional) * @owner: owner, must be set to THIS_MODULE * @link: link to previous/next ematch module (internal use) */ struct tcf_ematch_ops { int kind; int datalen; int (*change)(struct net *net, void *, int, struct tcf_ematch *); int (*match)(struct sk_buff *, struct tcf_ematch *, struct tcf_pkt_info *); void (*destroy)(struct tcf_ematch *); int (*dump)(struct sk_buff *, struct tcf_ematch *); struct module *owner; struct list_head link; }; int tcf_em_register(struct tcf_ematch_ops *); void tcf_em_unregister(struct tcf_ematch_ops *); int tcf_em_tree_validate(struct tcf_proto *, struct nlattr *, struct tcf_ematch_tree *); void tcf_em_tree_destroy(struct tcf_ematch_tree *); int tcf_em_tree_dump(struct sk_buff *, struct tcf_ematch_tree *, int); int __tcf_em_tree_match(struct sk_buff *, struct tcf_ematch_tree *, struct tcf_pkt_info *); /** * tcf_em_tree_match - evaulate an ematch tree * * @skb: socket buffer of the packet in question * @tree: ematch tree to be used for evaluation * @info: packet information examined by classifier * * This function matches @skb against the ematch tree in @tree by going * through all ematches respecting their logic relations returning * as soon as the result is obvious. * * Returns 1 if the ematch tree as-one matches, no ematches are configured * or ematch is not enabled in the kernel, otherwise 0 is returned. */ static inline int tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, struct tcf_pkt_info *info) { if (tree->hdr.nmatches) return __tcf_em_tree_match(skb, tree, info); else return 1; } #define MODULE_ALIAS_TCF_EMATCH(kind) MODULE_ALIAS("ematch-kind-" __stringify(kind)) #else /* CONFIG_NET_EMATCH */ struct tcf_ematch_tree { }; #define tcf_em_tree_validate(tp, tb, t) ((void)(t), 0) #define tcf_em_tree_destroy(t) do { (void)(t); } while(0) #define tcf_em_tree_dump(skb, t, tlv) (0) #define tcf_em_tree_match(skb, t, info) ((void)(info), 1) #endif /* CONFIG_NET_EMATCH */ static inline unsigned char * tcf_get_base_ptr(struct sk_buff *skb, int layer) { switch (layer) { case TCF_LAYER_LINK: return skb_mac_header(skb); case TCF_LAYER_NETWORK: return skb_network_header(skb); case TCF_LAYER_TRANSPORT: return skb_transport_header(skb); } return NULL; } static inline int tcf_valid_offset(const struct sk_buff *skb, const unsigned char *ptr, const int len) { return likely((ptr + len) <= skb_tail_pointer(skb) && ptr >= skb->head && (ptr <= (ptr + len))); } static inline int tcf_change_indev(struct net *net, struct nlattr *indev_tlv, struct netlink_ext_ack *extack) { char indev[IFNAMSIZ]; struct net_device *dev; if (nla_strlcpy(indev, indev_tlv, IFNAMSIZ) >= IFNAMSIZ) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Interface name too long"); return -EINVAL; } dev = __dev_get_by_name(net, indev); if (!dev) { NL_SET_ERR_MSG_ATTR(extack, indev_tlv, "Network device not found"); return -ENODEV; } return dev->ifindex; } static inline bool tcf_match_indev(struct sk_buff *skb, int ifindex) { if (!ifindex) return true; if (!skb->skb_iif) return false; return ifindex == skb->skb_iif; } int tc_setup_flow_action(struct flow_action *flow_action, const struct tcf_exts *exts); void tc_cleanup_flow_action(struct flow_action *flow_action); int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type, void *type_data, bool err_stop, bool rtnl_held); int tc_setup_cb_add(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_replace(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *old_flags, unsigned int *old_in_hw_count, u32 *new_flags, unsigned int *new_in_hw_count, bool rtnl_held); int tc_setup_cb_destroy(struct tcf_block *block, struct tcf_proto *tp, enum tc_setup_type type, void *type_data, bool err_stop, u32 *flags, unsigned int *in_hw_count, bool rtnl_held); int tc_setup_cb_reoffload(struct tcf_block *block, struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, enum tc_setup_type type, void *type_data, void *cb_priv, u32 *flags, unsigned int *in_hw_count); unsigned int tcf_exts_num_actions(struct tcf_exts *exts); #ifdef CONFIG_NET_CLS_ACT int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch); int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack); struct sk_buff *tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret); int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe); #else static inline int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch, enum flow_block_binder_type binder_type, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch) { } static inline int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr, struct netlink_ext_ack *extack) { return 0; } static inline struct sk_buff * tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb, struct sk_buff **to_free, int *ret) { return skb; } static inline int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe) { return 0; } #endif struct tc_cls_u32_knode { struct tcf_exts *exts; struct tcf_result *res; struct tc_u32_sel *sel; u32 handle; u32 val; u32 mask; u32 link_handle; u8 fshift; }; struct tc_cls_u32_hnode { u32 handle; u32 prio; unsigned int divisor; }; enum tc_clsu32_command { TC_CLSU32_NEW_KNODE, TC_CLSU32_REPLACE_KNODE, TC_CLSU32_DELETE_KNODE, TC_CLSU32_NEW_HNODE, TC_CLSU32_REPLACE_HNODE, TC_CLSU32_DELETE_HNODE, }; struct tc_cls_u32_offload { struct flow_cls_common_offload common; /* knode values */ enum tc_clsu32_command command; union { struct tc_cls_u32_knode knode; struct tc_cls_u32_hnode hnode; }; }; static inline bool tc_can_offload(const struct net_device *dev) { return dev->features & NETIF_F_HW_TC; } static inline bool tc_can_offload_extack(const struct net_device *dev, struct netlink_ext_ack *extack) { bool can = tc_can_offload(dev); if (!can) NL_SET_ERR_MSG(extack, "TC offload is disabled on net device"); return can; } static inline bool tc_cls_can_offload_and_chain0(const struct net_device *dev, struct flow_cls_common_offload *common) { if (!tc_can_offload_extack(dev, common->extack)) return false; if (common->chain_index) { NL_SET_ERR_MSG(common->extack, "Driver supports only offload of chain 0"); return false; } return true; } static inline bool tc_skip_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_HW) ? true : false; } static inline bool tc_skip_sw(u32 flags) { return (flags & TCA_CLS_FLAGS_SKIP_SW) ? true : false; } /* SKIP_HW and SKIP_SW are mutually exclusive flags. */ static inline bool tc_flags_valid(u32 flags) { if (flags & ~(TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW | TCA_CLS_FLAGS_VERBOSE)) return false; flags &= TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW; if (!(flags ^ (TCA_CLS_FLAGS_SKIP_HW | TCA_CLS_FLAGS_SKIP_SW))) return false; return true; } static inline bool tc_in_hw(u32 flags) { return (flags & TCA_CLS_FLAGS_IN_HW) ? true : false; } static inline void tc_cls_common_offload_init(struct flow_cls_common_offload *cls_common, const struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { cls_common->chain_index = tp->chain->index; cls_common->protocol = tp->protocol; cls_common->prio = tp->prio >> 16; if (tc_skip_sw(flags) || flags & TCA_CLS_FLAGS_VERBOSE) cls_common->extack = extack; } #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) static inline struct tc_skb_ext *tc_skb_ext_alloc(struct sk_buff *skb) { struct tc_skb_ext *tc_skb_ext = skb_ext_add(skb, TC_SKB_EXT); if (tc_skb_ext) memset(tc_skb_ext, 0, sizeof(*tc_skb_ext)); return tc_skb_ext; } #endif enum tc_matchall_command { TC_CLSMATCHALL_REPLACE, TC_CLSMATCHALL_DESTROY, TC_CLSMATCHALL_STATS, }; struct tc_cls_matchall_offload { struct flow_cls_common_offload common; enum tc_matchall_command command; struct flow_rule *rule; struct flow_stats stats; unsigned long cookie; }; enum tc_clsbpf_command { TC_CLSBPF_OFFLOAD, TC_CLSBPF_STATS, }; struct tc_cls_bpf_offload { struct flow_cls_common_offload common; enum tc_clsbpf_command command; struct tcf_exts *exts; struct bpf_prog *prog; struct bpf_prog *oldprog; const char *name; bool exts_integrated; }; struct tc_mqprio_qopt_offload { /* struct tc_mqprio_qopt must always be the first element */ struct tc_mqprio_qopt qopt; u16 mode; u16 shaper; u32 flags; u64 min_rate[TC_QOPT_MAX_QUEUE]; u64 max_rate[TC_QOPT_MAX_QUEUE]; }; /* This structure holds cookie structure that is passed from user * to the kernel for actions and classifiers */ struct tc_cookie { u8 *data; u32 len; struct rcu_head rcu; }; struct tc_qopt_offload_stats { struct gnet_stats_basic_packed *bstats; struct gnet_stats_queue *qstats; }; enum tc_mq_command { TC_MQ_CREATE, TC_MQ_DESTROY, TC_MQ_STATS, TC_MQ_GRAFT, }; struct tc_mq_opt_offload_graft_params { unsigned long queue; u32 child_handle; }; struct tc_mq_qopt_offload { enum tc_mq_command command; u32 handle; union { struct tc_qopt_offload_stats stats; struct tc_mq_opt_offload_graft_params graft_params; }; }; enum tc_red_command { TC_RED_REPLACE, TC_RED_DESTROY, TC_RED_STATS, TC_RED_XSTATS, TC_RED_GRAFT, }; struct tc_red_qopt_offload_params { u32 min; u32 max; u32 probability; u32 limit; bool is_ecn; bool is_harddrop; bool is_nodrop; struct gnet_stats_queue *qstats; }; struct tc_red_qopt_offload { enum tc_red_command command; u32 handle; u32 parent; union { struct tc_red_qopt_offload_params set; struct tc_qopt_offload_stats stats; struct red_stats *xstats; u32 child_handle; }; }; enum tc_gred_command { TC_GRED_REPLACE, TC_GRED_DESTROY, TC_GRED_STATS, }; struct tc_gred_vq_qopt_offload_params { bool present; u32 limit; u32 prio; u32 min; u32 max; bool is_ecn; bool is_harddrop; u32 probability; /* Only need backlog, see struct tc_prio_qopt_offload_params */ u32 *backlog; }; struct tc_gred_qopt_offload_params { bool grio_on; bool wred_on; unsigned int dp_cnt; unsigned int dp_def; struct gnet_stats_queue *qstats; struct tc_gred_vq_qopt_offload_params tab[MAX_DPs]; }; struct tc_gred_qopt_offload_stats { struct gnet_stats_basic_packed bstats[MAX_DPs]; struct gnet_stats_queue qstats[MAX_DPs]; struct red_stats *xstats[MAX_DPs]; }; struct tc_gred_qopt_offload { enum tc_gred_command command; u32 handle; u32 parent; union { struct tc_gred_qopt_offload_params set; struct tc_gred_qopt_offload_stats stats; }; }; enum tc_prio_command { TC_PRIO_REPLACE, TC_PRIO_DESTROY, TC_PRIO_STATS, TC_PRIO_GRAFT, }; struct tc_prio_qopt_offload_params { int bands; u8 priomap[TC_PRIO_MAX + 1]; /* At the point of un-offloading the Qdisc, the reported backlog and * qlen need to be reduced by the portion that is in HW. */ struct gnet_stats_queue *qstats; }; struct tc_prio_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_prio_qopt_offload { enum tc_prio_command command; u32 handle; u32 parent; union { struct tc_prio_qopt_offload_params replace_params; struct tc_qopt_offload_stats stats; struct tc_prio_qopt_offload_graft_params graft_params; }; }; enum tc_root_command { TC_ROOT_GRAFT, }; struct tc_root_qopt_offload { enum tc_root_command command; u32 handle; bool ingress; }; enum tc_ets_command { TC_ETS_REPLACE, TC_ETS_DESTROY, TC_ETS_STATS, TC_ETS_GRAFT, }; struct tc_ets_qopt_offload_replace_params { unsigned int bands; u8 priomap[TC_PRIO_MAX + 1]; unsigned int quanta[TCQ_ETS_MAX_BANDS]; /* 0 for strict bands. */ unsigned int weights[TCQ_ETS_MAX_BANDS]; struct gnet_stats_queue *qstats; }; struct tc_ets_qopt_offload_graft_params { u8 band; u32 child_handle; }; struct tc_ets_qopt_offload { enum tc_ets_command command; u32 handle; u32 parent; union { struct tc_ets_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; struct tc_ets_qopt_offload_graft_params graft_params; }; }; enum tc_tbf_command { TC_TBF_REPLACE, TC_TBF_DESTROY, TC_TBF_STATS, }; struct tc_tbf_qopt_offload_replace_params { struct psched_ratecfg rate; u32 max_size; struct gnet_stats_queue *qstats; }; struct tc_tbf_qopt_offload { enum tc_tbf_command command; u32 handle; u32 parent; union { struct tc_tbf_qopt_offload_replace_params replace_params; struct tc_qopt_offload_stats stats; }; }; enum tc_fifo_command { TC_FIFO_REPLACE, TC_FIFO_DESTROY, TC_FIFO_STATS, }; struct tc_fifo_qopt_offload { enum tc_fifo_command command; u32 handle; u32 parent; union { struct tc_qopt_offload_stats stats; }; }; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 /* SPDX-License-Identifier: GPL-2.0-only */ /* * mac80211 <-> driver interface * * Copyright 2002-2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2020 Intel Corporation */ #ifndef MAC80211_H #define MAC80211_H #include <linux/bug.h> #include <linux/kernel.h> #include <linux/if_ether.h> #include <linux/skbuff.h> #include <linux/ieee80211.h> #include <net/cfg80211.h> #include <net/codel.h> #include <net/ieee80211_radiotap.h> #include <asm/unaligned.h> /** * DOC: Introduction * * mac80211 is the Linux stack for 802.11 hardware that implements * only partial functionality in hard- or firmware. This document * defines the interface between mac80211 and low-level hardware * drivers. */ /** * DOC: Calling mac80211 from interrupts * * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be * called in hardware interrupt context. The low-level driver must not call any * other functions in hardware interrupt context. If there is a need for such * call, the low-level driver should first ACK the interrupt and perform the * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even * tasklet function. * * NOTE: If the driver opts to use the _irqsafe() functions, it may not also * use the non-IRQ-safe functions! */ /** * DOC: Warning * * If you're reading this document and not the header file itself, it will * be incomplete because not all documentation has been converted yet. */ /** * DOC: Frame format * * As a general rule, when frames are passed between mac80211 and the driver, * they start with the IEEE 802.11 header and include the same octets that are * sent over the air except for the FCS which should be calculated by the * hardware. * * There are, however, various exceptions to this rule for advanced features: * * The first exception is for hardware encryption and decryption offload * where the IV/ICV may or may not be generated in hardware. * * Secondly, when the hardware handles fragmentation, the frame handed to * the driver from mac80211 is the MSDU, not the MPDU. */ /** * DOC: mac80211 workqueue * * mac80211 provides its own workqueue for drivers and internal mac80211 use. * The workqueue is a single threaded workqueue and can only be accessed by * helpers for sanity checking. Drivers must ensure all work added onto the * mac80211 workqueue should be cancelled on the driver stop() callback. * * mac80211 will flushed the workqueue upon interface removal and during * suspend. * * All work performed on the mac80211 workqueue must not acquire the RTNL lock. * */ /** * DOC: mac80211 software tx queueing * * mac80211 provides an optional intermediate queueing implementation designed * to allow the driver to keep hardware queues short and provide some fairness * between different stations/interfaces. * In this model, the driver pulls data frames from the mac80211 queue instead * of letting mac80211 push them via drv_tx(). * Other frames (e.g. control or management) are still pushed using drv_tx(). * * Drivers indicate that they use this model by implementing the .wake_tx_queue * driver operation. * * Intermediate queues (struct ieee80211_txq) are kept per-sta per-tid, with * another per-sta for non-data/non-mgmt and bufferable management frames, and * a single per-vif queue for multicast data frames. * * The driver is expected to initialize its private per-queue data for stations * and interfaces in the .add_interface and .sta_add ops. * * The driver can't access the queue directly. To dequeue a frame from a * txq, it calls ieee80211_tx_dequeue(). Whenever mac80211 adds a new frame to a * queue, it calls the .wake_tx_queue driver op. * * Drivers can optionally delegate responsibility for scheduling queues to * mac80211, to take advantage of airtime fairness accounting. In this case, to * obtain the next queue to pull frames from, the driver calls * ieee80211_next_txq(). The driver is then expected to return the txq using * ieee80211_return_txq(). * * For AP powersave TIM handling, the driver only needs to indicate if it has * buffered packets in the driver specific data structures by calling * ieee80211_sta_set_buffered(). For frames buffered in the ieee80211_txq * struct, mac80211 sets the appropriate TIM PVB bits and calls * .release_buffered_frames(). * In that callback the driver is therefore expected to release its own * buffered frames and afterwards also frames from the ieee80211_txq (obtained * via the usual ieee80211_tx_dequeue). */ struct device; /** * enum ieee80211_max_queues - maximum number of queues * * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues. * @IEEE80211_MAX_QUEUE_MAP: bitmap with maximum queues set */ enum ieee80211_max_queues { IEEE80211_MAX_QUEUES = 16, IEEE80211_MAX_QUEUE_MAP = BIT(IEEE80211_MAX_QUEUES) - 1, }; #define IEEE80211_INVAL_HW_QUEUE 0xff /** * enum ieee80211_ac_numbers - AC numbers as used in mac80211 * @IEEE80211_AC_VO: voice * @IEEE80211_AC_VI: video * @IEEE80211_AC_BE: best effort * @IEEE80211_AC_BK: background */ enum ieee80211_ac_numbers { IEEE80211_AC_VO = 0, IEEE80211_AC_VI = 1, IEEE80211_AC_BE = 2, IEEE80211_AC_BK = 3, }; /** * struct ieee80211_tx_queue_params - transmit queue configuration * * The information provided in this structure is required for QoS * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29. * * @aifs: arbitration interframe space [0..255] * @cw_min: minimum contention window [a value of the form * 2^n-1 in the range 1..32767] * @cw_max: maximum contention window [like @cw_min] * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled * @acm: is mandatory admission control required for the access category * @uapsd: is U-APSD mode enabled for the queue * @mu_edca: is the MU EDCA configured * @mu_edca_param_rec: MU EDCA Parameter Record for HE */ struct ieee80211_tx_queue_params { u16 txop; u16 cw_min; u16 cw_max; u8 aifs; bool acm; bool uapsd; bool mu_edca; struct ieee80211_he_mu_edca_param_ac_rec mu_edca_param_rec; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount; unsigned int dot11RTSFailureCount; unsigned int dot11FCSErrorCount; unsigned int dot11RTSSuccessCount; }; /** * enum ieee80211_chanctx_change - change flag for channel context * @IEEE80211_CHANCTX_CHANGE_WIDTH: The channel width changed * @IEEE80211_CHANCTX_CHANGE_RX_CHAINS: The number of RX chains changed * @IEEE80211_CHANCTX_CHANGE_RADAR: radar detection flag changed * @IEEE80211_CHANCTX_CHANGE_CHANNEL: switched to another operating channel, * this is used only with channel switching with CSA * @IEEE80211_CHANCTX_CHANGE_MIN_WIDTH: The min required channel width changed */ enum ieee80211_chanctx_change { IEEE80211_CHANCTX_CHANGE_WIDTH = BIT(0), IEEE80211_CHANCTX_CHANGE_RX_CHAINS = BIT(1), IEEE80211_CHANCTX_CHANGE_RADAR = BIT(2), IEEE80211_CHANCTX_CHANGE_CHANNEL = BIT(3), IEEE80211_CHANCTX_CHANGE_MIN_WIDTH = BIT(4), }; /** * struct ieee80211_chanctx_conf - channel context that vifs may be tuned to * * This is the driver-visible part. The ieee80211_chanctx * that contains it is visible in mac80211 only. * * @def: the channel definition * @min_def: the minimum channel definition currently required. * @rx_chains_static: The number of RX chains that must always be * active on the channel to receive MIMO transmissions * @rx_chains_dynamic: The number of RX chains that must be enabled * after RTS/CTS handshake to receive SMPS MIMO transmissions; * this will always be >= @rx_chains_static. * @radar_enabled: whether radar detection is enabled on this channel. * @drv_priv: data area for driver use, will always be aligned to * sizeof(void *), size is determined in hw information. */ struct ieee80211_chanctx_conf { struct cfg80211_chan_def def; struct cfg80211_chan_def min_def; u8 rx_chains_static, rx_chains_dynamic; bool radar_enabled; u8 drv_priv[] __aligned(sizeof(void *)); }; /** * enum ieee80211_chanctx_switch_mode - channel context switch mode * @CHANCTX_SWMODE_REASSIGN_VIF: Both old and new contexts already * exist (and will continue to exist), but the virtual interface * needs to be switched from one to the other. * @CHANCTX_SWMODE_SWAP_CONTEXTS: The old context exists but will stop * to exist with this call, the new context doesn't exist but * will be active after this call, the virtual interface switches * from the old to the new (note that the driver may of course * implement this as an on-the-fly chandef switch of the existing * hardware context, but the mac80211 pointer for the old context * will cease to exist and only the new one will later be used * for changes/removal.) */ enum ieee80211_chanctx_switch_mode { CHANCTX_SWMODE_REASSIGN_VIF, CHANCTX_SWMODE_SWAP_CONTEXTS, }; /** * struct ieee80211_vif_chanctx_switch - vif chanctx switch information * * This is structure is used to pass information about a vif that * needs to switch from one chanctx to another. The * &ieee80211_chanctx_switch_mode defines how the switch should be * done. * * @vif: the vif that should be switched from old_ctx to new_ctx * @old_ctx: the old context to which the vif was assigned * @new_ctx: the new context to which the vif must be assigned */ struct ieee80211_vif_chanctx_switch { struct ieee80211_vif *vif; struct ieee80211_chanctx_conf *old_ctx; struct ieee80211_chanctx_conf *new_ctx; }; /** * enum ieee80211_bss_change - BSS change notification flags * * These flags are used with the bss_info_changed() callback * to indicate which BSS parameter changed. * * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated), * also implies a change in the AID. * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed * @BSS_CHANGED_ERP_PREAMBLE: preamble changed * @BSS_CHANGED_ERP_SLOT: slot timing changed * @BSS_CHANGED_HT: 802.11n parameters changed * @BSS_CHANGED_BASIC_RATES: Basic rateset changed * @BSS_CHANGED_BEACON_INT: Beacon interval changed * @BSS_CHANGED_BSSID: BSSID changed, for whatever * reason (IBSS and managed mode) * @BSS_CHANGED_BEACON: Beacon data changed, retrieve * new beacon (beaconing modes) * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be * enabled/disabled (beaconing modes) * @BSS_CHANGED_CQM: Connection quality monitor config changed * @BSS_CHANGED_IBSS: IBSS join status changed * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed. * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note * that it is only ever disabled for station mode. * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface. * @BSS_CHANGED_SSID: SSID changed for this BSS (AP and IBSS mode) * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode) * @BSS_CHANGED_PS: PS changed for this BSS (STA mode) * @BSS_CHANGED_TXPOWER: TX power setting changed for this interface * @BSS_CHANGED_P2P_PS: P2P powersave settings (CTWindow, opportunistic PS) * changed * @BSS_CHANGED_BEACON_INFO: Data from the AP's beacon became available: * currently dtim_period only is under consideration. * @BSS_CHANGED_BANDWIDTH: The bandwidth used by this interface changed, * note that this is only called when it changes after the channel * context had been assigned. * @BSS_CHANGED_OCB: OCB join status changed * @BSS_CHANGED_MU_GROUPS: VHT MU-MIMO group id or user position changed * @BSS_CHANGED_KEEP_ALIVE: keep alive options (idle period or protected * keep alive) changed. * @BSS_CHANGED_MCAST_RATE: Multicast Rate setting changed for this interface * @BSS_CHANGED_FTM_RESPONDER: fine timing measurement request responder * functionality changed for this BSS (AP mode). * @BSS_CHANGED_TWT: TWT status changed * @BSS_CHANGED_HE_OBSS_PD: OBSS Packet Detection status changed. * @BSS_CHANGED_HE_BSS_COLOR: BSS Color has changed * @BSS_CHANGED_FILS_DISCOVERY: FILS discovery status changed. * @BSS_CHANGED_UNSOL_BCAST_PROBE_RESP: Unsolicited broadcast probe response * status changed. * */ enum ieee80211_bss_change { BSS_CHANGED_ASSOC = 1<<0, BSS_CHANGED_ERP_CTS_PROT = 1<<1, BSS_CHANGED_ERP_PREAMBLE = 1<<2, BSS_CHANGED_ERP_SLOT = 1<<3, BSS_CHANGED_HT = 1<<4, BSS_CHANGED_BASIC_RATES = 1<<5, BSS_CHANGED_BEACON_INT = 1<<6, BSS_CHANGED_BSSID = 1<<7, BSS_CHANGED_BEACON = 1<<8, BSS_CHANGED_BEACON_ENABLED = 1<<9, BSS_CHANGED_CQM = 1<<10, BSS_CHANGED_IBSS = 1<<11, BSS_CHANGED_ARP_FILTER = 1<<12, BSS_CHANGED_QOS = 1<<13, BSS_CHANGED_IDLE = 1<<14, BSS_CHANGED_SSID = 1<<15, BSS_CHANGED_AP_PROBE_RESP = 1<<16, BSS_CHANGED_PS = 1<<17, BSS_CHANGED_TXPOWER = 1<<18, BSS_CHANGED_P2P_PS = 1<<19, BSS_CHANGED_BEACON_INFO = 1<<20, BSS_CHANGED_BANDWIDTH = 1<<21, BSS_CHANGED_OCB = 1<<22, BSS_CHANGED_MU_GROUPS = 1<<23, BSS_CHANGED_KEEP_ALIVE = 1<<24, BSS_CHANGED_MCAST_RATE = 1<<25, BSS_CHANGED_FTM_RESPONDER = 1<<26, BSS_CHANGED_TWT = 1<<27, BSS_CHANGED_HE_OBSS_PD = 1<<28, BSS_CHANGED_HE_BSS_COLOR = 1<<29, BSS_CHANGED_FILS_DISCOVERY = 1<<30, BSS_CHANGED_UNSOL_BCAST_PROBE_RESP = 1<<31, /* when adding here, make sure to change ieee80211_reconfig */ }; /* * The maximum number of IPv4 addresses listed for ARP filtering. If the number * of addresses for an interface increase beyond this value, hardware ARP * filtering will be disabled. */ #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4 /** * enum ieee80211_event_type - event to be notified to the low level driver * @RSSI_EVENT: AP's rssi crossed the a threshold set by the driver. * @MLME_EVENT: event related to MLME * @BAR_RX_EVENT: a BAR was received * @BA_FRAME_TIMEOUT: Frames were released from the reordering buffer because * they timed out. This won't be called for each frame released, but only * once each time the timeout triggers. */ enum ieee80211_event_type { RSSI_EVENT, MLME_EVENT, BAR_RX_EVENT, BA_FRAME_TIMEOUT, }; /** * enum ieee80211_rssi_event_data - relevant when event type is %RSSI_EVENT * @RSSI_EVENT_HIGH: AP's rssi went below the threshold set by the driver. * @RSSI_EVENT_LOW: AP's rssi went above the threshold set by the driver. */ enum ieee80211_rssi_event_data { RSSI_EVENT_HIGH, RSSI_EVENT_LOW, }; /** * struct ieee80211_rssi_event - data attached to an %RSSI_EVENT * @data: See &enum ieee80211_rssi_event_data */ struct ieee80211_rssi_event { enum ieee80211_rssi_event_data data; }; /** * enum ieee80211_mlme_event_data - relevant when event type is %MLME_EVENT * @AUTH_EVENT: the MLME operation is authentication * @ASSOC_EVENT: the MLME operation is association * @DEAUTH_RX_EVENT: deauth received.. * @DEAUTH_TX_EVENT: deauth sent. */ enum ieee80211_mlme_event_data { AUTH_EVENT, ASSOC_EVENT, DEAUTH_RX_EVENT, DEAUTH_TX_EVENT, }; /** * enum ieee80211_mlme_event_status - relevant when event type is %MLME_EVENT * @MLME_SUCCESS: the MLME operation completed successfully. * @MLME_DENIED: the MLME operation was denied by the peer. * @MLME_TIMEOUT: the MLME operation timed out. */ enum ieee80211_mlme_event_status { MLME_SUCCESS, MLME_DENIED, MLME_TIMEOUT, }; /** * struct ieee80211_mlme_event - data attached to an %MLME_EVENT * @data: See &enum ieee80211_mlme_event_data * @status: See &enum ieee80211_mlme_event_status * @reason: the reason code if applicable */ struct ieee80211_mlme_event { enum ieee80211_mlme_event_data data; enum ieee80211_mlme_event_status status; u16 reason; }; /** * struct ieee80211_ba_event - data attached for BlockAck related events * @sta: pointer to the &ieee80211_sta to which this event relates * @tid: the tid * @ssn: the starting sequence number (for %BAR_RX_EVENT) */ struct ieee80211_ba_event { struct ieee80211_sta *sta; u16 tid; u16 ssn; }; /** * struct ieee80211_event - event to be sent to the driver * @type: The event itself. See &enum ieee80211_event_type. * @rssi: relevant if &type is %RSSI_EVENT * @mlme: relevant if &type is %AUTH_EVENT * @ba: relevant if &type is %BAR_RX_EVENT or %BA_FRAME_TIMEOUT * @u:union holding the fields above */ struct ieee80211_event { enum ieee80211_event_type type; union { struct ieee80211_rssi_event rssi; struct ieee80211_mlme_event mlme; struct ieee80211_ba_event ba; } u; }; /** * struct ieee80211_mu_group_data - STA's VHT MU-MIMO group data * * This structure describes the group id data of VHT MU-MIMO * * @membership: 64 bits array - a bit is set if station is member of the group * @position: 2 bits per group id indicating the position in the group */ struct ieee80211_mu_group_data { u8 membership[WLAN_MEMBERSHIP_LEN]; u8 position[WLAN_USER_POSITION_LEN]; }; /** * struct ieee80211_ftm_responder_params - FTM responder parameters * * @lci: LCI subelement content * @civicloc: CIVIC location subelement content * @lci_len: LCI data length * @civicloc_len: Civic data length */ struct ieee80211_ftm_responder_params { const u8 *lci; const u8 *civicloc; size_t lci_len; size_t civicloc_len; }; /** * struct ieee80211_fils_discovery - FILS discovery parameters from * IEEE Std 802.11ai-2016, Annex C.3 MIB detail. * * @min_interval: Minimum packet interval in TUs (0 - 10000) * @max_interval: Maximum packet interval in TUs (0 - 10000) */ struct ieee80211_fils_discovery { u32 min_interval; u32 max_interval; }; /** * struct ieee80211_bss_conf - holds the BSS's changing parameters * * This structure keeps information about a BSS (and an association * to that BSS) that can change during the lifetime of the BSS. * * @htc_trig_based_pkt_ext: default PE in 4us units, if BSS supports HE * @multi_sta_back_32bit: supports BA bitmap of 32-bits in Multi-STA BACK * @uora_exists: is the UORA element advertised by AP * @ack_enabled: indicates support to receive a multi-TID that solicits either * ACK, BACK or both * @uora_ocw_range: UORA element's OCW Range field * @frame_time_rts_th: HE duration RTS threshold, in units of 32us * @he_support: does this BSS support HE * @twt_requester: does this BSS support TWT requester (relevant for managed * mode only, set if the AP advertises TWT responder role) * @twt_responder: does this BSS support TWT requester (relevant for managed * mode only, set if the AP advertises TWT responder role) * @twt_protected: does this BSS support protected TWT frames * @assoc: association status * @ibss_joined: indicates whether this station is part of an IBSS * or not * @ibss_creator: indicates if a new IBSS network is being created * @aid: association ID number, valid only when @assoc is true * @use_cts_prot: use CTS protection * @use_short_preamble: use 802.11b short preamble * @use_short_slot: use short slot time (only relevant for ERP) * @dtim_period: num of beacons before the next DTIM, for beaconing, * valid in station mode only if after the driver was notified * with the %BSS_CHANGED_BEACON_INFO flag, will be non-zero then. * @sync_tsf: last beacon's/probe response's TSF timestamp (could be old * as it may have been received during scanning long ago). If the * HW flag %IEEE80211_HW_TIMING_BEACON_ONLY is set, then this can * only come from a beacon, but might not become valid until after * association when a beacon is received (which is notified with the * %BSS_CHANGED_DTIM flag.). See also sync_dtim_count important notice. * @sync_device_ts: the device timestamp corresponding to the sync_tsf, * the driver/device can use this to calculate synchronisation * (see @sync_tsf). See also sync_dtim_count important notice. * @sync_dtim_count: Only valid when %IEEE80211_HW_TIMING_BEACON_ONLY * is requested, see @sync_tsf/@sync_device_ts. * IMPORTANT: These three sync_* parameters would possibly be out of sync * by the time the driver will use them. The synchronized view is currently * guaranteed only in certain callbacks. * @beacon_int: beacon interval * @assoc_capability: capabilities taken from assoc resp * @basic_rates: bitmap of basic rates, each bit stands for an * index into the rate table configured by the driver in * the current band. * @beacon_rate: associated AP's beacon TX rate * @mcast_rate: per-band multicast rate index + 1 (0: disabled) * @bssid: The BSSID for this BSS * @enable_beacon: whether beaconing should be enabled or not * @chandef: Channel definition for this BSS -- the hardware might be * configured a higher bandwidth than this BSS uses, for example. * @mu_group: VHT MU-MIMO group membership data * @ht_operation_mode: HT operation mode like in &struct ieee80211_ht_operation. * This field is only valid when the channel is a wide HT/VHT channel. * Note that with TDLS this can be the case (channel is HT, protection must * be used from this field) even when the BSS association isn't using HT. * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value * implies disabled. As with the cfg80211 callback, a change here should * cause an event to be sent indicating where the current value is in * relation to the newly configured threshold. * @cqm_rssi_low: Connection quality monitor RSSI lower threshold, a zero value * implies disabled. This is an alternative mechanism to the single * threshold event and can't be enabled simultaneously with it. * @cqm_rssi_high: Connection quality monitor RSSI upper threshold. * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The * may filter ARP queries targeted for other addresses than listed here. * The driver must allow ARP queries targeted for all address listed here * to pass through. An empty list implies no ARP queries need to pass. * @arp_addr_cnt: Number of addresses currently on the list. Note that this * may be larger than %IEEE80211_BSS_ARP_ADDR_LIST_LEN (the arp_addr_list * array size), it's up to the driver what to do in that case. * @qos: This is a QoS-enabled BSS. * @idle: This interface is idle. There's also a global idle flag in the * hardware config which may be more appropriate depending on what * your driver/device needs to do. * @ps: power-save mode (STA only). This flag is NOT affected by * offchannel/dynamic_ps operations. * @ssid: The SSID of the current vif. Valid in AP and IBSS mode. * @ssid_len: Length of SSID given in @ssid. * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode. * @txpower: TX power in dBm. INT_MIN means not configured. * @txpower_type: TX power adjustment used to control per packet Transmit * Power Control (TPC) in lower driver for the current vif. In particular * TPC is enabled if value passed in %txpower_type is * NL80211_TX_POWER_LIMITED (allow using less than specified from * userspace), whereas TPC is disabled if %txpower_type is set to * NL80211_TX_POWER_FIXED (use value configured from userspace) * @p2p_noa_attr: P2P NoA attribute for P2P powersave * @allow_p2p_go_ps: indication for AP or P2P GO interface, whether it's allowed * to use P2P PS mechanism or not. AP/P2P GO is not allowed to use P2P PS * if it has associated clients without P2P PS support. * @max_idle_period: the time period during which the station can refrain from * transmitting frames to its associated AP without being disassociated. * In units of 1000 TUs. Zero value indicates that the AP did not include * a (valid) BSS Max Idle Period Element. * @protected_keep_alive: if set, indicates that the station should send an RSN * protected frame to the AP to reset the idle timer at the AP for the * station. * @ftm_responder: whether to enable or disable fine timing measurement FTM * responder functionality. * @ftmr_params: configurable lci/civic parameter when enabling FTM responder. * @nontransmitted: this BSS is a nontransmitted BSS profile * @transmitter_bssid: the address of transmitter AP * @bssid_index: index inside the multiple BSSID set * @bssid_indicator: 2^bssid_indicator is the maximum number of APs in set * @ema_ap: AP supports enhancements of discovery and advertisement of * nontransmitted BSSIDs * @profile_periodicity: the least number of beacon frames need to be received * in order to discover all the nontransmitted BSSIDs in the set. * @he_oper: HE operation information of the AP we are connected to * @he_obss_pd: OBSS Packet Detection parameters. * @he_bss_color: BSS coloring settings, if BSS supports HE * @fils_discovery: FILS discovery configuration * @unsol_bcast_probe_resp_interval: Unsolicited broadcast probe response * interval. * @s1g: BSS is S1G BSS (affects Association Request format). * @beacon_tx_rate: The configured beacon transmit rate that needs to be passed * to driver when rate control is offloaded to firmware. */ struct ieee80211_bss_conf { const u8 *bssid; u8 htc_trig_based_pkt_ext; bool multi_sta_back_32bit; bool uora_exists; bool ack_enabled; u8 uora_ocw_range; u16 frame_time_rts_th; bool he_support; bool twt_requester; bool twt_responder; bool twt_protected; /* association related data */ bool assoc, ibss_joined; bool ibss_creator; u16 aid; /* erp related data */ bool use_cts_prot; bool use_short_preamble; bool use_short_slot; bool enable_beacon; u8 dtim_period; u16 beacon_int; u16 assoc_capability; u64 sync_tsf; u32 sync_device_ts; u8 sync_dtim_count; u32 basic_rates; struct ieee80211_rate *beacon_rate; int mcast_rate[NUM_NL80211_BANDS]; u16 ht_operation_mode; s32 cqm_rssi_thold; u32 cqm_rssi_hyst; s32 cqm_rssi_low; s32 cqm_rssi_high; struct cfg80211_chan_def chandef; struct ieee80211_mu_group_data mu_group; __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN]; int arp_addr_cnt; bool qos; bool idle; bool ps; u8 ssid[IEEE80211_MAX_SSID_LEN]; size_t ssid_len; bool hidden_ssid; int txpower; enum nl80211_tx_power_setting txpower_type; struct ieee80211_p2p_noa_attr p2p_noa_attr; bool allow_p2p_go_ps; u16 max_idle_period; bool protected_keep_alive; bool ftm_responder; struct ieee80211_ftm_responder_params *ftmr_params; /* Multiple BSSID data */ bool nontransmitted; u8 transmitter_bssid[ETH_ALEN]; u8 bssid_index; u8 bssid_indicator; bool ema_ap; u8 profile_periodicity; struct { u32 params; u16 nss_set; } he_oper; struct ieee80211_he_obss_pd he_obss_pd; struct cfg80211_he_bss_color he_bss_color; struct ieee80211_fils_discovery fils_discovery; u32 unsol_bcast_probe_resp_interval; bool s1g; struct cfg80211_bitrate_mask beacon_tx_rate; }; /** * enum mac80211_tx_info_flags - flags to describe transmission information/status * * These flags are used with the @flags member of &ieee80211_tx_info. * * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame. * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence * number to this frame, taking care of not overwriting the fragment * number and increasing the sequence number only when the * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly * assign sequence numbers to QoS-data frames but cannot do so correctly * for non-QoS-data and management frames because beacons need them from * that counter as well and mac80211 cannot guarantee proper sequencing. * If this flag is set, the driver should instruct the hardware to * assign a sequence number to the frame or assign one itself. Cf. IEEE * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for * beacons and always be clear for frames without a sequence number field. * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination * station * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211. * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted * because the destination STA was in powersave mode. Note that to * avoid race conditions, the filter must be set by the hardware or * firmware upon receiving a frame that indicates that the station * went to sleep (must be done on device to filter frames already on * the queue) and may only be unset after mac80211 gives the OK for * that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above), * since only then is it guaranteed that no more frames are in the * hardware queue. * @IEEE80211_TX_STAT_ACK: Frame was acknowledged * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status * is for the whole aggregation. * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned, * so consider using block ack request (BAR). * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be * set by rate control algorithms to indicate probe rate, will * be cleared for fragmented frames (except on the last fragment) * @IEEE80211_TX_INTFL_OFFCHAN_TX_OK: Internal to mac80211. Used to indicate * that a frame can be transmitted while the queues are stopped for * off-channel operation. * @IEEE80211_TX_CTL_HW_80211_ENCAP: This frame uses hardware encapsulation * (header conversion) * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211, * used to indicate that a frame was already retried due to PS * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211, * used to indicate frame should not be encrypted * @IEEE80211_TX_CTL_NO_PS_BUFFER: This frame is a response to a poll * frame (PS-Poll or uAPSD) or a non-bufferable MMPDU and must * be sent although the station is in powersave mode. * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the * transmit function after the current frame, this can be used * by drivers to kick the DMA queue only if unset or when the * queue gets full. * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted * after TX status because the destination was asleep, it must not * be modified again (no seqno assignment, crypto, etc.) * @IEEE80211_TX_INTFL_MLME_CONN_TX: This frame was transmitted by the MLME * code for connection establishment, this indicates that its status * should kick the MLME state machine. * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211 * MLME command (internal to mac80211 to figure out whether to send TX * status to user space) * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this * frame and selects the maximum number of streams that it can use. * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on * the off-channel channel when a remain-on-channel offload is done * in hardware -- normal packets still flow and are expected to be * handled properly by the device. * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP * testing. It will be sent out with incorrect Michael MIC key to allow * TKIP countermeasures to be tested. * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate. * This flag is actually used for management frame especially for P2P * frames not being sent at CCK rate in 2GHz band. * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period, * when its status is reported the service period ends. For frames in * an SP that mac80211 transmits, it is already set; for driver frames * the driver may set this flag. It is also used to do the same for * PS-Poll responses. * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate. * This flag is used to send nullfunc frame at minimum rate when * the nullfunc is used for connection monitoring purpose. * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it * would be fragmented by size (this is optional, only used for * monitor injection). * @IEEE80211_TX_STAT_NOACK_TRANSMITTED: A frame that was marked with * IEEE80211_TX_CTL_NO_ACK has been successfully transmitted without * any errors (like issues specific to the driver/HW). * This flag must not be set for frames that don't request no-ack * behaviour with IEEE80211_TX_CTL_NO_ACK. * * Note: If you have to add new flags to the enumeration, then don't * forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary. */ enum mac80211_tx_info_flags { IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0), IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1), IEEE80211_TX_CTL_NO_ACK = BIT(2), IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3), IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4), IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5), IEEE80211_TX_CTL_AMPDU = BIT(6), IEEE80211_TX_CTL_INJECTED = BIT(7), IEEE80211_TX_STAT_TX_FILTERED = BIT(8), IEEE80211_TX_STAT_ACK = BIT(9), IEEE80211_TX_STAT_AMPDU = BIT(10), IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11), IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12), IEEE80211_TX_INTFL_OFFCHAN_TX_OK = BIT(13), IEEE80211_TX_CTL_HW_80211_ENCAP = BIT(14), IEEE80211_TX_INTFL_RETRIED = BIT(15), IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16), IEEE80211_TX_CTL_NO_PS_BUFFER = BIT(17), IEEE80211_TX_CTL_MORE_FRAMES = BIT(18), IEEE80211_TX_INTFL_RETRANSMISSION = BIT(19), IEEE80211_TX_INTFL_MLME_CONN_TX = BIT(20), IEEE80211_TX_INTFL_NL80211_FRAME_TX = BIT(21), IEEE80211_TX_CTL_LDPC = BIT(22), IEEE80211_TX_CTL_STBC = BIT(23) | BIT(24), IEEE80211_TX_CTL_TX_OFFCHAN = BIT(25), IEEE80211_TX_INTFL_TKIP_MIC_FAILURE = BIT(26), IEEE80211_TX_CTL_NO_CCK_RATE = BIT(27), IEEE80211_TX_STATUS_EOSP = BIT(28), IEEE80211_TX_CTL_USE_MINRATE = BIT(29), IEEE80211_TX_CTL_DONTFRAG = BIT(30), IEEE80211_TX_STAT_NOACK_TRANSMITTED = BIT(31), }; #define IEEE80211_TX_CTL_STBC_SHIFT 23 #define IEEE80211_TX_RC_S1G_MCS IEEE80211_TX_RC_VHT_MCS /** * enum mac80211_tx_control_flags - flags to describe transmit control * * @IEEE80211_TX_CTRL_PORT_CTRL_PROTO: this frame is a port control * protocol frame (e.g. EAP) * @IEEE80211_TX_CTRL_PS_RESPONSE: This frame is a response to a poll * frame (PS-Poll or uAPSD). * @IEEE80211_TX_CTRL_RATE_INJECT: This frame is injected with rate information * @IEEE80211_TX_CTRL_AMSDU: This frame is an A-MSDU frame * @IEEE80211_TX_CTRL_FAST_XMIT: This frame is going through the fast_xmit path * @IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP: This frame skips mesh path lookup * @IEEE80211_TX_INTCFL_NEED_TXPROCESSING: completely internal to mac80211, * used to indicate that a pending frame requires TX processing before * it can be sent out. * @IEEE80211_TX_CTRL_NO_SEQNO: Do not overwrite the sequence number that * has already been assigned to this frame. * * These flags are used in tx_info->control.flags. */ enum mac80211_tx_control_flags { IEEE80211_TX_CTRL_PORT_CTRL_PROTO = BIT(0), IEEE80211_TX_CTRL_PS_RESPONSE = BIT(1), IEEE80211_TX_CTRL_RATE_INJECT = BIT(2), IEEE80211_TX_CTRL_AMSDU = BIT(3), IEEE80211_TX_CTRL_FAST_XMIT = BIT(4), IEEE80211_TX_CTRL_SKIP_MPATH_LOOKUP = BIT(5), IEEE80211_TX_INTCFL_NEED_TXPROCESSING = BIT(6), IEEE80211_TX_CTRL_NO_SEQNO = BIT(7), }; /* * This definition is used as a mask to clear all temporary flags, which are * set by the tx handlers for each transmission attempt by the mac80211 stack. */ #define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK | \ IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT | \ IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU | \ IEEE80211_TX_STAT_TX_FILTERED | IEEE80211_TX_STAT_ACK | \ IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK | \ IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_NO_PS_BUFFER | \ IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC | \ IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP) /** * enum mac80211_rate_control_flags - per-rate flags set by the * Rate Control algorithm. * * These flags are set by the Rate control algorithm for each rate during tx, * in the @flags member of struct ieee80211_tx_rate. * * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate. * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required. * This is set if the current BSS requires ERP protection. * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble. * @IEEE80211_TX_RC_MCS: HT rate. * @IEEE80211_TX_RC_VHT_MCS: VHT MCS rate, in this case the idx field is split * into a higher 4 bits (Nss) and lower 4 bits (MCS number) * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in * Greenfield mode. * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz. * @IEEE80211_TX_RC_80_MHZ_WIDTH: Indicates 80 MHz transmission * @IEEE80211_TX_RC_160_MHZ_WIDTH: Indicates 160 MHz transmission * (80+80 isn't supported yet) * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the * adjacent 20 MHz channels, if the current channel type is * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS. * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate. */ enum mac80211_rate_control_flags { IEEE80211_TX_RC_USE_RTS_CTS = BIT(0), IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1), IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2), /* rate index is an HT/VHT MCS instead of an index */ IEEE80211_TX_RC_MCS = BIT(3), IEEE80211_TX_RC_GREEN_FIELD = BIT(4), IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5), IEEE80211_TX_RC_DUP_DATA = BIT(6), IEEE80211_TX_RC_SHORT_GI = BIT(7), IEEE80211_TX_RC_VHT_MCS = BIT(8), IEEE80211_TX_RC_80_MHZ_WIDTH = BIT(9), IEEE80211_TX_RC_160_MHZ_WIDTH = BIT(10), }; /* there are 40 bytes if you don't need the rateset to be kept */ #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40 /* if you do need the rateset, then you have less space */ #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24 /* maximum number of rate stages */ #define IEEE80211_TX_MAX_RATES 4 /* maximum number of rate table entries */ #define IEEE80211_TX_RATE_TABLE_SIZE 4 /** * struct ieee80211_tx_rate - rate selection/status * * @idx: rate index to attempt to send with * @flags: rate control flags (&enum mac80211_rate_control_flags) * @count: number of tries in this rate before going to the next rate * * A value of -1 for @idx indicates an invalid rate and, if used * in an array of retry rates, that no more rates should be tried. * * When used for transmit status reporting, the driver should * always report the rate along with the flags it used. * * &struct ieee80211_tx_info contains an array of these structs * in the control information, and it will be filled by the rate * control algorithm according to what should be sent. For example, * if this array contains, in the format { <idx>, <count> } the * information:: * * { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 } * * then this means that the frame should be transmitted * up to twice at rate 3, up to twice at rate 2, and up to four * times at rate 1 if it doesn't get acknowledged. Say it gets * acknowledged by the peer after the fifth attempt, the status * information should then contain:: * * { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ... * * since it was transmitted twice at rate 3, twice at rate 2 * and once at rate 1 after which we received an acknowledgement. */ struct ieee80211_tx_rate { s8 idx; u16 count:5, flags:11; } __packed; #define IEEE80211_MAX_TX_RETRY 31 static inline void ieee80211_rate_set_vht(struct ieee80211_tx_rate *rate, u8 mcs, u8 nss) { WARN_ON(mcs & ~0xF); WARN_ON((nss - 1) & ~0x7); rate->idx = ((nss - 1) << 4) | mcs; } static inline u8 ieee80211_rate_get_vht_mcs(const struct ieee80211_tx_rate *rate) { return rate->idx & 0xF; } static inline u8 ieee80211_rate_get_vht_nss(const struct ieee80211_tx_rate *rate) { return (rate->idx >> 4) + 1; } /** * struct ieee80211_tx_info - skb transmit information * * This structure is placed in skb->cb for three uses: * (1) mac80211 TX control - mac80211 tells the driver what to do * (2) driver internal use (if applicable) * (3) TX status information - driver tells mac80211 what happened * * @flags: transmit info flags, defined above * @band: the band to transmit on (use for checking for races) * @hw_queue: HW queue to put the frame on, skb_get_queue_mapping() gives the AC * @ack_frame_id: internal frame ID for TX status, used internally * @tx_time_est: TX time estimate in units of 4us, used internally * @control: union part for control data * @control.rates: TX rates array to try * @control.rts_cts_rate_idx: rate for RTS or CTS * @control.use_rts: use RTS * @control.use_cts_prot: use RTS/CTS * @control.short_preamble: use short preamble (CCK only) * @control.skip_table: skip externally configured rate table * @control.jiffies: timestamp for expiry on powersave clients * @control.vif: virtual interface (may be NULL) * @control.hw_key: key to encrypt with (may be NULL) * @control.flags: control flags, see &enum mac80211_tx_control_flags * @control.enqueue_time: enqueue time (for iTXQs) * @driver_rates: alias to @control.rates to reserve space * @pad: padding * @rate_driver_data: driver use area if driver needs @control.rates * @status: union part for status data * @status.rates: attempted rates * @status.ack_signal: ACK signal * @status.ampdu_ack_len: AMPDU ack length * @status.ampdu_len: AMPDU length * @status.antenna: (legacy, kept only for iwlegacy) * @status.tx_time: airtime consumed for transmission; note this is only * used for WMM AC, not for airtime fairness * @status.is_valid_ack_signal: ACK signal is valid * @status.status_driver_data: driver use area * @ack: union part for pure ACK data * @ack.cookie: cookie for the ACK * @driver_data: array of driver_data pointers * @ampdu_ack_len: number of acked aggregated frames. * relevant only if IEEE80211_TX_STAT_AMPDU was set. * @ampdu_len: number of aggregated frames. * relevant only if IEEE80211_TX_STAT_AMPDU was set. * @ack_signal: signal strength of the ACK frame */ struct ieee80211_tx_info { /* common information */ u32 flags; u32 band:3, ack_frame_id:13, hw_queue:4, tx_time_est:10; /* 2 free bits */ union { struct { union { /* rate control */ struct { struct ieee80211_tx_rate rates[ IEEE80211_TX_MAX_RATES]; s8 rts_cts_rate_idx; u8 use_rts:1; u8 use_cts_prot:1; u8 short_preamble:1; u8 skip_table:1; /* 2 bytes free */ }; /* only needed before rate control */ unsigned long jiffies; }; /* NB: vif can be NULL for injected frames */ struct ieee80211_vif *vif; struct ieee80211_key_conf *hw_key; u32 flags; codel_time_t enqueue_time; } control; struct { u64 cookie; } ack; struct { struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES]; s32 ack_signal; u8 ampdu_ack_len; u8 ampdu_len; u8 antenna; u16 tx_time; bool is_valid_ack_signal; void *status_driver_data[19 / sizeof(void *)]; } status; struct { struct ieee80211_tx_rate driver_rates[ IEEE80211_TX_MAX_RATES]; u8 pad[4]; void *rate_driver_data[ IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)]; }; void *driver_data[ IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)]; }; }; static inline u16 ieee80211_info_set_tx_time_est(struct ieee80211_tx_info *info, u16 tx_time_est) { /* We only have 10 bits in tx_time_est, so store airtime * in increments of 4us and clamp the maximum to 2**12-1 */ info->tx_time_est = min_t(u16, tx_time_est, 4095) >> 2; return info->tx_time_est << 2; } static inline u16 ieee80211_info_get_tx_time_est(struct ieee80211_tx_info *info) { return info->tx_time_est << 2; } /** * struct ieee80211_tx_status - extended tx status info for rate control * * @sta: Station that the packet was transmitted for * @info: Basic tx status information * @skb: Packet skb (can be NULL if not provided by the driver) * @rate: The TX rate that was used when sending the packet * @free_list: list where processed skbs are stored to be free'd by the driver */ struct ieee80211_tx_status { struct ieee80211_sta *sta; struct ieee80211_tx_info *info; struct sk_buff *skb; struct rate_info *rate; struct list_head *free_list; }; /** * struct ieee80211_scan_ies - descriptors for different blocks of IEs * * This structure is used to point to different blocks of IEs in HW scan * and scheduled scan. These blocks contain the IEs passed by userspace * and the ones generated by mac80211. * * @ies: pointers to band specific IEs. * @len: lengths of band_specific IEs. * @common_ies: IEs for all bands (especially vendor specific ones) * @common_ie_len: length of the common_ies */ struct ieee80211_scan_ies { const u8 *ies[NUM_NL80211_BANDS]; size_t len[NUM_NL80211_BANDS]; const u8 *common_ies; size_t common_ie_len; }; static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb) { return (struct ieee80211_tx_info *)skb->cb; } static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb) { return (struct ieee80211_rx_status *)skb->cb; } /** * ieee80211_tx_info_clear_status - clear TX status * * @info: The &struct ieee80211_tx_info to be cleared. * * When the driver passes an skb back to mac80211, it must report * a number of things in TX status. This function clears everything * in the TX status but the rate control information (it does clear * the count since you need to fill that in anyway). * * NOTE: You can only use this function if you do NOT use * info->driver_data! Use info->rate_driver_data * instead if you need only the less space that allows. */ static inline void ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info) { int i; BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != offsetof(struct ieee80211_tx_info, control.rates)); BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != offsetof(struct ieee80211_tx_info, driver_rates)); BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8); /* clear the rate counts */ for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) info->status.rates[i].count = 0; BUILD_BUG_ON( offsetof(struct ieee80211_tx_info, status.ack_signal) != 20); memset(&info->status.ampdu_ack_len, 0, sizeof(struct ieee80211_tx_info) - offsetof(struct ieee80211_tx_info, status.ampdu_ack_len)); } /** * enum mac80211_rx_flags - receive flags * * These flags are used with the @flag member of &struct ieee80211_rx_status. * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame. * Use together with %RX_FLAG_MMIC_STRIPPED. * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware. * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame, * verification has been done by the hardware. * @RX_FLAG_IV_STRIPPED: The IV and ICV are stripped from this frame. * If this flag is set, the stack cannot do any replay detection * hence the driver or hardware will have to do that. * @RX_FLAG_PN_VALIDATED: Currently only valid for CCMP/GCMP frames, this * flag indicates that the PN was verified for replay protection. * Note that this flag is also currently only supported when a frame * is also decrypted (ie. @RX_FLAG_DECRYPTED must be set) * @RX_FLAG_DUP_VALIDATED: The driver should set this flag if it did * de-duplication by itself. * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on * the frame. * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on * the frame. * @RX_FLAG_MACTIME_START: The timestamp passed in the RX status (@mactime * field) is valid and contains the time the first symbol of the MPDU * was received. This is useful in monitor mode and for proper IBSS * merging. * @RX_FLAG_MACTIME_END: The timestamp passed in the RX status (@mactime * field) is valid and contains the time the last symbol of the MPDU * (including FCS) was received. * @RX_FLAG_MACTIME_PLCP_START: The timestamp passed in the RX status (@mactime * field) is valid and contains the time the SYNC preamble was received. * @RX_FLAG_NO_SIGNAL_VAL: The signal strength value is not present. * Valid only for data frames (mainly A-MPDU) * @RX_FLAG_AMPDU_DETAILS: A-MPDU details are known, in particular the reference * number (@ampdu_reference) must be populated and be a distinct number for * each A-MPDU * @RX_FLAG_AMPDU_LAST_KNOWN: last subframe is known, should be set on all * subframes of a single A-MPDU * @RX_FLAG_AMPDU_IS_LAST: this subframe is the last subframe of the A-MPDU * @RX_FLAG_AMPDU_DELIM_CRC_ERROR: A delimiter CRC error has been detected * on this subframe * @RX_FLAG_AMPDU_DELIM_CRC_KNOWN: The delimiter CRC field is known (the CRC * is stored in the @ampdu_delimiter_crc field) * @RX_FLAG_MIC_STRIPPED: The mic was stripped of this packet. Decryption was * done by the hardware * @RX_FLAG_ONLY_MONITOR: Report frame only to monitor interfaces without * processing it in any regular way. * This is useful if drivers offload some frames but still want to report * them for sniffing purposes. * @RX_FLAG_SKIP_MONITOR: Process and report frame to all interfaces except * monitor interfaces. * This is useful if drivers offload some frames but still want to report * them for sniffing purposes. * @RX_FLAG_AMSDU_MORE: Some drivers may prefer to report separate A-MSDU * subframes instead of a one huge frame for performance reasons. * All, but the last MSDU from an A-MSDU should have this flag set. E.g. * if an A-MSDU has 3 frames, the first 2 must have the flag set, while * the 3rd (last) one must not have this flag set. The flag is used to * deal with retransmission/duplication recovery properly since A-MSDU * subframes share the same sequence number. Reported subframes can be * either regular MSDU or singly A-MSDUs. Subframes must not be * interleaved with other frames. * @RX_FLAG_RADIOTAP_VENDOR_DATA: This frame contains vendor-specific * radiotap data in the skb->data (before the frame) as described by * the &struct ieee80211_vendor_radiotap. * @RX_FLAG_ALLOW_SAME_PN: Allow the same PN as same packet before. * This is used for AMSDU subframes which can have the same PN as * the first subframe. * @RX_FLAG_ICV_STRIPPED: The ICV is stripped from this frame. CRC checking must * be done in the hardware. * @RX_FLAG_AMPDU_EOF_BIT: Value of the EOF bit in the A-MPDU delimiter for this * frame * @RX_FLAG_AMPDU_EOF_BIT_KNOWN: The EOF value is known * @RX_FLAG_RADIOTAP_HE: HE radiotap data is present * (&struct ieee80211_radiotap_he, mac80211 will fill in * * - DATA3_DATA_MCS * - DATA3_DATA_DCM * - DATA3_CODING * - DATA5_GI * - DATA5_DATA_BW_RU_ALLOC * - DATA6_NSTS * - DATA3_STBC * * from the RX info data, so leave those zeroed when building this data) * @RX_FLAG_RADIOTAP_HE_MU: HE MU radiotap data is present * (&struct ieee80211_radiotap_he_mu) * @RX_FLAG_RADIOTAP_LSIG: L-SIG radiotap data is present * @RX_FLAG_NO_PSDU: use the frame only for radiotap reporting, with * the "0-length PSDU" field included there. The value for it is * in &struct ieee80211_rx_status. Note that if this value isn't * known the frame shouldn't be reported. */ enum mac80211_rx_flags { RX_FLAG_MMIC_ERROR = BIT(0), RX_FLAG_DECRYPTED = BIT(1), RX_FLAG_MACTIME_PLCP_START = BIT(2), RX_FLAG_MMIC_STRIPPED = BIT(3), RX_FLAG_IV_STRIPPED = BIT(4), RX_FLAG_FAILED_FCS_CRC = BIT(5), RX_FLAG_FAILED_PLCP_CRC = BIT(6), RX_FLAG_MACTIME_START = BIT(7), RX_FLAG_NO_SIGNAL_VAL = BIT(8), RX_FLAG_AMPDU_DETAILS = BIT(9), RX_FLAG_PN_VALIDATED = BIT(10), RX_FLAG_DUP_VALIDATED = BIT(11), RX_FLAG_AMPDU_LAST_KNOWN = BIT(12), RX_FLAG_AMPDU_IS_LAST = BIT(13), RX_FLAG_AMPDU_DELIM_CRC_ERROR = BIT(14), RX_FLAG_AMPDU_DELIM_CRC_KNOWN = BIT(15), RX_FLAG_MACTIME_END = BIT(16), RX_FLAG_ONLY_MONITOR = BIT(17), RX_FLAG_SKIP_MONITOR = BIT(18), RX_FLAG_AMSDU_MORE = BIT(19), RX_FLAG_RADIOTAP_VENDOR_DATA = BIT(20), RX_FLAG_MIC_STRIPPED = BIT(21), RX_FLAG_ALLOW_SAME_PN = BIT(22), RX_FLAG_ICV_STRIPPED = BIT(23), RX_FLAG_AMPDU_EOF_BIT = BIT(24), RX_FLAG_AMPDU_EOF_BIT_KNOWN = BIT(25), RX_FLAG_RADIOTAP_HE = BIT(26), RX_FLAG_RADIOTAP_HE_MU = BIT(27), RX_FLAG_RADIOTAP_LSIG = BIT(28), RX_FLAG_NO_PSDU = BIT(29), }; /** * enum mac80211_rx_encoding_flags - MCS & bandwidth flags * * @RX_ENC_FLAG_SHORTPRE: Short preamble was used for this frame * @RX_ENC_FLAG_SHORT_GI: Short guard interval was used * @RX_ENC_FLAG_HT_GF: This frame was received in a HT-greenfield transmission, * if the driver fills this value it should add * %IEEE80211_RADIOTAP_MCS_HAVE_FMT * to @hw.radiotap_mcs_details to advertise that fact. * @RX_ENC_FLAG_LDPC: LDPC was used * @RX_ENC_FLAG_STBC_MASK: STBC 2 bit bitmask. 1 - Nss=1, 2 - Nss=2, 3 - Nss=3 * @RX_ENC_FLAG_BF: packet was beamformed */ enum mac80211_rx_encoding_flags { RX_ENC_FLAG_SHORTPRE = BIT(0), RX_ENC_FLAG_SHORT_GI = BIT(2), RX_ENC_FLAG_HT_GF = BIT(3), RX_ENC_FLAG_STBC_MASK = BIT(4) | BIT(5), RX_ENC_FLAG_LDPC = BIT(6), RX_ENC_FLAG_BF = BIT(7), }; #define RX_ENC_FLAG_STBC_SHIFT 4 enum mac80211_rx_encoding { RX_ENC_LEGACY = 0, RX_ENC_HT, RX_ENC_VHT, RX_ENC_HE, }; /** * struct ieee80211_rx_status - receive status * * The low-level driver should provide this information (the subset * supported by hardware) to the 802.11 code with each received * frame, in the skb's control buffer (cb). * * @mactime: value in microseconds of the 64-bit Time Synchronization Function * (TSF) timer when the first data symbol (MPDU) arrived at the hardware. * @boottime_ns: CLOCK_BOOTTIME timestamp the frame was received at, this is * needed only for beacons and probe responses that update the scan cache. * @device_timestamp: arbitrary timestamp for the device, mac80211 doesn't use * it but can store it and pass it back to the driver for synchronisation * @band: the active band when this frame was received * @freq: frequency the radio was tuned to when receiving this frame, in MHz * This field must be set for management frames, but isn't strictly needed * for data (other) frames - for those it only affects radiotap reporting. * @freq_offset: @freq has a positive offset of 500Khz. * @signal: signal strength when receiving this frame, either in dBm, in dB or * unspecified depending on the hardware capabilities flags * @IEEE80211_HW_SIGNAL_* * @chains: bitmask of receive chains for which separate signal strength * values were filled. * @chain_signal: per-chain signal strength, in dBm (unlike @signal, doesn't * support dB or unspecified units) * @antenna: antenna used * @rate_idx: index of data rate into band's supported rates or MCS index if * HT or VHT is used (%RX_FLAG_HT/%RX_FLAG_VHT) * @nss: number of streams (VHT and HE only) * @flag: %RX_FLAG_\* * @encoding: &enum mac80211_rx_encoding * @bw: &enum rate_info_bw * @enc_flags: uses bits from &enum mac80211_rx_encoding_flags * @he_ru: HE RU, from &enum nl80211_he_ru_alloc * @he_gi: HE GI, from &enum nl80211_he_gi * @he_dcm: HE DCM value * @rx_flags: internal RX flags for mac80211 * @ampdu_reference: A-MPDU reference number, must be a different value for * each A-MPDU but the same for each subframe within one A-MPDU * @ampdu_delimiter_crc: A-MPDU delimiter CRC * @zero_length_psdu_type: radiotap type of the 0-length PSDU */ struct ieee80211_rx_status { u64 mactime; u64 boottime_ns; u32 device_timestamp; u32 ampdu_reference; u32 flag; u16 freq: 13, freq_offset: 1; u8 enc_flags; u8 encoding:2, bw:3, he_ru:3; u8 he_gi:2, he_dcm:1; u8 rate_idx; u8 nss; u8 rx_flags; u8 band; u8 antenna; s8 signal; u8 chains; s8 chain_signal[IEEE80211_MAX_CHAINS]; u8 ampdu_delimiter_crc; u8 zero_length_psdu_type; }; static inline u32 ieee80211_rx_status_to_khz(struct ieee80211_rx_status *rx_status) { return MHZ_TO_KHZ(rx_status->freq) + (rx_status->freq_offset ? 500 : 0); } /** * struct ieee80211_vendor_radiotap - vendor radiotap data information * @present: presence bitmap for this vendor namespace * (this could be extended in the future if any vendor needs more * bits, the radiotap spec does allow for that) * @align: radiotap vendor namespace alignment. This defines the needed * alignment for the @data field below, not for the vendor namespace * description itself (which has a fixed 2-byte alignment) * Must be a power of two, and be set to at least 1! * @oui: radiotap vendor namespace OUI * @subns: radiotap vendor sub namespace * @len: radiotap vendor sub namespace skip length, if alignment is done * then that's added to this, i.e. this is only the length of the * @data field. * @pad: number of bytes of padding after the @data, this exists so that * the skb data alignment can be preserved even if the data has odd * length * @data: the actual vendor namespace data * * This struct, including the vendor data, goes into the skb->data before * the 802.11 header. It's split up in mac80211 using the align/oui/subns * data. */ struct ieee80211_vendor_radiotap { u32 present; u8 align; u8 oui[3]; u8 subns; u8 pad; u16 len; u8 data[]; } __packed; /** * enum ieee80211_conf_flags - configuration flags * * Flags to define PHY configuration options * * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this * to determine for example whether to calculate timestamps for packets * or not, do not use instead of filter flags! * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only). * This is the power save mode defined by IEEE 802.11-2007 section 11.2, * meaning that the hardware still wakes up for beacons, is able to * transmit frames and receive the possible acknowledgment frames. * Not to be confused with hardware specific wakeup/sleep states, * driver is responsible for that. See the section "Powersave support" * for more. * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set * the driver should be prepared to handle configuration requests but * may turn the device off as much as possible. Typically, this flag will * be set when an interface is set UP but not associated or scanning, but * it can also be unset in that case when monitor interfaces are active. * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main * operating channel. */ enum ieee80211_conf_flags { IEEE80211_CONF_MONITOR = (1<<0), IEEE80211_CONF_PS = (1<<1), IEEE80211_CONF_IDLE = (1<<2), IEEE80211_CONF_OFFCHANNEL = (1<<3), }; /** * enum ieee80211_conf_changed - denotes which configuration changed * * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed * @IEEE80211_CONF_CHANGE_POWER: the TX power changed * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed * Note that this is only valid if channel contexts are not used, * otherwise each channel context has the number of chains listed. */ enum ieee80211_conf_changed { IEEE80211_CONF_CHANGE_SMPS = BIT(1), IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2), IEEE80211_CONF_CHANGE_MONITOR = BIT(3), IEEE80211_CONF_CHANGE_PS = BIT(4), IEEE80211_CONF_CHANGE_POWER = BIT(5), IEEE80211_CONF_CHANGE_CHANNEL = BIT(6), IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7), IEEE80211_CONF_CHANGE_IDLE = BIT(8), }; /** * enum ieee80211_smps_mode - spatial multiplexing power save mode * * @IEEE80211_SMPS_AUTOMATIC: automatic * @IEEE80211_SMPS_OFF: off * @IEEE80211_SMPS_STATIC: static * @IEEE80211_SMPS_DYNAMIC: dynamic * @IEEE80211_SMPS_NUM_MODES: internal, don't use */ enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC, IEEE80211_SMPS_OFF, IEEE80211_SMPS_STATIC, IEEE80211_SMPS_DYNAMIC, /* keep last */ IEEE80211_SMPS_NUM_MODES, }; /** * struct ieee80211_conf - configuration of the device * * This struct indicates how the driver shall configure the hardware. * * @flags: configuration flags defined above * * @listen_interval: listen interval in units of beacon interval * @ps_dtim_period: The DTIM period of the AP we're connected to, for use * in power saving. Power saving will not be enabled until a beacon * has been received and the DTIM period is known. * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the * powersave documentation below. This variable is valid only when * the CONF_PS flag is set. * * @power_level: requested transmit power (in dBm), backward compatibility * value only that is set to the minimum of all interfaces * * @chandef: the channel definition to tune to * @radar_enabled: whether radar detection is enabled * * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11, * but actually means the number of transmissions not the number of retries * @short_frame_max_tx_count: Maximum number of transmissions for a "short" * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the * number of transmissions not the number of retries * * @smps_mode: spatial multiplexing powersave mode; note that * %IEEE80211_SMPS_STATIC is used when the device is not * configured for an HT channel. * Note that this is only valid if channel contexts are not used, * otherwise each channel context has the number of chains listed. */ struct ieee80211_conf { u32 flags; int power_level, dynamic_ps_timeout; u16 listen_interval; u8 ps_dtim_period; u8 long_frame_max_tx_count, short_frame_max_tx_count; struct cfg80211_chan_def chandef; bool radar_enabled; enum ieee80211_smps_mode smps_mode; }; /** * struct ieee80211_channel_switch - holds the channel switch data * * The information provided in this structure is required for channel switch * operation. * * @timestamp: value in microseconds of the 64-bit Time Synchronization * Function (TSF) timer when the frame containing the channel switch * announcement was received. This is simply the rx.mactime parameter * the driver passed into mac80211. * @device_timestamp: arbitrary timestamp for the device, this is the * rx.device_timestamp parameter the driver passed to mac80211. * @block_tx: Indicates whether transmission must be blocked before the * scheduled channel switch, as indicated by the AP. * @chandef: the new channel to switch to * @count: the number of TBTT's until the channel switch event * @delay: maximum delay between the time the AP transmitted the last beacon in * current channel and the expected time of the first beacon in the new * channel, expressed in TU. */ struct ieee80211_channel_switch { u64 timestamp; u32 device_timestamp; bool block_tx; struct cfg80211_chan_def chandef; u8 count; u32 delay; }; /** * enum ieee80211_vif_flags - virtual interface flags * * @IEEE80211_VIF_BEACON_FILTER: the device performs beacon filtering * on this virtual interface to avoid unnecessary CPU wakeups * @IEEE80211_VIF_SUPPORTS_CQM_RSSI: the device can do connection quality * monitoring on this virtual interface -- i.e. it can monitor * connection quality related parameters, such as the RSSI level and * provide notifications if configured trigger levels are reached. * @IEEE80211_VIF_SUPPORTS_UAPSD: The device can do U-APSD for this * interface. This flag should be set during interface addition, * but may be set/cleared as late as authentication to an AP. It is * only valid for managed/station mode interfaces. * @IEEE80211_VIF_GET_NOA_UPDATE: request to handle NOA attributes * and send P2P_PS notification to the driver if NOA changed, even * this is not pure P2P vif. */ enum ieee80211_vif_flags { IEEE80211_VIF_BEACON_FILTER = BIT(0), IEEE80211_VIF_SUPPORTS_CQM_RSSI = BIT(1), IEEE80211_VIF_SUPPORTS_UAPSD = BIT(2), IEEE80211_VIF_GET_NOA_UPDATE = BIT(3), }; /** * enum ieee80211_offload_flags - virtual interface offload flags * * @IEEE80211_OFFLOAD_ENCAP_ENABLED: tx encapsulation offload is enabled * The driver supports sending frames passed as 802.3 frames by mac80211. * It must also support sending 802.11 packets for the same interface. * @IEEE80211_OFFLOAD_ENCAP_4ADDR: support 4-address mode encapsulation offload */ enum ieee80211_offload_flags { IEEE80211_OFFLOAD_ENCAP_ENABLED = BIT(0), IEEE80211_OFFLOAD_ENCAP_4ADDR = BIT(1), }; /** * struct ieee80211_vif - per-interface data * * Data in this structure is continually present for driver * use during the life of a virtual interface. * * @type: type of this virtual interface * @bss_conf: BSS configuration for this interface, either our own * or the BSS we're associated to * @addr: address of this interface * @p2p: indicates whether this AP or STA interface is a p2p * interface, i.e. a GO or p2p-sta respectively * @csa_active: marks whether a channel switch is going on. Internally it is * write-protected by sdata_lock and local->mtx so holding either is fine * for read access. * @mu_mimo_owner: indicates interface owns MU-MIMO capability * @driver_flags: flags/capabilities the driver has for this interface, * these need to be set (or cleared) when the interface is added * or, if supported by the driver, the interface type is changed * at runtime, mac80211 will never touch this field * @offloaad_flags: hardware offload capabilities/flags for this interface. * These are initialized by mac80211 before calling .add_interface, * .change_interface or .update_vif_offload and updated by the driver * within these ops, based on supported features or runtime change * restrictions. * @hw_queue: hardware queue for each AC * @cab_queue: content-after-beacon (DTIM beacon really) queue, AP mode only * @chanctx_conf: The channel context this interface is assigned to, or %NULL * when it is not assigned. This pointer is RCU-protected due to the TX * path needing to access it; even though the netdev carrier will always * be off when it is %NULL there can still be races and packets could be * processed after it switches back to %NULL. * @debugfs_dir: debugfs dentry, can be used by drivers to create own per * interface debug files. Note that it will be NULL for the virtual * monitor interface (if that is requested.) * @probe_req_reg: probe requests should be reported to mac80211 for this * interface. * @rx_mcast_action_reg: multicast Action frames should be reported to mac80211 * for this interface. * @drv_priv: data area for driver use, will always be aligned to * sizeof(void \*). * @txq: the multicast data TX queue (if driver uses the TXQ abstraction) * @txqs_stopped: per AC flag to indicate that intermediate TXQs are stopped, * protected by fq->lock. * @offload_flags: 802.3 -> 802.11 enapsulation offload flags, see * &enum ieee80211_offload_flags. */ struct ieee80211_vif { enum nl80211_iftype type; struct ieee80211_bss_conf bss_conf; u8 addr[ETH_ALEN] __aligned(2); bool p2p; bool csa_active; bool mu_mimo_owner; u8 cab_queue; u8 hw_queue[IEEE80211_NUM_ACS]; struct ieee80211_txq *txq; struct ieee80211_chanctx_conf __rcu *chanctx_conf; u32 driver_flags; u32 offload_flags; #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfs_dir; #endif bool probe_req_reg; bool rx_mcast_action_reg; bool txqs_stopped[IEEE80211_NUM_ACS]; /* must be last */ u8 drv_priv[] __aligned(sizeof(void *)); }; static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif) { #ifdef CONFIG_MAC80211_MESH return vif->type == NL80211_IFTYPE_MESH_POINT; #endif return false; } /** * wdev_to_ieee80211_vif - return a vif struct from a wdev * @wdev: the wdev to get the vif for * * This can be used by mac80211 drivers with direct cfg80211 APIs * (like the vendor commands) that get a wdev. * * Note that this function may return %NULL if the given wdev isn't * associated with a vif that the driver knows about (e.g. monitor * or AP_VLAN interfaces.) */ struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev); /** * ieee80211_vif_to_wdev - return a wdev struct from a vif * @vif: the vif to get the wdev for * * This can be used by mac80211 drivers with direct cfg80211 APIs * (like the vendor commands) that needs to get the wdev for a vif. * * Note that this function may return %NULL if the given wdev isn't * associated with a vif that the driver knows about (e.g. monitor * or AP_VLAN interfaces.) */ struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif); /** * enum ieee80211_key_flags - key flags * * These flags are used for communication about keys between the driver * and mac80211, with the @flags parameter of &struct ieee80211_key_conf. * * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the * driver to indicate that it requires IV generation for this * particular key. Setting this flag does not necessarily mean that SKBs * will have sufficient tailroom for ICV or MIC. * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by * the driver for a TKIP key if it requires Michael MIC * generation in software. * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates * that the key is pairwise rather then a shared key. * @IEEE80211_KEY_FLAG_SW_MGMT_TX: This flag should be set by the driver for a * CCMP/GCMP key if it requires CCMP/GCMP encryption of management frames * (MFP) to be done in software. * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver * if space should be prepared for the IV, but the IV * itself should not be generated. Do not set together with * @IEEE80211_KEY_FLAG_GENERATE_IV on the same key. Setting this flag does * not necessarily mean that SKBs will have sufficient tailroom for ICV or * MIC. * @IEEE80211_KEY_FLAG_RX_MGMT: This key will be used to decrypt received * management frames. The flag can help drivers that have a hardware * crypto implementation that doesn't deal with management frames * properly by allowing them to not upload the keys to hardware and * fall back to software crypto. Note that this flag deals only with * RX, if your crypto engine can't deal with TX you can also set the * %IEEE80211_KEY_FLAG_SW_MGMT_TX flag to encrypt such frames in SW. * @IEEE80211_KEY_FLAG_GENERATE_IV_MGMT: This flag should be set by the * driver for a CCMP/GCMP key to indicate that is requires IV generation * only for management frames (MFP). * @IEEE80211_KEY_FLAG_RESERVE_TAILROOM: This flag should be set by the * driver for a key to indicate that sufficient tailroom must always * be reserved for ICV or MIC, even when HW encryption is enabled. * @IEEE80211_KEY_FLAG_PUT_MIC_SPACE: This flag should be set by the driver for * a TKIP key if it only requires MIC space. Do not set together with * @IEEE80211_KEY_FLAG_GENERATE_MMIC on the same key. * @IEEE80211_KEY_FLAG_NO_AUTO_TX: Key needs explicit Tx activation. * @IEEE80211_KEY_FLAG_GENERATE_MMIE: This flag should be set by the driver * for a AES_CMAC key to indicate that it requires sequence number * generation only */ enum ieee80211_key_flags { IEEE80211_KEY_FLAG_GENERATE_IV_MGMT = BIT(0), IEEE80211_KEY_FLAG_GENERATE_IV = BIT(1), IEEE80211_KEY_FLAG_GENERATE_MMIC = BIT(2), IEEE80211_KEY_FLAG_PAIRWISE = BIT(3), IEEE80211_KEY_FLAG_SW_MGMT_TX = BIT(4), IEEE80211_KEY_FLAG_PUT_IV_SPACE = BIT(5), IEEE80211_KEY_FLAG_RX_MGMT = BIT(6), IEEE80211_KEY_FLAG_RESERVE_TAILROOM = BIT(7), IEEE80211_KEY_FLAG_PUT_MIC_SPACE = BIT(8), IEEE80211_KEY_FLAG_NO_AUTO_TX = BIT(9), IEEE80211_KEY_FLAG_GENERATE_MMIE = BIT(10), }; /** * struct ieee80211_key_conf - key information * * This key information is given by mac80211 to the driver by * the set_key() callback in &struct ieee80211_ops. * * @hw_key_idx: To be set by the driver, this is the key index the driver * wants to be given when a frame is transmitted and needs to be * encrypted in hardware. * @cipher: The key's cipher suite selector. * @tx_pn: PN used for TX keys, may be used by the driver as well if it * needs to do software PN assignment by itself (e.g. due to TSO) * @flags: key flags, see &enum ieee80211_key_flags. * @keyidx: the key index (0-3) * @keylen: key material length * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte) * data block: * - Temporal Encryption Key (128 bits) * - Temporal Authenticator Tx MIC Key (64 bits) * - Temporal Authenticator Rx MIC Key (64 bits) * @icv_len: The ICV length for this key type * @iv_len: The IV length for this key type */ struct ieee80211_key_conf { atomic64_t tx_pn; u32 cipher; u8 icv_len; u8 iv_len; u8 hw_key_idx; s8 keyidx; u16 flags; u8 keylen; u8 key[]; }; #define IEEE80211_MAX_PN_LEN 16 #define TKIP_PN_TO_IV16(pn) ((u16)(pn & 0xffff)) #define TKIP_PN_TO_IV32(pn) ((u32)((pn >> 16) & 0xffffffff)) /** * struct ieee80211_key_seq - key sequence counter * * @tkip: TKIP data, containing IV32 and IV16 in host byte order * @ccmp: PN data, most significant byte first (big endian, * reverse order than in packet) * @aes_cmac: PN data, most significant byte first (big endian, * reverse order than in packet) * @aes_gmac: PN data, most significant byte first (big endian, * reverse order than in packet) * @gcmp: PN data, most significant byte first (big endian, * reverse order than in packet) * @hw: data for HW-only (e.g. cipher scheme) keys */ struct ieee80211_key_seq { union { struct { u32 iv32; u16 iv16; } tkip; struct { u8 pn[6]; } ccmp; struct { u8 pn[6]; } aes_cmac; struct { u8 pn[6]; } aes_gmac; struct { u8 pn[6]; } gcmp; struct { u8 seq[IEEE80211_MAX_PN_LEN]; u8 seq_len; } hw; }; }; /** * struct ieee80211_cipher_scheme - cipher scheme * * This structure contains a cipher scheme information defining * the secure packet crypto handling. * * @cipher: a cipher suite selector * @iftype: a cipher iftype bit mask indicating an allowed cipher usage * @hdr_len: a length of a security header used the cipher * @pn_len: a length of a packet number in the security header * @pn_off: an offset of pn from the beginning of the security header * @key_idx_off: an offset of key index byte in the security header * @key_idx_mask: a bit mask of key_idx bits * @key_idx_shift: a bit shift needed to get key_idx * key_idx value calculation: * (sec_header_base[key_idx_off] & key_idx_mask) >> key_idx_shift * @mic_len: a mic length in bytes */ struct ieee80211_cipher_scheme { u32 cipher; u16 iftype; u8 hdr_len; u8 pn_len; u8 pn_off; u8 key_idx_off; u8 key_idx_mask; u8 key_idx_shift; u8 mic_len; }; /** * enum set_key_cmd - key command * * Used with the set_key() callback in &struct ieee80211_ops, this * indicates whether a key is being removed or added. * * @SET_KEY: a key is set * @DISABLE_KEY: a key must be disabled */ enum set_key_cmd { SET_KEY, DISABLE_KEY, }; /** * enum ieee80211_sta_state - station state * * @IEEE80211_STA_NOTEXIST: station doesn't exist at all, * this is a special state for add/remove transitions * @IEEE80211_STA_NONE: station exists without special state * @IEEE80211_STA_AUTH: station is authenticated * @IEEE80211_STA_ASSOC: station is associated * @IEEE80211_STA_AUTHORIZED: station is authorized (802.1X) */ enum ieee80211_sta_state { /* NOTE: These need to be ordered correctly! */ IEEE80211_STA_NOTEXIST, IEEE80211_STA_NONE, IEEE80211_STA_AUTH, IEEE80211_STA_ASSOC, IEEE80211_STA_AUTHORIZED, }; /** * enum ieee80211_sta_rx_bandwidth - station RX bandwidth * @IEEE80211_STA_RX_BW_20: station can only receive 20 MHz * @IEEE80211_STA_RX_BW_40: station can receive up to 40 MHz * @IEEE80211_STA_RX_BW_80: station can receive up to 80 MHz * @IEEE80211_STA_RX_BW_160: station can receive up to 160 MHz * (including 80+80 MHz) * * Implementation note: 20 must be zero to be initialized * correctly, the values must be sorted. */ enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40, IEEE80211_STA_RX_BW_80, IEEE80211_STA_RX_BW_160, }; /** * struct ieee80211_sta_rates - station rate selection table * * @rcu_head: RCU head used for freeing the table on update * @rate: transmit rates/flags to be used by default. * Overriding entries per-packet is possible by using cb tx control. */ struct ieee80211_sta_rates { struct rcu_head rcu_head; struct { s8 idx; u8 count; u8 count_cts; u8 count_rts; u16 flags; } rate[IEEE80211_TX_RATE_TABLE_SIZE]; }; /** * struct ieee80211_sta_txpwr - station txpower configuration * * Used to configure txpower for station. * * @power: indicates the tx power, in dBm, to be used when sending data frames * to the STA. * @type: In particular if TPC %type is NL80211_TX_POWER_LIMITED then tx power * will be less than or equal to specified from userspace, whereas if TPC * %type is NL80211_TX_POWER_AUTOMATIC then it indicates default tx power. * NL80211_TX_POWER_FIXED is not a valid configuration option for * per peer TPC. */ struct ieee80211_sta_txpwr { s16 power; enum nl80211_tx_power_setting type; }; /** * struct ieee80211_sta - station table entry * * A station table entry represents a station we are possibly * communicating with. Since stations are RCU-managed in * mac80211, any ieee80211_sta pointer you get access to must * either be protected by rcu_read_lock() explicitly or implicitly, * or you must take good care to not use such a pointer after a * call to your sta_remove callback that removed it. * * @addr: MAC address * @aid: AID we assigned to the station if we're an AP * @supp_rates: Bitmap of supported rates (per band) * @ht_cap: HT capabilities of this STA; restricted to our own capabilities * @vht_cap: VHT capabilities of this STA; restricted to our own capabilities * @he_cap: HE capabilities of this STA * @he_6ghz_capa: on 6 GHz, holds the HE 6 GHz band capabilities * @max_rx_aggregation_subframes: maximal amount of frames in a single AMPDU * that this station is allowed to transmit to us. * Can be modified by driver. * @wme: indicates whether the STA supports QoS/WME (if local devices does, * otherwise always false) * @drv_priv: data area for driver use, will always be aligned to * sizeof(void \*), size is determined in hw information. * @uapsd_queues: bitmap of queues configured for uapsd. Only valid * if wme is supported. The bits order is like in * IEEE80211_WMM_IE_STA_QOSINFO_AC_*. * @max_sp: max Service Period. Only valid if wme is supported. * @bandwidth: current bandwidth the station can receive with * @rx_nss: in HT/VHT, the maximum number of spatial streams the * station can receive at the moment, changed by operating mode * notifications and capabilities. The value is only valid after * the station moves to associated state. * @smps_mode: current SMPS mode (off, static or dynamic) * @rates: rate control selection table * @tdls: indicates whether the STA is a TDLS peer * @tdls_initiator: indicates the STA is an initiator of the TDLS link. Only * valid if the STA is a TDLS peer in the first place. * @mfp: indicates whether the STA uses management frame protection or not. * @max_amsdu_subframes: indicates the maximal number of MSDUs in a single * A-MSDU. Taken from the Extended Capabilities element. 0 means * unlimited. * @support_p2p_ps: indicates whether the STA supports P2P PS mechanism or not. * @max_rc_amsdu_len: Maximum A-MSDU size in bytes recommended by rate control. * @max_tid_amsdu_len: Maximum A-MSDU size in bytes for this TID * @txpwr: the station tx power configuration * @txq: per-TID data TX queues (if driver uses the TXQ abstraction); note that * the last entry (%IEEE80211_NUM_TIDS) is used for non-data frames */ struct ieee80211_sta { u32 supp_rates[NUM_NL80211_BANDS]; u8 addr[ETH_ALEN]; u16 aid; struct ieee80211_sta_ht_cap ht_cap; struct ieee80211_sta_vht_cap vht_cap; struct ieee80211_sta_he_cap he_cap; struct ieee80211_he_6ghz_capa he_6ghz_capa; u16 max_rx_aggregation_subframes; bool wme; u8 uapsd_queues; u8 max_sp; u8 rx_nss; enum ieee80211_sta_rx_bandwidth bandwidth; enum ieee80211_smps_mode smps_mode; struct ieee80211_sta_rates __rcu *rates; bool tdls; bool tdls_initiator; bool mfp; u8 max_amsdu_subframes; /** * @max_amsdu_len: * indicates the maximal length of an A-MSDU in bytes. * This field is always valid for packets with a VHT preamble. * For packets with a HT preamble, additional limits apply: * * * If the skb is transmitted as part of a BA agreement, the * A-MSDU maximal size is min(max_amsdu_len, 4065) bytes. * * If the skb is not part of a BA agreement, the A-MSDU maximal * size is min(max_amsdu_len, 7935) bytes. * * Both additional HT limits must be enforced by the low level * driver. This is defined by the spec (IEEE 802.11-2012 section * 8.3.2.2 NOTE 2). */ u16 max_amsdu_len; bool support_p2p_ps; u16 max_rc_amsdu_len; u16 max_tid_amsdu_len[IEEE80211_NUM_TIDS]; struct ieee80211_sta_txpwr txpwr; struct ieee80211_txq *txq[IEEE80211_NUM_TIDS + 1]; /* must be last */ u8 drv_priv[] __aligned(sizeof(void *)); }; /** * enum sta_notify_cmd - sta notify command * * Used with the sta_notify() callback in &struct ieee80211_ops, this * indicates if an associated station made a power state transition. * * @STA_NOTIFY_SLEEP: a station is now sleeping * @STA_NOTIFY_AWAKE: a sleeping station woke up */ enum sta_notify_cmd { STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE, }; /** * struct ieee80211_tx_control - TX control data * * @sta: station table entry, this sta pointer may be NULL and * it is not allowed to copy the pointer, due to RCU. */ struct ieee80211_tx_control { struct ieee80211_sta *sta; }; /** * struct ieee80211_txq - Software intermediate tx queue * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @sta: station table entry, %NULL for per-vif queue * @tid: the TID for this queue (unused for per-vif queue), * %IEEE80211_NUM_TIDS for non-data (if enabled) * @ac: the AC for this queue * @drv_priv: driver private area, sized by hw->txq_data_size * * The driver can obtain packets from this queue by calling * ieee80211_tx_dequeue(). */ struct ieee80211_txq { struct ieee80211_vif *vif; struct ieee80211_sta *sta; u8 tid; u8 ac; /* must be last */ u8 drv_priv[] __aligned(sizeof(void *)); }; /** * enum ieee80211_hw_flags - hardware flags * * These flags are used to indicate hardware capabilities to * the stack. Generally, flags here should have their meaning * done in a way that the simplest hardware doesn't need setting * any particular flags. There are some exceptions to this rule, * however, so you are advised to review these flags carefully. * * @IEEE80211_HW_HAS_RATE_CONTROL: * The hardware or firmware includes rate control, and cannot be * controlled by the stack. As such, no rate control algorithm * should be instantiated, and the TX rate reported to userspace * will be taken from the TX status instead of the rate control * algorithm. * Note that this requires that the driver implement a number of * callbacks so it has the correct information, it needs to have * the @set_rts_threshold callback and must look at the BSS config * @use_cts_prot for G/N protection, @use_short_slot for slot * timing in 2.4 GHz and @use_short_preamble for preambles for * CCK frames. * * @IEEE80211_HW_RX_INCLUDES_FCS: * Indicates that received frames passed to the stack include * the FCS at the end. * * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING: * Some wireless LAN chipsets buffer broadcast/multicast frames * for power saving stations in the hardware/firmware and others * rely on the host system for such buffering. This option is used * to configure the IEEE 802.11 upper layer to buffer broadcast and * multicast frames when there are power saving stations so that * the driver can fetch them with ieee80211_get_buffered_bc(). * * @IEEE80211_HW_SIGNAL_UNSPEC: * Hardware can provide signal values but we don't know its units. We * expect values between 0 and @max_signal. * If possible please provide dB or dBm instead. * * @IEEE80211_HW_SIGNAL_DBM: * Hardware gives signal values in dBm, decibel difference from * one milliwatt. This is the preferred method since it is standardized * between different devices. @max_signal does not need to be set. * * @IEEE80211_HW_SPECTRUM_MGMT: * Hardware supports spectrum management defined in 802.11h * Measurement, Channel Switch, Quieting, TPC * * @IEEE80211_HW_AMPDU_AGGREGATION: * Hardware supports 11n A-MPDU aggregation. * * @IEEE80211_HW_SUPPORTS_PS: * Hardware has power save support (i.e. can go to sleep). * * @IEEE80211_HW_PS_NULLFUNC_STACK: * Hardware requires nullfunc frame handling in stack, implies * stack support for dynamic PS. * * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS: * Hardware has support for dynamic PS. * * @IEEE80211_HW_MFP_CAPABLE: * Hardware supports management frame protection (MFP, IEEE 802.11w). * * @IEEE80211_HW_REPORTS_TX_ACK_STATUS: * Hardware can provide ack status reports of Tx frames to * the stack. * * @IEEE80211_HW_CONNECTION_MONITOR: * The hardware performs its own connection monitoring, including * periodic keep-alives to the AP and probing the AP on beacon loss. * * @IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC: * This device needs to get data from beacon before association (i.e. * dtim_period). * * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports * per-station GTKs as used by IBSS RSN or during fast transition. If * the device doesn't support per-station GTKs, but can be asked not * to decrypt group addressed frames, then IBSS RSN support is still * possible but software crypto will be used. Advertise the wiphy flag * only in that case. * * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device * autonomously manages the PS status of connected stations. When * this flag is set mac80211 will not trigger PS mode for connected * stations based on the PM bit of incoming frames. * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure * the PS mode of connected stations. * * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session * setup strictly in HW. mac80211 should not attempt to do this in * software. * * @IEEE80211_HW_WANT_MONITOR_VIF: The driver would like to be informed of * a virtual monitor interface when monitor interfaces are the only * active interfaces. * * @IEEE80211_HW_NO_AUTO_VIF: The driver would like for no wlanX to * be created. It is expected user-space will create vifs as * desired (and thus have them named as desired). * * @IEEE80211_HW_SW_CRYPTO_CONTROL: The driver wants to control which of the * crypto algorithms can be done in software - so don't automatically * try to fall back to it if hardware crypto fails, but do so only if * the driver returns 1. This also forces the driver to advertise its * supported cipher suites. * * @IEEE80211_HW_SUPPORT_FAST_XMIT: The driver/hardware supports fast-xmit, * this currently requires only the ability to calculate the duration * for frames. * * @IEEE80211_HW_QUEUE_CONTROL: The driver wants to control per-interface * queue mapping in order to use different queues (not just one per AC) * for different virtual interfaces. See the doc section on HW queue * control for more details. * * @IEEE80211_HW_SUPPORTS_RC_TABLE: The driver supports using a rate * selection table provided by the rate control algorithm. * * @IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF: Use the P2P Device address for any * P2P Interface. This will be honoured even if more than one interface * is supported. * * @IEEE80211_HW_TIMING_BEACON_ONLY: Use sync timing from beacon frames * only, to allow getting TBTT of a DTIM beacon. * * @IEEE80211_HW_SUPPORTS_HT_CCK_RATES: Hardware supports mixing HT/CCK rates * and can cope with CCK rates in an aggregation session (e.g. by not * using aggregation for such frames.) * * @IEEE80211_HW_CHANCTX_STA_CSA: Support 802.11h based channel-switch (CSA) * for a single active channel while using channel contexts. When support * is not enabled the default action is to disconnect when getting the * CSA frame. * * @IEEE80211_HW_SUPPORTS_CLONED_SKBS: The driver will never modify the payload * or tailroom of TX skbs without copying them first. * * @IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS: The HW supports scanning on all bands * in one command, mac80211 doesn't have to run separate scans per band. * * @IEEE80211_HW_TDLS_WIDER_BW: The device/driver supports wider bandwidth * than then BSS bandwidth for a TDLS link on the base channel. * * @IEEE80211_HW_SUPPORTS_AMSDU_IN_AMPDU: The driver supports receiving A-MSDUs * within A-MPDU. * * @IEEE80211_HW_BEACON_TX_STATUS: The device/driver provides TX status * for sent beacons. * * @IEEE80211_HW_NEEDS_UNIQUE_STA_ADDR: Hardware (or driver) requires that each * station has a unique address, i.e. each station entry can be identified * by just its MAC address; this prevents, for example, the same station * from connecting to two virtual AP interfaces at the same time. * * @IEEE80211_HW_SUPPORTS_REORDERING_BUFFER: Hardware (or driver) manages the * reordering buffer internally, guaranteeing mac80211 receives frames in * order and does not need to manage its own reorder buffer or BA session * timeout. * * @IEEE80211_HW_USES_RSS: The device uses RSS and thus requires parallel RX, * which implies using per-CPU station statistics. * * @IEEE80211_HW_TX_AMSDU: Hardware (or driver) supports software aggregated * A-MSDU frames. Requires software tx queueing and fast-xmit support. * When not using minstrel/minstrel_ht rate control, the driver must * limit the maximum A-MSDU size based on the current tx rate by setting * max_rc_amsdu_len in struct ieee80211_sta. * * @IEEE80211_HW_TX_FRAG_LIST: Hardware (or driver) supports sending frag_list * skbs, needed for zero-copy software A-MSDU. * * @IEEE80211_HW_REPORTS_LOW_ACK: The driver (or firmware) reports low ack event * by ieee80211_report_low_ack() based on its own algorithm. For such * drivers, mac80211 packet loss mechanism will not be triggered and driver * is completely depending on firmware event for station kickout. * * @IEEE80211_HW_SUPPORTS_TX_FRAG: Hardware does fragmentation by itself. * The stack will not do fragmentation. * The callback for @set_frag_threshold should be set as well. * * @IEEE80211_HW_SUPPORTS_TDLS_BUFFER_STA: Hardware supports buffer STA on * TDLS links. * * @IEEE80211_HW_DEAUTH_NEED_MGD_TX_PREP: The driver requires the * mgd_prepare_tx() callback to be called before transmission of a * deauthentication frame in case the association was completed but no * beacon was heard. This is required in multi-channel scenarios, where the * virtual interface might not be given air time for the transmission of * the frame, as it is not synced with the AP/P2P GO yet, and thus the * deauthentication frame might not be transmitted. * * @IEEE80211_HW_DOESNT_SUPPORT_QOS_NDP: The driver (or firmware) doesn't * support QoS NDP for AP probing - that's most likely a driver bug. * * @IEEE80211_HW_BUFF_MMPDU_TXQ: use the TXQ for bufferable MMPDUs, this of * course requires the driver to use TXQs to start with. * * @IEEE80211_HW_SUPPORTS_VHT_EXT_NSS_BW: (Hardware) rate control supports VHT * extended NSS BW (dot11VHTExtendedNSSBWCapable). This flag will be set if * the selected rate control algorithm sets %RATE_CTRL_CAPA_VHT_EXT_NSS_BW * but if the rate control is built-in then it must be set by the driver. * See also the documentation for that flag. * * @IEEE80211_HW_STA_MMPDU_TXQ: use the extra non-TID per-station TXQ for all * MMPDUs on station interfaces. This of course requires the driver to use * TXQs to start with. * * @IEEE80211_HW_TX_STATUS_NO_AMPDU_LEN: Driver does not report accurate A-MPDU * length in tx status information * * @IEEE80211_HW_SUPPORTS_MULTI_BSSID: Hardware supports multi BSSID * * @IEEE80211_HW_SUPPORTS_ONLY_HE_MULTI_BSSID: Hardware supports multi BSSID * only for HE APs. Applies if @IEEE80211_HW_SUPPORTS_MULTI_BSSID is set. * * @IEEE80211_HW_AMPDU_KEYBORDER_SUPPORT: The card and driver is only * aggregating MPDUs with the same keyid, allowing mac80211 to keep Tx * A-MPDU sessions active while rekeying with Extended Key ID. * * @IEEE80211_HW_SUPPORTS_TX_ENCAP_OFFLOAD: Hardware supports tx encapsulation * offload * * @NUM_IEEE80211_HW_FLAGS: number of hardware flags, used for sizing arrays */ enum ieee80211_hw_flags { IEEE80211_HW_HAS_RATE_CONTROL, IEEE80211_HW_RX_INCLUDES_FCS, IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING, IEEE80211_HW_SIGNAL_UNSPEC, IEEE80211_HW_SIGNAL_DBM, IEEE80211_HW_NEED_DTIM_BEFORE_ASSOC, IEEE80211_HW_SPECTRUM_MGMT, IEEE80211_HW_AMPDU_AGGREGATION, IEEE80211_HW_SUPPORTS_PS, IEEE80211_HW_PS_NULLFUNC_STACK, IEEE80211_HW_SUPPORTS_DYNAMIC_PS, IEEE80211_HW_MFP_CAPABLE, IEEE80211_HW_WANT_MONITOR_VIF, IEEE80211_HW_NO_AUTO_VIF, IEEE80211_HW_SW_CRYPTO_CONTROL, IEEE80211_HW_SUPPORT_FAST_XMIT, IEEE80211_HW_REPORTS_TX_ACK_STATUS, IEEE80211_HW_CONNECTION_MONITOR, IEEE80211_HW_QUEUE_CONTROL, IEEE80211_HW_SUPPORTS_PER_STA_GTK, IEEE80211_HW_AP_LINK_PS, IEEE80211_HW_TX_AMPDU_SETUP_IN_HW, IEEE80211_HW_SUPPORTS_RC_TABLE, IEEE80211_HW_P2P_DEV_ADDR_FOR_INTF, IEEE80211_HW_TIMING_BEACON_ONLY, IEEE80211_HW_SUPPORTS_HT_CCK_RATES, IEEE80211_HW_CHANCTX_STA_CSA, IEEE80211_HW_SUPPORTS_CLONED_SKBS, IEEE80211_HW_SINGLE_SCAN_ON_ALL_BANDS, IEEE80211_HW_TDLS_WIDER_BW, IEEE80211_HW_SUPPORTS_AMSDU_IN_AMPDU, IEEE80211_HW_BEACON_TX_STATUS, IEEE80211_HW_NEEDS_UNIQUE_STA_ADDR, IEEE80211_HW_SUPPORTS_REORDERING_BUFFER, IEEE80211_HW_USES_RSS, IEEE80211_HW_TX_AMSDU, IEEE80211_HW_TX_FRAG_LIST, IEEE80211_HW_REPORTS_LOW_ACK, IEEE80211_HW_SUPPORTS_TX_FRAG, IEEE80211_HW_SUPPORTS_TDLS_BUFFER_STA, IEEE80211_HW_DEAUTH_NEED_MGD_TX_PREP, IEEE80211_HW_DOESNT_SUPPORT_QOS_NDP, IEEE80211_HW_BUFF_MMPDU_TXQ, IEEE80211_HW_SUPPORTS_VHT_EXT_NSS_BW, IEEE80211_HW_STA_MMPDU_TXQ, IEEE80211_HW_TX_STATUS_NO_AMPDU_LEN, IEEE80211_HW_SUPPORTS_MULTI_BSSID, IEEE80211_HW_SUPPORTS_ONLY_HE_MULTI_BSSID, IEEE80211_HW_AMPDU_KEYBORDER_SUPPORT, IEEE80211_HW_SUPPORTS_TX_ENCAP_OFFLOAD, /* keep last, obviously */ NUM_IEEE80211_HW_FLAGS }; /** * struct ieee80211_hw - hardware information and state * * This structure contains the configuration and hardware * information for an 802.11 PHY. * * @wiphy: This points to the &struct wiphy allocated for this * 802.11 PHY. You must fill in the @perm_addr and @dev * members of this structure using SET_IEEE80211_DEV() * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported * bands (with channels, bitrates) are registered here. * * @conf: &struct ieee80211_conf, device configuration, don't use. * * @priv: pointer to private area that was allocated for driver use * along with this structure. * * @flags: hardware flags, see &enum ieee80211_hw_flags. * * @extra_tx_headroom: headroom to reserve in each transmit skb * for use by the driver (e.g. for transmit headers.) * * @extra_beacon_tailroom: tailroom to reserve in each beacon tx skb. * Can be used by drivers to add extra IEs. * * @max_signal: Maximum value for signal (rssi) in RX information, used * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB * * @max_listen_interval: max listen interval in units of beacon interval * that HW supports * * @queues: number of available hardware transmit queues for * data packets. WMM/QoS requires at least four, these * queues need to have configurable access parameters. * * @rate_control_algorithm: rate control algorithm for this hardware. * If unset (NULL), the default algorithm will be used. Must be * set before calling ieee80211_register_hw(). * * @vif_data_size: size (in bytes) of the drv_priv data area * within &struct ieee80211_vif. * @sta_data_size: size (in bytes) of the drv_priv data area * within &struct ieee80211_sta. * @chanctx_data_size: size (in bytes) of the drv_priv data area * within &struct ieee80211_chanctx_conf. * @txq_data_size: size (in bytes) of the drv_priv data area * within @struct ieee80211_txq. * * @max_rates: maximum number of alternate rate retry stages the hw * can handle. * @max_report_rates: maximum number of alternate rate retry stages * the hw can report back. * @max_rate_tries: maximum number of tries for each stage * * @max_rx_aggregation_subframes: maximum buffer size (number of * sub-frames) to be used for A-MPDU block ack receiver * aggregation. * This is only relevant if the device has restrictions on the * number of subframes, if it relies on mac80211 to do reordering * it shouldn't be set. * * @max_tx_aggregation_subframes: maximum number of subframes in an * aggregate an HT/HE device will transmit. In HT AddBA we'll * advertise a constant value of 64 as some older APs crash if * the window size is smaller (an example is LinkSys WRT120N * with FW v1.0.07 build 002 Jun 18 2012). * For AddBA to HE capable peers this value will be used. * * @max_tx_fragments: maximum number of tx buffers per (A)-MSDU, sum * of 1 + skb_shinfo(skb)->nr_frags for each skb in the frag_list. * * @offchannel_tx_hw_queue: HW queue ID to use for offchannel TX * (if %IEEE80211_HW_QUEUE_CONTROL is set) * * @radiotap_mcs_details: lists which MCS information can the HW * reports, by default it is set to _MCS, _GI and _BW but doesn't * include _FMT. Use %IEEE80211_RADIOTAP_MCS_HAVE_\* values, only * adding _BW is supported today. * * @radiotap_vht_details: lists which VHT MCS information the HW reports, * the default is _GI | _BANDWIDTH. * Use the %IEEE80211_RADIOTAP_VHT_KNOWN_\* values. * * @radiotap_he: HE radiotap validity flags * * @radiotap_timestamp: Information for the radiotap timestamp field; if the * @units_pos member is set to a non-negative value then the timestamp * field will be added and populated from the &struct ieee80211_rx_status * device_timestamp. * @radiotap_timestamp.units_pos: Must be set to a combination of a * IEEE80211_RADIOTAP_TIMESTAMP_UNIT_* and a * IEEE80211_RADIOTAP_TIMESTAMP_SPOS_* value. * @radiotap_timestamp.accuracy: If non-negative, fills the accuracy in the * radiotap field and the accuracy known flag will be set. * * @netdev_features: netdev features to be set in each netdev created * from this HW. Note that not all features are usable with mac80211, * other features will be rejected during HW registration. * * @uapsd_queues: This bitmap is included in (re)association frame to indicate * for each access category if it is uAPSD trigger-enabled and delivery- * enabled. Use IEEE80211_WMM_IE_STA_QOSINFO_AC_* to set this bitmap. * Each bit corresponds to different AC. Value '1' in specific bit means * that corresponding AC is both trigger- and delivery-enabled. '0' means * neither enabled. * * @uapsd_max_sp_len: maximum number of total buffered frames the WMM AP may * deliver to a WMM STA during any Service Period triggered by the WMM STA. * Use IEEE80211_WMM_IE_STA_QOSINFO_SP_* for correct values. * * @n_cipher_schemes: a size of an array of cipher schemes definitions. * @cipher_schemes: a pointer to an array of cipher scheme definitions * supported by HW. * @max_nan_de_entries: maximum number of NAN DE functions supported by the * device. * * @tx_sk_pacing_shift: Pacing shift to set on TCP sockets when frames from * them are encountered. The default should typically not be changed, * unless the driver has good reasons for needing more buffers. * * @weight_multiplier: Driver specific airtime weight multiplier used while * refilling deficit of each TXQ. * * @max_mtu: the max mtu could be set. */ struct ieee80211_hw { struct ieee80211_conf conf; struct wiphy *wiphy; const char *rate_control_algorithm; void *priv; unsigned long flags[BITS_TO_LONGS(NUM_IEEE80211_HW_FLAGS)]; unsigned int extra_tx_headroom; unsigned int extra_beacon_tailroom; int vif_data_size; int sta_data_size; int chanctx_data_size; int txq_data_size; u16 queues; u16 max_listen_interval; s8 max_signal; u8 max_rates; u8 max_report_rates; u8 max_rate_tries; u16 max_rx_aggregation_subframes; u16 max_tx_aggregation_subframes; u8 max_tx_fragments; u8 offchannel_tx_hw_queue; u8 radiotap_mcs_details; u16 radiotap_vht_details; struct { int units_pos; s16 accuracy; } radiotap_timestamp; netdev_features_t netdev_features; u8 uapsd_queues; u8 uapsd_max_sp_len; u8 n_cipher_schemes; const struct ieee80211_cipher_scheme *cipher_schemes; u8 max_nan_de_entries; u8 tx_sk_pacing_shift; u8 weight_multiplier; u32 max_mtu; }; static inline bool _ieee80211_hw_check(struct ieee80211_hw *hw, enum ieee80211_hw_flags flg) { return test_bit(flg, hw->flags); } #define ieee80211_hw_check(hw, flg) _ieee80211_hw_check(hw, IEEE80211_HW_##flg) static inline void _ieee80211_hw_set(struct ieee80211_hw *hw, enum ieee80211_hw_flags flg) { return __set_bit(flg, hw->flags); } #define ieee80211_hw_set(hw, flg) _ieee80211_hw_set(hw, IEEE80211_HW_##flg) /** * struct ieee80211_scan_request - hw scan request * * @ies: pointers different parts of IEs (in req.ie) * @req: cfg80211 request. */ struct ieee80211_scan_request { struct ieee80211_scan_ies ies; /* Keep last */ struct cfg80211_scan_request req; }; /** * struct ieee80211_tdls_ch_sw_params - TDLS channel switch parameters * * @sta: peer this TDLS channel-switch request/response came from * @chandef: channel referenced in a TDLS channel-switch request * @action_code: see &enum ieee80211_tdls_actioncode * @status: channel-switch response status * @timestamp: time at which the frame was received * @switch_time: switch-timing parameter received in the frame * @switch_timeout: switch-timing parameter received in the frame * @tmpl_skb: TDLS switch-channel response template * @ch_sw_tm_ie: offset of the channel-switch timing IE inside @tmpl_skb */ struct ieee80211_tdls_ch_sw_params { struct ieee80211_sta *sta; struct cfg80211_chan_def *chandef; u8 action_code; u32 status; u32 timestamp; u16 switch_time; u16 switch_timeout; struct sk_buff *tmpl_skb; u32 ch_sw_tm_ie; }; /** * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy * * @wiphy: the &struct wiphy which we want to query * * mac80211 drivers can use this to get to their respective * &struct ieee80211_hw. Drivers wishing to get to their own private * structure can then access it via hw->priv. Note that mac802111 drivers should * not use wiphy_priv() to try to get their private driver structure as this * is already used internally by mac80211. * * Return: The mac80211 driver hw struct of @wiphy. */ struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy); /** * SET_IEEE80211_DEV - set device for 802.11 hardware * * @hw: the &struct ieee80211_hw to set the device for * @dev: the &struct device of this 802.11 device */ static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev) { set_wiphy_dev(hw->wiphy, dev); } /** * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware * * @hw: the &struct ieee80211_hw to set the MAC address for * @addr: the address to set */ static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, const u8 *addr) { memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN); } static inline struct ieee80211_rate * ieee80211_get_tx_rate(const struct ieee80211_hw *hw, const struct ieee80211_tx_info *c) { if (WARN_ON_ONCE(c->control.rates[0].idx < 0)) return NULL; return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx]; } static inline struct ieee80211_rate * ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw, const struct ieee80211_tx_info *c) { if (c->control.rts_cts_rate_idx < 0) return NULL; return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx]; } static inline struct ieee80211_rate * ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw, const struct ieee80211_tx_info *c, int idx) { if (c->control.rates[idx + 1].idx < 0) return NULL; return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx]; } /** * ieee80211_free_txskb - free TX skb * @hw: the hardware * @skb: the skb * * Free a transmit skb. Use this function when some failure * to transmit happened and thus status cannot be reported. */ void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb); /** * DOC: Hardware crypto acceleration * * mac80211 is capable of taking advantage of many hardware * acceleration designs for encryption and decryption operations. * * The set_key() callback in the &struct ieee80211_ops for a given * device is called to enable hardware acceleration of encryption and * decryption. The callback takes a @sta parameter that will be NULL * for default keys or keys used for transmission only, or point to * the station information for the peer for individual keys. * Multiple transmission keys with the same key index may be used when * VLANs are configured for an access point. * * When transmitting, the TX control data will use the @hw_key_idx * selected by the driver by modifying the &struct ieee80211_key_conf * pointed to by the @key parameter to the set_key() function. * * The set_key() call for the %SET_KEY command should return 0 if * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be * added; if you return 0 then hw_key_idx must be assigned to the * hardware key index, you are free to use the full u8 range. * * Note that in the case that the @IEEE80211_HW_SW_CRYPTO_CONTROL flag is * set, mac80211 will not automatically fall back to software crypto if * enabling hardware crypto failed. The set_key() call may also return the * value 1 to permit this specific key/algorithm to be done in software. * * When the cmd is %DISABLE_KEY then it must succeed. * * Note that it is permissible to not decrypt a frame even if a key * for it has been uploaded to hardware, the stack will not make any * decision based on whether a key has been uploaded or not but rather * based on the receive flags. * * The &struct ieee80211_key_conf structure pointed to by the @key * parameter is guaranteed to be valid until another call to set_key() * removes it, but it can only be used as a cookie to differentiate * keys. * * In TKIP some HW need to be provided a phase 1 key, for RX decryption * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key * handler. * The update_tkip_key() call updates the driver with the new phase 1 key. * This happens every time the iv16 wraps around (every 65536 packets). The * set_key() call will happen only once for each key (unless the AP did * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is * provided by update_tkip_key only. The trigger that makes mac80211 call this * handler is software decryption with wrap around of iv16. * * The set_default_unicast_key() call updates the default WEP key index * configured to the hardware for WEP encryption type. This is required * for devices that support offload of data packets (e.g. ARP responses). * * Mac80211 drivers should set the @NL80211_EXT_FEATURE_CAN_REPLACE_PTK0 flag * when they are able to replace in-use PTK keys according to the following * requirements: * 1) They do not hand over frames decrypted with the old key to mac80211 once the call to set_key() with command %DISABLE_KEY has been completed when also setting @IEEE80211_KEY_FLAG_GENERATE_IV for any key, 2) either drop or continue to use the old key for any outgoing frames queued at the time of the key deletion (including re-transmits), 3) never send out a frame queued prior to the set_key() %SET_KEY command encrypted with the new key and 4) never send out a frame unencrypted when it should be encrypted. Mac80211 will not queue any new frames for a deleted key to the driver. */ /** * DOC: Powersave support * * mac80211 has support for various powersave implementations. * * First, it can support hardware that handles all powersaving by itself, * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware * flag. In that case, it will be told about the desired powersave mode * with the %IEEE80211_CONF_PS flag depending on the association status. * The hardware must take care of sending nullfunc frames when necessary, * i.e. when entering and leaving powersave mode. The hardware is required * to look at the AID in beacons and signal to the AP that it woke up when * it finds traffic directed to it. * * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused * with hardware wakeup and sleep states. Driver is responsible for waking * up the hardware before issuing commands to the hardware and putting it * back to sleep at appropriate times. * * When PS is enabled, hardware needs to wakeup for beacons and receive the * buffered multicast/broadcast frames after the beacon. Also it must be * possible to send frames and receive the acknowledment frame. * * Other hardware designs cannot send nullfunc frames by themselves and also * need software support for parsing the TIM bitmap. This is also supported * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still * required to pass up beacons. The hardware is still required to handle * waking up for multicast traffic; if it cannot the driver must handle that * as best as it can, mac80211 is too slow to do that. * * Dynamic powersave is an extension to normal powersave in which the * hardware stays awake for a user-specified period of time after sending a * frame so that reply frames need not be buffered and therefore delayed to * the next wakeup. It's compromise of getting good enough latency when * there's data traffic and still saving significantly power in idle * periods. * * Dynamic powersave is simply supported by mac80211 enabling and disabling * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS * flag and mac80211 will handle everything automatically. Additionally, * hardware having support for the dynamic PS feature may set the * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support * dynamic PS mode itself. The driver needs to look at the * @dynamic_ps_timeout hardware configuration value and use it that value * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS * enabled whenever user has enabled powersave. * * Driver informs U-APSD client support by enabling * %IEEE80211_VIF_SUPPORTS_UAPSD flag. The mode is configured through the * uapsd parameter in conf_tx() operation. Hardware needs to send the QoS * Nullfunc frames and stay awake until the service period has ended. To * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames * from that AC are transmitted with powersave enabled. * * Note: U-APSD client mode is not yet supported with * %IEEE80211_HW_PS_NULLFUNC_STACK. */ /** * DOC: Beacon filter support * * Some hardware have beacon filter support to reduce host cpu wakeups * which will reduce system power consumption. It usually works so that * the firmware creates a checksum of the beacon but omits all constantly * changing elements (TSF, TIM etc). Whenever the checksum changes the * beacon is forwarded to the host, otherwise it will be just dropped. That * way the host will only receive beacons where some relevant information * (for example ERP protection or WMM settings) have changed. * * Beacon filter support is advertised with the %IEEE80211_VIF_BEACON_FILTER * interface capability. The driver needs to enable beacon filter support * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When * power save is enabled, the stack will not check for beacon loss and the * driver needs to notify about loss of beacons with ieee80211_beacon_loss(). * * The time (or number of beacons missed) until the firmware notifies the * driver of a beacon loss event (which in turn causes the driver to call * ieee80211_beacon_loss()) should be configurable and will be controlled * by mac80211 and the roaming algorithm in the future. * * Since there may be constantly changing information elements that nothing * in the software stack cares about, we will, in the future, have mac80211 * tell the driver which information elements are interesting in the sense * that we want to see changes in them. This will include * * - a list of information element IDs * - a list of OUIs for the vendor information element * * Ideally, the hardware would filter out any beacons without changes in the * requested elements, but if it cannot support that it may, at the expense * of some efficiency, filter out only a subset. For example, if the device * doesn't support checking for OUIs it should pass up all changes in all * vendor information elements. * * Note that change, for the sake of simplification, also includes information * elements appearing or disappearing from the beacon. * * Some hardware supports an "ignore list" instead, just make sure nothing * that was requested is on the ignore list, and include commonly changing * information element IDs in the ignore list, for example 11 (BSS load) and * the various vendor-assigned IEs with unknown contents (128, 129, 133-136, * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility * it could also include some currently unused IDs. * * * In addition to these capabilities, hardware should support notifying the * host of changes in the beacon RSSI. This is relevant to implement roaming * when no traffic is flowing (when traffic is flowing we see the RSSI of * the received data packets). This can consist in notifying the host when * the RSSI changes significantly or when it drops below or rises above * configurable thresholds. In the future these thresholds will also be * configured by mac80211 (which gets them from userspace) to implement * them as the roaming algorithm requires. * * If the hardware cannot implement this, the driver should ask it to * periodically pass beacon frames to the host so that software can do the * signal strength threshold checking. */ /** * DOC: Spatial multiplexing power save * * SMPS (Spatial multiplexing power save) is a mechanism to conserve * power in an 802.11n implementation. For details on the mechanism * and rationale, please refer to 802.11 (as amended by 802.11n-2009) * "11.2.3 SM power save". * * The mac80211 implementation is capable of sending action frames * to update the AP about the station's SMPS mode, and will instruct * the driver to enter the specific mode. It will also announce the * requested SMPS mode during the association handshake. Hardware * support for this feature is required, and can be indicated by * hardware flags. * * The default mode will be "automatic", which nl80211/cfg80211 * defines to be dynamic SMPS in (regular) powersave, and SMPS * turned off otherwise. * * To support this feature, the driver must set the appropriate * hardware support flags, and handle the SMPS flag to the config() * operation. It will then with this mechanism be instructed to * enter the requested SMPS mode while associated to an HT AP. */ /** * DOC: Frame filtering * * mac80211 requires to see many management frames for proper * operation, and users may want to see many more frames when * in monitor mode. However, for best CPU usage and power consumption, * having as few frames as possible percolate through the stack is * desirable. Hence, the hardware should filter as much as possible. * * To achieve this, mac80211 uses filter flags (see below) to tell * the driver's configure_filter() function which frames should be * passed to mac80211 and which should be filtered out. * * Before configure_filter() is invoked, the prepare_multicast() * callback is invoked with the parameters @mc_count and @mc_list * for the combined multicast address list of all virtual interfaces. * It's use is optional, and it returns a u64 that is passed to * configure_filter(). Additionally, configure_filter() has the * arguments @changed_flags telling which flags were changed and * @total_flags with the new flag states. * * If your device has no multicast address filters your driver will * need to check both the %FIF_ALLMULTI flag and the @mc_count * parameter to see whether multicast frames should be accepted * or dropped. * * All unsupported flags in @total_flags must be cleared. * Hardware does not support a flag if it is incapable of _passing_ * the frame to the stack. Otherwise the driver must ignore * the flag, but not clear it. * You must _only_ clear the flag (announce no support for the * flag to mac80211) if you are not able to pass the packet type * to the stack (so the hardware always filters it). * So for example, you should clear @FIF_CONTROL, if your hardware * always filters control frames. If your hardware always passes * control frames to the kernel and is incapable of filtering them, * you do _not_ clear the @FIF_CONTROL flag. * This rule applies to all other FIF flags as well. */ /** * DOC: AP support for powersaving clients * * In order to implement AP and P2P GO modes, mac80211 has support for * client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD. * There currently is no support for sAPSD. * * There is one assumption that mac80211 makes, namely that a client * will not poll with PS-Poll and trigger with uAPSD at the same time. * Both are supported, and both can be used by the same client, but * they can't be used concurrently by the same client. This simplifies * the driver code. * * The first thing to keep in mind is that there is a flag for complete * driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set, * mac80211 expects the driver to handle most of the state machine for * powersaving clients and will ignore the PM bit in incoming frames. * Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of * stations' powersave transitions. In this mode, mac80211 also doesn't * handle PS-Poll/uAPSD. * * In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the * PM bit in incoming frames for client powersave transitions. When a * station goes to sleep, we will stop transmitting to it. There is, * however, a race condition: a station might go to sleep while there is * data buffered on hardware queues. If the device has support for this * it will reject frames, and the driver should give the frames back to * mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will * cause mac80211 to retry the frame when the station wakes up. The * driver is also notified of powersave transitions by calling its * @sta_notify callback. * * When the station is asleep, it has three choices: it can wake up, * it can PS-Poll, or it can possibly start a uAPSD service period. * Waking up is implemented by simply transmitting all buffered (and * filtered) frames to the station. This is the easiest case. When * the station sends a PS-Poll or a uAPSD trigger frame, mac80211 * will inform the driver of this with the @allow_buffered_frames * callback; this callback is optional. mac80211 will then transmit * the frames as usual and set the %IEEE80211_TX_CTL_NO_PS_BUFFER * on each frame. The last frame in the service period (or the only * response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to * indicate that it ends the service period; as this frame must have * TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS. * When TX status is reported for this frame, the service period is * marked has having ended and a new one can be started by the peer. * * Additionally, non-bufferable MMPDUs can also be transmitted by * mac80211 with the %IEEE80211_TX_CTL_NO_PS_BUFFER set in them. * * Another race condition can happen on some devices like iwlwifi * when there are frames queued for the station and it wakes up * or polls; the frames that are already queued could end up being * transmitted first instead, causing reordering and/or wrong * processing of the EOSP. The cause is that allowing frames to be * transmitted to a certain station is out-of-band communication to * the device. To allow this problem to be solved, the driver can * call ieee80211_sta_block_awake() if frames are buffered when it * is notified that the station went to sleep. When all these frames * have been filtered (see above), it must call the function again * to indicate that the station is no longer blocked. * * If the driver buffers frames in the driver for aggregation in any * way, it must use the ieee80211_sta_set_buffered() call when it is * notified of the station going to sleep to inform mac80211 of any * TIDs that have frames buffered. Note that when a station wakes up * this information is reset (hence the requirement to call it when * informed of the station going to sleep). Then, when a service * period starts for any reason, @release_buffered_frames is called * with the number of frames to be released and which TIDs they are * to come from. In this case, the driver is responsible for setting * the EOSP (for uAPSD) and MORE_DATA bits in the released frames, * to help the @more_data parameter is passed to tell the driver if * there is more data on other TIDs -- the TIDs to release frames * from are ignored since mac80211 doesn't know how many frames the * buffers for those TIDs contain. * * If the driver also implement GO mode, where absence periods may * shorten service periods (or abort PS-Poll responses), it must * filter those response frames except in the case of frames that * are buffered in the driver -- those must remain buffered to avoid * reordering. Because it is possible that no frames are released * in this case, the driver must call ieee80211_sta_eosp() * to indicate to mac80211 that the service period ended anyway. * * Finally, if frames from multiple TIDs are released from mac80211 * but the driver might reorder them, it must clear & set the flags * appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP) * and also take care of the EOSP and MORE_DATA bits in the frame. * The driver may also use ieee80211_sta_eosp() in this case. * * Note that if the driver ever buffers frames other than QoS-data * frames, it must take care to never send a non-QoS-data frame as * the last frame in a service period, adding a QoS-nulldata frame * after a non-QoS-data frame if needed. */ /** * DOC: HW queue control * * Before HW queue control was introduced, mac80211 only had a single static * assignment of per-interface AC software queues to hardware queues. This * was problematic for a few reasons: * 1) off-channel transmissions might get stuck behind other frames * 2) multiple virtual interfaces couldn't be handled correctly * 3) after-DTIM frames could get stuck behind other frames * * To solve this, hardware typically uses multiple different queues for all * the different usages, and this needs to be propagated into mac80211 so it * won't have the same problem with the software queues. * * Therefore, mac80211 now offers the %IEEE80211_HW_QUEUE_CONTROL capability * flag that tells it that the driver implements its own queue control. To do * so, the driver will set up the various queues in each &struct ieee80211_vif * and the offchannel queue in &struct ieee80211_hw. In response, mac80211 will * use those queue IDs in the hw_queue field of &struct ieee80211_tx_info and * if necessary will queue the frame on the right software queue that mirrors * the hardware queue. * Additionally, the driver has to then use these HW queue IDs for the queue * management functions (ieee80211_stop_queue() et al.) * * The driver is free to set up the queue mappings as needed, multiple virtual * interfaces may map to the same hardware queues if needed. The setup has to * happen during add_interface or change_interface callbacks. For example, a * driver supporting station+station and station+AP modes might decide to have * 10 hardware queues to handle different scenarios: * * 4 AC HW queues for 1st vif: 0, 1, 2, 3 * 4 AC HW queues for 2nd vif: 4, 5, 6, 7 * after-DTIM queue for AP: 8 * off-channel queue: 9 * * It would then set up the hardware like this: * hw.offchannel_tx_hw_queue = 9 * * and the first virtual interface that is added as follows: * vif.hw_queue[IEEE80211_AC_VO] = 0 * vif.hw_queue[IEEE80211_AC_VI] = 1 * vif.hw_queue[IEEE80211_AC_BE] = 2 * vif.hw_queue[IEEE80211_AC_BK] = 3 * vif.cab_queue = 8 // if AP mode, otherwise %IEEE80211_INVAL_HW_QUEUE * and the second virtual interface with 4-7. * * If queue 6 gets full, for example, mac80211 would only stop the second * virtual interface's BE queue since virtual interface queues are per AC. * * Note that the vif.cab_queue value should be set to %IEEE80211_INVAL_HW_QUEUE * whenever the queue is not used (i.e. the interface is not in AP mode) if the * queue could potentially be shared since mac80211 will look at cab_queue when * a queue is stopped/woken even if the interface is not in AP mode. */ /** * enum ieee80211_filter_flags - hardware filter flags * * These flags determine what the filter in hardware should be * programmed to let through and what should not be passed to the * stack. It is always safe to pass more frames than requested, * but this has negative impact on power consumption. * * @FIF_ALLMULTI: pass all multicast frames, this is used if requested * by the user or if the hardware is not capable of filtering by * multicast address. * * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the * %RX_FLAG_FAILED_FCS_CRC for them) * * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set * the %RX_FLAG_FAILED_PLCP_CRC for them * * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate * to the hardware that it should not filter beacons or probe responses * by BSSID. Filtering them can greatly reduce the amount of processing * mac80211 needs to do and the amount of CPU wakeups, so you should * honour this flag if possible. * * @FIF_CONTROL: pass control frames (except for PS Poll) addressed to this * station * * @FIF_OTHER_BSS: pass frames destined to other BSSes * * @FIF_PSPOLL: pass PS Poll frames * * @FIF_PROBE_REQ: pass probe request frames * * @FIF_MCAST_ACTION: pass multicast Action frames */ enum ieee80211_filter_flags { FIF_ALLMULTI = 1<<1, FIF_FCSFAIL = 1<<2, FIF_PLCPFAIL = 1<<3, FIF_BCN_PRBRESP_PROMISC = 1<<4, FIF_CONTROL = 1<<5, FIF_OTHER_BSS = 1<<6, FIF_PSPOLL = 1<<7, FIF_PROBE_REQ = 1<<8, FIF_MCAST_ACTION = 1<<9, }; /** * enum ieee80211_ampdu_mlme_action - A-MPDU actions * * These flags are used with the ampdu_action() callback in * &struct ieee80211_ops to indicate which action is needed. * * Note that drivers MUST be able to deal with a TX aggregation * session being stopped even before they OK'ed starting it by * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer * might receive the addBA frame and send a delBA right away! * * @IEEE80211_AMPDU_RX_START: start RX aggregation * @IEEE80211_AMPDU_RX_STOP: stop RX aggregation * @IEEE80211_AMPDU_TX_START: start TX aggregation, the driver must either * call ieee80211_start_tx_ba_cb_irqsafe() or * call ieee80211_start_tx_ba_cb_irqsafe() with status * %IEEE80211_AMPDU_TX_START_DELAY_ADDBA to delay addba after * ieee80211_start_tx_ba_cb_irqsafe is called, or just return the special * status %IEEE80211_AMPDU_TX_START_IMMEDIATE. * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational * @IEEE80211_AMPDU_TX_STOP_CONT: stop TX aggregation but continue transmitting * queued packets, now unaggregated. After all packets are transmitted the * driver has to call ieee80211_stop_tx_ba_cb_irqsafe(). * @IEEE80211_AMPDU_TX_STOP_FLUSH: stop TX aggregation and flush all packets, * called when the station is removed. There's no need or reason to call * ieee80211_stop_tx_ba_cb_irqsafe() in this case as mac80211 assumes the * session is gone and removes the station. * @IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: called when TX aggregation is stopped * but the driver hasn't called ieee80211_stop_tx_ba_cb_irqsafe() yet and * now the connection is dropped and the station will be removed. Drivers * should clean up and drop remaining packets when this is called. */ enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START, IEEE80211_AMPDU_RX_STOP, IEEE80211_AMPDU_TX_START, IEEE80211_AMPDU_TX_STOP_CONT, IEEE80211_AMPDU_TX_STOP_FLUSH, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT, IEEE80211_AMPDU_TX_OPERATIONAL, }; #define IEEE80211_AMPDU_TX_START_IMMEDIATE 1 #define IEEE80211_AMPDU_TX_START_DELAY_ADDBA 2 /** * struct ieee80211_ampdu_params - AMPDU action parameters * * @action: the ampdu action, value from %ieee80211_ampdu_mlme_action. * @sta: peer of this AMPDU session * @tid: tid of the BA session * @ssn: start sequence number of the session. TX/RX_STOP can pass 0. When * action is set to %IEEE80211_AMPDU_RX_START the driver passes back the * actual ssn value used to start the session and writes the value here. * @buf_size: reorder buffer size (number of subframes). Valid only when the * action is set to %IEEE80211_AMPDU_RX_START or * %IEEE80211_AMPDU_TX_OPERATIONAL * @amsdu: indicates the peer's ability to receive A-MSDU within A-MPDU. * valid when the action is set to %IEEE80211_AMPDU_TX_OPERATIONAL * @timeout: BA session timeout. Valid only when the action is set to * %IEEE80211_AMPDU_RX_START */ struct ieee80211_ampdu_params { enum ieee80211_ampdu_mlme_action action; struct ieee80211_sta *sta; u16 tid; u16 ssn; u16 buf_size; bool amsdu; u16 timeout; }; /** * enum ieee80211_frame_release_type - frame release reason * @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll * @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to * frame received on trigger-enabled AC */ enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL, IEEE80211_FRAME_RELEASE_UAPSD, }; /** * enum ieee80211_rate_control_changed - flags to indicate what changed * * @IEEE80211_RC_BW_CHANGED: The bandwidth that can be used to transmit * to this station changed. The actual bandwidth is in the station * information -- for HT20/40 the IEEE80211_HT_CAP_SUP_WIDTH_20_40 * flag changes, for HT and VHT the bandwidth field changes. * @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed. * @IEEE80211_RC_SUPP_RATES_CHANGED: The supported rate set of this peer * changed (in IBSS mode) due to discovering more information about * the peer. * @IEEE80211_RC_NSS_CHANGED: N_SS (number of spatial streams) was changed * by the peer */ enum ieee80211_rate_control_changed { IEEE80211_RC_BW_CHANGED = BIT(0), IEEE80211_RC_SMPS_CHANGED = BIT(1), IEEE80211_RC_SUPP_RATES_CHANGED = BIT(2), IEEE80211_RC_NSS_CHANGED = BIT(3), }; /** * enum ieee80211_roc_type - remain on channel type * * With the support for multi channel contexts and multi channel operations, * remain on channel operations might be limited/deferred/aborted by other * flows/operations which have higher priority (and vice versa). * Specifying the ROC type can be used by devices to prioritize the ROC * operations compared to other operations/flows. * * @IEEE80211_ROC_TYPE_NORMAL: There are no special requirements for this ROC. * @IEEE80211_ROC_TYPE_MGMT_TX: The remain on channel request is required * for sending management frames offchannel. */ enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX, }; /** * enum ieee80211_reconfig_type - reconfig type * * This enum is used by the reconfig_complete() callback to indicate what * reconfiguration type was completed. * * @IEEE80211_RECONFIG_TYPE_RESTART: hw restart type * (also due to resume() callback returning 1) * @IEEE80211_RECONFIG_TYPE_SUSPEND: suspend type (regardless * of wowlan configuration) */ enum ieee80211_reconfig_type { IEEE80211_RECONFIG_TYPE_RESTART, IEEE80211_RECONFIG_TYPE_SUSPEND, }; /** * struct ieee80211_ops - callbacks from mac80211 to the driver * * This structure contains various callbacks that the driver may * handle or, in some cases, must handle, for example to configure * the hardware to a new channel or to transmit a frame. * * @tx: Handler that 802.11 module calls for each transmitted frame. * skb contains the buffer starting from the IEEE 802.11 header. * The low-level driver should send the frame out based on * configuration in the TX control data. This handler should, * preferably, never fail and stop queues appropriately. * Must be atomic. * * @start: Called before the first netdevice attached to the hardware * is enabled. This should turn on the hardware and must turn on * frame reception (for possibly enabled monitor interfaces.) * Returns negative error codes, these may be seen in userspace, * or zero. * When the device is started it should not have a MAC address * to avoid acknowledging frames before a non-monitor device * is added. * Must be implemented and can sleep. * * @stop: Called after last netdevice attached to the hardware * is disabled. This should turn off the hardware (at least * it must turn off frame reception.) * May be called right after add_interface if that rejects * an interface. If you added any work onto the mac80211 workqueue * you should ensure to cancel it on this callback. * Must be implemented and can sleep. * * @suspend: Suspend the device; mac80211 itself will quiesce before and * stop transmitting and doing any other configuration, and then * ask the device to suspend. This is only invoked when WoWLAN is * configured, otherwise the device is deconfigured completely and * reconfigured at resume time. * The driver may also impose special conditions under which it * wants to use the "normal" suspend (deconfigure), say if it only * supports WoWLAN when the device is associated. In this case, it * must return 1 from this function. * * @resume: If WoWLAN was configured, this indicates that mac80211 is * now resuming its operation, after this the device must be fully * functional again. If this returns an error, the only way out is * to also unregister the device. If it returns 1, then mac80211 * will also go through the regular complete restart on resume. * * @set_wakeup: Enable or disable wakeup when WoWLAN configuration is * modified. The reason is that device_set_wakeup_enable() is * supposed to be called when the configuration changes, not only * in suspend(). * * @add_interface: Called when a netdevice attached to the hardware is * enabled. Because it is not called for monitor mode devices, @start * and @stop must be implemented. * The driver should perform any initialization it needs before * the device can be enabled. The initial configuration for the * interface is given in the conf parameter. * The callback may refuse to add an interface by returning a * negative error code (which will be seen in userspace.) * Must be implemented and can sleep. * * @change_interface: Called when a netdevice changes type. This callback * is optional, but only if it is supported can interface types be * switched while the interface is UP. The callback may sleep. * Note that while an interface is being switched, it will not be * found by the interface iteration callbacks. * * @remove_interface: Notifies a driver that an interface is going down. * The @stop callback is called after this if it is the last interface * and no monitor interfaces are present. * When all interfaces are removed, the MAC address in the hardware * must be cleared so the device no longer acknowledges packets, * the mac_addr member of the conf structure is, however, set to the * MAC address of the device going away. * Hence, this callback must be implemented. It can sleep. * * @config: Handler for configuration requests. IEEE 802.11 code calls this * function to change hardware configuration, e.g., channel. * This function should never fail but returns a negative error code * if it does. The callback can sleep. * * @bss_info_changed: Handler for configuration requests related to BSS * parameters that may vary during BSS's lifespan, and may affect low * level driver (e.g. assoc/disassoc status, erp parameters). * This function should not be used if no BSS has been set, unless * for association indication. The @changed parameter indicates which * of the bss parameters has changed when a call is made. The callback * can sleep. * * @prepare_multicast: Prepare for multicast filter configuration. * This callback is optional, and its return value is passed * to configure_filter(). This callback must be atomic. * * @configure_filter: Configure the device's RX filter. * See the section "Frame filtering" for more information. * This callback must be implemented and can sleep. * * @config_iface_filter: Configure the interface's RX filter. * This callback is optional and is used to configure which frames * should be passed to mac80211. The filter_flags is the combination * of FIF_* flags. The changed_flags is a bit mask that indicates * which flags are changed. * This callback can sleep. * * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit * must be set or cleared for a given STA. Must be atomic. * * @set_key: See the section "Hardware crypto acceleration" * This callback is only called between add_interface and * remove_interface calls, i.e. while the given virtual interface * is enabled. * Returns a negative error code if the key can't be added. * The callback can sleep. * * @update_tkip_key: See the section "Hardware crypto acceleration" * This callback will be called in the context of Rx. Called for drivers * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY. * The callback must be atomic. * * @set_rekey_data: If the device supports GTK rekeying, for example while the * host is suspended, it can assign this callback to retrieve the data * necessary to do GTK rekeying, this is the KEK, KCK and replay counter. * After rekeying was done it should (for example during resume) notify * userspace of the new replay counter using ieee80211_gtk_rekey_notify(). * * @set_default_unicast_key: Set the default (unicast) key index, useful for * WEP when the device sends data packets autonomously, e.g. for ARP * offloading. The index can be 0-3, or -1 for unsetting it. * * @hw_scan: Ask the hardware to service the scan request, no need to start * the scan state machine in stack. The scan must honour the channel * configuration done by the regulatory agent in the wiphy's * registered bands. The hardware (or the driver) needs to make sure * that power save is disabled. * The @req ie/ie_len members are rewritten by mac80211 to contain the * entire IEs after the SSID, so that drivers need not look at these * at all but just send them after the SSID -- mac80211 includes the * (extended) supported rates and HT information (where applicable). * When the scan finishes, ieee80211_scan_completed() must be called; * note that it also must be called when the scan cannot finish due to * any error unless this callback returned a negative error code. * This callback is also allowed to return the special return value 1, * this indicates that hardware scan isn't desirable right now and a * software scan should be done instead. A driver wishing to use this * capability must ensure its (hardware) scan capabilities aren't * advertised as more capable than mac80211's software scan is. * The callback can sleep. * * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan. * The driver should ask the hardware to cancel the scan (if possible), * but the scan will be completed only after the driver will call * ieee80211_scan_completed(). * This callback is needed for wowlan, to prevent enqueueing a new * scan_work after the low-level driver was already suspended. * The callback can sleep. * * @sched_scan_start: Ask the hardware to start scanning repeatedly at * specific intervals. The driver must call the * ieee80211_sched_scan_results() function whenever it finds results. * This process will continue until sched_scan_stop is called. * * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan. * In this case, ieee80211_sched_scan_stopped() must not be called. * * @sw_scan_start: Notifier function that is called just before a software scan * is started. Can be NULL, if the driver doesn't need this notification. * The mac_addr parameter allows supporting NL80211_SCAN_FLAG_RANDOM_ADDR, * the driver may set the NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR flag if it * can use this parameter. The callback can sleep. * * @sw_scan_complete: Notifier function that is called just after a * software scan finished. Can be NULL, if the driver doesn't need * this notification. * The callback can sleep. * * @get_stats: Return low-level statistics. * Returns zero if statistics are available. * The callback can sleep. * * @get_key_seq: If your device implements encryption in hardware and does * IV/PN assignment then this callback should be provided to read the * IV/PN for the given key from hardware. * The callback must be atomic. * * @set_frag_threshold: Configuration of fragmentation threshold. Assign this * if the device does fragmentation by itself. Note that to prevent the * stack from doing fragmentation IEEE80211_HW_SUPPORTS_TX_FRAG * should be set as well. * The callback can sleep. * * @set_rts_threshold: Configuration of RTS threshold (if device needs it) * The callback can sleep. * * @sta_add: Notifies low level driver about addition of an associated station, * AP, IBSS/WDS/mesh peer etc. This callback can sleep. * * @sta_remove: Notifies low level driver about removal of an associated * station, AP, IBSS/WDS/mesh peer etc. Note that after the callback * returns it isn't safe to use the pointer, not even RCU protected; * no RCU grace period is guaranteed between returning here and freeing * the station. See @sta_pre_rcu_remove if needed. * This callback can sleep. * * @sta_add_debugfs: Drivers can use this callback to add debugfs files * when a station is added to mac80211's station list. This callback * should be within a CONFIG_MAC80211_DEBUGFS conditional. This * callback can sleep. * * @sta_notify: Notifies low level driver about power state transition of an * associated station, AP, IBSS/WDS/mesh peer etc. For a VIF operating * in AP mode, this callback will not be called when the flag * %IEEE80211_HW_AP_LINK_PS is set. Must be atomic. * * @sta_set_txpwr: Configure the station tx power. This callback set the tx * power for the station. * This callback can sleep. * * @sta_state: Notifies low level driver about state transition of a * station (which can be the AP, a client, IBSS/WDS/mesh peer etc.) * This callback is mutually exclusive with @sta_add/@sta_remove. * It must not fail for down transitions but may fail for transitions * up the list of states. Also note that after the callback returns it * isn't safe to use the pointer, not even RCU protected - no RCU grace * period is guaranteed between returning here and freeing the station. * See @sta_pre_rcu_remove if needed. * The callback can sleep. * * @sta_pre_rcu_remove: Notify driver about station removal before RCU * synchronisation. This is useful if a driver needs to have station * pointers protected using RCU, it can then use this call to clear * the pointers instead of waiting for an RCU grace period to elapse * in @sta_state. * The callback can sleep. * * @sta_rc_update: Notifies the driver of changes to the bitrates that can be * used to transmit to the station. The changes are advertised with bits * from &enum ieee80211_rate_control_changed and the values are reflected * in the station data. This callback should only be used when the driver * uses hardware rate control (%IEEE80211_HW_HAS_RATE_CONTROL) since * otherwise the rate control algorithm is notified directly. * Must be atomic. * @sta_rate_tbl_update: Notifies the driver that the rate table changed. This * is only used if the configured rate control algorithm actually uses * the new rate table API, and is therefore optional. Must be atomic. * * @sta_statistics: Get statistics for this station. For example with beacon * filtering, the statistics kept by mac80211 might not be accurate, so * let the driver pre-fill the statistics. The driver can fill most of * the values (indicating which by setting the filled bitmap), but not * all of them make sense - see the source for which ones are possible. * Statistics that the driver doesn't fill will be filled by mac80211. * The callback can sleep. * * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), * bursting) for a hardware TX queue. * Returns a negative error code on failure. * The callback can sleep. * * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently, * this is only used for IBSS mode BSSID merging and debugging. Is not a * required function. * The callback can sleep. * * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware. * Currently, this is only used for IBSS mode debugging. Is not a * required function. * The callback can sleep. * * @offset_tsf: Offset the TSF timer by the specified value in the * firmware/hardware. Preferred to set_tsf as it avoids delay between * calling set_tsf() and hardware getting programmed, which will show up * as TSF delay. Is not a required function. * The callback can sleep. * * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize * with other STAs in the IBSS. This is only used in IBSS mode. This * function is optional if the firmware/hardware takes full care of * TSF synchronization. * The callback can sleep. * * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us. * This is needed only for IBSS mode and the result of this function is * used to determine whether to reply to Probe Requests. * Returns non-zero if this device sent the last beacon. * The callback can sleep. * * @get_survey: Return per-channel survey information * * @rfkill_poll: Poll rfkill hardware state. If you need this, you also * need to set wiphy->rfkill_poll to %true before registration, * and need to call wiphy_rfkill_set_hw_state() in the callback. * The callback can sleep. * * @set_coverage_class: Set slot time for given coverage class as specified * in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout * accordingly; coverage class equals to -1 to enable ACK timeout * estimation algorithm (dynack). To disable dynack set valid value for * coverage class. This callback is not required and may sleep. * * @testmode_cmd: Implement a cfg80211 test mode command. The passed @vif may * be %NULL. The callback can sleep. * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep. * * @flush: Flush all pending frames from the hardware queue, making sure * that the hardware queues are empty. The @queues parameter is a bitmap * of queues to flush, which is useful if different virtual interfaces * use different hardware queues; it may also indicate all queues. * If the parameter @drop is set to %true, pending frames may be dropped. * Note that vif can be NULL. * The callback can sleep. * * @channel_switch: Drivers that need (or want) to offload the channel * switch operation for CSAs received from the AP may implement this * callback. They must then call ieee80211_chswitch_done() to indicate * completion of the channel switch. * * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device. * Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may * reject TX/RX mask combinations they cannot support by returning -EINVAL * (also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX). * * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant). * * @remain_on_channel: Starts an off-channel period on the given channel, must * call back to ieee80211_ready_on_channel() when on that channel. Note * that normal channel traffic is not stopped as this is intended for hw * offload. Frames to transmit on the off-channel channel are transmitted * normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the * duration (which will always be non-zero) expires, the driver must call * ieee80211_remain_on_channel_expired(). * Note that this callback may be called while the device is in IDLE and * must be accepted in this case. * This callback may sleep. * @cancel_remain_on_channel: Requests that an ongoing off-channel period is * aborted before it expires. This callback may sleep. * * @set_ringparam: Set tx and rx ring sizes. * * @get_ringparam: Get tx and rx ring current and maximum sizes. * * @tx_frames_pending: Check if there is any pending frame in the hardware * queues before entering power save. * * @set_bitrate_mask: Set a mask of rates to be used for rate control selection * when transmitting a frame. Currently only legacy rates are handled. * The callback can sleep. * @event_callback: Notify driver about any event in mac80211. See * &enum ieee80211_event_type for the different types. * The callback must be atomic. * * @release_buffered_frames: Release buffered frames according to the given * parameters. In the case where the driver buffers some frames for * sleeping stations mac80211 will use this callback to tell the driver * to release some frames, either for PS-poll or uAPSD. * Note that if the @more_data parameter is %false the driver must check * if there are more frames on the given TIDs, and if there are more than * the frames being released then it must still set the more-data bit in * the frame. If the @more_data parameter is %true, then of course the * more-data bit must always be set. * The @tids parameter tells the driver which TIDs to release frames * from, for PS-poll it will always have only a single bit set. * In the case this is used for a PS-poll initiated release, the * @num_frames parameter will always be 1 so code can be shared. In * this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag * on the TX status (and must report TX status) so that the PS-poll * period is properly ended. This is used to avoid sending multiple * responses for a retried PS-poll frame. * In the case this is used for uAPSD, the @num_frames parameter may be * bigger than one, but the driver may send fewer frames (it must send * at least one, however). In this case it is also responsible for * setting the EOSP flag in the QoS header of the frames. Also, when the * service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP * on the last frame in the SP. Alternatively, it may call the function * ieee80211_sta_eosp() to inform mac80211 of the end of the SP. * This callback must be atomic. * @allow_buffered_frames: Prepare device to allow the given number of frames * to go out to the given station. The frames will be sent by mac80211 * via the usual TX path after this call. The TX information for frames * released will also have the %IEEE80211_TX_CTL_NO_PS_BUFFER flag set * and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case * frames from multiple TIDs are released and the driver might reorder * them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag * on the last frame and clear it on all others and also handle the EOSP * bit in the QoS header correctly. Alternatively, it can also call the * ieee80211_sta_eosp() function. * The @tids parameter is a bitmap and tells the driver which TIDs the * frames will be on; it will at most have two bits set. * This callback must be atomic. * * @get_et_sset_count: Ethtool API to get string-set count. * * @get_et_stats: Ethtool API to get a set of u64 stats. * * @get_et_strings: Ethtool API to get a set of strings to describe stats * and perhaps other supported types of ethtool data-sets. * * @mgd_prepare_tx: Prepare for transmitting a management frame for association * before associated. In multi-channel scenarios, a virtual interface is * bound to a channel before it is associated, but as it isn't associated * yet it need not necessarily be given airtime, in particular since any * transmission to a P2P GO needs to be synchronized against the GO's * powersave state. mac80211 will call this function before transmitting a * management frame prior to having successfully associated to allow the * driver to give it channel time for the transmission, to get a response * and to be able to synchronize with the GO. * For drivers that set %IEEE80211_HW_DEAUTH_NEED_MGD_TX_PREP, mac80211 * would also call this function before transmitting a deauthentication * frame in case that no beacon was heard from the AP/P2P GO. * The callback will be called before each transmission and upon return * mac80211 will transmit the frame right away. * If duration is greater than zero, mac80211 hints to the driver the * duration for which the operation is requested. * The callback is optional and can (should!) sleep. * * @mgd_protect_tdls_discover: Protect a TDLS discovery session. After sending * a TDLS discovery-request, we expect a reply to arrive on the AP's * channel. We must stay on the channel (no PSM, scan, etc.), since a TDLS * setup-response is a direct packet not buffered by the AP. * mac80211 will call this function just before the transmission of a TDLS * discovery-request. The recommended period of protection is at least * 2 * (DTIM period). * The callback is optional and can sleep. * * @add_chanctx: Notifies device driver about new channel context creation. * This callback may sleep. * @remove_chanctx: Notifies device driver about channel context destruction. * This callback may sleep. * @change_chanctx: Notifies device driver about channel context changes that * may happen when combining different virtual interfaces on the same * channel context with different settings * This callback may sleep. * @assign_vif_chanctx: Notifies device driver about channel context being bound * to vif. Possible use is for hw queue remapping. * This callback may sleep. * @unassign_vif_chanctx: Notifies device driver about channel context being * unbound from vif. * This callback may sleep. * @switch_vif_chanctx: switch a number of vifs from one chanctx to * another, as specified in the list of * @ieee80211_vif_chanctx_switch passed to the driver, according * to the mode defined in &ieee80211_chanctx_switch_mode. * This callback may sleep. * * @start_ap: Start operation on the AP interface, this is called after all the * information in bss_conf is set and beacon can be retrieved. A channel * context is bound before this is called. Note that if the driver uses * software scan or ROC, this (and @stop_ap) isn't called when the AP is * just "paused" for scanning/ROC, which is indicated by the beacon being * disabled/enabled via @bss_info_changed. * @stop_ap: Stop operation on the AP interface. * * @reconfig_complete: Called after a call to ieee80211_restart_hw() and * during resume, when the reconfiguration has completed. * This can help the driver implement the reconfiguration step (and * indicate mac80211 is ready to receive frames). * This callback may sleep. * * @ipv6_addr_change: IPv6 address assignment on the given interface changed. * Currently, this is only called for managed or P2P client interfaces. * This callback is optional; it must not sleep. * * @channel_switch_beacon: Starts a channel switch to a new channel. * Beacons are modified to include CSA or ECSA IEs before calling this * function. The corresponding count fields in these IEs must be * decremented, and when they reach 1 the driver must call * ieee80211_csa_finish(). Drivers which use ieee80211_beacon_get() * get the csa counter decremented by mac80211, but must check if it is * 1 using ieee80211_beacon_counter_is_complete() after the beacon has been * transmitted and then call ieee80211_csa_finish(). * If the CSA count starts as zero or 1, this function will not be called, * since there won't be any time to beacon before the switch anyway. * @pre_channel_switch: This is an optional callback that is called * before a channel switch procedure is started (ie. when a STA * gets a CSA or a userspace initiated channel-switch), allowing * the driver to prepare for the channel switch. * @post_channel_switch: This is an optional callback that is called * after a channel switch procedure is completed, allowing the * driver to go back to a normal configuration. * @abort_channel_switch: This is an optional callback that is called * when channel switch procedure was completed, allowing the * driver to go back to a normal configuration. * @channel_switch_rx_beacon: This is an optional callback that is called * when channel switch procedure is in progress and additional beacon with * CSA IE was received, allowing driver to track changes in count. * @join_ibss: Join an IBSS (on an IBSS interface); this is called after all * information in bss_conf is set up and the beacon can be retrieved. A * channel context is bound before this is called. * @leave_ibss: Leave the IBSS again. * * @get_expected_throughput: extract the expected throughput towards the * specified station. The returned value is expressed in Kbps. It returns 0 * if the RC algorithm does not have proper data to provide. * * @get_txpower: get current maximum tx power (in dBm) based on configuration * and hardware limits. * * @tdls_channel_switch: Start channel-switching with a TDLS peer. The driver * is responsible for continually initiating channel-switching operations * and returning to the base channel for communication with the AP. The * driver receives a channel-switch request template and the location of * the switch-timing IE within the template as part of the invocation. * The template is valid only within the call, and the driver can * optionally copy the skb for further re-use. * @tdls_cancel_channel_switch: Stop channel-switching with a TDLS peer. Both * peers must be on the base channel when the call completes. * @tdls_recv_channel_switch: a TDLS channel-switch related frame (request or * response) has been received from a remote peer. The driver gets * parameters parsed from the incoming frame and may use them to continue * an ongoing channel-switch operation. In addition, a channel-switch * response template is provided, together with the location of the * switch-timing IE within the template. The skb can only be used within * the function call. * * @wake_tx_queue: Called when new packets have been added to the queue. * @sync_rx_queues: Process all pending frames in RSS queues. This is a * synchronization which is needed in case driver has in its RSS queues * pending frames that were received prior to the control path action * currently taken (e.g. disassociation) but are not processed yet. * * @start_nan: join an existing NAN cluster, or create a new one. * @stop_nan: leave the NAN cluster. * @nan_change_conf: change NAN configuration. The data in cfg80211_nan_conf * contains full new configuration and changes specify which parameters * are changed with respect to the last NAN config. * The driver gets both full configuration and the changed parameters since * some devices may need the full configuration while others need only the * changed parameters. * @add_nan_func: Add a NAN function. Returns 0 on success. The data in * cfg80211_nan_func must not be referenced outside the scope of * this call. * @del_nan_func: Remove a NAN function. The driver must call * ieee80211_nan_func_terminated() with * NL80211_NAN_FUNC_TERM_REASON_USER_REQUEST reason code upon removal. * @can_aggregate_in_amsdu: Called in order to determine if HW supports * aggregating two specific frames in the same A-MSDU. The relation * between the skbs should be symmetric and transitive. Note that while * skb is always a real frame, head may or may not be an A-MSDU. * @get_ftm_responder_stats: Retrieve FTM responder statistics, if available. * Statistics should be cumulative, currently no way to reset is provided. * * @start_pmsr: start peer measurement (e.g. FTM) (this call can sleep) * @abort_pmsr: abort peer measurement (this call can sleep) * @set_tid_config: Apply TID specific configurations. This callback may sleep. * @reset_tid_config: Reset TID specific configuration for the peer. * This callback may sleep. * @update_vif_offload: Update virtual interface offload flags * This callback may sleep. * @sta_set_4addr: Called to notify the driver when a station starts/stops using * 4-address mode */ struct ieee80211_ops { void (*tx)(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb); int (*start)(struct ieee80211_hw *hw); void (*stop)(struct ieee80211_hw *hw); #ifdef CONFIG_PM int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan); int (*resume)(struct ieee80211_hw *hw); void (*set_wakeup)(struct ieee80211_hw *hw, bool enabled); #endif int (*add_interface)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*change_interface)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_iftype new_type, bool p2p); void (*remove_interface)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*config)(struct ieee80211_hw *hw, u32 changed); void (*bss_info_changed)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed); int (*start_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void (*stop_ap)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); u64 (*prepare_multicast)(struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list); void (*configure_filter)(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast); void (*config_iface_filter)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int filter_flags, unsigned int changed_flags); int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set); int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key); void (*update_tkip_key)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_key_conf *conf, struct ieee80211_sta *sta, u32 iv32, u16 *phase1key); void (*set_rekey_data)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_gtk_rekey_data *data); void (*set_default_unicast_key)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int idx); int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *req); void (*cancel_hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*sched_scan_start)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_sched_scan_request *req, struct ieee80211_scan_ies *ies); int (*sched_scan_stop)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void (*sw_scan_start)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const u8 *mac_addr); void (*sw_scan_complete)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*get_stats)(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats); void (*get_key_seq)(struct ieee80211_hw *hw, struct ieee80211_key_conf *key, struct ieee80211_key_seq *seq); int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value); int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value); int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); #ifdef CONFIG_MAC80211_DEBUGFS void (*sta_add_debugfs)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct dentry *dir); #endif void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd, struct ieee80211_sta *sta); int (*sta_set_txpwr)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); int (*sta_state)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state); void (*sta_pre_rcu_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); void (*sta_rc_update)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed); void (*sta_rate_tbl_update)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); void (*sta_statistics)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct station_info *sinfo); int (*conf_tx)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 ac, const struct ieee80211_tx_queue_params *params); u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf); void (*offset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, s64 offset); void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*tx_last_beacon)(struct ieee80211_hw *hw); /** * @ampdu_action: * Perform a certain A-MPDU action. * The RA/TID combination determines the destination and TID we want * the ampdu action to be performed for. The action is defined through * ieee80211_ampdu_mlme_action. * When the action is set to %IEEE80211_AMPDU_TX_OPERATIONAL the driver * may neither send aggregates containing more subframes than @buf_size * nor send aggregates in a way that lost frames would exceed the * buffer size. If just limiting the aggregate size, this would be * possible with a buf_size of 8: * * - ``TX: 1.....7`` * - ``RX: 2....7`` (lost frame #1) * - ``TX: 8..1...`` * * which is invalid since #1 was now re-transmitted well past the * buffer size of 8. Correct ways to retransmit #1 would be: * * - ``TX: 1 or`` * - ``TX: 18 or`` * - ``TX: 81`` * * Even ``189`` would be wrong since 1 could be lost again. * * Returns a negative error code on failure. The driver may return * %IEEE80211_AMPDU_TX_START_IMMEDIATE for %IEEE80211_AMPDU_TX_START * if the session can start immediately. * * The callback can sleep. */ int (*ampdu_action)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params); int (*get_survey)(struct ieee80211_hw *hw, int idx, struct survey_info *survey); void (*rfkill_poll)(struct ieee80211_hw *hw); void (*set_coverage_class)(struct ieee80211_hw *hw, s16 coverage_class); #ifdef CONFIG_NL80211_TESTMODE int (*testmode_cmd)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len); int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len); #endif void (*flush)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop); void (*channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel_switch *ch_switch); int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); int (*remain_on_channel)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type); int (*cancel_remain_on_channel)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx); void (*get_ringparam)(struct ieee80211_hw *hw, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); bool (*tx_frames_pending)(struct ieee80211_hw *hw); int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask); void (*event_callback)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct ieee80211_event *event); void (*allow_buffered_frames)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data); void (*release_buffered_frames)(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data); int (*get_et_sset_count)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int sset); void (*get_et_stats)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ethtool_stats *stats, u64 *data); void (*get_et_strings)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 sset, u8 *data); void (*mgd_prepare_tx)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 duration); void (*mgd_protect_tdls_discover)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*add_chanctx)(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx); void (*remove_chanctx)(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx); void (*change_chanctx)(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx, u32 changed); int (*assign_vif_chanctx)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_chanctx_conf *ctx); void (*unassign_vif_chanctx)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_chanctx_conf *ctx); int (*switch_vif_chanctx)(struct ieee80211_hw *hw, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode); void (*reconfig_complete)(struct ieee80211_hw *hw, enum ieee80211_reconfig_type reconfig_type); #if IS_ENABLED(CONFIG_IPV6) void (*ipv6_addr_change)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct inet6_dev *idev); #endif void (*channel_switch_beacon)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_chan_def *chandef); int (*pre_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel_switch *ch_switch); int (*post_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void (*abort_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void (*channel_switch_rx_beacon)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel_switch *ch_switch); int (*join_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void (*leave_ibss)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); u32 (*get_expected_throughput)(struct ieee80211_hw *hw, struct ieee80211_sta *sta); int (*get_txpower)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int *dbm); int (*tdls_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u8 oper_class, struct cfg80211_chan_def *chandef, struct sk_buff *tmpl_skb, u32 ch_sw_tm_ie); void (*tdls_cancel_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta); void (*tdls_recv_channel_switch)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_tdls_ch_sw_params *params); void (*wake_tx_queue)(struct ieee80211_hw *hw, struct ieee80211_txq *txq); void (*sync_rx_queues)(struct ieee80211_hw *hw); int (*start_nan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_nan_conf *conf); int (*stop_nan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); int (*nan_change_conf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_nan_conf *conf, u32 changes); int (*add_nan_func)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_nan_func *nan_func); void (*del_nan_func)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u8 instance_id); bool (*can_aggregate_in_amsdu)(struct ieee80211_hw *hw, struct sk_buff *head, struct sk_buff *skb); int (*get_ftm_responder_stats)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_ftm_responder_stats *ftm_stats); int (*start_pmsr)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_pmsr_request *request); void (*abort_pmsr)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_pmsr_request *request); int (*set_tid_config)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct cfg80211_tid_config *tid_conf); int (*reset_tid_config)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u8 tids); void (*update_vif_offload)(struct ieee80211_hw *hw, struct ieee80211_vif *vif); void (*sta_set_4addr)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool enabled); }; /** * ieee80211_alloc_hw_nm - Allocate a new hardware device * * This must be called once for each hardware device. The returned pointer * must be used to refer to this device when calling other functions. * mac80211 allocates a private data area for the driver pointed to by * @priv in &struct ieee80211_hw, the size of this area is given as * @priv_data_len. * * @priv_data_len: length of private data * @ops: callbacks for this device * @requested_name: Requested name for this device. * NULL is valid value, and means use the default naming (phy%d) * * Return: A pointer to the new hardware device, or %NULL on error. */ struct ieee80211_hw *ieee80211_alloc_hw_nm(size_t priv_data_len, const struct ieee80211_ops *ops, const char *requested_name); /** * ieee80211_alloc_hw - Allocate a new hardware device * * This must be called once for each hardware device. The returned pointer * must be used to refer to this device when calling other functions. * mac80211 allocates a private data area for the driver pointed to by * @priv in &struct ieee80211_hw, the size of this area is given as * @priv_data_len. * * @priv_data_len: length of private data * @ops: callbacks for this device * * Return: A pointer to the new hardware device, or %NULL on error. */ static inline struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct ieee80211_ops *ops) { return ieee80211_alloc_hw_nm(priv_data_len, ops, NULL); } /** * ieee80211_register_hw - Register hardware device * * You must call this function before any other functions in * mac80211. Note that before a hardware can be registered, you * need to fill the contained wiphy's information. * * @hw: the device to register as returned by ieee80211_alloc_hw() * * Return: 0 on success. An error code otherwise. */ int ieee80211_register_hw(struct ieee80211_hw *hw); /** * struct ieee80211_tpt_blink - throughput blink description * @throughput: throughput in Kbit/sec * @blink_time: blink time in milliseconds * (full cycle, ie. one off + one on period) */ struct ieee80211_tpt_blink { int throughput; int blink_time; }; /** * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one * interface is connected in some way, including being an AP */ enum ieee80211_tpt_led_trigger_flags { IEEE80211_TPT_LEDTRIG_FL_RADIO = BIT(0), IEEE80211_TPT_LEDTRIG_FL_WORK = BIT(1), IEEE80211_TPT_LEDTRIG_FL_CONNECTED = BIT(2), }; #ifdef CONFIG_MAC80211_LEDS const char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw); const char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw); const char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw); const char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw); const char * __ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, const struct ieee80211_tpt_blink *blink_table, unsigned int blink_table_len); #endif /** * ieee80211_get_tx_led_name - get name of TX LED * * mac80211 creates a transmit LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for * * Return: The name of the LED trigger. %NULL if not configured for LEDs. */ static inline const char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_tx_led_name(hw); #else return NULL; #endif } /** * ieee80211_get_rx_led_name - get name of RX LED * * mac80211 creates a receive LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for * * Return: The name of the LED trigger. %NULL if not configured for LEDs. */ static inline const char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_rx_led_name(hw); #else return NULL; #endif } /** * ieee80211_get_assoc_led_name - get name of association LED * * mac80211 creates a association LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for * * Return: The name of the LED trigger. %NULL if not configured for LEDs. */ static inline const char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_assoc_led_name(hw); #else return NULL; #endif } /** * ieee80211_get_radio_led_name - get name of radio LED * * mac80211 creates a radio change LED trigger for each wireless hardware * that can be used to drive LEDs if your driver registers a LED device. * This function returns the name (or %NULL if not configured for LEDs) * of the trigger so you can automatically link the LED device. * * @hw: the hardware to get the LED trigger name for * * Return: The name of the LED trigger. %NULL if not configured for LEDs. */ static inline const char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_get_radio_led_name(hw); #else return NULL; #endif } /** * ieee80211_create_tpt_led_trigger - create throughput LED trigger * @hw: the hardware to create the trigger for * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags * @blink_table: the blink table -- needs to be ordered by throughput * @blink_table_len: size of the blink table * * Return: %NULL (in case of error, or if no LED triggers are * configured) or the name of the new trigger. * * Note: This function must be called before ieee80211_register_hw(). */ static inline const char * ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, const struct ieee80211_tpt_blink *blink_table, unsigned int blink_table_len) { #ifdef CONFIG_MAC80211_LEDS return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table, blink_table_len); #else return NULL; #endif } /** * ieee80211_unregister_hw - Unregister a hardware device * * This function instructs mac80211 to free allocated resources * and unregister netdevices from the networking subsystem. * * @hw: the hardware to unregister */ void ieee80211_unregister_hw(struct ieee80211_hw *hw); /** * ieee80211_free_hw - free hardware descriptor * * This function frees everything that was allocated, including the * private data for the driver. You must call ieee80211_unregister_hw() * before calling this function. * * @hw: the hardware to free */ void ieee80211_free_hw(struct ieee80211_hw *hw); /** * ieee80211_restart_hw - restart hardware completely * * Call this function when the hardware was restarted for some reason * (hardware error, ...) and the driver is unable to restore its state * by itself. mac80211 assumes that at this point the driver/hardware * is completely uninitialised and stopped, it starts the process by * calling the ->start() operation. The driver will need to reset all * internal state that it has prior to calling this function. * * @hw: the hardware to restart */ void ieee80211_restart_hw(struct ieee80211_hw *hw); /** * ieee80211_rx_list - receive frame and store processed skbs in a list * * Use this function to hand received frames to mac80211. The receive * buffer in @skb must start with an IEEE 802.11 header. In case of a * paged @skb is used, the driver is recommended to put the ieee80211 * header of the frame on the linear part of the @skb to avoid memory * allocation and/or memcpy by the stack. * * This function may not be called in IRQ context. Calls to this function * for a single hardware must be synchronized against each other. Calls to * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be * mixed for a single hardware. Must not run concurrently with * ieee80211_tx_status() or ieee80211_tx_status_ni(). * * This function must be called with BHs disabled and RCU read lock * * @hw: the hardware this frame came in on * @sta: the station the frame was received from, or %NULL * @skb: the buffer to receive, owned by mac80211 after this call * @list: the destination list */ void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct sk_buff *skb, struct list_head *list); /** * ieee80211_rx_napi - receive frame from NAPI context * * Use this function to hand received frames to mac80211. The receive * buffer in @skb must start with an IEEE 802.11 header. In case of a * paged @skb is used, the driver is recommended to put the ieee80211 * header of the frame on the linear part of the @skb to avoid memory * allocation and/or memcpy by the stack. * * This function may not be called in IRQ context. Calls to this function * for a single hardware must be synchronized against each other. Calls to * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be * mixed for a single hardware. Must not run concurrently with * ieee80211_tx_status() or ieee80211_tx_status_ni(). * * This function must be called with BHs disabled. * * @hw: the hardware this frame came in on * @sta: the station the frame was received from, or %NULL * @skb: the buffer to receive, owned by mac80211 after this call * @napi: the NAPI context */ void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct sk_buff *skb, struct napi_struct *napi); /** * ieee80211_rx - receive frame * * Use this function to hand received frames to mac80211. The receive * buffer in @skb must start with an IEEE 802.11 header. In case of a * paged @skb is used, the driver is recommended to put the ieee80211 * header of the frame on the linear part of the @skb to avoid memory * allocation and/or memcpy by the stack. * * This function may not be called in IRQ context. Calls to this function * for a single hardware must be synchronized against each other. Calls to * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be * mixed for a single hardware. Must not run concurrently with * ieee80211_tx_status() or ieee80211_tx_status_ni(). * * In process context use instead ieee80211_rx_ni(). * * @hw: the hardware this frame came in on * @skb: the buffer to receive, owned by mac80211 after this call */ static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) { ieee80211_rx_napi(hw, NULL, skb, NULL); } /** * ieee80211_rx_irqsafe - receive frame * * Like ieee80211_rx() but can be called in IRQ context * (internally defers to a tasklet.) * * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not * be mixed for a single hardware.Must not run concurrently with * ieee80211_tx_status() or ieee80211_tx_status_ni(). * * @hw: the hardware this frame came in on * @skb: the buffer to receive, owned by mac80211 after this call */ void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); /** * ieee80211_rx_ni - receive frame (in process context) * * Like ieee80211_rx() but can be called in process context * (internally disables bottom halves). * * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may * not be mixed for a single hardware. Must not run concurrently with * ieee80211_tx_status() or ieee80211_tx_status_ni(). * * @hw: the hardware this frame came in on * @skb: the buffer to receive, owned by mac80211 after this call */ static inline void ieee80211_rx_ni(struct ieee80211_hw *hw, struct sk_buff *skb) { local_bh_disable(); ieee80211_rx(hw, skb); local_bh_enable(); } /** * ieee80211_sta_ps_transition - PS transition for connected sta * * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS * flag set, use this function to inform mac80211 about a connected station * entering/leaving PS mode. * * This function may not be called in IRQ context or with softirqs enabled. * * Calls to this function for a single hardware must be synchronized against * each other. * * @sta: currently connected sta * @start: start or stop PS * * Return: 0 on success. -EINVAL when the requested PS mode is already set. */ int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start); /** * ieee80211_sta_ps_transition_ni - PS transition for connected sta * (in process context) * * Like ieee80211_sta_ps_transition() but can be called in process context * (internally disables bottom halves). Concurrent call restriction still * applies. * * @sta: currently connected sta * @start: start or stop PS * * Return: Like ieee80211_sta_ps_transition(). */ static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta, bool start) { int ret; local_bh_disable(); ret = ieee80211_sta_ps_transition(sta, start); local_bh_enable(); return ret; } /** * ieee80211_sta_pspoll - PS-Poll frame received * @sta: currently connected station * * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS flag set, * use this function to inform mac80211 that a PS-Poll frame from a * connected station was received. * This must be used in conjunction with ieee80211_sta_ps_transition() * and possibly ieee80211_sta_uapsd_trigger(); calls to all three must * be serialized. */ void ieee80211_sta_pspoll(struct ieee80211_sta *sta); /** * ieee80211_sta_uapsd_trigger - (potential) U-APSD trigger frame received * @sta: currently connected station * @tid: TID of the received (potential) trigger frame * * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS flag set, * use this function to inform mac80211 that a (potential) trigger frame * from a connected station was received. * This must be used in conjunction with ieee80211_sta_ps_transition() * and possibly ieee80211_sta_pspoll(); calls to all three must be * serialized. * %IEEE80211_NUM_TIDS can be passed as the tid if the tid is unknown. * In this case, mac80211 will not check that this tid maps to an AC * that is trigger enabled and assume that the caller did the proper * checks. */ void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *sta, u8 tid); /* * The TX headroom reserved by mac80211 for its own tx_status functions. * This is enough for the radiotap header. */ #define IEEE80211_TX_STATUS_HEADROOM ALIGN(14, 4) /** * ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames * @sta: &struct ieee80211_sta pointer for the sleeping station * @tid: the TID that has buffered frames * @buffered: indicates whether or not frames are buffered for this TID * * If a driver buffers frames for a powersave station instead of passing * them back to mac80211 for retransmission, the station may still need * to be told that there are buffered frames via the TIM bit. * * This function informs mac80211 whether or not there are frames that are * buffered in the driver for a given TID; mac80211 can then use this data * to set the TIM bit (NOTE: This may call back into the driver's set_tim * call! Beware of the locking!) * * If all frames are released to the station (due to PS-poll or uAPSD) * then the driver needs to inform mac80211 that there no longer are * frames buffered. However, when the station wakes up mac80211 assumes * that all buffered frames will be transmitted and clears this data, * drivers need to make sure they inform mac80211 about all buffered * frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP). * * Note that technically mac80211 only needs to know this per AC, not per * TID, but since driver buffering will inevitably happen per TID (since * it is related to aggregation) it is easier to make mac80211 map the * TID to the AC as required instead of keeping track in all drivers that * use this API. */ void ieee80211_sta_set_buffered(struct ieee80211_sta *sta, u8 tid, bool buffered); /** * ieee80211_get_tx_rates - get the selected transmit rates for a packet * * Call this function in a driver with per-packet rate selection support * to combine the rate info in the packet tx info with the most recent * rate selection table for the station entry. * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @sta: the receiver station to which this packet is sent. * @skb: the frame to be transmitted. * @dest: buffer for extracted rate/retry information * @max_rates: maximum number of rates to fetch */ void ieee80211_get_tx_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct sk_buff *skb, struct ieee80211_tx_rate *dest, int max_rates); /** * ieee80211_sta_set_expected_throughput - set the expected tpt for a station * * Call this function to notify mac80211 about a change in expected throughput * to a station. A driver for a device that does rate control in firmware can * call this function when the expected throughput estimate towards a station * changes. The information is used to tune the CoDel AQM applied to traffic * going towards that station (which can otherwise be too aggressive and cause * slow stations to starve). * * @pubsta: the station to set throughput for. * @thr: the current expected throughput in kbps. */ void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, u32 thr); /** * ieee80211_tx_rate_update - transmit rate update callback * * Drivers should call this functions with a non-NULL pub sta * This function can be used in drivers that does not have provision * in updating the tx rate in data path. * * @hw: the hardware the frame was transmitted by * @pubsta: the station to update the tx rate for. * @info: tx status information */ void ieee80211_tx_rate_update(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct ieee80211_tx_info *info); /** * ieee80211_tx_status - transmit status callback * * Call this function for all transmitted frames after they have been * transmitted. It is permissible to not call this function for * multicast frames but this can affect statistics. * * This function may not be called in IRQ context. Calls to this function * for a single hardware must be synchronized against each other. Calls * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe() * may not be mixed for a single hardware. Must not run concurrently with * ieee80211_rx() or ieee80211_rx_ni(). * * @hw: the hardware the frame was transmitted by * @skb: the frame that was transmitted, owned by mac80211 after this call */ void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb); /** * ieee80211_tx_status_ext - extended transmit status callback * * This function can be used as a replacement for ieee80211_tx_status * in drivers that may want to provide extra information that does not * fit into &struct ieee80211_tx_info. * * Calls to this function for a single hardware must be synchronized * against each other. Calls to this function, ieee80211_tx_status_ni() * and ieee80211_tx_status_irqsafe() may not be mixed for a single hardware. * * @hw: the hardware the frame was transmitted by * @status: tx status information */ void ieee80211_tx_status_ext(struct ieee80211_hw *hw, struct ieee80211_tx_status *status); /** * ieee80211_tx_status_noskb - transmit status callback without skb * * This function can be used as a replacement for ieee80211_tx_status * in drivers that cannot reliably map tx status information back to * specific skbs. * * Calls to this function for a single hardware must be synchronized * against each other. Calls to this function, ieee80211_tx_status_ni() * and ieee80211_tx_status_irqsafe() may not be mixed for a single hardware. * * @hw: the hardware the frame was transmitted by * @sta: the receiver station to which this packet is sent * (NULL for multicast packets) * @info: tx status information */ static inline void ieee80211_tx_status_noskb(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct ieee80211_tx_info *info) { struct ieee80211_tx_status status = { .sta = sta, .info = info, }; ieee80211_tx_status_ext(hw, &status); } /** * ieee80211_tx_status_ni - transmit status callback (in process context) * * Like ieee80211_tx_status() but can be called in process context. * * Calls to this function, ieee80211_tx_status() and * ieee80211_tx_status_irqsafe() may not be mixed * for a single hardware. * * @hw: the hardware the frame was transmitted by * @skb: the frame that was transmitted, owned by mac80211 after this call */ static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw, struct sk_buff *skb) { local_bh_disable(); ieee80211_tx_status(hw, skb); local_bh_enable(); } /** * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback * * Like ieee80211_tx_status() but can be called in IRQ context * (internally defers to a tasklet.) * * Calls to this function, ieee80211_tx_status() and * ieee80211_tx_status_ni() may not be mixed for a single hardware. * * @hw: the hardware the frame was transmitted by * @skb: the frame that was transmitted, owned by mac80211 after this call */ void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb); /** * ieee80211_tx_status_8023 - transmit status callback for 802.3 frame format * * Call this function for all transmitted data frames after their transmit * completion. This callback should only be called for data frames which * are using driver's (or hardware's) offload capability of encap/decap * 802.11 frames. * * This function may not be called in IRQ context. Calls to this function * for a single hardware must be synchronized against each other and all * calls in the same tx status family. * * @hw: the hardware the frame was transmitted by * @vif: the interface for which the frame was transmitted * @skb: the frame that was transmitted, owned by mac80211 after this call */ void ieee80211_tx_status_8023(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb); /** * ieee80211_report_low_ack - report non-responding station * * When operating in AP-mode, call this function to report a non-responding * connected STA. * * @sta: the non-responding connected sta * @num_packets: number of packets sent to @sta without a response */ void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets); #define IEEE80211_MAX_CNTDWN_COUNTERS_NUM 2 /** * struct ieee80211_mutable_offsets - mutable beacon offsets * @tim_offset: position of TIM element * @tim_length: size of TIM element * @cntdwn_counter_offs: array of IEEE80211_MAX_CNTDWN_COUNTERS_NUM offsets * to countdown counters. This array can contain zero values which * should be ignored. */ struct ieee80211_mutable_offsets { u16 tim_offset; u16 tim_length; u16 cntdwn_counter_offs[IEEE80211_MAX_CNTDWN_COUNTERS_NUM]; }; /** * ieee80211_beacon_get_template - beacon template generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @offs: &struct ieee80211_mutable_offsets pointer to struct that will * receive the offsets that may be updated by the driver. * * If the driver implements beaconing modes, it must use this function to * obtain the beacon template. * * This function should be used if the beacon frames are generated by the * device, and then the driver must use the returned beacon as the template * The driver or the device are responsible to update the DTIM and, when * applicable, the CSA count. * * The driver is responsible for freeing the returned skb. * * Return: The beacon template. %NULL on error. */ struct sk_buff * ieee80211_beacon_get_template(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs); /** * ieee80211_beacon_get_tim - beacon generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @tim_offset: pointer to variable that will receive the TIM IE offset. * Set to 0 if invalid (in non-AP modes). * @tim_length: pointer to variable that will receive the TIM IE length, * (including the ID and length bytes!). * Set to 0 if invalid (in non-AP modes). * * If the driver implements beaconing modes, it must use this function to * obtain the beacon frame. * * If the beacon frames are generated by the host system (i.e., not in * hardware/firmware), the driver uses this function to get each beacon * frame from mac80211 -- it is responsible for calling this function exactly * once before the beacon is needed (e.g. based on hardware interrupt). * * The driver is responsible for freeing the returned skb. * * Return: The beacon template. %NULL on error. */ struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 *tim_offset, u16 *tim_length); /** * ieee80211_beacon_get - beacon generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * See ieee80211_beacon_get_tim(). * * Return: See ieee80211_beacon_get_tim(). */ static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { return ieee80211_beacon_get_tim(hw, vif, NULL, NULL); } /** * ieee80211_beacon_update_cntdwn - request mac80211 to decrement the beacon countdown * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * The beacon counter should be updated after each beacon transmission. * This function is called implicitly when * ieee80211_beacon_get/ieee80211_beacon_get_tim are called, however if the * beacon frames are generated by the device, the driver should call this * function after each beacon transmission to sync mac80211's beacon countdown. * * Return: new countdown value */ u8 ieee80211_beacon_update_cntdwn(struct ieee80211_vif *vif); /** * ieee80211_beacon_set_cntdwn - request mac80211 to set beacon countdown * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @counter: the new value for the counter * * The beacon countdown can be changed by the device, this API should be * used by the device driver to update csa counter in mac80211. * * It should never be used together with ieee80211_beacon_update_cntdwn(), * as it will cause a race condition around the counter value. */ void ieee80211_beacon_set_cntdwn(struct ieee80211_vif *vif, u8 counter); /** * ieee80211_csa_finish - notify mac80211 about channel switch * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * After a channel switch announcement was scheduled and the counter in this * announcement hits 1, this function must be called by the driver to * notify mac80211 that the channel can be changed. */ void ieee80211_csa_finish(struct ieee80211_vif *vif); /** * ieee80211_beacon_cntdwn_is_complete - find out if countdown reached 1 * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * This function returns whether the countdown reached zero. */ bool ieee80211_beacon_cntdwn_is_complete(struct ieee80211_vif *vif); /** * ieee80211_proberesp_get - retrieve a Probe Response template * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * Creates a Probe Response template which can, for example, be uploaded to * hardware. The destination address should be set by the caller. * * Can only be called in AP mode. * * Return: The Probe Response template. %NULL on error. */ struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif); /** * ieee80211_pspoll_get - retrieve a PS Poll template * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * Creates a PS Poll a template which can, for example, uploaded to * hardware. The template must be updated after association so that correct * AID, BSSID and MAC address is used. * * Note: Caller (or hardware) is responsible for setting the * &IEEE80211_FCTL_PM bit. * * Return: The PS Poll template. %NULL on error. */ struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif); /** * ieee80211_nullfunc_get - retrieve a nullfunc template * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @qos_ok: QoS NDP is acceptable to the caller, this should be set * if at all possible * * Creates a Nullfunc template which can, for example, uploaded to * hardware. The template must be updated after association so that correct * BSSID and address is used. * * If @qos_ndp is set and the association is to an AP with QoS/WMM, the * returned packet will be QoS NDP. * * Note: Caller (or hardware) is responsible for setting the * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields. * * Return: The nullfunc template. %NULL on error. */ struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, bool qos_ok); /** * ieee80211_probereq_get - retrieve a Probe Request template * @hw: pointer obtained from ieee80211_alloc_hw(). * @src_addr: source MAC address * @ssid: SSID buffer * @ssid_len: length of SSID * @tailroom: tailroom to reserve at end of SKB for IEs * * Creates a Probe Request template which can, for example, be uploaded to * hardware. * * Return: The Probe Request template. %NULL on error. */ struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, const u8 *src_addr, const u8 *ssid, size_t ssid_len, size_t tailroom); /** * ieee80211_rts_get - RTS frame generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @frame: pointer to the frame that is going to be protected by the RTS. * @frame_len: the frame length (in octets). * @frame_txctl: &struct ieee80211_tx_info of the frame. * @rts: The buffer where to store the RTS frame. * * If the RTS frames are generated by the host system (i.e., not in * hardware/firmware), the low-level driver uses this function to receive * the next RTS frame from the 802.11 code. The low-level is responsible * for calling this function before and RTS frame is needed. */ void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_rts *rts); /** * ieee80211_rts_duration - Get the duration field for an RTS frame * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @frame_len: the length of the frame that is going to be protected by the RTS. * @frame_txctl: &struct ieee80211_tx_info of the frame. * * If the RTS is generated in firmware, but the host system must provide * the duration field, the low-level driver uses this function to receive * the duration field value in little-endian byteorder. * * Return: The duration. */ __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl); /** * ieee80211_ctstoself_get - CTS-to-self frame generation function * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @frame: pointer to the frame that is going to be protected by the CTS-to-self. * @frame_len: the frame length (in octets). * @frame_txctl: &struct ieee80211_tx_info of the frame. * @cts: The buffer where to store the CTS-to-self frame. * * If the CTS-to-self frames are generated by the host system (i.e., not in * hardware/firmware), the low-level driver uses this function to receive * the next CTS-to-self frame from the 802.11 code. The low-level is responsible * for calling this function before and CTS-to-self frame is needed. */ void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_cts *cts); /** * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @frame_len: the length of the frame that is going to be protected by the CTS-to-self. * @frame_txctl: &struct ieee80211_tx_info of the frame. * * If the CTS-to-self is generated in firmware, but the host system must provide * the duration field, the low-level driver uses this function to receive * the duration field value in little-endian byteorder. * * Return: The duration. */ __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, size_t frame_len, const struct ieee80211_tx_info *frame_txctl); /** * ieee80211_generic_frame_duration - Calculate the duration field for a frame * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @band: the band to calculate the frame duration on * @frame_len: the length of the frame. * @rate: the rate at which the frame is going to be transmitted. * * Calculate the duration field of some generic frame, given its * length and transmission rate (in 100kbps). * * Return: The duration. */ __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum nl80211_band band, size_t frame_len, struct ieee80211_rate *rate); /** * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames * @hw: pointer as obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * Function for accessing buffered broadcast and multicast frames. If * hardware/firmware does not implement buffering of broadcast/multicast * frames when power saving is used, 802.11 code buffers them in the host * memory. The low-level driver uses this function to fetch next buffered * frame. In most cases, this is used when generating beacon frame. * * Return: A pointer to the next buffered skb or NULL if no more buffered * frames are available. * * Note: buffered frames are returned only after DTIM beacon frame was * generated with ieee80211_beacon_get() and the low-level driver must thus * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns * NULL if the previous generated beacon was not DTIM, so the low-level driver * does not need to check for DTIM beacons separately and should be able to * use common code for all beacons. */ struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif); /** * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32 * * This function returns the TKIP phase 1 key for the given IV32. * * @keyconf: the parameter passed with the set key * @iv32: IV32 to get the P1K for * @p1k: a buffer to which the key will be written, as 5 u16 values */ void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, u32 iv32, u16 *p1k); /** * ieee80211_get_tkip_p1k - get a TKIP phase 1 key * * This function returns the TKIP phase 1 key for the IV32 taken * from the given packet. * * @keyconf: the parameter passed with the set key * @skb: the packet to take the IV32 value from that will be encrypted * with this P1K * @p1k: a buffer to which the key will be written, as 5 u16 values */ static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf, struct sk_buff *skb, u16 *p1k) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); u32 iv32 = get_unaligned_le32(&data[4]); ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k); } /** * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX * * This function returns the TKIP phase 1 key for the given IV32 * and transmitter address. * * @keyconf: the parameter passed with the set key * @ta: TA that will be used with the key * @iv32: IV32 to get the P1K for * @p1k: a buffer to which the key will be written, as 5 u16 values */ void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, const u8 *ta, u32 iv32, u16 *p1k); /** * ieee80211_get_tkip_p2k - get a TKIP phase 2 key * * This function computes the TKIP RC4 key for the IV values * in the packet. * * @keyconf: the parameter passed with the set key * @skb: the packet to take the IV32/IV16 values from that will be * encrypted with this key * @p2k: a buffer to which the key will be written, 16 bytes */ void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, struct sk_buff *skb, u8 *p2k); /** * ieee80211_tkip_add_iv - write TKIP IV and Ext. IV to pos * * @pos: start of crypto header * @keyconf: the parameter passed with the set key * @pn: PN to add * * Returns: pointer to the octet following IVs (i.e. beginning of * the packet payload) * * This function writes the tkip IV value to pos (which should * point to the crypto header) */ u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key_conf *keyconf, u64 pn); /** * ieee80211_get_key_rx_seq - get key RX sequence counter * * @keyconf: the parameter passed with the set key * @tid: The TID, or -1 for the management frame value (CCMP/GCMP only); * the value on TID 0 is also used for non-QoS frames. For * CMAC, only TID 0 is valid. * @seq: buffer to receive the sequence data * * This function allows a driver to retrieve the current RX IV/PNs * for the given key. It must not be called if IV checking is done * by the device and not by mac80211. * * Note that this function may only be called when no RX processing * can be done concurrently. */ void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, int tid, struct ieee80211_key_seq *seq); /** * ieee80211_set_key_rx_seq - set key RX sequence counter * * @keyconf: the parameter passed with the set key * @tid: The TID, or -1 for the management frame value (CCMP/GCMP only); * the value on TID 0 is also used for non-QoS frames. For * CMAC, only TID 0 is valid. * @seq: new sequence data * * This function allows a driver to set the current RX IV/PNs for the * given key. This is useful when resuming from WoWLAN sleep and GTK * rekey may have been done while suspended. It should not be called * if IV checking is done by the device and not by mac80211. * * Note that this function may only be called when no RX processing * can be done concurrently. */ void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, int tid, struct ieee80211_key_seq *seq); /** * ieee80211_remove_key - remove the given key * @keyconf: the parameter passed with the set key * * Remove the given key. If the key was uploaded to the hardware at the * time this function is called, it is not deleted in the hardware but * instead assumed to have been removed already. * * Note that due to locking considerations this function can (currently) * only be called during key iteration (ieee80211_iter_keys().) */ void ieee80211_remove_key(struct ieee80211_key_conf *keyconf); /** * ieee80211_gtk_rekey_add - add a GTK key from rekeying during WoWLAN * @vif: the virtual interface to add the key on * @keyconf: new key data * * When GTK rekeying was done while the system was suspended, (a) new * key(s) will be available. These will be needed by mac80211 for proper * RX processing, so this function allows setting them. * * The function returns the newly allocated key structure, which will * have similar contents to the passed key configuration but point to * mac80211-owned memory. In case of errors, the function returns an * ERR_PTR(), use IS_ERR() etc. * * Note that this function assumes the key isn't added to hardware * acceleration, so no TX will be done with the key. Since it's a GTK * on managed (station) networks, this is true anyway. If the driver * calls this function from the resume callback and subsequently uses * the return code 1 to reconfigure the device, this key will be part * of the reconfiguration. * * Note that the driver should also call ieee80211_set_key_rx_seq() * for the new key for each TID to set up sequence counters properly. * * IMPORTANT: If this replaces a key that is present in the hardware, * then it will attempt to remove it during this call. In many cases * this isn't what you want, so call ieee80211_remove_key() first for * the key that's being replaced. */ struct ieee80211_key_conf * ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, struct ieee80211_key_conf *keyconf); /** * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying * @vif: virtual interface the rekeying was done on * @bssid: The BSSID of the AP, for checking association * @replay_ctr: the new replay counter after GTK rekeying * @gfp: allocation flags */ void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, const u8 *replay_ctr, gfp_t gfp); /** * ieee80211_wake_queue - wake specific queue * @hw: pointer as obtained from ieee80211_alloc_hw(). * @queue: queue number (counted from zero). * * Drivers should use this function instead of netif_wake_queue. */ void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue); /** * ieee80211_stop_queue - stop specific queue * @hw: pointer as obtained from ieee80211_alloc_hw(). * @queue: queue number (counted from zero). * * Drivers should use this function instead of netif_stop_queue. */ void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue); /** * ieee80211_queue_stopped - test status of the queue * @hw: pointer as obtained from ieee80211_alloc_hw(). * @queue: queue number (counted from zero). * * Drivers should use this function instead of netif_stop_queue. * * Return: %true if the queue is stopped. %false otherwise. */ int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue); /** * ieee80211_stop_queues - stop all queues * @hw: pointer as obtained from ieee80211_alloc_hw(). * * Drivers should use this function instead of netif_stop_queue. */ void ieee80211_stop_queues(struct ieee80211_hw *hw); /** * ieee80211_wake_queues - wake all queues * @hw: pointer as obtained from ieee80211_alloc_hw(). * * Drivers should use this function instead of netif_wake_queue. */ void ieee80211_wake_queues(struct ieee80211_hw *hw); /** * ieee80211_scan_completed - completed hardware scan * * When hardware scan offload is used (i.e. the hw_scan() callback is * assigned) this function needs to be called by the driver to notify * mac80211 that the scan finished. This function can be called from * any context, including hardirq context. * * @hw: the hardware that finished the scan * @info: information about the completed scan */ void ieee80211_scan_completed(struct ieee80211_hw *hw, struct cfg80211_scan_info *info); /** * ieee80211_sched_scan_results - got results from scheduled scan * * When a scheduled scan is running, this function needs to be called by the * driver whenever there are new scan results available. * * @hw: the hardware that is performing scheduled scans */ void ieee80211_sched_scan_results(struct ieee80211_hw *hw); /** * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped * * When a scheduled scan is running, this function can be called by * the driver if it needs to stop the scan to perform another task. * Usual scenarios are drivers that cannot continue the scheduled scan * while associating, for instance. * * @hw: the hardware that is performing scheduled scans */ void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw); /** * enum ieee80211_interface_iteration_flags - interface iteration flags * @IEEE80211_IFACE_ITER_NORMAL: Iterate over all interfaces that have * been added to the driver; However, note that during hardware * reconfiguration (after restart_hw) it will iterate over a new * interface and over all the existing interfaces even if they * haven't been re-added to the driver yet. * @IEEE80211_IFACE_ITER_RESUME_ALL: During resume, iterate over all * interfaces, even if they haven't been re-added to the driver yet. * @IEEE80211_IFACE_ITER_ACTIVE: Iterate only active interfaces (netdev is up). * @IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER: Skip any interfaces where SDATA * is not in the driver. This may fix crashes during firmware recovery * for instance. */ enum ieee80211_interface_iteration_flags { IEEE80211_IFACE_ITER_NORMAL = 0, IEEE80211_IFACE_ITER_RESUME_ALL = BIT(0), IEEE80211_IFACE_ITER_ACTIVE = BIT(1), IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER = BIT(2), }; /** * ieee80211_iterate_interfaces - iterate interfaces * * This function iterates over the interfaces associated with a given * hardware and calls the callback for them. This includes active as well as * inactive interfaces. This function allows the iterator function to sleep. * Will iterate over a new interface during add_interface(). * * @hw: the hardware struct of which the interfaces should be iterated over * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags * @iterator: the iterator function to call * @data: first argument of the iterator function */ void ieee80211_iterate_interfaces(struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data); /** * ieee80211_iterate_active_interfaces - iterate active interfaces * * This function iterates over the interfaces associated with a given * hardware that are currently active and calls the callback for them. * This function allows the iterator function to sleep, when the iterator * function is atomic @ieee80211_iterate_active_interfaces_atomic can * be used. * Does not iterate over a new interface during add_interface(). * * @hw: the hardware struct of which the interfaces should be iterated over * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags * @iterator: the iterator function to call * @data: first argument of the iterator function */ static inline void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data) { ieee80211_iterate_interfaces(hw, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, iterator, data); } /** * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces * * This function iterates over the interfaces associated with a given * hardware that are currently active and calls the callback for them. * This function requires the iterator callback function to be atomic, * if that is not desired, use @ieee80211_iterate_active_interfaces instead. * Does not iterate over a new interface during add_interface(). * * @hw: the hardware struct of which the interfaces should be iterated over * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags * @iterator: the iterator function to call, cannot sleep * @data: first argument of the iterator function */ void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data); /** * ieee80211_iterate_active_interfaces_rtnl - iterate active interfaces * * This function iterates over the interfaces associated with a given * hardware that are currently active and calls the callback for them. * This version can only be used while holding the RTNL. * * @hw: the hardware struct of which the interfaces should be iterated over * @iter_flags: iteration flags, see &enum ieee80211_interface_iteration_flags * @iterator: the iterator function to call, cannot sleep * @data: first argument of the iterator function */ void ieee80211_iterate_active_interfaces_rtnl(struct ieee80211_hw *hw, u32 iter_flags, void (*iterator)(void *data, u8 *mac, struct ieee80211_vif *vif), void *data); /** * ieee80211_iterate_stations_atomic - iterate stations * * This function iterates over all stations associated with a given * hardware that are currently uploaded to the driver and calls the callback * function for them. * This function requires the iterator callback function to be atomic, * * @hw: the hardware struct of which the interfaces should be iterated over * @iterator: the iterator function to call, cannot sleep * @data: first argument of the iterator function */ void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, void (*iterator)(void *data, struct ieee80211_sta *sta), void *data); /** * ieee80211_queue_work - add work onto the mac80211 workqueue * * Drivers and mac80211 use this to add work onto the mac80211 workqueue. * This helper ensures drivers are not queueing work when they should not be. * * @hw: the hardware struct for the interface we are adding work for * @work: the work we want to add onto the mac80211 workqueue */ void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work); /** * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue * * Drivers and mac80211 use this to queue delayed work onto the mac80211 * workqueue. * * @hw: the hardware struct for the interface we are adding work for * @dwork: delayable work to queue onto the mac80211 workqueue * @delay: number of jiffies to wait before queueing */ void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, struct delayed_work *dwork, unsigned long delay); /** * ieee80211_start_tx_ba_session - Start a tx Block Ack session. * @sta: the station for which to start a BA session * @tid: the TID to BA on. * @timeout: session timeout value (in TUs) * * Return: success if addBA request was sent, failure otherwise * * Although mac80211/low level driver/user space application can estimate * the need to start aggregation on a certain RA/TID, the session level * will be managed by the mac80211. */ int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid, u16 timeout); /** * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate. * @vif: &struct ieee80211_vif pointer from the add_interface callback * @ra: receiver address of the BA session recipient. * @tid: the TID to BA on. * * This function must be called by low level driver once it has * finished with preparations for the BA session. It can be called * from any context. */ void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, u16 tid); /** * ieee80211_stop_tx_ba_session - Stop a Block Ack session. * @sta: the station whose BA session to stop * @tid: the TID to stop BA. * * Return: negative error if the TID is invalid, or no aggregation active * * Although mac80211/low level driver/user space application can estimate * the need to stop aggregation on a certain RA/TID, the session level * will be managed by the mac80211. */ int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid); /** * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate. * @vif: &struct ieee80211_vif pointer from the add_interface callback * @ra: receiver address of the BA session recipient. * @tid: the desired TID to BA on. * * This function must be called by low level driver once it has * finished with preparations for the BA session tear down. It * can be called from any context. */ void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra, u16 tid); /** * ieee80211_find_sta - find a station * * @vif: virtual interface to look for station on * @addr: station's address * * Return: The station, if found. %NULL otherwise. * * Note: This function must be called under RCU lock and the * resulting pointer is only valid under RCU lock as well. */ struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, const u8 *addr); /** * ieee80211_find_sta_by_ifaddr - find a station on hardware * * @hw: pointer as obtained from ieee80211_alloc_hw() * @addr: remote station's address * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'. * * Return: The station, if found. %NULL otherwise. * * Note: This function must be called under RCU lock and the * resulting pointer is only valid under RCU lock as well. * * NOTE: You may pass NULL for localaddr, but then you will just get * the first STA that matches the remote address 'addr'. * We can have multiple STA associated with multiple * logical stations (e.g. consider a station connecting to another * BSSID on the same AP hardware without disconnecting first). * In this case, the result of this method with localaddr NULL * is not reliable. * * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible. */ struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, const u8 *addr, const u8 *localaddr); /** * ieee80211_sta_block_awake - block station from waking up * @hw: the hardware * @pubsta: the station * @block: whether to block or unblock * * Some devices require that all frames that are on the queues * for a specific station that went to sleep are flushed before * a poll response or frames after the station woke up can be * delivered to that it. Note that such frames must be rejected * by the driver as filtered, with the appropriate status flag. * * This function allows implementing this mode in a race-free * manner. * * To do this, a driver must keep track of the number of frames * still enqueued for a specific station. If this number is not * zero when the station goes to sleep, the driver must call * this function to force mac80211 to consider the station to * be asleep regardless of the station's actual state. Once the * number of outstanding frames reaches zero, the driver must * call this function again to unblock the station. That will * cause mac80211 to be able to send ps-poll responses, and if * the station queried in the meantime then frames will also * be sent out as a result of this. Additionally, the driver * will be notified that the station woke up some time after * it is unblocked, regardless of whether the station actually * woke up while blocked or not. */ void ieee80211_sta_block_awake(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, bool block); /** * ieee80211_sta_eosp - notify mac80211 about end of SP * @pubsta: the station * * When a device transmits frames in a way that it can't tell * mac80211 in the TX status about the EOSP, it must clear the * %IEEE80211_TX_STATUS_EOSP bit and call this function instead. * This applies for PS-Poll as well as uAPSD. * * Note that just like with _tx_status() and _rx() drivers must * not mix calls to irqsafe/non-irqsafe versions, this function * must not be mixed with those either. Use the all irqsafe, or * all non-irqsafe, don't mix! * * NB: the _irqsafe version of this function doesn't exist, no * driver needs it right now. Don't call this function if * you'd need the _irqsafe version, look at the git history * and restore the _irqsafe version! */ void ieee80211_sta_eosp(struct ieee80211_sta *pubsta); /** * ieee80211_send_eosp_nullfunc - ask mac80211 to send NDP with EOSP * @pubsta: the station * @tid: the tid of the NDP * * Sometimes the device understands that it needs to close * the Service Period unexpectedly. This can happen when * sending frames that are filling holes in the BA window. * In this case, the device can ask mac80211 to send a * Nullfunc frame with EOSP set. When that happens, the * driver must have called ieee80211_sta_set_buffered() to * let mac80211 know that there are no buffered frames any * more, otherwise mac80211 will get the more_data bit wrong. * The low level driver must have made sure that the frame * will be sent despite the station being in power-save. * Mac80211 won't call allow_buffered_frames(). * Note that calling this function, doesn't exempt the driver * from closing the EOSP properly, it will still have to call * ieee80211_sta_eosp when the NDP is sent. */ void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid); /** * ieee80211_sta_register_airtime - register airtime usage for a sta/tid * * Register airtime usage for a given sta on a given tid. The driver must call * this function to notify mac80211 that a station used a certain amount of * airtime. This information will be used by the TXQ scheduler to schedule * stations in a way that ensures airtime fairness. * * The reported airtime should as a minimum include all time that is spent * transmitting to the remote station, including overhead and padding, but not * including time spent waiting for a TXOP. If the time is not reported by the * hardware it can in some cases be calculated from the rate and known frame * composition. When possible, the time should include any failed transmission * attempts. * * The driver can either call this function synchronously for every packet or * aggregate, or asynchronously as airtime usage information becomes available. * TX and RX airtime can be reported together, or separately by setting one of * them to 0. * * @pubsta: the station * @tid: the TID to register airtime for * @tx_airtime: airtime used during TX (in usec) * @rx_airtime: airtime used during RX (in usec) */ void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, u32 tx_airtime, u32 rx_airtime); /** * ieee80211_txq_airtime_check - check if a txq can send frame to device * * @hw: pointer obtained from ieee80211_alloc_hw() * @txq: pointer obtained from station or virtual interface * * Return true if the AQL's airtime limit has not been reached and the txq can * continue to send more packets to the device. Otherwise return false. */ bool ieee80211_txq_airtime_check(struct ieee80211_hw *hw, struct ieee80211_txq *txq); /** * ieee80211_iter_keys - iterate keys programmed into the device * @hw: pointer obtained from ieee80211_alloc_hw() * @vif: virtual interface to iterate, may be %NULL for all * @iter: iterator function that will be called for each key * @iter_data: custom data to pass to the iterator function * * This function can be used to iterate all the keys known to * mac80211, even those that weren't previously programmed into * the device. This is intended for use in WoWLAN if the device * needs reprogramming of the keys during suspend. Note that due * to locking reasons, it is also only safe to call this at few * spots since it must hold the RTNL and be able to sleep. * * The order in which the keys are iterated matches the order * in which they were originally installed and handed to the * set_key callback. */ void ieee80211_iter_keys(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, void *data), void *iter_data); /** * ieee80211_iter_keys_rcu - iterate keys programmed into the device * @hw: pointer obtained from ieee80211_alloc_hw() * @vif: virtual interface to iterate, may be %NULL for all * @iter: iterator function that will be called for each key * @iter_data: custom data to pass to the iterator function * * This function can be used to iterate all the keys known to * mac80211, even those that weren't previously programmed into * the device. Note that due to locking reasons, keys of station * in removal process will be skipped. * * This function requires being called in an RCU critical section, * and thus iter must be atomic. */ void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, void *data), void *iter_data); /** * ieee80211_iter_chan_contexts_atomic - iterate channel contexts * @hw: pointer obtained from ieee80211_alloc_hw(). * @iter: iterator function * @iter_data: data passed to iterator function * * Iterate all active channel contexts. This function is atomic and * doesn't acquire any locks internally that might be held in other * places while calling into the driver. * * The iterator will not find a context that's being added (during * the driver callback to add it) but will find it while it's being * removed. * * Note that during hardware restart, all contexts that existed * before the restart are considered already present so will be * found while iterating, whether they've been re-added already * or not. */ void ieee80211_iter_chan_contexts_atomic( struct ieee80211_hw *hw, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *chanctx_conf, void *data), void *iter_data); /** * ieee80211_ap_probereq_get - retrieve a Probe Request template * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * Creates a Probe Request template which can, for example, be uploaded to * hardware. The template is filled with bssid, ssid and supported rate * information. This function must only be called from within the * .bss_info_changed callback function and only in managed mode. The function * is only useful when the interface is associated, otherwise it will return * %NULL. * * Return: The Probe Request template. %NULL on error. */ struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif); /** * ieee80211_beacon_loss - inform hardware does not receive beacons * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER and * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the * hardware is not receiving beacons with this function. */ void ieee80211_beacon_loss(struct ieee80211_vif *vif); /** * ieee80211_connection_loss - inform hardware has lost connection to the AP * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * When beacon filtering is enabled with %IEEE80211_VIF_BEACON_FILTER, and * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver * needs to inform if the connection to the AP has been lost. * The function may also be called if the connection needs to be terminated * for some other reason, even if %IEEE80211_HW_CONNECTION_MONITOR isn't set. * * This function will cause immediate change to disassociated state, * without connection recovery attempts. */ void ieee80211_connection_loss(struct ieee80211_vif *vif); /** * ieee80211_resume_disconnect - disconnect from AP after resume * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * Instructs mac80211 to disconnect from the AP after resume. * Drivers can use this after WoWLAN if they know that the * connection cannot be kept up, for example because keys were * used while the device was asleep but the replay counters or * similar cannot be retrieved from the device during resume. * * Note that due to implementation issues, if the driver uses * the reconfiguration functionality during resume the interface * will still be added as associated first during resume and then * disconnect normally later. * * This function can only be called from the resume callback and * the driver must not be holding any of its own locks while it * calls this function, or at least not any locks it needs in the * key configuration paths (if it supports HW crypto). */ void ieee80211_resume_disconnect(struct ieee80211_vif *vif); /** * ieee80211_hw_restart_disconnect - disconnect from AP after * hardware restart * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * Instructs mac80211 to disconnect from the AP after * hardware restart. */ void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif); /** * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring * rssi threshold triggered * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @rssi_event: the RSSI trigger event type * @rssi_level: new RSSI level value or 0 if not available * @gfp: context flags * * When the %IEEE80211_VIF_SUPPORTS_CQM_RSSI is set, and a connection quality * monitoring is configured with an rssi threshold, the driver will inform * whenever the rssi level reaches the threshold. */ void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level, gfp_t gfp); /** * ieee80211_cqm_beacon_loss_notify - inform CQM of beacon loss * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @gfp: context flags */ void ieee80211_cqm_beacon_loss_notify(struct ieee80211_vif *vif, gfp_t gfp); /** * ieee80211_radar_detected - inform that a radar was detected * * @hw: pointer as obtained from ieee80211_alloc_hw() */ void ieee80211_radar_detected(struct ieee80211_hw *hw); /** * ieee80211_chswitch_done - Complete channel switch process * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @success: make the channel switch successful or not * * Complete the channel switch post-process: set the new operational channel * and wake up the suspended queues. */ void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success); /** * ieee80211_request_smps - request SM PS transition * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @smps_mode: new SM PS mode * * This allows the driver to request an SM PS transition in managed * mode. This is useful when the driver has more information than * the stack about possible interference, for example by bluetooth. */ void ieee80211_request_smps(struct ieee80211_vif *vif, enum ieee80211_smps_mode smps_mode); /** * ieee80211_ready_on_channel - notification of remain-on-channel start * @hw: pointer as obtained from ieee80211_alloc_hw() */ void ieee80211_ready_on_channel(struct ieee80211_hw *hw); /** * ieee80211_remain_on_channel_expired - remain_on_channel duration expired * @hw: pointer as obtained from ieee80211_alloc_hw() */ void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw); /** * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions * * in order not to harm the system performance and user experience, the device * may request not to allow any rx ba session and tear down existing rx ba * sessions based on system constraints such as periodic BT activity that needs * to limit wlan activity (eg.sco or a2dp)." * in such cases, the intention is to limit the duration of the rx ppdu and * therefore prevent the peer device to use a-mpdu aggregation. * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @ba_rx_bitmap: Bit map of open rx ba per tid * @addr: & to bssid mac address */ void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap, const u8 *addr); /** * ieee80211_mark_rx_ba_filtered_frames - move RX BA window and mark filtered * @pubsta: station struct * @tid: the session's TID * @ssn: starting sequence number of the bitmap, all frames before this are * assumed to be out of the window after the call * @filtered: bitmap of filtered frames, BIT(0) is the @ssn entry etc. * @received_mpdus: number of received mpdus in firmware * * This function moves the BA window and releases all frames before @ssn, and * marks frames marked in the bitmap as having been filtered. Afterwards, it * checks if any frames in the window starting from @ssn can now be released * (in case they were only waiting for frames that were filtered.) */ void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, u16 ssn, u64 filtered, u16 received_mpdus); /** * ieee80211_send_bar - send a BlockAckReq frame * * can be used to flush pending frames from the peer's aggregation reorder * buffer. * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @ra: the peer's destination address * @tid: the TID of the aggregation session * @ssn: the new starting sequence number for the receiver */ void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn); /** * ieee80211_manage_rx_ba_offl - helper to queue an RX BA work * @vif: &struct ieee80211_vif pointer from the add_interface callback * @addr: station mac address * @tid: the rx tid */ void ieee80211_manage_rx_ba_offl(struct ieee80211_vif *vif, const u8 *addr, unsigned int tid); /** * ieee80211_start_rx_ba_session_offl - start a Rx BA session * * Some device drivers may offload part of the Rx aggregation flow including * AddBa/DelBa negotiation but may otherwise be incapable of full Rx * reordering. * * Create structures responsible for reordering so device drivers may call here * when they complete AddBa negotiation. * * @vif: &struct ieee80211_vif pointer from the add_interface callback * @addr: station mac address * @tid: the rx tid */ static inline void ieee80211_start_rx_ba_session_offl(struct ieee80211_vif *vif, const u8 *addr, u16 tid) { if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) return; ieee80211_manage_rx_ba_offl(vif, addr, tid); } /** * ieee80211_stop_rx_ba_session_offl - stop a Rx BA session * * Some device drivers may offload part of the Rx aggregation flow including * AddBa/DelBa negotiation but may otherwise be incapable of full Rx * reordering. * * Destroy structures responsible for reordering so device drivers may call here * when they complete DelBa negotiation. * * @vif: &struct ieee80211_vif pointer from the add_interface callback * @addr: station mac address * @tid: the rx tid */ static inline void ieee80211_stop_rx_ba_session_offl(struct ieee80211_vif *vif, const u8 *addr, u16 tid) { if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) return; ieee80211_manage_rx_ba_offl(vif, addr, tid + IEEE80211_NUM_TIDS); } /** * ieee80211_rx_ba_timer_expired - stop a Rx BA session due to timeout * * Some device drivers do not offload AddBa/DelBa negotiation, but handle rx * buffer reording internally, and therefore also handle the session timer. * * Trigger the timeout flow, which sends a DelBa. * * @vif: &struct ieee80211_vif pointer from the add_interface callback * @addr: station mac address * @tid: the rx tid */ void ieee80211_rx_ba_timer_expired(struct ieee80211_vif *vif, const u8 *addr, unsigned int tid); /* Rate control API */ /** * struct ieee80211_tx_rate_control - rate control information for/from RC algo * * @hw: The hardware the algorithm is invoked for. * @sband: The band this frame is being transmitted on. * @bss_conf: the current BSS configuration * @skb: the skb that will be transmitted, the control information in it needs * to be filled in * @reported_rate: The rate control algorithm can fill this in to indicate * which rate should be reported to userspace as the current rate and * used for rate calculations in the mesh network. * @rts: whether RTS will be used for this frame because it is longer than the * RTS threshold * @short_preamble: whether mac80211 will request short-preamble transmission * if the selected rate supports it * @rate_idx_mask: user-requested (legacy) rate mask * @rate_idx_mcs_mask: user-requested MCS rate mask (NULL if not in use) * @bss: whether this frame is sent out in AP or IBSS mode */ struct ieee80211_tx_rate_control { struct ieee80211_hw *hw; struct ieee80211_supported_band *sband; struct ieee80211_bss_conf *bss_conf; struct sk_buff *skb; struct ieee80211_tx_rate reported_rate; bool rts, short_preamble; u32 rate_idx_mask; u8 *rate_idx_mcs_mask; bool bss; }; /** * enum rate_control_capabilities - rate control capabilities */ enum rate_control_capabilities { /** * @RATE_CTRL_CAPA_VHT_EXT_NSS_BW: * Support for extended NSS BW support (dot11VHTExtendedNSSCapable) * Note that this is only looked at if the minimum number of chains * that the AP uses is < the number of TX chains the hardware has, * otherwise the NSS difference doesn't bother us. */ RATE_CTRL_CAPA_VHT_EXT_NSS_BW = BIT(0), }; struct rate_control_ops { unsigned long capa; const char *name; void *(*alloc)(struct ieee80211_hw *hw); void (*add_debugfs)(struct ieee80211_hw *hw, void *priv, struct dentry *debugfsdir); void (*free)(void *priv); void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp); void (*rate_init)(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta); void (*rate_update)(void *priv, struct ieee80211_supported_band *sband, struct cfg80211_chan_def *chandef, struct ieee80211_sta *sta, void *priv_sta, u32 changed); void (*free_sta)(void *priv, struct ieee80211_sta *sta, void *priv_sta); void (*tx_status_ext)(void *priv, struct ieee80211_supported_band *sband, void *priv_sta, struct ieee80211_tx_status *st); void (*tx_status)(void *priv, struct ieee80211_supported_band *sband, struct ieee80211_sta *sta, void *priv_sta, struct sk_buff *skb); void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta, struct ieee80211_tx_rate_control *txrc); void (*add_sta_debugfs)(void *priv, void *priv_sta, struct dentry *dir); u32 (*get_expected_throughput)(void *priv_sta); }; static inline int rate_supported(struct ieee80211_sta *sta, enum nl80211_band band, int index) { return (sta == NULL || sta->supp_rates[band] & BIT(index)); } static inline s8 rate_lowest_index(struct ieee80211_supported_band *sband, struct ieee80211_sta *sta) { int i; for (i = 0; i < sband->n_bitrates; i++) if (rate_supported(sta, sband->band, i)) return i; /* warn when we cannot find a rate. */ WARN_ON_ONCE(1); /* and return 0 (the lowest index) */ return 0; } static inline bool rate_usable_index_exists(struct ieee80211_supported_band *sband, struct ieee80211_sta *sta) { unsigned int i; for (i = 0; i < sband->n_bitrates; i++) if (rate_supported(sta, sband->band, i)) return true; return false; } /** * rate_control_set_rates - pass the sta rate selection to mac80211/driver * * When not doing a rate control probe to test rates, rate control should pass * its rate selection to mac80211. If the driver supports receiving a station * rate table, it will use it to ensure that frames are always sent based on * the most recent rate control module decision. * * @hw: pointer as obtained from ieee80211_alloc_hw() * @pubsta: &struct ieee80211_sta pointer to the target destination. * @rates: new tx rate set to be used for this station. */ int rate_control_set_rates(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct ieee80211_sta_rates *rates); int ieee80211_rate_control_register(const struct rate_control_ops *ops); void ieee80211_rate_control_unregister(const struct rate_control_ops *ops); static inline bool conf_is_ht20(struct ieee80211_conf *conf) { return conf->chandef.width == NL80211_CHAN_WIDTH_20; } static inline bool conf_is_ht40_minus(struct ieee80211_conf *conf) { return conf->chandef.width == NL80211_CHAN_WIDTH_40 && conf->chandef.center_freq1 < conf->chandef.chan->center_freq; } static inline bool conf_is_ht40_plus(struct ieee80211_conf *conf) { return conf->chandef.width == NL80211_CHAN_WIDTH_40 && conf->chandef.center_freq1 > conf->chandef.chan->center_freq; } static inline bool conf_is_ht40(struct ieee80211_conf *conf) { return conf->chandef.width == NL80211_CHAN_WIDTH_40; } static inline bool conf_is_ht(struct ieee80211_conf *conf) { return (conf->chandef.width != NL80211_CHAN_WIDTH_5) && (conf->chandef.width != NL80211_CHAN_WIDTH_10) && (conf->chandef.width != NL80211_CHAN_WIDTH_20_NOHT); } static inline enum nl80211_iftype ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p) { if (p2p) { switch (type) { case NL80211_IFTYPE_STATION: return NL80211_IFTYPE_P2P_CLIENT; case NL80211_IFTYPE_AP: return NL80211_IFTYPE_P2P_GO; default: break; } } return type; } static inline enum nl80211_iftype ieee80211_vif_type_p2p(struct ieee80211_vif *vif) { return ieee80211_iftype_p2p(vif->type, vif->p2p); } /** * ieee80211_update_mu_groups - set the VHT MU-MIMO groud data * * @vif: the specified virtual interface * @membership: 64 bits array - a bit is set if station is member of the group * @position: 2 bits per group id indicating the position in the group * * Note: This function assumes that the given vif is valid and the position and * membership data is of the correct size and are in the same byte order as the * matching GroupId management frame. * Calls to this function need to be serialized with RX path. */ void ieee80211_update_mu_groups(struct ieee80211_vif *vif, const u8 *membership, const u8 *position); void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, int rssi_min_thold, int rssi_max_thold); void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif); /** * ieee80211_ave_rssi - report the average RSSI for the specified interface * * @vif: the specified virtual interface * * Note: This function assumes that the given vif is valid. * * Return: The average RSSI value for the requested interface, or 0 if not * applicable. */ int ieee80211_ave_rssi(struct ieee80211_vif *vif); /** * ieee80211_report_wowlan_wakeup - report WoWLAN wakeup * @vif: virtual interface * @wakeup: wakeup reason(s) * @gfp: allocation flags * * See cfg80211_report_wowlan_wakeup(). */ void ieee80211_report_wowlan_wakeup(struct ieee80211_vif *vif, struct cfg80211_wowlan_wakeup *wakeup, gfp_t gfp); /** * ieee80211_tx_prepare_skb - prepare an 802.11 skb for transmission * @hw: pointer as obtained from ieee80211_alloc_hw() * @vif: virtual interface * @skb: frame to be sent from within the driver * @band: the band to transmit on * @sta: optional pointer to get the station to send the frame to * * Note: must be called under RCU lock */ bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb, int band, struct ieee80211_sta **sta); /** * ieee80211_parse_tx_radiotap - Sanity-check and parse the radiotap header * of injected frames. * * To accurately parse and take into account rate and retransmission fields, * you must initialize the chandef field in the ieee80211_tx_info structure * of the skb before calling this function. * * @skb: packet injected by userspace * @dev: the &struct device of this 802.11 device */ bool ieee80211_parse_tx_radiotap(struct sk_buff *skb, struct net_device *dev); /** * struct ieee80211_noa_data - holds temporary data for tracking P2P NoA state * * @next_tsf: TSF timestamp of the next absent state change * @has_next_tsf: next absent state change event pending * * @absent: descriptor bitmask, set if GO is currently absent * * private: * * @count: count fields from the NoA descriptors * @desc: adjusted data from the NoA */ struct ieee80211_noa_data { u32 next_tsf; bool has_next_tsf; u8 absent; u8 count[IEEE80211_P2P_NOA_DESC_MAX]; struct { u32 start; u32 duration; u32 interval; } desc[IEEE80211_P2P_NOA_DESC_MAX]; }; /** * ieee80211_parse_p2p_noa - initialize NoA tracking data from P2P IE * * @attr: P2P NoA IE * @data: NoA tracking data * @tsf: current TSF timestamp * * Return: number of successfully parsed descriptors */ int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, struct ieee80211_noa_data *data, u32 tsf); /** * ieee80211_update_p2p_noa - get next pending P2P GO absent state change * * @data: NoA tracking data * @tsf: current TSF timestamp */ void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf); /** * ieee80211_tdls_oper_request - request userspace to perform a TDLS operation * @vif: virtual interface * @peer: the peer's destination address * @oper: the requested TDLS operation * @reason_code: reason code for the operation, valid for TDLS teardown * @gfp: allocation flags * * See cfg80211_tdls_oper_request(). */ void ieee80211_tdls_oper_request(struct ieee80211_vif *vif, const u8 *peer, enum nl80211_tdls_operation oper, u16 reason_code, gfp_t gfp); /** * ieee80211_reserve_tid - request to reserve a specific TID * * There is sometimes a need (such as in TDLS) for blocking the driver from * using a specific TID so that the FW can use it for certain operations such * as sending PTI requests. To make sure that the driver doesn't use that TID, * this function must be called as it flushes out packets on this TID and marks * it as blocked, so that any transmit for the station on this TID will be * redirected to the alternative TID in the same AC. * * Note that this function blocks and may call back into the driver, so it * should be called without driver locks held. Also note this function should * only be called from the driver's @sta_state callback. * * @sta: the station to reserve the TID for * @tid: the TID to reserve * * Returns: 0 on success, else on failure */ int ieee80211_reserve_tid(struct ieee80211_sta *sta, u8 tid); /** * ieee80211_unreserve_tid - request to unreserve a specific TID * * Once there is no longer any need for reserving a certain TID, this function * should be called, and no longer will packets have their TID modified for * preventing use of this TID in the driver. * * Note that this function blocks and acquires a lock, so it should be called * without driver locks held. Also note this function should only be called * from the driver's @sta_state callback. * * @sta: the station * @tid: the TID to unreserve */ void ieee80211_unreserve_tid(struct ieee80211_sta *sta, u8 tid); /** * ieee80211_tx_dequeue - dequeue a packet from a software tx queue * * @hw: pointer as obtained from ieee80211_alloc_hw() * @txq: pointer obtained from station or virtual interface, or from * ieee80211_next_txq() * * Returns the skb if successful, %NULL if no frame was available. * * Note that this must be called in an rcu_read_lock() critical section, * which can only be released after the SKB was handled. Some pointers in * skb->cb, e.g. the key pointer, are protected by RCU and thus the * critical section must persist not just for the duration of this call * but for the duration of the frame handling. * However, also note that while in the wake_tx_queue() method, * rcu_read_lock() is already held. * * softirqs must also be disabled when this function is called. * In process context, use ieee80211_tx_dequeue_ni() instead. */ struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw, struct ieee80211_txq *txq); /** * ieee80211_tx_dequeue_ni - dequeue a packet from a software tx queue * (in process context) * * Like ieee80211_tx_dequeue() but can be called in process context * (internally disables bottom halves). * * @hw: pointer as obtained from ieee80211_alloc_hw() * @txq: pointer obtained from station or virtual interface, or from * ieee80211_next_txq() */ static inline struct sk_buff *ieee80211_tx_dequeue_ni(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct sk_buff *skb; local_bh_disable(); skb = ieee80211_tx_dequeue(hw, txq); local_bh_enable(); return skb; } /** * ieee80211_next_txq - get next tx queue to pull packets from * * @hw: pointer as obtained from ieee80211_alloc_hw() * @ac: AC number to return packets from. * * Returns the next txq if successful, %NULL if no queue is eligible. If a txq * is returned, it should be returned with ieee80211_return_txq() after the * driver has finished scheduling it. */ struct ieee80211_txq *ieee80211_next_txq(struct ieee80211_hw *hw, u8 ac); /** * ieee80211_txq_schedule_start - start new scheduling round for TXQs * * @hw: pointer as obtained from ieee80211_alloc_hw() * @ac: AC number to acquire locks for * * Should be called before ieee80211_next_txq() or ieee80211_return_txq(). * The driver must not call multiple TXQ scheduling rounds concurrently. */ void ieee80211_txq_schedule_start(struct ieee80211_hw *hw, u8 ac); /* (deprecated) */ static inline void ieee80211_txq_schedule_end(struct ieee80211_hw *hw, u8 ac) { } void __ieee80211_schedule_txq(struct ieee80211_hw *hw, struct ieee80211_txq *txq, bool force); /** * ieee80211_schedule_txq - schedule a TXQ for transmission * * @hw: pointer as obtained from ieee80211_alloc_hw() * @txq: pointer obtained from station or virtual interface * * Schedules a TXQ for transmission if it is not already scheduled, * even if mac80211 does not have any packets buffered. * * The driver may call this function if it has buffered packets for * this TXQ internally. */ static inline void ieee80211_schedule_txq(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { __ieee80211_schedule_txq(hw, txq, true); } /** * ieee80211_return_txq - return a TXQ previously acquired by ieee80211_next_txq() * * @hw: pointer as obtained from ieee80211_alloc_hw() * @txq: pointer obtained from station or virtual interface * @force: schedule txq even if mac80211 does not have any buffered packets. * * The driver may set force=true if it has buffered packets for this TXQ * internally. */ static inline void ieee80211_return_txq(struct ieee80211_hw *hw, struct ieee80211_txq *txq, bool force) { __ieee80211_schedule_txq(hw, txq, force); } /** * ieee80211_txq_may_transmit - check whether TXQ is allowed to transmit * * This function is used to check whether given txq is allowed to transmit by * the airtime scheduler, and can be used by drivers to access the airtime * fairness accounting without going using the scheduling order enfored by * next_txq(). * * Returns %true if the airtime scheduler thinks the TXQ should be allowed to * transmit, and %false if it should be throttled. This function can also have * the side effect of rotating the TXQ in the scheduler rotation, which will * eventually bring the deficit to positive and allow the station to transmit * again. * * The API ieee80211_txq_may_transmit() also ensures that TXQ list will be * aligned against driver's own round-robin scheduler list. i.e it rotates * the TXQ list till it makes the requested node becomes the first entry * in TXQ list. Thus both the TXQ list and driver's list are in sync. If this * function returns %true, the driver is expected to schedule packets * for transmission, and then return the TXQ through ieee80211_return_txq(). * * @hw: pointer as obtained from ieee80211_alloc_hw() * @txq: pointer obtained from station or virtual interface */ bool ieee80211_txq_may_transmit(struct ieee80211_hw *hw, struct ieee80211_txq *txq); /** * ieee80211_txq_get_depth - get pending frame/byte count of given txq * * The values are not guaranteed to be coherent with regard to each other, i.e. * txq state can change half-way of this function and the caller may end up * with "new" frame_cnt and "old" byte_cnt or vice-versa. * * @txq: pointer obtained from station or virtual interface * @frame_cnt: pointer to store frame count * @byte_cnt: pointer to store byte count */ void ieee80211_txq_get_depth(struct ieee80211_txq *txq, unsigned long *frame_cnt, unsigned long *byte_cnt); /** * ieee80211_nan_func_terminated - notify about NAN function termination. * * This function is used to notify mac80211 about NAN function termination. * Note that this function can't be called from hard irq. * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @inst_id: the local instance id * @reason: termination reason (one of the NL80211_NAN_FUNC_TERM_REASON_*) * @gfp: allocation flags */ void ieee80211_nan_func_terminated(struct ieee80211_vif *vif, u8 inst_id, enum nl80211_nan_func_term_reason reason, gfp_t gfp); /** * ieee80211_nan_func_match - notify about NAN function match event. * * This function is used to notify mac80211 about NAN function match. The * cookie inside the match struct will be assigned by mac80211. * Note that this function can't be called from hard irq. * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @match: match event information * @gfp: allocation flags */ void ieee80211_nan_func_match(struct ieee80211_vif *vif, struct cfg80211_nan_match_params *match, gfp_t gfp); /** * ieee80211_calc_rx_airtime - calculate estimated transmission airtime for RX. * * This function calculates the estimated airtime usage of a frame based on the * rate information in the RX status struct and the frame length. * * @hw: pointer as obtained from ieee80211_alloc_hw() * @status: &struct ieee80211_rx_status containing the transmission rate * information. * @len: frame length in bytes */ u32 ieee80211_calc_rx_airtime(struct ieee80211_hw *hw, struct ieee80211_rx_status *status, int len); /** * ieee80211_calc_tx_airtime - calculate estimated transmission airtime for TX. * * This function calculates the estimated airtime usage of a frame based on the * rate information in the TX info struct and the frame length. * * @hw: pointer as obtained from ieee80211_alloc_hw() * @info: &struct ieee80211_tx_info of the frame. * @len: frame length in bytes */ u32 ieee80211_calc_tx_airtime(struct ieee80211_hw *hw, struct ieee80211_tx_info *info, int len); /** * ieee80211_set_hw_80211_encap - enable hardware encapsulation offloading. * * This function is used to notify mac80211 that a vif can be passed raw 802.3 * frames. The driver needs to then handle the 802.11 encapsulation inside the * hardware or firmware. * * @vif: &struct ieee80211_vif pointer from the add_interface callback. * @enable: indicate if the feature should be turned on or off */ bool ieee80211_set_hw_80211_encap(struct ieee80211_vif *vif, bool enable); /** * ieee80211_get_fils_discovery_tmpl - Get FILS discovery template. * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * The driver is responsible for freeing the returned skb. * * Return: FILS discovery template. %NULL on error. */ struct sk_buff *ieee80211_get_fils_discovery_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif); /** * ieee80211_get_unsol_bcast_probe_resp_tmpl - Get unsolicited broadcast * probe response template. * @hw: pointer obtained from ieee80211_alloc_hw(). * @vif: &struct ieee80211_vif pointer from the add_interface callback. * * The driver is responsible for freeing the returned skb. * * Return: Unsolicited broadcast probe response template. %NULL on error. */ struct sk_buff * ieee80211_get_unsol_bcast_probe_resp_tmpl(struct ieee80211_hw *hw, struct ieee80211_vif *vif); #endif /* MAC80211_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_WORD_AT_A_TIME_H #define _ASM_WORD_AT_A_TIME_H #include <linux/kernel.h> /* * This is largely generic for little-endian machines, but the * optimal byte mask counting is probably going to be something * that is architecture-specific. If you have a reliably fast * bit count instruction, that might be better than the multiply * and shift, for example. */ struct word_at_a_time { const unsigned long one_bits, high_bits; }; #define WORD_AT_A_TIME_CONSTANTS { REPEAT_BYTE(0x01), REPEAT_BYTE(0x80) } #ifdef CONFIG_64BIT /* * Jan Achrenius on G+: microoptimized version of * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56" * that works for the bytemasks without having to * mask them first. */ static inline long count_masked_bytes(unsigned long mask) { return mask*0x0001020304050608ul >> 56; } #else /* 32-bit case */ /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */ static inline long count_masked_bytes(long mask) { /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */ long a = (0x0ff0001+mask) >> 23; /* Fix the 1 for 00 case */ return a & mask; } #endif /* Return nonzero if it has a zero */ static inline unsigned long has_zero(unsigned long a, unsigned long *bits, const struct word_at_a_time *c) { unsigned long mask = ((a - c->one_bits) & ~a) & c->high_bits; *bits = mask; return mask; } static inline unsigned long prep_zero_mask(unsigned long a, unsigned long bits, const struct word_at_a_time *c) { return bits; } static inline unsigned long create_zero_mask(unsigned long bits) { bits = (bits - 1) & ~bits; return bits >> 7; } /* The mask we created is directly usable as a bytemask */ #define zero_bytemask(mask) (mask) static inline unsigned long find_zero(unsigned long mask) { return count_masked_bytes(mask); } /* * Load an unaligned word from kernel space. * * In the (very unlikely) case of the word being a page-crosser * and the next page not being mapped, take the exception and * return zeroes in the non-existing part. */ static inline unsigned long load_unaligned_zeropad(const void *addr) { unsigned long ret, dummy; asm( "1:\tmov %2,%0\n" "2:\n" ".section .fixup,\"ax\"\n" "3:\t" "lea %2,%1\n\t" "and %3,%1\n\t" "mov (%1),%0\n\t" "leal %2,%%ecx\n\t" "andl %4,%%ecx\n\t" "shll $3,%%ecx\n\t" "shr %%cl,%0\n\t" "jmp 2b\n" ".previous\n" _ASM_EXTABLE(1b, 3b) :"=&r" (ret),"=&c" (dummy) :"m" (*(unsigned long *)addr), "i" (-sizeof(unsigned long)), "i" (sizeof(unsigned long)-1)); return ret; } #endif /* _ASM_WORD_AT_A_TIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CGROUP_INTERNAL_H #define __CGROUP_INTERNAL_H #include <linux/cgroup.h> #include <linux/kernfs.h> #include <linux/workqueue.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/fs_parser.h> #define TRACE_CGROUP_PATH_LEN 1024 extern spinlock_t trace_cgroup_path_lock; extern char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; extern bool cgroup_debug; extern void __init enable_debug_cgroup(void); /* * cgroup_path() takes a spin lock. It is good practice not to take * spin locks within trace point handlers, as they are mostly hidden * from normal view. As cgroup_path() can take the kernfs_rename_lock * spin lock, it is best to not call that function from the trace event * handler. * * Note: trace_cgroup_##type##_enabled() is a static branch that will only * be set when the trace event is enabled. */ #define TRACE_CGROUP_PATH(type, cgrp, ...) \ do { \ if (trace_cgroup_##type##_enabled()) { \ unsigned long flags; \ spin_lock_irqsave(&trace_cgroup_path_lock, \ flags); \ cgroup_path(cgrp, trace_cgroup_path, \ TRACE_CGROUP_PATH_LEN); \ trace_cgroup_##type(cgrp, trace_cgroup_path, \ ##__VA_ARGS__); \ spin_unlock_irqrestore(&trace_cgroup_path_lock, \ flags); \ } \ } while (0) /* * The cgroup filesystem superblock creation/mount context. */ struct cgroup_fs_context { struct kernfs_fs_context kfc; struct cgroup_root *root; struct cgroup_namespace *ns; unsigned int flags; /* CGRP_ROOT_* flags */ /* cgroup1 bits */ bool cpuset_clone_children; bool none; /* User explicitly requested empty subsystem */ bool all_ss; /* Seen 'all' option */ u16 subsys_mask; /* Selected subsystems */ char *name; /* Hierarchy name */ char *release_agent; /* Path for release notifications */ }; static inline struct cgroup_fs_context *cgroup_fc2context(struct fs_context *fc) { struct kernfs_fs_context *kfc = fc->fs_private; return container_of(kfc, struct cgroup_fs_context, kfc); } struct cgroup_pidlist; struct cgroup_file_ctx { struct cgroup_namespace *ns; struct { void *trigger; } psi; struct { bool started; struct css_task_iter iter; } procs; struct { struct cgroup_pidlist *pidlist; } procs1; }; /* * A cgroup can be associated with multiple css_sets as different tasks may * belong to different cgroups on different hierarchies. In the other * direction, a css_set is naturally associated with multiple cgroups. * This M:N relationship is represented by the following link structure * which exists for each association and allows traversing the associations * from both sides. */ struct cgrp_cset_link { /* the cgroup and css_set this link associates */ struct cgroup *cgrp; struct css_set *cset; /* list of cgrp_cset_links anchored at cgrp->cset_links */ struct list_head cset_link; /* list of cgrp_cset_links anchored at css_set->cgrp_links */ struct list_head cgrp_link; }; /* used to track tasks and csets during migration */ struct cgroup_taskset { /* the src and dst cset list running through cset->mg_node */ struct list_head src_csets; struct list_head dst_csets; /* the number of tasks in the set */ int nr_tasks; /* the subsys currently being processed */ int ssid; /* * Fields for cgroup_taskset_*() iteration. * * Before migration is committed, the target migration tasks are on * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of * the csets on ->dst_csets. ->csets point to either ->src_csets * or ->dst_csets depending on whether migration is committed. * * ->cur_csets and ->cur_task point to the current task position * during iteration. */ struct list_head *csets; struct css_set *cur_cset; struct task_struct *cur_task; }; /* migration context also tracks preloading */ struct cgroup_mgctx { /* * Preloaded source and destination csets. Used to guarantee * atomic success or failure on actual migration. */ struct list_head preloaded_src_csets; struct list_head preloaded_dst_csets; /* tasks and csets to migrate */ struct cgroup_taskset tset; /* subsystems affected by migration */ u16 ss_mask; }; #define CGROUP_TASKSET_INIT(tset) \ { \ .src_csets = LIST_HEAD_INIT(tset.src_csets), \ .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \ .csets = &tset.src_csets, \ } #define CGROUP_MGCTX_INIT(name) \ { \ LIST_HEAD_INIT(name.preloaded_src_csets), \ LIST_HEAD_INIT(name.preloaded_dst_csets), \ CGROUP_TASKSET_INIT(name.tset), \ } #define DEFINE_CGROUP_MGCTX(name) \ struct cgroup_mgctx name = CGROUP_MGCTX_INIT(name) extern struct mutex cgroup_mutex; extern spinlock_t css_set_lock; extern struct cgroup_subsys *cgroup_subsys[]; extern struct list_head cgroup_roots; /* iterate across the hierarchies */ #define for_each_root(root) \ list_for_each_entry_rcu((root), &cgroup_roots, root_list, \ lockdep_is_held(&cgroup_mutex)) /** * for_each_subsys - iterate all enabled cgroup subsystems * @ss: the iteration cursor * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end */ #define for_each_subsys(ss, ssid) \ for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) static inline bool cgroup_is_dead(const struct cgroup *cgrp) { return !(cgrp->self.flags & CSS_ONLINE); } static inline bool notify_on_release(const struct cgroup *cgrp) { return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } void put_css_set_locked(struct css_set *cset); static inline void put_css_set(struct css_set *cset) { unsigned long flags; /* * Ensure that the refcount doesn't hit zero while any readers * can see it. Similar to atomic_dec_and_lock(), but for an * rwlock */ if (refcount_dec_not_one(&cset->refcount)) return; spin_lock_irqsave(&css_set_lock, flags); put_css_set_locked(cset); spin_unlock_irqrestore(&css_set_lock, flags); } /* * refcounted get/put for css_set objects */ static inline void get_css_set(struct css_set *cset) { refcount_inc(&cset->refcount); } bool cgroup_ssid_enabled(int ssid); bool cgroup_on_dfl(const struct cgroup *cgrp); bool cgroup_is_thread_root(struct cgroup *cgrp); bool cgroup_is_threaded(struct cgroup *cgrp); struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root); struct cgroup *task_cgroup_from_root(struct task_struct *task, struct cgroup_root *root); struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline); void cgroup_kn_unlock(struct kernfs_node *kn); int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, struct cgroup_namespace *ns); void cgroup_free_root(struct cgroup_root *root); void init_cgroup_root(struct cgroup_fs_context *ctx); int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask); int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask); int cgroup_do_get_tree(struct fs_context *fc); int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp); void cgroup_migrate_finish(struct cgroup_mgctx *mgctx); void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, struct cgroup_mgctx *mgctx); int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx); int cgroup_migrate(struct task_struct *leader, bool threadgroup, struct cgroup_mgctx *mgctx); int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, bool threadgroup); struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, bool *locked) __acquires(&cgroup_threadgroup_rwsem); void cgroup_procs_write_finish(struct task_struct *task, bool locked) __releases(&cgroup_threadgroup_rwsem); void cgroup_lock_and_drain_offline(struct cgroup *cgrp); int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode); int cgroup_rmdir(struct kernfs_node *kn); int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, struct kernfs_root *kf_root); int __cgroup_task_count(const struct cgroup *cgrp); int cgroup_task_count(const struct cgroup *cgrp); /* * rstat.c */ int cgroup_rstat_init(struct cgroup *cgrp); void cgroup_rstat_exit(struct cgroup *cgrp); void cgroup_rstat_boot(void); void cgroup_base_stat_cputime_show(struct seq_file *seq); /* * namespace.c */ extern const struct proc_ns_operations cgroupns_operations; /* * cgroup-v1.c */ extern struct cftype cgroup1_base_files[]; extern struct kernfs_syscall_ops cgroup1_kf_syscall_ops; extern const struct fs_parameter_spec cgroup1_fs_parameters[]; int proc_cgroupstats_show(struct seq_file *m, void *v); bool cgroup1_ssid_disabled(int ssid); void cgroup1_pidlist_destroy_all(struct cgroup *cgrp); void cgroup1_release_agent(struct work_struct *work); void cgroup1_check_for_release(struct cgroup *cgrp); int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param); int cgroup1_get_tree(struct fs_context *fc); int cgroup1_reconfigure(struct fs_context *ctx); #endif /* __CGROUP_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM udp #if !defined(_TRACE_UDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_UDP_H #include <linux/udp.h> #include <linux/tracepoint.h> TRACE_EVENT(udp_fail_queue_rcv_skb, TP_PROTO(int rc, struct sock *sk), TP_ARGS(rc, sk), TP_STRUCT__entry( __field(int, rc) __field(__u16, lport) ), TP_fast_assign( __entry->rc = rc; __entry->lport = inet_sk(sk)->inet_num; ), TP_printk("rc=%d port=%hu", __entry->rc, __entry->lport) ); #endif /* _TRACE_UDP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_USER_H #define _LINUX_SCHED_USER_H #include <linux/uidgid.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/ratelimit.h> /* * Some day this will be a full-fledged user tracking system.. */ struct user_struct { refcount_t __count; /* reference count */ atomic_t processes; /* How many processes does this user have? */ atomic_t sigpending; /* How many pending signals does this user have? */ #ifdef CONFIG_EPOLL atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ #endif #ifdef CONFIG_POSIX_MQUEUE /* protected by mq_lock */ unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ #endif unsigned long locked_shm; /* How many pages of mlocked shm ? */ unsigned long unix_inflight; /* How many files in flight in unix sockets */ atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ /* Hash table maintenance information */ struct hlist_node uidhash_node; kuid_t uid; #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) || \ defined(CONFIG_NET) || defined(CONFIG_IO_URING) atomic_long_t locked_vm; #endif #ifdef CONFIG_WATCH_QUEUE atomic_t nr_watches; /* The number of watches this user currently has */ #endif /* Miscellaneous per-user rate limit */ struct ratelimit_state ratelimit; }; extern int uids_sysfs_init(void); extern struct user_struct *find_user(kuid_t); extern struct user_struct root_user; #define INIT_USER (&root_user) /* per-UID process charging. */ extern struct user_struct * alloc_uid(kuid_t); static inline struct user_struct *get_uid(struct user_struct *u) { refcount_inc(&u->__count); return u; } extern void free_uid(struct user_struct *); #endif /* _LINUX_SCHED_USER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl); /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 /* SPDX-License-Identifier: GPL-2.0 */ /* * This file provides wrappers with sanitizer instrumentation for atomic bit * operations. * * To use this functionality, an arch's bitops.h file needs to define each of * the below bit operations with an arch_ prefix (e.g. arch_set_bit(), * arch___set_bit(), etc.). */ #ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H #define _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H #include <linux/instrumented.h> /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_set_bit(nr, addr); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). */ static inline void clear_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_clear_bit(nr, addr); } /** * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * This is a relaxed atomic operation (no implied memory barriers). * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(long nr, volatile unsigned long *addr) { instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long)); arch_change_bit(nr, addr); } /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_set_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_set_bit(nr, addr); } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_clear_bit(nr, addr); } /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This is an atomic fully-ordered operation (implied full memory barrier). */ static inline bool test_and_change_bit(long nr, volatile unsigned long *addr) { instrument_atomic_read_write(addr + BIT_WORD(nr), sizeof(long)); return arch_test_and_change_bit(nr, addr); } #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 /* SPDX-License-Identifier: GPL-2.0 */ /* linux/net/inet/arp.h */ #ifndef _ARP_H #define _ARP_H #include <linux/if_arp.h> #include <linux/hash.h> #include <net/neighbour.h> extern struct neigh_table arp_tbl; static inline u32 arp_hashfn(const void *pkey, const struct net_device *dev, u32 *hash_rnd) { u32 key = *(const u32 *)pkey; u32 val = key ^ hash32_ptr(dev); return val * hash_rnd[0]; } #ifdef CONFIG_INET static inline struct neighbour *__ipv4_neigh_lookup_noref(struct net_device *dev, u32 key) { if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) key = INADDR_ANY; return ___neigh_lookup_noref(&arp_tbl, neigh_key_eq32, arp_hashfn, &key, dev); } #else static inline struct neighbour *__ipv4_neigh_lookup_noref(struct net_device *dev, u32 key) { return NULL; } #endif static inline struct neighbour *__ipv4_neigh_lookup(struct net_device *dev, u32 key) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv4_neigh_lookup_noref(dev, key); if (n && !refcount_inc_not_zero(&n->refcnt)) n = NULL; rcu_read_unlock_bh(); return n; } static inline void __ipv4_confirm_neigh(struct net_device *dev, u32 key) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv4_neigh_lookup_noref(dev, key); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } void arp_init(void); int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg); void arp_send(int type, int ptype, __be32 dest_ip, struct net_device *dev, __be32 src_ip, const unsigned char *dest_hw, const unsigned char *src_hw, const unsigned char *th); int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir); void arp_ifdown(struct net_device *dev); int arp_invalidate(struct net_device *dev, __be32 ip, bool force); struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip, struct net_device *dev, __be32 src_ip, const unsigned char *dest_hw, const unsigned char *src_hw, const unsigned char *target_hw); void arp_xmit(struct sk_buff *skb); #endif /* _ARP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_BARRIER_H #define _ASM_X86_BARRIER_H #include <asm/alternative.h> #include <asm/nops.h> /* * Force strict CPU ordering. * And yes, this might be required on UP too when we're talking * to devices. */ #ifdef CONFIG_X86_32 #define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \ X86_FEATURE_XMM2) ::: "memory", "cc") #else #define mb() asm volatile("mfence":::"memory") #define rmb() asm volatile("lfence":::"memory") #define wmb() asm volatile("sfence" ::: "memory") #endif /** * array_index_mask_nospec() - generate a mask that is ~0UL when the * bounds check succeeds and 0 otherwise * @index: array element index * @size: number of elements in array * * Returns: * 0 - (index < size) */ static inline unsigned long array_index_mask_nospec(unsigned long index, unsigned long size) { unsigned long mask; asm volatile ("cmp %1,%2; sbb %0,%0;" :"=r" (mask) :"g"(size),"r" (index) :"cc"); return mask; } /* Override the default implementation from linux/nospec.h. */ #define array_index_mask_nospec array_index_mask_nospec /* Prevent speculative execution past this barrier. */ #define barrier_nospec() alternative("", "lfence", X86_FEATURE_LFENCE_RDTSC) #define dma_rmb() barrier() #define dma_wmb() barrier() #ifdef CONFIG_X86_32 #define __smp_mb() asm volatile("lock; addl $0,-4(%%esp)" ::: "memory", "cc") #else #define __smp_mb() asm volatile("lock; addl $0,-4(%%rsp)" ::: "memory", "cc") #endif #define __smp_rmb() dma_rmb() #define __smp_wmb() barrier() #define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0) #define __smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ WRITE_ONCE(*p, v); \ } while (0) #define __smp_load_acquire(p) \ ({ \ typeof(*p) ___p1 = READ_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ ___p1; \ }) /* Atomic operations are already serializing on x86 */ #define __smp_mb__before_atomic() do { } while (0) #define __smp_mb__after_atomic() do { } while (0) #include <asm-generic/barrier.h> #endif /* _ASM_X86_BARRIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wrapper functions for accessing the file_struct fd array. */ #ifndef __LINUX_FILE_H #define __LINUX_FILE_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/posix_types.h> #include <linux/errno.h> struct file; extern void fput(struct file *); extern void fput_many(struct file *, unsigned int); struct file_operations; struct task_struct; struct vfsmount; struct dentry; struct inode; struct path; extern struct file *alloc_file_pseudo(struct inode *, struct vfsmount *, const char *, int flags, const struct file_operations *); extern struct file *alloc_file_clone(struct file *, int flags, const struct file_operations *); static inline void fput_light(struct file *file, int fput_needed) { if (fput_needed) fput(file); } struct fd { struct file *file; unsigned int flags; }; #define FDPUT_FPUT 1 #define FDPUT_POS_UNLOCK 2 static inline void fdput(struct fd fd) { if (fd.flags & FDPUT_FPUT) fput(fd.file); } extern struct file *fget(unsigned int fd); extern struct file *fget_many(unsigned int fd, unsigned int refs); extern struct file *fget_raw(unsigned int fd); extern struct file *fget_task(struct task_struct *task, unsigned int fd); extern unsigned long __fdget(unsigned int fd); extern unsigned long __fdget_raw(unsigned int fd); extern unsigned long __fdget_pos(unsigned int fd); extern void __f_unlock_pos(struct file *); static inline struct fd __to_fd(unsigned long v) { return (struct fd){(struct file *)(v & ~3),v & 3}; } static inline struct fd fdget(unsigned int fd) { return __to_fd(__fdget(fd)); } static inline struct fd fdget_raw(unsigned int fd) { return __to_fd(__fdget_raw(fd)); } static inline struct fd fdget_pos(int fd) { return __to_fd(__fdget_pos(fd)); } static inline void fdput_pos(struct fd f) { if (f.flags & FDPUT_POS_UNLOCK) __f_unlock_pos(f.file); fdput(f); } extern int f_dupfd(unsigned int from, struct file *file, unsigned flags); extern int replace_fd(unsigned fd, struct file *file, unsigned flags); extern void set_close_on_exec(unsigned int fd, int flag); extern bool get_close_on_exec(unsigned int fd); extern int __get_unused_fd_flags(unsigned flags, unsigned long nofile); extern int get_unused_fd_flags(unsigned flags); extern void put_unused_fd(unsigned int fd); extern void fd_install(unsigned int fd, struct file *file); extern int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags); static inline int receive_fd_user(struct file *file, int __user *ufd, unsigned int o_flags) { if (ufd == NULL) return -EFAULT; return __receive_fd(-1, file, ufd, o_flags); } static inline int receive_fd(struct file *file, unsigned int o_flags) { return __receive_fd(-1, file, NULL, o_flags); } static inline int receive_fd_replace(int fd, struct file *file, unsigned int o_flags) { return __receive_fd(fd, file, NULL, o_flags); } extern void flush_delayed_fput(void); extern void __fput_sync(struct file *); extern unsigned int sysctl_nr_open_min, sysctl_nr_open_max; #endif /* __LINUX_FILE_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PROCESSOR_H #define _ASM_X86_PROCESSOR_H #include <asm/processor-flags.h> /* Forward declaration, a strange C thing */ struct task_struct; struct mm_struct; struct io_bitmap; struct vm86; #include <asm/math_emu.h> #include <asm/segment.h> #include <asm/types.h> #include <uapi/asm/sigcontext.h> #include <asm/current.h> #include <asm/cpufeatures.h> #include <asm/page.h> #include <asm/pgtable_types.h> #include <asm/percpu.h> #include <asm/msr.h> #include <asm/desc_defs.h> #include <asm/nops.h> #include <asm/special_insns.h> #include <asm/fpu/types.h> #include <asm/unwind_hints.h> #include <asm/vmxfeatures.h> #include <asm/vdso/processor.h> #include <linux/personality.h> #include <linux/cache.h> #include <linux/threads.h> #include <linux/math64.h> #include <linux/err.h> #include <linux/irqflags.h> #include <linux/mem_encrypt.h> /* * We handle most unaligned accesses in hardware. On the other hand * unaligned DMA can be quite expensive on some Nehalem processors. * * Based on this we disable the IP header alignment in network drivers. */ #define NET_IP_ALIGN 0 #define HBP_NUM 4 /* * These alignment constraints are for performance in the vSMP case, * but in the task_struct case we must also meet hardware imposed * alignment requirements of the FPU state: */ #ifdef CONFIG_X86_VSMP # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) #else # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) # define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif enum tlb_infos { ENTRIES, NR_INFO }; extern u16 __read_mostly tlb_lli_4k[NR_INFO]; extern u16 __read_mostly tlb_lli_2m[NR_INFO]; extern u16 __read_mostly tlb_lli_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_4k[NR_INFO]; extern u16 __read_mostly tlb_lld_2m[NR_INFO]; extern u16 __read_mostly tlb_lld_4m[NR_INFO]; extern u16 __read_mostly tlb_lld_1g[NR_INFO]; /* * CPU type and hardware bug flags. Kept separately for each CPU. * Members of this structure are referenced in head_32.S, so think twice * before touching them. [mj] */ struct cpuinfo_x86 { __u8 x86; /* CPU family */ __u8 x86_vendor; /* CPU vendor */ __u8 x86_model; __u8 x86_stepping; #ifdef CONFIG_X86_64 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ int x86_tlbsize; #endif #ifdef CONFIG_X86_VMX_FEATURE_NAMES __u32 vmx_capability[NVMXINTS]; #endif __u8 x86_virt_bits; __u8 x86_phys_bits; /* CPUID returned core id bits: */ __u8 x86_coreid_bits; __u8 cu_id; /* Max extended CPUID function supported: */ __u32 extended_cpuid_level; /* Maximum supported CPUID level, -1=no CPUID: */ int cpuid_level; /* * Align to size of unsigned long because the x86_capability array * is passed to bitops which require the alignment. Use unnamed * union to enforce the array is aligned to size of unsigned long. */ union { __u32 x86_capability[NCAPINTS + NBUGINTS]; unsigned long x86_capability_alignment; }; char x86_vendor_id[16]; char x86_model_id[64]; /* in KB - valid for CPUS which support this call: */ unsigned int x86_cache_size; int x86_cache_alignment; /* In bytes */ /* Cache QoS architectural values, valid only on the BSP: */ int x86_cache_max_rmid; /* max index */ int x86_cache_occ_scale; /* scale to bytes */ int x86_cache_mbm_width_offset; int x86_power; unsigned long loops_per_jiffy; /* cpuid returned max cores value: */ u16 x86_max_cores; u16 apicid; u16 initial_apicid; u16 x86_clflush_size; /* number of cores as seen by the OS: */ u16 booted_cores; /* Physical processor id: */ u16 phys_proc_id; /* Logical processor id: */ u16 logical_proc_id; /* Core id: */ u16 cpu_core_id; u16 cpu_die_id; u16 logical_die_id; /* Index into per_cpu list: */ u16 cpu_index; u32 microcode; /* Address space bits used by the cache internally */ u8 x86_cache_bits; unsigned initialized : 1; } __randomize_layout; struct cpuid_regs { u32 eax, ebx, ecx, edx; }; enum cpuid_regs_idx { CPUID_EAX = 0, CPUID_EBX, CPUID_ECX, CPUID_EDX, }; #define X86_VENDOR_INTEL 0 #define X86_VENDOR_CYRIX 1 #define X86_VENDOR_AMD 2 #define X86_VENDOR_UMC 3 #define X86_VENDOR_CENTAUR 5 #define X86_VENDOR_TRANSMETA 7 #define X86_VENDOR_NSC 8 #define X86_VENDOR_HYGON 9 #define X86_VENDOR_ZHAOXIN 10 #define X86_VENDOR_NUM 11 #define X86_VENDOR_UNKNOWN 0xff /* * capabilities of CPUs */ extern struct cpuinfo_x86 boot_cpu_data; extern struct cpuinfo_x86 new_cpu_data; extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; #ifdef CONFIG_SMP DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); #define cpu_data(cpu) per_cpu(cpu_info, cpu) #else #define cpu_info boot_cpu_data #define cpu_data(cpu) boot_cpu_data #endif extern const struct seq_operations cpuinfo_op; #define cache_line_size() (boot_cpu_data.x86_cache_alignment) extern void cpu_detect(struct cpuinfo_x86 *c); static inline unsigned long long l1tf_pfn_limit(void) { return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); } void init_cpu_devs(void); void get_cpu_vendor(struct cpuinfo_x86 *c); extern void early_cpu_init(void); extern void identify_boot_cpu(void); extern void identify_secondary_cpu(struct cpuinfo_x86 *); extern void print_cpu_info(struct cpuinfo_x86 *); void print_cpu_msr(struct cpuinfo_x86 *); #ifdef CONFIG_X86_32 extern int have_cpuid_p(void); #else static inline int have_cpuid_p(void) { return 1; } #endif static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { /* ecx is often an input as well as an output. */ asm volatile("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx) : "memory"); } #define native_cpuid_reg(reg) \ static inline unsigned int native_cpuid_##reg(unsigned int op) \ { \ unsigned int eax = op, ebx, ecx = 0, edx; \ \ native_cpuid(&eax, &ebx, &ecx, &edx); \ \ return reg; \ } /* * Native CPUID functions returning a single datum. */ native_cpuid_reg(eax) native_cpuid_reg(ebx) native_cpuid_reg(ecx) native_cpuid_reg(edx) /* * Friendlier CR3 helpers. */ static inline unsigned long read_cr3_pa(void) { return __read_cr3() & CR3_ADDR_MASK; } static inline unsigned long native_read_cr3_pa(void) { return __native_read_cr3() & CR3_ADDR_MASK; } static inline void load_cr3(pgd_t *pgdir) { write_cr3(__sme_pa(pgdir)); } /* * Note that while the legacy 'TSS' name comes from 'Task State Segment', * on modern x86 CPUs the TSS also holds information important to 64-bit mode, * unrelated to the task-switch mechanism: */ #ifdef CONFIG_X86_32 /* This is the TSS defined by the hardware. */ struct x86_hw_tss { unsigned short back_link, __blh; unsigned long sp0; unsigned short ss0, __ss0h; unsigned long sp1; /* * We don't use ring 1, so ss1 is a convenient scratch space in * the same cacheline as sp0. We use ss1 to cache the value in * MSR_IA32_SYSENTER_CS. When we context switch * MSR_IA32_SYSENTER_CS, we first check if the new value being * written matches ss1, and, if it's not, then we wrmsr the new * value and update ss1. * * The only reason we context switch MSR_IA32_SYSENTER_CS is * that we set it to zero in vm86 tasks to avoid corrupting the * stack if we were to go through the sysenter path from vm86 * mode. */ unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ unsigned short __ss1h; unsigned long sp2; unsigned short ss2, __ss2h; unsigned long __cr3; unsigned long ip; unsigned long flags; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long bx; unsigned long sp; unsigned long bp; unsigned long si; unsigned long di; unsigned short es, __esh; unsigned short cs, __csh; unsigned short ss, __ssh; unsigned short ds, __dsh; unsigned short fs, __fsh; unsigned short gs, __gsh; unsigned short ldt, __ldth; unsigned short trace; unsigned short io_bitmap_base; } __attribute__((packed)); #else struct x86_hw_tss { u32 reserved1; u64 sp0; /* * We store cpu_current_top_of_stack in sp1 so it's always accessible. * Linux does not use ring 1, so sp1 is not otherwise needed. */ u64 sp1; /* * Since Linux does not use ring 2, the 'sp2' slot is unused by * hardware. entry_SYSCALL_64 uses it as scratch space to stash * the user RSP value. */ u64 sp2; u64 reserved2; u64 ist[7]; u32 reserved3; u32 reserved4; u16 reserved5; u16 io_bitmap_base; } __attribute__((packed)); #endif /* * IO-bitmap sizes: */ #define IO_BITMAP_BITS 65536 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) #define IO_BITMAP_OFFSET_VALID_MAP \ (offsetof(struct tss_struct, io_bitmap.bitmap) - \ offsetof(struct tss_struct, x86_tss)) #define IO_BITMAP_OFFSET_VALID_ALL \ (offsetof(struct tss_struct, io_bitmap.mapall) - \ offsetof(struct tss_struct, x86_tss)) #ifdef CONFIG_X86_IOPL_IOPERM /* * sizeof(unsigned long) coming from an extra "long" at the end of the * iobitmap. The limit is inclusive, i.e. the last valid byte. */ # define __KERNEL_TSS_LIMIT \ (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ sizeof(unsigned long) - 1) #else # define __KERNEL_TSS_LIMIT \ (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) #endif /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) struct entry_stack { char stack[PAGE_SIZE]; }; struct entry_stack_page { struct entry_stack stack; } __aligned(PAGE_SIZE); /* * All IO bitmap related data stored in the TSS: */ struct x86_io_bitmap { /* The sequence number of the last active bitmap. */ u64 prev_sequence; /* * Store the dirty size of the last io bitmap offender. The next * one will have to do the cleanup as the switch out to a non io * bitmap user will just set x86_tss.io_bitmap_base to a value * outside of the TSS limit. So for sane tasks there is no need to * actually touch the io_bitmap at all. */ unsigned int prev_max; /* * The extra 1 is there because the CPU will access an * additional byte beyond the end of the IO permission * bitmap. The extra byte must be all 1 bits, and must * be within the limit. */ unsigned long bitmap[IO_BITMAP_LONGS + 1]; /* * Special I/O bitmap to emulate IOPL(3). All bytes zero, * except the additional byte at the end. */ unsigned long mapall[IO_BITMAP_LONGS + 1]; }; struct tss_struct { /* * The fixed hardware portion. This must not cross a page boundary * at risk of violating the SDM's advice and potentially triggering * errata. */ struct x86_hw_tss x86_tss; struct x86_io_bitmap io_bitmap; } __aligned(PAGE_SIZE); DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); /* Per CPU interrupt stacks */ struct irq_stack { char stack[IRQ_STACK_SIZE]; } __aligned(IRQ_STACK_SIZE); DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); #ifdef CONFIG_X86_32 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); #else /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 #endif #ifdef CONFIG_X86_64 struct fixed_percpu_data { /* * GCC hardcodes the stack canary as %gs:40. Since the * irq_stack is the object at %gs:0, we reserve the bottom * 48 bytes of the irq stack for the canary. * * Once we are willing to require -mstack-protector-guard-symbol= * support for x86_64 stackprotector, we can get rid of this. */ char gs_base[40]; unsigned long stack_canary; }; DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; DECLARE_INIT_PER_CPU(fixed_percpu_data); static inline unsigned long cpu_kernelmode_gs_base(int cpu) { return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); } DECLARE_PER_CPU(unsigned int, irq_count); extern asmlinkage void ignore_sysret(void); /* Save actual FS/GS selectors and bases to current->thread */ void current_save_fsgs(void); #else /* X86_64 */ #ifdef CONFIG_STACKPROTECTOR DECLARE_PER_CPU(unsigned long, __stack_chk_guard); #endif /* Per CPU softirq stack pointer */ DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); #endif /* X86_64 */ extern unsigned int fpu_kernel_xstate_size; extern unsigned int fpu_user_xstate_size; struct perf_event; struct thread_struct { /* Cached TLS descriptors: */ struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; #ifdef CONFIG_X86_32 unsigned long sp0; #endif unsigned long sp; #ifdef CONFIG_X86_32 unsigned long sysenter_cs; #else unsigned short es; unsigned short ds; unsigned short fsindex; unsigned short gsindex; #endif #ifdef CONFIG_X86_64 unsigned long fsbase; unsigned long gsbase; #else /* * XXX: this could presumably be unsigned short. Alternatively, * 32-bit kernels could be taught to use fsindex instead. */ unsigned long fs; unsigned long gs; #endif /* Save middle states of ptrace breakpoints */ struct perf_event *ptrace_bps[HBP_NUM]; /* Debug status used for traps, single steps, etc... */ unsigned long virtual_dr6; /* Keep track of the exact dr7 value set by the user */ unsigned long ptrace_dr7; /* Fault info: */ unsigned long cr2; unsigned long trap_nr; unsigned long error_code; #ifdef CONFIG_VM86 /* Virtual 86 mode info */ struct vm86 *vm86; #endif /* IO permissions: */ struct io_bitmap *io_bitmap; /* * IOPL. Priviledge level dependent I/O permission which is * emulated via the I/O bitmap to prevent user space from disabling * interrupts. */ unsigned long iopl_emul; unsigned int iopl_warn:1; /* Floating point and extended processor state */ struct fpu fpu; /* * WARNING: 'fpu' is dynamically-sized. It *MUST* be at * the end. */ }; /* Whitelist the FPU state from the task_struct for hardened usercopy. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = offsetof(struct thread_struct, fpu.state); *size = fpu_kernel_xstate_size; } static inline void native_load_sp0(unsigned long sp0) { this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); } static __always_inline void native_swapgs(void) { #ifdef CONFIG_X86_64 asm volatile("swapgs" ::: "memory"); #endif } static inline unsigned long current_top_of_stack(void) { /* * We can't read directly from tss.sp0: sp0 on x86_32 is special in * and around vm86 mode and sp0 on x86_64 is special because of the * entry trampoline. */ return this_cpu_read_stable(cpu_current_top_of_stack); } static inline bool on_thread_stack(void) { return (unsigned long)(current_top_of_stack() - current_stack_pointer) < THREAD_SIZE; } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define __cpuid native_cpuid static inline void load_sp0(unsigned long sp0) { native_load_sp0(sp0); } #endif /* CONFIG_PARAVIRT_XXL */ /* Free all resources held by a thread. */ extern void release_thread(struct task_struct *); unsigned long get_wchan(struct task_struct *p); /* * Generic CPUID function * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx * resulting in stale register contents being returned. */ static inline void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = 0; __cpuid(eax, ebx, ecx, edx); } /* Some CPUID calls want 'count' to be placed in ecx */ static inline void cpuid_count(unsigned int op, int count, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { *eax = op; *ecx = count; __cpuid(eax, ebx, ecx, edx); } /* * CPUID functions returning a single datum */ static inline unsigned int cpuid_eax(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return eax; } static inline unsigned int cpuid_ebx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ebx; } static inline unsigned int cpuid_ecx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return ecx; } static inline unsigned int cpuid_edx(unsigned int op) { unsigned int eax, ebx, ecx, edx; cpuid(op, &eax, &ebx, &ecx, &edx); return edx; } extern void select_idle_routine(const struct cpuinfo_x86 *c); extern void amd_e400_c1e_apic_setup(void); extern unsigned long boot_option_idle_override; enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, IDLE_POLL}; extern void enable_sep_cpu(void); extern int sysenter_setup(void); /* Defined in head.S */ extern struct desc_ptr early_gdt_descr; extern void switch_to_new_gdt(int); extern void load_direct_gdt(int); extern void load_fixmap_gdt(int); extern void load_percpu_segment(int); extern void cpu_init(void); extern void cpu_init_secondary(void); extern void cpu_init_exception_handling(void); extern void cr4_init(void); static inline unsigned long get_debugctlmsr(void) { unsigned long debugctlmsr = 0; #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return 0; #endif rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); return debugctlmsr; } static inline void update_debugctlmsr(unsigned long debugctlmsr) { #ifndef CONFIG_X86_DEBUGCTLMSR if (boot_cpu_data.x86 < 6) return; #endif wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); } extern void set_task_blockstep(struct task_struct *task, bool on); /* Boot loader type from the setup header: */ extern int bootloader_type; extern int bootloader_version; extern char ignore_fpu_irq; #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 #define ARCH_HAS_PREFETCHW #define ARCH_HAS_SPINLOCK_PREFETCH #ifdef CONFIG_X86_32 # define BASE_PREFETCH "" # define ARCH_HAS_PREFETCH #else # define BASE_PREFETCH "prefetcht0 %P1" #endif /* * Prefetch instructions for Pentium III (+) and AMD Athlon (+) * * It's not worth to care about 3dnow prefetches for the K6 * because they are microcoded there and very slow. */ static inline void prefetch(const void *x) { alternative_input(BASE_PREFETCH, "prefetchnta %P1", X86_FEATURE_XMM, "m" (*(const char *)x)); } /* * 3dnow prefetch to get an exclusive cache line. * Useful for spinlocks to avoid one state transition in the * cache coherency protocol: */ static __always_inline void prefetchw(const void *x) { alternative_input(BASE_PREFETCH, "prefetchw %P1", X86_FEATURE_3DNOWPREFETCH, "m" (*(const char *)x)); } static inline void spin_lock_prefetch(const void *x) { prefetchw(x); } #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ TOP_OF_KERNEL_STACK_PADDING) #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) #define task_pt_regs(task) \ ({ \ unsigned long __ptr = (unsigned long)task_stack_page(task); \ __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ ((struct pt_regs *)__ptr) - 1; \ }) #ifdef CONFIG_X86_32 #define INIT_THREAD { \ .sp0 = TOP_OF_INIT_STACK, \ .sysenter_cs = __KERNEL_CS, \ } #define KSTK_ESP(task) (task_pt_regs(task)->sp) #else #define INIT_THREAD { } extern unsigned long KSTK_ESP(struct task_struct *task); #endif /* CONFIG_X86_64 */ extern void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp); /* * This decides where the kernel will search for a free chunk of vm * space during mmap's. */ #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) #define KSTK_EIP(task) (task_pt_regs(task)->ip) /* Get/set a process' ability to use the timestamp counter instruction */ #define GET_TSC_CTL(adr) get_tsc_mode((adr)) #define SET_TSC_CTL(val) set_tsc_mode((val)) extern int get_tsc_mode(unsigned long adr); extern int set_tsc_mode(unsigned int val); DECLARE_PER_CPU(u64, msr_misc_features_shadow); #ifdef CONFIG_CPU_SUP_AMD extern u16 amd_get_nb_id(int cpu); extern u32 amd_get_nodes_per_socket(void); extern bool cpu_has_ibpb_brtype_microcode(void); extern void amd_clear_divider(void); #else static inline u16 amd_get_nb_id(int cpu) { return 0; } static inline u32 amd_get_nodes_per_socket(void) { return 0; } static inline bool cpu_has_ibpb_brtype_microcode(void) { return false; } static inline void amd_clear_divider(void) { } #endif static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) { uint32_t base, eax, signature[3]; for (base = 0x40000000; base < 0x40010000; base += 0x100) { cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); if (!memcmp(sig, signature, 12) && (leaves == 0 || ((eax - base) >= leaves))) return base; } return 0; } extern unsigned long arch_align_stack(unsigned long sp); void free_init_pages(const char *what, unsigned long begin, unsigned long end); extern void free_kernel_image_pages(const char *what, void *begin, void *end); void default_idle(void); #ifdef CONFIG_XEN bool xen_set_default_idle(void); #else #define xen_set_default_idle 0 #endif void __noreturn stop_this_cpu(void *dummy); void microcode_check(struct cpuinfo_x86 *prev_info); void store_cpu_caps(struct cpuinfo_x86 *info); enum l1tf_mitigations { L1TF_MITIGATION_OFF, L1TF_MITIGATION_FLUSH_NOWARN, L1TF_MITIGATION_FLUSH, L1TF_MITIGATION_FLUSH_NOSMT, L1TF_MITIGATION_FULL, L1TF_MITIGATION_FULL_FORCE }; extern enum l1tf_mitigations l1tf_mitigation; enum mds_mitigations { MDS_MITIGATION_OFF, MDS_MITIGATION_FULL, MDS_MITIGATION_VMWERV, }; extern bool gds_ucode_mitigated(void); /* * Make previous memory operations globally visible before * a WRMSR. * * MFENCE makes writes visible, but only affects load/store * instructions. WRMSR is unfortunately not a load/store * instruction and is unaffected by MFENCE. The LFENCE ensures * that the WRMSR is not reordered. * * Most WRMSRs are full serializing instructions themselves and * do not require this barrier. This is only required for the * IA32_TSC_DEADLINE and X2APIC MSRs. */ static inline void weak_wrmsr_fence(void) { alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE)); } #endif /* _ASM_X86_PROCESSOR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Authentication token and access key management * * Copyright (C) 2004, 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * See Documentation/security/keys/core.rst for information on keys/keyrings. */ #ifndef _LINUX_KEY_H #define _LINUX_KEY_H #include <linux/types.h> #include <linux/list.h> #include <linux/rbtree.h> #include <linux/rcupdate.h> #include <linux/sysctl.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/assoc_array.h> #include <linux/refcount.h> #include <linux/time64.h> #ifdef __KERNEL__ #include <linux/uidgid.h> /* key handle serial number */ typedef int32_t key_serial_t; /* key handle permissions mask */ typedef uint32_t key_perm_t; struct key; struct net; #ifdef CONFIG_KEYS #undef KEY_DEBUGGING #define KEY_POS_VIEW 0x01000000 /* possessor can view a key's attributes */ #define KEY_POS_READ 0x02000000 /* possessor can read key payload / view keyring */ #define KEY_POS_WRITE 0x04000000 /* possessor can update key payload / add link to keyring */ #define KEY_POS_SEARCH 0x08000000 /* possessor can find a key in search / search a keyring */ #define KEY_POS_LINK 0x10000000 /* possessor can create a link to a key/keyring */ #define KEY_POS_SETATTR 0x20000000 /* possessor can set key attributes */ #define KEY_POS_ALL 0x3f000000 #define KEY_USR_VIEW 0x00010000 /* user permissions... */ #define KEY_USR_READ 0x00020000 #define KEY_USR_WRITE 0x00040000 #define KEY_USR_SEARCH 0x00080000 #define KEY_USR_LINK 0x00100000 #define KEY_USR_SETATTR 0x00200000 #define KEY_USR_ALL 0x003f0000 #define KEY_GRP_VIEW 0x00000100 /* group permissions... */ #define KEY_GRP_READ 0x00000200 #define KEY_GRP_WRITE 0x00000400 #define KEY_GRP_SEARCH 0x00000800 #define KEY_GRP_LINK 0x00001000 #define KEY_GRP_SETATTR 0x00002000 #define KEY_GRP_ALL 0x00003f00 #define KEY_OTH_VIEW 0x00000001 /* third party permissions... */ #define KEY_OTH_READ 0x00000002 #define KEY_OTH_WRITE 0x00000004 #define KEY_OTH_SEARCH 0x00000008 #define KEY_OTH_LINK 0x00000010 #define KEY_OTH_SETATTR 0x00000020 #define KEY_OTH_ALL 0x0000003f #define KEY_PERM_UNDEF 0xffffffff /* * The permissions required on a key that we're looking up. */ enum key_need_perm { KEY_NEED_UNSPECIFIED, /* Needed permission unspecified */ KEY_NEED_VIEW, /* Require permission to view attributes */ KEY_NEED_READ, /* Require permission to read content */ KEY_NEED_WRITE, /* Require permission to update / modify */ KEY_NEED_SEARCH, /* Require permission to search (keyring) or find (key) */ KEY_NEED_LINK, /* Require permission to link */ KEY_NEED_SETATTR, /* Require permission to change attributes */ KEY_NEED_UNLINK, /* Require permission to unlink key */ KEY_SYSADMIN_OVERRIDE, /* Special: override by CAP_SYS_ADMIN */ KEY_AUTHTOKEN_OVERRIDE, /* Special: override by possession of auth token */ KEY_DEFER_PERM_CHECK, /* Special: permission check is deferred */ }; struct seq_file; struct user_struct; struct signal_struct; struct cred; struct key_type; struct key_owner; struct key_tag; struct keyring_list; struct keyring_name; struct key_tag { struct rcu_head rcu; refcount_t usage; bool removed; /* T when subject removed */ }; struct keyring_index_key { /* [!] If this structure is altered, the union in struct key must change too! */ unsigned long hash; /* Hash value */ union { struct { #ifdef __LITTLE_ENDIAN /* Put desc_len at the LSB of x */ u16 desc_len; char desc[sizeof(long) - 2]; /* First few chars of description */ #else char desc[sizeof(long) - 2]; /* First few chars of description */ u16 desc_len; #endif }; unsigned long x; }; struct key_type *type; struct key_tag *domain_tag; /* Domain of operation */ const char *description; }; union key_payload { void __rcu *rcu_data0; void *data[4]; }; /*****************************************************************************/ /* * key reference with possession attribute handling * * NOTE! key_ref_t is a typedef'd pointer to a type that is not actually * defined. This is because we abuse the bottom bit of the reference to carry a * flag to indicate whether the calling process possesses that key in one of * its keyrings. * * the key_ref_t has been made a separate type so that the compiler can reject * attempts to dereference it without proper conversion. * * the three functions are used to assemble and disassemble references */ typedef struct __key_reference_with_attributes *key_ref_t; static inline key_ref_t make_key_ref(const struct key *key, bool possession) { return (key_ref_t) ((unsigned long) key | possession); } static inline struct key *key_ref_to_ptr(const key_ref_t key_ref) { return (struct key *) ((unsigned long) key_ref & ~1UL); } static inline bool is_key_possessed(const key_ref_t key_ref) { return (unsigned long) key_ref & 1UL; } typedef int (*key_restrict_link_func_t)(struct key *dest_keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); struct key_restriction { key_restrict_link_func_t check; struct key *key; struct key_type *keytype; }; enum key_state { KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE, /* Positively instantiated */ }; /*****************************************************************************/ /* * authentication token / access credential / keyring * - types of key include: * - keyrings * - disk encryption IDs * - Kerberos TGTs and tickets */ struct key { refcount_t usage; /* number of references */ key_serial_t serial; /* key serial number */ union { struct list_head graveyard_link; struct rb_node serial_node; }; #ifdef CONFIG_KEY_NOTIFICATIONS struct watch_list *watchers; /* Entities watching this key for changes */ #endif struct rw_semaphore sem; /* change vs change sem */ struct key_user *user; /* owner of this key */ void *security; /* security data for this key */ union { time64_t expiry; /* time at which key expires (or 0) */ time64_t revoked_at; /* time at which key was revoked */ }; time64_t last_used_at; /* last time used for LRU keyring discard */ kuid_t uid; kgid_t gid; key_perm_t perm; /* access permissions */ unsigned short quotalen; /* length added to quota */ unsigned short datalen; /* payload data length * - may not match RCU dereferenced payload * - payload should contain own length */ short state; /* Key state (+) or rejection error (-) */ #ifdef KEY_DEBUGGING unsigned magic; #define KEY_DEBUG_MAGIC 0x18273645u #endif unsigned long flags; /* status flags (change with bitops) */ #define KEY_FLAG_DEAD 0 /* set if key type has been deleted */ #define KEY_FLAG_REVOKED 1 /* set if key had been revoked */ #define KEY_FLAG_IN_QUOTA 2 /* set if key consumes quota */ #define KEY_FLAG_USER_CONSTRUCT 3 /* set if key is being constructed in userspace */ #define KEY_FLAG_ROOT_CAN_CLEAR 4 /* set if key can be cleared by root without permission */ #define KEY_FLAG_INVALIDATED 5 /* set if key has been invalidated */ #define KEY_FLAG_BUILTIN 6 /* set if key is built in to the kernel */ #define KEY_FLAG_ROOT_CAN_INVAL 7 /* set if key can be invalidated by root without permission */ #define KEY_FLAG_KEEP 8 /* set if key should not be removed */ #define KEY_FLAG_UID_KEYRING 9 /* set if key is a user or user session keyring */ /* the key type and key description string * - the desc is used to match a key against search criteria * - it should be a printable string * - eg: for krb5 AFS, this might be "afs@REDHAT.COM" */ union { struct keyring_index_key index_key; struct { unsigned long hash; unsigned long len_desc; struct key_type *type; /* type of key */ struct key_tag *domain_tag; /* Domain of operation */ char *description; }; }; /* key data * - this is used to hold the data actually used in cryptography or * whatever */ union { union key_payload payload; struct { /* Keyring bits */ struct list_head name_link; struct assoc_array keys; }; }; /* This is set on a keyring to restrict the addition of a link to a key * to it. If this structure isn't provided then it is assumed that the * keyring is open to any addition. It is ignored for non-keyring * keys. Only set this value using keyring_restrict(), keyring_alloc(), * or key_alloc(). * * This is intended for use with rings of trusted keys whereby addition * to the keyring needs to be controlled. KEY_ALLOC_BYPASS_RESTRICTION * overrides this, allowing the kernel to add extra keys without * restriction. */ struct key_restriction *restrict_link; }; extern struct key *key_alloc(struct key_type *type, const char *desc, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link); #define KEY_ALLOC_IN_QUOTA 0x0000 /* add to quota, reject if would overrun */ #define KEY_ALLOC_QUOTA_OVERRUN 0x0001 /* add to quota, permit even if overrun */ #define KEY_ALLOC_NOT_IN_QUOTA 0x0002 /* not in quota */ #define KEY_ALLOC_BUILT_IN 0x0004 /* Key is built into kernel */ #define KEY_ALLOC_BYPASS_RESTRICTION 0x0008 /* Override the check on restricted keyrings */ #define KEY_ALLOC_UID_KEYRING 0x0010 /* allocating a user or user session keyring */ #define KEY_ALLOC_SET_KEEP 0x0020 /* Set the KEEP flag on the key/keyring */ extern void key_revoke(struct key *key); extern void key_invalidate(struct key *key); extern void key_put(struct key *key); extern bool key_put_tag(struct key_tag *tag); extern void key_remove_domain(struct key_tag *domain_tag); static inline struct key *__key_get(struct key *key) { refcount_inc(&key->usage); return key; } static inline struct key *key_get(struct key *key) { return key ? __key_get(key) : key; } static inline void key_ref_put(key_ref_t key_ref) { key_put(key_ref_to_ptr(key_ref)); } extern struct key *request_key_tag(struct key_type *type, const char *description, struct key_tag *domain_tag, const char *callout_info); extern struct key *request_key_rcu(struct key_type *type, const char *description, struct key_tag *domain_tag); extern struct key *request_key_with_auxdata(struct key_type *type, const char *description, struct key_tag *domain_tag, const void *callout_info, size_t callout_len, void *aux); /** * request_key - Request a key and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key_tag(), but with the default global domain tag. */ static inline struct key *request_key(struct key_type *type, const char *description, const char *callout_info) { return request_key_tag(type, description, NULL, callout_info); } #ifdef CONFIG_NET /** * request_key_net - Request a key for a net namespace and wait for construction * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * @callout_info: The data to pass to the instantiation upcall (or NULL). * * As for request_key() except that it does not add the returned key to a * keyring if found, new keys are always allocated in the user's quota, the * callout_info must be a NUL-terminated string and no auxiliary data can be * passed. Only keys that operate the specified network namespace are used. * * Furthermore, it then works as wait_for_key_construction() to wait for the * completion of keys undergoing construction with a non-interruptible wait. */ #define request_key_net(type, description, net, callout_info) \ request_key_tag(type, description, net->key_domain, callout_info); /** * request_key_net_rcu - Request a key for a net namespace under RCU conditions * @type: Type of key. * @description: The searchable description of the key. * @net: The network namespace that is the key's domain of operation. * * As for request_key_rcu() except that only keys that operate the specified * network namespace are used. */ #define request_key_net_rcu(type, description, net) \ request_key_rcu(type, description, net->key_domain); #endif /* CONFIG_NET */ extern int wait_for_key_construction(struct key *key, bool intr); extern int key_validate(const struct key *key); extern key_ref_t key_create_or_update(key_ref_t keyring, const char *type, const char *description, const void *payload, size_t plen, key_perm_t perm, unsigned long flags); extern int key_update(key_ref_t key, const void *payload, size_t plen); extern int key_link(struct key *keyring, struct key *key); extern int key_move(struct key *key, struct key *from_keyring, struct key *to_keyring, unsigned int flags); extern int key_unlink(struct key *keyring, struct key *key); extern struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid, const struct cred *cred, key_perm_t perm, unsigned long flags, struct key_restriction *restrict_link, struct key *dest); extern int restrict_link_reject(struct key *keyring, const struct key_type *type, const union key_payload *payload, struct key *restriction_key); extern int keyring_clear(struct key *keyring); extern key_ref_t keyring_search(key_ref_t keyring, struct key_type *type, const char *description, bool recurse); extern int keyring_add_key(struct key *keyring, struct key *key); extern int keyring_restrict(key_ref_t keyring, const char *type, const char *restriction); extern struct key *key_lookup(key_serial_t id); static inline key_serial_t key_serial(const struct key *key) { return key ? key->serial : 0; } extern void key_set_timeout(struct key *, unsigned); extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags, enum key_need_perm need_perm); extern void key_free_user_ns(struct user_namespace *); static inline short key_read_state(const struct key *key) { /* Barrier versus mark_key_instantiated(). */ return smp_load_acquire(&key->state); } /** * key_is_positive - Determine if a key has been positively instantiated * @key: The key to check. * * Return true if the specified key has been positively instantiated, false * otherwise. */ static inline bool key_is_positive(const struct key *key) { return key_read_state(key) == KEY_IS_POSITIVE; } static inline bool key_is_negative(const struct key *key) { return key_read_state(key) < 0; } #define dereference_key_rcu(KEY) \ (rcu_dereference((KEY)->payload.rcu_data0)) #define dereference_key_locked(KEY) \ (rcu_dereference_protected((KEY)->payload.rcu_data0, \ rwsem_is_locked(&((struct key *)(KEY))->sem))) #define rcu_assign_keypointer(KEY, PAYLOAD) \ do { \ rcu_assign_pointer((KEY)->payload.rcu_data0, (PAYLOAD)); \ } while (0) #ifdef CONFIG_SYSCTL extern struct ctl_table key_sysctls[]; #endif /* * the userspace interface */ extern int install_thread_keyring_to_cred(struct cred *cred); extern void key_fsuid_changed(struct cred *new_cred); extern void key_fsgid_changed(struct cred *new_cred); extern void key_init(void); #else /* CONFIG_KEYS */ #define key_validate(k) 0 #define key_serial(k) 0 #define key_get(k) ({ NULL; }) #define key_revoke(k) do { } while(0) #define key_invalidate(k) do { } while(0) #define key_put(k) do { } while(0) #define key_ref_put(k) do { } while(0) #define make_key_ref(k, p) NULL #define key_ref_to_ptr(k) NULL #define is_key_possessed(k) 0 #define key_fsuid_changed(c) do { } while(0) #define key_fsgid_changed(c) do { } while(0) #define key_init() do { } while(0) #define key_free_user_ns(ns) do { } while(0) #define key_remove_domain(d) do { } while(0) #endif /* CONFIG_KEYS */ #endif /* __KERNEL__ */ #endif /* _LINUX_KEY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 /* SPDX-License-Identifier: GPL-2.0 */ /* interrupt.h */ #ifndef _LINUX_INTERRUPT_H #define _LINUX_INTERRUPT_H #include <linux/kernel.h> #include <linux/bitops.h> #include <linux/cpumask.h> #include <linux/irqreturn.h> #include <linux/irqnr.h> #include <linux/hardirq.h> #include <linux/irqflags.h> #include <linux/hrtimer.h> #include <linux/kref.h> #include <linux/workqueue.h> #include <linux/atomic.h> #include <asm/ptrace.h> #include <asm/irq.h> #include <asm/sections.h> /* * These correspond to the IORESOURCE_IRQ_* defines in * linux/ioport.h to select the interrupt line behaviour. When * requesting an interrupt without specifying a IRQF_TRIGGER, the * setting should be assumed to be "as already configured", which * may be as per machine or firmware initialisation. */ #define IRQF_TRIGGER_NONE 0x00000000 #define IRQF_TRIGGER_RISING 0x00000001 #define IRQF_TRIGGER_FALLING 0x00000002 #define IRQF_TRIGGER_HIGH 0x00000004 #define IRQF_TRIGGER_LOW 0x00000008 #define IRQF_TRIGGER_MASK (IRQF_TRIGGER_HIGH | IRQF_TRIGGER_LOW | \ IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING) #define IRQF_TRIGGER_PROBE 0x00000010 /* * These flags used only by the kernel as part of the * irq handling routines. * * IRQF_SHARED - allow sharing the irq among several devices * IRQF_PROBE_SHARED - set by callers when they expect sharing mismatches to occur * IRQF_TIMER - Flag to mark this interrupt as timer interrupt * IRQF_PERCPU - Interrupt is per cpu * IRQF_NOBALANCING - Flag to exclude this interrupt from irq balancing * IRQF_IRQPOLL - Interrupt is used for polling (only the interrupt that is * registered first in a shared interrupt is considered for * performance reasons) * IRQF_ONESHOT - Interrupt is not reenabled after the hardirq handler finished. * Used by threaded interrupts which need to keep the * irq line disabled until the threaded handler has been run. * IRQF_NO_SUSPEND - Do not disable this IRQ during suspend. Does not guarantee * that this interrupt will wake the system from a suspended * state. See Documentation/power/suspend-and-interrupts.rst * IRQF_FORCE_RESUME - Force enable it on resume even if IRQF_NO_SUSPEND is set * IRQF_NO_THREAD - Interrupt cannot be threaded * IRQF_EARLY_RESUME - Resume IRQ early during syscore instead of at device * resume time. * IRQF_COND_SUSPEND - If the IRQ is shared with a NO_SUSPEND user, execute this * interrupt handler after suspending interrupts. For system * wakeup devices users need to implement wakeup detection in * their interrupt handlers. * IRQF_NO_AUTOEN - Don't enable IRQ or NMI automatically when users request it. * Users will enable it explicitly by enable_irq() or enable_nmi() * later. */ #define IRQF_SHARED 0x00000080 #define IRQF_PROBE_SHARED 0x00000100 #define __IRQF_TIMER 0x00000200 #define IRQF_PERCPU 0x00000400 #define IRQF_NOBALANCING 0x00000800 #define IRQF_IRQPOLL 0x00001000 #define IRQF_ONESHOT 0x00002000 #define IRQF_NO_SUSPEND 0x00004000 #define IRQF_FORCE_RESUME 0x00008000 #define IRQF_NO_THREAD 0x00010000 #define IRQF_EARLY_RESUME 0x00020000 #define IRQF_COND_SUSPEND 0x00040000 #define IRQF_NO_AUTOEN 0x00080000 #define IRQF_TIMER (__IRQF_TIMER | IRQF_NO_SUSPEND | IRQF_NO_THREAD) /* * These values can be returned by request_any_context_irq() and * describe the context the interrupt will be run in. * * IRQC_IS_HARDIRQ - interrupt runs in hardirq context * IRQC_IS_NESTED - interrupt runs in a nested threaded context */ enum { IRQC_IS_HARDIRQ = 0, IRQC_IS_NESTED, }; typedef irqreturn_t (*irq_handler_t)(int, void *); /** * struct irqaction - per interrupt action descriptor * @handler: interrupt handler function * @name: name of the device * @dev_id: cookie to identify the device * @percpu_dev_id: cookie to identify the device * @next: pointer to the next irqaction for shared interrupts * @irq: interrupt number * @flags: flags (see IRQF_* above) * @thread_fn: interrupt handler function for threaded interrupts * @thread: thread pointer for threaded interrupts * @secondary: pointer to secondary irqaction (force threading) * @thread_flags: flags related to @thread * @thread_mask: bitmask for keeping track of @thread activity * @dir: pointer to the proc/irq/NN/name entry */ struct irqaction { irq_handler_t handler; void *dev_id; void __percpu *percpu_dev_id; struct irqaction *next; irq_handler_t thread_fn; struct task_struct *thread; struct irqaction *secondary; unsigned int irq; unsigned int flags; unsigned long thread_flags; unsigned long thread_mask; const char *name; struct proc_dir_entry *dir; } ____cacheline_internodealigned_in_smp; extern irqreturn_t no_action(int cpl, void *dev_id); /* * If a (PCI) device interrupt is not connected we set dev->irq to * IRQ_NOTCONNECTED. This causes request_irq() to fail with -ENOTCONN, so we * can distingiush that case from other error returns. * * 0x80000000 is guaranteed to be outside the available range of interrupts * and easy to distinguish from other possible incorrect values. */ #define IRQ_NOTCONNECTED (1U << 31) extern int __must_check request_threaded_irq(unsigned int irq, irq_handler_t handler, irq_handler_t thread_fn, unsigned long flags, const char *name, void *dev); /** * request_irq - Add a handler for an interrupt line * @irq: The interrupt line to allocate * @handler: Function to be called when the IRQ occurs. * Primary handler for threaded interrupts * If NULL, the default primary handler is installed * @flags: Handling flags * @name: Name of the device generating this interrupt * @dev: A cookie passed to the handler function * * This call allocates an interrupt and establishes a handler; see * the documentation for request_threaded_irq() for details. */ static inline int __must_check request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev) { return request_threaded_irq(irq, handler, NULL, flags, name, dev); } extern int __must_check request_any_context_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev_id); extern int __must_check __request_percpu_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *devname, void __percpu *percpu_dev_id); extern int __must_check request_nmi(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev); static inline int __must_check request_percpu_irq(unsigned int irq, irq_handler_t handler, const char *devname, void __percpu *percpu_dev_id) { return __request_percpu_irq(irq, handler, 0, devname, percpu_dev_id); } extern int __must_check request_percpu_nmi(unsigned int irq, irq_handler_t handler, const char *devname, void __percpu *dev); extern const void *free_irq(unsigned int, void *); extern void free_percpu_irq(unsigned int, void __percpu *); extern const void *free_nmi(unsigned int irq, void *dev_id); extern void free_percpu_nmi(unsigned int irq, void __percpu *percpu_dev_id); struct device; extern int __must_check devm_request_threaded_irq(struct device *dev, unsigned int irq, irq_handler_t handler, irq_handler_t thread_fn, unsigned long irqflags, const char *devname, void *dev_id); static inline int __must_check devm_request_irq(struct device *dev, unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { return devm_request_threaded_irq(dev, irq, handler, NULL, irqflags, devname, dev_id); } extern int __must_check devm_request_any_context_irq(struct device *dev, unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id); extern void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id); /* * On lockdep we dont want to enable hardirqs in hardirq * context. Use local_irq_enable_in_hardirq() to annotate * kernel code that has to do this nevertheless (pretty much * the only valid case is for old/broken hardware that is * insanely slow). * * NOTE: in theory this might break fragile code that relies * on hardirq delivery - in practice we dont seem to have such * places left. So the only effect should be slightly increased * irqs-off latencies. */ #ifdef CONFIG_LOCKDEP # define local_irq_enable_in_hardirq() do { } while (0) #else # define local_irq_enable_in_hardirq() local_irq_enable() #endif extern void disable_irq_nosync(unsigned int irq); extern bool disable_hardirq(unsigned int irq); extern void disable_irq(unsigned int irq); extern void disable_percpu_irq(unsigned int irq); extern void enable_irq(unsigned int irq); extern void enable_percpu_irq(unsigned int irq, unsigned int type); extern bool irq_percpu_is_enabled(unsigned int irq); extern void irq_wake_thread(unsigned int irq, void *dev_id); extern void disable_nmi_nosync(unsigned int irq); extern void disable_percpu_nmi(unsigned int irq); extern void enable_nmi(unsigned int irq); extern void enable_percpu_nmi(unsigned int irq, unsigned int type); extern int prepare_percpu_nmi(unsigned int irq); extern void teardown_percpu_nmi(unsigned int irq); extern int irq_inject_interrupt(unsigned int irq); /* The following three functions are for the core kernel use only. */ extern void suspend_device_irqs(void); extern void resume_device_irqs(void); extern void rearm_wake_irq(unsigned int irq); /** * struct irq_affinity_notify - context for notification of IRQ affinity changes * @irq: Interrupt to which notification applies * @kref: Reference count, for internal use * @work: Work item, for internal use * @notify: Function to be called on change. This will be * called in process context. * @release: Function to be called on release. This will be * called in process context. Once registered, the * structure must only be freed when this function is * called or later. */ struct irq_affinity_notify { unsigned int irq; struct kref kref; struct work_struct work; void (*notify)(struct irq_affinity_notify *, const cpumask_t *mask); void (*release)(struct kref *ref); }; #define IRQ_AFFINITY_MAX_SETS 4 /** * struct irq_affinity - Description for automatic irq affinity assignements * @pre_vectors: Don't apply affinity to @pre_vectors at beginning of * the MSI(-X) vector space * @post_vectors: Don't apply affinity to @post_vectors at end of * the MSI(-X) vector space * @nr_sets: The number of interrupt sets for which affinity * spreading is required * @set_size: Array holding the size of each interrupt set * @calc_sets: Callback for calculating the number and size * of interrupt sets * @priv: Private data for usage by @calc_sets, usually a * pointer to driver/device specific data. */ struct irq_affinity { unsigned int pre_vectors; unsigned int post_vectors; unsigned int nr_sets; unsigned int set_size[IRQ_AFFINITY_MAX_SETS]; void (*calc_sets)(struct irq_affinity *, unsigned int nvecs); void *priv; }; /** * struct irq_affinity_desc - Interrupt affinity descriptor * @mask: cpumask to hold the affinity assignment * @is_managed: 1 if the interrupt is managed internally */ struct irq_affinity_desc { struct cpumask mask; unsigned int is_managed : 1; }; #if defined(CONFIG_SMP) extern cpumask_var_t irq_default_affinity; /* Internal implementation. Use the helpers below */ extern int __irq_set_affinity(unsigned int irq, const struct cpumask *cpumask, bool force); /** * irq_set_affinity - Set the irq affinity of a given irq * @irq: Interrupt to set affinity * @cpumask: cpumask * * Fails if cpumask does not contain an online CPU */ static inline int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) { return __irq_set_affinity(irq, cpumask, false); } /** * irq_force_affinity - Force the irq affinity of a given irq * @irq: Interrupt to set affinity * @cpumask: cpumask * * Same as irq_set_affinity, but without checking the mask against * online cpus. * * Solely for low level cpu hotplug code, where we need to make per * cpu interrupts affine before the cpu becomes online. */ static inline int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) { return __irq_set_affinity(irq, cpumask, true); } extern int irq_can_set_affinity(unsigned int irq); extern int irq_select_affinity(unsigned int irq); extern int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m); extern int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify); struct irq_affinity_desc * irq_create_affinity_masks(unsigned int nvec, struct irq_affinity *affd); unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, const struct irq_affinity *affd); #else /* CONFIG_SMP */ static inline int irq_set_affinity(unsigned int irq, const struct cpumask *m) { return -EINVAL; } static inline int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) { return 0; } static inline int irq_can_set_affinity(unsigned int irq) { return 0; } static inline int irq_select_affinity(unsigned int irq) { return 0; } static inline int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) { return -EINVAL; } static inline int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) { return 0; } static inline struct irq_affinity_desc * irq_create_affinity_masks(unsigned int nvec, struct irq_affinity *affd) { return NULL; } static inline unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, const struct irq_affinity *affd) { return maxvec; } #endif /* CONFIG_SMP */ /* * Special lockdep variants of irq disabling/enabling. * These should be used for locking constructs that * know that a particular irq context which is disabled, * and which is the only irq-context user of a lock, * that it's safe to take the lock in the irq-disabled * section without disabling hardirqs. * * On !CONFIG_LOCKDEP they are equivalent to the normal * irq disable/enable methods. */ static inline void disable_irq_nosync_lockdep(unsigned int irq) { disable_irq_nosync(irq); #if defined(CONFIG_LOCKDEP) && !defined(CONFIG_PREEMPT_RT) local_irq_disable(); #endif } static inline void disable_irq_nosync_lockdep_irqsave(unsigned int irq, unsigned long *flags) { disable_irq_nosync(irq); #if defined(CONFIG_LOCKDEP) && !defined(CONFIG_PREEMPT_RT) local_irq_save(*flags); #endif } static inline void disable_irq_lockdep(unsigned int irq) { disable_irq(irq); #ifdef CONFIG_LOCKDEP local_irq_disable(); #endif } static inline void enable_irq_lockdep(unsigned int irq) { #if defined(CONFIG_LOCKDEP) && !defined(CONFIG_PREEMPT_RT) local_irq_enable(); #endif enable_irq(irq); } static inline void enable_irq_lockdep_irqrestore(unsigned int irq, unsigned long *flags) { #if defined(CONFIG_LOCKDEP) && !defined(CONFIG_PREEMPT_RT) local_irq_restore(*flags); #endif enable_irq(irq); } /* IRQ wakeup (PM) control: */ extern int irq_set_irq_wake(unsigned int irq, unsigned int on); static inline int enable_irq_wake(unsigned int irq) { return irq_set_irq_wake(irq, 1); } static inline int disable_irq_wake(unsigned int irq) { return irq_set_irq_wake(irq, 0); } /* * irq_get_irqchip_state/irq_set_irqchip_state specific flags */ enum irqchip_irq_state { IRQCHIP_STATE_PENDING, /* Is interrupt pending? */ IRQCHIP_STATE_ACTIVE, /* Is interrupt in progress? */ IRQCHIP_STATE_MASKED, /* Is interrupt masked? */ IRQCHIP_STATE_LINE_LEVEL, /* Is IRQ line high? */ }; extern int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state); extern int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool state); #ifdef CONFIG_IRQ_FORCED_THREADING # ifdef CONFIG_PREEMPT_RT # define force_irqthreads (true) # else extern bool force_irqthreads; # endif #else #define force_irqthreads (0) #endif #ifndef local_softirq_pending #ifndef local_softirq_pending_ref #define local_softirq_pending_ref irq_stat.__softirq_pending #endif #define local_softirq_pending() (__this_cpu_read(local_softirq_pending_ref)) #define set_softirq_pending(x) (__this_cpu_write(local_softirq_pending_ref, (x))) #define or_softirq_pending(x) (__this_cpu_or(local_softirq_pending_ref, (x))) #endif /* local_softirq_pending */ /* Some architectures might implement lazy enabling/disabling of * interrupts. In some cases, such as stop_machine, we might want * to ensure that after a local_irq_disable(), interrupts have * really been disabled in hardware. Such architectures need to * implement the following hook. */ #ifndef hard_irq_disable #define hard_irq_disable() do { } while(0) #endif /* PLEASE, avoid to allocate new softirqs, if you need not _really_ high frequency threaded job scheduling. For almost all the purposes tasklets are more than enough. F.e. all serial device BHs et al. should be converted to tasklets, not to softirqs. */ enum { HI_SOFTIRQ=0, TIMER_SOFTIRQ, NET_TX_SOFTIRQ, NET_RX_SOFTIRQ, BLOCK_SOFTIRQ, IRQ_POLL_SOFTIRQ, TASKLET_SOFTIRQ, SCHED_SOFTIRQ, HRTIMER_SOFTIRQ, RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */ NR_SOFTIRQS }; #define SOFTIRQ_STOP_IDLE_MASK (~(1 << RCU_SOFTIRQ)) /* map softirq index to softirq name. update 'softirq_to_name' in * kernel/softirq.c when adding a new softirq. */ extern const char * const softirq_to_name[NR_SOFTIRQS]; /* softirq mask and active fields moved to irq_cpustat_t in * asm/hardirq.h to get better cache usage. KAO */ struct softirq_action { void (*action)(struct softirq_action *); }; asmlinkage void do_softirq(void); asmlinkage void __do_softirq(void); #ifdef __ARCH_HAS_DO_SOFTIRQ void do_softirq_own_stack(void); #else static inline void do_softirq_own_stack(void) { __do_softirq(); } #endif extern void open_softirq(int nr, void (*action)(struct softirq_action *)); extern void softirq_init(void); extern void __raise_softirq_irqoff(unsigned int nr); extern void raise_softirq_irqoff(unsigned int nr); extern void raise_softirq(unsigned int nr); DECLARE_PER_CPU(struct task_struct *, ksoftirqd); static inline struct task_struct *this_cpu_ksoftirqd(void) { return this_cpu_read(ksoftirqd); } /* Tasklets --- multithreaded analogue of BHs. This API is deprecated. Please consider using threaded IRQs instead: https://lore.kernel.org/lkml/20200716081538.2sivhkj4hcyrusem@linutronix.de Main feature differing them of generic softirqs: tasklet is running only on one CPU simultaneously. Main feature differing them of BHs: different tasklets may be run simultaneously on different CPUs. Properties: * If tasklet_schedule() is called, then tasklet is guaranteed to be executed on some cpu at least once after this. * If the tasklet is already scheduled, but its execution is still not started, it will be executed only once. * If this tasklet is already running on another CPU (or schedule is called from tasklet itself), it is rescheduled for later. * Tasklet is strictly serialized wrt itself, but not wrt another tasklets. If client needs some intertask synchronization, he makes it with spinlocks. */ struct tasklet_struct { struct tasklet_struct *next; unsigned long state; atomic_t count; bool use_callback; union { void (*func)(unsigned long data); void (*callback)(struct tasklet_struct *t); }; unsigned long data; }; #define DECLARE_TASKLET(name, _callback) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(0), \ .callback = _callback, \ .use_callback = true, \ } #define DECLARE_TASKLET_DISABLED(name, _callback) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(1), \ .callback = _callback, \ .use_callback = true, \ } #define from_tasklet(var, callback_tasklet, tasklet_fieldname) \ container_of(callback_tasklet, typeof(*var), tasklet_fieldname) #define DECLARE_TASKLET_OLD(name, _func) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(0), \ .func = _func, \ } #define DECLARE_TASKLET_DISABLED_OLD(name, _func) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(1), \ .func = _func, \ } enum { TASKLET_STATE_SCHED, /* Tasklet is scheduled for execution */ TASKLET_STATE_RUN /* Tasklet is running (SMP only) */ }; #ifdef CONFIG_SMP static inline int tasklet_trylock(struct tasklet_struct *t) { return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state); } static inline void tasklet_unlock(struct tasklet_struct *t) { smp_mb__before_atomic(); clear_bit(TASKLET_STATE_RUN, &(t)->state); } static inline void tasklet_unlock_wait(struct tasklet_struct *t) { while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { barrier(); } } #else #define tasklet_trylock(t) 1 #define tasklet_unlock_wait(t) do { } while (0) #define tasklet_unlock(t) do { } while (0) #endif extern void __tasklet_schedule(struct tasklet_struct *t); static inline void tasklet_schedule(struct tasklet_struct *t) { if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) __tasklet_schedule(t); } extern void __tasklet_hi_schedule(struct tasklet_struct *t); static inline void tasklet_hi_schedule(struct tasklet_struct *t) { if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) __tasklet_hi_schedule(t); } static inline void tasklet_disable_nosync(struct tasklet_struct *t) { atomic_inc(&t->count); smp_mb__after_atomic(); } static inline void tasklet_disable(struct tasklet_struct *t) { tasklet_disable_nosync(t); tasklet_unlock_wait(t); smp_mb(); } static inline void tasklet_enable(struct tasklet_struct *t) { smp_mb__before_atomic(); atomic_dec(&t->count); } extern void tasklet_kill(struct tasklet_struct *t); extern void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu); extern void tasklet_init(struct tasklet_struct *t, void (*func)(unsigned long), unsigned long data); extern void tasklet_setup(struct tasklet_struct *t, void (*callback)(struct tasklet_struct *)); /* * Autoprobing for irqs: * * probe_irq_on() and probe_irq_off() provide robust primitives * for accurate IRQ probing during kernel initialization. They are * reasonably simple to use, are not "fooled" by spurious interrupts, * and, unlike other attempts at IRQ probing, they do not get hung on * stuck interrupts (such as unused PS2 mouse interfaces on ASUS boards). * * For reasonably foolproof probing, use them as follows: * * 1. clear and/or mask the device's internal interrupt. * 2. sti(); * 3. irqs = probe_irq_on(); // "take over" all unassigned idle IRQs * 4. enable the device and cause it to trigger an interrupt. * 5. wait for the device to interrupt, using non-intrusive polling or a delay. * 6. irq = probe_irq_off(irqs); // get IRQ number, 0=none, negative=multiple * 7. service the device to clear its pending interrupt. * 8. loop again if paranoia is required. * * probe_irq_on() returns a mask of allocated irq's. * * probe_irq_off() takes the mask as a parameter, * and returns the irq number which occurred, * or zero if none occurred, or a negative irq number * if more than one irq occurred. */ #if !defined(CONFIG_GENERIC_IRQ_PROBE) static inline unsigned long probe_irq_on(void) { return 0; } static inline int probe_irq_off(unsigned long val) { return 0; } static inline unsigned int probe_irq_mask(unsigned long val) { return 0; } #else extern unsigned long probe_irq_on(void); /* returns 0 on failure */ extern int probe_irq_off(unsigned long); /* returns 0 or negative on failure */ extern unsigned int probe_irq_mask(unsigned long); /* returns mask of ISA interrupts */ #endif #ifdef CONFIG_PROC_FS /* Initialize /proc/irq/ */ extern void init_irq_proc(void); #else static inline void init_irq_proc(void) { } #endif #ifdef CONFIG_IRQ_TIMINGS void irq_timings_enable(void); void irq_timings_disable(void); u64 irq_timings_next_event(u64 now); #endif struct seq_file; int show_interrupts(struct seq_file *p, void *v); int arch_show_interrupts(struct seq_file *p, int prec); extern int early_irq_init(void); extern int arch_probe_nr_irqs(void); extern int arch_early_irq_init(void); /* * We want to know which function is an entrypoint of a hardirq or a softirq. */ #ifndef __irq_entry # define __irq_entry __section(".irqentry.text") #endif #define __softirq_entry __section(".softirqentry.text") #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HIGHMEM_H #define _LINUX_HIGHMEM_H #include <linux/fs.h> #include <linux/kernel.h> #include <linux/bug.h> #include <linux/mm.h> #include <linux/uaccess.h> #include <linux/hardirq.h> #include <asm/cacheflush.h> #ifndef ARCH_HAS_FLUSH_ANON_PAGE static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { } #endif #ifndef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE static inline void flush_kernel_dcache_page(struct page *page) { } static inline void flush_kernel_vmap_range(void *vaddr, int size) { } static inline void invalidate_kernel_vmap_range(void *vaddr, int size) { } #endif #include <asm/kmap_types.h> #ifdef CONFIG_HIGHMEM extern void *kmap_atomic_high_prot(struct page *page, pgprot_t prot); extern void kunmap_atomic_high(void *kvaddr); #include <asm/highmem.h> #ifndef ARCH_HAS_KMAP_FLUSH_TLB static inline void kmap_flush_tlb(unsigned long addr) { } #endif #ifndef kmap_prot #define kmap_prot PAGE_KERNEL #endif void *kmap_high(struct page *page); static inline void *kmap(struct page *page) { void *addr; might_sleep(); if (!PageHighMem(page)) addr = page_address(page); else addr = kmap_high(page); kmap_flush_tlb((unsigned long)addr); return addr; } void kunmap_high(struct page *page); static inline void kunmap(struct page *page) { might_sleep(); if (!PageHighMem(page)) return; kunmap_high(page); } /* * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because * no global lock is needed and because the kmap code must perform a global TLB * invalidation when the kmap pool wraps. * * However when holding an atomic kmap it is not legal to sleep, so atomic * kmaps are appropriate for short, tight code paths only. * * The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap * gives a more generic (and caching) interface. But kmap_atomic can * be used in IRQ contexts, so in some (very limited) cases we need * it. */ static inline void *kmap_atomic_prot(struct page *page, pgprot_t prot) { preempt_disable(); pagefault_disable(); if (!PageHighMem(page)) return page_address(page); return kmap_atomic_high_prot(page, prot); } #define kmap_atomic(page) kmap_atomic_prot(page, kmap_prot) /* declarations for linux/mm/highmem.c */ unsigned int nr_free_highpages(void); extern atomic_long_t _totalhigh_pages; static inline unsigned long totalhigh_pages(void) { return (unsigned long)atomic_long_read(&_totalhigh_pages); } static inline void totalhigh_pages_inc(void) { atomic_long_inc(&_totalhigh_pages); } static inline void totalhigh_pages_dec(void) { atomic_long_dec(&_totalhigh_pages); } static inline void totalhigh_pages_add(long count) { atomic_long_add(count, &_totalhigh_pages); } static inline void totalhigh_pages_set(long val) { atomic_long_set(&_totalhigh_pages, val); } void kmap_flush_unused(void); struct page *kmap_to_page(void *addr); #else /* CONFIG_HIGHMEM */ static inline unsigned int nr_free_highpages(void) { return 0; } static inline struct page *kmap_to_page(void *addr) { return virt_to_page(addr); } static inline unsigned long totalhigh_pages(void) { return 0UL; } static inline void *kmap(struct page *page) { might_sleep(); return page_address(page); } static inline void kunmap_high(struct page *page) { } static inline void kunmap(struct page *page) { #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(page_address(page)); #endif } static inline void *kmap_atomic(struct page *page) { preempt_disable(); pagefault_disable(); return page_address(page); } #define kmap_atomic_prot(page, prot) kmap_atomic(page) static inline void kunmap_atomic_high(void *addr) { /* * Mostly nothing to do in the CONFIG_HIGHMEM=n case as kunmap_atomic() * handles re-enabling faults + preemption */ #ifdef ARCH_HAS_FLUSH_ON_KUNMAP kunmap_flush_on_unmap(addr); #endif } #define kmap_atomic_pfn(pfn) kmap_atomic(pfn_to_page(pfn)) #define kmap_flush_unused() do {} while(0) #endif /* CONFIG_HIGHMEM */ #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) DECLARE_PER_CPU(int, __kmap_atomic_idx); static inline int kmap_atomic_idx_push(void) { int idx = __this_cpu_inc_return(__kmap_atomic_idx) - 1; #ifdef CONFIG_DEBUG_HIGHMEM WARN_ON_ONCE(in_irq() && !irqs_disabled()); BUG_ON(idx >= KM_TYPE_NR); #endif return idx; } static inline int kmap_atomic_idx(void) { return __this_cpu_read(__kmap_atomic_idx) - 1; } static inline void kmap_atomic_idx_pop(void) { #ifdef CONFIG_DEBUG_HIGHMEM int idx = __this_cpu_dec_return(__kmap_atomic_idx); BUG_ON(idx < 0); #else __this_cpu_dec(__kmap_atomic_idx); #endif } #endif /* * Prevent people trying to call kunmap_atomic() as if it were kunmap() * kunmap_atomic() should get the return value of kmap_atomic, not the page. */ #define kunmap_atomic(addr) \ do { \ BUILD_BUG_ON(__same_type((addr), struct page *)); \ kunmap_atomic_high(addr); \ pagefault_enable(); \ preempt_enable(); \ } while (0) /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */ #ifndef clear_user_highpage static inline void clear_user_highpage(struct page *page, unsigned long vaddr) { void *addr = kmap_atomic(page); clear_user_page(addr, vaddr, page); kunmap_atomic(addr); } #endif #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE /** * __alloc_zeroed_user_highpage - Allocate a zeroed HIGHMEM page for a VMA with caller-specified movable GFP flags * @movableflags: The GFP flags related to the pages future ability to move like __GFP_MOVABLE * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA but the caller is expected * to specify via movableflags whether the page will be movable in the * future or not * * An architecture may override this function by defining * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE and providing their own * implementation. */ static inline struct page * __alloc_zeroed_user_highpage(gfp_t movableflags, struct vm_area_struct *vma, unsigned long vaddr) { struct page *page = alloc_page_vma(GFP_HIGHUSER | movableflags, vma, vaddr); if (page) clear_user_highpage(page, vaddr); return page; } #endif /** * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move * @vma: The VMA the page is to be allocated for * @vaddr: The virtual address the page will be inserted into * * This function will allocate a page for a VMA that the caller knows will * be able to migrate in the future using move_pages() or reclaimed */ static inline struct page * alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, unsigned long vaddr) { return __alloc_zeroed_user_highpage(__GFP_MOVABLE, vma, vaddr); } static inline void clear_highpage(struct page *page) { void *kaddr = kmap_atomic(page); clear_page(kaddr); kunmap_atomic(kaddr); } static inline void zero_user_segments(struct page *page, unsigned start1, unsigned end1, unsigned start2, unsigned end2) { void *kaddr = kmap_atomic(page); BUG_ON(end1 > PAGE_SIZE || end2 > PAGE_SIZE); if (end1 > start1) memset(kaddr + start1, 0, end1 - start1); if (end2 > start2) memset(kaddr + start2, 0, end2 - start2); kunmap_atomic(kaddr); flush_dcache_page(page); } static inline void zero_user_segment(struct page *page, unsigned start, unsigned end) { zero_user_segments(page, start, end, 0, 0); } static inline void zero_user(struct page *page, unsigned start, unsigned size) { zero_user_segments(page, start, start + size, 0, 0); } #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE static inline void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_user_page(vto, vfrom, vaddr, to); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif #ifndef __HAVE_ARCH_COPY_HIGHPAGE static inline void copy_highpage(struct page *to, struct page *from) { char *vfrom, *vto; vfrom = kmap_atomic(from); vto = kmap_atomic(to); copy_page(vto, vfrom); kunmap_atomic(vto); kunmap_atomic(vfrom); } #endif static inline void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) { char *from = kmap_atomic(page); memcpy(to, from + offset, len); kunmap_atomic(from); } static inline void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) { char *to = kmap_atomic(page); memcpy(to + offset, from, len); kunmap_atomic(to); } #endif /* _LINUX_HIGHMEM_H */
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 // SPDX-License-Identifier: GPL-2.0 #include <linux/bitops.h> #include <linux/fault-inject-usercopy.h> #include <linux/instrumented.h> #include <linux/uaccess.h> #include <linux/nospec.h> /* out-of-line parts */ #ifndef INLINE_COPY_FROM_USER unsigned long _copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); if (!should_fail_usercopy() && likely(access_ok(from, n))) { /* * Ensure that bad access_ok() speculation will not * lead to nasty side effects *after* the copy is * finished: */ barrier_nospec(); instrument_copy_from_user(to, from, n); res = raw_copy_from_user(to, from, n); } if (unlikely(res)) memset(to + (n - res), 0, res); return res; } EXPORT_SYMBOL(_copy_from_user); #endif #ifndef INLINE_COPY_TO_USER unsigned long _copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; if (likely(access_ok(to, n))) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } EXPORT_SYMBOL(_copy_to_user); #endif /** * check_zeroed_user: check if a userspace buffer only contains zero bytes * @from: Source address, in userspace. * @size: Size of buffer. * * This is effectively shorthand for "memchr_inv(from, 0, size) == NULL" for * userspace addresses (and is more efficient because we don't care where the * first non-zero byte is). * * Returns: * * 0: There were non-zero bytes present in the buffer. * * 1: The buffer was full of zero bytes. * * -EFAULT: access to userspace failed. */ int check_zeroed_user(const void __user *from, size_t size) { unsigned long val; uintptr_t align = (uintptr_t) from % sizeof(unsigned long); if (unlikely(size == 0)) return 1; from -= align; size += align; if (!user_read_access_begin(from, size)) return -EFAULT; unsafe_get_user(val, (unsigned long __user *) from, err_fault); if (align) val &= ~aligned_byte_mask(align); while (size > sizeof(unsigned long)) { if (unlikely(val)) goto done; from += sizeof(unsigned long); size -= sizeof(unsigned long); unsafe_get_user(val, (unsigned long __user *) from, err_fault); } if (size < sizeof(unsigned long)) val &= aligned_byte_mask(size); done: user_read_access_end(); return (val == 0); err_fault: user_read_access_end(); return -EFAULT; } EXPORT_SYMBOL(check_zeroed_user);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef PM_TRACE_H #define PM_TRACE_H #include <linux/types.h> #ifdef CONFIG_PM_TRACE #include <asm/pm-trace.h> extern int pm_trace_enabled; extern bool pm_trace_rtc_abused; static inline bool pm_trace_rtc_valid(void) { return !pm_trace_rtc_abused; } static inline int pm_trace_is_enabled(void) { return pm_trace_enabled; } struct device; extern void set_trace_device(struct device *); extern void generate_pm_trace(const void *tracedata, unsigned int user); extern int show_trace_dev_match(char *buf, size_t size); #define TRACE_DEVICE(dev) do { \ if (pm_trace_enabled) \ set_trace_device(dev); \ } while(0) #else static inline bool pm_trace_rtc_valid(void) { return true; } static inline int pm_trace_is_enabled(void) { return 0; } #define TRACE_DEVICE(dev) do { } while (0) #define TRACE_RESUME(dev) do { } while (0) #define TRACE_SUSPEND(dev) do { } while (0) #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: low-level thread information * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds and Dave Miller */ #ifndef _ASM_X86_THREAD_INFO_H #define _ASM_X86_THREAD_INFO_H #include <linux/compiler.h> #include <asm/page.h> #include <asm/percpu.h> #include <asm/types.h> /* * TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we * reserve at the top of the kernel stack. We do it because of a nasty * 32-bit corner case. On x86_32, the hardware stack frame is * variable-length. Except for vm86 mode, struct pt_regs assumes a * maximum-length frame. If we enter from CPL 0, the top 8 bytes of * pt_regs don't actually exist. Ordinarily this doesn't matter, but it * does in at least one case: * * If we take an NMI early enough in SYSENTER, then we can end up with * pt_regs that extends above sp0. On the way out, in the espfix code, * we can read the saved SS value, but that value will be above sp0. * Without this offset, that can result in a page fault. (We are * careful that, in this case, the value we read doesn't matter.) * * In vm86 mode, the hardware frame is much longer still, so add 16 * bytes to make room for the real-mode segments. * * x86_64 has a fixed-length stack frame. */ #ifdef CONFIG_X86_32 # ifdef CONFIG_VM86 # define TOP_OF_KERNEL_STACK_PADDING 16 # else # define TOP_OF_KERNEL_STACK_PADDING 8 # endif #else # define TOP_OF_KERNEL_STACK_PADDING 0 #endif /* * low level task data that entry.S needs immediate access to * - this struct should fit entirely inside of one cache line * - this struct shares the supervisor stack pages */ #ifndef __ASSEMBLY__ struct task_struct; #include <asm/cpufeature.h> #include <linux/atomic.h> struct thread_info { unsigned long flags; /* low level flags */ u32 status; /* thread synchronous flags */ }; #define INIT_THREAD_INFO(tsk) \ { \ .flags = 0, \ } #else /* !__ASSEMBLY__ */ #include <asm/asm-offsets.h> #endif /* * thread information flags * - these are process state flags that various assembly files * may need to access */ #define TIF_SYSCALL_TRACE 0 /* syscall trace active */ #define TIF_NOTIFY_RESUME 1 /* callback before returning to user */ #define TIF_SIGPENDING 2 /* signal pending */ #define TIF_NEED_RESCHED 3 /* rescheduling necessary */ #define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/ #define TIF_SSBD 5 /* Speculative store bypass disable */ #define TIF_SYSCALL_EMU 6 /* syscall emulation active */ #define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */ #define TIF_SECCOMP 8 /* secure computing */ #define TIF_SPEC_IB 9 /* Indirect branch speculation mitigation */ #define TIF_SPEC_FORCE_UPDATE 10 /* Force speculation MSR update in context switch */ #define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */ #define TIF_UPROBE 12 /* breakpointed or singlestepping */ #define TIF_PATCH_PENDING 13 /* pending live patching update */ #define TIF_NEED_FPU_LOAD 14 /* load FPU on return to userspace */ #define TIF_NOCPUID 15 /* CPUID is not accessible in userland */ #define TIF_NOTSC 16 /* TSC is not accessible in userland */ #define TIF_IA32 17 /* IA32 compatibility process */ #define TIF_SLD 18 /* Restore split lock detection on context switch */ #define TIF_NOTIFY_SIGNAL 19 /* signal notifications exist */ #define TIF_MEMDIE 20 /* is terminating due to OOM killer */ #define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */ #define TIF_IO_BITMAP 22 /* uses I/O bitmap */ #define TIF_FORCED_TF 24 /* true if TF in eflags artificially */ #define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF */ #define TIF_LAZY_MMU_UPDATES 27 /* task is updating the mmu lazily */ #define TIF_SYSCALL_TRACEPOINT 28 /* syscall tracepoint instrumentation */ #define TIF_ADDR32 29 /* 32-bit address space on 64 bits */ #define TIF_X32 30 /* 32-bit native x86-64 binary */ #define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE) #define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME) #define _TIF_SIGPENDING (1 << TIF_SIGPENDING) #define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED) #define _TIF_SINGLESTEP (1 << TIF_SINGLESTEP) #define _TIF_SSBD (1 << TIF_SSBD) #define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU) #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) #define _TIF_SECCOMP (1 << TIF_SECCOMP) #define _TIF_SPEC_IB (1 << TIF_SPEC_IB) #define _TIF_SPEC_FORCE_UPDATE (1 << TIF_SPEC_FORCE_UPDATE) #define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY) #define _TIF_UPROBE (1 << TIF_UPROBE) #define _TIF_PATCH_PENDING (1 << TIF_PATCH_PENDING) #define _TIF_NEED_FPU_LOAD (1 << TIF_NEED_FPU_LOAD) #define _TIF_NOCPUID (1 << TIF_NOCPUID) #define _TIF_NOTSC (1 << TIF_NOTSC) #define _TIF_IA32 (1 << TIF_IA32) #define _TIF_NOTIFY_SIGNAL (1 << TIF_NOTIFY_SIGNAL) #define _TIF_SLD (1 << TIF_SLD) #define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG) #define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP) #define _TIF_FORCED_TF (1 << TIF_FORCED_TF) #define _TIF_BLOCKSTEP (1 << TIF_BLOCKSTEP) #define _TIF_LAZY_MMU_UPDATES (1 << TIF_LAZY_MMU_UPDATES) #define _TIF_SYSCALL_TRACEPOINT (1 << TIF_SYSCALL_TRACEPOINT) #define _TIF_ADDR32 (1 << TIF_ADDR32) #define _TIF_X32 (1 << TIF_X32) /* flags to check in __switch_to() */ #define _TIF_WORK_CTXSW_BASE \ (_TIF_NOCPUID | _TIF_NOTSC | _TIF_BLOCKSTEP | \ _TIF_SSBD | _TIF_SPEC_FORCE_UPDATE | _TIF_SLD) /* * Avoid calls to __switch_to_xtra() on UP as STIBP is not evaluated. */ #ifdef CONFIG_SMP # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE | _TIF_SPEC_IB) #else # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE) #endif #ifdef CONFIG_X86_IOPL_IOPERM # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY | \ _TIF_IO_BITMAP) #else # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY) #endif #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW) #define STACK_WARN (THREAD_SIZE/8) /* * macros/functions for gaining access to the thread information structure * * preempt_count needs to be 1 initially, until the scheduler is functional. */ #ifndef __ASSEMBLY__ /* * Walks up the stack frames to make sure that the specified object is * entirely contained by a single stack frame. * * Returns: * GOOD_FRAME if within a frame * BAD_STACK if placed across a frame boundary (or outside stack) * NOT_STACK unable to determine (no frame pointers, etc) */ static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { #if defined(CONFIG_FRAME_POINTER) const void *frame = NULL; const void *oldframe; oldframe = __builtin_frame_address(1); if (oldframe) frame = __builtin_frame_address(2); /* * low ----------------------------------------------> high * [saved bp][saved ip][args][local vars][saved bp][saved ip] * ^----------------^ * allow copies only within here */ while (stack <= frame && frame < stackend) { /* * If obj + len extends past the last frame, this * check won't pass and the next frame will be 0, * causing us to bail out and correctly report * the copy as invalid. */ if (obj + len <= frame) return obj >= oldframe + 2 * sizeof(void *) ? GOOD_FRAME : BAD_STACK; oldframe = frame; frame = *(const void * const *)frame; } return BAD_STACK; #else return NOT_STACK; #endif } #else /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_64 # define cpu_current_top_of_stack (cpu_tss_rw + TSS_sp1) #endif #endif /* * Thread-synchronous status. * * This is different from the flags in that nobody else * ever touches our thread-synchronous status, so we don't * have to worry about atomic accesses. */ #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ #ifndef __ASSEMBLY__ #ifdef CONFIG_COMPAT #define TS_I386_REGS_POKED 0x0004 /* regs poked by 32-bit ptracer */ #define TS_COMPAT_RESTART 0x0008 #define arch_set_restart_data arch_set_restart_data static inline void arch_set_restart_data(struct restart_block *restart) { struct thread_info *ti = current_thread_info(); if (ti->status & TS_COMPAT) ti->status |= TS_COMPAT_RESTART; else ti->status &= ~TS_COMPAT_RESTART; } #endif #ifdef CONFIG_X86_32 #define in_ia32_syscall() true #else #define in_ia32_syscall() (IS_ENABLED(CONFIG_IA32_EMULATION) && \ current_thread_info()->status & TS_COMPAT) #endif extern void arch_task_cache_init(void); extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src); extern void arch_release_task_struct(struct task_struct *tsk); extern void arch_setup_new_exec(void); #define arch_setup_new_exec arch_setup_new_exec #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_THREAD_INFO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM tcp #if !defined(_TRACE_TCP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TCP_H #include <linux/ipv6.h> #include <linux/tcp.h> #include <linux/tracepoint.h> #include <net/ipv6.h> #include <net/tcp.h> #include <linux/sock_diag.h> #define TP_STORE_V4MAPPED(__entry, saddr, daddr) \ do { \ struct in6_addr *pin6; \ \ pin6 = (struct in6_addr *)__entry->saddr_v6; \ ipv6_addr_set_v4mapped(saddr, pin6); \ pin6 = (struct in6_addr *)__entry->daddr_v6; \ ipv6_addr_set_v4mapped(daddr, pin6); \ } while (0) #if IS_ENABLED(CONFIG_IPV6) #define TP_STORE_ADDRS(__entry, saddr, daddr, saddr6, daddr6) \ do { \ if (sk->sk_family == AF_INET6) { \ struct in6_addr *pin6; \ \ pin6 = (struct in6_addr *)__entry->saddr_v6; \ *pin6 = saddr6; \ pin6 = (struct in6_addr *)__entry->daddr_v6; \ *pin6 = daddr6; \ } else { \ TP_STORE_V4MAPPED(__entry, saddr, daddr); \ } \ } while (0) #else #define TP_STORE_ADDRS(__entry, saddr, daddr, saddr6, daddr6) \ TP_STORE_V4MAPPED(__entry, saddr, daddr) #endif /* * tcp event with arguments sk and skb * * Note: this class requires a valid sk pointer; while skb pointer could * be NULL. */ DECLARE_EVENT_CLASS(tcp_event_sk_skb, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( __field(const void *, skbaddr) __field(const void *, skaddr) __field(int, state) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); __be32 *p32; __entry->skbaddr = skb; __entry->skaddr = sk; __entry->state = sk->sk_state; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; TP_STORE_ADDRS(__entry, inet->inet_saddr, inet->inet_daddr, sk->sk_v6_rcv_saddr, sk->sk_v6_daddr); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c state=%s", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, show_tcp_state_name(__entry->state)) ); DEFINE_EVENT(tcp_event_sk_skb, tcp_retransmit_skb, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb) ); /* * skb of trace_tcp_send_reset is the skb that caused RST. In case of * active reset, skb should be NULL */ DEFINE_EVENT(tcp_event_sk_skb, tcp_send_reset, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb) ); /* * tcp event with arguments sk * * Note: this class requires a valid sk pointer. */ DECLARE_EVENT_CLASS(tcp_event_sk, TP_PROTO(struct sock *sk), TP_ARGS(sk), TP_STRUCT__entry( __field(const void *, skaddr) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) __field(__u64, sock_cookie) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); __be32 *p32; __entry->skaddr = sk; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; TP_STORE_ADDRS(__entry, inet->inet_saddr, inet->inet_daddr, sk->sk_v6_rcv_saddr, sk->sk_v6_daddr); __entry->sock_cookie = sock_gen_cookie(sk); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c sock_cookie=%llx", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, __entry->sock_cookie) ); DEFINE_EVENT(tcp_event_sk, tcp_receive_reset, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); DEFINE_EVENT(tcp_event_sk, tcp_destroy_sock, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); DEFINE_EVENT(tcp_event_sk, tcp_rcv_space_adjust, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); TRACE_EVENT(tcp_retransmit_synack, TP_PROTO(const struct sock *sk, const struct request_sock *req), TP_ARGS(sk, req), TP_STRUCT__entry( __field(const void *, skaddr) __field(const void *, req) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_request_sock *ireq = inet_rsk(req); __be32 *p32; __entry->skaddr = sk; __entry->req = req; __entry->sport = ireq->ir_num; __entry->dport = ntohs(ireq->ir_rmt_port); p32 = (__be32 *) __entry->saddr; *p32 = ireq->ir_loc_addr; p32 = (__be32 *) __entry->daddr; *p32 = ireq->ir_rmt_addr; TP_STORE_ADDRS(__entry, ireq->ir_loc_addr, ireq->ir_rmt_addr, ireq->ir_v6_loc_addr, ireq->ir_v6_rmt_addr); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6) ); #include <trace/events/net_probe_common.h> TRACE_EVENT(tcp_probe, TP_PROTO(struct sock *sk, struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( /* sockaddr_in6 is always bigger than sockaddr_in */ __array(__u8, saddr, sizeof(struct sockaddr_in6)) __array(__u8, daddr, sizeof(struct sockaddr_in6)) __field(__u16, sport) __field(__u16, dport) __field(__u32, mark) __field(__u16, data_len) __field(__u32, snd_nxt) __field(__u32, snd_una) __field(__u32, snd_cwnd) __field(__u32, ssthresh) __field(__u32, snd_wnd) __field(__u32, srtt) __field(__u32, rcv_wnd) __field(__u64, sock_cookie) ), TP_fast_assign( const struct tcphdr *th = (const struct tcphdr *)skb->data; const struct inet_sock *inet = inet_sk(sk); const struct tcp_sock *tp = tcp_sk(sk); memset(__entry->saddr, 0, sizeof(struct sockaddr_in6)); memset(__entry->daddr, 0, sizeof(struct sockaddr_in6)); TP_STORE_ADDR_PORTS(__entry, inet, sk); /* For filtering use */ __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); __entry->mark = skb->mark; __entry->data_len = skb->len - __tcp_hdrlen(th); __entry->snd_nxt = tp->snd_nxt; __entry->snd_una = tp->snd_una; __entry->snd_cwnd = tp->snd_cwnd; __entry->snd_wnd = tp->snd_wnd; __entry->rcv_wnd = tp->rcv_wnd; __entry->ssthresh = tcp_current_ssthresh(sk); __entry->srtt = tp->srtt_us >> 3; __entry->sock_cookie = sock_gen_cookie(sk); ), TP_printk("src=%pISpc dest=%pISpc mark=%#x data_len=%d snd_nxt=%#x snd_una=%#x snd_cwnd=%u ssthresh=%u snd_wnd=%u srtt=%u rcv_wnd=%u sock_cookie=%llx", __entry->saddr, __entry->daddr, __entry->mark, __entry->data_len, __entry->snd_nxt, __entry->snd_una, __entry->snd_cwnd, __entry->ssthresh, __entry->snd_wnd, __entry->srtt, __entry->rcv_wnd, __entry->sock_cookie) ); #endif /* _TRACE_TCP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 // SPDX-License-Identifier: GPL-2.0 #ifndef _LINUX_KERNEL_TRACE_H #define _LINUX_KERNEL_TRACE_H #include <linux/fs.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/clocksource.h> #include <linux/ring_buffer.h> #include <linux/mmiotrace.h> #include <linux/tracepoint.h> #include <linux/ftrace.h> #include <linux/trace.h> #include <linux/hw_breakpoint.h> #include <linux/trace_seq.h> #include <linux/trace_events.h> #include <linux/compiler.h> #include <linux/glob.h> #include <linux/irq_work.h> #include <linux/workqueue.h> #include <linux/ctype.h> #ifdef CONFIG_FTRACE_SYSCALLS #include <asm/unistd.h> /* For NR_SYSCALLS */ #include <asm/syscall.h> /* some archs define it here */ #endif enum trace_type { __TRACE_FIRST_TYPE = 0, TRACE_FN, TRACE_CTX, TRACE_WAKE, TRACE_STACK, TRACE_PRINT, TRACE_BPRINT, TRACE_MMIO_RW, TRACE_MMIO_MAP, TRACE_BRANCH, TRACE_GRAPH_RET, TRACE_GRAPH_ENT, TRACE_USER_STACK, TRACE_BLK, TRACE_BPUTS, TRACE_HWLAT, TRACE_RAW_DATA, __TRACE_LAST_TYPE, }; #undef __field #define __field(type, item) type item; #undef __field_fn #define __field_fn(type, item) type item; #undef __field_struct #define __field_struct(type, item) __field(type, item) #undef __field_desc #define __field_desc(type, container, item) #undef __field_packed #define __field_packed(type, container, item) #undef __array #define __array(type, item, size) type item[size]; #undef __array_desc #define __array_desc(type, container, item, size) #undef __dynamic_array #define __dynamic_array(type, item) type item[]; #undef F_STRUCT #define F_STRUCT(args...) args #undef FTRACE_ENTRY #define FTRACE_ENTRY(name, struct_name, id, tstruct, print) \ struct struct_name { \ struct trace_entry ent; \ tstruct \ } #undef FTRACE_ENTRY_DUP #define FTRACE_ENTRY_DUP(name, name_struct, id, tstruct, printk) #undef FTRACE_ENTRY_REG #define FTRACE_ENTRY_REG(name, struct_name, id, tstruct, print, regfn) \ FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print)) #undef FTRACE_ENTRY_PACKED #define FTRACE_ENTRY_PACKED(name, struct_name, id, tstruct, print) \ FTRACE_ENTRY(name, struct_name, id, PARAMS(tstruct), PARAMS(print)) __packed #include "trace_entries.h" /* Use this for memory failure errors */ #define MEM_FAIL(condition, fmt, ...) ({ \ static bool __section(".data.once") __warned; \ int __ret_warn_once = !!(condition); \ \ if (unlikely(__ret_warn_once && !__warned)) { \ __warned = true; \ pr_err("ERROR: " fmt, ##__VA_ARGS__); \ } \ unlikely(__ret_warn_once); \ }) #define HIST_STACKTRACE_DEPTH 16 #define HIST_STACKTRACE_SIZE (HIST_STACKTRACE_DEPTH * sizeof(unsigned long)) #define HIST_STACKTRACE_SKIP 5 /* * syscalls are special, and need special handling, this is why * they are not included in trace_entries.h */ struct syscall_trace_enter { struct trace_entry ent; int nr; unsigned long args[]; }; struct syscall_trace_exit { struct trace_entry ent; int nr; long ret; }; struct kprobe_trace_entry_head { struct trace_entry ent; unsigned long ip; }; struct kretprobe_trace_entry_head { struct trace_entry ent; unsigned long func; unsigned long ret_ip; }; /* * trace_flag_type is an enumeration that holds different * states when a trace occurs. These are: * IRQS_OFF - interrupts were disabled * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags * NEED_RESCHED - reschedule is requested * HARDIRQ - inside an interrupt handler * SOFTIRQ - inside a softirq handler */ enum trace_flag_type { TRACE_FLAG_IRQS_OFF = 0x01, TRACE_FLAG_IRQS_NOSUPPORT = 0x02, TRACE_FLAG_NEED_RESCHED = 0x04, TRACE_FLAG_HARDIRQ = 0x08, TRACE_FLAG_SOFTIRQ = 0x10, TRACE_FLAG_PREEMPT_RESCHED = 0x20, TRACE_FLAG_NMI = 0x40, }; #define TRACE_BUF_SIZE 1024 struct trace_array; /* * The CPU trace array - it consists of thousands of trace entries * plus some other descriptor data: (for example which task started * the trace, etc.) */ struct trace_array_cpu { atomic_t disabled; void *buffer_page; /* ring buffer spare */ unsigned long entries; unsigned long saved_latency; unsigned long critical_start; unsigned long critical_end; unsigned long critical_sequence; unsigned long nice; unsigned long policy; unsigned long rt_priority; unsigned long skipped_entries; u64 preempt_timestamp; pid_t pid; kuid_t uid; char comm[TASK_COMM_LEN]; #ifdef CONFIG_FUNCTION_TRACER int ftrace_ignore_pid; #endif bool ignore_pid; }; struct tracer; struct trace_option_dentry; struct array_buffer { struct trace_array *tr; struct trace_buffer *buffer; struct trace_array_cpu __percpu *data; u64 time_start; int cpu; }; #define TRACE_FLAGS_MAX_SIZE 32 struct trace_options { struct tracer *tracer; struct trace_option_dentry *topts; }; struct trace_pid_list { int pid_max; unsigned long *pids; }; enum { TRACE_PIDS = BIT(0), TRACE_NO_PIDS = BIT(1), }; static inline bool pid_type_enabled(int type, struct trace_pid_list *pid_list, struct trace_pid_list *no_pid_list) { /* Return true if the pid list in type has pids */ return ((type & TRACE_PIDS) && pid_list) || ((type & TRACE_NO_PIDS) && no_pid_list); } static inline bool still_need_pid_events(int type, struct trace_pid_list *pid_list, struct trace_pid_list *no_pid_list) { /* * Turning off what is in @type, return true if the "other" * pid list, still has pids in it. */ return (!(type & TRACE_PIDS) && pid_list) || (!(type & TRACE_NO_PIDS) && no_pid_list); } typedef bool (*cond_update_fn_t)(struct trace_array *tr, void *cond_data); /** * struct cond_snapshot - conditional snapshot data and callback * * The cond_snapshot structure encapsulates a callback function and * data associated with the snapshot for a given tracing instance. * * When a snapshot is taken conditionally, by invoking * tracing_snapshot_cond(tr, cond_data), the cond_data passed in is * passed in turn to the cond_snapshot.update() function. That data * can be compared by the update() implementation with the cond_data * contained within the struct cond_snapshot instance associated with * the trace_array. Because the tr->max_lock is held throughout the * update() call, the update() function can directly retrieve the * cond_snapshot and cond_data associated with the per-instance * snapshot associated with the trace_array. * * The cond_snapshot.update() implementation can save data to be * associated with the snapshot if it decides to, and returns 'true' * in that case, or it returns 'false' if the conditional snapshot * shouldn't be taken. * * The cond_snapshot instance is created and associated with the * user-defined cond_data by tracing_cond_snapshot_enable(). * Likewise, the cond_snapshot instance is destroyed and is no longer * associated with the trace instance by * tracing_cond_snapshot_disable(). * * The method below is required. * * @update: When a conditional snapshot is invoked, the update() * callback function is invoked with the tr->max_lock held. The * update() implementation signals whether or not to actually * take the snapshot, by returning 'true' if so, 'false' if no * snapshot should be taken. Because the max_lock is held for * the duration of update(), the implementation is safe to * directly retrieved and save any implementation data it needs * to in association with the snapshot. */ struct cond_snapshot { void *cond_data; cond_update_fn_t update; }; /* * The trace array - an array of per-CPU trace arrays. This is the * highest level data structure that individual tracers deal with. * They have on/off state as well: */ struct trace_array { struct list_head list; char *name; struct array_buffer array_buffer; #ifdef CONFIG_TRACER_MAX_TRACE /* * The max_buffer is used to snapshot the trace when a maximum * latency is reached, or when the user initiates a snapshot. * Some tracers will use this to store a maximum trace while * it continues examining live traces. * * The buffers for the max_buffer are set up the same as the array_buffer * When a snapshot is taken, the buffer of the max_buffer is swapped * with the buffer of the array_buffer and the buffers are reset for * the array_buffer so the tracing can continue. */ struct array_buffer max_buffer; bool allocated_snapshot; #endif #if defined(CONFIG_TRACER_MAX_TRACE) || defined(CONFIG_HWLAT_TRACER) unsigned long max_latency; #ifdef CONFIG_FSNOTIFY struct dentry *d_max_latency; struct work_struct fsnotify_work; struct irq_work fsnotify_irqwork; #endif #endif struct trace_pid_list __rcu *filtered_pids; struct trace_pid_list __rcu *filtered_no_pids; /* * max_lock is used to protect the swapping of buffers * when taking a max snapshot. The buffers themselves are * protected by per_cpu spinlocks. But the action of the swap * needs its own lock. * * This is defined as a arch_spinlock_t in order to help * with performance when lockdep debugging is enabled. * * It is also used in other places outside the update_max_tr * so it needs to be defined outside of the * CONFIG_TRACER_MAX_TRACE. */ arch_spinlock_t max_lock; int buffer_disabled; #ifdef CONFIG_FTRACE_SYSCALLS int sys_refcount_enter; int sys_refcount_exit; struct trace_event_file __rcu *enter_syscall_files[NR_syscalls]; struct trace_event_file __rcu *exit_syscall_files[NR_syscalls]; #endif int stop_count; int clock_id; int nr_topts; bool clear_trace; int buffer_percent; unsigned int n_err_log_entries; struct tracer *current_trace; unsigned int trace_flags; unsigned char trace_flags_index[TRACE_FLAGS_MAX_SIZE]; unsigned int flags; raw_spinlock_t start_lock; struct list_head err_log; struct dentry *dir; struct dentry *options; struct dentry *percpu_dir; struct dentry *event_dir; struct trace_options *topts; struct list_head systems; struct list_head events; struct trace_event_file *trace_marker_file; cpumask_var_t tracing_cpumask; /* only trace on set CPUs */ /* one per_cpu trace_pipe can be opened by only one user */ cpumask_var_t pipe_cpumask; int ref; int trace_ref; #ifdef CONFIG_FUNCTION_TRACER struct ftrace_ops *ops; struct trace_pid_list __rcu *function_pids; struct trace_pid_list __rcu *function_no_pids; #ifdef CONFIG_DYNAMIC_FTRACE /* All of these are protected by the ftrace_lock */ struct list_head func_probes; struct list_head mod_trace; struct list_head mod_notrace; #endif /* function tracing enabled */ int function_enabled; #endif int time_stamp_abs_ref; struct list_head hist_vars; #ifdef CONFIG_TRACER_SNAPSHOT struct cond_snapshot *cond_snapshot; #endif }; enum { TRACE_ARRAY_FL_GLOBAL = (1 << 0) }; extern struct list_head ftrace_trace_arrays; extern struct mutex trace_types_lock; extern int trace_array_get(struct trace_array *tr); extern int tracing_check_open_get_tr(struct trace_array *tr); extern struct trace_array *trace_array_find(const char *instance); extern struct trace_array *trace_array_find_get(const char *instance); extern int tracing_set_time_stamp_abs(struct trace_array *tr, bool abs); extern int tracing_set_clock(struct trace_array *tr, const char *clockstr); extern bool trace_clock_in_ns(struct trace_array *tr); /* * The global tracer (top) should be the first trace array added, * but we check the flag anyway. */ static inline struct trace_array *top_trace_array(void) { struct trace_array *tr; if (list_empty(&ftrace_trace_arrays)) return NULL; tr = list_entry(ftrace_trace_arrays.prev, typeof(*tr), list); WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL)); return tr; } #define FTRACE_CMP_TYPE(var, type) \ __builtin_types_compatible_p(typeof(var), type *) #undef IF_ASSIGN #define IF_ASSIGN(var, entry, etype, id) \ if (FTRACE_CMP_TYPE(var, etype)) { \ var = (typeof(var))(entry); \ WARN_ON(id != 0 && (entry)->type != id); \ break; \ } /* Will cause compile errors if type is not found. */ extern void __ftrace_bad_type(void); /* * The trace_assign_type is a verifier that the entry type is * the same as the type being assigned. To add new types simply * add a line with the following format: * * IF_ASSIGN(var, ent, type, id); * * Where "type" is the trace type that includes the trace_entry * as the "ent" item. And "id" is the trace identifier that is * used in the trace_type enum. * * If the type can have more than one id, then use zero. */ #define trace_assign_type(var, ent) \ do { \ IF_ASSIGN(var, ent, struct ftrace_entry, TRACE_FN); \ IF_ASSIGN(var, ent, struct ctx_switch_entry, 0); \ IF_ASSIGN(var, ent, struct stack_entry, TRACE_STACK); \ IF_ASSIGN(var, ent, struct userstack_entry, TRACE_USER_STACK);\ IF_ASSIGN(var, ent, struct print_entry, TRACE_PRINT); \ IF_ASSIGN(var, ent, struct bprint_entry, TRACE_BPRINT); \ IF_ASSIGN(var, ent, struct bputs_entry, TRACE_BPUTS); \ IF_ASSIGN(var, ent, struct hwlat_entry, TRACE_HWLAT); \ IF_ASSIGN(var, ent, struct raw_data_entry, TRACE_RAW_DATA);\ IF_ASSIGN(var, ent, struct trace_mmiotrace_rw, \ TRACE_MMIO_RW); \ IF_ASSIGN(var, ent, struct trace_mmiotrace_map, \ TRACE_MMIO_MAP); \ IF_ASSIGN(var, ent, struct trace_branch, TRACE_BRANCH); \ IF_ASSIGN(var, ent, struct ftrace_graph_ent_entry, \ TRACE_GRAPH_ENT); \ IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ TRACE_GRAPH_RET); \ __ftrace_bad_type(); \ } while (0) /* * An option specific to a tracer. This is a boolean value. * The bit is the bit index that sets its value on the * flags value in struct tracer_flags. */ struct tracer_opt { const char *name; /* Will appear on the trace_options file */ u32 bit; /* Mask assigned in val field in tracer_flags */ }; /* * The set of specific options for a tracer. Your tracer * have to set the initial value of the flags val. */ struct tracer_flags { u32 val; struct tracer_opt *opts; struct tracer *trace; }; /* Makes more easy to define a tracer opt */ #define TRACER_OPT(s, b) .name = #s, .bit = b struct trace_option_dentry { struct tracer_opt *opt; struct tracer_flags *flags; struct trace_array *tr; struct dentry *entry; }; /** * struct tracer - a specific tracer and its callbacks to interact with tracefs * @name: the name chosen to select it on the available_tracers file * @init: called when one switches to this tracer (echo name > current_tracer) * @reset: called when one switches to another tracer * @start: called when tracing is unpaused (echo 1 > tracing_on) * @stop: called when tracing is paused (echo 0 > tracing_on) * @update_thresh: called when tracing_thresh is updated * @open: called when the trace file is opened * @pipe_open: called when the trace_pipe file is opened * @close: called when the trace file is released * @pipe_close: called when the trace_pipe file is released * @read: override the default read callback on trace_pipe * @splice_read: override the default splice_read callback on trace_pipe * @selftest: selftest to run on boot (see trace_selftest.c) * @print_headers: override the first lines that describe your columns * @print_line: callback that prints a trace * @set_flag: signals one of your private flags changed (trace_options file) * @flags: your private flags */ struct tracer { const char *name; int (*init)(struct trace_array *tr); void (*reset)(struct trace_array *tr); void (*start)(struct trace_array *tr); void (*stop)(struct trace_array *tr); int (*update_thresh)(struct trace_array *tr); void (*open)(struct trace_iterator *iter); void (*pipe_open)(struct trace_iterator *iter); void (*close)(struct trace_iterator *iter); void (*pipe_close)(struct trace_iterator *iter); ssize_t (*read)(struct trace_iterator *iter, struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos); ssize_t (*splice_read)(struct trace_iterator *iter, struct file *filp, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); #ifdef CONFIG_FTRACE_STARTUP_TEST int (*selftest)(struct tracer *trace, struct trace_array *tr); #endif void (*print_header)(struct seq_file *m); enum print_line_t (*print_line)(struct trace_iterator *iter); /* If you handled the flag setting, return 0 */ int (*set_flag)(struct trace_array *tr, u32 old_flags, u32 bit, int set); /* Return 0 if OK with change, else return non-zero */ int (*flag_changed)(struct trace_array *tr, u32 mask, int set); struct tracer *next; struct tracer_flags *flags; int enabled; bool print_max; bool allow_instances; #ifdef CONFIG_TRACER_MAX_TRACE bool use_max_tr; #endif /* True if tracer cannot be enabled in kernel param */ bool noboot; }; /* Only current can touch trace_recursion */ /* * For function tracing recursion: * The order of these bits are important. * * When function tracing occurs, the following steps are made: * If arch does not support a ftrace feature: * call internal function (uses INTERNAL bits) which calls... * If callback is registered to the "global" list, the list * function is called and recursion checks the GLOBAL bits. * then this function calls... * The function callback, which can use the FTRACE bits to * check for recursion. */ enum { /* Function recursion bits */ TRACE_FTRACE_BIT, TRACE_FTRACE_NMI_BIT, TRACE_FTRACE_IRQ_BIT, TRACE_FTRACE_SIRQ_BIT, TRACE_FTRACE_TRANSITION_BIT, /* Internal use recursion bits */ TRACE_INTERNAL_BIT, TRACE_INTERNAL_NMI_BIT, TRACE_INTERNAL_IRQ_BIT, TRACE_INTERNAL_SIRQ_BIT, TRACE_INTERNAL_TRANSITION_BIT, TRACE_BRANCH_BIT, /* * Abuse of the trace_recursion. * As we need a way to maintain state if we are tracing the function * graph in irq because we want to trace a particular function that * was called in irq context but we have irq tracing off. Since this * can only be modified by current, we can reuse trace_recursion. */ TRACE_IRQ_BIT, /* Set if the function is in the set_graph_function file */ TRACE_GRAPH_BIT, /* * In the very unlikely case that an interrupt came in * at a start of graph tracing, and we want to trace * the function in that interrupt, the depth can be greater * than zero, because of the preempted start of a previous * trace. In an even more unlikely case, depth could be 2 * if a softirq interrupted the start of graph tracing, * followed by an interrupt preempting a start of graph * tracing in the softirq, and depth can even be 3 * if an NMI came in at the start of an interrupt function * that preempted a softirq start of a function that * preempted normal context!!!! Luckily, it can't be * greater than 3, so the next two bits are a mask * of what the depth is when we set TRACE_GRAPH_BIT */ TRACE_GRAPH_DEPTH_START_BIT, TRACE_GRAPH_DEPTH_END_BIT, /* * To implement set_graph_notrace, if this bit is set, we ignore * function graph tracing of called functions, until the return * function is called to clear it. */ TRACE_GRAPH_NOTRACE_BIT, }; #define trace_recursion_set(bit) do { (current)->trace_recursion |= (1<<(bit)); } while (0) #define trace_recursion_clear(bit) do { (current)->trace_recursion &= ~(1<<(bit)); } while (0) #define trace_recursion_test(bit) ((current)->trace_recursion & (1<<(bit))) #define trace_recursion_depth() \ (((current)->trace_recursion >> TRACE_GRAPH_DEPTH_START_BIT) & 3) #define trace_recursion_set_depth(depth) \ do { \ current->trace_recursion &= \ ~(3 << TRACE_GRAPH_DEPTH_START_BIT); \ current->trace_recursion |= \ ((depth) & 3) << TRACE_GRAPH_DEPTH_START_BIT; \ } while (0) #define TRACE_CONTEXT_BITS 4 #define TRACE_FTRACE_START TRACE_FTRACE_BIT #define TRACE_LIST_START TRACE_INTERNAL_BIT #define TRACE_CONTEXT_MASK ((1 << (TRACE_LIST_START + TRACE_CONTEXT_BITS)) - 1) enum { TRACE_CTX_NMI, TRACE_CTX_IRQ, TRACE_CTX_SOFTIRQ, TRACE_CTX_NORMAL, TRACE_CTX_TRANSITION, }; static __always_inline int trace_get_context_bit(void) { int bit; if (in_interrupt()) { if (in_nmi()) bit = TRACE_CTX_NMI; else if (in_irq()) bit = TRACE_CTX_IRQ; else bit = TRACE_CTX_SOFTIRQ; } else bit = TRACE_CTX_NORMAL; return bit; } static __always_inline int trace_test_and_set_recursion(int start) { unsigned int val = current->trace_recursion; int bit; bit = trace_get_context_bit() + start; if (unlikely(val & (1 << bit))) { /* * It could be that preempt_count has not been updated during * a switch between contexts. Allow for a single recursion. */ bit = start + TRACE_CTX_TRANSITION; if (trace_recursion_test(bit)) return -1; trace_recursion_set(bit); barrier(); return bit; } val |= 1 << bit; current->trace_recursion = val; barrier(); return bit; } static __always_inline void trace_clear_recursion(int bit) { unsigned int val = current->trace_recursion; bit = 1 << bit; val &= ~bit; barrier(); current->trace_recursion = val; } static inline struct ring_buffer_iter * trace_buffer_iter(struct trace_iterator *iter, int cpu) { return iter->buffer_iter ? iter->buffer_iter[cpu] : NULL; } int tracer_init(struct tracer *t, struct trace_array *tr); int tracing_is_enabled(void); void tracing_reset_online_cpus(struct array_buffer *buf); void tracing_reset_current(int cpu); void tracing_reset_all_online_cpus(void); void tracing_reset_all_online_cpus_unlocked(void); int tracing_open_generic(struct inode *inode, struct file *filp); int tracing_open_generic_tr(struct inode *inode, struct file *filp); int tracing_open_file_tr(struct inode *inode, struct file *filp); int tracing_release_file_tr(struct inode *inode, struct file *filp); bool tracing_is_disabled(void); bool tracer_tracing_is_on(struct trace_array *tr); void tracer_tracing_on(struct trace_array *tr); void tracer_tracing_off(struct trace_array *tr); struct dentry *trace_create_file(const char *name, umode_t mode, struct dentry *parent, void *data, const struct file_operations *fops); int tracing_init_dentry(void); struct ring_buffer_event; struct ring_buffer_event * trace_buffer_lock_reserve(struct trace_buffer *buffer, int type, unsigned long len, unsigned long flags, int pc); struct trace_entry *tracing_get_trace_entry(struct trace_array *tr, struct trace_array_cpu *data); struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, int *ent_cpu, u64 *ent_ts); void trace_buffer_unlock_commit_nostack(struct trace_buffer *buffer, struct ring_buffer_event *event); const char *trace_event_format(struct trace_iterator *iter, const char *fmt); int trace_empty(struct trace_iterator *iter); void *trace_find_next_entry_inc(struct trace_iterator *iter); void trace_init_global_iter(struct trace_iterator *iter); void tracing_iter_reset(struct trace_iterator *iter, int cpu); unsigned long trace_total_entries_cpu(struct trace_array *tr, int cpu); unsigned long trace_total_entries(struct trace_array *tr); void trace_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, unsigned long flags, int pc); void trace_graph_function(struct trace_array *tr, unsigned long ip, unsigned long parent_ip, unsigned long flags, int pc); void trace_latency_header(struct seq_file *m); void trace_default_header(struct seq_file *m); void print_trace_header(struct seq_file *m, struct trace_iterator *iter); int trace_empty(struct trace_iterator *iter); void trace_graph_return(struct ftrace_graph_ret *trace); int trace_graph_entry(struct ftrace_graph_ent *trace); void set_graph_array(struct trace_array *tr); void tracing_start_cmdline_record(void); void tracing_stop_cmdline_record(void); void tracing_start_tgid_record(void); void tracing_stop_tgid_record(void); int register_tracer(struct tracer *type); int is_tracing_stopped(void); loff_t tracing_lseek(struct file *file, loff_t offset, int whence); extern cpumask_var_t __read_mostly tracing_buffer_mask; #define for_each_tracing_cpu(cpu) \ for_each_cpu(cpu, tracing_buffer_mask) extern unsigned long nsecs_to_usecs(unsigned long nsecs); extern unsigned long tracing_thresh; /* PID filtering */ extern int pid_max; bool trace_find_filtered_pid(struct trace_pid_list *filtered_pids, pid_t search_pid); bool trace_ignore_this_task(struct trace_pid_list *filtered_pids, struct trace_pid_list *filtered_no_pids, struct task_struct *task); void trace_filter_add_remove_task(struct trace_pid_list *pid_list, struct task_struct *self, struct task_struct *task); void *trace_pid_next(struct trace_pid_list *pid_list, void *v, loff_t *pos); void *trace_pid_start(struct trace_pid_list *pid_list, loff_t *pos); int trace_pid_show(struct seq_file *m, void *v); void trace_free_pid_list(struct trace_pid_list *pid_list); int trace_pid_write(struct trace_pid_list *filtered_pids, struct trace_pid_list **new_pid_list, const char __user *ubuf, size_t cnt); #ifdef CONFIG_TRACER_MAX_TRACE void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu, void *cond_data); void update_max_tr_single(struct trace_array *tr, struct task_struct *tsk, int cpu); #endif /* CONFIG_TRACER_MAX_TRACE */ #if (defined(CONFIG_TRACER_MAX_TRACE) || defined(CONFIG_HWLAT_TRACER)) && \ defined(CONFIG_FSNOTIFY) void latency_fsnotify(struct trace_array *tr); #else static inline void latency_fsnotify(struct trace_array *tr) { } #endif #ifdef CONFIG_STACKTRACE void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, int pc); #else static inline void __trace_stack(struct trace_array *tr, unsigned long flags, int skip, int pc) { } #endif /* CONFIG_STACKTRACE */ extern u64 ftrace_now(int cpu); extern void trace_find_cmdline(int pid, char comm[]); extern int trace_find_tgid(int pid); extern void trace_event_follow_fork(struct trace_array *tr, bool enable); #ifdef CONFIG_DYNAMIC_FTRACE extern unsigned long ftrace_update_tot_cnt; extern unsigned long ftrace_number_of_pages; extern unsigned long ftrace_number_of_groups; void ftrace_init_trace_array(struct trace_array *tr); #else static inline void ftrace_init_trace_array(struct trace_array *tr) { } #endif #define DYN_FTRACE_TEST_NAME trace_selftest_dynamic_test_func extern int DYN_FTRACE_TEST_NAME(void); #define DYN_FTRACE_TEST_NAME2 trace_selftest_dynamic_test_func2 extern int DYN_FTRACE_TEST_NAME2(void); extern bool ring_buffer_expanded; extern bool tracing_selftest_disabled; #ifdef CONFIG_FTRACE_STARTUP_TEST extern void __init disable_tracing_selftest(const char *reason); extern int trace_selftest_startup_function(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_function_graph(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_irqsoff(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_preemptoff(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_preemptirqsoff(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_nop(struct tracer *trace, struct trace_array *tr); extern int trace_selftest_startup_branch(struct tracer *trace, struct trace_array *tr); /* * Tracer data references selftest functions that only occur * on boot up. These can be __init functions. Thus, when selftests * are enabled, then the tracers need to reference __init functions. */ #define __tracer_data __refdata #else static inline void __init disable_tracing_selftest(const char *reason) { } /* Tracers are seldom changed. Optimize when selftests are disabled. */ #define __tracer_data __read_mostly #endif /* CONFIG_FTRACE_STARTUP_TEST */ extern void *head_page(struct trace_array_cpu *data); extern unsigned long long ns2usecs(u64 nsec); extern int trace_vbprintk(unsigned long ip, const char *fmt, va_list args); extern int trace_vprintk(unsigned long ip, const char *fmt, va_list args); extern int trace_array_vprintk(struct trace_array *tr, unsigned long ip, const char *fmt, va_list args); int trace_array_printk_buf(struct trace_buffer *buffer, unsigned long ip, const char *fmt, ...); void trace_printk_seq(struct trace_seq *s); enum print_line_t print_trace_line(struct trace_iterator *iter); extern char trace_find_mark(unsigned long long duration); struct ftrace_hash; struct ftrace_mod_load { struct list_head list; char *func; char *module; int enable; }; enum { FTRACE_HASH_FL_MOD = (1 << 0), }; struct ftrace_hash { unsigned long size_bits; struct hlist_head *buckets; unsigned long count; unsigned long flags; struct rcu_head rcu; }; struct ftrace_func_entry * ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip); static __always_inline bool ftrace_hash_empty(struct ftrace_hash *hash) { return !hash || !(hash->count || (hash->flags & FTRACE_HASH_FL_MOD)); } /* Standard output formatting function used for function return traces */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Flag options */ #define TRACE_GRAPH_PRINT_OVERRUN 0x1 #define TRACE_GRAPH_PRINT_CPU 0x2 #define TRACE_GRAPH_PRINT_OVERHEAD 0x4 #define TRACE_GRAPH_PRINT_PROC 0x8 #define TRACE_GRAPH_PRINT_DURATION 0x10 #define TRACE_GRAPH_PRINT_ABS_TIME 0x20 #define TRACE_GRAPH_PRINT_REL_TIME 0x40 #define TRACE_GRAPH_PRINT_IRQS 0x80 #define TRACE_GRAPH_PRINT_TAIL 0x100 #define TRACE_GRAPH_SLEEP_TIME 0x200 #define TRACE_GRAPH_GRAPH_TIME 0x400 #define TRACE_GRAPH_PRINT_FILL_SHIFT 28 #define TRACE_GRAPH_PRINT_FILL_MASK (0x3 << TRACE_GRAPH_PRINT_FILL_SHIFT) extern void ftrace_graph_sleep_time_control(bool enable); #ifdef CONFIG_FUNCTION_PROFILER extern void ftrace_graph_graph_time_control(bool enable); #else static inline void ftrace_graph_graph_time_control(bool enable) { } #endif extern enum print_line_t print_graph_function_flags(struct trace_iterator *iter, u32 flags); extern void print_graph_headers_flags(struct seq_file *s, u32 flags); extern void trace_print_graph_duration(unsigned long long duration, struct trace_seq *s); extern void graph_trace_open(struct trace_iterator *iter); extern void graph_trace_close(struct trace_iterator *iter); extern int __trace_graph_entry(struct trace_array *tr, struct ftrace_graph_ent *trace, unsigned long flags, int pc); extern void __trace_graph_return(struct trace_array *tr, struct ftrace_graph_ret *trace, unsigned long flags, int pc); #ifdef CONFIG_DYNAMIC_FTRACE extern struct ftrace_hash __rcu *ftrace_graph_hash; extern struct ftrace_hash __rcu *ftrace_graph_notrace_hash; static inline int ftrace_graph_addr(struct ftrace_graph_ent *trace) { unsigned long addr = trace->func; int ret = 0; struct ftrace_hash *hash; preempt_disable_notrace(); /* * Have to open code "rcu_dereference_sched()" because the * function graph tracer can be called when RCU is not * "watching". * Protected with schedule_on_each_cpu(ftrace_sync) */ hash = rcu_dereference_protected(ftrace_graph_hash, !preemptible()); if (ftrace_hash_empty(hash)) { ret = 1; goto out; } if (ftrace_lookup_ip(hash, addr)) { /* * This needs to be cleared on the return functions * when the depth is zero. */ trace_recursion_set(TRACE_GRAPH_BIT); trace_recursion_set_depth(trace->depth); /* * If no irqs are to be traced, but a set_graph_function * is set, and called by an interrupt handler, we still * want to trace it. */ if (in_irq()) trace_recursion_set(TRACE_IRQ_BIT); else trace_recursion_clear(TRACE_IRQ_BIT); ret = 1; } out: preempt_enable_notrace(); return ret; } static inline void ftrace_graph_addr_finish(struct ftrace_graph_ret *trace) { if (trace_recursion_test(TRACE_GRAPH_BIT) && trace->depth == trace_recursion_depth()) trace_recursion_clear(TRACE_GRAPH_BIT); } static inline int ftrace_graph_notrace_addr(unsigned long addr) { int ret = 0; struct ftrace_hash *notrace_hash; preempt_disable_notrace(); /* * Have to open code "rcu_dereference_sched()" because the * function graph tracer can be called when RCU is not * "watching". * Protected with schedule_on_each_cpu(ftrace_sync) */ notrace_hash = rcu_dereference_protected(ftrace_graph_notrace_hash, !preemptible()); if (ftrace_lookup_ip(notrace_hash, addr)) ret = 1; preempt_enable_notrace(); return ret; } #else static inline int ftrace_graph_addr(struct ftrace_graph_ent *trace) { return 1; } static inline int ftrace_graph_notrace_addr(unsigned long addr) { return 0; } static inline void ftrace_graph_addr_finish(struct ftrace_graph_ret *trace) { } #endif /* CONFIG_DYNAMIC_FTRACE */ extern unsigned int fgraph_max_depth; static inline bool ftrace_graph_ignore_func(struct ftrace_graph_ent *trace) { /* trace it when it is-nested-in or is a function enabled. */ return !(trace_recursion_test(TRACE_GRAPH_BIT) || ftrace_graph_addr(trace)) || (trace->depth < 0) || (fgraph_max_depth && trace->depth >= fgraph_max_depth); } #else /* CONFIG_FUNCTION_GRAPH_TRACER */ static inline enum print_line_t print_graph_function_flags(struct trace_iterator *iter, u32 flags) { return TRACE_TYPE_UNHANDLED; } #endif /* CONFIG_FUNCTION_GRAPH_TRACER */ extern struct list_head ftrace_pids; #ifdef CONFIG_FUNCTION_TRACER #define FTRACE_PID_IGNORE -1 #define FTRACE_PID_TRACE -2 struct ftrace_func_command { struct list_head list; char *name; int (*func)(struct trace_array *tr, struct ftrace_hash *hash, char *func, char *cmd, char *params, int enable); }; extern bool ftrace_filter_param __initdata; static inline int ftrace_trace_task(struct trace_array *tr) { return this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid) != FTRACE_PID_IGNORE; } extern int ftrace_is_dead(void); int ftrace_create_function_files(struct trace_array *tr, struct dentry *parent); void ftrace_destroy_function_files(struct trace_array *tr); int ftrace_allocate_ftrace_ops(struct trace_array *tr); void ftrace_free_ftrace_ops(struct trace_array *tr); void ftrace_init_global_array_ops(struct trace_array *tr); void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func); void ftrace_reset_array_ops(struct trace_array *tr); void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer); void ftrace_init_tracefs_toplevel(struct trace_array *tr, struct dentry *d_tracer); void ftrace_clear_pids(struct trace_array *tr); int init_function_trace(void); void ftrace_pid_follow_fork(struct trace_array *tr, bool enable); #else static inline int ftrace_trace_task(struct trace_array *tr) { return 1; } static inline int ftrace_is_dead(void) { return 0; } static inline int ftrace_create_function_files(struct trace_array *tr, struct dentry *parent) { return 0; } static inline int ftrace_allocate_ftrace_ops(struct trace_array *tr) { return 0; } static inline void ftrace_free_ftrace_ops(struct trace_array *tr) { } static inline void ftrace_destroy_function_files(struct trace_array *tr) { } static inline __init void ftrace_init_global_array_ops(struct trace_array *tr) { } static inline void ftrace_reset_array_ops(struct trace_array *tr) { } static inline void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d) { } static inline void ftrace_init_tracefs_toplevel(struct trace_array *tr, struct dentry *d) { } static inline void ftrace_clear_pids(struct trace_array *tr) { } static inline int init_function_trace(void) { return 0; } static inline void ftrace_pid_follow_fork(struct trace_array *tr, bool enable) { } /* ftace_func_t type is not defined, use macro instead of static inline */ #define ftrace_init_array_ops(tr, func) do { } while (0) #endif /* CONFIG_FUNCTION_TRACER */ #if defined(CONFIG_FUNCTION_TRACER) && defined(CONFIG_DYNAMIC_FTRACE) struct ftrace_probe_ops { void (*func)(unsigned long ip, unsigned long parent_ip, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data); int (*init)(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *init_data, void **data); void (*free)(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *data); int (*print)(struct seq_file *m, unsigned long ip, struct ftrace_probe_ops *ops, void *data); }; struct ftrace_func_mapper; typedef int (*ftrace_mapper_func)(void *data); struct ftrace_func_mapper *allocate_ftrace_func_mapper(void); void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper, unsigned long ip); int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper, unsigned long ip, void *data); void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper, unsigned long ip); void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper, ftrace_mapper_func free_func); extern int register_ftrace_function_probe(char *glob, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data); extern int unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr, struct ftrace_probe_ops *ops); extern void clear_ftrace_function_probes(struct trace_array *tr); int register_ftrace_command(struct ftrace_func_command *cmd); int unregister_ftrace_command(struct ftrace_func_command *cmd); void ftrace_create_filter_files(struct ftrace_ops *ops, struct dentry *parent); void ftrace_destroy_filter_files(struct ftrace_ops *ops); extern int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf, int len, int reset); extern int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf, int len, int reset); #else struct ftrace_func_command; static inline __init int register_ftrace_command(struct ftrace_func_command *cmd) { return -EINVAL; } static inline __init int unregister_ftrace_command(char *cmd_name) { return -EINVAL; } static inline void clear_ftrace_function_probes(struct trace_array *tr) { } /* * The ops parameter passed in is usually undefined. * This must be a macro. */ #define ftrace_create_filter_files(ops, parent) do { } while (0) #define ftrace_destroy_filter_files(ops) do { } while (0) #endif /* CONFIG_FUNCTION_TRACER && CONFIG_DYNAMIC_FTRACE */ bool ftrace_event_is_function(struct trace_event_call *call); /* * struct trace_parser - servers for reading the user input separated by spaces * @cont: set if the input is not complete - no final space char was found * @buffer: holds the parsed user input * @idx: user input length * @size: buffer size */ struct trace_parser { bool cont; char *buffer; unsigned idx; unsigned size; }; static inline bool trace_parser_loaded(struct trace_parser *parser) { return (parser->idx != 0); } static inline bool trace_parser_cont(struct trace_parser *parser) { return parser->cont; } static inline void trace_parser_clear(struct trace_parser *parser) { parser->cont = false; parser->idx = 0; } extern int trace_parser_get_init(struct trace_parser *parser, int size); extern void trace_parser_put(struct trace_parser *parser); extern int trace_get_user(struct trace_parser *parser, const char __user *ubuf, size_t cnt, loff_t *ppos); /* * Only create function graph options if function graph is configured. */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER # define FGRAPH_FLAGS \ C(DISPLAY_GRAPH, "display-graph"), #else # define FGRAPH_FLAGS #endif #ifdef CONFIG_BRANCH_TRACER # define BRANCH_FLAGS \ C(BRANCH, "branch"), #else # define BRANCH_FLAGS #endif #ifdef CONFIG_FUNCTION_TRACER # define FUNCTION_FLAGS \ C(FUNCTION, "function-trace"), \ C(FUNC_FORK, "function-fork"), # define FUNCTION_DEFAULT_FLAGS TRACE_ITER_FUNCTION #else # define FUNCTION_FLAGS # define FUNCTION_DEFAULT_FLAGS 0UL # define TRACE_ITER_FUNC_FORK 0UL #endif #ifdef CONFIG_STACKTRACE # define STACK_FLAGS \ C(STACKTRACE, "stacktrace"), #else # define STACK_FLAGS #endif /* * trace_iterator_flags is an enumeration that defines bit * positions into trace_flags that controls the output. * * NOTE: These bits must match the trace_options array in * trace.c (this macro guarantees it). */ #define TRACE_FLAGS \ C(PRINT_PARENT, "print-parent"), \ C(SYM_OFFSET, "sym-offset"), \ C(SYM_ADDR, "sym-addr"), \ C(VERBOSE, "verbose"), \ C(RAW, "raw"), \ C(HEX, "hex"), \ C(BIN, "bin"), \ C(BLOCK, "block"), \ C(PRINTK, "trace_printk"), \ C(ANNOTATE, "annotate"), \ C(USERSTACKTRACE, "userstacktrace"), \ C(SYM_USEROBJ, "sym-userobj"), \ C(PRINTK_MSGONLY, "printk-msg-only"), \ C(CONTEXT_INFO, "context-info"), /* Print pid/cpu/time */ \ C(LATENCY_FMT, "latency-format"), \ C(RECORD_CMD, "record-cmd"), \ C(RECORD_TGID, "record-tgid"), \ C(OVERWRITE, "overwrite"), \ C(STOP_ON_FREE, "disable_on_free"), \ C(IRQ_INFO, "irq-info"), \ C(MARKERS, "markers"), \ C(EVENT_FORK, "event-fork"), \ C(PAUSE_ON_TRACE, "pause-on-trace"), \ FUNCTION_FLAGS \ FGRAPH_FLAGS \ STACK_FLAGS \ BRANCH_FLAGS /* * By defining C, we can make TRACE_FLAGS a list of bit names * that will define the bits for the flag masks. */ #undef C #define C(a, b) TRACE_ITER_##a##_BIT enum trace_iterator_bits { TRACE_FLAGS /* Make sure we don't go more than we have bits for */ TRACE_ITER_LAST_BIT }; /* * By redefining C, we can make TRACE_FLAGS a list of masks that * use the bits as defined above. */ #undef C #define C(a, b) TRACE_ITER_##a = (1 << TRACE_ITER_##a##_BIT) enum trace_iterator_flags { TRACE_FLAGS }; /* * TRACE_ITER_SYM_MASK masks the options in trace_flags that * control the output of kernel symbols. */ #define TRACE_ITER_SYM_MASK \ (TRACE_ITER_PRINT_PARENT|TRACE_ITER_SYM_OFFSET|TRACE_ITER_SYM_ADDR) extern struct tracer nop_trace; #ifdef CONFIG_BRANCH_TRACER extern int enable_branch_tracing(struct trace_array *tr); extern void disable_branch_tracing(void); static inline int trace_branch_enable(struct trace_array *tr) { if (tr->trace_flags & TRACE_ITER_BRANCH) return enable_branch_tracing(tr); return 0; } static inline void trace_branch_disable(void) { /* due to races, always disable */ disable_branch_tracing(); } #else static inline int trace_branch_enable(struct trace_array *tr) { return 0; } static inline void trace_branch_disable(void) { } #endif /* CONFIG_BRANCH_TRACER */ /* set ring buffers to default size if not already done so */ int tracing_update_buffers(void); struct ftrace_event_field { struct list_head link; const char *name; const char *type; int filter_type; int offset; int size; int is_signed; }; struct prog_entry; struct event_filter { struct prog_entry __rcu *prog; char *filter_string; }; struct event_subsystem { struct list_head list; const char *name; struct event_filter *filter; int ref_count; }; struct trace_subsystem_dir { struct list_head list; struct event_subsystem *subsystem; struct trace_array *tr; struct dentry *entry; int ref_count; int nr_events; }; extern int call_filter_check_discard(struct trace_event_call *call, void *rec, struct trace_buffer *buffer, struct ring_buffer_event *event); void trace_buffer_unlock_commit_regs(struct trace_array *tr, struct trace_buffer *buffer, struct ring_buffer_event *event, unsigned long flags, int pc, struct pt_regs *regs); static inline void trace_buffer_unlock_commit(struct trace_array *tr, struct trace_buffer *buffer, struct ring_buffer_event *event, unsigned long flags, int pc) { trace_buffer_unlock_commit_regs(tr, buffer, event, flags, pc, NULL); } DECLARE_PER_CPU(struct ring_buffer_event *, trace_buffered_event); DECLARE_PER_CPU(int, trace_buffered_event_cnt); void trace_buffered_event_disable(void); void trace_buffered_event_enable(void); static inline void __trace_event_discard_commit(struct trace_buffer *buffer, struct ring_buffer_event *event) { if (this_cpu_read(trace_buffered_event) == event) { /* Simply release the temp buffer */ this_cpu_dec(trace_buffered_event_cnt); return; } ring_buffer_discard_commit(buffer, event); } /* * Helper function for event_trigger_unlock_commit{_regs}(). * If there are event triggers attached to this event that requires * filtering against its fields, then they will be called as the * entry already holds the field information of the current event. * * It also checks if the event should be discarded or not. * It is to be discarded if the event is soft disabled and the * event was only recorded to process triggers, or if the event * filter is active and this event did not match the filters. * * Returns true if the event is discarded, false otherwise. */ static inline bool __event_trigger_test_discard(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, void *entry, enum event_trigger_type *tt) { unsigned long eflags = file->flags; if (eflags & EVENT_FILE_FL_TRIGGER_COND) *tt = event_triggers_call(file, entry, event); if (likely(!(file->flags & (EVENT_FILE_FL_SOFT_DISABLED | EVENT_FILE_FL_FILTERED | EVENT_FILE_FL_PID_FILTER)))) return false; if (file->flags & EVENT_FILE_FL_SOFT_DISABLED) goto discard; if (file->flags & EVENT_FILE_FL_FILTERED && !filter_match_preds(file->filter, entry)) goto discard; if ((file->flags & EVENT_FILE_FL_PID_FILTER) && trace_event_ignore_this_pid(file)) goto discard; return false; discard: __trace_event_discard_commit(buffer, event); return true; } /** * event_trigger_unlock_commit - handle triggers and finish event commit * @file: The file pointer assoctiated to the event * @buffer: The ring buffer that the event is being written to * @event: The event meta data in the ring buffer * @entry: The event itself * @irq_flags: The state of the interrupts at the start of the event * @pc: The state of the preempt count at the start of the event. * * This is a helper function to handle triggers that require data * from the event itself. It also tests the event against filters and * if the event is soft disabled and should be discarded. */ static inline void event_trigger_unlock_commit(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, void *entry, unsigned long irq_flags, int pc) { enum event_trigger_type tt = ETT_NONE; if (!__event_trigger_test_discard(file, buffer, event, entry, &tt)) trace_buffer_unlock_commit(file->tr, buffer, event, irq_flags, pc); if (tt) event_triggers_post_call(file, tt); } /** * event_trigger_unlock_commit_regs - handle triggers and finish event commit * @file: The file pointer assoctiated to the event * @buffer: The ring buffer that the event is being written to * @event: The event meta data in the ring buffer * @entry: The event itself * @irq_flags: The state of the interrupts at the start of the event * @pc: The state of the preempt count at the start of the event. * * This is a helper function to handle triggers that require data * from the event itself. It also tests the event against filters and * if the event is soft disabled and should be discarded. * * Same as event_trigger_unlock_commit() but calls * trace_buffer_unlock_commit_regs() instead of trace_buffer_unlock_commit(). */ static inline void event_trigger_unlock_commit_regs(struct trace_event_file *file, struct trace_buffer *buffer, struct ring_buffer_event *event, void *entry, unsigned long irq_flags, int pc, struct pt_regs *regs) { enum event_trigger_type tt = ETT_NONE; if (!__event_trigger_test_discard(file, buffer, event, entry, &tt)) trace_buffer_unlock_commit_regs(file->tr, buffer, event, irq_flags, pc, regs); if (tt) event_triggers_post_call(file, tt); } #define FILTER_PRED_INVALID ((unsigned short)-1) #define FILTER_PRED_IS_RIGHT (1 << 15) #define FILTER_PRED_FOLD (1 << 15) /* * The max preds is the size of unsigned short with * two flags at the MSBs. One bit is used for both the IS_RIGHT * and FOLD flags. The other is reserved. * * 2^14 preds is way more than enough. */ #define MAX_FILTER_PRED 16384 struct filter_pred; struct regex; typedef int (*filter_pred_fn_t) (struct filter_pred *pred, void *event); typedef int (*regex_match_func)(char *str, struct regex *r, int len); enum regex_type { MATCH_FULL = 0, MATCH_FRONT_ONLY, MATCH_MIDDLE_ONLY, MATCH_END_ONLY, MATCH_GLOB, MATCH_INDEX, }; struct regex { char pattern[MAX_FILTER_STR_VAL]; int len; int field_len; regex_match_func match; }; struct filter_pred { filter_pred_fn_t fn; u64 val; struct regex regex; unsigned short *ops; struct ftrace_event_field *field; int offset; int not; int op; }; static inline bool is_string_field(struct ftrace_event_field *field) { return field->filter_type == FILTER_DYN_STRING || field->filter_type == FILTER_STATIC_STRING || field->filter_type == FILTER_PTR_STRING || field->filter_type == FILTER_COMM; } static inline bool is_function_field(struct ftrace_event_field *field) { return field->filter_type == FILTER_TRACE_FN; } extern enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not); extern void print_event_filter(struct trace_event_file *file, struct trace_seq *s); extern int apply_event_filter(struct trace_event_file *file, char *filter_string); extern int apply_subsystem_event_filter(struct trace_subsystem_dir *dir, char *filter_string); extern void print_subsystem_event_filter(struct event_subsystem *system, struct trace_seq *s); extern int filter_assign_type(const char *type); extern int create_event_filter(struct trace_array *tr, struct trace_event_call *call, char *filter_str, bool set_str, struct event_filter **filterp); extern void free_event_filter(struct event_filter *filter); struct ftrace_event_field * trace_find_event_field(struct trace_event_call *call, char *name); extern void trace_event_enable_cmd_record(bool enable); extern void trace_event_enable_tgid_record(bool enable); extern int event_trace_init(void); extern int init_events(void); extern int event_trace_add_tracer(struct dentry *parent, struct trace_array *tr); extern int event_trace_del_tracer(struct trace_array *tr); extern void __trace_early_add_events(struct trace_array *tr); extern struct trace_event_file *__find_event_file(struct trace_array *tr, const char *system, const char *event); extern struct trace_event_file *find_event_file(struct trace_array *tr, const char *system, const char *event); static inline void *event_file_data(struct file *filp) { return READ_ONCE(file_inode(filp)->i_private); } extern struct mutex event_mutex; extern struct list_head ftrace_events; extern const struct file_operations event_trigger_fops; extern const struct file_operations event_hist_fops; extern const struct file_operations event_hist_debug_fops; extern const struct file_operations event_inject_fops; #ifdef CONFIG_HIST_TRIGGERS extern int register_trigger_hist_cmd(void); extern int register_trigger_hist_enable_disable_cmds(void); #else static inline int register_trigger_hist_cmd(void) { return 0; } static inline int register_trigger_hist_enable_disable_cmds(void) { return 0; } #endif extern int register_trigger_cmds(void); extern void clear_event_triggers(struct trace_array *tr); struct event_trigger_data { unsigned long count; int ref; struct event_trigger_ops *ops; struct event_command *cmd_ops; struct event_filter __rcu *filter; char *filter_str; void *private_data; bool paused; bool paused_tmp; struct list_head list; char *name; struct list_head named_list; struct event_trigger_data *named_data; }; /* Avoid typos */ #define ENABLE_EVENT_STR "enable_event" #define DISABLE_EVENT_STR "disable_event" #define ENABLE_HIST_STR "enable_hist" #define DISABLE_HIST_STR "disable_hist" struct enable_trigger_data { struct trace_event_file *file; bool enable; bool hist; }; extern int event_enable_trigger_print(struct seq_file *m, struct event_trigger_ops *ops, struct event_trigger_data *data); extern void event_enable_trigger_free(struct event_trigger_ops *ops, struct event_trigger_data *data); extern int event_enable_trigger_func(struct event_command *cmd_ops, struct trace_event_file *file, char *glob, char *cmd, char *param); extern int event_enable_register_trigger(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *data, struct trace_event_file *file); extern void event_enable_unregister_trigger(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *test, struct trace_event_file *file); extern void trigger_data_free(struct event_trigger_data *data); extern int event_trigger_init(struct event_trigger_ops *ops, struct event_trigger_data *data); extern int trace_event_trigger_enable_disable(struct trace_event_file *file, int trigger_enable); extern void update_cond_flag(struct trace_event_file *file); extern int set_trigger_filter(char *filter_str, struct event_trigger_data *trigger_data, struct trace_event_file *file); extern struct event_trigger_data *find_named_trigger(const char *name); extern bool is_named_trigger(struct event_trigger_data *test); extern int save_named_trigger(const char *name, struct event_trigger_data *data); extern void del_named_trigger(struct event_trigger_data *data); extern void pause_named_trigger(struct event_trigger_data *data); extern void unpause_named_trigger(struct event_trigger_data *data); extern void set_named_trigger_data(struct event_trigger_data *data, struct event_trigger_data *named_data); extern struct event_trigger_data * get_named_trigger_data(struct event_trigger_data *data); extern int register_event_command(struct event_command *cmd); extern int unregister_event_command(struct event_command *cmd); extern int register_trigger_hist_enable_disable_cmds(void); extern void event_file_get(struct trace_event_file *file); extern void event_file_put(struct trace_event_file *file); /** * struct event_trigger_ops - callbacks for trace event triggers * * The methods in this structure provide per-event trigger hooks for * various trigger operations. * * All the methods below, except for @init() and @free(), must be * implemented. * * @func: The trigger 'probe' function called when the triggering * event occurs. The data passed into this callback is the data * that was supplied to the event_command @reg() function that * registered the trigger (see struct event_command) along with * the trace record, rec. * * @init: An optional initialization function called for the trigger * when the trigger is registered (via the event_command reg() * function). This can be used to perform per-trigger * initialization such as incrementing a per-trigger reference * count, for instance. This is usually implemented by the * generic utility function @event_trigger_init() (see * trace_event_triggers.c). * * @free: An optional de-initialization function called for the * trigger when the trigger is unregistered (via the * event_command @reg() function). This can be used to perform * per-trigger de-initialization such as decrementing a * per-trigger reference count and freeing corresponding trigger * data, for instance. This is usually implemented by the * generic utility function @event_trigger_free() (see * trace_event_triggers.c). * * @print: The callback function invoked to have the trigger print * itself. This is usually implemented by a wrapper function * that calls the generic utility function @event_trigger_print() * (see trace_event_triggers.c). */ struct event_trigger_ops { void (*func)(struct event_trigger_data *data, void *rec, struct ring_buffer_event *rbe); int (*init)(struct event_trigger_ops *ops, struct event_trigger_data *data); void (*free)(struct event_trigger_ops *ops, struct event_trigger_data *data); int (*print)(struct seq_file *m, struct event_trigger_ops *ops, struct event_trigger_data *data); }; /** * struct event_command - callbacks and data members for event commands * * Event commands are invoked by users by writing the command name * into the 'trigger' file associated with a trace event. The * parameters associated with a specific invocation of an event * command are used to create an event trigger instance, which is * added to the list of trigger instances associated with that trace * event. When the event is hit, the set of triggers associated with * that event is invoked. * * The data members in this structure provide per-event command data * for various event commands. * * All the data members below, except for @post_trigger, must be set * for each event command. * * @name: The unique name that identifies the event command. This is * the name used when setting triggers via trigger files. * * @trigger_type: A unique id that identifies the event command * 'type'. This value has two purposes, the first to ensure that * only one trigger of the same type can be set at a given time * for a particular event e.g. it doesn't make sense to have both * a traceon and traceoff trigger attached to a single event at * the same time, so traceon and traceoff have the same type * though they have different names. The @trigger_type value is * also used as a bit value for deferring the actual trigger * action until after the current event is finished. Some * commands need to do this if they themselves log to the trace * buffer (see the @post_trigger() member below). @trigger_type * values are defined by adding new values to the trigger_type * enum in include/linux/trace_events.h. * * @flags: See the enum event_command_flags below. * * All the methods below, except for @set_filter() and @unreg_all(), * must be implemented. * * @func: The callback function responsible for parsing and * registering the trigger written to the 'trigger' file by the * user. It allocates the trigger instance and registers it with * the appropriate trace event. It makes use of the other * event_command callback functions to orchestrate this, and is * usually implemented by the generic utility function * @event_trigger_callback() (see trace_event_triggers.c). * * @reg: Adds the trigger to the list of triggers associated with the * event, and enables the event trigger itself, after * initializing it (via the event_trigger_ops @init() function). * This is also where commands can use the @trigger_type value to * make the decision as to whether or not multiple instances of * the trigger should be allowed. This is usually implemented by * the generic utility function @register_trigger() (see * trace_event_triggers.c). * * @unreg: Removes the trigger from the list of triggers associated * with the event, and disables the event trigger itself, after * initializing it (via the event_trigger_ops @free() function). * This is usually implemented by the generic utility function * @unregister_trigger() (see trace_event_triggers.c). * * @unreg_all: An optional function called to remove all the triggers * from the list of triggers associated with the event. Called * when a trigger file is opened in truncate mode. * * @set_filter: An optional function called to parse and set a filter * for the trigger. If no @set_filter() method is set for the * event command, filters set by the user for the command will be * ignored. This is usually implemented by the generic utility * function @set_trigger_filter() (see trace_event_triggers.c). * * @get_trigger_ops: The callback function invoked to retrieve the * event_trigger_ops implementation associated with the command. */ struct event_command { struct list_head list; char *name; enum event_trigger_type trigger_type; int flags; int (*func)(struct event_command *cmd_ops, struct trace_event_file *file, char *glob, char *cmd, char *params); int (*reg)(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *data, struct trace_event_file *file); void (*unreg)(char *glob, struct event_trigger_ops *ops, struct event_trigger_data *data, struct trace_event_file *file); void (*unreg_all)(struct trace_event_file *file); int (*set_filter)(char *filter_str, struct event_trigger_data *data, struct trace_event_file *file); struct event_trigger_ops *(*get_trigger_ops)(char *cmd, char *param); }; /** * enum event_command_flags - flags for struct event_command * * @POST_TRIGGER: A flag that says whether or not this command needs * to have its action delayed until after the current event has * been closed. Some triggers need to avoid being invoked while * an event is currently in the process of being logged, since * the trigger may itself log data into the trace buffer. Thus * we make sure the current event is committed before invoking * those triggers. To do that, the trigger invocation is split * in two - the first part checks the filter using the current * trace record; if a command has the @post_trigger flag set, it * sets a bit for itself in the return value, otherwise it * directly invokes the trigger. Once all commands have been * either invoked or set their return flag, the current record is * either committed or discarded. At that point, if any commands * have deferred their triggers, those commands are finally * invoked following the close of the current event. In other * words, if the event_trigger_ops @func() probe implementation * itself logs to the trace buffer, this flag should be set, * otherwise it can be left unspecified. * * @NEEDS_REC: A flag that says whether or not this command needs * access to the trace record in order to perform its function, * regardless of whether or not it has a filter associated with * it (filters make a trigger require access to the trace record * but are not always present). */ enum event_command_flags { EVENT_CMD_FL_POST_TRIGGER = 1, EVENT_CMD_FL_NEEDS_REC = 2, }; static inline bool event_command_post_trigger(struct event_command *cmd_ops) { return cmd_ops->flags & EVENT_CMD_FL_POST_TRIGGER; } static inline bool event_command_needs_rec(struct event_command *cmd_ops) { return cmd_ops->flags & EVENT_CMD_FL_NEEDS_REC; } extern int trace_event_enable_disable(struct trace_event_file *file, int enable, int soft_disable); extern int tracing_alloc_snapshot(void); extern void tracing_snapshot_cond(struct trace_array *tr, void *cond_data); extern int tracing_snapshot_cond_enable(struct trace_array *tr, void *cond_data, cond_update_fn_t update); extern int tracing_snapshot_cond_disable(struct trace_array *tr); extern void *tracing_cond_snapshot_data(struct trace_array *tr); extern const char *__start___trace_bprintk_fmt[]; extern const char *__stop___trace_bprintk_fmt[]; extern const char *__start___tracepoint_str[]; extern const char *__stop___tracepoint_str[]; void trace_printk_control(bool enabled); void trace_printk_start_comm(void); int trace_keep_overwrite(struct tracer *tracer, u32 mask, int set); int set_tracer_flag(struct trace_array *tr, unsigned int mask, int enabled); /* Used from boot time tracer */ extern int trace_set_options(struct trace_array *tr, char *option); extern int tracing_set_tracer(struct trace_array *tr, const char *buf); extern ssize_t tracing_resize_ring_buffer(struct trace_array *tr, unsigned long size, int cpu_id); extern int tracing_set_cpumask(struct trace_array *tr, cpumask_var_t tracing_cpumask_new); #define MAX_EVENT_NAME_LEN 64 extern int trace_run_command(const char *buf, int (*createfn)(int, char**)); extern ssize_t trace_parse_run_command(struct file *file, const char __user *buffer, size_t count, loff_t *ppos, int (*createfn)(int, char**)); extern unsigned int err_pos(char *cmd, const char *str); extern void tracing_log_err(struct trace_array *tr, const char *loc, const char *cmd, const char **errs, u8 type, u8 pos); /* * Normal trace_printk() and friends allocates special buffers * to do the manipulation, as well as saves the print formats * into sections to display. But the trace infrastructure wants * to use these without the added overhead at the price of being * a bit slower (used mainly for warnings, where we don't care * about performance). The internal_trace_puts() is for such * a purpose. */ #define internal_trace_puts(str) __trace_puts(_THIS_IP_, str, strlen(str)) #undef FTRACE_ENTRY #define FTRACE_ENTRY(call, struct_name, id, tstruct, print) \ extern struct trace_event_call \ __aligned(4) event_##call; #undef FTRACE_ENTRY_DUP #define FTRACE_ENTRY_DUP(call, struct_name, id, tstruct, print) \ FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) #undef FTRACE_ENTRY_PACKED #define FTRACE_ENTRY_PACKED(call, struct_name, id, tstruct, print) \ FTRACE_ENTRY(call, struct_name, id, PARAMS(tstruct), PARAMS(print)) #include "trace_entries.h" #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_FUNCTION_TRACER) int perf_ftrace_event_register(struct trace_event_call *call, enum trace_reg type, void *data); #else #define perf_ftrace_event_register NULL #endif #ifdef CONFIG_FTRACE_SYSCALLS void init_ftrace_syscalls(void); const char *get_syscall_name(int syscall); #else static inline void init_ftrace_syscalls(void) { } static inline const char *get_syscall_name(int syscall) { return NULL; } #endif #ifdef CONFIG_EVENT_TRACING void trace_event_init(void); void trace_event_eval_update(struct trace_eval_map **map, int len); /* Used from boot time tracer */ extern int ftrace_set_clr_event(struct trace_array *tr, char *buf, int set); extern int trigger_process_regex(struct trace_event_file *file, char *buff); #else static inline void __init trace_event_init(void) { } static inline void trace_event_eval_update(struct trace_eval_map **map, int len) { } #endif #ifdef CONFIG_TRACER_SNAPSHOT void tracing_snapshot_instance(struct trace_array *tr); int tracing_alloc_snapshot_instance(struct trace_array *tr); #else static inline void tracing_snapshot_instance(struct trace_array *tr) { } static inline int tracing_alloc_snapshot_instance(struct trace_array *tr) { return 0; } #endif #ifdef CONFIG_PREEMPT_TRACER void tracer_preempt_on(unsigned long a0, unsigned long a1); void tracer_preempt_off(unsigned long a0, unsigned long a1); #else static inline void tracer_preempt_on(unsigned long a0, unsigned long a1) { } static inline void tracer_preempt_off(unsigned long a0, unsigned long a1) { } #endif #ifdef CONFIG_IRQSOFF_TRACER void tracer_hardirqs_on(unsigned long a0, unsigned long a1); void tracer_hardirqs_off(unsigned long a0, unsigned long a1); #else static inline void tracer_hardirqs_on(unsigned long a0, unsigned long a1) { } static inline void tracer_hardirqs_off(unsigned long a0, unsigned long a1) { } #endif extern struct trace_iterator *tracepoint_print_iter; /* * Reset the state of the trace_iterator so that it can read consumed data. * Normally, the trace_iterator is used for reading the data when it is not * consumed, and must retain state. */ static __always_inline void trace_iterator_reset(struct trace_iterator *iter) { const size_t offset = offsetof(struct trace_iterator, seq); /* * Keep gcc from complaining about overwriting more than just one * member in the structure. */ memset((char *)iter + offset, 0, sizeof(struct trace_iterator) - offset); iter->pos = -1; } /* Check the name is good for event/group/fields */ static inline bool is_good_name(const char *name) { if (!isalpha(*name) && *name != '_') return false; while (*++name != '\0') { if (!isalpha(*name) && !isdigit(*name) && *name != '_') return false; } return true; } #endif /* _LINUX_KERNEL_TRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_64_H #define _ASM_X86_UACCESS_64_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/lockdep.h> #include <linux/kasan-checks.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/page.h> /* * Copy To/From Userspace */ /* Handles exceptions in both to and from, but doesn't do access_ok */ __must_check unsigned long copy_user_enhanced_fast_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_string(void *to, const void *from, unsigned len); __must_check unsigned long copy_user_generic_unrolled(void *to, const void *from, unsigned len); static __always_inline __must_check unsigned long copy_user_generic(void *to, const void *from, unsigned len) { unsigned ret; /* * If CPU has ERMS feature, use copy_user_enhanced_fast_string. * Otherwise, if CPU has rep_good feature, use copy_user_generic_string. * Otherwise, use copy_user_generic_unrolled. */ alternative_call_2(copy_user_generic_unrolled, copy_user_generic_string, X86_FEATURE_REP_GOOD, copy_user_enhanced_fast_string, X86_FEATURE_ERMS, ASM_OUTPUT2("=a" (ret), "=D" (to), "=S" (from), "=d" (len)), "1" (to), "2" (from), "3" (len) : "memory", "rcx", "r8", "r9", "r10", "r11"); return ret; } static __always_inline __must_check unsigned long raw_copy_from_user(void *dst, const void __user *src, unsigned long size) { return copy_user_generic(dst, (__force void *)src, size); } static __always_inline __must_check unsigned long raw_copy_to_user(void __user *dst, const void *src, unsigned long size) { return copy_user_generic((__force void *)dst, src, size); } static __always_inline __must_check unsigned long raw_copy_in_user(void __user *dst, const void __user *src, unsigned long size) { return copy_user_generic((__force void *)dst, (__force void *)src, size); } extern long __copy_user_nocache(void *dst, const void __user *src, unsigned size, int zerorest); extern long __copy_user_flushcache(void *dst, const void __user *src, unsigned size); extern void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len); static inline int __copy_from_user_inatomic_nocache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_nocache(dst, src, size, 0); } static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size) { kasan_check_write(dst, size); return __copy_user_flushcache(dst, src, size); } #endif /* _ASM_X86_UACCESS_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ /* * Common values for AES algorithms */ #ifndef _CRYPTO_AES_H #define _CRYPTO_AES_H #include <linux/types.h> #include <linux/crypto.h> #define AES_MIN_KEY_SIZE 16 #define AES_MAX_KEY_SIZE 32 #define AES_KEYSIZE_128 16 #define AES_KEYSIZE_192 24 #define AES_KEYSIZE_256 32 #define AES_BLOCK_SIZE 16 #define AES_MAX_KEYLENGTH (15 * 16) #define AES_MAX_KEYLENGTH_U32 (AES_MAX_KEYLENGTH / sizeof(u32)) /* * Please ensure that the first two fields are 16-byte aligned * relative to the start of the structure, i.e., don't move them! */ struct crypto_aes_ctx { u32 key_enc[AES_MAX_KEYLENGTH_U32]; u32 key_dec[AES_MAX_KEYLENGTH_U32]; u32 key_length; }; extern const u32 crypto_ft_tab[4][256] ____cacheline_aligned; extern const u32 crypto_it_tab[4][256] ____cacheline_aligned; /* * validate key length for AES algorithms */ static inline int aes_check_keylen(unsigned int keylen) { switch (keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: break; default: return -EINVAL; } return 0; } int crypto_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len); /** * aes_expandkey - Expands the AES key as described in FIPS-197 * @ctx: The location where the computed key will be stored. * @in_key: The supplied key. * @key_len: The length of the supplied key. * * Returns 0 on success. The function fails only if an invalid key size (or * pointer) is supplied. * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes * key schedule plus a 16 bytes key which is used before the first round). * The decryption key is prepared for the "Equivalent Inverse Cipher" as * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is * for the initial combination, the second slot for the first round and so on. */ int aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len); /** * aes_encrypt - Encrypt a single AES block * @ctx: Context struct containing the key schedule * @out: Buffer to store the ciphertext * @in: Buffer containing the plaintext */ void aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in); /** * aes_decrypt - Decrypt a single AES block * @ctx: Context struct containing the key schedule * @out: Buffer to store the plaintext * @in: Buffer containing the ciphertext */ void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in); extern const u8 crypto_aes_sbox[]; extern const u8 crypto_aes_inv_sbox[]; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM vsyscall #if !defined(__VSYSCALL_TRACE_H) || defined(TRACE_HEADER_MULTI_READ) #define __VSYSCALL_TRACE_H #include <linux/tracepoint.h> TRACE_EVENT(emulate_vsyscall, TP_PROTO(int nr), TP_ARGS(nr), TP_STRUCT__entry(__field(int, nr)), TP_fast_assign( __entry->nr = nr; ), TP_printk("nr = %d", __entry->nr) ); #endif #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH ../../arch/x86/entry/vsyscall/ #define TRACE_INCLUDE_FILE vsyscall_trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib6 #if !defined(_TRACE_FIB6_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB6_H #include <linux/in6.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib6_table_lookup, TP_PROTO(const struct net *net, const struct fib6_result *res, struct fib6_table *table, const struct flowi6 *flp), TP_ARGS(net, res, table, flp), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 16 ) __array( __u8, dst, 16 ) __field( u16, sport ) __field( u16, dport ) __field( u8, proto ) __field( u8, rt_type ) __dynamic_array( char, name, IFNAMSIZ ) __array( __u8, gw, 16 ) ), TP_fast_assign( struct in6_addr *in6; __entry->tb_id = table->tb6_id; __entry->err = ip6_rt_type_to_error(res->fib6_type); __entry->oif = flp->flowi6_oif; __entry->iif = flp->flowi6_iif; __entry->tos = ip6_tclass(flp->flowlabel); __entry->scope = flp->flowi6_scope; __entry->flags = flp->flowi6_flags; in6 = (struct in6_addr *)__entry->src; *in6 = flp->saddr; in6 = (struct in6_addr *)__entry->dst; *in6 = flp->daddr; __entry->proto = flp->flowi6_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl6_sport); __entry->dport = ntohs(flp->fl6_dport); } else { __entry->sport = 0; __entry->dport = 0; } if (res->nh && res->nh->fib_nh_dev) { __assign_str(name, res->nh->fib_nh_dev); } else { __assign_str(name, "-"); } if (res->f6i == net->ipv6.fib6_null_entry) { struct in6_addr in6_zero = {}; in6 = (struct in6_addr *)__entry->gw; *in6 = in6_zero; } else if (res->nh) { in6 = (struct in6_addr *)__entry->gw; *in6 = res->nh->fib_nh_gw6; } ), TP_printk("table %3u oif %d iif %d proto %u %pI6c/%u -> %pI6c/%u tos %d scope %d flags %x ==> dev %s gw %pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __get_str(name), __entry->gw, __entry->err) ); #endif /* _TRACE_FIB6_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _MM_PERCPU_INTERNAL_H #define _MM_PERCPU_INTERNAL_H #include <linux/types.h> #include <linux/percpu.h> /* * There are two chunk types: root and memcg-aware. * Chunks of each type have separate slots list. * * Memcg-aware chunks have an attached vector of obj_cgroup pointers, which is * used to store memcg membership data of a percpu object. Obj_cgroups are * ref-counted pointers to a memory cgroup with an ability to switch dynamically * to the parent memory cgroup. This allows to reclaim a deleted memory cgroup * without reclaiming of all outstanding objects, which hold a reference at it. */ enum pcpu_chunk_type { PCPU_CHUNK_ROOT, #ifdef CONFIG_MEMCG_KMEM PCPU_CHUNK_MEMCG, #endif PCPU_NR_CHUNK_TYPES, PCPU_FAIL_ALLOC = PCPU_NR_CHUNK_TYPES }; /* * pcpu_block_md is the metadata block struct. * Each chunk's bitmap is split into a number of full blocks. * All units are in terms of bits. * * The scan hint is the largest known contiguous area before the contig hint. * It is not necessarily the actual largest contig hint though. There is an * invariant that the scan_hint_start > contig_hint_start iff * scan_hint == contig_hint. This is necessary because when scanning forward, * we don't know if a new contig hint would be better than the current one. */ struct pcpu_block_md { int scan_hint; /* scan hint for block */ int scan_hint_start; /* block relative starting position of the scan hint */ int contig_hint; /* contig hint for block */ int contig_hint_start; /* block relative starting position of the contig hint */ int left_free; /* size of free space along the left side of the block */ int right_free; /* size of free space along the right side of the block */ int first_free; /* block position of first free */ int nr_bits; /* total bits responsible for */ }; struct pcpu_chunk { #ifdef CONFIG_PERCPU_STATS int nr_alloc; /* # of allocations */ size_t max_alloc_size; /* largest allocation size */ #endif struct list_head list; /* linked to pcpu_slot lists */ int free_bytes; /* free bytes in the chunk */ struct pcpu_block_md chunk_md; void *base_addr; /* base address of this chunk */ unsigned long *alloc_map; /* allocation map */ unsigned long *bound_map; /* boundary map */ struct pcpu_block_md *md_blocks; /* metadata blocks */ void *data; /* chunk data */ bool immutable; /* no [de]population allowed */ int start_offset; /* the overlap with the previous region to have a page aligned base_addr */ int end_offset; /* additional area required to have the region end page aligned */ #ifdef CONFIG_MEMCG_KMEM struct obj_cgroup **obj_cgroups; /* vector of object cgroups */ #endif int nr_pages; /* # of pages served by this chunk */ int nr_populated; /* # of populated pages */ int nr_empty_pop_pages; /* # of empty populated pages */ unsigned long populated[]; /* populated bitmap */ }; extern spinlock_t pcpu_lock; extern struct list_head *pcpu_chunk_lists; extern int pcpu_nr_slots; extern int pcpu_nr_empty_pop_pages[]; extern struct pcpu_chunk *pcpu_first_chunk; extern struct pcpu_chunk *pcpu_reserved_chunk; /** * pcpu_chunk_nr_blocks - converts nr_pages to # of md_blocks * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bitmap blocks used. */ static inline int pcpu_chunk_nr_blocks(struct pcpu_chunk *chunk) { return chunk->nr_pages * PAGE_SIZE / PCPU_BITMAP_BLOCK_SIZE; } /** * pcpu_nr_pages_to_map_bits - converts the pages to size of bitmap * @pages: number of physical pages * * This conversion is from physical pages to the number of bits * required in the bitmap. */ static inline int pcpu_nr_pages_to_map_bits(int pages) { return pages * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; } /** * pcpu_chunk_map_bits - helper to convert nr_pages to size of bitmap * @chunk: chunk of interest * * This conversion is from the number of physical pages that the chunk * serves to the number of bits in the bitmap. */ static inline int pcpu_chunk_map_bits(struct pcpu_chunk *chunk) { return pcpu_nr_pages_to_map_bits(chunk->nr_pages); } #ifdef CONFIG_MEMCG_KMEM static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { if (chunk->obj_cgroups) return PCPU_CHUNK_MEMCG; return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return chunk_type == PCPU_CHUNK_MEMCG; } #else static inline enum pcpu_chunk_type pcpu_chunk_type(struct pcpu_chunk *chunk) { return PCPU_CHUNK_ROOT; } static inline bool pcpu_is_memcg_chunk(enum pcpu_chunk_type chunk_type) { return false; } #endif static inline struct list_head *pcpu_chunk_list(enum pcpu_chunk_type chunk_type) { return &pcpu_chunk_lists[pcpu_nr_slots * pcpu_is_memcg_chunk(chunk_type)]; } #ifdef CONFIG_PERCPU_STATS #include <linux/spinlock.h> struct percpu_stats { u64 nr_alloc; /* lifetime # of allocations */ u64 nr_dealloc; /* lifetime # of deallocations */ u64 nr_cur_alloc; /* current # of allocations */ u64 nr_max_alloc; /* max # of live allocations */ u32 nr_chunks; /* current # of live chunks */ u32 nr_max_chunks; /* max # of live chunks */ size_t min_alloc_size; /* min allocaiton size */ size_t max_alloc_size; /* max allocation size */ }; extern struct percpu_stats pcpu_stats; extern struct pcpu_alloc_info pcpu_stats_ai; /* * For debug purposes. We don't care about the flexible array. */ static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { memcpy(&pcpu_stats_ai, ai, sizeof(struct pcpu_alloc_info)); /* initialize min_alloc_size to unit_size */ pcpu_stats.min_alloc_size = pcpu_stats_ai.unit_size; } /* * pcpu_stats_area_alloc - increment area allocation stats * @chunk: the location of the area being allocated * @size: size of area to allocate in bytes * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_alloc++; pcpu_stats.nr_cur_alloc++; pcpu_stats.nr_max_alloc = max(pcpu_stats.nr_max_alloc, pcpu_stats.nr_cur_alloc); pcpu_stats.min_alloc_size = min(pcpu_stats.min_alloc_size, size); pcpu_stats.max_alloc_size = max(pcpu_stats.max_alloc_size, size); chunk->nr_alloc++; chunk->max_alloc_size = max(chunk->max_alloc_size, size); } /* * pcpu_stats_area_dealloc - decrement allocation stats * @chunk: the location of the area being deallocated * * CONTEXT: * pcpu_lock. */ static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { lockdep_assert_held(&pcpu_lock); pcpu_stats.nr_dealloc++; pcpu_stats.nr_cur_alloc--; chunk->nr_alloc--; } /* * pcpu_stats_chunk_alloc - increment chunk stats */ static inline void pcpu_stats_chunk_alloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks++; pcpu_stats.nr_max_chunks = max(pcpu_stats.nr_max_chunks, pcpu_stats.nr_chunks); spin_unlock_irqrestore(&pcpu_lock, flags); } /* * pcpu_stats_chunk_dealloc - decrement chunk stats */ static inline void pcpu_stats_chunk_dealloc(void) { unsigned long flags; spin_lock_irqsave(&pcpu_lock, flags); pcpu_stats.nr_chunks--; spin_unlock_irqrestore(&pcpu_lock, flags); } #else static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai) { } static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size) { } static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk) { } static inline void pcpu_stats_chunk_alloc(void) { } static inline void pcpu_stats_chunk_dealloc(void) { } #endif /* !CONFIG_PERCPU_STATS */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 /* SPDX-License-Identifier: GPL-2.0 */ /* * Block data types and constants. Directly include this file only to * break include dependency loop. */ #ifndef __LINUX_BLK_TYPES_H #define __LINUX_BLK_TYPES_H #include <linux/types.h> #include <linux/bvec.h> #include <linux/ktime.h> struct bio_set; struct bio; struct bio_integrity_payload; struct page; struct io_context; struct cgroup_subsys_state; typedef void (bio_end_io_t) (struct bio *); struct bio_crypt_ctx; struct block_device { dev_t bd_dev; int bd_openers; struct inode * bd_inode; /* will die */ struct super_block * bd_super; struct mutex bd_mutex; /* open/close mutex */ void * bd_claiming; void * bd_holder; int bd_holders; bool bd_write_holder; #ifdef CONFIG_SYSFS struct list_head bd_holder_disks; #endif struct block_device * bd_contains; u8 bd_partno; struct hd_struct * bd_part; /* number of times partitions within this device have been opened. */ unsigned bd_part_count; spinlock_t bd_size_lock; /* for bd_inode->i_size updates */ struct gendisk * bd_disk; struct backing_dev_info *bd_bdi; /* The counter of freeze processes */ int bd_fsfreeze_count; /* Mutex for freeze */ struct mutex bd_fsfreeze_mutex; } __randomize_layout; /* * Block error status values. See block/blk-core:blk_errors for the details. * Alpha cannot write a byte atomically, so we need to use 32-bit value. */ #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__) typedef u32 __bitwise blk_status_t; #else typedef u8 __bitwise blk_status_t; #endif #define BLK_STS_OK 0 #define BLK_STS_NOTSUPP ((__force blk_status_t)1) #define BLK_STS_TIMEOUT ((__force blk_status_t)2) #define BLK_STS_NOSPC ((__force blk_status_t)3) #define BLK_STS_TRANSPORT ((__force blk_status_t)4) #define BLK_STS_TARGET ((__force blk_status_t)5) #define BLK_STS_NEXUS ((__force blk_status_t)6) #define BLK_STS_MEDIUM ((__force blk_status_t)7) #define BLK_STS_PROTECTION ((__force blk_status_t)8) #define BLK_STS_RESOURCE ((__force blk_status_t)9) #define BLK_STS_IOERR ((__force blk_status_t)10) /* hack for device mapper, don't use elsewhere: */ #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11) #define BLK_STS_AGAIN ((__force blk_status_t)12) /* * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if * device related resources are unavailable, but the driver can guarantee * that the queue will be rerun in the future once resources become * available again. This is typically the case for device specific * resources that are consumed for IO. If the driver fails allocating these * resources, we know that inflight (or pending) IO will free these * resource upon completion. * * This is different from BLK_STS_RESOURCE in that it explicitly references * a device specific resource. For resources of wider scope, allocation * failure can happen without having pending IO. This means that we can't * rely on request completions freeing these resources, as IO may not be in * flight. Examples of that are kernel memory allocations, DMA mappings, or * any other system wide resources. */ #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13) /* * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone * related resources are unavailable, but the driver can guarantee the queue * will be rerun in the future once the resources become available again. * * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references * a zone specific resource and IO to a different zone on the same device could * still be served. Examples of that are zones that are write-locked, but a read * to the same zone could be served. */ #define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14) /* * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion * path if the device returns a status indicating that too many zone resources * are currently open. The same command should be successful if resubmitted * after the number of open zones decreases below the device's limits, which is * reported in the request_queue's max_open_zones. */ #define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15) /* * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion * path if the device returns a status indicating that too many zone resources * are currently active. The same command should be successful if resubmitted * after the number of active zones decreases below the device's limits, which * is reported in the request_queue's max_active_zones. */ #define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16) /** * blk_path_error - returns true if error may be path related * @error: status the request was completed with * * Description: * This classifies block error status into non-retryable errors and ones * that may be successful if retried on a failover path. * * Return: * %false - retrying failover path will not help * %true - may succeed if retried */ static inline bool blk_path_error(blk_status_t error) { switch (error) { case BLK_STS_NOTSUPP: case BLK_STS_NOSPC: case BLK_STS_TARGET: case BLK_STS_NEXUS: case BLK_STS_MEDIUM: case BLK_STS_PROTECTION: return false; } /* Anything else could be a path failure, so should be retried */ return true; } /* * From most significant bit: * 1 bit: reserved for other usage, see below * 12 bits: original size of bio * 51 bits: issue time of bio */ #define BIO_ISSUE_RES_BITS 1 #define BIO_ISSUE_SIZE_BITS 12 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS) #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS) #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1) #define BIO_ISSUE_SIZE_MASK \ (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT) #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1)) /* Reserved bit for blk-throtl */ #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63) struct bio_issue { u64 value; }; static inline u64 __bio_issue_time(u64 time) { return time & BIO_ISSUE_TIME_MASK; } static inline u64 bio_issue_time(struct bio_issue *issue) { return __bio_issue_time(issue->value); } static inline sector_t bio_issue_size(struct bio_issue *issue) { return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT); } static inline void bio_issue_init(struct bio_issue *issue, sector_t size) { size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1; issue->value = ((issue->value & BIO_ISSUE_RES_MASK) | (ktime_get_ns() & BIO_ISSUE_TIME_MASK) | ((u64)size << BIO_ISSUE_SIZE_SHIFT)); } /* * main unit of I/O for the block layer and lower layers (ie drivers and * stacking drivers) */ struct bio { struct bio *bi_next; /* request queue link */ struct gendisk *bi_disk; unsigned int bi_opf; /* bottom bits req flags, * top bits REQ_OP. Use * accessors. */ unsigned short bi_flags; /* status, etc and bvec pool number */ unsigned short bi_ioprio; unsigned short bi_write_hint; blk_status_t bi_status; u8 bi_partno; atomic_t __bi_remaining; struct bvec_iter bi_iter; bio_end_io_t *bi_end_io; void *bi_private; #ifdef CONFIG_BLK_CGROUP /* * Represents the association of the css and request_queue for the bio. * If a bio goes direct to device, it will not have a blkg as it will * not have a request_queue associated with it. The reference is put * on release of the bio. */ struct blkcg_gq *bi_blkg; struct bio_issue bi_issue; #ifdef CONFIG_BLK_CGROUP_IOCOST u64 bi_iocost_cost; #endif #endif #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct bio_crypt_ctx *bi_crypt_context; #endif union { #if defined(CONFIG_BLK_DEV_INTEGRITY) struct bio_integrity_payload *bi_integrity; /* data integrity */ #endif }; unsigned short bi_vcnt; /* how many bio_vec's */ /* * Everything starting with bi_max_vecs will be preserved by bio_reset() */ unsigned short bi_max_vecs; /* max bvl_vecs we can hold */ atomic_t __bi_cnt; /* pin count */ struct bio_vec *bi_io_vec; /* the actual vec list */ struct bio_set *bi_pool; /* * We can inline a number of vecs at the end of the bio, to avoid * double allocations for a small number of bio_vecs. This member * MUST obviously be kept at the very end of the bio. */ struct bio_vec bi_inline_vecs[]; }; #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs) /* * bio flags */ enum { BIO_NO_PAGE_REF, /* don't put release vec pages */ BIO_CLONED, /* doesn't own data */ BIO_BOUNCED, /* bio is a bounce bio */ BIO_WORKINGSET, /* contains userspace workingset pages */ BIO_QUIET, /* Make BIO Quiet */ BIO_CHAIN, /* chained bio, ->bi_remaining in effect */ BIO_REFFED, /* bio has elevated ->bi_cnt */ BIO_THROTTLED, /* This bio has already been subjected to * throttling rules. Don't do it again. */ BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion * of this bio. */ BIO_CGROUP_ACCT, /* has been accounted to a cgroup */ BIO_TRACKED, /* set if bio goes through the rq_qos path */ BIO_FLAG_LAST }; /* See BVEC_POOL_OFFSET below before adding new flags */ /* * We support 6 different bvec pools, the last one is magic in that it * is backed by a mempool. */ #define BVEC_POOL_NR 6 #define BVEC_POOL_MAX (BVEC_POOL_NR - 1) /* * Top 3 bits of bio flags indicate the pool the bvecs came from. We add * 1 to the actual index so that 0 indicates that there are no bvecs to be * freed. */ #define BVEC_POOL_BITS (3) #define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS) #define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET) #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1) # error "BVEC_POOL_BITS is too small" #endif /* * Flags starting here get preserved by bio_reset() - this includes * only BVEC_POOL_IDX() */ #define BIO_RESET_BITS BVEC_POOL_OFFSET typedef __u32 __bitwise blk_mq_req_flags_t; /* * Operations and flags common to the bio and request structures. * We use 8 bits for encoding the operation, and the remaining 24 for flags. * * The least significant bit of the operation number indicates the data * transfer direction: * * - if the least significant bit is set transfers are TO the device * - if the least significant bit is not set transfers are FROM the device * * If a operation does not transfer data the least significant bit has no * meaning. */ #define REQ_OP_BITS 8 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1) #define REQ_FLAG_BITS 24 enum req_opf { /* read sectors from the device */ REQ_OP_READ = 0, /* write sectors to the device */ REQ_OP_WRITE = 1, /* flush the volatile write cache */ REQ_OP_FLUSH = 2, /* discard sectors */ REQ_OP_DISCARD = 3, /* securely erase sectors */ REQ_OP_SECURE_ERASE = 5, /* write the same sector many times */ REQ_OP_WRITE_SAME = 7, /* write the zero filled sector many times */ REQ_OP_WRITE_ZEROES = 9, /* Open a zone */ REQ_OP_ZONE_OPEN = 10, /* Close a zone */ REQ_OP_ZONE_CLOSE = 11, /* Transition a zone to full */ REQ_OP_ZONE_FINISH = 12, /* write data at the current zone write pointer */ REQ_OP_ZONE_APPEND = 13, /* reset a zone write pointer */ REQ_OP_ZONE_RESET = 15, /* reset all the zone present on the device */ REQ_OP_ZONE_RESET_ALL = 17, /* SCSI passthrough using struct scsi_request */ REQ_OP_SCSI_IN = 32, REQ_OP_SCSI_OUT = 33, /* Driver private requests */ REQ_OP_DRV_IN = 34, REQ_OP_DRV_OUT = 35, REQ_OP_LAST, }; enum req_flag_bits { __REQ_FAILFAST_DEV = /* no driver retries of device errors */ REQ_OP_BITS, __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */ __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */ __REQ_SYNC, /* request is sync (sync write or read) */ __REQ_META, /* metadata io request */ __REQ_PRIO, /* boost priority in cfq */ __REQ_NOMERGE, /* don't touch this for merging */ __REQ_IDLE, /* anticipate more IO after this one */ __REQ_INTEGRITY, /* I/O includes block integrity payload */ __REQ_FUA, /* forced unit access */ __REQ_PREFLUSH, /* request for cache flush */ __REQ_RAHEAD, /* read ahead, can fail anytime */ __REQ_BACKGROUND, /* background IO */ __REQ_NOWAIT, /* Don't wait if request will block */ /* * When a shared kthread needs to issue a bio for a cgroup, doing * so synchronously can lead to priority inversions as the kthread * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes * submit_bio() punt the actual issuing to a dedicated per-blkcg * work item to avoid such priority inversions. */ __REQ_CGROUP_PUNT, /* command specific flags for REQ_OP_WRITE_ZEROES: */ __REQ_NOUNMAP, /* do not free blocks when zeroing */ __REQ_HIPRI, /* for driver use */ __REQ_DRV, __REQ_SWAP, /* swapping request. */ __REQ_NR_BITS, /* stops here */ }; #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV) #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT) #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER) #define REQ_SYNC (1ULL << __REQ_SYNC) #define REQ_META (1ULL << __REQ_META) #define REQ_PRIO (1ULL << __REQ_PRIO) #define REQ_NOMERGE (1ULL << __REQ_NOMERGE) #define REQ_IDLE (1ULL << __REQ_IDLE) #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY) #define REQ_FUA (1ULL << __REQ_FUA) #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH) #define REQ_RAHEAD (1ULL << __REQ_RAHEAD) #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND) #define REQ_NOWAIT (1ULL << __REQ_NOWAIT) #define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT) #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP) #define REQ_HIPRI (1ULL << __REQ_HIPRI) #define REQ_DRV (1ULL << __REQ_DRV) #define REQ_SWAP (1ULL << __REQ_SWAP) #define REQ_FAILFAST_MASK \ (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER) #define REQ_NOMERGE_FLAGS \ (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA) enum stat_group { STAT_READ, STAT_WRITE, STAT_DISCARD, STAT_FLUSH, NR_STAT_GROUPS }; #define bio_op(bio) \ ((bio)->bi_opf & REQ_OP_MASK) #define req_op(req) \ ((req)->cmd_flags & REQ_OP_MASK) /* obsolete, don't use in new code */ static inline void bio_set_op_attrs(struct bio *bio, unsigned op, unsigned op_flags) { bio->bi_opf = op | op_flags; } static inline bool op_is_write(unsigned int op) { return (op & 1); } /* * Check if the bio or request is one that needs special treatment in the * flush state machine. */ static inline bool op_is_flush(unsigned int op) { return op & (REQ_FUA | REQ_PREFLUSH); } /* * Reads are always treated as synchronous, as are requests with the FUA or * PREFLUSH flag. Other operations may be marked as synchronous using the * REQ_SYNC flag. */ static inline bool op_is_sync(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_READ || (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH)); } static inline bool op_is_discard(unsigned int op) { return (op & REQ_OP_MASK) == REQ_OP_DISCARD; } /* * Check if a bio or request operation is a zone management operation, with * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case * due to its different handling in the block layer and device response in * case of command failure. */ static inline bool op_is_zone_mgmt(enum req_opf op) { switch (op & REQ_OP_MASK) { case REQ_OP_ZONE_RESET: case REQ_OP_ZONE_OPEN: case REQ_OP_ZONE_CLOSE: case REQ_OP_ZONE_FINISH: return true; default: return false; } } static inline int op_stat_group(unsigned int op) { if (op_is_discard(op)) return STAT_DISCARD; return op_is_write(op); } typedef unsigned int blk_qc_t; #define BLK_QC_T_NONE -1U #define BLK_QC_T_SHIFT 16 #define BLK_QC_T_INTERNAL (1U << 31) static inline bool blk_qc_t_valid(blk_qc_t cookie) { return cookie != BLK_QC_T_NONE; } static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie) { return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT; } static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie) { return cookie & ((1u << BLK_QC_T_SHIFT) - 1); } static inline bool blk_qc_t_is_internal(blk_qc_t cookie) { return (cookie & BLK_QC_T_INTERNAL) != 0; } struct blk_rq_stat { u64 mean; u64 min; u64 max; u32 nr_samples; u64 batch; }; #endif /* __LINUX_BLK_TYPES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_DISK_H #define _SCSI_DISK_H /* * More than enough for everybody ;) The huge number of majors * is a leftover from 16bit dev_t days, we don't really need that * much numberspace. */ #define SD_MAJORS 16 /* * Time out in seconds for disks and Magneto-opticals (which are slower). */ #define SD_TIMEOUT (30 * HZ) #define SD_MOD_TIMEOUT (75 * HZ) /* * Flush timeout is a multiplier over the standard device timeout which is * user modifiable via sysfs but initially set to SD_TIMEOUT */ #define SD_FLUSH_TIMEOUT_MULTIPLIER 2 #define SD_WRITE_SAME_TIMEOUT (120 * HZ) /* * Number of allowed retries */ #define SD_MAX_RETRIES 5 #define SD_PASSTHROUGH_RETRIES 1 #define SD_MAX_MEDIUM_TIMEOUTS 2 /* * Size of the initial data buffer for mode and read capacity data */ #define SD_BUF_SIZE 512 /* * Number of sectors at the end of the device to avoid multi-sector * accesses to in the case of last_sector_bug */ #define SD_LAST_BUGGY_SECTORS 8 enum { SD_EXT_CDB_SIZE = 32, /* Extended CDB size */ SD_MEMPOOL_SIZE = 2, /* CDB pool size */ }; enum { SD_DEF_XFER_BLOCKS = 0xffff, SD_MAX_XFER_BLOCKS = 0xffffffff, SD_MAX_WS10_BLOCKS = 0xffff, SD_MAX_WS16_BLOCKS = 0x7fffff, }; enum { SD_LBP_FULL = 0, /* Full logical block provisioning */ SD_LBP_UNMAP, /* Use UNMAP command */ SD_LBP_WS16, /* Use WRITE SAME(16) with UNMAP bit */ SD_LBP_WS10, /* Use WRITE SAME(10) with UNMAP bit */ SD_LBP_ZERO, /* Use WRITE SAME(10) with zero payload */ SD_LBP_DISABLE, /* Discard disabled due to failed cmd */ }; enum { SD_ZERO_WRITE = 0, /* Use WRITE(10/16) command */ SD_ZERO_WS, /* Use WRITE SAME(10/16) command */ SD_ZERO_WS16_UNMAP, /* Use WRITE SAME(16) with UNMAP */ SD_ZERO_WS10_UNMAP, /* Use WRITE SAME(10) with UNMAP */ }; struct scsi_disk { struct scsi_driver *driver; /* always &sd_template */ struct scsi_device *device; struct device dev; struct gendisk *disk; struct opal_dev *opal_dev; #ifdef CONFIG_BLK_DEV_ZONED u32 nr_zones; u32 rev_nr_zones; u32 zone_blocks; u32 rev_zone_blocks; u32 zones_optimal_open; u32 zones_optimal_nonseq; u32 zones_max_open; u32 *zones_wp_offset; spinlock_t zones_wp_offset_lock; u32 *rev_wp_offset; struct mutex rev_mutex; struct work_struct zone_wp_offset_work; char *zone_wp_update_buf; #endif atomic_t openers; sector_t capacity; /* size in logical blocks */ int max_retries; u32 max_xfer_blocks; u32 opt_xfer_blocks; u32 max_ws_blocks; u32 max_unmap_blocks; u32 unmap_granularity; u32 unmap_alignment; u32 index; unsigned int physical_block_size; unsigned int max_medium_access_timeouts; unsigned int medium_access_timed_out; u8 media_present; u8 write_prot; u8 protection_type;/* Data Integrity Field */ u8 provisioning_mode; u8 zeroing_mode; unsigned ATO : 1; /* state of disk ATO bit */ unsigned cache_override : 1; /* temp override of WCE,RCD */ unsigned WCE : 1; /* state of disk WCE bit */ unsigned RCD : 1; /* state of disk RCD bit, unused */ unsigned DPOFUA : 1; /* state of disk DPOFUA bit */ unsigned first_scan : 1; unsigned lbpme : 1; unsigned lbprz : 1; unsigned lbpu : 1; unsigned lbpws : 1; unsigned lbpws10 : 1; unsigned lbpvpd : 1; unsigned ws10 : 1; unsigned ws16 : 1; unsigned rc_basis: 2; unsigned zoned: 2; unsigned urswrz : 1; unsigned security : 1; unsigned ignore_medium_access_errors : 1; }; #define to_scsi_disk(obj) container_of(obj,struct scsi_disk,dev) static inline struct scsi_disk *scsi_disk(struct gendisk *disk) { return container_of(disk->private_data, struct scsi_disk, driver); } #define sd_printk(prefix, sdsk, fmt, a...) \ (sdsk)->disk ? \ sdev_prefix_printk(prefix, (sdsk)->device, \ (sdsk)->disk->disk_name, fmt, ##a) : \ sdev_printk(prefix, (sdsk)->device, fmt, ##a) #define sd_first_printk(prefix, sdsk, fmt, a...) \ do { \ if ((sdsk)->first_scan) \ sd_printk(prefix, sdsk, fmt, ##a); \ } while (0) static inline int scsi_medium_access_command(struct scsi_cmnd *scmd) { switch (scmd->cmnd[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case SYNCHRONIZE_CACHE: case VERIFY: case VERIFY_12: case VERIFY_16: case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case WRITE_SAME: case WRITE_SAME_16: case UNMAP: return 1; case VARIABLE_LENGTH_CMD: switch (scmd->cmnd[9]) { case READ_32: case VERIFY_32: case WRITE_32: case WRITE_SAME_32: return 1; } } return 0; } static inline sector_t logical_to_sectors(struct scsi_device *sdev, sector_t blocks) { return blocks << (ilog2(sdev->sector_size) - 9); } static inline unsigned int logical_to_bytes(struct scsi_device *sdev, sector_t blocks) { return blocks * sdev->sector_size; } static inline sector_t bytes_to_logical(struct scsi_device *sdev, unsigned int bytes) { return bytes >> ilog2(sdev->sector_size); } static inline sector_t sectors_to_logical(struct scsi_device *sdev, sector_t sector) { return sector >> (ilog2(sdev->sector_size) - 9); } #ifdef CONFIG_BLK_DEV_INTEGRITY extern void sd_dif_config_host(struct scsi_disk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline void sd_dif_config_host(struct scsi_disk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static inline int sd_is_zoned(struct scsi_disk *sdkp) { return sdkp->zoned == 1 || sdkp->device->type == TYPE_ZBC; } #ifdef CONFIG_BLK_DEV_ZONED void sd_zbc_release_disk(struct scsi_disk *sdkp); int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buffer); int sd_zbc_revalidate_zones(struct scsi_disk *sdkp); blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all); unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr); int sd_zbc_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks); #else /* CONFIG_BLK_DEV_ZONED */ static inline void sd_zbc_release_disk(struct scsi_disk *sdkp) {} static inline int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf) { return 0; } static inline int sd_zbc_revalidate_zones(struct scsi_disk *sdkp) { return 0; } static inline blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd, unsigned char op, bool all) { return BLK_STS_TARGET; } static inline unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes, struct scsi_sense_hdr *sshdr) { return good_bytes; } static inline blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba, unsigned int nr_blocks) { return BLK_STS_TARGET; } #define sd_zbc_report_zones NULL #endif /* CONFIG_BLK_DEV_ZONED */ void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr); void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result); #endif /* _SCSI_DISK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_SPECIAL_INSNS_H #define _ASM_X86_SPECIAL_INSNS_H #ifdef __KERNEL__ #include <asm/nops.h> #include <asm/processor-flags.h> #include <linux/irqflags.h> #include <linux/jump_label.h> /* * The compiler should not reorder volatile asm statements with respect to each * other: they should execute in program order. However GCC 4.9.x and 5.x have * a bug (which was fixed in 8.1, 7.3 and 6.5) where they might reorder * volatile asm. The write functions are not affected since they have memory * clobbers preventing reordering. To prevent reads from being reordered with * respect to writes, use a dummy memory operand. */ #define __FORCE_ORDER "m"(*(unsigned int *)0x1000UL) void native_write_cr0(unsigned long val); static inline unsigned long native_read_cr0(void) { unsigned long val; asm volatile("mov %%cr0,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline unsigned long native_read_cr2(void) { unsigned long val; asm volatile("mov %%cr2,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static __always_inline void native_write_cr2(unsigned long val) { asm volatile("mov %0,%%cr2": : "r" (val) : "memory"); } static inline unsigned long __native_read_cr3(void) { unsigned long val; asm volatile("mov %%cr3,%0\n\t" : "=r" (val) : __FORCE_ORDER); return val; } static inline void native_write_cr3(unsigned long val) { asm volatile("mov %0,%%cr3": : "r" (val) : "memory"); } static inline unsigned long native_read_cr4(void) { unsigned long val; #ifdef CONFIG_X86_32 /* * This could fault if CR4 does not exist. Non-existent CR4 * is functionally equivalent to CR4 == 0. Keep it simple and pretend * that CR4 == 0 on CPUs that don't have CR4. */ asm volatile("1: mov %%cr4, %0\n" "2:\n" _ASM_EXTABLE(1b, 2b) : "=r" (val) : "0" (0), __FORCE_ORDER); #else /* CR4 always exists on x86_64. */ asm volatile("mov %%cr4,%0\n\t" : "=r" (val) : __FORCE_ORDER); #endif return val; } void native_write_cr4(unsigned long val); #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS static inline u32 rdpkru(void) { u32 ecx = 0; u32 edx, pkru; /* * "rdpkru" instruction. Places PKRU contents in to EAX, * clears EDX and requires that ecx=0. */ asm volatile(".byte 0x0f,0x01,0xee\n\t" : "=a" (pkru), "=d" (edx) : "c" (ecx)); return pkru; } static inline void wrpkru(u32 pkru) { u32 ecx = 0, edx = 0; /* * "wrpkru" instruction. Loads contents in EAX to PKRU, * requires that ecx = edx = 0. */ asm volatile(".byte 0x0f,0x01,0xef\n\t" : : "a" (pkru), "c"(ecx), "d"(edx)); } static inline void __write_pkru(u32 pkru) { /* * WRPKRU is relatively expensive compared to RDPKRU. * Avoid WRPKRU when it would not change the value. */ if (pkru == rdpkru()) return; wrpkru(pkru); } #else static inline u32 rdpkru(void) { return 0; } static inline void __write_pkru(u32 pkru) { } #endif static inline void native_wbinvd(void) { asm volatile("wbinvd": : :"memory"); } extern asmlinkage void asm_load_gs_index(unsigned int selector); static inline void native_load_gs_index(unsigned int selector) { unsigned long flags; local_irq_save(flags); asm_load_gs_index(selector); local_irq_restore(flags); } static inline unsigned long __read_cr4(void) { return native_read_cr4(); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else static inline unsigned long read_cr0(void) { return native_read_cr0(); } static inline void write_cr0(unsigned long x) { native_write_cr0(x); } static __always_inline unsigned long read_cr2(void) { return native_read_cr2(); } static __always_inline void write_cr2(unsigned long x) { native_write_cr2(x); } /* * Careful! CR3 contains more than just an address. You probably want * read_cr3_pa() instead. */ static inline unsigned long __read_cr3(void) { return __native_read_cr3(); } static inline void write_cr3(unsigned long x) { native_write_cr3(x); } static inline void __write_cr4(unsigned long x) { native_write_cr4(x); } static inline void wbinvd(void) { native_wbinvd(); } #ifdef CONFIG_X86_64 static inline void load_gs_index(unsigned int selector) { native_load_gs_index(selector); } #endif #endif /* CONFIG_PARAVIRT_XXL */ static inline void clflush(volatile void *__p) { asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p)); } static inline void clflushopt(volatile void *__p) { alternative_io(".byte " __stringify(NOP_DS_PREFIX) "; clflush %P0", ".byte 0x66; clflush %P0", X86_FEATURE_CLFLUSHOPT, "+m" (*(volatile char __force *)__p)); } static inline void clwb(volatile void *__p) { volatile struct { char x[64]; } *p = __p; asm volatile(ALTERNATIVE_2( ".byte " __stringify(NOP_DS_PREFIX) "; clflush (%[pax])", ".byte 0x66; clflush (%[pax])", /* clflushopt (%%rax) */ X86_FEATURE_CLFLUSHOPT, ".byte 0x66, 0x0f, 0xae, 0x30", /* clwb (%%rax) */ X86_FEATURE_CLWB) : [p] "+m" (*p) : [pax] "a" (p)); } #define nop() asm volatile ("nop") static __always_inline void serialize(void) { /* Instruction opcode for SERIALIZE; supported in binutils >= 2.35. */ asm volatile(".byte 0xf, 0x1, 0xe8" ::: "memory"); } /* The dst parameter must be 64-bytes aligned */ static inline void movdir64b(void *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } *__dst = dst; /* * MOVDIR64B %(rdx), rax. * * Both __src and __dst must be memory constraints in order to tell the * compiler that no other memory accesses should be reordered around * this one. * * Also, both must be supplied as lvalues because this tells * the compiler what the object is (its size) the instruction accesses. * I.e., not the pointers but what they point to, thus the deref'ing '*'. */ asm volatile(".byte 0x66, 0x0f, 0x38, 0xf8, 0x02" : "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); } /** * enqcmds - Enqueue a command in supervisor (CPL0) mode * @dst: destination, in MMIO space (must be 512-bit aligned) * @src: 512 bits memory operand * * The ENQCMDS instruction allows software to write a 512-bit command to * a 512-bit-aligned special MMIO region that supports the instruction. * A return status is loaded into the ZF flag in the RFLAGS register. * ZF = 0 equates to success, and ZF = 1 indicates retry or error. * * This function issues the ENQCMDS instruction to submit data from * kernel space to MMIO space, in a unit of 512 bits. Order of data access * is not guaranteed, nor is a memory barrier performed afterwards. It * returns 0 on success and -EAGAIN on failure. * * Warning: Do not use this helper unless your driver has checked that the * ENQCMDS instruction is supported on the platform and the device accepts * ENQCMDS. */ static inline int enqcmds(void __iomem *dst, const void *src) { const struct { char _[64]; } *__src = src; struct { char _[64]; } __iomem *__dst = dst; bool zf; /* * ENQCMDS %(rdx), rax * * See movdir64b()'s comment on operand specification. */ asm volatile(".byte 0xf3, 0x0f, 0x38, 0xf8, 0x02, 0x66, 0x90" CC_SET(z) : CC_OUT(z) (zf), "+m" (*__dst) : "m" (*__src), "a" (__dst), "d" (__src)); /* Submission failure is indicated via EFLAGS.ZF=1 */ if (zf) return -EAGAIN; return 0; } #endif /* __KERNEL__ */ #endif /* _ASM_X86_SPECIAL_INSNS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/pagemap.h> #include <linux/blkdev.h> #include <linux/genhd.h> #include "../blk.h" /* * add_gd_partition adds a partitions details to the devices partition * description. */ struct parsed_partitions { struct block_device *bdev; char name[BDEVNAME_SIZE]; struct { sector_t from; sector_t size; int flags; bool has_info; struct partition_meta_info info; } *parts; int next; int limit; bool access_beyond_eod; char *pp_buf; }; typedef struct { struct page *v; } Sector; void *read_part_sector(struct parsed_partitions *state, sector_t n, Sector *p); static inline void put_dev_sector(Sector p) { put_page(p.v); } static inline void put_partition(struct parsed_partitions *p, int n, sector_t from, sector_t size) { if (n < p->limit) { char tmp[1 + BDEVNAME_SIZE + 10 + 1]; p->parts[n].from = from; p->parts[n].size = size; snprintf(tmp, sizeof(tmp), " %s%d", p->name, n); strlcat(p->pp_buf, tmp, PAGE_SIZE); } } /* detection routines go here in alphabetical order: */ int adfspart_check_ADFS(struct parsed_partitions *state); int adfspart_check_CUMANA(struct parsed_partitions *state); int adfspart_check_EESOX(struct parsed_partitions *state); int adfspart_check_ICS(struct parsed_partitions *state); int adfspart_check_POWERTEC(struct parsed_partitions *state); int aix_partition(struct parsed_partitions *state); int amiga_partition(struct parsed_partitions *state); int atari_partition(struct parsed_partitions *state); int cmdline_partition(struct parsed_partitions *state); int efi_partition(struct parsed_partitions *state); int ibm_partition(struct parsed_partitions *); int karma_partition(struct parsed_partitions *state); int ldm_partition(struct parsed_partitions *state); int mac_partition(struct parsed_partitions *state); int msdos_partition(struct parsed_partitions *state); int osf_partition(struct parsed_partitions *state); int sgi_partition(struct parsed_partitions *state); int sun_partition(struct parsed_partitions *state); int sysv68_partition(struct parsed_partitions *state); int ultrix_partition(struct parsed_partitions *state);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0 */ /* * Because linux/module.h has tracepoints in the header, and ftrace.h * used to include this file, define_trace.h includes linux/module.h * But we do not want the module.h to override the TRACE_SYSTEM macro * variable that define_trace.h is processing, so we only set it * when module events are being processed, which would happen when * CREATE_TRACE_POINTS is defined. */ #ifdef CREATE_TRACE_POINTS #undef TRACE_SYSTEM #define TRACE_SYSTEM module #endif #if !defined(_TRACE_MODULE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MODULE_H #include <linux/tracepoint.h> #ifdef CONFIG_MODULES struct module; #define show_module_flags(flags) __print_flags(flags, "", \ { (1UL << TAINT_PROPRIETARY_MODULE), "P" }, \ { (1UL << TAINT_OOT_MODULE), "O" }, \ { (1UL << TAINT_FORCED_MODULE), "F" }, \ { (1UL << TAINT_CRAP), "C" }, \ { (1UL << TAINT_UNSIGNED_MODULE), "E" }) TRACE_EVENT(module_load, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __field( unsigned int, taints ) __string( name, mod->name ) ), TP_fast_assign( __entry->taints = mod->taints; __assign_str(name, mod->name); ), TP_printk("%s %s", __get_str(name), show_module_flags(__entry->taints)) ); TRACE_EVENT(module_free, TP_PROTO(struct module *mod), TP_ARGS(mod), TP_STRUCT__entry( __string( name, mod->name ) ), TP_fast_assign( __assign_str(name, mod->name); ), TP_printk("%s", __get_str(name)) ); #ifdef CONFIG_MODULE_UNLOAD /* trace_module_get/put are only used if CONFIG_MODULE_UNLOAD is defined */ DECLARE_EVENT_CLASS(module_refcnt, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( int, refcnt ) __string( name, mod->name ) ), TP_fast_assign( __entry->ip = ip; __entry->refcnt = atomic_read(&mod->refcnt); __assign_str(name, mod->name); ), TP_printk("%s call_site=%ps refcnt=%d", __get_str(name), (void *)__entry->ip, __entry->refcnt) ); DEFINE_EVENT(module_refcnt, module_get, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); DEFINE_EVENT(module_refcnt, module_put, TP_PROTO(struct module *mod, unsigned long ip), TP_ARGS(mod, ip) ); #endif /* CONFIG_MODULE_UNLOAD */ TRACE_EVENT(module_request, TP_PROTO(char *name, bool wait, unsigned long ip), TP_ARGS(name, wait, ip), TP_STRUCT__entry( __field( unsigned long, ip ) __field( bool, wait ) __string( name, name ) ), TP_fast_assign( __entry->ip = ip; __entry->wait = wait; __assign_str(name, name); ), TP_printk("%s wait=%d call_site=%ps", __get_str(name), (int)__entry->wait, (void *)__entry->ip) ); #endif /* CONFIG_MODULES */ #endif /* _TRACE_MODULE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Authors: Lotsa people, from code originally in tcp */ #ifndef _INET6_HASHTABLES_H #define _INET6_HASHTABLES_H #if IS_ENABLED(CONFIG_IPV6) #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/types.h> #include <linux/jhash.h> #include <net/inet_sock.h> #include <net/ipv6.h> #include <net/netns/hash.h> struct inet_hashinfo; static inline unsigned int __inet6_ehashfn(const u32 lhash, const u16 lport, const u32 fhash, const __be16 fport, const u32 initval) { const u32 ports = (((u32)lport) << 16) | (__force u32)fport; return jhash_3words(lhash, fhash, ports, initval); } /* * Sockets in TCP_CLOSE state are _always_ taken out of the hash, so * we need not check it for TCP lookups anymore, thanks Alexey. -DaveM * * The sockhash lock must be held as a reader here. */ struct sock *__inet6_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 hnum, const int dif, const int sdif); typedef u32 (inet6_ehashfn_t)(const struct net *net, const struct in6_addr *laddr, const u16 lport, const struct in6_addr *faddr, const __be16 fport); inet6_ehashfn_t inet6_ehashfn; INDIRECT_CALLABLE_DECLARE(inet6_ehashfn_t udp6_ehashfn); struct sock *inet6_lookup_reuseport(struct net *net, struct sock *sk, struct sk_buff *skb, int doff, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, unsigned short hnum, inet6_ehashfn_t *ehashfn); struct sock *inet6_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const unsigned short hnum, const int dif, const int sdif); static inline struct sock *__inet6_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const u16 hnum, const int dif, const int sdif, bool *refcounted) { struct sock *sk = __inet6_lookup_established(net, hashinfo, saddr, sport, daddr, hnum, dif, sdif); *refcounted = true; if (sk) return sk; *refcounted = false; return inet6_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, hnum, dif, sdif); } static inline struct sock *__inet6_lookup_skb(struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be16 sport, const __be16 dport, int iif, int sdif, bool *refcounted) { struct sock *sk = skb_steal_sock(skb, refcounted); if (sk) return sk; return __inet6_lookup(dev_net(skb_dst(skb)->dev), hashinfo, skb, doff, &ipv6_hdr(skb)->saddr, sport, &ipv6_hdr(skb)->daddr, ntohs(dport), iif, sdif, refcounted); } struct sock *inet6_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const struct in6_addr *saddr, const __be16 sport, const struct in6_addr *daddr, const __be16 dport, const int dif); int inet6_hash(struct sock *sk); static inline bool inet6_match(struct net *net, const struct sock *sk, const struct in6_addr *saddr, const struct in6_addr *daddr, const __portpair ports, const int dif, const int sdif) { if (!net_eq(sock_net(sk), net) || sk->sk_family != AF_INET6 || sk->sk_portpair != ports || !ipv6_addr_equal(&sk->sk_v6_daddr, saddr) || !ipv6_addr_equal(&sk->sk_v6_rcv_saddr, daddr)) return false; /* READ_ONCE() paired with WRITE_ONCE() in sock_bindtoindex_locked() */ return inet_sk_bound_dev_eq(net, READ_ONCE(sk->sk_bound_dev_if), dif, sdif); } #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* _INET6_HASHTABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Private definitions for the generic associative array implementation. * * See Documentation/core-api/assoc_array.rst for information. * * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_ASSOC_ARRAY_PRIV_H #define _LINUX_ASSOC_ARRAY_PRIV_H #ifdef CONFIG_ASSOCIATIVE_ARRAY #include <linux/assoc_array.h> #define ASSOC_ARRAY_FAN_OUT 16 /* Number of slots per node */ #define ASSOC_ARRAY_FAN_MASK (ASSOC_ARRAY_FAN_OUT - 1) #define ASSOC_ARRAY_LEVEL_STEP (ilog2(ASSOC_ARRAY_FAN_OUT)) #define ASSOC_ARRAY_LEVEL_STEP_MASK (ASSOC_ARRAY_LEVEL_STEP - 1) #define ASSOC_ARRAY_KEY_CHUNK_MASK (ASSOC_ARRAY_KEY_CHUNK_SIZE - 1) #define ASSOC_ARRAY_KEY_CHUNK_SHIFT (ilog2(BITS_PER_LONG)) /* * Undefined type representing a pointer with type information in the bottom * two bits. */ struct assoc_array_ptr; /* * An N-way node in the tree. * * Each slot contains one of four things: * * (1) Nothing (NULL). * * (2) A leaf object (pointer types 0). * * (3) A next-level node (pointer type 1, subtype 0). * * (4) A shortcut (pointer type 1, subtype 1). * * The tree is optimised for search-by-ID, but permits reasonable iteration * also. * * The tree is navigated by constructing an index key consisting of an array of * segments, where each segment is ilog2(ASSOC_ARRAY_FAN_OUT) bits in size. * * The segments correspond to levels of the tree (the first segment is used at * level 0, the second at level 1, etc.). */ struct assoc_array_node { struct assoc_array_ptr *back_pointer; u8 parent_slot; struct assoc_array_ptr *slots[ASSOC_ARRAY_FAN_OUT]; unsigned long nr_leaves_on_branch; }; /* * A shortcut through the index space out to where a collection of nodes/leaves * with the same IDs live. */ struct assoc_array_shortcut { struct assoc_array_ptr *back_pointer; int parent_slot; int skip_to_level; struct assoc_array_ptr *next_node; unsigned long index_key[]; }; /* * Preallocation cache. */ struct assoc_array_edit { struct rcu_head rcu; struct assoc_array *array; const struct assoc_array_ops *ops; const struct assoc_array_ops *ops_for_excised_subtree; struct assoc_array_ptr *leaf; struct assoc_array_ptr **leaf_p; struct assoc_array_ptr *dead_leaf; struct assoc_array_ptr *new_meta[3]; struct assoc_array_ptr *excised_meta[1]; struct assoc_array_ptr *excised_subtree; struct assoc_array_ptr **set_backpointers[ASSOC_ARRAY_FAN_OUT]; struct assoc_array_ptr *set_backpointers_to; struct assoc_array_node *adjust_count_on; long adjust_count_by; struct { struct assoc_array_ptr **ptr; struct assoc_array_ptr *to; } set[2]; struct { u8 *p; u8 to; } set_parent_slot[1]; u8 segment_cache[ASSOC_ARRAY_FAN_OUT + 1]; }; /* * Internal tree member pointers are marked in the bottom one or two bits to * indicate what type they are so that we don't have to look behind every * pointer to see what it points to. * * We provide functions to test type annotations and to create and translate * the annotated pointers. */ #define ASSOC_ARRAY_PTR_TYPE_MASK 0x1UL #define ASSOC_ARRAY_PTR_LEAF_TYPE 0x0UL /* Points to leaf (or nowhere) */ #define ASSOC_ARRAY_PTR_META_TYPE 0x1UL /* Points to node or shortcut */ #define ASSOC_ARRAY_PTR_SUBTYPE_MASK 0x2UL #define ASSOC_ARRAY_PTR_NODE_SUBTYPE 0x0UL #define ASSOC_ARRAY_PTR_SHORTCUT_SUBTYPE 0x2UL static inline bool assoc_array_ptr_is_meta(const struct assoc_array_ptr *x) { return (unsigned long)x & ASSOC_ARRAY_PTR_TYPE_MASK; } static inline bool assoc_array_ptr_is_leaf(const struct assoc_array_ptr *x) { return !assoc_array_ptr_is_meta(x); } static inline bool assoc_array_ptr_is_shortcut(const struct assoc_array_ptr *x) { return (unsigned long)x & ASSOC_ARRAY_PTR_SUBTYPE_MASK; } static inline bool assoc_array_ptr_is_node(const struct assoc_array_ptr *x) { return !assoc_array_ptr_is_shortcut(x); } static inline void *assoc_array_ptr_to_leaf(const struct assoc_array_ptr *x) { return (void *)((unsigned long)x & ~ASSOC_ARRAY_PTR_TYPE_MASK); } static inline unsigned long __assoc_array_ptr_to_meta(const struct assoc_array_ptr *x) { return (unsigned long)x & ~(ASSOC_ARRAY_PTR_SUBTYPE_MASK | ASSOC_ARRAY_PTR_TYPE_MASK); } static inline struct assoc_array_node *assoc_array_ptr_to_node(const struct assoc_array_ptr *x) { return (struct assoc_array_node *)__assoc_array_ptr_to_meta(x); } static inline struct assoc_array_shortcut *assoc_array_ptr_to_shortcut(const struct assoc_array_ptr *x) { return (struct assoc_array_shortcut *)__assoc_array_ptr_to_meta(x); } static inline struct assoc_array_ptr *__assoc_array_x_to_ptr(const void *p, unsigned long t) { return (struct assoc_array_ptr *)((unsigned long)p | t); } static inline struct assoc_array_ptr *assoc_array_leaf_to_ptr(const void *p) { return __assoc_array_x_to_ptr(p, ASSOC_ARRAY_PTR_LEAF_TYPE); } static inline struct assoc_array_ptr *assoc_array_node_to_ptr(const struct assoc_array_node *p) { return __assoc_array_x_to_ptr( p, ASSOC_ARRAY_PTR_META_TYPE | ASSOC_ARRAY_PTR_NODE_SUBTYPE); } static inline struct assoc_array_ptr *assoc_array_shortcut_to_ptr(const struct assoc_array_shortcut *p) { return __assoc_array_x_to_ptr( p, ASSOC_ARRAY_PTR_META_TYPE | ASSOC_ARRAY_PTR_SHORTCUT_SUBTYPE); } #endif /* CONFIG_ASSOCIATIVE_ARRAY */ #endif /* _LINUX_ASSOC_ARRAY_PRIV_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_LOCAL_H #define _ASM_X86_LOCAL_H #include <linux/percpu.h> #include <linux/atomic.h> #include <asm/asm.h> typedef struct { atomic_long_t a; } local_t; #define LOCAL_INIT(i) { ATOMIC_LONG_INIT(i) } #define local_read(l) atomic_long_read(&(l)->a) #define local_set(l, i) atomic_long_set(&(l)->a, (i)) static inline void local_inc(local_t *l) { asm volatile(_ASM_INC "%0" : "+m" (l->a.counter)); } static inline void local_dec(local_t *l) { asm volatile(_ASM_DEC "%0" : "+m" (l->a.counter)); } static inline void local_add(long i, local_t *l) { asm volatile(_ASM_ADD "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } static inline void local_sub(long i, local_t *l) { asm volatile(_ASM_SUB "%1,%0" : "+m" (l->a.counter) : "ir" (i)); } /** * local_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @l: pointer to type local_t * * Atomically subtracts @i from @l and returns * true if the result is zero, or false for all * other cases. */ static inline bool local_sub_and_test(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_SUB, l->a.counter, e, "er", i); } /** * local_dec_and_test - decrement and test * @l: pointer to type local_t * * Atomically decrements @l by 1 and * returns true if the result is 0, or false for all other * cases. */ static inline bool local_dec_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_DEC, l->a.counter, e); } /** * local_inc_and_test - increment and test * @l: pointer to type local_t * * Atomically increments @l by 1 * and returns true if the result is zero, or false for all * other cases. */ static inline bool local_inc_and_test(local_t *l) { return GEN_UNARY_RMWcc(_ASM_INC, l->a.counter, e); } /** * local_add_negative - add and test if negative * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static inline bool local_add_negative(long i, local_t *l) { return GEN_BINARY_RMWcc(_ASM_ADD, l->a.counter, s, "er", i); } /** * local_add_return - add and return * @i: integer value to add * @l: pointer to type local_t * * Atomically adds @i to @l and returns @i + @l */ static inline long local_add_return(long i, local_t *l) { long __i = i; asm volatile(_ASM_XADD "%0, %1;" : "+r" (i), "+m" (l->a.counter) : : "memory"); return i + __i; } static inline long local_sub_return(long i, local_t *l) { return local_add_return(-i, l); } #define local_inc_return(l) (local_add_return(1, l)) #define local_dec_return(l) (local_sub_return(1, l)) #define local_cmpxchg(l, o, n) \ (cmpxchg_local(&((l)->a.counter), (o), (n))) /* Always has a lock prefix */ #define local_xchg(l, n) (xchg(&((l)->a.counter), (n))) /** * local_add_unless - add unless the number is a given value * @l: pointer of type local_t * @a: the amount to add to l... * @u: ...unless l is equal to u. * * Atomically adds @a to @l, so long as it was not @u. * Returns non-zero if @l was not @u, and zero otherwise. */ #define local_add_unless(l, a, u) \ ({ \ long c, old; \ c = local_read((l)); \ for (;;) { \ if (unlikely(c == (u))) \ break; \ old = local_cmpxchg((l), c, c + (a)); \ if (likely(old == c)) \ break; \ c = old; \ } \ c != (u); \ }) #define local_inc_not_zero(l) local_add_unless((l), 1, 0) /* On x86_32, these are no better than the atomic variants. * On x86-64 these are better than the atomic variants on SMP kernels * because they dont use a lock prefix. */ #define __local_inc(l) local_inc(l) #define __local_dec(l) local_dec(l) #define __local_add(i, l) local_add((i), (l)) #define __local_sub(i, l) local_sub((i), (l)) #endif /* _ASM_X86_LOCAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cgroup #if !defined(_TRACE_CGROUP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_CGROUP_H #include <linux/cgroup.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(cgroup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root), TP_STRUCT__entry( __field( int, root ) __field( u16, ss_mask ) __string( name, root->name ) ), TP_fast_assign( __entry->root = root->hierarchy_id; __entry->ss_mask = root->subsys_mask; __assign_str(name, root->name); ), TP_printk("root=%d ss_mask=%#x name=%s", __entry->root, __entry->ss_mask, __get_str(name)) ); DEFINE_EVENT(cgroup_root, cgroup_setup_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_destroy_root, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DEFINE_EVENT(cgroup_root, cgroup_remount, TP_PROTO(struct cgroup_root *root), TP_ARGS(root) ); DECLARE_EVENT_CLASS(cgroup, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path), TP_STRUCT__entry( __field( int, root ) __field( int, level ) __field( u64, id ) __string( path, path ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); ), TP_printk("root=%d id=%llu level=%d path=%s", __entry->root, __entry->id, __entry->level, __get_str(path)) ); DEFINE_EVENT(cgroup, cgroup_mkdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rmdir, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_release, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_rename, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_freeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DEFINE_EVENT(cgroup, cgroup_unfreeze, TP_PROTO(struct cgroup *cgrp, const char *path), TP_ARGS(cgrp, path) ); DECLARE_EVENT_CLASS(cgroup_migrate, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup), TP_STRUCT__entry( __field( int, dst_root ) __field( int, dst_level ) __field( u64, dst_id ) __field( int, pid ) __string( dst_path, path ) __string( comm, task->comm ) ), TP_fast_assign( __entry->dst_root = dst_cgrp->root->hierarchy_id; __entry->dst_id = cgroup_id(dst_cgrp); __entry->dst_level = dst_cgrp->level; __assign_str(dst_path, path); __entry->pid = task->pid; __assign_str(comm, task->comm); ), TP_printk("dst_root=%d dst_id=%llu dst_level=%d dst_path=%s pid=%d comm=%s", __entry->dst_root, __entry->dst_id, __entry->dst_level, __get_str(dst_path), __entry->pid, __get_str(comm)) ); DEFINE_EVENT(cgroup_migrate, cgroup_attach_task, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DEFINE_EVENT(cgroup_migrate, cgroup_transfer_tasks, TP_PROTO(struct cgroup *dst_cgrp, const char *path, struct task_struct *task, bool threadgroup), TP_ARGS(dst_cgrp, path, task, threadgroup) ); DECLARE_EVENT_CLASS(cgroup_event, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val), TP_STRUCT__entry( __field( int, root ) __field( int, level ) __field( u64, id ) __string( path, path ) __field( int, val ) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgroup_id(cgrp); __entry->level = cgrp->level; __assign_str(path, path); __entry->val = val; ), TP_printk("root=%d id=%llu level=%d path=%s val=%d", __entry->root, __entry->id, __entry->level, __get_str(path), __entry->val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_populated, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); DEFINE_EVENT(cgroup_event, cgroup_notify_frozen, TP_PROTO(struct cgroup *cgrp, const char *path, int val), TP_ARGS(cgrp, path, val) ); #endif /* _TRACE_CGROUP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FIB_LOOKUP_H #define _FIB_LOOKUP_H #include <linux/types.h> #include <linux/list.h> #include <net/ip_fib.h> #include <net/nexthop.h> struct fib_alias { struct hlist_node fa_list; struct fib_info *fa_info; u8 fa_tos; u8 fa_type; u8 fa_state; u8 fa_slen; u32 tb_id; s16 fa_default; u8 offload:1, trap:1, unused:6; struct rcu_head rcu; }; #define FA_S_ACCESSED 0x01 /* Dont write on fa_state unless needed, to keep it shared on all cpus */ static inline void fib_alias_accessed(struct fib_alias *fa) { if (!(fa->fa_state & FA_S_ACCESSED)) fa->fa_state |= FA_S_ACCESSED; } /* Exported by fib_semantics.c */ void fib_release_info(struct fib_info *); struct fib_info *fib_create_info(struct fib_config *cfg, struct netlink_ext_ack *extack); int fib_nh_match(struct net *net, struct fib_config *cfg, struct fib_info *fi, struct netlink_ext_ack *extack); bool fib_metrics_match(struct fib_config *cfg, struct fib_info *fi); int fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event, struct fib_rt_info *fri, unsigned int flags); void rtmsg_fib(int event, __be32 key, struct fib_alias *fa, int dst_len, u32 tb_id, const struct nl_info *info, unsigned int nlm_flags); static inline void fib_result_assign(struct fib_result *res, struct fib_info *fi) { /* we used to play games with refcounts, but we now use RCU */ res->fi = fi; res->nhc = fib_info_nhc(fi, 0); } struct fib_prop { int error; u8 scope; }; extern const struct fib_prop fib_props[RTN_MAX + 1]; #endif /* _FIB_LOOKUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NLS_H #define _LINUX_NLS_H #include <linux/init.h> /* Unicode has changed over the years. Unicode code points no longer * fit into 16 bits; as of Unicode 5 valid code points range from 0 * to 0x10ffff (17 planes, where each plane holds 65536 code points). * * The original decision to represent Unicode characters as 16-bit * wchar_t values is now outdated. But plane 0 still includes the * most commonly used characters, so we will retain it. The newer * 32-bit unicode_t type can be used when it is necessary to * represent the full Unicode character set. */ /* Plane-0 Unicode character */ typedef u16 wchar_t; #define MAX_WCHAR_T 0xffff /* Arbitrary Unicode character */ typedef u32 unicode_t; struct nls_table { const char *charset; const char *alias; int (*uni2char) (wchar_t uni, unsigned char *out, int boundlen); int (*char2uni) (const unsigned char *rawstring, int boundlen, wchar_t *uni); const unsigned char *charset2lower; const unsigned char *charset2upper; struct module *owner; struct nls_table *next; }; /* this value hold the maximum octet of charset */ #define NLS_MAX_CHARSET_SIZE 6 /* for UTF-8 */ /* Byte order for UTF-16 strings */ enum utf16_endian { UTF16_HOST_ENDIAN, UTF16_LITTLE_ENDIAN, UTF16_BIG_ENDIAN }; /* nls_base.c */ extern int __register_nls(struct nls_table *, struct module *); extern int unregister_nls(struct nls_table *); extern struct nls_table *load_nls(const char *charset); extern void unload_nls(struct nls_table *); extern struct nls_table *load_nls_default(void); #define register_nls(nls) __register_nls((nls), THIS_MODULE) extern int utf8_to_utf32(const u8 *s, int len, unicode_t *pu); extern int utf32_to_utf8(unicode_t u, u8 *s, int maxlen); extern int utf8s_to_utf16s(const u8 *s, int len, enum utf16_endian endian, wchar_t *pwcs, int maxlen); extern int utf16s_to_utf8s(const wchar_t *pwcs, int len, enum utf16_endian endian, u8 *s, int maxlen); static inline unsigned char nls_tolower(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2lower[c]; return nc ? nc : c; } static inline unsigned char nls_toupper(struct nls_table *t, unsigned char c) { unsigned char nc = t->charset2upper[c]; return nc ? nc : c; } static inline int nls_strnicmp(struct nls_table *t, const unsigned char *s1, const unsigned char *s2, int len) { while (len--) { if (nls_tolower(t, *s1++) != nls_tolower(t, *s2++)) return 1; } return 0; } /* * nls_nullsize - return length of null character for codepage * @codepage - codepage for which to return length of NULL terminator * * Since we can't guarantee that the null terminator will be a particular * length, we have to check against the codepage. If there's a problem * determining it, assume a single-byte NULL terminator. */ static inline int nls_nullsize(const struct nls_table *codepage) { int charlen; char tmp[NLS_MAX_CHARSET_SIZE]; charlen = codepage->uni2char(0, tmp, NLS_MAX_CHARSET_SIZE); return charlen > 0 ? charlen : 1; } #define MODULE_ALIAS_NLS(name) MODULE_ALIAS("nls_" __stringify(name)) #endif /* _LINUX_NLS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Integer base 2 logarithm calculation * * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_LOG2_H #define _LINUX_LOG2_H #include <linux/types.h> #include <linux/bitops.h> /* * non-constant log of base 2 calculators * - the arch may override these in asm/bitops.h if they can be implemented * more efficiently than using fls() and fls64() * - the arch is not required to handle n==0 if implementing the fallback */ #ifndef CONFIG_ARCH_HAS_ILOG2_U32 static inline __attribute__((const)) int __ilog2_u32(u32 n) { return fls(n) - 1; } #endif #ifndef CONFIG_ARCH_HAS_ILOG2_U64 static inline __attribute__((const)) int __ilog2_u64(u64 n) { return fls64(n) - 1; } #endif /** * is_power_of_2() - check if a value is a power of two * @n: the value to check * * Determine whether some value is a power of two, where zero is * *not* considered a power of two. * Return: true if @n is a power of 2, otherwise false. */ static inline __attribute__((const)) bool is_power_of_2(unsigned long n) { return (n != 0 && ((n & (n - 1)) == 0)); } /** * __roundup_pow_of_two() - round up to nearest power of two * @n: value to round up */ static inline __attribute__((const)) unsigned long __roundup_pow_of_two(unsigned long n) { return 1UL << fls_long(n - 1); } /** * __rounddown_pow_of_two() - round down to nearest power of two * @n: value to round down */ static inline __attribute__((const)) unsigned long __rounddown_pow_of_two(unsigned long n) { return 1UL << (fls_long(n) - 1); } /** * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value * @n: parameter * * Use this where sparse expects a true constant expression, e.g. for array * indices. */ #define const_ilog2(n) \ ( \ __builtin_constant_p(n) ? ( \ (n) < 2 ? 0 : \ (n) & (1ULL << 63) ? 63 : \ (n) & (1ULL << 62) ? 62 : \ (n) & (1ULL << 61) ? 61 : \ (n) & (1ULL << 60) ? 60 : \ (n) & (1ULL << 59) ? 59 : \ (n) & (1ULL << 58) ? 58 : \ (n) & (1ULL << 57) ? 57 : \ (n) & (1ULL << 56) ? 56 : \ (n) & (1ULL << 55) ? 55 : \ (n) & (1ULL << 54) ? 54 : \ (n) & (1ULL << 53) ? 53 : \ (n) & (1ULL << 52) ? 52 : \ (n) & (1ULL << 51) ? 51 : \ (n) & (1ULL << 50) ? 50 : \ (n) & (1ULL << 49) ? 49 : \ (n) & (1ULL << 48) ? 48 : \ (n) & (1ULL << 47) ? 47 : \ (n) & (1ULL << 46) ? 46 : \ (n) & (1ULL << 45) ? 45 : \ (n) & (1ULL << 44) ? 44 : \ (n) & (1ULL << 43) ? 43 : \ (n) & (1ULL << 42) ? 42 : \ (n) & (1ULL << 41) ? 41 : \ (n) & (1ULL << 40) ? 40 : \ (n) & (1ULL << 39) ? 39 : \ (n) & (1ULL << 38) ? 38 : \ (n) & (1ULL << 37) ? 37 : \ (n) & (1ULL << 36) ? 36 : \ (n) & (1ULL << 35) ? 35 : \ (n) & (1ULL << 34) ? 34 : \ (n) & (1ULL << 33) ? 33 : \ (n) & (1ULL << 32) ? 32 : \ (n) & (1ULL << 31) ? 31 : \ (n) & (1ULL << 30) ? 30 : \ (n) & (1ULL << 29) ? 29 : \ (n) & (1ULL << 28) ? 28 : \ (n) & (1ULL << 27) ? 27 : \ (n) & (1ULL << 26) ? 26 : \ (n) & (1ULL << 25) ? 25 : \ (n) & (1ULL << 24) ? 24 : \ (n) & (1ULL << 23) ? 23 : \ (n) & (1ULL << 22) ? 22 : \ (n) & (1ULL << 21) ? 21 : \ (n) & (1ULL << 20) ? 20 : \ (n) & (1ULL << 19) ? 19 : \ (n) & (1ULL << 18) ? 18 : \ (n) & (1ULL << 17) ? 17 : \ (n) & (1ULL << 16) ? 16 : \ (n) & (1ULL << 15) ? 15 : \ (n) & (1ULL << 14) ? 14 : \ (n) & (1ULL << 13) ? 13 : \ (n) & (1ULL << 12) ? 12 : \ (n) & (1ULL << 11) ? 11 : \ (n) & (1ULL << 10) ? 10 : \ (n) & (1ULL << 9) ? 9 : \ (n) & (1ULL << 8) ? 8 : \ (n) & (1ULL << 7) ? 7 : \ (n) & (1ULL << 6) ? 6 : \ (n) & (1ULL << 5) ? 5 : \ (n) & (1ULL << 4) ? 4 : \ (n) & (1ULL << 3) ? 3 : \ (n) & (1ULL << 2) ? 2 : \ 1) : \ -1) /** * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value * @n: parameter * * constant-capable log of base 2 calculation * - this can be used to initialise global variables from constant data, hence * the massive ternary operator construction * * selects the appropriately-sized optimised version depending on sizeof(n) */ #define ilog2(n) \ ( \ __builtin_constant_p(n) ? \ const_ilog2(n) : \ (sizeof(n) <= 4) ? \ __ilog2_u32(n) : \ __ilog2_u64(n) \ ) /** * roundup_pow_of_two - round the given value up to nearest power of two * @n: parameter * * round the given value up to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define roundup_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 1) ? 1 : \ (1UL << (ilog2((n) - 1) + 1)) \ ) : \ __roundup_pow_of_two(n) \ ) /** * rounddown_pow_of_two - round the given value down to nearest power of two * @n: parameter * * round the given value down to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define rounddown_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ (1UL << ilog2(n))) : \ __rounddown_pow_of_two(n) \ ) static inline __attribute_const__ int __order_base_2(unsigned long n) { return n > 1 ? ilog2(n - 1) + 1 : 0; } /** * order_base_2 - calculate the (rounded up) base 2 order of the argument * @n: parameter * * The first few values calculated by this routine: * ob2(0) = 0 * ob2(1) = 0 * ob2(2) = 1 * ob2(3) = 2 * ob2(4) = 2 * ob2(5) = 3 * ... and so on. */ #define order_base_2(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) ? 0 : \ ilog2((n) - 1) + 1) : \ __order_base_2(n) \ ) static inline __attribute__((const)) int __bits_per(unsigned long n) { if (n < 2) return 1; if (is_power_of_2(n)) return order_base_2(n) + 1; return order_base_2(n); } /** * bits_per - calculate the number of bits required for the argument * @n: parameter * * This is constant-capable and can be used for compile time * initializations, e.g bitfields. * * The first few values calculated by this routine: * bf(0) = 1 * bf(1) = 1 * bf(2) = 2 * bf(3) = 2 * bf(4) = 3 * ... and so on. */ #define bits_per(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) \ ? 1 : ilog2(n) + 1 \ ) : \ __bits_per(n) \ ) #endif /* _LINUX_LOG2_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SECCOMP_H #define _LINUX_SECCOMP_H #include <uapi/linux/seccomp.h> #define SECCOMP_FILTER_FLAG_MASK (SECCOMP_FILTER_FLAG_TSYNC | \ SECCOMP_FILTER_FLAG_LOG | \ SECCOMP_FILTER_FLAG_SPEC_ALLOW | \ SECCOMP_FILTER_FLAG_NEW_LISTENER | \ SECCOMP_FILTER_FLAG_TSYNC_ESRCH) /* sizeof() the first published struct seccomp_notif_addfd */ #define SECCOMP_NOTIFY_ADDFD_SIZE_VER0 24 #define SECCOMP_NOTIFY_ADDFD_SIZE_LATEST SECCOMP_NOTIFY_ADDFD_SIZE_VER0 #ifdef CONFIG_SECCOMP #include <linux/thread_info.h> #include <linux/atomic.h> #include <asm/seccomp.h> struct seccomp_filter; /** * struct seccomp - the state of a seccomp'ed process * * @mode: indicates one of the valid values above for controlled * system calls available to a process. * @filter: must always point to a valid seccomp-filter or NULL as it is * accessed without locking during system call entry. * * @filter must only be accessed from the context of current as there * is no read locking. */ struct seccomp { int mode; atomic_t filter_count; struct seccomp_filter *filter; }; #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER extern int __secure_computing(const struct seccomp_data *sd); static inline int secure_computing(void) { if (unlikely(test_thread_flag(TIF_SECCOMP))) return __secure_computing(NULL); return 0; } #else extern void secure_computing_strict(int this_syscall); #endif extern long prctl_get_seccomp(void); extern long prctl_set_seccomp(unsigned long, void __user *); static inline int seccomp_mode(struct seccomp *s) { return s->mode; } #else /* CONFIG_SECCOMP */ #include <linux/errno.h> struct seccomp { }; struct seccomp_filter { }; struct seccomp_data; #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER static inline int secure_computing(void) { return 0; } #else static inline void secure_computing_strict(int this_syscall) { return; } #endif static inline int __secure_computing(const struct seccomp_data *sd) { return 0; } static inline long prctl_get_seccomp(void) { return -EINVAL; } static inline long prctl_set_seccomp(unsigned long arg2, char __user *arg3) { return -EINVAL; } static inline int seccomp_mode(struct seccomp *s) { return SECCOMP_MODE_DISABLED; } #endif /* CONFIG_SECCOMP */ #ifdef CONFIG_SECCOMP_FILTER extern void seccomp_filter_release(struct task_struct *tsk); extern void get_seccomp_filter(struct task_struct *tsk); #else /* CONFIG_SECCOMP_FILTER */ static inline void seccomp_filter_release(struct task_struct *tsk) { return; } static inline void get_seccomp_filter(struct task_struct *tsk) { return; } #endif /* CONFIG_SECCOMP_FILTER */ #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) extern long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, void __user *data); extern long seccomp_get_metadata(struct task_struct *task, unsigned long filter_off, void __user *data); #else static inline long seccomp_get_filter(struct task_struct *task, unsigned long n, void __user *data) { return -EINVAL; } static inline long seccomp_get_metadata(struct task_struct *task, unsigned long filter_off, void __user *data) { return -EINVAL; } #endif /* CONFIG_SECCOMP_FILTER && CONFIG_CHECKPOINT_RESTORE */ #endif /* _LINUX_SECCOMP_H */
1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 // SPDX-License-Identifier: GPL-2.0-only /* * Generic pidhash and scalable, time-bounded PID allocator * * (C) 2002-2003 Nadia Yvette Chambers, IBM * (C) 2004 Nadia Yvette Chambers, Oracle * (C) 2002-2004 Ingo Molnar, Red Hat * * pid-structures are backing objects for tasks sharing a given ID to chain * against. There is very little to them aside from hashing them and * parking tasks using given ID's on a list. * * The hash is always changed with the tasklist_lock write-acquired, * and the hash is only accessed with the tasklist_lock at least * read-acquired, so there's no additional SMP locking needed here. * * We have a list of bitmap pages, which bitmaps represent the PID space. * Allocating and freeing PIDs is completely lockless. The worst-case * allocation scenario when all but one out of 1 million PIDs possible are * allocated already: the scanning of 32 list entries and at most PAGE_SIZE * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). * * Pid namespaces: * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM * Many thanks to Oleg Nesterov for comments and help * */ #include <linux/mm.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/rculist.h> #include <linux/memblock.h> #include <linux/pid_namespace.h> #include <linux/init_task.h> #include <linux/syscalls.h> #include <linux/proc_ns.h> #include <linux/refcount.h> #include <linux/anon_inodes.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/idr.h> #include <net/sock.h> #include <uapi/linux/pidfd.h> struct pid init_struct_pid = { .count = REFCOUNT_INIT(1), .tasks = { { .first = NULL }, { .first = NULL }, { .first = NULL }, }, .level = 0, .numbers = { { .nr = 0, .ns = &init_pid_ns, }, } }; int pid_max = PID_MAX_DEFAULT; #define RESERVED_PIDS 300 int pid_max_min = RESERVED_PIDS + 1; int pid_max_max = PID_MAX_LIMIT; /* * PID-map pages start out as NULL, they get allocated upon * first use and are never deallocated. This way a low pid_max * value does not cause lots of bitmaps to be allocated, but * the scheme scales to up to 4 million PIDs, runtime. */ struct pid_namespace init_pid_ns = { .kref = KREF_INIT(2), .idr = IDR_INIT(init_pid_ns.idr), .pid_allocated = PIDNS_ADDING, .level = 0, .child_reaper = &init_task, .user_ns = &init_user_ns, .ns.inum = PROC_PID_INIT_INO, #ifdef CONFIG_PID_NS .ns.ops = &pidns_operations, #endif }; EXPORT_SYMBOL_GPL(init_pid_ns); /* * Note: disable interrupts while the pidmap_lock is held as an * interrupt might come in and do read_lock(&tasklist_lock). * * If we don't disable interrupts there is a nasty deadlock between * detach_pid()->free_pid() and another cpu that does * spin_lock(&pidmap_lock) followed by an interrupt routine that does * read_lock(&tasklist_lock); * * After we clean up the tasklist_lock and know there are no * irq handlers that take it we can leave the interrupts enabled. * For now it is easier to be safe than to prove it can't happen. */ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); void put_pid(struct pid *pid) { struct pid_namespace *ns; if (!pid) return; ns = pid->numbers[pid->level].ns; if (refcount_dec_and_test(&pid->count)) { kmem_cache_free(ns->pid_cachep, pid); put_pid_ns(ns); } } EXPORT_SYMBOL_GPL(put_pid); static void delayed_put_pid(struct rcu_head *rhp) { struct pid *pid = container_of(rhp, struct pid, rcu); put_pid(pid); } void free_pid(struct pid *pid) { /* We can be called with write_lock_irq(&tasklist_lock) held */ int i; unsigned long flags; spin_lock_irqsave(&pidmap_lock, flags); for (i = 0; i <= pid->level; i++) { struct upid *upid = pid->numbers + i; struct pid_namespace *ns = upid->ns; switch (--ns->pid_allocated) { case 2: case 1: /* When all that is left in the pid namespace * is the reaper wake up the reaper. The reaper * may be sleeping in zap_pid_ns_processes(). */ wake_up_process(ns->child_reaper); break; case PIDNS_ADDING: /* Handle a fork failure of the first process */ WARN_ON(ns->child_reaper); ns->pid_allocated = 0; break; } idr_remove(&ns->idr, upid->nr); } spin_unlock_irqrestore(&pidmap_lock, flags); call_rcu(&pid->rcu, delayed_put_pid); } struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size) { struct pid *pid; enum pid_type type; int i, nr; struct pid_namespace *tmp; struct upid *upid; int retval = -ENOMEM; /* * set_tid_size contains the size of the set_tid array. Starting at * the most nested currently active PID namespace it tells alloc_pid() * which PID to set for a process in that most nested PID namespace * up to set_tid_size PID namespaces. It does not have to set the PID * for a process in all nested PID namespaces but set_tid_size must * never be greater than the current ns->level + 1. */ if (set_tid_size > ns->level + 1) return ERR_PTR(-EINVAL); pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); if (!pid) return ERR_PTR(retval); tmp = ns; pid->level = ns->level; for (i = ns->level; i >= 0; i--) { int tid = 0; if (set_tid_size) { tid = set_tid[ns->level - i]; retval = -EINVAL; if (tid < 1 || tid >= pid_max) goto out_free; /* * Also fail if a PID != 1 is requested and * no PID 1 exists. */ if (tid != 1 && !tmp->child_reaper) goto out_free; retval = -EPERM; if (!checkpoint_restore_ns_capable(tmp->user_ns)) goto out_free; set_tid_size--; } idr_preload(GFP_KERNEL); spin_lock_irq(&pidmap_lock); if (tid) { nr = idr_alloc(&tmp->idr, NULL, tid, tid + 1, GFP_ATOMIC); /* * If ENOSPC is returned it means that the PID is * alreay in use. Return EEXIST in that case. */ if (nr == -ENOSPC) nr = -EEXIST; } else { int pid_min = 1; /* * init really needs pid 1, but after reaching the * maximum wrap back to RESERVED_PIDS */ if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) pid_min = RESERVED_PIDS; /* * Store a null pointer so find_pid_ns does not find * a partially initialized PID (see below). */ nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, pid_max, GFP_ATOMIC); } spin_unlock_irq(&pidmap_lock); idr_preload_end(); if (nr < 0) { retval = (nr == -ENOSPC) ? -EAGAIN : nr; goto out_free; } pid->numbers[i].nr = nr; pid->numbers[i].ns = tmp; tmp = tmp->parent; } /* * ENOMEM is not the most obvious choice especially for the case * where the child subreaper has already exited and the pid * namespace denies the creation of any new processes. But ENOMEM * is what we have exposed to userspace for a long time and it is * documented behavior for pid namespaces. So we can't easily * change it even if there were an error code better suited. */ retval = -ENOMEM; get_pid_ns(ns); refcount_set(&pid->count, 1); spin_lock_init(&pid->lock); for (type = 0; type < PIDTYPE_MAX; ++type) INIT_HLIST_HEAD(&pid->tasks[type]); init_waitqueue_head(&pid->wait_pidfd); INIT_HLIST_HEAD(&pid->inodes); upid = pid->numbers + ns->level; spin_lock_irq(&pidmap_lock); if (!(ns->pid_allocated & PIDNS_ADDING)) goto out_unlock; for ( ; upid >= pid->numbers; --upid) { /* Make the PID visible to find_pid_ns. */ idr_replace(&upid->ns->idr, pid, upid->nr); upid->ns->pid_allocated++; } spin_unlock_irq(&pidmap_lock); return pid; out_unlock: spin_unlock_irq(&pidmap_lock); put_pid_ns(ns); out_free: spin_lock_irq(&pidmap_lock); while (++i <= ns->level) { upid = pid->numbers + i; idr_remove(&upid->ns->idr, upid->nr); } /* On failure to allocate the first pid, reset the state */ if (ns->pid_allocated == PIDNS_ADDING) idr_set_cursor(&ns->idr, 0); spin_unlock_irq(&pidmap_lock); kmem_cache_free(ns->pid_cachep, pid); return ERR_PTR(retval); } void disable_pid_allocation(struct pid_namespace *ns) { spin_lock_irq(&pidmap_lock); ns->pid_allocated &= ~PIDNS_ADDING; spin_unlock_irq(&pidmap_lock); } struct pid *find_pid_ns(int nr, struct pid_namespace *ns) { return idr_find(&ns->idr, nr); } EXPORT_SYMBOL_GPL(find_pid_ns); struct pid *find_vpid(int nr) { return find_pid_ns(nr, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(find_vpid); static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) { return (type == PIDTYPE_PID) ? &task->thread_pid : &task->signal->pids[type]; } /* * attach_pid() must be called with the tasklist_lock write-held. */ void attach_pid(struct task_struct *task, enum pid_type type) { struct pid *pid = *task_pid_ptr(task, type); hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); } static void __change_pid(struct task_struct *task, enum pid_type type, struct pid *new) { struct pid **pid_ptr = task_pid_ptr(task, type); struct pid *pid; int tmp; pid = *pid_ptr; hlist_del_rcu(&task->pid_links[type]); *pid_ptr = new; for (tmp = PIDTYPE_MAX; --tmp >= 0; ) if (pid_has_task(pid, tmp)) return; free_pid(pid); } void detach_pid(struct task_struct *task, enum pid_type type) { __change_pid(task, type, NULL); } void change_pid(struct task_struct *task, enum pid_type type, struct pid *pid) { __change_pid(task, type, pid); attach_pid(task, type); } void exchange_tids(struct task_struct *left, struct task_struct *right) { struct pid *pid1 = left->thread_pid; struct pid *pid2 = right->thread_pid; struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; /* Swap the single entry tid lists */ hlists_swap_heads_rcu(head1, head2); /* Swap the per task_struct pid */ rcu_assign_pointer(left->thread_pid, pid2); rcu_assign_pointer(right->thread_pid, pid1); /* Swap the cached value */ WRITE_ONCE(left->pid, pid_nr(pid2)); WRITE_ONCE(right->pid, pid_nr(pid1)); } /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type type) { if (type == PIDTYPE_PID) new->thread_pid = old->thread_pid; hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); } struct task_struct *pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result = NULL; if (pid) { struct hlist_node *first; first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), lockdep_tasklist_lock_is_held()); if (first) result = hlist_entry(first, struct task_struct, pid_links[(type)]); } return result; } EXPORT_SYMBOL(pid_task); /* * Must be called under rcu_read_lock(). */ struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) { RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "find_task_by_pid_ns() needs rcu_read_lock() protection"); return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); } struct task_struct *find_task_by_vpid(pid_t vnr) { return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); } struct task_struct *find_get_task_by_vpid(pid_t nr) { struct task_struct *task; rcu_read_lock(); task = find_task_by_vpid(nr); if (task) get_task_struct(task); rcu_read_unlock(); return task; } struct pid *get_task_pid(struct task_struct *task, enum pid_type type) { struct pid *pid; rcu_read_lock(); pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(get_task_pid); struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) { struct task_struct *result; rcu_read_lock(); result = pid_task(pid, type); if (result) get_task_struct(result); rcu_read_unlock(); return result; } EXPORT_SYMBOL_GPL(get_pid_task); struct pid *find_get_pid(pid_t nr) { struct pid *pid; rcu_read_lock(); pid = get_pid(find_vpid(nr)); rcu_read_unlock(); return pid; } EXPORT_SYMBOL_GPL(find_get_pid); pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) { struct upid *upid; pid_t nr = 0; if (pid && ns->level <= pid->level) { upid = &pid->numbers[ns->level]; if (upid->ns == ns) nr = upid->nr; } return nr; } EXPORT_SYMBOL_GPL(pid_nr_ns); pid_t pid_vnr(struct pid *pid) { return pid_nr_ns(pid, task_active_pid_ns(current)); } EXPORT_SYMBOL_GPL(pid_vnr); pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns) { pid_t nr = 0; rcu_read_lock(); if (!ns) ns = task_active_pid_ns(current); nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); rcu_read_unlock(); return nr; } EXPORT_SYMBOL(__task_pid_nr_ns); struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) { return ns_of_pid(task_pid(tsk)); } EXPORT_SYMBOL_GPL(task_active_pid_ns); /* * Used by proc to find the first pid that is greater than or equal to nr. * * If there is a pid at nr this function is exactly the same as find_pid_ns. */ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) { return idr_get_next(&ns->idr, &nr); } struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) { struct fd f; struct pid *pid; f = fdget(fd); if (!f.file) return ERR_PTR(-EBADF); pid = pidfd_pid(f.file); if (!IS_ERR(pid)) { get_pid(pid); *flags = f.file->f_flags; } fdput(f); return pid; } /** * pidfd_create() - Create a new pid file descriptor. * * @pid: struct pid that the pidfd will reference * @flags: flags to pass * * This creates a new pid file descriptor with the O_CLOEXEC flag set. * * Note, that this function can only be called after the fd table has * been unshared to avoid leaking the pidfd to the new process. * * This symbol should not be explicitly exported to loadable modules. * * Return: On success, a cloexec pidfd is returned. * On error, a negative errno number will be returned. */ int pidfd_create(struct pid *pid, unsigned int flags) { int fd; if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) return -EINVAL; if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) return -EINVAL; fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), flags | O_RDWR | O_CLOEXEC); if (fd < 0) put_pid(pid); return fd; } /** * pidfd_open() - Open new pid file descriptor. * * @pid: pid for which to retrieve a pidfd * @flags: flags to pass * * This creates a new pid file descriptor with the O_CLOEXEC flag set for * the process identified by @pid. Currently, the process identified by * @pid must be a thread-group leader. This restriction currently exists * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot * be used with CLONE_THREAD) and pidfd polling (only supports thread group * leaders). * * Return: On success, a cloexec pidfd is returned. * On error, a negative errno number will be returned. */ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) { int fd; struct pid *p; if (flags & ~PIDFD_NONBLOCK) return -EINVAL; if (pid <= 0) return -EINVAL; p = find_get_pid(pid); if (!p) return -ESRCH; fd = pidfd_create(p, flags); put_pid(p); return fd; } void __init pid_idr_init(void) { /* Verify no one has done anything silly: */ BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); /* bump default and minimum pid_max based on number of cpus */ pid_max = min(pid_max_max, max_t(int, pid_max, PIDS_PER_CPU_DEFAULT * num_possible_cpus())); pid_max_min = max_t(int, pid_max_min, PIDS_PER_CPU_MIN * num_possible_cpus()); pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); idr_init(&init_pid_ns.idr); init_pid_ns.pid_cachep = KMEM_CACHE(pid, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); } static struct file *__pidfd_fget(struct task_struct *task, int fd) { struct file *file; int ret; ret = down_read_killable(&task->signal->exec_update_lock); if (ret) return ERR_PTR(ret); if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) file = fget_task(task, fd); else file = ERR_PTR(-EPERM); up_read(&task->signal->exec_update_lock); return file ?: ERR_PTR(-EBADF); } static int pidfd_getfd(struct pid *pid, int fd) { struct task_struct *task; struct file *file; int ret; task = get_pid_task(pid, PIDTYPE_PID); if (!task) return -ESRCH; file = __pidfd_fget(task, fd); put_task_struct(task); if (IS_ERR(file)) return PTR_ERR(file); ret = receive_fd(file, O_CLOEXEC); fput(file); return ret; } /** * sys_pidfd_getfd() - Get a file descriptor from another process * * @pidfd: the pidfd file descriptor of the process * @fd: the file descriptor number to get * @flags: flags on how to get the fd (reserved) * * This syscall gets a copy of a file descriptor from another process * based on the pidfd, and file descriptor number. It requires that * the calling process has the ability to ptrace the process represented * by the pidfd. The process which is having its file descriptor copied * is otherwise unaffected. * * Return: On success, a cloexec file descriptor is returned. * On error, a negative errno number will be returned. */ SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, unsigned int, flags) { struct pid *pid; struct fd f; int ret; /* flags is currently unused - make sure it's unset */ if (flags) return -EINVAL; f = fdget(pidfd); if (!f.file) return -EBADF; pid = pidfd_pid(f.file); if (IS_ERR(pid)) ret = PTR_ERR(pid); else ret = pidfd_getfd(pid, fd); fdput(f); return ret; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PART_STAT_H #define _LINUX_PART_STAT_H #include <linux/genhd.h> struct disk_stats { u64 nsecs[NR_STAT_GROUPS]; unsigned long sectors[NR_STAT_GROUPS]; unsigned long ios[NR_STAT_GROUPS]; unsigned long merges[NR_STAT_GROUPS]; unsigned long io_ticks; local_t in_flight[2]; }; /* * Macros to operate on percpu disk statistics: * * {disk|part|all}_stat_{add|sub|inc|dec}() modify the stat counters and should * be called between disk_stat_lock() and disk_stat_unlock(). * * part_stat_read() can be called at any time. */ #define part_stat_lock() preempt_disable() #define part_stat_unlock() preempt_enable() #define part_stat_get_cpu(part, field, cpu) \ (per_cpu_ptr((part)->dkstats, (cpu))->field) #define part_stat_get(part, field) \ part_stat_get_cpu(part, field, smp_processor_id()) #define part_stat_read(part, field) \ ({ \ typeof((part)->dkstats->field) res = 0; \ unsigned int _cpu; \ for_each_possible_cpu(_cpu) \ res += per_cpu_ptr((part)->dkstats, _cpu)->field; \ res; \ }) static inline void part_stat_set_all(struct hd_struct *part, int value) { int i; for_each_possible_cpu(i) memset(per_cpu_ptr(part->dkstats, i), value, sizeof(struct disk_stats)); } #define part_stat_read_accum(part, field) \ (part_stat_read(part, field[STAT_READ]) + \ part_stat_read(part, field[STAT_WRITE]) + \ part_stat_read(part, field[STAT_DISCARD])) #define __part_stat_add(part, field, addnd) \ __this_cpu_add((part)->dkstats->field, addnd) #define part_stat_add(part, field, addnd) do { \ __part_stat_add((part), field, addnd); \ if ((part)->partno) \ __part_stat_add(&part_to_disk((part))->part0, \ field, addnd); \ } while (0) #define part_stat_dec(gendiskp, field) \ part_stat_add(gendiskp, field, -1) #define part_stat_inc(gendiskp, field) \ part_stat_add(gendiskp, field, 1) #define part_stat_sub(gendiskp, field, subnd) \ part_stat_add(gendiskp, field, -subnd) #define part_stat_local_dec(gendiskp, field) \ local_dec(&(part_stat_get(gendiskp, field))) #define part_stat_local_inc(gendiskp, field) \ local_inc(&(part_stat_get(gendiskp, field))) #define part_stat_local_read(gendiskp, field) \ local_read(&(part_stat_get(gendiskp, field))) #define part_stat_local_read_cpu(gendiskp, field, cpu) \ local_read(&(part_stat_get_cpu(gendiskp, field, cpu))) #endif /* _LINUX_PART_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/nmi.h */ #ifndef LINUX_NMI_H #define LINUX_NMI_H #include <linux/sched.h> #include <asm/irq.h> #if defined(CONFIG_HAVE_NMI_WATCHDOG) #include <asm/nmi.h> #endif #ifdef CONFIG_LOCKUP_DETECTOR void lockup_detector_init(void); void lockup_detector_soft_poweroff(void); void lockup_detector_cleanup(void); bool is_hardlockup(void); extern int watchdog_user_enabled; extern int nmi_watchdog_user_enabled; extern int soft_watchdog_user_enabled; extern int watchdog_thresh; extern unsigned long watchdog_enabled; extern struct cpumask watchdog_cpumask; extern unsigned long *watchdog_cpumask_bits; #ifdef CONFIG_SMP extern int sysctl_softlockup_all_cpu_backtrace; extern int sysctl_hardlockup_all_cpu_backtrace; #else #define sysctl_softlockup_all_cpu_backtrace 0 #define sysctl_hardlockup_all_cpu_backtrace 0 #endif /* !CONFIG_SMP */ #else /* CONFIG_LOCKUP_DETECTOR */ static inline void lockup_detector_init(void) { } static inline void lockup_detector_soft_poweroff(void) { } static inline void lockup_detector_cleanup(void) { } #endif /* !CONFIG_LOCKUP_DETECTOR */ #ifdef CONFIG_SOFTLOCKUP_DETECTOR extern void touch_softlockup_watchdog_sched(void); extern void touch_softlockup_watchdog(void); extern void touch_softlockup_watchdog_sync(void); extern void touch_all_softlockup_watchdogs(void); extern unsigned int softlockup_panic; extern int lockup_detector_online_cpu(unsigned int cpu); extern int lockup_detector_offline_cpu(unsigned int cpu); #else /* CONFIG_SOFTLOCKUP_DETECTOR */ static inline void touch_softlockup_watchdog_sched(void) { } static inline void touch_softlockup_watchdog(void) { } static inline void touch_softlockup_watchdog_sync(void) { } static inline void touch_all_softlockup_watchdogs(void) { } #define lockup_detector_online_cpu NULL #define lockup_detector_offline_cpu NULL #endif /* CONFIG_SOFTLOCKUP_DETECTOR */ #ifdef CONFIG_DETECT_HUNG_TASK void reset_hung_task_detector(void); #else static inline void reset_hung_task_detector(void) { } #endif /* * The run state of the lockup detectors is controlled by the content of the * 'watchdog_enabled' variable. Each lockup detector has its dedicated bit - * bit 0 for the hard lockup detector and bit 1 for the soft lockup detector. * * 'watchdog_user_enabled', 'nmi_watchdog_user_enabled' and * 'soft_watchdog_user_enabled' are variables that are only used as an * 'interface' between the parameters in /proc/sys/kernel and the internal * state bits in 'watchdog_enabled'. The 'watchdog_thresh' variable is * handled differently because its value is not boolean, and the lockup * detectors are 'suspended' while 'watchdog_thresh' is equal zero. */ #define NMI_WATCHDOG_ENABLED_BIT 0 #define SOFT_WATCHDOG_ENABLED_BIT 1 #define NMI_WATCHDOG_ENABLED (1 << NMI_WATCHDOG_ENABLED_BIT) #define SOFT_WATCHDOG_ENABLED (1 << SOFT_WATCHDOG_ENABLED_BIT) #if defined(CONFIG_HARDLOCKUP_DETECTOR) extern void hardlockup_detector_disable(void); extern unsigned int hardlockup_panic; #else static inline void hardlockup_detector_disable(void) {} #endif #if defined(CONFIG_HAVE_NMI_WATCHDOG) || defined(CONFIG_HARDLOCKUP_DETECTOR) # define NMI_WATCHDOG_SYSCTL_PERM 0644 #else # define NMI_WATCHDOG_SYSCTL_PERM 0444 #endif #if defined(CONFIG_HARDLOCKUP_DETECTOR_PERF) extern void arch_touch_nmi_watchdog(void); extern void hardlockup_detector_perf_stop(void); extern void hardlockup_detector_perf_restart(void); extern void hardlockup_detector_perf_disable(void); extern void hardlockup_detector_perf_enable(void); extern void hardlockup_detector_perf_cleanup(void); extern int hardlockup_detector_perf_init(void); #else static inline void hardlockup_detector_perf_stop(void) { } static inline void hardlockup_detector_perf_restart(void) { } static inline void hardlockup_detector_perf_disable(void) { } static inline void hardlockup_detector_perf_enable(void) { } static inline void hardlockup_detector_perf_cleanup(void) { } # if !defined(CONFIG_HAVE_NMI_WATCHDOG) static inline int hardlockup_detector_perf_init(void) { return -ENODEV; } static inline void arch_touch_nmi_watchdog(void) {} # else static inline int hardlockup_detector_perf_init(void) { return 0; } # endif #endif void watchdog_nmi_stop(void); void watchdog_nmi_start(void); int watchdog_nmi_probe(void); int watchdog_nmi_enable(unsigned int cpu); void watchdog_nmi_disable(unsigned int cpu); void lockup_detector_reconfigure(void); /** * touch_nmi_watchdog - restart NMI watchdog timeout. * * If the architecture supports the NMI watchdog, touch_nmi_watchdog() * may be used to reset the timeout - for code which intentionally * disables interrupts for a long time. This call is stateless. */ static inline void touch_nmi_watchdog(void) { arch_touch_nmi_watchdog(); touch_softlockup_watchdog(); } /* * Create trigger_all_cpu_backtrace() out of the arch-provided * base function. Return whether such support was available, * to allow calling code to fall back to some other mechanism: */ #ifdef arch_trigger_cpumask_backtrace static inline bool trigger_all_cpu_backtrace(void) { arch_trigger_cpumask_backtrace(cpu_online_mask, false); return true; } static inline bool trigger_allbutself_cpu_backtrace(void) { arch_trigger_cpumask_backtrace(cpu_online_mask, true); return true; } static inline bool trigger_cpumask_backtrace(struct cpumask *mask) { arch_trigger_cpumask_backtrace(mask, false); return true; } static inline bool trigger_single_cpu_backtrace(int cpu) { arch_trigger_cpumask_backtrace(cpumask_of(cpu), false); return true; } /* generic implementation */ void nmi_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self, void (*raise)(cpumask_t *mask)); bool nmi_cpu_backtrace(struct pt_regs *regs); #else static inline bool trigger_all_cpu_backtrace(void) { return false; } static inline bool trigger_allbutself_cpu_backtrace(void) { return false; } static inline bool trigger_cpumask_backtrace(struct cpumask *mask) { return false; } static inline bool trigger_single_cpu_backtrace(int cpu) { return false; } #endif #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF u64 hw_nmi_get_sample_period(int watchdog_thresh); #endif #if defined(CONFIG_HARDLOCKUP_CHECK_TIMESTAMP) && \ defined(CONFIG_HARDLOCKUP_DETECTOR_PERF) void watchdog_update_hrtimer_threshold(u64 period); #else static inline void watchdog_update_hrtimer_threshold(u64 period) { } #endif struct ctl_table; int proc_watchdog(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_nmi_watchdog(struct ctl_table *, int , void *, size_t *, loff_t *); int proc_soft_watchdog(struct ctl_table *, int , void *, size_t *, loff_t *); int proc_watchdog_thresh(struct ctl_table *, int , void *, size_t *, loff_t *); int proc_watchdog_cpumask(struct ctl_table *, int, void *, size_t *, loff_t *); #ifdef CONFIG_HAVE_ACPI_APEI_NMI #include <asm/nmi.h> #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_H #define _IPV6_H #include <uapi/linux/ipv6.h> #define ipv6_optlen(p) (((p)->hdrlen+1) << 3) #define ipv6_authlen(p) (((p)->hdrlen+2) << 2) /* * This structure contains configuration options per IPv6 link. */ struct ipv6_devconf { __s32 forwarding; __s32 hop_limit; __s32 mtu6; __s32 accept_ra; __s32 accept_redirects; __s32 autoconf; __s32 dad_transmits; __s32 rtr_solicits; __s32 rtr_solicit_interval; __s32 rtr_solicit_max_interval; __s32 rtr_solicit_delay; __s32 force_mld_version; __s32 mldv1_unsolicited_report_interval; __s32 mldv2_unsolicited_report_interval; __s32 use_tempaddr; __s32 temp_valid_lft; __s32 temp_prefered_lft; __s32 regen_max_retry; __s32 max_desync_factor; __s32 max_addresses; __s32 accept_ra_defrtr; __s32 accept_ra_min_hop_limit; __s32 accept_ra_min_lft; __s32 accept_ra_pinfo; __s32 ignore_routes_with_linkdown; #ifdef CONFIG_IPV6_ROUTER_PREF __s32 accept_ra_rtr_pref; __s32 rtr_probe_interval; #ifdef CONFIG_IPV6_ROUTE_INFO __s32 accept_ra_rt_info_min_plen; __s32 accept_ra_rt_info_max_plen; #endif #endif __s32 proxy_ndp; __s32 accept_source_route; __s32 accept_ra_from_local; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD __s32 optimistic_dad; __s32 use_optimistic; #endif #ifdef CONFIG_IPV6_MROUTE atomic_t mc_forwarding; #endif __s32 disable_ipv6; __s32 drop_unicast_in_l2_multicast; __s32 accept_dad; __s32 force_tllao; __s32 ndisc_notify; __s32 suppress_frag_ndisc; __s32 accept_ra_mtu; __s32 drop_unsolicited_na; struct ipv6_stable_secret { bool initialized; struct in6_addr secret; } stable_secret; __s32 use_oif_addrs_only; __s32 keep_addr_on_down; __s32 seg6_enabled; #ifdef CONFIG_IPV6_SEG6_HMAC __s32 seg6_require_hmac; #endif __u32 enhanced_dad; __u32 addr_gen_mode; __s32 disable_policy; __s32 ndisc_tclass; __s32 rpl_seg_enabled; struct ctl_table_header *sysctl_header; }; struct ipv6_params { __s32 disable_ipv6; __s32 autoconf; }; extern struct ipv6_params ipv6_defaults; #include <linux/tcp.h> #include <linux/udp.h> #include <net/inet_sock.h> static inline struct ipv6hdr *ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_network_header(skb); } static inline struct ipv6hdr *inner_ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_inner_network_header(skb); } static inline struct ipv6hdr *ipipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_transport_header(skb); } static inline unsigned int ipv6_transport_len(const struct sk_buff *skb) { return ntohs(ipv6_hdr(skb)->payload_len) + sizeof(struct ipv6hdr) - skb_network_header_len(skb); } /* This structure contains results of exthdrs parsing as offsets from skb->nh. */ struct inet6_skb_parm { int iif; __be16 ra; __u16 dst0; __u16 srcrt; __u16 dst1; __u16 lastopt; __u16 nhoff; __u16 flags; #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) __u16 dsthao; #endif __u16 frag_max_size; #define IP6SKB_XFRM_TRANSFORMED 1 #define IP6SKB_FORWARDED 2 #define IP6SKB_REROUTED 4 #define IP6SKB_ROUTERALERT 8 #define IP6SKB_FRAGMENTED 16 #define IP6SKB_HOPBYHOP 32 #define IP6SKB_L3SLAVE 64 #define IP6SKB_JUMBOGRAM 128 }; #if defined(CONFIG_NET_L3_MASTER_DEV) static inline bool ipv6_l3mdev_skb(__u16 flags) { return flags & IP6SKB_L3SLAVE; } #else static inline bool ipv6_l3mdev_skb(__u16 flags) { return false; } #endif #define IP6CB(skb) ((struct inet6_skb_parm*)((skb)->cb)) #define IP6CBMTU(skb) ((struct ip6_mtuinfo *)((skb)->cb)) static inline int inet6_iif(const struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(IP6CB(skb)->flags); return l3_slave ? skb->skb_iif : IP6CB(skb)->iif; } static inline bool inet6_is_jumbogram(const struct sk_buff *skb) { return !!(IP6CB(skb)->flags & IP6SKB_JUMBOGRAM); } /* can not be used in TCP layer after tcp_v6_fill_cb */ static inline int inet6_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv6_l3mdev_skb(IP6CB(skb)->flags)) return IP6CB(skb)->iif; #endif return 0; } struct tcp6_request_sock { struct tcp_request_sock tcp6rsk_tcp; }; struct ipv6_mc_socklist; struct ipv6_ac_socklist; struct ipv6_fl_socklist; struct inet6_cork { struct ipv6_txoptions *opt; u8 hop_limit; u8 tclass; u8 dontfrag:1; }; /** * struct ipv6_pinfo - ipv6 private area * * In the struct sock hierarchy (tcp6_sock, upd6_sock, etc) * this _must_ be the last member, so that inet6_sk_generic * is able to calculate its offset from the base struct sock * by using the struct proto->slab_obj_size member. -acme */ struct ipv6_pinfo { struct in6_addr saddr; struct in6_pktinfo sticky_pktinfo; const struct in6_addr *daddr_cache; #ifdef CONFIG_IPV6_SUBTREES const struct in6_addr *saddr_cache; #endif __be32 flow_label; __u32 frag_size; /* * Packed in 16bits. * Omit one shift by putting the signed field at MSB. */ #if defined(__BIG_ENDIAN_BITFIELD) __s16 hop_limit:9; __u16 __unused_1:7; #else __u16 __unused_1:7; __s16 hop_limit:9; #endif #if defined(__BIG_ENDIAN_BITFIELD) /* Packed in 16bits. */ __s16 mcast_hops:9; __u16 __unused_2:6, mc_loop:1; #else __u16 mc_loop:1, __unused_2:6; __s16 mcast_hops:9; #endif int ucast_oif; int mcast_oif; /* pktoption flags */ union { struct { __u16 srcrt:1, osrcrt:1, rxinfo:1, rxoinfo:1, rxhlim:1, rxohlim:1, hopopts:1, ohopopts:1, dstopts:1, odstopts:1, rxflow:1, rxtclass:1, rxpmtu:1, rxorigdstaddr:1, recvfragsize:1; /* 1 bits hole */ } bits; __u16 all; } rxopt; /* sockopt flags */ __u16 recverr:1, sndflow:1, repflow:1, pmtudisc:3, padding:1, /* 1 bit hole */ srcprefs:3, /* 001: prefer temporary address * 010: prefer public address * 100: prefer care-of address */ dontfrag:1, autoflowlabel:1, autoflowlabel_set:1, mc_all:1, recverr_rfc4884:1, rtalert_isolate:1; __u8 min_hopcount; __u8 tclass; __be32 rcv_flowinfo; __u32 dst_cookie; __u32 rx_dst_cookie; struct ipv6_mc_socklist __rcu *ipv6_mc_list; struct ipv6_ac_socklist *ipv6_ac_list; struct ipv6_fl_socklist __rcu *ipv6_fl_list; struct ipv6_txoptions __rcu *opt; struct sk_buff *pktoptions; struct sk_buff *rxpmtu; struct inet6_cork cork; }; /* WARNING: don't change the layout of the members in {raw,udp,tcp}6_sock! */ struct raw6_sock { /* inet_sock has to be the first member of raw6_sock */ struct inet_sock inet; __u32 checksum; /* perform checksum */ __u32 offset; /* checksum offset */ struct icmp6_filter filter; __u32 ip6mr_table; /* ipv6_pinfo has to be the last member of raw6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; struct udp6_sock { struct udp_sock udp; /* ipv6_pinfo has to be the last member of udp6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; struct tcp6_sock { struct tcp_sock tcp; /* ipv6_pinfo has to be the last member of tcp6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; extern int inet6_sk_rebuild_header(struct sock *sk); struct tcp6_timewait_sock { struct tcp_timewait_sock tcp6tw_tcp; }; #if IS_ENABLED(CONFIG_IPV6) bool ipv6_mod_enabled(void); static inline struct ipv6_pinfo *inet6_sk(const struct sock *__sk) { return sk_fullsock(__sk) ? inet_sk(__sk)->pinet6 : NULL; } static inline struct raw6_sock *raw6_sk(const struct sock *sk) { return (struct raw6_sock *)sk; } #define __ipv6_only_sock(sk) (sk->sk_ipv6only) #define ipv6_only_sock(sk) (__ipv6_only_sock(sk)) #define ipv6_sk_rxinfo(sk) ((sk)->sk_family == PF_INET6 && \ inet6_sk(sk)->rxopt.bits.rxinfo) static inline const struct in6_addr *inet6_rcv_saddr(const struct sock *sk) { if (sk->sk_family == AF_INET6) return &sk->sk_v6_rcv_saddr; return NULL; } static inline int inet_v6_ipv6only(const struct sock *sk) { /* ipv6only field is at same position for timewait and other sockets */ return ipv6_only_sock(sk); } #else #define __ipv6_only_sock(sk) 0 #define ipv6_only_sock(sk) 0 #define ipv6_sk_rxinfo(sk) 0 static inline bool ipv6_mod_enabled(void) { return false; } static inline struct ipv6_pinfo * inet6_sk(const struct sock *__sk) { return NULL; } static inline struct inet6_request_sock * inet6_rsk(const struct request_sock *rsk) { return NULL; } static inline struct raw6_sock *raw6_sk(const struct sock *sk) { return NULL; } #define inet6_rcv_saddr(__sk) NULL #define tcp_twsk_ipv6only(__sk) 0 #define inet_v6_ipv6only(__sk) 0 #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* _IPV6_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 /* SPDX-License-Identifier: GPL-2.0 */ /* * ioport.h Definitions of routines for detecting, reserving and * allocating system resources. * * Authors: Linus Torvalds */ #ifndef _LINUX_IOPORT_H #define _LINUX_IOPORT_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/types.h> #include <linux/bits.h> /* * Resources are tree-like, allowing * nesting etc.. */ struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; unsigned long desc; struct resource *parent, *sibling, *child; }; /* * IO resources have these defined flags. * * PCI devices expose these flags to userspace in the "resource" sysfs file, * so don't move them. */ #define IORESOURCE_BITS 0x000000ff /* Bus-specific bits */ #define IORESOURCE_TYPE_BITS 0x00001f00 /* Resource type */ #define IORESOURCE_IO 0x00000100 /* PCI/ISA I/O ports */ #define IORESOURCE_MEM 0x00000200 #define IORESOURCE_REG 0x00000300 /* Register offsets */ #define IORESOURCE_IRQ 0x00000400 #define IORESOURCE_DMA 0x00000800 #define IORESOURCE_BUS 0x00001000 #define IORESOURCE_PREFETCH 0x00002000 /* No side effects */ #define IORESOURCE_READONLY 0x00004000 #define IORESOURCE_CACHEABLE 0x00008000 #define IORESOURCE_RANGELENGTH 0x00010000 #define IORESOURCE_SHADOWABLE 0x00020000 #define IORESOURCE_SIZEALIGN 0x00040000 /* size indicates alignment */ #define IORESOURCE_STARTALIGN 0x00080000 /* start field is alignment */ #define IORESOURCE_MEM_64 0x00100000 #define IORESOURCE_WINDOW 0x00200000 /* forwarded by bridge */ #define IORESOURCE_MUXED 0x00400000 /* Resource is software muxed */ #define IORESOURCE_EXT_TYPE_BITS 0x01000000 /* Resource extended types */ #define IORESOURCE_SYSRAM 0x01000000 /* System RAM (modifier) */ /* IORESOURCE_SYSRAM specific bits. */ #define IORESOURCE_SYSRAM_DRIVER_MANAGED 0x02000000 /* Always detected via a driver. */ #define IORESOURCE_SYSRAM_MERGEABLE 0x04000000 /* Resource can be merged. */ #define IORESOURCE_EXCLUSIVE 0x08000000 /* Userland may not map this resource */ #define IORESOURCE_DISABLED 0x10000000 #define IORESOURCE_UNSET 0x20000000 /* No address assigned yet */ #define IORESOURCE_AUTO 0x40000000 #define IORESOURCE_BUSY 0x80000000 /* Driver has marked this resource busy */ /* I/O resource extended types */ #define IORESOURCE_SYSTEM_RAM (IORESOURCE_MEM|IORESOURCE_SYSRAM) /* PnP IRQ specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IRQ_HIGHEDGE (1<<0) #define IORESOURCE_IRQ_LOWEDGE (1<<1) #define IORESOURCE_IRQ_HIGHLEVEL (1<<2) #define IORESOURCE_IRQ_LOWLEVEL (1<<3) #define IORESOURCE_IRQ_SHAREABLE (1<<4) #define IORESOURCE_IRQ_OPTIONAL (1<<5) /* PnP DMA specific bits (IORESOURCE_BITS) */ #define IORESOURCE_DMA_TYPE_MASK (3<<0) #define IORESOURCE_DMA_8BIT (0<<0) #define IORESOURCE_DMA_8AND16BIT (1<<0) #define IORESOURCE_DMA_16BIT (2<<0) #define IORESOURCE_DMA_MASTER (1<<2) #define IORESOURCE_DMA_BYTE (1<<3) #define IORESOURCE_DMA_WORD (1<<4) #define IORESOURCE_DMA_SPEED_MASK (3<<6) #define IORESOURCE_DMA_COMPATIBLE (0<<6) #define IORESOURCE_DMA_TYPEA (1<<6) #define IORESOURCE_DMA_TYPEB (2<<6) #define IORESOURCE_DMA_TYPEF (3<<6) /* PnP memory I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_MEM_WRITEABLE (1<<0) /* dup: IORESOURCE_READONLY */ #define IORESOURCE_MEM_CACHEABLE (1<<1) /* dup: IORESOURCE_CACHEABLE */ #define IORESOURCE_MEM_RANGELENGTH (1<<2) /* dup: IORESOURCE_RANGELENGTH */ #define IORESOURCE_MEM_TYPE_MASK (3<<3) #define IORESOURCE_MEM_8BIT (0<<3) #define IORESOURCE_MEM_16BIT (1<<3) #define IORESOURCE_MEM_8AND16BIT (2<<3) #define IORESOURCE_MEM_32BIT (3<<3) #define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */ #define IORESOURCE_MEM_EXPANSIONROM (1<<6) /* PnP I/O specific bits (IORESOURCE_BITS) */ #define IORESOURCE_IO_16BIT_ADDR (1<<0) #define IORESOURCE_IO_FIXED (1<<1) #define IORESOURCE_IO_SPARSE (1<<2) /* PCI ROM control bits (IORESOURCE_BITS) */ #define IORESOURCE_ROM_ENABLE (1<<0) /* ROM is enabled, same as PCI_ROM_ADDRESS_ENABLE */ #define IORESOURCE_ROM_SHADOW (1<<1) /* Use RAM image, not ROM BAR */ /* PCI control bits. Shares IORESOURCE_BITS with above PCI ROM. */ #define IORESOURCE_PCI_FIXED (1<<4) /* Do not move resource */ #define IORESOURCE_PCI_EA_BEI (1<<5) /* BAR Equivalent Indicator */ /* * I/O Resource Descriptors * * Descriptors are used by walk_iomem_res_desc() and region_intersects() * for searching a specific resource range in the iomem table. Assign * a new descriptor when a resource range supports the search interfaces. * Otherwise, resource.desc must be set to IORES_DESC_NONE (0). */ enum { IORES_DESC_NONE = 0, IORES_DESC_CRASH_KERNEL = 1, IORES_DESC_ACPI_TABLES = 2, IORES_DESC_ACPI_NV_STORAGE = 3, IORES_DESC_PERSISTENT_MEMORY = 4, IORES_DESC_PERSISTENT_MEMORY_LEGACY = 5, IORES_DESC_DEVICE_PRIVATE_MEMORY = 6, IORES_DESC_RESERVED = 7, IORES_DESC_SOFT_RESERVED = 8, }; /* * Flags controlling ioremap() behavior. */ enum { IORES_MAP_SYSTEM_RAM = BIT(0), IORES_MAP_ENCRYPTED = BIT(1), }; /* helpers to define resources */ #define DEFINE_RES_NAMED(_start, _size, _name, _flags) \ { \ .start = (_start), \ .end = (_start) + (_size) - 1, \ .name = (_name), \ .flags = (_flags), \ .desc = IORES_DESC_NONE, \ } #define DEFINE_RES_IO_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_IO) #define DEFINE_RES_IO(_start, _size) \ DEFINE_RES_IO_NAMED((_start), (_size), NULL) #define DEFINE_RES_MEM_NAMED(_start, _size, _name) \ DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_MEM) #define DEFINE_RES_MEM(_start, _size) \ DEFINE_RES_MEM_NAMED((_start), (_size), NULL) #define DEFINE_RES_IRQ_NAMED(_irq, _name) \ DEFINE_RES_NAMED((_irq), 1, (_name), IORESOURCE_IRQ) #define DEFINE_RES_IRQ(_irq) \ DEFINE_RES_IRQ_NAMED((_irq), NULL) #define DEFINE_RES_DMA_NAMED(_dma, _name) \ DEFINE_RES_NAMED((_dma), 1, (_name), IORESOURCE_DMA) #define DEFINE_RES_DMA(_dma) \ DEFINE_RES_DMA_NAMED((_dma), NULL) /* PC/ISA/whatever - the normal PC address spaces: IO and memory */ extern struct resource ioport_resource; extern struct resource iomem_resource; extern struct resource *request_resource_conflict(struct resource *root, struct resource *new); extern int request_resource(struct resource *root, struct resource *new); extern int release_resource(struct resource *new); void release_child_resources(struct resource *new); extern void reserve_region_with_split(struct resource *root, resource_size_t start, resource_size_t end, const char *name); extern struct resource *insert_resource_conflict(struct resource *parent, struct resource *new); extern int insert_resource(struct resource *parent, struct resource *new); extern void insert_resource_expand_to_fit(struct resource *root, struct resource *new); extern int remove_resource(struct resource *old); extern void arch_remove_reservations(struct resource *avail); extern int allocate_resource(struct resource *root, struct resource *new, resource_size_t size, resource_size_t min, resource_size_t max, resource_size_t align, resource_size_t (*alignf)(void *, const struct resource *, resource_size_t, resource_size_t), void *alignf_data); struct resource *lookup_resource(struct resource *root, resource_size_t start); int adjust_resource(struct resource *res, resource_size_t start, resource_size_t size); resource_size_t resource_alignment(struct resource *res); static inline resource_size_t resource_size(const struct resource *res) { return res->end - res->start + 1; } static inline unsigned long resource_type(const struct resource *res) { return res->flags & IORESOURCE_TYPE_BITS; } static inline unsigned long resource_ext_type(const struct resource *res) { return res->flags & IORESOURCE_EXT_TYPE_BITS; } /* True iff r1 completely contains r2 */ static inline bool resource_contains(struct resource *r1, struct resource *r2) { if (resource_type(r1) != resource_type(r2)) return false; if (r1->flags & IORESOURCE_UNSET || r2->flags & IORESOURCE_UNSET) return false; return r1->start <= r2->start && r1->end >= r2->end; } /* Convenience shorthand with allocation */ #define request_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), 0) #define request_muxed_region(start,n,name) __request_region(&ioport_resource, (start), (n), (name), IORESOURCE_MUXED) #define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl) #define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0) #define request_mem_region_exclusive(start,n,name) \ __request_region(&iomem_resource, (start), (n), (name), IORESOURCE_EXCLUSIVE) #define rename_region(region, newname) do { (region)->name = (newname); } while (0) extern struct resource * __request_region(struct resource *, resource_size_t start, resource_size_t n, const char *name, int flags); /* Compatibility cruft */ #define release_region(start,n) __release_region(&ioport_resource, (start), (n)) #define release_mem_region(start,n) __release_region(&iomem_resource, (start), (n)) extern void __release_region(struct resource *, resource_size_t, resource_size_t); #ifdef CONFIG_MEMORY_HOTREMOVE extern void release_mem_region_adjustable(resource_size_t, resource_size_t); #endif #ifdef CONFIG_MEMORY_HOTPLUG extern void merge_system_ram_resource(struct resource *res); #endif /* Wrappers for managed devices */ struct device; extern int devm_request_resource(struct device *dev, struct resource *root, struct resource *new); extern void devm_release_resource(struct device *dev, struct resource *new); #define devm_request_region(dev,start,n,name) \ __devm_request_region(dev, &ioport_resource, (start), (n), (name)) #define devm_request_mem_region(dev,start,n,name) \ __devm_request_region(dev, &iomem_resource, (start), (n), (name)) extern struct resource * __devm_request_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n, const char *name); #define devm_release_region(dev, start, n) \ __devm_release_region(dev, &ioport_resource, (start), (n)) #define devm_release_mem_region(dev, start, n) \ __devm_release_region(dev, &iomem_resource, (start), (n)) extern void __devm_release_region(struct device *dev, struct resource *parent, resource_size_t start, resource_size_t n); extern int iomem_map_sanity_check(resource_size_t addr, unsigned long size); extern bool iomem_is_exclusive(u64 addr); extern int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, void *arg, int (*func)(unsigned long, unsigned long, void *)); extern int walk_mem_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_system_ram_res(u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); extern int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, u64 end, void *arg, int (*func)(struct resource *, void *)); /* True if any part of r1 overlaps r2 */ static inline bool resource_overlaps(struct resource *r1, struct resource *r2) { return (r1->start <= r2->end && r1->end >= r2->start); } struct resource *devm_request_free_mem_region(struct device *dev, struct resource *base, unsigned long size); struct resource *request_free_mem_region(struct resource *base, unsigned long size, const char *name); static inline void irqresource_disabled(struct resource *res, u32 irq) { res->start = irq; res->end = irq; res->flags = IORESOURCE_IRQ | IORESOURCE_DISABLED | IORESOURCE_UNSET; } #ifdef CONFIG_IO_STRICT_DEVMEM void revoke_devmem(struct resource *res); #else static inline void revoke_devmem(struct resource *res) { }; #endif #endif /* __ASSEMBLY__ */ #endif /* _LINUX_IOPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 #undef TRACE_SYSTEM #define TRACE_SYSTEM qdisc #if !defined(_TRACE_QDISC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_QDISC_H #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/tracepoint.h> #include <linux/ftrace.h> #include <linux/pkt_sched.h> #include <net/sch_generic.h> TRACE_EVENT(qdisc_dequeue, TP_PROTO(struct Qdisc *qdisc, const struct netdev_queue *txq, int packets, struct sk_buff *skb), TP_ARGS(qdisc, txq, packets, skb), TP_STRUCT__entry( __field( struct Qdisc *, qdisc ) __field(const struct netdev_queue *, txq ) __field( int, packets ) __field( void *, skbaddr ) __field( int, ifindex ) __field( u32, handle ) __field( u32, parent ) __field( unsigned long, txq_state) ), /* skb==NULL indicate packets dequeued was 0, even when packets==1 */ TP_fast_assign( __entry->qdisc = qdisc; __entry->txq = txq; __entry->packets = skb ? packets : 0; __entry->skbaddr = skb; __entry->ifindex = txq->dev ? txq->dev->ifindex : 0; __entry->handle = qdisc->handle; __entry->parent = qdisc->parent; __entry->txq_state = txq->state; ), TP_printk("dequeue ifindex=%d qdisc handle=0x%X parent=0x%X txq_state=0x%lX packets=%d skbaddr=%p", __entry->ifindex, __entry->handle, __entry->parent, __entry->txq_state, __entry->packets, __entry->skbaddr ) ); TRACE_EVENT(qdisc_reset, TP_PROTO(struct Qdisc *q), TP_ARGS(q), TP_STRUCT__entry( __string( dev, qdisc_dev(q)->name ) __string( kind, q->ops->id ) __field( u32, parent ) __field( u32, handle ) ), TP_fast_assign( __assign_str(dev, qdisc_dev(q)->name); __assign_str(kind, q->ops->id); __entry->parent = q->parent; __entry->handle = q->handle; ), TP_printk("dev=%s kind=%s parent=%x:%x handle=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent), TC_H_MAJ(__entry->handle) >> 16, TC_H_MIN(__entry->handle)) ); TRACE_EVENT(qdisc_destroy, TP_PROTO(struct Qdisc *q), TP_ARGS(q), TP_STRUCT__entry( __string( dev, qdisc_dev(q) ? qdisc_dev(q)->name : "(null)" ) __string( kind, q->ops->id ) __field( u32, parent ) __field( u32, handle ) ), TP_fast_assign( __assign_str(dev, qdisc_dev(q) ? qdisc_dev(q)->name : "(null)"); __assign_str(kind, q->ops->id); __entry->parent = q->parent; __entry->handle = q->handle; ), TP_printk("dev=%s kind=%s parent=%x:%x handle=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent), TC_H_MAJ(__entry->handle) >> 16, TC_H_MIN(__entry->handle)) ); TRACE_EVENT(qdisc_create, TP_PROTO(const struct Qdisc_ops *ops, struct net_device *dev, u32 parent), TP_ARGS(ops, dev, parent), TP_STRUCT__entry( __string( dev, dev->name ) __string( kind, ops->id ) __field( u32, parent ) ), TP_fast_assign( __assign_str(dev, dev->name); __assign_str(kind, ops->id); __entry->parent = parent; ), TP_printk("dev=%s kind=%s parent=%x:%x", __get_str(dev), __get_str(kind), TC_H_MAJ(__entry->parent) >> 16, TC_H_MIN(__entry->parent)) ); #endif /* _TRACE_QDISC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #ifndef _CRYPTO_BLAKE2S_H #define _CRYPTO_BLAKE2S_H #include <linux/bug.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> enum blake2s_lengths { BLAKE2S_BLOCK_SIZE = 64, BLAKE2S_HASH_SIZE = 32, BLAKE2S_KEY_SIZE = 32, BLAKE2S_128_HASH_SIZE = 16, BLAKE2S_160_HASH_SIZE = 20, BLAKE2S_224_HASH_SIZE = 28, BLAKE2S_256_HASH_SIZE = 32, }; struct blake2s_state { /* 'h', 't', and 'f' are used in assembly code, so keep them as-is. */ u32 h[8]; u32 t[2]; u32 f[2]; u8 buf[BLAKE2S_BLOCK_SIZE]; unsigned int buflen; unsigned int outlen; }; enum blake2s_iv { BLAKE2S_IV0 = 0x6A09E667UL, BLAKE2S_IV1 = 0xBB67AE85UL, BLAKE2S_IV2 = 0x3C6EF372UL, BLAKE2S_IV3 = 0xA54FF53AUL, BLAKE2S_IV4 = 0x510E527FUL, BLAKE2S_IV5 = 0x9B05688CUL, BLAKE2S_IV6 = 0x1F83D9ABUL, BLAKE2S_IV7 = 0x5BE0CD19UL, }; static inline void __blake2s_init(struct blake2s_state *state, size_t outlen, const void *key, size_t keylen) { state->h[0] = BLAKE2S_IV0 ^ (0x01010000 | keylen << 8 | outlen); state->h[1] = BLAKE2S_IV1; state->h[2] = BLAKE2S_IV2; state->h[3] = BLAKE2S_IV3; state->h[4] = BLAKE2S_IV4; state->h[5] = BLAKE2S_IV5; state->h[6] = BLAKE2S_IV6; state->h[7] = BLAKE2S_IV7; state->t[0] = 0; state->t[1] = 0; state->f[0] = 0; state->f[1] = 0; state->buflen = 0; state->outlen = outlen; if (keylen) { memcpy(state->buf, key, keylen); memset(&state->buf[keylen], 0, BLAKE2S_BLOCK_SIZE - keylen); state->buflen = BLAKE2S_BLOCK_SIZE; } } static inline void blake2s_init(struct blake2s_state *state, const size_t outlen) { __blake2s_init(state, outlen, NULL, 0); } static inline void blake2s_init_key(struct blake2s_state *state, const size_t outlen, const void *key, const size_t keylen) { WARN_ON(IS_ENABLED(DEBUG) && (!outlen || outlen > BLAKE2S_HASH_SIZE || !key || !keylen || keylen > BLAKE2S_KEY_SIZE)); __blake2s_init(state, outlen, key, keylen); } void blake2s_update(struct blake2s_state *state, const u8 *in, size_t inlen); void blake2s_final(struct blake2s_state *state, u8 *out); static inline void blake2s(u8 *out, const u8 *in, const u8 *key, const size_t outlen, const size_t inlen, const size_t keylen) { struct blake2s_state state; WARN_ON(IS_ENABLED(DEBUG) && ((!in && inlen > 0) || !out || !outlen || outlen > BLAKE2S_HASH_SIZE || keylen > BLAKE2S_KEY_SIZE || (!key && keylen))); __blake2s_init(&state, outlen, key, keylen); blake2s_update(&state, in, inlen); blake2s_final(&state, out); } #endif /* _CRYPTO_BLAKE2S_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CPUTIME_H #define _LINUX_SCHED_CPUTIME_H #include <linux/sched/signal.h> /* * cputime accounting APIs: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE #include <asm/cputime.h> #ifndef cputime_to_nsecs # define cputime_to_nsecs(__ct) \ (cputime_to_usecs(__ct) * NSEC_PER_USEC) #endif #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev, u64 *ut, u64 *st); /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples); /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * get_running_cputimer - return &tsk->signal->cputimer if cputimers are active * * @tsk: Pointer to target task. */ #ifdef CONFIG_POSIX_TIMERS static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; /* * Check whether posix CPU timers are active. If not the thread * group accounting is not active either. Lockless check. */ if (!READ_ONCE(tsk->signal->posix_cputimers.timers_active)) return NULL; /* * After we flush the task's sum_exec_runtime to sig->sum_sched_runtime * in __exit_signal(), we won't account to the signal struct further * cputime consumed by that task, even though the task can still be * ticking after __exit_signal(). * * In order to keep a consistent behaviour between thread group cputime * and thread group cputimer accounting, lets also ignore the cputime * elapsing after __exit_signal() in any thread group timer running. * * This makes sure that POSIX CPU clocks and timers are synchronized, so * that a POSIX CPU timer won't expire while the corresponding POSIX CPU * clock delta is behind the expiring timer value. */ if (unlikely(!tsk->sighand)) return NULL; return cputimer; } #else static inline struct thread_group_cputimer *get_running_cputimer(struct task_struct *tsk) { return NULL; } #endif /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.utime); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, u64 cputime) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(cputime, &cputimer->cputime_atomic.stime); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct thread_group_cputimer *cputimer = get_running_cputimer(tsk); if (!cputimer) return; atomic64_add(ns, &cputimer->cputime_atomic.sum_exec_runtime); } static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } extern unsigned long long task_sched_runtime(struct task_struct *task); #endif /* _LINUX_SCHED_CPUTIME_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic scatter and gather helpers. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Adam J. Richter <adam@yggdrasil.com> * Copyright (c) 2004 Jean-Luc Cooke <jlcooke@certainkey.com> * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SCATTERWALK_H #define _CRYPTO_SCATTERWALK_H #include <crypto/algapi.h> #include <linux/highmem.h> #include <linux/kernel.h> #include <linux/scatterlist.h> static inline void scatterwalk_crypto_chain(struct scatterlist *head, struct scatterlist *sg, int num) { if (sg) sg_chain(head, num, sg); else sg_mark_end(head); } static inline unsigned int scatterwalk_pagelen(struct scatter_walk *walk) { unsigned int len = walk->sg->offset + walk->sg->length - walk->offset; unsigned int len_this_page = offset_in_page(~walk->offset) + 1; return len_this_page > len ? len : len_this_page; } static inline unsigned int scatterwalk_clamp(struct scatter_walk *walk, unsigned int nbytes) { unsigned int len_this_page = scatterwalk_pagelen(walk); return nbytes > len_this_page ? len_this_page : nbytes; } static inline void scatterwalk_advance(struct scatter_walk *walk, unsigned int nbytes) { walk->offset += nbytes; } static inline unsigned int scatterwalk_aligned(struct scatter_walk *walk, unsigned int alignmask) { return !(walk->offset & alignmask); } static inline struct page *scatterwalk_page(struct scatter_walk *walk) { return sg_page(walk->sg) + (walk->offset >> PAGE_SHIFT); } static inline void scatterwalk_unmap(void *vaddr) { kunmap_atomic(vaddr); } static inline void scatterwalk_start(struct scatter_walk *walk, struct scatterlist *sg) { walk->sg = sg; walk->offset = sg->offset; } static inline void *scatterwalk_map(struct scatter_walk *walk) { return kmap_atomic(scatterwalk_page(walk)) + offset_in_page(walk->offset); } static inline void scatterwalk_pagedone(struct scatter_walk *walk, int out, unsigned int more) { if (out) { struct page *page; page = sg_page(walk->sg) + ((walk->offset - 1) >> PAGE_SHIFT); /* Test ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE first as * PageSlab cannot be optimised away per se due to * use of volatile pointer. */ if (ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE && !PageSlab(page)) flush_dcache_page(page); } if (more && walk->offset >= walk->sg->offset + walk->sg->length) scatterwalk_start(walk, sg_next(walk->sg)); } static inline void scatterwalk_done(struct scatter_walk *walk, int out, int more) { if (!more || walk->offset >= walk->sg->offset + walk->sg->length || !(walk->offset & (PAGE_SIZE - 1))) scatterwalk_pagedone(walk, out, more); } void scatterwalk_copychunks(void *buf, struct scatter_walk *walk, size_t nbytes, int out); void *scatterwalk_map(struct scatter_walk *walk); void scatterwalk_map_and_copy(void *buf, struct scatterlist *sg, unsigned int start, unsigned int nbytes, int out); struct scatterlist *scatterwalk_ffwd(struct scatterlist dst[2], struct scatterlist *src, unsigned int len); #endif /* _CRYPTO_SCATTERWALK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_FUTEX_H #define _ASM_X86_FUTEX_H #ifdef __KERNEL__ #include <linux/futex.h> #include <linux/uaccess.h> #include <asm/asm.h> #include <asm/errno.h> #include <asm/processor.h> #include <asm/smap.h> #define unsafe_atomic_op1(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret; \ asm volatile("1:\t" insn "\n" \ "2:\n" \ "\t.section .fixup,\"ax\"\n" \ "3:\tmov\t%3, %1\n" \ "\tjmp\t2b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : "=r" (oldval), "=r" (ret), "+m" (*uaddr) \ : "i" (-EFAULT), "0" (oparg), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) #define unsafe_atomic_op2(insn, oval, uaddr, oparg, label) \ do { \ int oldval = 0, ret, tem; \ asm volatile("1:\tmovl %2, %0\n" \ "2:\tmovl\t%0, %3\n" \ "\t" insn "\n" \ "3:\t" LOCK_PREFIX "cmpxchgl %3, %2\n" \ "\tjnz\t2b\n" \ "4:\n" \ "\t.section .fixup,\"ax\"\n" \ "5:\tmov\t%5, %1\n" \ "\tjmp\t4b\n" \ "\t.previous\n" \ _ASM_EXTABLE_UA(1b, 5b) \ _ASM_EXTABLE_UA(3b, 5b) \ : "=&a" (oldval), "=&r" (ret), \ "+m" (*uaddr), "=&r" (tem) \ : "r" (oparg), "i" (-EFAULT), "1" (0)); \ if (ret) \ goto label; \ *oval = oldval; \ } while(0) static __always_inline int arch_futex_atomic_op_inuser(int op, int oparg, int *oval, u32 __user *uaddr) { if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; switch (op) { case FUTEX_OP_SET: unsafe_atomic_op1("xchgl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ADD: unsafe_atomic_op1(LOCK_PREFIX "xaddl %0, %2", oval, uaddr, oparg, Efault); break; case FUTEX_OP_OR: unsafe_atomic_op2("orl %4, %3", oval, uaddr, oparg, Efault); break; case FUTEX_OP_ANDN: unsafe_atomic_op2("andl %4, %3", oval, uaddr, ~oparg, Efault); break; case FUTEX_OP_XOR: unsafe_atomic_op2("xorl %4, %3", oval, uaddr, oparg, Efault); break; default: user_access_end(); return -ENOSYS; } user_access_end(); return 0; Efault: user_access_end(); return -EFAULT; } static inline int futex_atomic_cmpxchg_inatomic(u32 *uval, u32 __user *uaddr, u32 oldval, u32 newval) { int ret = 0; if (!user_access_begin(uaddr, sizeof(u32))) return -EFAULT; asm volatile("\n" "1:\t" LOCK_PREFIX "cmpxchgl %4, %2\n" "2:\n" "\t.section .fixup, \"ax\"\n" "3:\tmov %3, %0\n" "\tjmp 2b\n" "\t.previous\n" _ASM_EXTABLE_UA(1b, 3b) : "+r" (ret), "=a" (oldval), "+m" (*uaddr) : "i" (-EFAULT), "r" (newval), "1" (oldval) : "memory" ); user_access_end(); *uval = oldval; return ret; } #endif #endif /* _ASM_X86_FUTEX_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_EXTEND_H #define _NF_CONNTRACK_EXTEND_H #include <linux/slab.h> #include <net/netfilter/nf_conntrack.h> enum nf_ct_ext_id { NF_CT_EXT_HELPER, #if IS_ENABLED(CONFIG_NF_NAT) NF_CT_EXT_NAT, #endif NF_CT_EXT_SEQADJ, NF_CT_EXT_ACCT, #ifdef CONFIG_NF_CONNTRACK_EVENTS NF_CT_EXT_ECACHE, #endif #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP NF_CT_EXT_TSTAMP, #endif #ifdef CONFIG_NF_CONNTRACK_TIMEOUT NF_CT_EXT_TIMEOUT, #endif #ifdef CONFIG_NF_CONNTRACK_LABELS NF_CT_EXT_LABELS, #endif #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY) NF_CT_EXT_SYNPROXY, #endif NF_CT_EXT_NUM, }; #define NF_CT_EXT_HELPER_TYPE struct nf_conn_help #define NF_CT_EXT_NAT_TYPE struct nf_conn_nat #define NF_CT_EXT_SEQADJ_TYPE struct nf_conn_seqadj #define NF_CT_EXT_ACCT_TYPE struct nf_conn_acct #define NF_CT_EXT_ECACHE_TYPE struct nf_conntrack_ecache #define NF_CT_EXT_TSTAMP_TYPE struct nf_conn_tstamp #define NF_CT_EXT_TIMEOUT_TYPE struct nf_conn_timeout #define NF_CT_EXT_LABELS_TYPE struct nf_conn_labels #define NF_CT_EXT_SYNPROXY_TYPE struct nf_conn_synproxy /* Extensions: optional stuff which isn't permanently in struct. */ struct nf_ct_ext { u8 offset[NF_CT_EXT_NUM]; u8 len; char data[]; }; static inline bool __nf_ct_ext_exist(const struct nf_ct_ext *ext, u8 id) { return !!ext->offset[id]; } static inline bool nf_ct_ext_exist(const struct nf_conn *ct, u8 id) { return (ct->ext && __nf_ct_ext_exist(ct->ext, id)); } static inline void *__nf_ct_ext_find(const struct nf_conn *ct, u8 id) { if (!nf_ct_ext_exist(ct, id)) return NULL; return (void *)ct->ext + ct->ext->offset[id]; } #define nf_ct_ext_find(ext, id) \ ((id##_TYPE *)__nf_ct_ext_find((ext), (id))) /* Destroy all relationships */ void nf_ct_ext_destroy(struct nf_conn *ct); /* Add this type, returns pointer to data or NULL. */ void *nf_ct_ext_add(struct nf_conn *ct, enum nf_ct_ext_id id, gfp_t gfp); struct nf_ct_ext_type { /* Destroys relationships (can be NULL). */ void (*destroy)(struct nf_conn *ct); enum nf_ct_ext_id id; /* Length and min alignment. */ u8 len; u8 align; }; int nf_ct_extend_register(const struct nf_ct_ext_type *type); void nf_ct_extend_unregister(const struct nf_ct_ext_type *type); #endif /* _NF_CONNTRACK_EXTEND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/cpu.h - generic cpu definition * * This is mainly for topological representation. We define the * basic 'struct cpu' here, which can be embedded in per-arch * definitions of processors. * * Basic handling of the devices is done in drivers/base/cpu.c * * CPUs are exported via sysfs in the devices/system/cpu * directory. */ #ifndef _LINUX_CPU_H_ #define _LINUX_CPU_H_ #include <linux/node.h> #include <linux/compiler.h> #include <linux/cpumask.h> #include <linux/cpuhotplug.h> struct device; struct device_node; struct attribute_group; struct cpu { int node_id; /* The node which contains the CPU */ int hotpluggable; /* creates sysfs control file if hotpluggable */ struct device dev; }; extern void boot_cpu_init(void); extern void boot_cpu_hotplug_init(void); extern void cpu_init(void); extern void trap_init(void); extern int register_cpu(struct cpu *cpu, int num); extern struct device *get_cpu_device(unsigned cpu); extern bool cpu_is_hotpluggable(unsigned cpu); extern bool arch_match_cpu_phys_id(int cpu, u64 phys_id); extern bool arch_find_n_match_cpu_physical_id(struct device_node *cpun, int cpu, unsigned int *thread); extern int cpu_add_dev_attr(struct device_attribute *attr); extern void cpu_remove_dev_attr(struct device_attribute *attr); extern int cpu_add_dev_attr_group(struct attribute_group *attrs); extern void cpu_remove_dev_attr_group(struct attribute_group *attrs); extern ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf); extern __printf(4, 5) struct device *cpu_device_create(struct device *parent, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); #ifdef CONFIG_HOTPLUG_CPU extern void unregister_cpu(struct cpu *cpu); extern ssize_t arch_cpu_probe(const char *, size_t); extern ssize_t arch_cpu_release(const char *, size_t); #endif /* * These states are not related to the core CPU hotplug mechanism. They are * used by various (sub)architectures to track internal state */ #define CPU_ONLINE 0x0002 /* CPU is up */ #define CPU_UP_PREPARE 0x0003 /* CPU coming up */ #define CPU_DEAD 0x0007 /* CPU dead */ #define CPU_DEAD_FROZEN 0x0008 /* CPU timed out on unplug */ #define CPU_POST_DEAD 0x0009 /* CPU successfully unplugged */ #define CPU_BROKEN 0x000B /* CPU did not die properly */ #ifdef CONFIG_SMP extern bool cpuhp_tasks_frozen; int add_cpu(unsigned int cpu); int cpu_device_up(struct device *dev); void notify_cpu_starting(unsigned int cpu); extern void cpu_maps_update_begin(void); extern void cpu_maps_update_done(void); int bringup_hibernate_cpu(unsigned int sleep_cpu); void bringup_nonboot_cpus(unsigned int setup_max_cpus); #else /* CONFIG_SMP */ #define cpuhp_tasks_frozen 0 static inline void cpu_maps_update_begin(void) { } static inline void cpu_maps_update_done(void) { } #endif /* CONFIG_SMP */ extern struct bus_type cpu_subsys; #ifdef CONFIG_HOTPLUG_CPU extern void cpus_write_lock(void); extern void cpus_write_unlock(void); extern void cpus_read_lock(void); extern void cpus_read_unlock(void); extern int cpus_read_trylock(void); extern void lockdep_assert_cpus_held(void); extern void cpu_hotplug_disable(void); extern void cpu_hotplug_enable(void); void clear_tasks_mm_cpumask(int cpu); int remove_cpu(unsigned int cpu); int cpu_device_down(struct device *dev); extern void smp_shutdown_nonboot_cpus(unsigned int primary_cpu); #else /* CONFIG_HOTPLUG_CPU */ static inline void cpus_write_lock(void) { } static inline void cpus_write_unlock(void) { } static inline void cpus_read_lock(void) { } static inline void cpus_read_unlock(void) { } static inline int cpus_read_trylock(void) { return true; } static inline void lockdep_assert_cpus_held(void) { } static inline void cpu_hotplug_disable(void) { } static inline void cpu_hotplug_enable(void) { } static inline void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) { } #endif /* !CONFIG_HOTPLUG_CPU */ /* Wrappers which go away once all code is converted */ static inline void cpu_hotplug_begin(void) { cpus_write_lock(); } static inline void cpu_hotplug_done(void) { cpus_write_unlock(); } static inline void get_online_cpus(void) { cpus_read_lock(); } static inline void put_online_cpus(void) { cpus_read_unlock(); } #ifdef CONFIG_PM_SLEEP_SMP extern int freeze_secondary_cpus(int primary); extern void thaw_secondary_cpus(void); static inline int suspend_disable_secondary_cpus(void) { int cpu = 0; if (IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) cpu = -1; return freeze_secondary_cpus(cpu); } static inline void suspend_enable_secondary_cpus(void) { return thaw_secondary_cpus(); } #else /* !CONFIG_PM_SLEEP_SMP */ static inline void thaw_secondary_cpus(void) {} static inline int suspend_disable_secondary_cpus(void) { return 0; } static inline void suspend_enable_secondary_cpus(void) { } #endif /* !CONFIG_PM_SLEEP_SMP */ void cpu_startup_entry(enum cpuhp_state state); void cpu_idle_poll_ctrl(bool enable); /* Attach to any functions which should be considered cpuidle. */ #define __cpuidle __section(".cpuidle.text") bool cpu_in_idle(unsigned long pc); void arch_cpu_idle(void); void arch_cpu_idle_prepare(void); void arch_cpu_idle_enter(void); void arch_cpu_idle_exit(void); void arch_cpu_idle_dead(void); #ifdef CONFIG_ARCH_HAS_CPU_FINALIZE_INIT void arch_cpu_finalize_init(void); #else static inline void arch_cpu_finalize_init(void) { } #endif int cpu_report_state(int cpu); int cpu_check_up_prepare(int cpu); void cpu_set_state_online(int cpu); void play_idle_precise(u64 duration_ns, u64 latency_ns); static inline void play_idle(unsigned long duration_us) { play_idle_precise(duration_us * NSEC_PER_USEC, U64_MAX); } #ifdef CONFIG_HOTPLUG_CPU bool cpu_wait_death(unsigned int cpu, int seconds); bool cpu_report_death(void); void cpuhp_report_idle_dead(void); #else static inline void cpuhp_report_idle_dead(void) { } #endif /* #ifdef CONFIG_HOTPLUG_CPU */ enum cpuhp_smt_control { CPU_SMT_ENABLED, CPU_SMT_DISABLED, CPU_SMT_FORCE_DISABLED, CPU_SMT_NOT_SUPPORTED, CPU_SMT_NOT_IMPLEMENTED, }; #if defined(CONFIG_SMP) && defined(CONFIG_HOTPLUG_SMT) extern enum cpuhp_smt_control cpu_smt_control; extern void cpu_smt_disable(bool force); extern void cpu_smt_check_topology(void); extern bool cpu_smt_possible(void); extern int cpuhp_smt_enable(void); extern int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval); #else # define cpu_smt_control (CPU_SMT_NOT_IMPLEMENTED) static inline void cpu_smt_disable(bool force) { } static inline void cpu_smt_check_topology(void) { } static inline bool cpu_smt_possible(void) { return false; } static inline int cpuhp_smt_enable(void) { return 0; } static inline int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) { return 0; } #endif extern bool cpu_mitigations_off(void); extern bool cpu_mitigations_auto_nosmt(void); #endif /* _LINUX_CPU_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Authors: Lotsa people, from code originally in tcp */ #ifndef _INET_HASHTABLES_H #define _INET_HASHTABLES_H #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/socket.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/wait.h> #include <net/inet_connection_sock.h> #include <net/inet_sock.h> #include <net/sock.h> #include <net/route.h> #include <net/tcp_states.h> #include <net/netns/hash.h> #include <linux/refcount.h> #include <asm/byteorder.h> /* This is for all connections with a full identity, no wildcards. * The 'e' prefix stands for Establish, but we really put all sockets * but LISTEN ones. */ struct inet_ehash_bucket { struct hlist_nulls_head chain; }; /* There are a few simple rules, which allow for local port reuse by * an application. In essence: * * 1) Sockets bound to different interfaces may share a local port. * Failing that, goto test 2. * 2) If all sockets have sk->sk_reuse set, and none of them are in * TCP_LISTEN state, the port may be shared. * Failing that, goto test 3. * 3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local * address, and none of them are the same, the port may be * shared. * Failing this, the port cannot be shared. * * The interesting point, is test #2. This is what an FTP server does * all day. To optimize this case we use a specific flag bit defined * below. As we add sockets to a bind bucket list, we perform a * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN)) * As long as all sockets added to a bind bucket pass this test, * the flag bit will be set. * The resulting situation is that tcp_v[46]_verify_bind() can just check * for this flag bit, if it is set and the socket trying to bind has * sk->sk_reuse set, we don't even have to walk the owners list at all, * we return that it is ok to bind this socket to the requested local port. * * Sounds like a lot of work, but it is worth it. In a more naive * implementation (ie. current FreeBSD etc.) the entire list of ports * must be walked for each data port opened by an ftp server. Needless * to say, this does not scale at all. With a couple thousand FTP * users logged onto your box, isn't it nice to know that new data * ports are created in O(1) time? I thought so. ;-) -DaveM */ #define FASTREUSEPORT_ANY 1 #define FASTREUSEPORT_STRICT 2 struct inet_bind_bucket { possible_net_t ib_net; int l3mdev; unsigned short port; signed char fastreuse; signed char fastreuseport; kuid_t fastuid; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr fast_v6_rcv_saddr; #endif __be32 fast_rcv_saddr; unsigned short fast_sk_family; bool fast_ipv6_only; struct hlist_node node; struct hlist_head owners; }; static inline struct net *ib_net(struct inet_bind_bucket *ib) { return read_pnet(&ib->ib_net); } #define inet_bind_bucket_for_each(tb, head) \ hlist_for_each_entry(tb, head, node) struct inet_bind_hashbucket { spinlock_t lock; struct hlist_head chain; }; /* Sockets can be hashed in established or listening table. * We must use different 'nulls' end-of-chain value for all hash buckets : * A socket might transition from ESTABLISH to LISTEN state without * RCU grace period. A lookup in ehash table needs to handle this case. */ #define LISTENING_NULLS_BASE (1U << 29) struct inet_listen_hashbucket { spinlock_t lock; unsigned int count; union { struct hlist_head head; struct hlist_nulls_head nulls_head; }; }; /* This is for listening sockets, thus all sockets which possess wildcards. */ #define INET_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */ struct inet_hashinfo { /* This is for sockets with full identity only. Sockets here will * always be without wildcards and will have the following invariant: * * TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE * */ struct inet_ehash_bucket *ehash; spinlock_t *ehash_locks; unsigned int ehash_mask; unsigned int ehash_locks_mask; /* Ok, let's try this, I give up, we do need a local binding * TCP hash as well as the others for fast bind/connect. */ struct kmem_cache *bind_bucket_cachep; struct inet_bind_hashbucket *bhash; unsigned int bhash_size; /* The 2nd listener table hashed by local port and address */ unsigned int lhash2_mask; struct inet_listen_hashbucket *lhash2; /* All the above members are written once at bootup and * never written again _or_ are predominantly read-access. * * Now align to a new cache line as all the following members * might be often dirty. */ /* All sockets in TCP_LISTEN state will be in listening_hash. * This is the only table where wildcard'd TCP sockets can * exist. listening_hash is only hashed by local port number. * If lhash2 is initialized, the same socket will also be hashed * to lhash2 by port and address. */ struct inet_listen_hashbucket listening_hash[INET_LHTABLE_SIZE] ____cacheline_aligned_in_smp; }; #define inet_lhash2_for_each_icsk_rcu(__icsk, list) \ hlist_for_each_entry_rcu(__icsk, list, icsk_listen_portaddr_node) static inline struct inet_listen_hashbucket * inet_lhash2_bucket(struct inet_hashinfo *h, u32 hash) { return &h->lhash2[hash & h->lhash2_mask]; } static inline struct inet_ehash_bucket *inet_ehash_bucket( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash[hash & hashinfo->ehash_mask]; } static inline spinlock_t *inet_ehash_lockp( struct inet_hashinfo *hashinfo, unsigned int hash) { return &hashinfo->ehash_locks[hash & hashinfo->ehash_locks_mask]; } int inet_ehash_locks_alloc(struct inet_hashinfo *hashinfo); static inline void inet_hashinfo2_free_mod(struct inet_hashinfo *h) { kfree(h->lhash2); h->lhash2 = NULL; } static inline void inet_ehash_locks_free(struct inet_hashinfo *hashinfo) { kvfree(hashinfo->ehash_locks); hashinfo->ehash_locks = NULL; } struct inet_bind_bucket * inet_bind_bucket_create(struct kmem_cache *cachep, struct net *net, struct inet_bind_hashbucket *head, const unsigned short snum, int l3mdev); void inet_bind_bucket_destroy(struct kmem_cache *cachep, struct inet_bind_bucket *tb); static inline u32 inet_bhashfn(const struct net *net, const __u16 lport, const u32 bhash_size) { return (lport + net_hash_mix(net)) & (bhash_size - 1); } void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb, const unsigned short snum); /* These can have wildcards, don't try too hard. */ static inline u32 inet_lhashfn(const struct net *net, const unsigned short num) { return (num + net_hash_mix(net)) & (INET_LHTABLE_SIZE - 1); } static inline int inet_sk_listen_hashfn(const struct sock *sk) { return inet_lhashfn(sock_net(sk), inet_sk(sk)->inet_num); } /* Caller must disable local BH processing. */ int __inet_inherit_port(const struct sock *sk, struct sock *child); void inet_put_port(struct sock *sk); void inet_hashinfo_init(struct inet_hashinfo *h); void inet_hashinfo2_init(struct inet_hashinfo *h, const char *name, unsigned long numentries, int scale, unsigned long low_limit, unsigned long high_limit); int inet_hashinfo2_init_mod(struct inet_hashinfo *h); bool inet_ehash_insert(struct sock *sk, struct sock *osk, bool *found_dup_sk); bool inet_ehash_nolisten(struct sock *sk, struct sock *osk, bool *found_dup_sk); int __inet_hash(struct sock *sk, struct sock *osk); int inet_hash(struct sock *sk); void inet_unhash(struct sock *sk); struct sock *__inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const unsigned short hnum, const int dif, const int sdif); static inline struct sock *inet_lookup_listener(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif, int sdif) { return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, ntohs(dport), dif, sdif); } /* Socket demux engine toys. */ /* What happens here is ugly; there's a pair of adjacent fields in struct inet_sock; __be16 dport followed by __u16 num. We want to search by pair, so we combine the keys into a single 32bit value and compare with 32bit value read from &...->dport. Let's at least make sure that it's not mixed with anything else... On 64bit targets we combine comparisons with pair of adjacent __be32 fields in the same way. */ #ifdef __BIG_ENDIAN #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__force __u32)(__be16)(__sport) << 16) | (__u32)(__dport))) #else /* __LITTLE_ENDIAN */ #define INET_COMBINED_PORTS(__sport, __dport) \ ((__force __portpair)(((__u32)(__dport) << 16) | (__force __u32)(__be16)(__sport))) #endif #ifdef __BIG_ENDIAN #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__saddr)) << 32) | \ ((__force __u64)(__be32)(__daddr))) #else /* __LITTLE_ENDIAN */ #define INET_ADDR_COOKIE(__name, __saddr, __daddr) \ const __addrpair __name = (__force __addrpair) ( \ (((__force __u64)(__be32)(__daddr)) << 32) | \ ((__force __u64)(__be32)(__saddr))) #endif /* __BIG_ENDIAN */ static inline bool INET_MATCH(struct net *net, const struct sock *sk, const __addrpair cookie, const __portpair ports, int dif, int sdif) { if (!net_eq(sock_net(sk), net) || sk->sk_portpair != ports || sk->sk_addrpair != cookie) return false; /* READ_ONCE() paired with WRITE_ONCE() in sock_bindtoindex_locked() */ return inet_sk_bound_dev_eq(net, READ_ONCE(sk->sk_bound_dev_if), dif, sdif); } /* Sockets in TCP_CLOSE state are _always_ taken out of the hash, so we need * not check it for lookups anymore, thanks Alexey. -DaveM */ struct sock *__inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const u16 hnum, const int dif, const int sdif); typedef u32 (inet_ehashfn_t)(const struct net *net, const __be32 laddr, const __u16 lport, const __be32 faddr, const __be16 fport); inet_ehashfn_t inet_ehashfn; INDIRECT_CALLABLE_DECLARE(inet_ehashfn_t udp_ehashfn); struct sock *inet_lookup_reuseport(struct net *net, struct sock *sk, struct sk_buff *skb, int doff, __be32 saddr, __be16 sport, __be32 daddr, unsigned short hnum, inet_ehashfn_t *ehashfn); static inline struct sock * inet_lookup_established(struct net *net, struct inet_hashinfo *hashinfo, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { return __inet_lookup_established(net, hashinfo, saddr, sport, daddr, ntohs(dport), dif, 0); } static inline struct sock *__inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif, const int sdif, bool *refcounted) { u16 hnum = ntohs(dport); struct sock *sk; sk = __inet_lookup_established(net, hashinfo, saddr, sport, daddr, hnum, dif, sdif); *refcounted = true; if (sk) return sk; *refcounted = false; return __inet_lookup_listener(net, hashinfo, skb, doff, saddr, sport, daddr, hnum, dif, sdif); } static inline struct sock *inet_lookup(struct net *net, struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be32 saddr, const __be16 sport, const __be32 daddr, const __be16 dport, const int dif) { struct sock *sk; bool refcounted; sk = __inet_lookup(net, hashinfo, skb, doff, saddr, sport, daddr, dport, dif, 0, &refcounted); if (sk && !refcounted && !refcount_inc_not_zero(&sk->sk_refcnt)) sk = NULL; return sk; } static inline struct sock *__inet_lookup_skb(struct inet_hashinfo *hashinfo, struct sk_buff *skb, int doff, const __be16 sport, const __be16 dport, const int sdif, bool *refcounted) { struct sock *sk = skb_steal_sock(skb, refcounted); const struct iphdr *iph = ip_hdr(skb); if (sk) return sk; return __inet_lookup(dev_net(skb_dst(skb)->dev), hashinfo, skb, doff, iph->saddr, sport, iph->daddr, dport, inet_iif(skb), sdif, refcounted); } static inline void sk_daddr_set(struct sock *sk, __be32 addr) { sk->sk_daddr = addr; /* alias of inet_daddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_daddr); #endif } static inline void sk_rcv_saddr_set(struct sock *sk, __be32 addr) { sk->sk_rcv_saddr = addr; /* alias of inet_rcv_saddr */ #if IS_ENABLED(CONFIG_IPV6) ipv6_addr_set_v4mapped(addr, &sk->sk_v6_rcv_saddr); #endif } int __inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk, u64 port_offset, int (*check_established)(struct inet_timewait_death_row *, struct sock *, __u16, struct inet_timewait_sock **)); int inet_hash_connect(struct inet_timewait_death_row *death_row, struct sock *sk); #endif /* _INET_HASHTABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __FS_NOTIFY_FSNOTIFY_H_ #define __FS_NOTIFY_FSNOTIFY_H_ #include <linux/list.h> #include <linux/fsnotify.h> #include <linux/srcu.h> #include <linux/types.h> #include "../mount.h" static inline struct inode *fsnotify_conn_inode( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct inode, i_fsnotify_marks); } static inline struct mount *fsnotify_conn_mount( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct mount, mnt_fsnotify_marks); } static inline struct super_block *fsnotify_conn_sb( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct super_block, s_fsnotify_marks); } static inline struct super_block *fsnotify_connector_sb( struct fsnotify_mark_connector *conn) { switch (conn->type) { case FSNOTIFY_OBJ_TYPE_INODE: return fsnotify_conn_inode(conn)->i_sb; case FSNOTIFY_OBJ_TYPE_VFSMOUNT: return fsnotify_conn_mount(conn)->mnt.mnt_sb; case FSNOTIFY_OBJ_TYPE_SB: return fsnotify_conn_sb(conn); default: return NULL; } } /* destroy all events sitting in this groups notification queue */ extern void fsnotify_flush_notify(struct fsnotify_group *group); /* protects reads of inode and vfsmount marks list */ extern struct srcu_struct fsnotify_mark_srcu; /* compare two groups for sorting of marks lists */ extern int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b); /* Destroy all marks attached to an object via connector */ extern void fsnotify_destroy_marks(fsnotify_connp_t *connp); /* run the list of all marks associated with inode and destroy them */ static inline void fsnotify_clear_marks_by_inode(struct inode *inode) { fsnotify_destroy_marks(&inode->i_fsnotify_marks); } /* run the list of all marks associated with vfsmount and destroy them */ static inline void fsnotify_clear_marks_by_mount(struct vfsmount *mnt) { fsnotify_destroy_marks(&real_mount(mnt)->mnt_fsnotify_marks); } /* run the list of all marks associated with sb and destroy them */ static inline void fsnotify_clear_marks_by_sb(struct super_block *sb) { fsnotify_destroy_marks(&sb->s_fsnotify_marks); } /* * update the dentry->d_flags of all of inode's children to indicate if inode cares * about events that happen to its children. */ extern void fsnotify_set_children_dentry_flags(struct inode *inode); extern struct kmem_cache *fsnotify_mark_connector_cachep; #endif /* __FS_NOTIFY_FSNOTIFY_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM vmscan #if !defined(_TRACE_VMSCAN_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_VMSCAN_H #include <linux/types.h> #include <linux/tracepoint.h> #include <linux/mm.h> #include <linux/memcontrol.h> #include <trace/events/mmflags.h> #define RECLAIM_WB_ANON 0x0001u #define RECLAIM_WB_FILE 0x0002u #define RECLAIM_WB_MIXED 0x0010u #define RECLAIM_WB_SYNC 0x0004u /* Unused, all reclaim async */ #define RECLAIM_WB_ASYNC 0x0008u #define RECLAIM_WB_LRU (RECLAIM_WB_ANON|RECLAIM_WB_FILE) #define show_reclaim_flags(flags) \ (flags) ? __print_flags(flags, "|", \ {RECLAIM_WB_ANON, "RECLAIM_WB_ANON"}, \ {RECLAIM_WB_FILE, "RECLAIM_WB_FILE"}, \ {RECLAIM_WB_MIXED, "RECLAIM_WB_MIXED"}, \ {RECLAIM_WB_SYNC, "RECLAIM_WB_SYNC"}, \ {RECLAIM_WB_ASYNC, "RECLAIM_WB_ASYNC"} \ ) : "RECLAIM_WB_NONE" #define trace_reclaim_flags(file) ( \ (file ? RECLAIM_WB_FILE : RECLAIM_WB_ANON) | \ (RECLAIM_WB_ASYNC) \ ) TRACE_EVENT(mm_vmscan_kswapd_sleep, TP_PROTO(int nid), TP_ARGS(nid), TP_STRUCT__entry( __field( int, nid ) ), TP_fast_assign( __entry->nid = nid; ), TP_printk("nid=%d", __entry->nid) ); TRACE_EVENT(mm_vmscan_kswapd_wake, TP_PROTO(int nid, int zid, int order), TP_ARGS(nid, zid, order), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; ), TP_printk("nid=%d order=%d", __entry->nid, __entry->order) ); TRACE_EVENT(mm_vmscan_wakeup_kswapd, TP_PROTO(int nid, int zid, int order, gfp_t gfp_flags), TP_ARGS(nid, zid, order, gfp_flags), TP_STRUCT__entry( __field( int, nid ) __field( int, zid ) __field( int, order ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->nid = nid; __entry->zid = zid; __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_begin_template, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags), TP_STRUCT__entry( __field( int, order ) __field( gfp_t, gfp_flags ) ), TP_fast_assign( __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("order=%d gfp_flags=%s", __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_direct_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_softlimit_reclaim_begin, TP_PROTO(int order, gfp_t gfp_flags), TP_ARGS(order, gfp_flags) ); #endif /* CONFIG_MEMCG */ DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_end_template, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed), TP_STRUCT__entry( __field( unsigned long, nr_reclaimed ) ), TP_fast_assign( __entry->nr_reclaimed = nr_reclaimed; ), TP_printk("nr_reclaimed=%lu", __entry->nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_direct_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #ifdef CONFIG_MEMCG DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_softlimit_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #endif /* CONFIG_MEMCG */ TRACE_EVENT(mm_shrink_slab_start, TP_PROTO(struct shrinker *shr, struct shrink_control *sc, long nr_objects_to_shrink, unsigned long cache_items, unsigned long long delta, unsigned long total_scan, int priority), TP_ARGS(shr, sc, nr_objects_to_shrink, cache_items, delta, total_scan, priority), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(void *, shrink) __field(int, nid) __field(long, nr_objects_to_shrink) __field(gfp_t, gfp_flags) __field(unsigned long, cache_items) __field(unsigned long long, delta) __field(unsigned long, total_scan) __field(int, priority) ), TP_fast_assign( __entry->shr = shr; __entry->shrink = shr->scan_objects; __entry->nid = sc->nid; __entry->nr_objects_to_shrink = nr_objects_to_shrink; __entry->gfp_flags = sc->gfp_mask; __entry->cache_items = cache_items; __entry->delta = delta; __entry->total_scan = total_scan; __entry->priority = priority; ), TP_printk("%pS %p: nid: %d objects to shrink %ld gfp_flags %s cache items %ld delta %lld total_scan %ld priority %d", __entry->shrink, __entry->shr, __entry->nid, __entry->nr_objects_to_shrink, show_gfp_flags(__entry->gfp_flags), __entry->cache_items, __entry->delta, __entry->total_scan, __entry->priority) ); TRACE_EVENT(mm_shrink_slab_end, TP_PROTO(struct shrinker *shr, int nid, int shrinker_retval, long unused_scan_cnt, long new_scan_cnt, long total_scan), TP_ARGS(shr, nid, shrinker_retval, unused_scan_cnt, new_scan_cnt, total_scan), TP_STRUCT__entry( __field(struct shrinker *, shr) __field(int, nid) __field(void *, shrink) __field(long, unused_scan) __field(long, new_scan) __field(int, retval) __field(long, total_scan) ), TP_fast_assign( __entry->shr = shr; __entry->nid = nid; __entry->shrink = shr->scan_objects; __entry->unused_scan = unused_scan_cnt; __entry->new_scan = new_scan_cnt; __entry->retval = shrinker_retval; __entry->total_scan = total_scan; ), TP_printk("%pS %p: nid: %d unused scan count %ld new scan count %ld total_scan %ld last shrinker return val %d", __entry->shrink, __entry->shr, __entry->nid, __entry->unused_scan, __entry->new_scan, __entry->total_scan, __entry->retval) ); TRACE_EVENT(mm_vmscan_lru_isolate, TP_PROTO(int highest_zoneidx, int order, unsigned long nr_requested, unsigned long nr_scanned, unsigned long nr_skipped, unsigned long nr_taken, isolate_mode_t isolate_mode, int lru), TP_ARGS(highest_zoneidx, order, nr_requested, nr_scanned, nr_skipped, nr_taken, isolate_mode, lru), TP_STRUCT__entry( __field(int, highest_zoneidx) __field(int, order) __field(unsigned long, nr_requested) __field(unsigned long, nr_scanned) __field(unsigned long, nr_skipped) __field(unsigned long, nr_taken) __field(unsigned int, isolate_mode) __field(int, lru) ), TP_fast_assign( __entry->highest_zoneidx = highest_zoneidx; __entry->order = order; __entry->nr_requested = nr_requested; __entry->nr_scanned = nr_scanned; __entry->nr_skipped = nr_skipped; __entry->nr_taken = nr_taken; __entry->isolate_mode = (__force unsigned int)isolate_mode; __entry->lru = lru; ), /* * classzone is previous name of the highest_zoneidx. * Reason not to change it is the ABI requirement of the tracepoint. */ TP_printk("isolate_mode=%d classzone=%d order=%d nr_requested=%lu nr_scanned=%lu nr_skipped=%lu nr_taken=%lu lru=%s", __entry->isolate_mode, __entry->highest_zoneidx, __entry->order, __entry->nr_requested, __entry->nr_scanned, __entry->nr_skipped, __entry->nr_taken, __print_symbolic(__entry->lru, LRU_NAMES)) ); TRACE_EVENT(mm_vmscan_writepage, TP_PROTO(struct page *page), TP_ARGS(page), TP_STRUCT__entry( __field(unsigned long, pfn) __field(int, reclaim_flags) ), TP_fast_assign( __entry->pfn = page_to_pfn(page); __entry->reclaim_flags = trace_reclaim_flags( page_is_file_lru(page)); ), TP_printk("page=%p pfn=%lu flags=%s", pfn_to_page(__entry->pfn), __entry->pfn, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_lru_shrink_inactive, TP_PROTO(int nid, unsigned long nr_scanned, unsigned long nr_reclaimed, struct reclaim_stat *stat, int priority, int file), TP_ARGS(nid, nr_scanned, nr_reclaimed, stat, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_scanned) __field(unsigned long, nr_reclaimed) __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, nr_congested) __field(unsigned long, nr_immediate) __field(unsigned int, nr_activate0) __field(unsigned int, nr_activate1) __field(unsigned long, nr_ref_keep) __field(unsigned long, nr_unmap_fail) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_scanned = nr_scanned; __entry->nr_reclaimed = nr_reclaimed; __entry->nr_dirty = stat->nr_dirty; __entry->nr_writeback = stat->nr_writeback; __entry->nr_congested = stat->nr_congested; __entry->nr_immediate = stat->nr_immediate; __entry->nr_activate0 = stat->nr_activate[0]; __entry->nr_activate1 = stat->nr_activate[1]; __entry->nr_ref_keep = stat->nr_ref_keep; __entry->nr_unmap_fail = stat->nr_unmap_fail; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_scanned=%ld nr_reclaimed=%ld nr_dirty=%ld nr_writeback=%ld nr_congested=%ld nr_immediate=%ld nr_activate_anon=%d nr_activate_file=%d nr_ref_keep=%ld nr_unmap_fail=%ld priority=%d flags=%s", __entry->nid, __entry->nr_scanned, __entry->nr_reclaimed, __entry->nr_dirty, __entry->nr_writeback, __entry->nr_congested, __entry->nr_immediate, __entry->nr_activate0, __entry->nr_activate1, __entry->nr_ref_keep, __entry->nr_unmap_fail, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_lru_shrink_active, TP_PROTO(int nid, unsigned long nr_taken, unsigned long nr_active, unsigned long nr_deactivated, unsigned long nr_referenced, int priority, int file), TP_ARGS(nid, nr_taken, nr_active, nr_deactivated, nr_referenced, priority, file), TP_STRUCT__entry( __field(int, nid) __field(unsigned long, nr_taken) __field(unsigned long, nr_active) __field(unsigned long, nr_deactivated) __field(unsigned long, nr_referenced) __field(int, priority) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->nr_taken = nr_taken; __entry->nr_active = nr_active; __entry->nr_deactivated = nr_deactivated; __entry->nr_referenced = nr_referenced; __entry->priority = priority; __entry->reclaim_flags = trace_reclaim_flags(file); ), TP_printk("nid=%d nr_taken=%ld nr_active=%ld nr_deactivated=%ld nr_referenced=%ld priority=%d flags=%s", __entry->nid, __entry->nr_taken, __entry->nr_active, __entry->nr_deactivated, __entry->nr_referenced, __entry->priority, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_inactive_list_is_low, TP_PROTO(int nid, int reclaim_idx, unsigned long total_inactive, unsigned long inactive, unsigned long total_active, unsigned long active, unsigned long ratio, int file), TP_ARGS(nid, reclaim_idx, total_inactive, inactive, total_active, active, ratio, file), TP_STRUCT__entry( __field(int, nid) __field(int, reclaim_idx) __field(unsigned long, total_inactive) __field(unsigned long, inactive) __field(unsigned long, total_active) __field(unsigned long, active) __field(unsigned long, ratio) __field(int, reclaim_flags) ), TP_fast_assign( __entry->nid = nid; __entry->reclaim_idx = reclaim_idx; __entry->total_inactive = total_inactive; __entry->inactive = inactive; __entry->total_active = total_active; __entry->active = active; __entry->ratio = ratio; __entry->reclaim_flags = trace_reclaim_flags(file) & RECLAIM_WB_LRU; ), TP_printk("nid=%d reclaim_idx=%d total_inactive=%ld inactive=%ld total_active=%ld active=%ld ratio=%ld flags=%s", __entry->nid, __entry->reclaim_idx, __entry->total_inactive, __entry->inactive, __entry->total_active, __entry->active, __entry->ratio, show_reclaim_flags(__entry->reclaim_flags)) ); TRACE_EVENT(mm_vmscan_node_reclaim_begin, TP_PROTO(int nid, int order, gfp_t gfp_flags), TP_ARGS(nid, order, gfp_flags), TP_STRUCT__entry( __field(int, nid) __field(int, order) __field(gfp_t, gfp_flags) ), TP_fast_assign( __entry->nid = nid; __entry->order = order; __entry->gfp_flags = gfp_flags; ), TP_printk("nid=%d order=%d gfp_flags=%s", __entry->nid, __entry->order, show_gfp_flags(__entry->gfp_flags)) ); DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_node_reclaim_end, TP_PROTO(unsigned long nr_reclaimed), TP_ARGS(nr_reclaimed) ); #endif /* _TRACE_VMSCAN_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ERR_H #define _LINUX_ERR_H #include <linux/compiler.h> #include <linux/types.h> #include <asm/errno.h> /* * Kernel pointers have redundant information, so we can use a * scheme where we can return either an error code or a normal * pointer with the same return value. * * This should be a per-architecture thing, to allow different * error and pointer decisions. */ #define MAX_ERRNO 4095 #ifndef __ASSEMBLY__ #define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >= (unsigned long)-MAX_ERRNO) static inline void * __must_check ERR_PTR(long error) { return (void *) error; } static inline long __must_check PTR_ERR(__force const void *ptr) { return (long) ptr; } static inline bool __must_check IS_ERR(__force const void *ptr) { return IS_ERR_VALUE((unsigned long)ptr); } static inline bool __must_check IS_ERR_OR_NULL(__force const void *ptr) { return unlikely(!ptr) || IS_ERR_VALUE((unsigned long)ptr); } /** * ERR_CAST - Explicitly cast an error-valued pointer to another pointer type * @ptr: The pointer to cast. * * Explicitly cast an error-valued pointer to another pointer type in such a * way as to make it clear that's what's going on. */ static inline void * __must_check ERR_CAST(__force const void *ptr) { /* cast away the const */ return (void *) ptr; } static inline int __must_check PTR_ERR_OR_ZERO(__force const void *ptr) { if (IS_ERR(ptr)) return PTR_ERR(ptr); else return 0; } #endif #endif /* _LINUX_ERR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Fast and scalable bitmaps. * * Copyright (C) 2016 Facebook * Copyright (C) 2013-2014 Jens Axboe */ #ifndef __LINUX_SCALE_BITMAP_H #define __LINUX_SCALE_BITMAP_H #include <linux/kernel.h> #include <linux/slab.h> struct seq_file; /** * struct sbitmap_word - Word in a &struct sbitmap. */ struct sbitmap_word { /** * @depth: Number of bits being used in @word/@cleared */ unsigned long depth; /** * @word: word holding free bits */ unsigned long word ____cacheline_aligned_in_smp; /** * @cleared: word holding cleared bits */ unsigned long cleared ____cacheline_aligned_in_smp; /** * @swap_lock: Held while swapping word <-> cleared */ spinlock_t swap_lock; } ____cacheline_aligned_in_smp; /** * struct sbitmap - Scalable bitmap. * * A &struct sbitmap is spread over multiple cachelines to avoid ping-pong. This * trades off higher memory usage for better scalability. */ struct sbitmap { /** * @depth: Number of bits used in the whole bitmap. */ unsigned int depth; /** * @shift: log2(number of bits used per word) */ unsigned int shift; /** * @map_nr: Number of words (cachelines) being used for the bitmap. */ unsigned int map_nr; /** * @map: Allocated bitmap. */ struct sbitmap_word *map; }; #define SBQ_WAIT_QUEUES 8 #define SBQ_WAKE_BATCH 8 /** * struct sbq_wait_state - Wait queue in a &struct sbitmap_queue. */ struct sbq_wait_state { /** * @wait_cnt: Number of frees remaining before we wake up. */ atomic_t wait_cnt; /** * @wait: Wait queue. */ wait_queue_head_t wait; } ____cacheline_aligned_in_smp; /** * struct sbitmap_queue - Scalable bitmap with the added ability to wait on free * bits. * * A &struct sbitmap_queue uses multiple wait queues and rolling wakeups to * avoid contention on the wait queue spinlock. This ensures that we don't hit a * scalability wall when we run out of free bits and have to start putting tasks * to sleep. */ struct sbitmap_queue { /** * @sb: Scalable bitmap. */ struct sbitmap sb; /* * @alloc_hint: Cache of last successfully allocated or freed bit. * * This is per-cpu, which allows multiple users to stick to different * cachelines until the map is exhausted. */ unsigned int __percpu *alloc_hint; /** * @wake_batch: Number of bits which must be freed before we wake up any * waiters. */ unsigned int wake_batch; /** * @wake_index: Next wait queue in @ws to wake up. */ atomic_t wake_index; /** * @ws: Wait queues. */ struct sbq_wait_state *ws; /* * @ws_active: count of currently active ws waitqueues */ atomic_t ws_active; /** * @round_robin: Allocate bits in strict round-robin order. */ bool round_robin; /** * @min_shallow_depth: The minimum shallow depth which may be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). */ unsigned int min_shallow_depth; }; /** * sbitmap_init_node() - Initialize a &struct sbitmap on a specific memory node. * @sb: Bitmap to initialize. * @depth: Number of bits to allocate. * @shift: Use 2^@shift bits per word in the bitmap; if a negative number if * given, a good default is chosen. * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift, gfp_t flags, int node); /** * sbitmap_free() - Free memory used by a &struct sbitmap. * @sb: Bitmap to free. */ static inline void sbitmap_free(struct sbitmap *sb) { kfree(sb->map); sb->map = NULL; } /** * sbitmap_resize() - Resize a &struct sbitmap. * @sb: Bitmap to resize. * @depth: New number of bits to resize to. * * Doesn't reallocate anything. It's up to the caller to ensure that the new * depth doesn't exceed the depth that the sb was initialized with. */ void sbitmap_resize(struct sbitmap *sb, unsigned int depth); /** * sbitmap_get() - Try to allocate a free bit from a &struct sbitmap. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @round_robin: If true, be stricter about allocation order; always allocate * starting from the last allocated bit. This is less efficient * than the default behavior (false). * * This operation provides acquire barrier semantics if it succeeds. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin); /** * sbitmap_get_shallow() - Try to allocate a free bit from a &struct sbitmap, * limiting the depth used from each word. * @sb: Bitmap to allocate from. * @alloc_hint: Hint for where to start searching for a free bit. * @shallow_depth: The maximum number of bits to allocate from a single word. * * This rather specific operation allows for having multiple users with * different allocation limits. E.g., there can be a high-priority class that * uses sbitmap_get() and a low-priority class that uses sbitmap_get_shallow() * with a @shallow_depth of (1 << (@sb->shift - 1)). Then, the low-priority * class can only allocate half of the total bits in the bitmap, preventing it * from starving out the high-priority class. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint, unsigned long shallow_depth); /** * sbitmap_any_bit_set() - Check for a set bit in a &struct sbitmap. * @sb: Bitmap to check. * * Return: true if any bit in the bitmap is set, false otherwise. */ bool sbitmap_any_bit_set(const struct sbitmap *sb); #define SB_NR_TO_INDEX(sb, bitnr) ((bitnr) >> (sb)->shift) #define SB_NR_TO_BIT(sb, bitnr) ((bitnr) & ((1U << (sb)->shift) - 1U)) typedef bool (*sb_for_each_fn)(struct sbitmap *, unsigned int, void *); /** * __sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @start: Where to start the iteration. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. * * This is inline even though it's non-trivial so that the function calls to the * callback will hopefully get optimized away. */ static inline void __sbitmap_for_each_set(struct sbitmap *sb, unsigned int start, sb_for_each_fn fn, void *data) { unsigned int index; unsigned int nr; unsigned int scanned = 0; if (start >= sb->depth) start = 0; index = SB_NR_TO_INDEX(sb, start); nr = SB_NR_TO_BIT(sb, start); while (scanned < sb->depth) { unsigned long word; unsigned int depth = min_t(unsigned int, sb->map[index].depth - nr, sb->depth - scanned); scanned += depth; word = sb->map[index].word & ~sb->map[index].cleared; if (!word) goto next; /* * On the first iteration of the outer loop, we need to add the * bit offset back to the size of the word for find_next_bit(). * On all other iterations, nr is zero, so this is a noop. */ depth += nr; while (1) { nr = find_next_bit(&word, depth, nr); if (nr >= depth) break; if (!fn(sb, (index << sb->shift) + nr, data)) return; nr++; } next: nr = 0; if (++index >= sb->map_nr) index = 0; } } /** * sbitmap_for_each_set() - Iterate over each set bit in a &struct sbitmap. * @sb: Bitmap to iterate over. * @fn: Callback. Should return true to continue or false to break early. * @data: Pointer to pass to callback. */ static inline void sbitmap_for_each_set(struct sbitmap *sb, sb_for_each_fn fn, void *data) { __sbitmap_for_each_set(sb, 0, fn, data); } static inline unsigned long *__sbitmap_word(struct sbitmap *sb, unsigned int bitnr) { return &sb->map[SB_NR_TO_INDEX(sb, bitnr)].word; } /* Helpers equivalent to the operations in asm/bitops.h and linux/bitmap.h */ static inline void sbitmap_set_bit(struct sbitmap *sb, unsigned int bitnr) { set_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline void sbitmap_clear_bit(struct sbitmap *sb, unsigned int bitnr) { clear_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /* * This one is special, since it doesn't actually clear the bit, rather it * sets the corresponding bit in the ->cleared mask instead. Paired with * the caller doing sbitmap_deferred_clear() if a given index is full, which * will clear the previously freed entries in the corresponding ->word. */ static inline void sbitmap_deferred_clear_bit(struct sbitmap *sb, unsigned int bitnr) { unsigned long *addr = &sb->map[SB_NR_TO_INDEX(sb, bitnr)].cleared; set_bit(SB_NR_TO_BIT(sb, bitnr), addr); } static inline void sbitmap_clear_bit_unlock(struct sbitmap *sb, unsigned int bitnr) { clear_bit_unlock(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } static inline int sbitmap_test_bit(struct sbitmap *sb, unsigned int bitnr) { return test_bit(SB_NR_TO_BIT(sb, bitnr), __sbitmap_word(sb, bitnr)); } /** * sbitmap_show() - Dump &struct sbitmap information to a &struct seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_bitmap_show() - Write a hex dump of a &struct sbitmap to a &struct * seq_file. * @sb: Bitmap to show. * @m: struct seq_file to write to. * * This is intended for debugging. The output isn't guaranteed to be internally * consistent. */ void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m); /** * sbitmap_queue_init_node() - Initialize a &struct sbitmap_queue on a specific * memory node. * @sbq: Bitmap queue to initialize. * @depth: See sbitmap_init_node(). * @shift: See sbitmap_init_node(). * @round_robin: See sbitmap_get(). * @flags: Allocation flags. * @node: Memory node to allocate on. * * Return: Zero on success or negative errno on failure. */ int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth, int shift, bool round_robin, gfp_t flags, int node); /** * sbitmap_queue_free() - Free memory used by a &struct sbitmap_queue. * * @sbq: Bitmap queue to free. */ static inline void sbitmap_queue_free(struct sbitmap_queue *sbq) { kfree(sbq->ws); free_percpu(sbq->alloc_hint); sbitmap_free(&sbq->sb); } /** * sbitmap_queue_resize() - Resize a &struct sbitmap_queue. * @sbq: Bitmap queue to resize. * @depth: New number of bits to resize to. * * Like sbitmap_resize(), this doesn't reallocate anything. It has to do * some extra work on the &struct sbitmap_queue, so it's not safe to just * resize the underlying &struct sbitmap. */ void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth); /** * __sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue with preemption already disabled. * @sbq: Bitmap queue to allocate from. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get(struct sbitmap_queue *sbq); /** * __sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word, with preemption * already disabled. * @sbq: Bitmap queue to allocate from. * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int shallow_depth); /** * sbitmap_queue_get() - Try to allocate a free bit from a &struct * sbitmap_queue. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get(struct sbitmap_queue *sbq, unsigned int *cpu) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get(sbq); put_cpu(); return nr; } /** * sbitmap_queue_get_shallow() - Try to allocate a free bit from a &struct * sbitmap_queue, limiting the depth used from each word. * @sbq: Bitmap queue to allocate from. * @cpu: Output parameter; will contain the CPU we ran on (e.g., to be passed to * sbitmap_queue_clear()). * @shallow_depth: The maximum number of bits to allocate from a single word. * See sbitmap_get_shallow(). * * If you call this, make sure to call sbitmap_queue_min_shallow_depth() after * initializing @sbq. * * Return: Non-negative allocated bit number if successful, -1 otherwise. */ static inline int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq, unsigned int *cpu, unsigned int shallow_depth) { int nr; *cpu = get_cpu(); nr = __sbitmap_queue_get_shallow(sbq, shallow_depth); put_cpu(); return nr; } /** * sbitmap_queue_min_shallow_depth() - Inform a &struct sbitmap_queue of the * minimum shallow depth that will be used. * @sbq: Bitmap queue in question. * @min_shallow_depth: The minimum shallow depth that will be passed to * sbitmap_queue_get_shallow() or __sbitmap_queue_get_shallow(). * * sbitmap_queue_clear() batches wakeups as an optimization. The batch size * depends on the depth of the bitmap. Since the shallow allocation functions * effectively operate with a different depth, the shallow depth must be taken * into account when calculating the batch size. This function must be called * with the minimum shallow depth that will be used. Failure to do so can result * in missed wakeups. */ void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq, unsigned int min_shallow_depth); /** * sbitmap_queue_clear() - Free an allocated bit and wake up waiters on a * &struct sbitmap_queue. * @sbq: Bitmap to free from. * @nr: Bit number to free. * @cpu: CPU the bit was allocated on. */ void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr, unsigned int cpu); static inline int sbq_index_inc(int index) { return (index + 1) & (SBQ_WAIT_QUEUES - 1); } static inline void sbq_index_atomic_inc(atomic_t *index) { int old = atomic_read(index); int new = sbq_index_inc(old); atomic_cmpxchg(index, old, new); } /** * sbq_wait_ptr() - Get the next wait queue to use for a &struct * sbitmap_queue. * @sbq: Bitmap queue to wait on. * @wait_index: A counter per "user" of @sbq. */ static inline struct sbq_wait_state *sbq_wait_ptr(struct sbitmap_queue *sbq, atomic_t *wait_index) { struct sbq_wait_state *ws; ws = &sbq->ws[atomic_read(wait_index)]; sbq_index_atomic_inc(wait_index); return ws; } /** * sbitmap_queue_wake_all() - Wake up everything waiting on a &struct * sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_all(struct sbitmap_queue *sbq); /** * sbitmap_queue_wake_up() - Wake up some of waiters in one waitqueue * on a &struct sbitmap_queue. * @sbq: Bitmap queue to wake up. */ void sbitmap_queue_wake_up(struct sbitmap_queue *sbq); /** * sbitmap_queue_show() - Dump &struct sbitmap_queue information to a &struct * seq_file. * @sbq: Bitmap queue to show. * @m: struct seq_file to write to. * * This is intended for debugging. The format may change at any time. */ void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m); struct sbq_wait { struct sbitmap_queue *sbq; /* if set, sbq_wait is accounted */ struct wait_queue_entry wait; }; #define DEFINE_SBQ_WAIT(name) \ struct sbq_wait name = { \ .sbq = NULL, \ .wait = { \ .private = current, \ .func = autoremove_wake_function, \ .entry = LIST_HEAD_INIT((name).wait.entry), \ } \ } /* * Wrapper around prepare_to_wait_exclusive(), which maintains some extra * internal state. */ void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait, int state); /* * Must be paired with sbitmap_prepare_to_wait(). */ void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Wrapper around add_wait_queue(), which maintains some extra internal state */ void sbitmap_add_wait_queue(struct sbitmap_queue *sbq, struct sbq_wait_state *ws, struct sbq_wait *sbq_wait); /* * Must be paired with sbitmap_add_wait_queue() */ void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait); #endif /* __LINUX_SCALE_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_PRINTK_RINGBUFFER_H #define _KERNEL_PRINTK_RINGBUFFER_H #include <linux/atomic.h> #include <linux/dev_printk.h> /* * Meta information about each stored message. * * All fields are set by the printk code except for @seq, which is * set by the ringbuffer code. */ struct printk_info { u64 seq; /* sequence number */ u64 ts_nsec; /* timestamp in nanoseconds */ u16 text_len; /* length of text message */ u8 facility; /* syslog facility */ u8 flags:5; /* internal record flags */ u8 level:3; /* syslog level */ u32 caller_id; /* thread id or processor id */ struct dev_printk_info dev_info; }; /* * A structure providing the buffers, used by writers and readers. * * Writers: * Using prb_rec_init_wr(), a writer sets @text_buf_size before calling * prb_reserve(). On success, prb_reserve() sets @info and @text_buf to * buffers reserved for that writer. * * Readers: * Using prb_rec_init_rd(), a reader sets all fields before calling * prb_read_valid(). Note that the reader provides the @info and @text_buf, * buffers. On success, the struct pointed to by @info will be filled and * the char array pointed to by @text_buf will be filled with text data. */ struct printk_record { struct printk_info *info; char *text_buf; unsigned int text_buf_size; }; /* Specifies the logical position and span of a data block. */ struct prb_data_blk_lpos { unsigned long begin; unsigned long next; }; /* * A descriptor: the complete meta-data for a record. * * @state_var: A bitwise combination of descriptor ID and descriptor state. */ struct prb_desc { atomic_long_t state_var; struct prb_data_blk_lpos text_blk_lpos; }; /* A ringbuffer of "ID + data" elements. */ struct prb_data_ring { unsigned int size_bits; char *data; atomic_long_t head_lpos; atomic_long_t tail_lpos; }; /* A ringbuffer of "struct prb_desc" elements. */ struct prb_desc_ring { unsigned int count_bits; struct prb_desc *descs; struct printk_info *infos; atomic_long_t head_id; atomic_long_t tail_id; }; /* * The high level structure representing the printk ringbuffer. * * @fail: Count of failed prb_reserve() calls where not even a data-less * record was created. */ struct printk_ringbuffer { struct prb_desc_ring desc_ring; struct prb_data_ring text_data_ring; atomic_long_t fail; }; /* * Used by writers as a reserve/commit handle. * * @rb: Ringbuffer where the entry is reserved. * @irqflags: Saved irq flags to restore on entry commit. * @id: ID of the reserved descriptor. * @text_space: Total occupied buffer space in the text data ring, including * ID, alignment padding, and wrapping data blocks. * * This structure is an opaque handle for writers. Its contents are only * to be used by the ringbuffer implementation. */ struct prb_reserved_entry { struct printk_ringbuffer *rb; unsigned long irqflags; unsigned long id; unsigned int text_space; }; /* The possible responses of a descriptor state-query. */ enum desc_state { desc_miss = -1, /* ID mismatch (pseudo state) */ desc_reserved = 0x0, /* reserved, in use by writer */ desc_committed = 0x1, /* committed by writer, could get reopened */ desc_finalized = 0x2, /* committed, no further modification allowed */ desc_reusable = 0x3, /* free, not yet used by any writer */ }; #define _DATA_SIZE(sz_bits) (1UL << (sz_bits)) #define _DESCS_COUNT(ct_bits) (1U << (ct_bits)) #define DESC_SV_BITS (sizeof(unsigned long) * 8) #define DESC_FLAGS_SHIFT (DESC_SV_BITS - 2) #define DESC_FLAGS_MASK (3UL << DESC_FLAGS_SHIFT) #define DESC_STATE(sv) (3UL & (sv >> DESC_FLAGS_SHIFT)) #define DESC_SV(id, state) (((unsigned long)state << DESC_FLAGS_SHIFT) | id) #define DESC_ID_MASK (~DESC_FLAGS_MASK) #define DESC_ID(sv) ((sv) & DESC_ID_MASK) #define FAILED_LPOS 0x1 #define NO_LPOS 0x3 #define FAILED_BLK_LPOS \ { \ .begin = FAILED_LPOS, \ .next = FAILED_LPOS, \ } /* * Descriptor Bootstrap * * The descriptor array is minimally initialized to allow immediate usage * by readers and writers. The requirements that the descriptor array * initialization must satisfy: * * Req1 * The tail must point to an existing (committed or reusable) descriptor. * This is required by the implementation of prb_first_seq(). * * Req2 * Readers must see that the ringbuffer is initially empty. * * Req3 * The first record reserved by a writer is assigned sequence number 0. * * To satisfy Req1, the tail initially points to a descriptor that is * minimally initialized (having no data block, i.e. data-less with the * data block's lpos @begin and @next values set to FAILED_LPOS). * * To satisfy Req2, the initial tail descriptor is initialized to the * reusable state. Readers recognize reusable descriptors as existing * records, but skip over them. * * To satisfy Req3, the last descriptor in the array is used as the initial * head (and tail) descriptor. This allows the first record reserved by a * writer (head + 1) to be the first descriptor in the array. (Only the first * descriptor in the array could have a valid sequence number of 0.) * * The first time a descriptor is reserved, it is assigned a sequence number * with the value of the array index. A "first time reserved" descriptor can * be recognized because it has a sequence number of 0 but does not have an * index of 0. (Only the first descriptor in the array could have a valid * sequence number of 0.) After the first reservation, all future reservations * (recycling) simply involve incrementing the sequence number by the array * count. * * Hack #1 * Only the first descriptor in the array is allowed to have the sequence * number 0. In this case it is not possible to recognize if it is being * reserved the first time (set to index value) or has been reserved * previously (increment by the array count). This is handled by _always_ * incrementing the sequence number by the array count when reserving the * first descriptor in the array. In order to satisfy Req3, the sequence * number of the first descriptor in the array is initialized to minus * the array count. Then, upon the first reservation, it is incremented * to 0, thus satisfying Req3. * * Hack #2 * prb_first_seq() can be called at any time by readers to retrieve the * sequence number of the tail descriptor. However, due to Req2 and Req3, * initially there are no records to report the sequence number of * (sequence numbers are u64 and there is nothing less than 0). To handle * this, the sequence number of the initial tail descriptor is initialized * to 0. Technically this is incorrect, because there is no record with * sequence number 0 (yet) and the tail descriptor is not the first * descriptor in the array. But it allows prb_read_valid() to correctly * report the existence of a record for _any_ given sequence number at all * times. Bootstrapping is complete when the tail is pushed the first * time, thus finally pointing to the first descriptor reserved by a * writer, which has the assigned sequence number 0. */ /* * Initiating Logical Value Overflows * * Both logical position (lpos) and ID values can be mapped to array indexes * but may experience overflows during the lifetime of the system. To ensure * that printk_ringbuffer can handle the overflows for these types, initial * values are chosen that map to the correct initial array indexes, but will * result in overflows soon. * * BLK0_LPOS * The initial @head_lpos and @tail_lpos for data rings. It is at index * 0 and the lpos value is such that it will overflow on the first wrap. * * DESC0_ID * The initial @head_id and @tail_id for the desc ring. It is at the last * index of the descriptor array (see Req3 above) and the ID value is such * that it will overflow on the second wrap. */ #define BLK0_LPOS(sz_bits) (-(_DATA_SIZE(sz_bits))) #define DESC0_ID(ct_bits) DESC_ID(-(_DESCS_COUNT(ct_bits) + 1)) #define DESC0_SV(ct_bits) DESC_SV(DESC0_ID(ct_bits), desc_reusable) /* * Define a ringbuffer with an external text data buffer. The same as * DEFINE_PRINTKRB() but requires specifying an external buffer for the * text data. * * Note: The specified external buffer must be of the size: * 2 ^ (descbits + avgtextbits) */ #define _DEFINE_PRINTKRB(name, descbits, avgtextbits, text_buf) \ static struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = { \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reusable */ \ .state_var = ATOMIC_INIT(DESC0_SV(descbits)), \ /* no associated data block */ \ .text_blk_lpos = FAILED_BLK_LPOS, \ }, \ }; \ static struct printk_info _##name##_infos[_DESCS_COUNT(descbits)] = { \ /* this will be the first record reserved by a writer */ \ [0] = { \ /* will be incremented to 0 on the first reservation */ \ .seq = -(u64)_DESCS_COUNT(descbits), \ }, \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reports the first seq value during the bootstrap phase */ \ .seq = 0, \ }, \ }; \ static struct printk_ringbuffer name = { \ .desc_ring = { \ .count_bits = descbits, \ .descs = &_##name##_descs[0], \ .infos = &_##name##_infos[0], \ .head_id = ATOMIC_INIT(DESC0_ID(descbits)), \ .tail_id = ATOMIC_INIT(DESC0_ID(descbits)), \ }, \ .text_data_ring = { \ .size_bits = (avgtextbits) + (descbits), \ .data = text_buf, \ .head_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ .tail_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ }, \ .fail = ATOMIC_LONG_INIT(0), \ } /** * DEFINE_PRINTKRB() - Define a ringbuffer. * * @name: The name of the ringbuffer variable. * @descbits: The number of descriptors as a power-of-2 value. * @avgtextbits: The average text data size per record as a power-of-2 value. * * This is a macro for defining a ringbuffer and all internal structures * such that it is ready for immediate use. See _DEFINE_PRINTKRB() for a * variant where the text data buffer can be specified externally. */ #define DEFINE_PRINTKRB(name, descbits, avgtextbits) \ static char _##name##_text[1U << ((avgtextbits) + (descbits))] \ __aligned(__alignof__(unsigned long)); \ _DEFINE_PRINTKRB(name, descbits, avgtextbits, &_##name##_text[0]) /* Writer Interface */ /** * prb_rec_init_wd() - Initialize a buffer for writing records. * * @r: The record to initialize. * @text_buf_size: The needed text buffer size. */ static inline void prb_rec_init_wr(struct printk_record *r, unsigned int text_buf_size) { r->info = NULL; r->text_buf = NULL; r->text_buf_size = text_buf_size; } bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r); bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r, u32 caller_id, unsigned int max_size); void prb_commit(struct prb_reserved_entry *e); void prb_final_commit(struct prb_reserved_entry *e); void prb_init(struct printk_ringbuffer *rb, char *text_buf, unsigned int text_buf_size, struct prb_desc *descs, unsigned int descs_count_bits, struct printk_info *infos); unsigned int prb_record_text_space(struct prb_reserved_entry *e); /* Reader Interface */ /** * prb_rec_init_rd() - Initialize a buffer for reading records. * * @r: The record to initialize. * @info: A buffer to store record meta-data. * @text_buf: A buffer to store text data. * @text_buf_size: The size of @text_buf. * * Initialize all the fields that a reader is interested in. All arguments * (except @r) are optional. Only record data for arguments that are * non-NULL or non-zero will be read. */ static inline void prb_rec_init_rd(struct printk_record *r, struct printk_info *info, char *text_buf, unsigned int text_buf_size) { r->info = info; r->text_buf = text_buf; r->text_buf_size = text_buf_size; } /** * prb_for_each_record() - Iterate over the records of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @r: A printk_record to store the record on each iteration. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_record(from, rb, s, r) \ for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1) /** * prb_for_each_info() - Iterate over the meta data of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @i: A printk_info to store the record meta data on each iteration. * @lc: An unsigned int to store the text line count of each record. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_info(from, rb, s, i, lc) \ for ((s) = from; prb_read_valid_info(rb, s, i, lc); (s) = (i)->seq + 1) bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, struct printk_record *r); bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, struct printk_info *info, unsigned int *line_count); u64 prb_first_valid_seq(struct printk_ringbuffer *rb); u64 prb_next_seq(struct printk_ringbuffer *rb); #endif /* _KERNEL_PRINTK_RINGBUFFER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FRAG_H__ #define __NET_FRAG_H__ #include <linux/rhashtable-types.h> #include <linux/completion.h> /* Per netns frag queues directory */ struct fqdir { /* sysctls */ long high_thresh; long low_thresh; int timeout; int max_dist; struct inet_frags *f; struct net *net; bool dead; struct rhashtable rhashtable ____cacheline_aligned_in_smp; /* Keep atomic mem on separate cachelines in structs that include it */ atomic_long_t mem ____cacheline_aligned_in_smp; struct work_struct destroy_work; }; /** * fragment queue flags * * @INET_FRAG_FIRST_IN: first fragment has arrived * @INET_FRAG_LAST_IN: final fragment has arrived * @INET_FRAG_COMPLETE: frag queue has been processed and is due for destruction * @INET_FRAG_HASH_DEAD: inet_frag_kill() has not removed fq from rhashtable */ enum { INET_FRAG_FIRST_IN = BIT(0), INET_FRAG_LAST_IN = BIT(1), INET_FRAG_COMPLETE = BIT(2), INET_FRAG_HASH_DEAD = BIT(3), }; struct frag_v4_compare_key { __be32 saddr; __be32 daddr; u32 user; u32 vif; __be16 id; u16 protocol; }; struct frag_v6_compare_key { struct in6_addr saddr; struct in6_addr daddr; u32 user; __be32 id; u32 iif; }; /** * struct inet_frag_queue - fragment queue * * @node: rhash node * @key: keys identifying this frag. * @timer: queue expiration timer * @lock: spinlock protecting this frag * @refcnt: reference count of the queue * @rb_fragments: received fragments rb-tree root * @fragments_tail: received fragments tail * @last_run_head: the head of the last "run". see ip_fragment.c * @stamp: timestamp of the last received fragment * @len: total length of the original datagram * @meat: length of received fragments so far * @flags: fragment queue flags * @max_size: maximum received fragment size * @fqdir: pointer to struct fqdir * @rcu: rcu head for freeing deferall */ struct inet_frag_queue { struct rhash_head node; union { struct frag_v4_compare_key v4; struct frag_v6_compare_key v6; } key; struct timer_list timer; spinlock_t lock; refcount_t refcnt; struct rb_root rb_fragments; struct sk_buff *fragments_tail; struct sk_buff *last_run_head; ktime_t stamp; int len; int meat; __u8 flags; u16 max_size; struct fqdir *fqdir; struct rcu_head rcu; }; struct inet_frags { unsigned int qsize; void (*constructor)(struct inet_frag_queue *q, const void *arg); void (*destructor)(struct inet_frag_queue *); void (*frag_expire)(struct timer_list *t); struct kmem_cache *frags_cachep; const char *frags_cache_name; struct rhashtable_params rhash_params; refcount_t refcnt; struct completion completion; }; int inet_frags_init(struct inet_frags *); void inet_frags_fini(struct inet_frags *); int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net); static inline void fqdir_pre_exit(struct fqdir *fqdir) { /* Prevent creation of new frags. * Pairs with READ_ONCE() in inet_frag_find(). */ WRITE_ONCE(fqdir->high_thresh, 0); /* Pairs with READ_ONCE() in inet_frag_kill(), ip_expire() * and ip6frag_expire_frag_queue(). */ WRITE_ONCE(fqdir->dead, true); } void fqdir_exit(struct fqdir *fqdir); void inet_frag_kill(struct inet_frag_queue *q); void inet_frag_destroy(struct inet_frag_queue *q); struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key); /* Free all skbs in the queue; return the sum of their truesizes. */ unsigned int inet_frag_rbtree_purge(struct rb_root *root); static inline void inet_frag_put(struct inet_frag_queue *q) { if (refcount_dec_and_test(&q->refcnt)) inet_frag_destroy(q); } /* Memory Tracking Functions. */ static inline long frag_mem_limit(const struct fqdir *fqdir) { return atomic_long_read(&fqdir->mem); } static inline void sub_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_sub(val, &fqdir->mem); } static inline void add_frag_mem_limit(struct fqdir *fqdir, long val) { atomic_long_add(val, &fqdir->mem); } /* RFC 3168 support : * We want to check ECN values of all fragments, do detect invalid combinations. * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. */ #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ extern const u8 ip_frag_ecn_table[16]; /* Return values of inet_frag_queue_insert() */ #define IPFRAG_OK 0 #define IPFRAG_DUP 1 #define IPFRAG_OVERLAP 2 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb, int offset, int end); void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb, struct sk_buff *parent); void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head, void *reasm_data, bool try_coalesce); struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 // SPDX-License-Identifier: GPL-2.0 /* * device.h - generic, centralized driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_H_ #define _DEVICE_H_ #include <linux/dev_printk.h> #include <linux/energy_model.h> #include <linux/ioport.h> #include <linux/kobject.h> #include <linux/klist.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/compiler.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/pm.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/device/bus.h> #include <linux/device/class.h> #include <linux/device/driver.h> #include <asm/device.h> struct device; struct device_private; struct device_driver; struct driver_private; struct module; struct class; struct subsys_private; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct dev_pin_info; struct dev_iommu; /** * struct subsys_interface - interfaces to device functions * @name: name of the device function * @subsys: subsytem of the devices to attach to * @node: the list of functions registered at the subsystem * @add_dev: device hookup to device function handler * @remove_dev: device hookup to device function handler * * Simple interfaces attached to a subsystem. Multiple interfaces can * attach to a subsystem and its devices. Unlike drivers, they do not * exclusively claim or control devices. Interfaces usually represent * a specific functionality of a subsystem/class of devices. */ struct subsys_interface { const char *name; struct bus_type *subsys; struct list_head node; int (*add_dev)(struct device *dev, struct subsys_interface *sif); void (*remove_dev)(struct device *dev, struct subsys_interface *sif); }; int subsys_interface_register(struct subsys_interface *sif); void subsys_interface_unregister(struct subsys_interface *sif); int subsys_system_register(struct bus_type *subsys, const struct attribute_group **groups); int subsys_virtual_register(struct bus_type *subsys, const struct attribute_group **groups); /* * The type of device, "struct device" is embedded in. A class * or bus can contain devices of different types * like "partitions" and "disks", "mouse" and "event". * This identifies the device type and carries type-specific * information, equivalent to the kobj_type of a kobject. * If "name" is specified, the uevent will contain it in * the DEVTYPE variable. */ struct device_type { const char *name; const struct attribute_group **groups; int (*uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid); void (*release)(struct device *dev); const struct dev_pm_ops *pm; }; /* interface for exporting device attributes */ struct device_attribute { struct attribute attr; ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf); ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); }; struct dev_ext_attribute { struct device_attribute attr; void *var; }; ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_int(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_int(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); #define DEVICE_ATTR(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store) #define DEVICE_ATTR_PREALLOC(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_PREALLOC(_name, _mode, _show, _store) #define DEVICE_ATTR_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW(_name) #define DEVICE_ATTR_ADMIN_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW_MODE(_name, 0600) #define DEVICE_ATTR_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO(_name) #define DEVICE_ATTR_ADMIN_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO_MODE(_name, 0400) #define DEVICE_ATTR_WO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_WO(_name) #define DEVICE_ULONG_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) } #define DEVICE_INT_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) } #define DEVICE_BOOL_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) } #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) int device_create_file(struct device *device, const struct device_attribute *entry); void device_remove_file(struct device *dev, const struct device_attribute *attr); bool device_remove_file_self(struct device *dev, const struct device_attribute *attr); int __must_check device_create_bin_file(struct device *dev, const struct bin_attribute *attr); void device_remove_bin_file(struct device *dev, const struct bin_attribute *attr); /* device resource management */ typedef void (*dr_release_t)(struct device *dev, void *res); typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data); #ifdef CONFIG_DEBUG_DEVRES void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, const char *name) __malloc; #define devres_alloc(release, size, gfp) \ __devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release) #define devres_alloc_node(release, size, gfp, nid) \ __devres_alloc_node(release, size, gfp, nid, #release) #else void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid) __malloc; static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) { return devres_alloc_node(release, size, gfp, NUMA_NO_NODE); } #endif void devres_for_each_res(struct device *dev, dr_release_t release, dr_match_t match, void *match_data, void (*fn)(struct device *, void *, void *), void *data); void devres_free(void *res); void devres_add(struct device *dev, void *res); void *devres_find(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); void *devres_get(struct device *dev, void *new_res, dr_match_t match, void *match_data); void *devres_remove(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); int devres_destroy(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); int devres_release(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); /* devres group */ void * __must_check devres_open_group(struct device *dev, void *id, gfp_t gfp); void devres_close_group(struct device *dev, void *id); void devres_remove_group(struct device *dev, void *id); int devres_release_group(struct device *dev, void *id); /* managed devm_k.alloc/kfree for device drivers */ void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc; void *devm_krealloc(struct device *dev, void *ptr, size_t size, gfp_t gfp) __must_check; __printf(3, 0) char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) __malloc; __printf(3, 4) char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc; static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp) { return devm_kmalloc(dev, size, gfp | __GFP_ZERO); } static inline void *devm_kmalloc_array(struct device *dev, size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return devm_kmalloc(dev, bytes, flags); } static inline void *devm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags) { return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); } void devm_kfree(struct device *dev, const void *p); char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc; const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp); void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp); unsigned long devm_get_free_pages(struct device *dev, gfp_t gfp_mask, unsigned int order); void devm_free_pages(struct device *dev, unsigned long addr); void __iomem *devm_ioremap_resource(struct device *dev, const struct resource *res); void __iomem *devm_ioremap_resource_wc(struct device *dev, const struct resource *res); void __iomem *devm_of_iomap(struct device *dev, struct device_node *node, int index, resource_size_t *size); /* allows to add/remove a custom action to devres stack */ int devm_add_action(struct device *dev, void (*action)(void *), void *data); void devm_remove_action(struct device *dev, void (*action)(void *), void *data); void devm_release_action(struct device *dev, void (*action)(void *), void *data); static inline int devm_add_action_or_reset(struct device *dev, void (*action)(void *), void *data) { int ret; ret = devm_add_action(dev, action, data); if (ret) action(data); return ret; } /** * devm_alloc_percpu - Resource-managed alloc_percpu * @dev: Device to allocate per-cpu memory for * @type: Type to allocate per-cpu memory for * * Managed alloc_percpu. Per-cpu memory allocated with this function is * automatically freed on driver detach. * * RETURNS: * Pointer to allocated memory on success, NULL on failure. */ #define devm_alloc_percpu(dev, type) \ ((typeof(type) __percpu *)__devm_alloc_percpu((dev), sizeof(type), \ __alignof__(type))) void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, size_t align); void devm_free_percpu(struct device *dev, void __percpu *pdata); struct device_dma_parameters { /* * a low level driver may set these to teach IOMMU code about * sg limitations. */ unsigned int max_segment_size; unsigned int min_align_mask; unsigned long segment_boundary_mask; }; /** * enum device_link_state - Device link states. * @DL_STATE_NONE: The presence of the drivers is not being tracked. * @DL_STATE_DORMANT: None of the supplier/consumer drivers is present. * @DL_STATE_AVAILABLE: The supplier driver is present, but the consumer is not. * @DL_STATE_CONSUMER_PROBE: The consumer is probing (supplier driver present). * @DL_STATE_ACTIVE: Both the supplier and consumer drivers are present. * @DL_STATE_SUPPLIER_UNBIND: The supplier driver is unbinding. */ enum device_link_state { DL_STATE_NONE = -1, DL_STATE_DORMANT = 0, DL_STATE_AVAILABLE, DL_STATE_CONSUMER_PROBE, DL_STATE_ACTIVE, DL_STATE_SUPPLIER_UNBIND, }; /* * Device link flags. * * STATELESS: The core will not remove this link automatically. * AUTOREMOVE_CONSUMER: Remove the link automatically on consumer driver unbind. * PM_RUNTIME: If set, the runtime PM framework will use this link. * RPM_ACTIVE: Run pm_runtime_get_sync() on the supplier during link creation. * AUTOREMOVE_SUPPLIER: Remove the link automatically on supplier driver unbind. * AUTOPROBE_CONSUMER: Probe consumer driver automatically after supplier binds. * MANAGED: The core tracks presence of supplier/consumer drivers (internal). * SYNC_STATE_ONLY: Link only affects sync_state() behavior. */ #define DL_FLAG_STATELESS BIT(0) #define DL_FLAG_AUTOREMOVE_CONSUMER BIT(1) #define DL_FLAG_PM_RUNTIME BIT(2) #define DL_FLAG_RPM_ACTIVE BIT(3) #define DL_FLAG_AUTOREMOVE_SUPPLIER BIT(4) #define DL_FLAG_AUTOPROBE_CONSUMER BIT(5) #define DL_FLAG_MANAGED BIT(6) #define DL_FLAG_SYNC_STATE_ONLY BIT(7) /** * enum dl_dev_state - Device driver presence tracking information. * @DL_DEV_NO_DRIVER: There is no driver attached to the device. * @DL_DEV_PROBING: A driver is probing. * @DL_DEV_DRIVER_BOUND: The driver has been bound to the device. * @DL_DEV_UNBINDING: The driver is unbinding from the device. */ enum dl_dev_state { DL_DEV_NO_DRIVER = 0, DL_DEV_PROBING, DL_DEV_DRIVER_BOUND, DL_DEV_UNBINDING, }; /** * enum device_removable - Whether the device is removable. The criteria for a * device to be classified as removable is determined by its subsystem or bus. * @DEVICE_REMOVABLE_NOT_SUPPORTED: This attribute is not supported for this * device (default). * @DEVICE_REMOVABLE_UNKNOWN: Device location is Unknown. * @DEVICE_FIXED: Device is not removable by the user. * @DEVICE_REMOVABLE: Device is removable by the user. */ enum device_removable { DEVICE_REMOVABLE_NOT_SUPPORTED = 0, /* must be 0 */ DEVICE_REMOVABLE_UNKNOWN, DEVICE_FIXED, DEVICE_REMOVABLE, }; /** * struct dev_links_info - Device data related to device links. * @suppliers: List of links to supplier devices. * @consumers: List of links to consumer devices. * @needs_suppliers: Hook to global list of devices waiting for suppliers. * @defer_hook: Hook to global list of devices that have deferred sync_state or * deferred fw_devlink. * @need_for_probe: If needs_suppliers is on a list, this indicates if the * suppliers are needed for probe or not. * @status: Driver status information. */ struct dev_links_info { struct list_head suppliers; struct list_head consumers; struct list_head needs_suppliers; struct list_head defer_hook; bool need_for_probe; enum dl_dev_state status; }; /** * struct device - The basic device structure * @parent: The device's "parent" device, the device to which it is attached. * In most cases, a parent device is some sort of bus or host * controller. If parent is NULL, the device, is a top-level device, * which is not usually what you want. * @p: Holds the private data of the driver core portions of the device. * See the comment of the struct device_private for detail. * @kobj: A top-level, abstract class from which other classes are derived. * @init_name: Initial name of the device. * @type: The type of device. * This identifies the device type and carries type-specific * information. * @mutex: Mutex to synchronize calls to its driver. * @lockdep_mutex: An optional debug lock that a subsystem can use as a * peer lock to gain localized lockdep coverage of the device_lock. * @bus: Type of bus device is on. * @driver: Which driver has allocated this * @platform_data: Platform data specific to the device. * Example: For devices on custom boards, as typical of embedded * and SOC based hardware, Linux often uses platform_data to point * to board-specific structures describing devices and how they * are wired. That can include what ports are available, chip * variants, which GPIO pins act in what additional roles, and so * on. This shrinks the "Board Support Packages" (BSPs) and * minimizes board-specific #ifdefs in drivers. * @driver_data: Private pointer for driver specific info. * @links: Links to suppliers and consumers of this device. * @power: For device power management. * See Documentation/driver-api/pm/devices.rst for details. * @pm_domain: Provide callbacks that are executed during system suspend, * hibernation, system resume and during runtime PM transitions * along with subsystem-level and driver-level callbacks. * @em_pd: device's energy model performance domain * @pins: For device pin management. * See Documentation/driver-api/pinctl.rst for details. * @msi_list: Hosts MSI descriptors * @msi_domain: The generic MSI domain this device is using. * @numa_node: NUMA node this device is close to. * @dma_ops: DMA mapping operations for this device. * @dma_mask: Dma mask (if dma'ble device). * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all * hardware supports 64-bit addresses for consistent allocations * such descriptors. * @bus_dma_limit: Limit of an upstream bridge or bus which imposes a smaller * DMA limit than the device itself supports. * @dma_range_map: map for DMA memory ranges relative to that of RAM * @dma_parms: A low level driver may set these to teach IOMMU code about * segment limitations. * @dma_pools: Dma pools (if dma'ble device). * @dma_mem: Internal for coherent mem override. * @cma_area: Contiguous memory area for dma allocations * @archdata: For arch-specific additions. * @of_node: Associated device tree node. * @fwnode: Associated device node supplied by platform firmware. * @devt: For creating the sysfs "dev". * @id: device instance * @devres_lock: Spinlock to protect the resource of the device. * @devres_head: The resources list of the device. * @knode_class: The node used to add the device to the class list. * @class: The class of the device. * @groups: Optional attribute groups. * @release: Callback to free the device after all references have * gone away. This should be set by the allocator of the * device (i.e. the bus driver that discovered the device). * @iommu_group: IOMMU group the device belongs to. * @iommu: Per device generic IOMMU runtime data * @removable: Whether the device can be removed from the system. This * should be set by the subsystem / bus driver that discovered * the device. * * @offline_disabled: If set, the device is permanently online. * @offline: Set after successful invocation of bus type's .offline(). * @of_node_reused: Set if the device-tree node is shared with an ancestor * device. * @state_synced: The hardware state of this device has been synced to match * the software state of this device by calling the driver/bus * sync_state() callback. * @dma_coherent: this particular device is dma coherent, even if the * architecture supports non-coherent devices. * @dma_ops_bypass: If set to %true then the dma_ops are bypassed for the * streaming DMA operations (->map_* / ->unmap_* / ->sync_*), * and optionall (if the coherent mask is large enough) also * for dma allocations. This flag is managed by the dma ops * instance from ->dma_supported. * * At the lowest level, every device in a Linux system is represented by an * instance of struct device. The device structure contains the information * that the device model core needs to model the system. Most subsystems, * however, track additional information about the devices they host. As a * result, it is rare for devices to be represented by bare device structures; * instead, that structure, like kobject structures, is usually embedded within * a higher-level representation of the device. */ struct device { struct kobject kobj; struct device *parent; struct device_private *p; const char *init_name; /* initial name of the device */ const struct device_type *type; struct bus_type *bus; /* type of bus device is on */ struct device_driver *driver; /* which driver has allocated this device */ void *platform_data; /* Platform specific data, device core doesn't touch it */ void *driver_data; /* Driver data, set and get with dev_set_drvdata/dev_get_drvdata */ #ifdef CONFIG_PROVE_LOCKING struct mutex lockdep_mutex; #endif struct mutex mutex; /* mutex to synchronize calls to * its driver. */ struct dev_links_info links; struct dev_pm_info power; struct dev_pm_domain *pm_domain; #ifdef CONFIG_ENERGY_MODEL struct em_perf_domain *em_pd; #endif #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN struct irq_domain *msi_domain; #endif #ifdef CONFIG_PINCTRL struct dev_pin_info *pins; #endif #ifdef CONFIG_GENERIC_MSI_IRQ raw_spinlock_t msi_lock; struct list_head msi_list; #endif #ifdef CONFIG_DMA_OPS const struct dma_map_ops *dma_ops; #endif u64 *dma_mask; /* dma mask (if dma'able device) */ u64 coherent_dma_mask;/* Like dma_mask, but for alloc_coherent mappings as not all hardware supports 64 bit addresses for consistent allocations such descriptors. */ u64 bus_dma_limit; /* upstream dma constraint */ const struct bus_dma_region *dma_range_map; struct device_dma_parameters *dma_parms; struct list_head dma_pools; /* dma pools (if dma'ble) */ #ifdef CONFIG_DMA_DECLARE_COHERENT struct dma_coherent_mem *dma_mem; /* internal for coherent mem override */ #endif #ifdef CONFIG_DMA_CMA struct cma *cma_area; /* contiguous memory area for dma allocations */ #endif /* arch specific additions */ struct dev_archdata archdata; struct device_node *of_node; /* associated device tree node */ struct fwnode_handle *fwnode; /* firmware device node */ #ifdef CONFIG_NUMA int numa_node; /* NUMA node this device is close to */ #endif dev_t devt; /* dev_t, creates the sysfs "dev" */ u32 id; /* device instance */ spinlock_t devres_lock; struct list_head devres_head; struct class *class; const struct attribute_group **groups; /* optional groups */ void (*release)(struct device *dev); struct iommu_group *iommu_group; struct dev_iommu *iommu; enum device_removable removable; bool offline_disabled:1; bool offline:1; bool of_node_reused:1; bool state_synced:1; #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) bool dma_coherent:1; #endif #ifdef CONFIG_DMA_OPS_BYPASS bool dma_ops_bypass : 1; #endif }; /** * struct device_link - Device link representation. * @supplier: The device on the supplier end of the link. * @s_node: Hook to the supplier device's list of links to consumers. * @consumer: The device on the consumer end of the link. * @c_node: Hook to the consumer device's list of links to suppliers. * @link_dev: device used to expose link details in sysfs * @status: The state of the link (with respect to the presence of drivers). * @flags: Link flags. * @rpm_active: Whether or not the consumer device is runtime-PM-active. * @kref: Count repeated addition of the same link. * @rm_work: Work structure used for removing the link. * @supplier_preactivated: Supplier has been made active before consumer probe. */ struct device_link { struct device *supplier; struct list_head s_node; struct device *consumer; struct list_head c_node; struct device link_dev; enum device_link_state status; u32 flags; refcount_t rpm_active; struct kref kref; struct work_struct rm_work; bool supplier_preactivated; /* Owned by consumer probe. */ }; static inline struct device *kobj_to_dev(struct kobject *kobj) { return container_of(kobj, struct device, kobj); } /** * device_iommu_mapped - Returns true when the device DMA is translated * by an IOMMU * @dev: Device to perform the check on */ static inline bool device_iommu_mapped(struct device *dev) { return (dev->iommu_group != NULL); } /* Get the wakeup routines, which depend on struct device */ #include <linux/pm_wakeup.h> static inline const char *dev_name(const struct device *dev) { /* Use the init name until the kobject becomes available */ if (dev->init_name) return dev->init_name; return kobject_name(&dev->kobj); } /** * dev_bus_name - Return a device's bus/class name, if at all possible * @dev: struct device to get the bus/class name of * * Will return the name of the bus/class the device is attached to. If it is * not attached to a bus/class, an empty string will be returned. */ static inline const char *dev_bus_name(const struct device *dev) { return dev->bus ? dev->bus->name : (dev->class ? dev->class->name : ""); } __printf(2, 3) int dev_set_name(struct device *dev, const char *name, ...); #ifdef CONFIG_NUMA static inline int dev_to_node(struct device *dev) { return dev->numa_node; } static inline void set_dev_node(struct device *dev, int node) { dev->numa_node = node; } #else static inline int dev_to_node(struct device *dev) { return NUMA_NO_NODE; } static inline void set_dev_node(struct device *dev, int node) { } #endif static inline struct irq_domain *dev_get_msi_domain(const struct device *dev) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN return dev->msi_domain; #else return NULL; #endif } static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN dev->msi_domain = d; #endif } static inline void *dev_get_drvdata(const struct device *dev) { return dev->driver_data; } static inline void dev_set_drvdata(struct device *dev, void *data) { dev->driver_data = data; } static inline struct pm_subsys_data *dev_to_psd(struct device *dev) { return dev ? dev->power.subsys_data : NULL; } static inline unsigned int dev_get_uevent_suppress(const struct device *dev) { return dev->kobj.uevent_suppress; } static inline void dev_set_uevent_suppress(struct device *dev, int val) { dev->kobj.uevent_suppress = val; } static inline int device_is_registered(struct device *dev) { return dev->kobj.state_in_sysfs; } static inline void device_enable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = true; } static inline void device_disable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = false; } static inline bool device_async_suspend_enabled(struct device *dev) { return !!dev->power.async_suspend; } static inline bool device_pm_not_required(struct device *dev) { return dev->power.no_pm; } static inline void device_set_pm_not_required(struct device *dev) { dev->power.no_pm = true; } static inline void dev_pm_syscore_device(struct device *dev, bool val) { #ifdef CONFIG_PM_SLEEP dev->power.syscore = val; #endif } static inline void dev_pm_set_driver_flags(struct device *dev, u32 flags) { dev->power.driver_flags = flags; } static inline bool dev_pm_test_driver_flags(struct device *dev, u32 flags) { return !!(dev->power.driver_flags & flags); } static inline void device_lock(struct device *dev) { mutex_lock(&dev->mutex); } static inline int device_lock_interruptible(struct device *dev) { return mutex_lock_interruptible(&dev->mutex); } static inline int device_trylock(struct device *dev) { return mutex_trylock(&dev->mutex); } static inline void device_unlock(struct device *dev) { mutex_unlock(&dev->mutex); } static inline void device_lock_assert(struct device *dev) { lockdep_assert_held(&dev->mutex); } static inline struct device_node *dev_of_node(struct device *dev) { if (!IS_ENABLED(CONFIG_OF) || !dev) return NULL; return dev->of_node; } static inline bool dev_has_sync_state(struct device *dev) { if (!dev) return false; if (dev->driver && dev->driver->sync_state) return true; if (dev->bus && dev->bus->sync_state) return true; return false; } static inline void dev_set_removable(struct device *dev, enum device_removable removable) { dev->removable = removable; } static inline bool dev_is_removable(struct device *dev) { return dev->removable == DEVICE_REMOVABLE; } static inline bool dev_removable_is_valid(struct device *dev) { return dev->removable != DEVICE_REMOVABLE_NOT_SUPPORTED; } /* * High level routines for use by the bus drivers */ int __must_check device_register(struct device *dev); void device_unregister(struct device *dev); void device_initialize(struct device *dev); int __must_check device_add(struct device *dev); void device_del(struct device *dev); int device_for_each_child(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); int device_for_each_child_reverse(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); struct device *device_find_child(struct device *dev, void *data, int (*match)(struct device *dev, void *data)); struct device *device_find_child_by_name(struct device *parent, const char *name); struct device *device_find_any_child(struct device *parent); int device_rename(struct device *dev, const char *new_name); int device_move(struct device *dev, struct device *new_parent, enum dpm_order dpm_order); int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); const char *device_get_devnode(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid, const char **tmp); int device_is_dependent(struct device *dev, void *target); static inline bool device_supports_offline(struct device *dev) { return dev->bus && dev->bus->offline && dev->bus->online; } void lock_device_hotplug(void); void unlock_device_hotplug(void); int lock_device_hotplug_sysfs(void); int device_offline(struct device *dev); int device_online(struct device *dev); void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void device_set_of_node_from_dev(struct device *dev, const struct device *dev2); void device_set_node(struct device *dev, struct fwnode_handle *fwnode); static inline int dev_num_vf(struct device *dev) { if (dev->bus && dev->bus->num_vf) return dev->bus->num_vf(dev); return 0; } /* * Root device objects for grouping under /sys/devices */ struct device *__root_device_register(const char *name, struct module *owner); /* This is a macro to avoid include problems with THIS_MODULE */ #define root_device_register(name) \ __root_device_register(name, THIS_MODULE) void root_device_unregister(struct device *root); static inline void *dev_get_platdata(const struct device *dev) { return dev->platform_data; } /* * Manual binding of a device to driver. See drivers/base/bus.c * for information on use. */ int __must_check device_bind_driver(struct device *dev); void device_release_driver(struct device *dev); int __must_check device_attach(struct device *dev); int __must_check driver_attach(struct device_driver *drv); void device_initial_probe(struct device *dev); int __must_check device_reprobe(struct device *dev); bool device_is_bound(struct device *dev); /* * Easy functions for dynamically creating devices on the fly */ __printf(5, 6) struct device * device_create(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...); __printf(6, 7) struct device * device_create_with_groups(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); void device_destroy(struct class *cls, dev_t devt); int __must_check device_add_groups(struct device *dev, const struct attribute_group **groups); void device_remove_groups(struct device *dev, const struct attribute_group **groups); static inline int __must_check device_add_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_add_groups(dev, groups); } static inline void device_remove_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_remove_groups(dev, groups); } int __must_check devm_device_add_groups(struct device *dev, const struct attribute_group **groups); void devm_device_remove_groups(struct device *dev, const struct attribute_group **groups); int __must_check devm_device_add_group(struct device *dev, const struct attribute_group *grp); void devm_device_remove_group(struct device *dev, const struct attribute_group *grp); /* * Platform "fixup" functions - allow the platform to have their say * about devices and actions that the general device layer doesn't * know about. */ /* Notify platform of device discovery */ extern int (*platform_notify)(struct device *dev); extern int (*platform_notify_remove)(struct device *dev); /* * get_device - atomically increment the reference count for the device. * */ struct device *get_device(struct device *dev); void put_device(struct device *dev); bool kill_device(struct device *dev); #ifdef CONFIG_DEVTMPFS int devtmpfs_mount(void); #else static inline int devtmpfs_mount(void) { return 0; } #endif /* drivers/base/power/shutdown.c */ void device_shutdown(void); /* debugging and troubleshooting/diagnostic helpers. */ const char *dev_driver_string(const struct device *dev); /* Device links interface. */ struct device_link *device_link_add(struct device *consumer, struct device *supplier, u32 flags); void device_link_del(struct device_link *link); void device_link_remove(void *consumer, struct device *supplier); void device_links_supplier_sync_state_pause(void); void device_links_supplier_sync_state_resume(void); void device_link_wait_removal(void); extern __printf(3, 4) int dev_err_probe(const struct device *dev, int err, const char *fmt, ...); /* Create alias, so I can be autoloaded. */ #define MODULE_ALIAS_CHARDEV(major,minor) \ MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_CHARDEV_MAJOR(major) \ MODULE_ALIAS("char-major-" __stringify(major) "-*") #ifdef CONFIG_SYSFS_DEPRECATED extern long sysfs_deprecated; #else #define sysfs_deprecated 0 #endif #endif /* _DEVICE_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PATH_H #define _LINUX_PATH_H struct dentry; struct vfsmount; struct path { struct vfsmount *mnt; struct dentry *dentry; } __randomize_layout; extern void path_get(const struct path *); extern void path_put(const struct path *); static inline int path_equal(const struct path *path1, const struct path *path2) { return path1->mnt == path2->mnt && path1->dentry == path2->dentry; } static inline void path_put_init(struct path *path) { path_put(path); *path = (struct path) { }; } #endif /* _LINUX_PATH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel_match(struct task_struct *task, bool (*match)(struct callback_head *, void *data), void *data); struct callback_head *task_work_cancel_func(struct task_struct *, task_work_func_t); bool task_work_cancel(struct task_struct *task, struct callback_head *cb); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_STRING_HELPERS_H_ #define _LINUX_STRING_HELPERS_H_ #include <linux/ctype.h> #include <linux/types.h> struct file; struct task_struct; /* Descriptions of the types of units to * print in */ enum string_size_units { STRING_UNITS_10, /* use powers of 10^3 (standard SI) */ STRING_UNITS_2, /* use binary powers of 2^10 */ }; void string_get_size(u64 size, u64 blk_size, enum string_size_units units, char *buf, int len); #define UNESCAPE_SPACE 0x01 #define UNESCAPE_OCTAL 0x02 #define UNESCAPE_HEX 0x04 #define UNESCAPE_SPECIAL 0x08 #define UNESCAPE_ANY \ (UNESCAPE_SPACE | UNESCAPE_OCTAL | UNESCAPE_HEX | UNESCAPE_SPECIAL) int string_unescape(char *src, char *dst, size_t size, unsigned int flags); static inline int string_unescape_inplace(char *buf, unsigned int flags) { return string_unescape(buf, buf, 0, flags); } static inline int string_unescape_any(char *src, char *dst, size_t size) { return string_unescape(src, dst, size, UNESCAPE_ANY); } static inline int string_unescape_any_inplace(char *buf) { return string_unescape_any(buf, buf, 0); } #define ESCAPE_SPACE 0x01 #define ESCAPE_SPECIAL 0x02 #define ESCAPE_NULL 0x04 #define ESCAPE_OCTAL 0x08 #define ESCAPE_ANY \ (ESCAPE_SPACE | ESCAPE_OCTAL | ESCAPE_SPECIAL | ESCAPE_NULL) #define ESCAPE_NP 0x10 #define ESCAPE_ANY_NP (ESCAPE_ANY | ESCAPE_NP) #define ESCAPE_HEX 0x20 int string_escape_mem(const char *src, size_t isz, char *dst, size_t osz, unsigned int flags, const char *only); int string_escape_mem_ascii(const char *src, size_t isz, char *dst, size_t osz); static inline int string_escape_mem_any_np(const char *src, size_t isz, char *dst, size_t osz, const char *only) { return string_escape_mem(src, isz, dst, osz, ESCAPE_ANY_NP, only); } static inline int string_escape_str(const char *src, char *dst, size_t sz, unsigned int flags, const char *only) { return string_escape_mem(src, strlen(src), dst, sz, flags, only); } static inline int string_escape_str_any_np(const char *src, char *dst, size_t sz, const char *only) { return string_escape_str(src, dst, sz, ESCAPE_ANY_NP, only); } static inline void string_upper(char *dst, const char *src) { do { *dst++ = toupper(*src); } while (*src++); } static inline void string_lower(char *dst, const char *src) { do { *dst++ = tolower(*src); } while (*src++); } char *kstrdup_quotable(const char *src, gfp_t gfp); char *kstrdup_quotable_cmdline(struct task_struct *task, gfp_t gfp); char *kstrdup_quotable_file(struct file *file, gfp_t gfp); void kfree_strarray(char **array, size_t n); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 // SPDX-License-Identifier: GPL-2.0 /* File: fs/ext4/xattr.h On-disk format of extended attributes for the ext4 filesystem. (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #include <linux/xattr.h> /* Magic value in attribute blocks */ #define EXT4_XATTR_MAGIC 0xEA020000 /* Maximum number of references to one attribute block */ #define EXT4_XATTR_REFCOUNT_MAX 1024 /* Name indexes */ #define EXT4_XATTR_INDEX_USER 1 #define EXT4_XATTR_INDEX_POSIX_ACL_ACCESS 2 #define EXT4_XATTR_INDEX_POSIX_ACL_DEFAULT 3 #define EXT4_XATTR_INDEX_TRUSTED 4 #define EXT4_XATTR_INDEX_LUSTRE 5 #define EXT4_XATTR_INDEX_SECURITY 6 #define EXT4_XATTR_INDEX_SYSTEM 7 #define EXT4_XATTR_INDEX_RICHACL 8 #define EXT4_XATTR_INDEX_ENCRYPTION 9 #define EXT4_XATTR_INDEX_HURD 10 /* Reserved for Hurd */ struct ext4_xattr_header { __le32 h_magic; /* magic number for identification */ __le32 h_refcount; /* reference count */ __le32 h_blocks; /* number of disk blocks used */ __le32 h_hash; /* hash value of all attributes */ __le32 h_checksum; /* crc32c(uuid+id+xattrblock) */ /* id = inum if refcount=1, blknum otherwise */ __u32 h_reserved[3]; /* zero right now */ }; struct ext4_xattr_ibody_header { __le32 h_magic; /* magic number for identification */ }; struct ext4_xattr_entry { __u8 e_name_len; /* length of name */ __u8 e_name_index; /* attribute name index */ __le16 e_value_offs; /* offset in disk block of value */ __le32 e_value_inum; /* inode in which the value is stored */ __le32 e_value_size; /* size of attribute value */ __le32 e_hash; /* hash value of name and value */ char e_name[]; /* attribute name */ }; #define EXT4_XATTR_PAD_BITS 2 #define EXT4_XATTR_PAD (1<<EXT4_XATTR_PAD_BITS) #define EXT4_XATTR_ROUND (EXT4_XATTR_PAD-1) #define EXT4_XATTR_LEN(name_len) \ (((name_len) + EXT4_XATTR_ROUND + \ sizeof(struct ext4_xattr_entry)) & ~EXT4_XATTR_ROUND) #define EXT4_XATTR_NEXT(entry) \ ((struct ext4_xattr_entry *)( \ (char *)(entry) + EXT4_XATTR_LEN((entry)->e_name_len))) #define EXT4_XATTR_SIZE(size) \ (((size) + EXT4_XATTR_ROUND) & ~EXT4_XATTR_ROUND) #define IHDR(inode, raw_inode) \ ((struct ext4_xattr_ibody_header *) \ ((void *)raw_inode + \ EXT4_GOOD_OLD_INODE_SIZE + \ EXT4_I(inode)->i_extra_isize)) #define IFIRST(hdr) ((struct ext4_xattr_entry *)((hdr)+1)) /* * XATTR_SIZE_MAX is currently 64k, but for the purposes of checking * for file system consistency errors, we use a somewhat bigger value. * This allows XATTR_SIZE_MAX to grow in the future, but by using this * instead of INT_MAX for certain consistency checks, we don't need to * worry about arithmetic overflows. (Actually XATTR_SIZE_MAX is * defined in include/uapi/linux/limits.h, so changing it is going * not going to be trivial....) */ #define EXT4_XATTR_SIZE_MAX (1 << 24) /* * The minimum size of EA value when you start storing it in an external inode * size of block - size of header - size of 1 entry - 4 null bytes */ #define EXT4_XATTR_MIN_LARGE_EA_SIZE(b) \ ((b) - EXT4_XATTR_LEN(3) - sizeof(struct ext4_xattr_header) - 4) #define BHDR(bh) ((struct ext4_xattr_header *)((bh)->b_data)) #define ENTRY(ptr) ((struct ext4_xattr_entry *)(ptr)) #define BFIRST(bh) ENTRY(BHDR(bh)+1) #define IS_LAST_ENTRY(entry) (*(__u32 *)(entry) == 0) #define EXT4_ZERO_XATTR_VALUE ((void *)-1) /* * If we want to add an xattr to the inode, we should make sure that * i_extra_isize is not 0 and that the inode size is not less than * EXT4_GOOD_OLD_INODE_SIZE + extra_isize + pad. * EXT4_GOOD_OLD_INODE_SIZE extra_isize header entry pad data * |--------------------------|------------|------|---------|---|-------| */ #define EXT4_INODE_HAS_XATTR_SPACE(inode) \ ((EXT4_I(inode)->i_extra_isize != 0) && \ (EXT4_GOOD_OLD_INODE_SIZE + EXT4_I(inode)->i_extra_isize + \ sizeof(struct ext4_xattr_ibody_header) + EXT4_XATTR_PAD <= \ EXT4_INODE_SIZE((inode)->i_sb))) struct ext4_xattr_info { const char *name; const void *value; size_t value_len; int name_index; int in_inode; }; struct ext4_xattr_search { struct ext4_xattr_entry *first; void *base; void *end; struct ext4_xattr_entry *here; int not_found; }; struct ext4_xattr_ibody_find { struct ext4_xattr_search s; struct ext4_iloc iloc; }; struct ext4_xattr_inode_array { unsigned int count; /* # of used items in the array */ struct inode *inodes[]; }; extern const struct xattr_handler ext4_xattr_user_handler; extern const struct xattr_handler ext4_xattr_trusted_handler; extern const struct xattr_handler ext4_xattr_security_handler; extern const struct xattr_handler ext4_xattr_hurd_handler; #define EXT4_XATTR_NAME_ENCRYPTION_CONTEXT "c" /* * The EXT4_STATE_NO_EXPAND is overloaded and used for two purposes. * The first is to signal that there the inline xattrs and data are * taking up so much space that we might as well not keep trying to * expand it. The second is that xattr_sem is taken for writing, so * we shouldn't try to recurse into the inode expansion. For this * second case, we need to make sure that we take save and restore the * NO_EXPAND state flag appropriately. */ static inline void ext4_write_lock_xattr(struct inode *inode, int *save) { down_write(&EXT4_I(inode)->xattr_sem); *save = ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND); ext4_set_inode_state(inode, EXT4_STATE_NO_EXPAND); } static inline int ext4_write_trylock_xattr(struct inode *inode, int *save) { if (down_write_trylock(&EXT4_I(inode)->xattr_sem) == 0) return 0; *save = ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND); ext4_set_inode_state(inode, EXT4_STATE_NO_EXPAND); return 1; } static inline void ext4_write_unlock_xattr(struct inode *inode, int *save) { if (*save == 0) ext4_clear_inode_state(inode, EXT4_STATE_NO_EXPAND); up_write(&EXT4_I(inode)->xattr_sem); } extern ssize_t ext4_listxattr(struct dentry *, char *, size_t); extern int ext4_xattr_get(struct inode *, int, const char *, void *, size_t); extern int ext4_xattr_set(struct inode *, int, const char *, const void *, size_t, int); extern int ext4_xattr_set_handle(handle_t *, struct inode *, int, const char *, const void *, size_t, int); extern int ext4_xattr_set_credits(struct inode *inode, size_t value_len, bool is_create, int *credits); extern int __ext4_xattr_set_credits(struct super_block *sb, struct inode *inode, struct buffer_head *block_bh, size_t value_len, bool is_create); extern int ext4_xattr_delete_inode(handle_t *handle, struct inode *inode, struct ext4_xattr_inode_array **array, int extra_credits); extern void ext4_xattr_inode_array_free(struct ext4_xattr_inode_array *array); extern int ext4_expand_extra_isize_ea(struct inode *inode, int new_extra_isize, struct ext4_inode *raw_inode, handle_t *handle); extern void ext4_evict_ea_inode(struct inode *inode); extern const struct xattr_handler *ext4_xattr_handlers[]; extern int ext4_xattr_ibody_find(struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_ibody_find *is); extern int ext4_xattr_ibody_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size); extern int ext4_xattr_ibody_set(handle_t *handle, struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_ibody_find *is); extern struct mb_cache *ext4_xattr_create_cache(void); extern void ext4_xattr_destroy_cache(struct mb_cache *); #ifdef CONFIG_EXT4_FS_SECURITY extern int ext4_init_security(handle_t *handle, struct inode *inode, struct inode *dir, const struct qstr *qstr); #else static inline int ext4_init_security(handle_t *handle, struct inode *inode, struct inode *dir, const struct qstr *qstr) { return 0; } #endif #ifdef CONFIG_LOCKDEP extern void ext4_xattr_inode_set_class(struct inode *ea_inode); #else static inline void ext4_xattr_inode_set_class(struct inode *ea_inode) { } #endif extern int ext4_get_inode_usage(struct inode *inode, qsize_t *usage);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash: Hash algorithms under the crypto API * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_HASH_H #define _CRYPTO_HASH_H #include <linux/crypto.h> #include <linux/string.h> struct crypto_ahash; /** * DOC: Message Digest Algorithm Definitions * * These data structures define modular message digest algorithm * implementations, managed via crypto_register_ahash(), * crypto_register_shash(), crypto_unregister_ahash() and * crypto_unregister_shash(). */ /** * struct hash_alg_common - define properties of message digest * @digestsize: Size of the result of the transformation. A buffer of this size * must be available to the @final and @finup calls, so they can * store the resulting hash into it. For various predefined sizes, * search include/crypto/ using * git grep _DIGEST_SIZE include/crypto. * @statesize: Size of the block for partial state of the transformation. A * buffer of this size must be passed to the @export function as it * will save the partial state of the transformation into it. On the * other side, the @import function will load the state from a * buffer of this size as well. * @base: Start of data structure of cipher algorithm. The common data * structure of crypto_alg contains information common to all ciphers. * The hash_alg_common data structure now adds the hash-specific * information. */ struct hash_alg_common { unsigned int digestsize; unsigned int statesize; struct crypto_alg base; }; struct ahash_request { struct crypto_async_request base; unsigned int nbytes; struct scatterlist *src; u8 *result; /* This field may only be used by the ahash API code. */ void *priv; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct ahash_alg - asynchronous message digest definition * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the * state of the HASH transformation at the beginning. This shall fill in * the internal structures used during the entire duration of the whole * transformation. No data processing happens at this point. Driver code * implementation must not use req->result. * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This * function actually pushes blocks of data from upper layers into the * driver, which then passes those to the hardware as seen fit. This * function must not finalize the HASH transformation by calculating the * final message digest as this only adds more data into the * transformation. This function shall not modify the transformation * context, as this function may be called in parallel with the same * transformation object. Data processing can happen synchronously * [SHASH] or asynchronously [AHASH] at this point. Driver must not use * req->result. * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the * transformation and retrieves the resulting hash from the driver and * pushes it back to upper layers. No data processing happens at this * point unless hardware requires it to finish the transformation * (then the data buffered by the device driver is processed). * @finup: **[optional]** Combination of @update and @final. This function is effectively a * combination of @update and @final calls issued in sequence. As some * hardware cannot do @update and @final separately, this callback was * added to allow such hardware to be used at least by IPsec. Data * processing can happen synchronously [SHASH] or asynchronously [AHASH] * at this point. * @digest: Combination of @init and @update and @final. This function * effectively behaves as the entire chain of operations, @init, * @update and @final issued in sequence. Just like @finup, this was * added for hardware which cannot do even the @finup, but can only do * the whole transformation in one run. Data processing can happen * synchronously [SHASH] or asynchronously [AHASH] at this point. * @setkey: Set optional key used by the hashing algorithm. Intended to push * optional key used by the hashing algorithm from upper layers into * the driver. This function can store the key in the transformation * context or can outright program it into the hardware. In the former * case, one must be careful to program the key into the hardware at * appropriate time and one must be careful that .setkey() can be * called multiple times during the existence of the transformation * object. Not all hashing algorithms do implement this function as it * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement * this function. This function must be called before any other of the * @init, @update, @final, @finup, @digest is called. No data * processing happens at this point. * @export: Export partial state of the transformation. This function dumps the * entire state of the ongoing transformation into a provided block of * data so it can be @import 'ed back later on. This is useful in case * you want to save partial result of the transformation after * processing certain amount of data and reload this partial result * multiple times later on for multiple re-use. No data processing * happens at this point. Driver must not use req->result. * @import: Import partial state of the transformation. This function loads the * entire state of the ongoing transformation from a provided block of * data so the transformation can continue from this point onward. No * data processing happens at this point. Driver must not use * req->result. * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @halg: see struct hash_alg_common */ struct ahash_alg { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_ahash *tfm); void (*exit_tfm)(struct crypto_ahash *tfm); struct hash_alg_common halg; }; struct shash_desc { struct crypto_shash *tfm; void *__ctx[] __aligned(ARCH_SLAB_MINALIGN); }; #define HASH_MAX_DIGESTSIZE 64 /* * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc' * containing a 'struct sha3_state'. */ #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360) #define HASH_MAX_STATESIZE 512 #define SHASH_DESC_ON_STACK(shash, ctx) \ char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \ __aligned(__alignof__(struct shash_desc)); \ struct shash_desc *shash = (struct shash_desc *)__##shash##_desc /** * struct shash_alg - synchronous message digest definition * @init: see struct ahash_alg * @update: see struct ahash_alg * @final: see struct ahash_alg * @finup: see struct ahash_alg * @digest: see struct ahash_alg * @export: see struct ahash_alg * @import: see struct ahash_alg * @setkey: see struct ahash_alg * @init_tfm: Initialize the cryptographic transformation object. * This function is called only once at the instantiation * time, right after the transformation context was * allocated. In case the cryptographic hardware has * some special requirements which need to be handled * by software, this function shall check for the precise * requirement of the transformation and put any software * fallbacks in place. * @exit_tfm: Deinitialize the cryptographic transformation object. * This is a counterpart to @init_tfm, used to remove * various changes set in @init_tfm. * @digestsize: see struct ahash_alg * @statesize: see struct ahash_alg * @descsize: Size of the operational state for the message digest. This state * size is the memory size that needs to be allocated for * shash_desc.__ctx * @base: internally used */ struct shash_alg { int (*init)(struct shash_desc *desc); int (*update)(struct shash_desc *desc, const u8 *data, unsigned int len); int (*final)(struct shash_desc *desc, u8 *out); int (*finup)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*digest)(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); int (*export)(struct shash_desc *desc, void *out); int (*import)(struct shash_desc *desc, const void *in); int (*setkey)(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); int (*init_tfm)(struct crypto_shash *tfm); void (*exit_tfm)(struct crypto_shash *tfm); unsigned int descsize; /* These fields must match hash_alg_common. */ unsigned int digestsize __attribute__ ((aligned(__alignof__(struct hash_alg_common)))); unsigned int statesize; struct crypto_alg base; }; struct crypto_ahash { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); int (*digest)(struct ahash_request *req); int (*export)(struct ahash_request *req, void *out); int (*import)(struct ahash_request *req, const void *in); int (*setkey)(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); unsigned int reqsize; struct crypto_tfm base; }; struct crypto_shash { unsigned int descsize; struct crypto_tfm base; }; /** * DOC: Asynchronous Message Digest API * * The asynchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) * * The asynchronous cipher operation discussion provided for the * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well. */ static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_ahash, base); } /** * crypto_alloc_ahash() - allocate ahash cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an ahash. The returned struct * crypto_ahash is the cipher handle that is required for any subsequent * API invocation for that ahash. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) { return &tfm->base; } /** * crypto_free_ahash() - zeroize and free the ahash handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_ahash(struct crypto_ahash *tfm) { crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); } /** * crypto_has_ahash() - Search for the availability of an ahash. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * ahash * @type: specifies the type of the ahash * @mask: specifies the mask for the ahash * * Return: true when the ahash is known to the kernel crypto API; false * otherwise */ int crypto_has_ahash(const char *alg_name, u32 type, u32 mask); static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); } static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm) { return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm)); } static inline unsigned int crypto_ahash_alignmask( struct crypto_ahash *tfm) { return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm)); } /** * crypto_ahash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm) { return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); } static inline struct hash_alg_common *__crypto_hash_alg_common( struct crypto_alg *alg) { return container_of(alg, struct hash_alg_common, base); } static inline struct hash_alg_common *crypto_hash_alg_common( struct crypto_ahash *tfm) { return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); } /** * crypto_ahash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * * Return: message digest size of cipher */ static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->digestsize; } /** * crypto_ahash_statesize() - obtain size of the ahash state * @tfm: cipher handle * * Return the size of the ahash state. With the crypto_ahash_export() * function, the caller can export the state into a buffer whose size is * defined with this function. * * Return: size of the ahash state */ static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->statesize; } static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm) { return crypto_tfm_get_flags(crypto_ahash_tfm(tfm)); } static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags); } static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); } /** * crypto_ahash_reqtfm() - obtain cipher handle from request * @req: asynchronous request handle that contains the reference to the ahash * cipher handle * * Return the ahash cipher handle that is registered with the asynchronous * request handle ahash_request. * * Return: ahash cipher handle */ static inline struct crypto_ahash *crypto_ahash_reqtfm( struct ahash_request *req) { return __crypto_ahash_cast(req->base.tfm); } /** * crypto_ahash_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: size of the request data */ static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) { return tfm->reqsize; } static inline void *ahash_request_ctx(struct ahash_request *req) { return req->__ctx; } /** * crypto_ahash_setkey - set key for cipher handle * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the ahash cipher. The cipher * handle must point to a keyed hash in order for this function to succeed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); /** * crypto_ahash_finup() - update and finalize message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_finup(struct ahash_request *req); /** * crypto_ahash_final() - calculate message digest * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer registered with the ahash_request handle. * * Return: * 0 if the message digest was successfully calculated; * -EINPROGRESS if data is feeded into hardware (DMA) or queued for later; * -EBUSY if queue is full and request should be resubmitted later; * other < 0 if an error occurred */ int crypto_ahash_final(struct ahash_request *req); /** * crypto_ahash_digest() - calculate message digest for a buffer * @req: reference to the ahash_request handle that holds all information * needed to perform the cipher operation * * This function is a "short-hand" for the function calls of crypto_ahash_init, * crypto_ahash_update and crypto_ahash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Return: see crypto_ahash_final() */ int crypto_ahash_digest(struct ahash_request *req); /** * crypto_ahash_export() - extract current message digest state * @req: reference to the ahash_request handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the ahash_request handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_ahash_statesize()). * * Return: 0 if the export was successful; < 0 if an error occurred */ static inline int crypto_ahash_export(struct ahash_request *req, void *out) { return crypto_ahash_reqtfm(req)->export(req, out); } /** * crypto_ahash_import() - import message digest state * @req: reference to ahash_request handle the state is imported into * @in: buffer holding the state * * This function imports the hash state into the ahash_request handle from the * input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_ahash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->import(req, in); } /** * crypto_ahash_init() - (re)initialize message digest handle * @req: ahash_request handle that already is initialized with all necessary * data using the ahash_request_* API functions * * The call (re-)initializes the message digest referenced by the ahash_request * handle. Any potentially existing state created by previous operations is * discarded. * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return tfm->init(req); } /** * crypto_ahash_update() - add data to message digest for processing * @req: ahash_request handle that was previously initialized with the * crypto_ahash_init call. * * Updates the message digest state of the &ahash_request handle. The input data * is pointed to by the scatter/gather list registered in the &ahash_request * handle * * Return: see crypto_ahash_final() */ static inline int crypto_ahash_update(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct crypto_alg *alg = tfm->base.__crt_alg; unsigned int nbytes = req->nbytes; int ret; crypto_stats_get(alg); ret = crypto_ahash_reqtfm(req)->update(req); crypto_stats_ahash_update(nbytes, ret, alg); return ret; } /** * DOC: Asynchronous Hash Request Handle * * The &ahash_request data structure contains all pointers to data * required for the asynchronous cipher operation. This includes the cipher * handle (which can be used by multiple &ahash_request instances), pointer * to plaintext and the message digest output buffer, asynchronous callback * function, etc. It acts as a handle to the ahash_request_* API calls in a * similar way as ahash handle to the crypto_ahash_* API calls. */ /** * ahash_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing ahash handle in the request * data structure with a different one. */ static inline void ahash_request_set_tfm(struct ahash_request *req, struct crypto_ahash *tfm) { req->base.tfm = crypto_ahash_tfm(tfm); } /** * ahash_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the ahash * message digest API calls. During * the allocation, the provided ahash handle * is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct ahash_request *ahash_request_alloc( struct crypto_ahash *tfm, gfp_t gfp) { struct ahash_request *req; req = kmalloc(sizeof(struct ahash_request) + crypto_ahash_reqsize(tfm), gfp); if (likely(req)) ahash_request_set_tfm(req, tfm); return req; } /** * ahash_request_free() - zeroize and free the request data structure * @req: request data structure cipher handle to be freed */ static inline void ahash_request_free(struct ahash_request *req) { kfree_sensitive(req); } static inline void ahash_request_zero(struct ahash_request *req) { memzero_explicit(req, sizeof(*req) + crypto_ahash_reqsize(crypto_ahash_reqtfm(req))); } static inline struct ahash_request *ahash_request_cast( struct crypto_async_request *req) { return container_of(req, struct ahash_request, base); } /** * ahash_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * &crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once * the cipher operation completes. * * The callback function is registered with the &ahash_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void ahash_request_set_callback(struct ahash_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * ahash_request_set_crypt() - set data buffers * @req: ahash_request handle to be updated * @src: source scatter/gather list * @result: buffer that is filled with the message digest -- the caller must * ensure that the buffer has sufficient space by, for example, calling * crypto_ahash_digestsize() * @nbytes: number of bytes to process from the source scatter/gather list * * By using this call, the caller references the source scatter/gather list. * The source scatter/gather list points to the data the message digest is to * be calculated for. */ static inline void ahash_request_set_crypt(struct ahash_request *req, struct scatterlist *src, u8 *result, unsigned int nbytes) { req->src = src; req->nbytes = nbytes; req->result = result; } /** * DOC: Synchronous Message Digest API * * The synchronous message digest API is used with the ciphers of type * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) * * The message digest API is able to maintain state information for the * caller. * * The synchronous message digest API can store user-related context in its * shash_desc request data structure. */ /** * crypto_alloc_shash() - allocate message digest handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a message digest. The returned &struct * crypto_shash is the cipher handle that is required for any subsequent * API invocation for that message digest. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) { return &tfm->base; } /** * crypto_free_shash() - zeroize and free the message digest handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_shash(struct crypto_shash *tfm) { crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm) { return crypto_tfm_alg_name(crypto_shash_tfm(tfm)); } static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm) { return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm)); } static inline unsigned int crypto_shash_alignmask( struct crypto_shash *tfm) { return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); } /** * crypto_shash_blocksize() - obtain block size for cipher * @tfm: cipher handle * * The block size for the message digest cipher referenced with the cipher * handle is returned. * * Return: block size of cipher */ static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) { return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); } static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg) { return container_of(alg, struct shash_alg, base); } static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) { return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); } /** * crypto_shash_digestsize() - obtain message digest size * @tfm: cipher handle * * The size for the message digest created by the message digest cipher * referenced with the cipher handle is returned. * * Return: digest size of cipher */ static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->digestsize; } static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->statesize; } static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm) { return crypto_tfm_get_flags(crypto_shash_tfm(tfm)); } static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags); } static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); } /** * crypto_shash_descsize() - obtain the operational state size * @tfm: cipher handle * * The size of the operational state the cipher needs during operation is * returned for the hash referenced with the cipher handle. This size is * required to calculate the memory requirements to allow the caller allocating * sufficient memory for operational state. * * The operational state is defined with struct shash_desc where the size of * that data structure is to be calculated as * sizeof(struct shash_desc) + crypto_shash_descsize(alg) * * Return: size of the operational state */ static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) { return tfm->descsize; } static inline void *shash_desc_ctx(struct shash_desc *desc) { return desc->__ctx; } /** * crypto_shash_setkey() - set key for message digest * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the keyed message digest cipher. The * cipher handle must point to a keyed message digest cipher in order for this * function to succeed. * * Context: Any context. * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); /** * crypto_shash_digest() - calculate message digest for buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of crypto_shash_init, * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate three functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_tfm_digest() - calculate message digest for buffer * @tfm: hash transformation object * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This is a simplified version of crypto_shash_digest() for users who don't * want to allocate their own hash descriptor (shash_desc). Instead, * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash) * directly, and it allocates a hash descriptor on the stack internally. * Note that this stack allocation may be fairly large. * * Context: Any context. * Return: 0 on success; < 0 if an error occurred. */ int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data, unsigned int len, u8 *out); /** * crypto_shash_export() - extract operational state for message digest * @desc: reference to the operational state handle whose state is exported * @out: output buffer of sufficient size that can hold the hash state * * This function exports the hash state of the operational state handle into the * caller-allocated output buffer out which must have sufficient size (e.g. by * calling crypto_shash_descsize). * * Context: Any context. * Return: 0 if the export creation was successful; < 0 if an error occurred */ static inline int crypto_shash_export(struct shash_desc *desc, void *out) { return crypto_shash_alg(desc->tfm)->export(desc, out); } /** * crypto_shash_import() - import operational state * @desc: reference to the operational state handle the state imported into * @in: buffer holding the state * * This function imports the hash state into the operational state handle from * the input buffer. That buffer should have been generated with the * crypto_ahash_export function. * * Context: Any context. * Return: 0 if the import was successful; < 0 if an error occurred */ static inline int crypto_shash_import(struct shash_desc *desc, const void *in) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->import(desc, in); } /** * crypto_shash_init() - (re)initialize message digest * @desc: operational state handle that is already filled * * The call (re-)initializes the message digest referenced by the * operational state handle. Any potentially existing state created by * previous operations is discarded. * * Context: Any context. * Return: 0 if the message digest initialization was successful; < 0 if an * error occurred */ static inline int crypto_shash_init(struct shash_desc *desc) { struct crypto_shash *tfm = desc->tfm; if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY) return -ENOKEY; return crypto_shash_alg(tfm)->init(desc); } /** * crypto_shash_update() - add data to message digest for processing * @desc: operational state handle that is already initialized * @data: input data to be added to the message digest * @len: length of the input data * * Updates the message digest state of the operational state handle. * * Context: Any context. * Return: 0 if the message digest update was successful; < 0 if an error * occurred */ int crypto_shash_update(struct shash_desc *desc, const u8 *data, unsigned int len); /** * crypto_shash_final() - calculate message digest * @desc: operational state handle that is already filled with data * @out: output buffer filled with the message digest * * Finalize the message digest operation and create the message digest * based on all data added to the cipher handle. The message digest is placed * into the output buffer. The caller must ensure that the output buffer is * large enough by using crypto_shash_digestsize. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_final(struct shash_desc *desc, u8 *out); /** * crypto_shash_finup() - calculate message digest of buffer * @desc: see crypto_shash_final() * @data: see crypto_shash_update() * @len: see crypto_shash_update() * @out: see crypto_shash_final() * * This function is a "short-hand" for the function calls of * crypto_shash_update and crypto_shash_final. The parameters have the same * meaning as discussed for those separate functions. * * Context: Any context. * Return: 0 if the message digest creation was successful; < 0 if an error * occurred */ int crypto_shash_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); static inline void shash_desc_zero(struct shash_desc *desc) { memzero_explicit(desc, sizeof(*desc) + crypto_shash_descsize(desc->tfm)); } #endif /* _CRYPTO_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_UDP_TUNNEL_H #define __NET_UDP_TUNNEL_H #include <net/ip_tunnels.h> #include <net/udp.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ipv6.h> #include <net/ipv6_stubs.h> #endif struct udp_port_cfg { u8 family; /* Used only for kernel-created sockets */ union { struct in_addr local_ip; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr local_ip6; #endif }; union { struct in_addr peer_ip; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr peer_ip6; #endif }; __be16 local_udp_port; __be16 peer_udp_port; int bind_ifindex; unsigned int use_udp_checksums:1, use_udp6_tx_checksums:1, use_udp6_rx_checksums:1, ipv6_v6only:1; }; int udp_sock_create4(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp); #if IS_ENABLED(CONFIG_IPV6) int udp_sock_create6(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp); #else static inline int udp_sock_create6(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp) { return 0; } #endif static inline int udp_sock_create(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp) { if (cfg->family == AF_INET) return udp_sock_create4(net, cfg, sockp); if (cfg->family == AF_INET6) return udp_sock_create6(net, cfg, sockp); return -EPFNOSUPPORT; } typedef int (*udp_tunnel_encap_rcv_t)(struct sock *sk, struct sk_buff *skb); typedef int (*udp_tunnel_encap_err_lookup_t)(struct sock *sk, struct sk_buff *skb); typedef void (*udp_tunnel_encap_destroy_t)(struct sock *sk); typedef struct sk_buff *(*udp_tunnel_gro_receive_t)(struct sock *sk, struct list_head *head, struct sk_buff *skb); typedef int (*udp_tunnel_gro_complete_t)(struct sock *sk, struct sk_buff *skb, int nhoff); struct udp_tunnel_sock_cfg { void *sk_user_data; /* user data used by encap_rcv call back */ /* Used for setting up udp_sock fields, see udp.h for details */ __u8 encap_type; udp_tunnel_encap_rcv_t encap_rcv; udp_tunnel_encap_err_lookup_t encap_err_lookup; udp_tunnel_encap_destroy_t encap_destroy; udp_tunnel_gro_receive_t gro_receive; udp_tunnel_gro_complete_t gro_complete; }; /* Setup the given (UDP) sock to receive UDP encapsulated packets */ void setup_udp_tunnel_sock(struct net *net, struct socket *sock, struct udp_tunnel_sock_cfg *sock_cfg); /* -- List of parsable UDP tunnel types -- * * Adding to this list will result in serious debate. The main issue is * that this list is essentially a list of workarounds for either poorly * designed tunnels, or poorly designed device offloads. * * The parsing supported via these types should really be used for Rx * traffic only as the network stack will have already inserted offsets for * the location of the headers in the skb. In addition any ports that are * pushed should be kept within the namespace without leaking to other * devices such as VFs or other ports on the same device. * * It is strongly encouraged to use CHECKSUM_COMPLETE for Rx to avoid the * need to use this for Rx checksum offload. It should not be necessary to * call this function to perform Tx offloads on outgoing traffic. */ enum udp_parsable_tunnel_type { UDP_TUNNEL_TYPE_VXLAN = BIT(0), /* RFC 7348 */ UDP_TUNNEL_TYPE_GENEVE = BIT(1), /* draft-ietf-nvo3-geneve */ UDP_TUNNEL_TYPE_VXLAN_GPE = BIT(2), /* draft-ietf-nvo3-vxlan-gpe */ }; struct udp_tunnel_info { unsigned short type; sa_family_t sa_family; __be16 port; u8 hw_priv; }; /* Notify network devices of offloadable types */ void udp_tunnel_push_rx_port(struct net_device *dev, struct socket *sock, unsigned short type); void udp_tunnel_drop_rx_port(struct net_device *dev, struct socket *sock, unsigned short type); void udp_tunnel_notify_add_rx_port(struct socket *sock, unsigned short type); void udp_tunnel_notify_del_rx_port(struct socket *sock, unsigned short type); static inline void udp_tunnel_get_rx_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_UDP_TUNNEL_PUSH_INFO, dev); } static inline void udp_tunnel_drop_rx_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_UDP_TUNNEL_DROP_INFO, dev); } /* Transmit the skb using UDP encapsulation. */ void udp_tunnel_xmit_skb(struct rtable *rt, struct sock *sk, struct sk_buff *skb, __be32 src, __be32 dst, __u8 tos, __u8 ttl, __be16 df, __be16 src_port, __be16 dst_port, bool xnet, bool nocheck); int udp_tunnel6_xmit_skb(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, struct net_device *dev, struct in6_addr *saddr, struct in6_addr *daddr, __u8 prio, __u8 ttl, __be32 label, __be16 src_port, __be16 dst_port, bool nocheck); void udp_tunnel_sock_release(struct socket *sock); struct metadata_dst *udp_tun_rx_dst(struct sk_buff *skb, unsigned short family, __be16 flags, __be64 tunnel_id, int md_size); #ifdef CONFIG_INET static inline int udp_tunnel_handle_offloads(struct sk_buff *skb, bool udp_csum) { int type = udp_csum ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; return iptunnel_handle_offloads(skb, type); } #endif static inline void udp_tunnel_encap_enable(struct socket *sock) { struct udp_sock *up = udp_sk(sock->sk); if (up->encap_enabled) return; up->encap_enabled = 1; #if IS_ENABLED(CONFIG_IPV6) if (sock->sk->sk_family == PF_INET6) ipv6_stub->udpv6_encap_enable(); #endif udp_encap_enable(); } #define UDP_TUNNEL_NIC_MAX_TABLES 4 enum udp_tunnel_nic_info_flags { /* Device callbacks may sleep */ UDP_TUNNEL_NIC_INFO_MAY_SLEEP = BIT(0), /* Device only supports offloads when it's open, all ports * will be removed before close and re-added after open. */ UDP_TUNNEL_NIC_INFO_OPEN_ONLY = BIT(1), /* Device supports only IPv4 tunnels */ UDP_TUNNEL_NIC_INFO_IPV4_ONLY = BIT(2), /* Device has hard-coded the IANA VXLAN port (4789) as VXLAN. * This port must not be counted towards n_entries of any table. * Driver will not receive any callback associated with port 4789. */ UDP_TUNNEL_NIC_INFO_STATIC_IANA_VXLAN = BIT(3), }; struct udp_tunnel_nic; #define UDP_TUNNEL_NIC_MAX_SHARING_DEVICES (U16_MAX / 2) struct udp_tunnel_nic_shared { struct udp_tunnel_nic *udp_tunnel_nic_info; struct list_head devices; }; struct udp_tunnel_nic_shared_node { struct net_device *dev; struct list_head list; }; /** * struct udp_tunnel_nic_info - driver UDP tunnel offload information * @set_port: callback for adding a new port * @unset_port: callback for removing a port * @sync_table: callback for syncing the entire port table at once * @shared: reference to device global state (optional) * @flags: device flags from enum udp_tunnel_nic_info_flags * @tables: UDP port tables this device has * @tables.n_entries: number of entries in this table * @tables.tunnel_types: types of tunnels this table accepts * * Drivers are expected to provide either @set_port and @unset_port callbacks * or the @sync_table callback. Callbacks are invoked with rtnl lock held. * * Devices which (misguidedly) share the UDP tunnel port table across multiple * netdevs should allocate an instance of struct udp_tunnel_nic_shared and * point @shared at it. * There must never be more than %UDP_TUNNEL_NIC_MAX_SHARING_DEVICES devices * sharing a table. * * Known limitations: * - UDP tunnel port notifications are fundamentally best-effort - * it is likely the driver will both see skbs which use a UDP tunnel port, * while not being a tunneled skb, and tunnel skbs from other ports - * drivers should only use these ports for non-critical RX-side offloads, * e.g. the checksum offload; * - none of the devices care about the socket family at present, so we don't * track it. Please extend this code if you care. */ struct udp_tunnel_nic_info { /* one-by-one */ int (*set_port)(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti); int (*unset_port)(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti); /* all at once */ int (*sync_table)(struct net_device *dev, unsigned int table); struct udp_tunnel_nic_shared *shared; unsigned int flags; struct udp_tunnel_nic_table_info { unsigned int n_entries; unsigned int tunnel_types; } tables[UDP_TUNNEL_NIC_MAX_TABLES]; }; /* UDP tunnel module dependencies * * Tunnel drivers are expected to have a hard dependency on the udp_tunnel * module. NIC drivers are not, they just attach their * struct udp_tunnel_nic_info to the netdev and wait for callbacks to come. * Loading a tunnel driver will cause the udp_tunnel module to be loaded * and only then will all the required state structures be allocated. * Since we want a weak dependency from the drivers and the core to udp_tunnel * we call things through the following stubs. */ struct udp_tunnel_nic_ops { void (*get_port)(struct net_device *dev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti); void (*set_port_priv)(struct net_device *dev, unsigned int table, unsigned int idx, u8 priv); void (*add_port)(struct net_device *dev, struct udp_tunnel_info *ti); void (*del_port)(struct net_device *dev, struct udp_tunnel_info *ti); void (*reset_ntf)(struct net_device *dev); size_t (*dump_size)(struct net_device *dev, unsigned int table); int (*dump_write)(struct net_device *dev, unsigned int table, struct sk_buff *skb); }; #ifdef CONFIG_INET extern const struct udp_tunnel_nic_ops *udp_tunnel_nic_ops; #else #define udp_tunnel_nic_ops ((struct udp_tunnel_nic_ops *)NULL) #endif static inline void udp_tunnel_nic_get_port(struct net_device *dev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti) { /* This helper is used from .sync_table, we indicate empty entries * by zero'ed @ti. Drivers which need to know the details of a port * when it gets deleted should use the .set_port / .unset_port * callbacks. * Zero out here, otherwise !CONFIG_INET causes uninitilized warnings. */ memset(ti, 0, sizeof(*ti)); if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->get_port(dev, table, idx, ti); } static inline void udp_tunnel_nic_set_port_priv(struct net_device *dev, unsigned int table, unsigned int idx, u8 priv) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->set_port_priv(dev, table, idx, priv); } static inline void udp_tunnel_nic_add_port(struct net_device *dev, struct udp_tunnel_info *ti) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->add_port(dev, ti); } static inline void udp_tunnel_nic_del_port(struct net_device *dev, struct udp_tunnel_info *ti) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->del_port(dev, ti); } /** * udp_tunnel_nic_reset_ntf() - device-originating reset notification * @dev: network interface device structure * * Called by the driver to inform the core that the entire UDP tunnel port * state has been lost, usually due to device reset. Core will assume device * forgot all the ports and issue .set_port and .sync_table callbacks as * necessary. * * This function must be called with rtnl lock held, and will issue all * the callbacks before returning. */ static inline void udp_tunnel_nic_reset_ntf(struct net_device *dev) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->reset_ntf(dev); } static inline size_t udp_tunnel_nic_dump_size(struct net_device *dev, unsigned int table) { if (!udp_tunnel_nic_ops) return 0; return udp_tunnel_nic_ops->dump_size(dev, table); } static inline int udp_tunnel_nic_dump_write(struct net_device *dev, unsigned int table, struct sk_buff *skb) { if (!udp_tunnel_nic_ops) return 0; return udp_tunnel_nic_ops->dump_write(dev, table, skb); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 /* SPDX-License-Identifier: GPL-2.0 */ /* rwsem.h: R/W semaphores, public interface * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h */ #ifndef _LINUX_RWSEM_H #define _LINUX_RWSEM_H #include <linux/linkage.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif /* * For an uncontended rwsem, count and owner are the only fields a task * needs to touch when acquiring the rwsem. So they are put next to each * other to increase the chance that they will share the same cacheline. * * In a contended rwsem, the owner is likely the most frequently accessed * field in the structure as the optimistic waiter that holds the osq lock * will spin on owner. For an embedded rwsem, other hot fields in the * containing structure should be moved further away from the rwsem to * reduce the chance that they will share the same cacheline causing * cacheline bouncing problem. */ struct rw_semaphore { atomic_long_t count; /* * Write owner or one of the read owners as well flags regarding * the current state of the rwsem. Can be used as a speculative * check to see if the write owner is running on the cpu. */ atomic_long_t owner; #ifdef CONFIG_RWSEM_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* spinner MCS lock */ #endif raw_spinlock_t wait_lock; struct list_head wait_list; #ifdef CONFIG_DEBUG_RWSEMS void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; /* In all implementations count != 0 means locked */ static inline int rwsem_is_locked(struct rw_semaphore *sem) { return atomic_long_read(&sem->count) != 0; } #define RWSEM_UNLOCKED_VALUE 0L #define __RWSEM_COUNT_INIT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE) /* Common initializer macros and functions */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # define __RWSEM_DEP_MAP_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_SLEEP, \ }, #else # define __RWSEM_DEP_MAP_INIT(lockname) #endif #ifdef CONFIG_DEBUG_RWSEMS # define __RWSEM_DEBUG_INIT(lockname) .magic = &lockname, #else # define __RWSEM_DEBUG_INIT(lockname) #endif #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #define __RWSEM_OPT_INIT(lockname) .osq = OSQ_LOCK_UNLOCKED, #else #define __RWSEM_OPT_INIT(lockname) #endif #define __RWSEM_INITIALIZER(name) \ { __RWSEM_COUNT_INIT(name), \ .owner = ATOMIC_LONG_INIT(0), \ __RWSEM_OPT_INIT(name) \ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),\ .wait_list = LIST_HEAD_INIT((name).wait_list), \ __RWSEM_DEBUG_INIT(name) \ __RWSEM_DEP_MAP_INIT(name) } #define DECLARE_RWSEM(name) \ struct rw_semaphore name = __RWSEM_INITIALIZER(name) extern void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) /* * This is the same regardless of which rwsem implementation that is being used. * It is just a heuristic meant to be called by somebody alreadying holding the * rwsem to see if somebody from an incompatible type is wanting access to the * lock. */ static inline int rwsem_is_contended(struct rw_semaphore *sem) { return !list_empty(&sem->wait_list); } /* * lock for reading */ extern void down_read(struct rw_semaphore *sem); extern int __must_check down_read_interruptible(struct rw_semaphore *sem); extern int __must_check down_read_killable(struct rw_semaphore *sem); /* * trylock for reading -- returns 1 if successful, 0 if contention */ extern int down_read_trylock(struct rw_semaphore *sem); /* * lock for writing */ extern void down_write(struct rw_semaphore *sem); extern int __must_check down_write_killable(struct rw_semaphore *sem); /* * trylock for writing -- returns 1 if successful, 0 if contention */ extern int down_write_trylock(struct rw_semaphore *sem); /* * release a read lock */ extern void up_read(struct rw_semaphore *sem); /* * release a write lock */ extern void up_write(struct rw_semaphore *sem); /* * downgrade write lock to read lock */ extern void downgrade_write(struct rw_semaphore *sem); #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * nested locking. NOTE: rwsems are not allowed to recurse * (which occurs if the same task tries to acquire the same * lock instance multiple times), but multiple locks of the * same lock class might be taken, if the order of the locks * is always the same. This ordering rule can be expressed * to lockdep via the _nested() APIs, but enumerating the * subclasses that are used. (If the nesting relationship is * static then another method for expressing nested locking is * the explicit definition of lock class keys and the use of * lockdep_set_class() at lock initialization time. * See Documentation/locking/lockdep-design.rst for more details.) */ extern void down_read_nested(struct rw_semaphore *sem, int subclass); extern int __must_check down_read_killable_nested(struct rw_semaphore *sem, int subclass); extern void down_write_nested(struct rw_semaphore *sem, int subclass); extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass); extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock); # define down_write_nest_lock(sem, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ _down_write_nest_lock(sem, &(nest_lock)->dep_map); \ } while (0); /* * Take/release a lock when not the owner will release it. * * [ This API should be avoided as much as possible - the * proper abstraction for this case is completions. ] */ extern void down_read_non_owner(struct rw_semaphore *sem); extern void up_read_non_owner(struct rw_semaphore *sem); #else # define down_read_nested(sem, subclass) down_read(sem) # define down_read_killable_nested(sem, subclass) down_read_killable(sem) # define down_write_nest_lock(sem, nest_lock) down_write(sem) # define down_write_nested(sem, subclass) down_write(sem) # define down_write_killable_nested(sem, subclass) down_write_killable(sem) # define down_read_non_owner(sem) down_read(sem) # define up_read_non_owner(sem) up_read(sem) #endif #endif /* _LINUX_RWSEM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the UDP protocol. * * Version: @(#)udp.h 1.0.2 04/28/93 * * Author: Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_UDP_H #define _LINUX_UDP_H #include <net/inet_sock.h> #include <linux/skbuff.h> #include <net/netns/hash.h> #include <uapi/linux/udp.h> static inline struct udphdr *udp_hdr(const struct sk_buff *skb) { return (struct udphdr *)skb_transport_header(skb); } static inline struct udphdr *inner_udp_hdr(const struct sk_buff *skb) { return (struct udphdr *)skb_inner_transport_header(skb); } #define UDP_HTABLE_SIZE_MIN (CONFIG_BASE_SMALL ? 128 : 256) static inline u32 udp_hashfn(const struct net *net, u32 num, u32 mask) { return (num + net_hash_mix(net)) & mask; } struct udp_sock { /* inet_sock has to be the first member */ struct inet_sock inet; #define udp_port_hash inet.sk.__sk_common.skc_u16hashes[0] #define udp_portaddr_hash inet.sk.__sk_common.skc_u16hashes[1] #define udp_portaddr_node inet.sk.__sk_common.skc_portaddr_node int pending; /* Any pending frames ? */ unsigned int corkflag; /* Cork is required */ __u8 encap_type; /* Is this an Encapsulation socket? */ unsigned char no_check6_tx:1,/* Send zero UDP6 checksums on TX? */ no_check6_rx:1,/* Allow zero UDP6 checksums on RX? */ encap_enabled:1, /* This socket enabled encap * processing; UDP tunnels and * different encapsulation layer set * this */ gro_enabled:1, /* Request GRO aggregation */ accept_udp_l4:1, accept_udp_fraglist:1; /* * Following member retains the information to create a UDP header * when the socket is uncorked. */ __u16 len; /* total length of pending frames */ __u16 gso_size; /* * Fields specific to UDP-Lite. */ __u16 pcslen; __u16 pcrlen; /* indicator bits used by pcflag: */ #define UDPLITE_BIT 0x1 /* set by udplite proto init function */ #define UDPLITE_SEND_CC 0x2 /* set via udplite setsockopt */ #define UDPLITE_RECV_CC 0x4 /* set via udplite setsocktopt */ __u8 pcflag; /* marks socket as UDP-Lite if > 0 */ __u8 unused[3]; /* * For encapsulation sockets. */ int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); int (*encap_err_lookup)(struct sock *sk, struct sk_buff *skb); void (*encap_destroy)(struct sock *sk); /* GRO functions for UDP socket */ struct sk_buff * (*gro_receive)(struct sock *sk, struct list_head *head, struct sk_buff *skb); int (*gro_complete)(struct sock *sk, struct sk_buff *skb, int nhoff); /* udp_recvmsg try to use this before splicing sk_receive_queue */ struct sk_buff_head reader_queue ____cacheline_aligned_in_smp; /* This field is dirtied by udp_recvmsg() */ int forward_deficit; }; #define UDP_MAX_SEGMENTS (1 << 6UL) static inline struct udp_sock *udp_sk(const struct sock *sk) { return (struct udp_sock *)sk; } static inline void udp_set_no_check6_tx(struct sock *sk, bool val) { udp_sk(sk)->no_check6_tx = val; } static inline void udp_set_no_check6_rx(struct sock *sk, bool val) { udp_sk(sk)->no_check6_rx = val; } static inline bool udp_get_no_check6_tx(struct sock *sk) { return udp_sk(sk)->no_check6_tx; } static inline bool udp_get_no_check6_rx(struct sock *sk) { return udp_sk(sk)->no_check6_rx; } static inline void udp_cmsg_recv(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { int gso_size; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { gso_size = skb_shinfo(skb)->gso_size; put_cmsg(msg, SOL_UDP, UDP_GRO, sizeof(gso_size), &gso_size); } } DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key); #if IS_ENABLED(CONFIG_IPV6) DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key); #endif static inline bool udp_encap_needed(void) { if (static_branch_unlikely(&udp_encap_needed_key)) return true; #if IS_ENABLED(CONFIG_IPV6) if (static_branch_unlikely(&udpv6_encap_needed_key)) return true; #endif return false; } static inline bool udp_unexpected_gso(struct sock *sk, struct sk_buff *skb) { if (!skb_is_gso(skb)) return false; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && !udp_sk(sk)->accept_udp_l4) return true; if (skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST && !udp_sk(sk)->accept_udp_fraglist) return true; /* GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits might still * land in a tunnel as the socket check in udp_gro_receive cannot be * foolproof. */ if (udp_encap_needed() && READ_ONCE(udp_sk(sk)->encap_rcv) && !(skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM))) return true; return false; } #define udp_portaddr_for_each_entry(__sk, list) \ hlist_for_each_entry(__sk, list, __sk_common.skc_portaddr_node) #define udp_portaddr_for_each_entry_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, __sk_common.skc_portaddr_node) #define IS_UDPLITE(__sk) (__sk->sk_protocol == IPPROTO_UDPLITE) #endif /* _LINUX_UDP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* * include/net/tipc.h: Include file for TIPC message header routines * * Copyright (c) 2017 Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef _TIPC_HDR_H #define _TIPC_HDR_H #include <linux/random.h> #define KEEPALIVE_MSG_MASK 0x0e080000 /* LINK_PROTOCOL + MSG_IS_KEEPALIVE */ struct tipc_basic_hdr { __be32 w[4]; }; static inline __be32 tipc_hdr_rps_key(struct tipc_basic_hdr *hdr) { u32 w0 = ntohl(hdr->w[0]); bool keepalive_msg = (w0 & KEEPALIVE_MSG_MASK) == KEEPALIVE_MSG_MASK; __be32 key; /* Return source node identity as key */ if (likely(!keepalive_msg)) return hdr->w[3]; /* Spread PROBE/PROBE_REPLY messages across the cores */ get_random_bytes(&key, sizeof(key)); return key; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = (mapping && mapping->host) ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DMA_MAPPING_H #define _ASM_X86_DMA_MAPPING_H /* * IOMMU interface. See Documentation/core-api/dma-api-howto.rst and * Documentation/core-api/dma-api.rst for documentation. */ #include <linux/scatterlist.h> #include <asm/io.h> #include <asm/swiotlb.h> extern int iommu_merge; extern int panic_on_overflow; extern const struct dma_map_ops *dma_ops; static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus) { return dma_ops; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz> */ #ifndef IEEE80211_RATE_H #define IEEE80211_RATE_H #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "sta_info.h" #include "driver-ops.h" struct rate_control_ref { const struct rate_control_ops *ops; void *priv; }; void rate_control_get_rate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_tx_rate_control *txrc); void rate_control_tx_status(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct ieee80211_tx_status *st); void rate_control_rate_init(struct sta_info *sta); void rate_control_rate_update(struct ieee80211_local *local, struct ieee80211_supported_band *sband, struct sta_info *sta, u32 changed); static inline void *rate_control_alloc_sta(struct rate_control_ref *ref, struct sta_info *sta, gfp_t gfp) { spin_lock_init(&sta->rate_ctrl_lock); return ref->ops->alloc_sta(ref->priv, &sta->sta, gfp); } static inline void rate_control_free_sta(struct sta_info *sta) { struct rate_control_ref *ref = sta->rate_ctrl; struct ieee80211_sta *ista = &sta->sta; void *priv_sta = sta->rate_ctrl_priv; ref->ops->free_sta(ref->priv, ista, priv_sta); } static inline void rate_control_add_sta_debugfs(struct sta_info *sta) { #ifdef CONFIG_MAC80211_DEBUGFS struct rate_control_ref *ref = sta->rate_ctrl; if (ref && sta->debugfs_dir && ref->ops->add_sta_debugfs) ref->ops->add_sta_debugfs(ref->priv, sta->rate_ctrl_priv, sta->debugfs_dir); #endif } extern const struct file_operations rcname_ops; static inline void rate_control_add_debugfs(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_DEBUGFS struct dentry *debugfsdir; if (!local->rate_ctrl) return; if (!local->rate_ctrl->ops->add_debugfs) return; debugfsdir = debugfs_create_dir("rc", local->hw.wiphy->debugfsdir); local->debugfs.rcdir = debugfsdir; debugfs_create_file("name", 0400, debugfsdir, local->rate_ctrl, &rcname_ops); local->rate_ctrl->ops->add_debugfs(&local->hw, local->rate_ctrl->priv, debugfsdir); #endif } void ieee80211_check_rate_mask(struct ieee80211_sub_if_data *sdata); /* Get a reference to the rate control algorithm. If `name' is NULL, get the * first available algorithm. */ int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local, const char *name); void rate_control_deinitialize(struct ieee80211_local *local); /* Rate control algorithms */ #ifdef CONFIG_MAC80211_RC_MINSTREL int rc80211_minstrel_init(void); void rc80211_minstrel_exit(void); #else static inline int rc80211_minstrel_init(void) { return 0; } static inline void rc80211_minstrel_exit(void) { } #endif #endif /* IEEE80211_RATE_H */
1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 // SPDX-License-Identifier: GPL-2.0-or-later /* * Security plug functions * * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> * Copyright (C) 2016 Mellanox Technologies */ #define pr_fmt(fmt) "LSM: " fmt #include <linux/bpf.h> #include <linux/capability.h> #include <linux/dcache.h> #include <linux/export.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/kernel_read_file.h> #include <linux/lsm_hooks.h> #include <linux/integrity.h> #include <linux/ima.h> #include <linux/evm.h> #include <linux/fsnotify.h> #include <linux/mman.h> #include <linux/mount.h> #include <linux/personality.h> #include <linux/backing-dev.h> #include <linux/string.h> #include <linux/msg.h> #include <net/flow.h> #define MAX_LSM_EVM_XATTR 2 /* How many LSMs were built into the kernel? */ #define LSM_COUNT (__end_lsm_info - __start_lsm_info) /* * These are descriptions of the reasons that can be passed to the * security_locked_down() LSM hook. Placing this array here allows * all security modules to use the same descriptions for auditing * purposes. */ const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { [LOCKDOWN_NONE] = "none", [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", [LOCKDOWN_KEXEC] = "kexec of unsigned images", [LOCKDOWN_HIBERNATION] = "hibernation", [LOCKDOWN_PCI_ACCESS] = "direct PCI access", [LOCKDOWN_IOPORT] = "raw io port access", [LOCKDOWN_MSR] = "raw MSR access", [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", [LOCKDOWN_MMIOTRACE] = "unsafe mmio", [LOCKDOWN_DEBUGFS] = "debugfs access", [LOCKDOWN_XMON_WR] = "xmon write access", [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", [LOCKDOWN_INTEGRITY_MAX] = "integrity", [LOCKDOWN_KCORE] = "/proc/kcore access", [LOCKDOWN_KPROBES] = "use of kprobes", [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM", [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", [LOCKDOWN_PERF] = "unsafe use of perf", [LOCKDOWN_TRACEFS] = "use of tracefs", [LOCKDOWN_XMON_RW] = "xmon read and write access", [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", }; struct security_hook_heads security_hook_heads __lsm_ro_after_init; static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); static struct kmem_cache *lsm_file_cache; static struct kmem_cache *lsm_inode_cache; char *lsm_names; static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; /* Boot-time LSM user choice */ static __initdata const char *chosen_lsm_order; static __initdata const char *chosen_major_lsm; static __initconst const char * const builtin_lsm_order = CONFIG_LSM; /* Ordered list of LSMs to initialize. */ static __initdata struct lsm_info **ordered_lsms; static __initdata struct lsm_info *exclusive; static __initdata bool debug; #define init_debug(...) \ do { \ if (debug) \ pr_info(__VA_ARGS__); \ } while (0) static bool __init is_enabled(struct lsm_info *lsm) { if (!lsm->enabled) return false; return *lsm->enabled; } /* Mark an LSM's enabled flag. */ static int lsm_enabled_true __initdata = 1; static int lsm_enabled_false __initdata = 0; static void __init set_enabled(struct lsm_info *lsm, bool enabled) { /* * When an LSM hasn't configured an enable variable, we can use * a hard-coded location for storing the default enabled state. */ if (!lsm->enabled) { if (enabled) lsm->enabled = &lsm_enabled_true; else lsm->enabled = &lsm_enabled_false; } else if (lsm->enabled == &lsm_enabled_true) { if (!enabled) lsm->enabled = &lsm_enabled_false; } else if (lsm->enabled == &lsm_enabled_false) { if (enabled) lsm->enabled = &lsm_enabled_true; } else { *lsm->enabled = enabled; } } /* Is an LSM already listed in the ordered LSMs list? */ static bool __init exists_ordered_lsm(struct lsm_info *lsm) { struct lsm_info **check; for (check = ordered_lsms; *check; check++) if (*check == lsm) return true; return false; } /* Append an LSM to the list of ordered LSMs to initialize. */ static int last_lsm __initdata; static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) { /* Ignore duplicate selections. */ if (exists_ordered_lsm(lsm)) return; if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) return; /* Enable this LSM, if it is not already set. */ if (!lsm->enabled) lsm->enabled = &lsm_enabled_true; ordered_lsms[last_lsm++] = lsm; init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, is_enabled(lsm) ? "en" : "dis"); } /* Is an LSM allowed to be initialized? */ static bool __init lsm_allowed(struct lsm_info *lsm) { /* Skip if the LSM is disabled. */ if (!is_enabled(lsm)) return false; /* Not allowed if another exclusive LSM already initialized. */ if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { init_debug("exclusive disabled: %s\n", lsm->name); return false; } return true; } static void __init lsm_set_blob_size(int *need, int *lbs) { int offset; if (*need > 0) { offset = *lbs; *lbs += *need; *need = offset; } } static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) { if (!needed) return; lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); /* * The inode blob gets an rcu_head in addition to * what the modules might need. */ if (needed->lbs_inode && blob_sizes.lbs_inode == 0) blob_sizes.lbs_inode = sizeof(struct rcu_head); lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); } /* Prepare LSM for initialization. */ static void __init prepare_lsm(struct lsm_info *lsm) { int enabled = lsm_allowed(lsm); /* Record enablement (to handle any following exclusive LSMs). */ set_enabled(lsm, enabled); /* If enabled, do pre-initialization work. */ if (enabled) { if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { exclusive = lsm; init_debug("exclusive chosen: %s\n", lsm->name); } lsm_set_blob_sizes(lsm->blobs); } } /* Initialize a given LSM, if it is enabled. */ static void __init initialize_lsm(struct lsm_info *lsm) { if (is_enabled(lsm)) { int ret; init_debug("initializing %s\n", lsm->name); ret = lsm->init(); WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); } } /* Populate ordered LSMs list from comma-separated LSM name list. */ static void __init ordered_lsm_parse(const char *order, const char *origin) { struct lsm_info *lsm; char *sep, *name, *next; /* LSM_ORDER_FIRST is always first. */ for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (lsm->order == LSM_ORDER_FIRST) append_ordered_lsm(lsm, "first"); } /* Process "security=", if given. */ if (chosen_major_lsm) { struct lsm_info *major; /* * To match the original "security=" behavior, this * explicitly does NOT fallback to another Legacy Major * if the selected one was separately disabled: disable * all non-matching Legacy Major LSMs. */ for (major = __start_lsm_info; major < __end_lsm_info; major++) { if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && strcmp(major->name, chosen_major_lsm) != 0) { set_enabled(major, false); init_debug("security=%s disabled: %s\n", chosen_major_lsm, major->name); } } } sep = kstrdup(order, GFP_KERNEL); next = sep; /* Walk the list, looking for matching LSMs. */ while ((name = strsep(&next, ",")) != NULL) { bool found = false; for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (lsm->order == LSM_ORDER_MUTABLE && strcmp(lsm->name, name) == 0) { append_ordered_lsm(lsm, origin); found = true; } } if (!found) init_debug("%s ignored: %s\n", origin, name); } /* Process "security=", if given. */ if (chosen_major_lsm) { for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (exists_ordered_lsm(lsm)) continue; if (strcmp(lsm->name, chosen_major_lsm) == 0) append_ordered_lsm(lsm, "security="); } } /* Disable all LSMs not in the ordered list. */ for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (exists_ordered_lsm(lsm)) continue; set_enabled(lsm, false); init_debug("%s disabled: %s\n", origin, lsm->name); } kfree(sep); } static void __init lsm_early_cred(struct cred *cred); static void __init lsm_early_task(struct task_struct *task); static int lsm_append(const char *new, char **result); static void __init ordered_lsm_init(void) { struct lsm_info **lsm; ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), GFP_KERNEL); if (chosen_lsm_order) { if (chosen_major_lsm) { pr_info("security= is ignored because it is superseded by lsm=\n"); chosen_major_lsm = NULL; } ordered_lsm_parse(chosen_lsm_order, "cmdline"); } else ordered_lsm_parse(builtin_lsm_order, "builtin"); for (lsm = ordered_lsms; *lsm; lsm++) prepare_lsm(*lsm); init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); init_debug("file blob size = %d\n", blob_sizes.lbs_file); init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); init_debug("task blob size = %d\n", blob_sizes.lbs_task); /* * Create any kmem_caches needed for blobs */ if (blob_sizes.lbs_file) lsm_file_cache = kmem_cache_create("lsm_file_cache", blob_sizes.lbs_file, 0, SLAB_PANIC, NULL); if (blob_sizes.lbs_inode) lsm_inode_cache = kmem_cache_create("lsm_inode_cache", blob_sizes.lbs_inode, 0, SLAB_PANIC, NULL); lsm_early_cred((struct cred *) current->cred); lsm_early_task(current); for (lsm = ordered_lsms; *lsm; lsm++) initialize_lsm(*lsm); kfree(ordered_lsms); } int __init early_security_init(void) { int i; struct hlist_head *list = (struct hlist_head *) &security_hook_heads; struct lsm_info *lsm; for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); i++) INIT_HLIST_HEAD(&list[i]); for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { if (!lsm->enabled) lsm->enabled = &lsm_enabled_true; prepare_lsm(lsm); initialize_lsm(lsm); } return 0; } /** * security_init - initializes the security framework * * This should be called early in the kernel initialization sequence. */ int __init security_init(void) { struct lsm_info *lsm; pr_info("Security Framework initializing\n"); /* * Append the names of the early LSM modules now that kmalloc() is * available */ for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { if (lsm->enabled) lsm_append(lsm->name, &lsm_names); } /* Load LSMs in specified order. */ ordered_lsm_init(); return 0; } /* Save user chosen LSM */ static int __init choose_major_lsm(char *str) { chosen_major_lsm = str; return 1; } __setup("security=", choose_major_lsm); /* Explicitly choose LSM initialization order. */ static int __init choose_lsm_order(char *str) { chosen_lsm_order = str; return 1; } __setup("lsm=", choose_lsm_order); /* Enable LSM order debugging. */ static int __init enable_debug(char *str) { debug = true; return 1; } __setup("lsm.debug", enable_debug); static bool match_last_lsm(const char *list, const char *lsm) { const char *last; if (WARN_ON(!list || !lsm)) return false; last = strrchr(list, ','); if (last) /* Pass the comma, strcmp() will check for '\0' */ last++; else last = list; return !strcmp(last, lsm); } static int lsm_append(const char *new, char **result) { char *cp; if (*result == NULL) { *result = kstrdup(new, GFP_KERNEL); if (*result == NULL) return -ENOMEM; } else { /* Check if it is the last registered name */ if (match_last_lsm(*result, new)) return 0; cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); if (cp == NULL) return -ENOMEM; kfree(*result); *result = cp; } return 0; } /** * security_add_hooks - Add a modules hooks to the hook lists. * @hooks: the hooks to add * @count: the number of hooks to add * @lsm: the name of the security module * * Each LSM has to register its hooks with the infrastructure. */ void __init security_add_hooks(struct security_hook_list *hooks, int count, char *lsm) { int i; for (i = 0; i < count; i++) { hooks[i].lsm = lsm; hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); } /* * Don't try to append during early_security_init(), we'll come back * and fix this up afterwards. */ if (slab_is_available()) { if (lsm_append(lsm, &lsm_names) < 0) panic("%s - Cannot get early memory.\n", __func__); } } int call_blocking_lsm_notifier(enum lsm_event event, void *data) { return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, event, data); } EXPORT_SYMBOL(call_blocking_lsm_notifier); int register_blocking_lsm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, nb); } EXPORT_SYMBOL(register_blocking_lsm_notifier); int unregister_blocking_lsm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, nb); } EXPORT_SYMBOL(unregister_blocking_lsm_notifier); /** * lsm_cred_alloc - allocate a composite cred blob * @cred: the cred that needs a blob * @gfp: allocation type * * Allocate the cred blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) { if (blob_sizes.lbs_cred == 0) { cred->security = NULL; return 0; } cred->security = kzalloc(blob_sizes.lbs_cred, gfp); if (cred->security == NULL) return -ENOMEM; return 0; } /** * lsm_early_cred - during initialization allocate a composite cred blob * @cred: the cred that needs a blob * * Allocate the cred blob for all the modules */ static void __init lsm_early_cred(struct cred *cred) { int rc = lsm_cred_alloc(cred, GFP_KERNEL); if (rc) panic("%s: Early cred alloc failed.\n", __func__); } /** * lsm_file_alloc - allocate a composite file blob * @file: the file that needs a blob * * Allocate the file blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_file_alloc(struct file *file) { if (!lsm_file_cache) { file->f_security = NULL; return 0; } file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); if (file->f_security == NULL) return -ENOMEM; return 0; } /** * lsm_inode_alloc - allocate a composite inode blob * @inode: the inode that needs a blob * * Allocate the inode blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ int lsm_inode_alloc(struct inode *inode) { if (!lsm_inode_cache) { inode->i_security = NULL; return 0; } inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); if (inode->i_security == NULL) return -ENOMEM; return 0; } /** * lsm_task_alloc - allocate a composite task blob * @task: the task that needs a blob * * Allocate the task blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_task_alloc(struct task_struct *task) { if (blob_sizes.lbs_task == 0) { task->security = NULL; return 0; } task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); if (task->security == NULL) return -ENOMEM; return 0; } /** * lsm_ipc_alloc - allocate a composite ipc blob * @kip: the ipc that needs a blob * * Allocate the ipc blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_ipc_alloc(struct kern_ipc_perm *kip) { if (blob_sizes.lbs_ipc == 0) { kip->security = NULL; return 0; } kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); if (kip->security == NULL) return -ENOMEM; return 0; } /** * lsm_msg_msg_alloc - allocate a composite msg_msg blob * @mp: the msg_msg that needs a blob * * Allocate the ipc blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_msg_msg_alloc(struct msg_msg *mp) { if (blob_sizes.lbs_msg_msg == 0) { mp->security = NULL; return 0; } mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); if (mp->security == NULL) return -ENOMEM; return 0; } /** * lsm_early_task - during initialization allocate a composite task blob * @task: the task that needs a blob * * Allocate the task blob for all the modules */ static void __init lsm_early_task(struct task_struct *task) { int rc = lsm_task_alloc(task); if (rc) panic("%s: Early task alloc failed.\n", __func__); } /* * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and * can be accessed with: * * LSM_RET_DEFAULT(<hook_name>) * * The macros below define static constants for the default value of each * LSM hook. */ #define LSM_RET_DEFAULT(NAME) (NAME##_default) #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) #include <linux/lsm_hook_defs.h> #undef LSM_HOOK /* * Hook list operation macros. * * call_void_hook: * This is a hook that does not return a value. * * call_int_hook: * This is a hook that returns a value. */ #define call_void_hook(FUNC, ...) \ do { \ struct security_hook_list *P; \ \ hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ P->hook.FUNC(__VA_ARGS__); \ } while (0) #define call_int_hook(FUNC, IRC, ...) ({ \ int RC = IRC; \ do { \ struct security_hook_list *P; \ \ hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ RC = P->hook.FUNC(__VA_ARGS__); \ if (RC != 0) \ break; \ } \ } while (0); \ RC; \ }) /* Security operations */ int security_binder_set_context_mgr(const struct cred *mgr) { return call_int_hook(binder_set_context_mgr, 0, mgr); } int security_binder_transaction(const struct cred *from, const struct cred *to) { return call_int_hook(binder_transaction, 0, from, to); } int security_binder_transfer_binder(const struct cred *from, const struct cred *to) { return call_int_hook(binder_transfer_binder, 0, from, to); } int security_binder_transfer_file(const struct cred *from, const struct cred *to, struct file *file) { return call_int_hook(binder_transfer_file, 0, from, to, file); } int security_ptrace_access_check(struct task_struct *child, unsigned int mode) { return call_int_hook(ptrace_access_check, 0, child, mode); } int security_ptrace_traceme(struct task_struct *parent) { return call_int_hook(ptrace_traceme, 0, parent); } int security_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return call_int_hook(capget, 0, target, effective, inheritable, permitted); } int security_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { return call_int_hook(capset, 0, new, old, effective, inheritable, permitted); } int security_capable(const struct cred *cred, struct user_namespace *ns, int cap, unsigned int opts) { return call_int_hook(capable, 0, cred, ns, cap, opts); } int security_quotactl(int cmds, int type, int id, struct super_block *sb) { return call_int_hook(quotactl, 0, cmds, type, id, sb); } int security_quota_on(struct dentry *dentry) { return call_int_hook(quota_on, 0, dentry); } int security_syslog(int type) { return call_int_hook(syslog, 0, type); } int security_settime64(const struct timespec64 *ts, const struct timezone *tz) { return call_int_hook(settime, 0, ts, tz); } int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) { struct security_hook_list *hp; int cap_sys_admin = 1; int rc; /* * The module will respond with a positive value if * it thinks the __vm_enough_memory() call should be * made with the cap_sys_admin set. If all of the modules * agree that it should be set it will. If any module * thinks it should not be set it won't. */ hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { rc = hp->hook.vm_enough_memory(mm, pages); if (rc <= 0) { cap_sys_admin = 0; break; } } return __vm_enough_memory(mm, pages, cap_sys_admin); } int security_bprm_creds_for_exec(struct linux_binprm *bprm) { return call_int_hook(bprm_creds_for_exec, 0, bprm); } int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) { return call_int_hook(bprm_creds_from_file, 0, bprm, file); } int security_bprm_check(struct linux_binprm *bprm) { int ret; ret = call_int_hook(bprm_check_security, 0, bprm); if (ret) return ret; return ima_bprm_check(bprm); } void security_bprm_committing_creds(struct linux_binprm *bprm) { call_void_hook(bprm_committing_creds, bprm); } void security_bprm_committed_creds(struct linux_binprm *bprm) { call_void_hook(bprm_committed_creds, bprm); } int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { return call_int_hook(fs_context_dup, 0, fc, src_fc); } int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct security_hook_list *hp; int trc; int rc = -ENOPARAM; hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, list) { trc = hp->hook.fs_context_parse_param(fc, param); if (trc == 0) rc = 0; else if (trc != -ENOPARAM) return trc; } return rc; } int security_sb_alloc(struct super_block *sb) { return call_int_hook(sb_alloc_security, 0, sb); } void security_sb_free(struct super_block *sb) { call_void_hook(sb_free_security, sb); } void security_free_mnt_opts(void **mnt_opts) { if (!*mnt_opts) return; call_void_hook(sb_free_mnt_opts, *mnt_opts); *mnt_opts = NULL; } EXPORT_SYMBOL(security_free_mnt_opts); int security_sb_eat_lsm_opts(char *options, void **mnt_opts) { return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); } EXPORT_SYMBOL(security_sb_eat_lsm_opts); int security_sb_remount(struct super_block *sb, void *mnt_opts) { return call_int_hook(sb_remount, 0, sb, mnt_opts); } EXPORT_SYMBOL(security_sb_remount); int security_sb_kern_mount(struct super_block *sb) { return call_int_hook(sb_kern_mount, 0, sb); } int security_sb_show_options(struct seq_file *m, struct super_block *sb) { return call_int_hook(sb_show_options, 0, m, sb); } int security_sb_statfs(struct dentry *dentry) { return call_int_hook(sb_statfs, 0, dentry); } int security_sb_mount(const char *dev_name, const struct path *path, const char *type, unsigned long flags, void *data) { return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); } int security_sb_umount(struct vfsmount *mnt, int flags) { return call_int_hook(sb_umount, 0, mnt, flags); } int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) { return call_int_hook(sb_pivotroot, 0, old_path, new_path); } int security_sb_set_mnt_opts(struct super_block *sb, void *mnt_opts, unsigned long kern_flags, unsigned long *set_kern_flags) { return call_int_hook(sb_set_mnt_opts, mnt_opts ? -EOPNOTSUPP : 0, sb, mnt_opts, kern_flags, set_kern_flags); } EXPORT_SYMBOL(security_sb_set_mnt_opts); int security_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb, unsigned long kern_flags, unsigned long *set_kern_flags) { return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, kern_flags, set_kern_flags); } EXPORT_SYMBOL(security_sb_clone_mnt_opts); int security_add_mnt_opt(const char *option, const char *val, int len, void **mnt_opts) { return call_int_hook(sb_add_mnt_opt, -EINVAL, option, val, len, mnt_opts); } EXPORT_SYMBOL(security_add_mnt_opt); int security_move_mount(const struct path *from_path, const struct path *to_path) { return call_int_hook(move_mount, 0, from_path, to_path); } int security_path_notify(const struct path *path, u64 mask, unsigned int obj_type) { return call_int_hook(path_notify, 0, path, mask, obj_type); } int security_inode_alloc(struct inode *inode) { int rc = lsm_inode_alloc(inode); if (unlikely(rc)) return rc; rc = call_int_hook(inode_alloc_security, 0, inode); if (unlikely(rc)) security_inode_free(inode); return rc; } static void inode_free_by_rcu(struct rcu_head *head) { /* * The rcu head is at the start of the inode blob */ kmem_cache_free(lsm_inode_cache, head); } void security_inode_free(struct inode *inode) { integrity_inode_free(inode); call_void_hook(inode_free_security, inode); /* * The inode may still be referenced in a path walk and * a call to security_inode_permission() can be made * after inode_free_security() is called. Ideally, the VFS * wouldn't do this, but fixing that is a much harder * job. For now, simply free the i_security via RCU, and * leave the current inode->i_security pointer intact. * The inode will be freed after the RCU grace period too. */ if (inode->i_security) call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu); } int security_dentry_init_security(struct dentry *dentry, int mode, const struct qstr *name, void **ctx, u32 *ctxlen) { return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, name, ctx, ctxlen); } EXPORT_SYMBOL(security_dentry_init_security); int security_dentry_create_files_as(struct dentry *dentry, int mode, struct qstr *name, const struct cred *old, struct cred *new) { return call_int_hook(dentry_create_files_as, 0, dentry, mode, name, old, new); } EXPORT_SYMBOL(security_dentry_create_files_as); int security_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, const initxattrs initxattrs, void *fs_data) { struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; struct xattr *lsm_xattr, *evm_xattr, *xattr; int ret; if (unlikely(IS_PRIVATE(inode))) return 0; if (!initxattrs) return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, NULL, NULL, NULL); memset(new_xattrs, 0, sizeof(new_xattrs)); lsm_xattr = new_xattrs; ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, &lsm_xattr->name, &lsm_xattr->value, &lsm_xattr->value_len); if (ret) goto out; evm_xattr = lsm_xattr + 1; ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); if (ret) goto out; ret = initxattrs(inode, new_xattrs, fs_data); out: for (xattr = new_xattrs; xattr->value != NULL; xattr++) kfree(xattr->value); return (ret == -EOPNOTSUPP) ? 0 : ret; } EXPORT_SYMBOL(security_inode_init_security); int security_old_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, const char **name, void **value, size_t *len) { if (unlikely(IS_PRIVATE(inode))) return -EOPNOTSUPP; return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, name, value, len); } EXPORT_SYMBOL(security_old_inode_init_security); #ifdef CONFIG_SECURITY_PATH int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, unsigned int dev) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); } EXPORT_SYMBOL(security_path_mknod); int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_mkdir, 0, dir, dentry, mode); } EXPORT_SYMBOL(security_path_mkdir); int security_path_rmdir(const struct path *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_rmdir, 0, dir, dentry); } int security_path_unlink(const struct path *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_unlink, 0, dir, dentry); } EXPORT_SYMBOL(security_path_unlink); int security_path_symlink(const struct path *dir, struct dentry *dentry, const char *old_name) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_symlink, 0, dir, dentry, old_name); } int security_path_link(struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) return 0; return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); } int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry, unsigned int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) return 0; if (flags & RENAME_EXCHANGE) { int err = call_int_hook(path_rename, 0, new_dir, new_dentry, old_dir, old_dentry); if (err) return err; } return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, new_dentry); } EXPORT_SYMBOL(security_path_rename); int security_path_truncate(const struct path *path) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_truncate, 0, path); } int security_path_chmod(const struct path *path, umode_t mode) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_chmod, 0, path, mode); } int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_chown, 0, path, uid, gid); } int security_path_chroot(const struct path *path) { return call_int_hook(path_chroot, 0, path); } #endif int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_create, 0, dir, dentry, mode); } EXPORT_SYMBOL_GPL(security_inode_create); int security_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) return 0; return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); } int security_inode_unlink(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_unlink, 0, dir, dentry); } int security_inode_symlink(struct inode *dir, struct dentry *dentry, const char *old_name) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_symlink, 0, dir, dentry, old_name); } int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_mkdir, 0, dir, dentry, mode); } EXPORT_SYMBOL_GPL(security_inode_mkdir); int security_inode_rmdir(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_rmdir, 0, dir, dentry); } int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); } int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) return 0; if (flags & RENAME_EXCHANGE) { int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, old_dir, old_dentry); if (err) return err; } return call_int_hook(inode_rename, 0, old_dir, old_dentry, new_dir, new_dentry); } int security_inode_readlink(struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_readlink, 0, dentry); } int security_inode_follow_link(struct dentry *dentry, struct inode *inode, bool rcu) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); } int security_inode_permission(struct inode *inode, int mask) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_permission, 0, inode, mask); } int security_inode_setattr(struct dentry *dentry, struct iattr *attr) { int ret; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; ret = call_int_hook(inode_setattr, 0, dentry, attr); if (ret) return ret; return evm_inode_setattr(dentry, attr); } EXPORT_SYMBOL_GPL(security_inode_setattr); int security_inode_getattr(const struct path *path) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(inode_getattr, 0, path); } int security_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { int ret; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; /* * SELinux and Smack integrate the cap call, * so assume that all LSMs supplying this call do so. */ ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, flags); if (ret == 1) ret = cap_inode_setxattr(dentry, name, value, size, flags); if (ret) return ret; ret = ima_inode_setxattr(dentry, name, value, size); if (ret) return ret; return evm_inode_setxattr(dentry, name, value, size); } void security_inode_post_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); evm_inode_post_setxattr(dentry, name, value, size); } int security_inode_getxattr(struct dentry *dentry, const char *name) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_getxattr, 0, dentry, name); } int security_inode_listxattr(struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_listxattr, 0, dentry); } int security_inode_removexattr(struct dentry *dentry, const char *name) { int ret; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; /* * SELinux and Smack integrate the cap call, * so assume that all LSMs supplying this call do so. */ ret = call_int_hook(inode_removexattr, 1, dentry, name); if (ret == 1) ret = cap_inode_removexattr(dentry, name); if (ret) return ret; ret = ima_inode_removexattr(dentry, name); if (ret) return ret; return evm_inode_removexattr(dentry, name); } int security_inode_need_killpriv(struct dentry *dentry) { return call_int_hook(inode_need_killpriv, 0, dentry); } int security_inode_killpriv(struct dentry *dentry) { return call_int_hook(inode_killpriv, 0, dentry); } int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) { struct security_hook_list *hp; int rc; if (unlikely(IS_PRIVATE(inode))) return LSM_RET_DEFAULT(inode_getsecurity); /* * Only one module will provide an attribute with a given name. */ hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); if (rc != LSM_RET_DEFAULT(inode_getsecurity)) return rc; } return LSM_RET_DEFAULT(inode_getsecurity); } int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct security_hook_list *hp; int rc; if (unlikely(IS_PRIVATE(inode))) return LSM_RET_DEFAULT(inode_setsecurity); /* * Only one module will provide an attribute with a given name. */ hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { rc = hp->hook.inode_setsecurity(inode, name, value, size, flags); if (rc != LSM_RET_DEFAULT(inode_setsecurity)) return rc; } return LSM_RET_DEFAULT(inode_setsecurity); } int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); } EXPORT_SYMBOL(security_inode_listsecurity); void security_inode_getsecid(struct inode *inode, u32 *secid) { call_void_hook(inode_getsecid, inode, secid); } int security_inode_copy_up(struct dentry *src, struct cred **new) { return call_int_hook(inode_copy_up, 0, src, new); } EXPORT_SYMBOL(security_inode_copy_up); int security_inode_copy_up_xattr(const char *name) { struct security_hook_list *hp; int rc; /* * The implementation can return 0 (accept the xattr), 1 (discard the * xattr), -EOPNOTSUPP if it does not know anything about the xattr or * any other error code incase of an error. */ hlist_for_each_entry(hp, &security_hook_heads.inode_copy_up_xattr, list) { rc = hp->hook.inode_copy_up_xattr(name); if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) return rc; } return LSM_RET_DEFAULT(inode_copy_up_xattr); } EXPORT_SYMBOL(security_inode_copy_up_xattr); int security_kernfs_init_security(struct kernfs_node *kn_dir, struct kernfs_node *kn) { return call_int_hook(kernfs_init_security, 0, kn_dir, kn); } int security_file_permission(struct file *file, int mask) { int ret; ret = call_int_hook(file_permission, 0, file, mask); if (ret) return ret; return fsnotify_perm(file, mask); } int security_file_alloc(struct file *file) { int rc = lsm_file_alloc(file); if (rc) return rc; rc = call_int_hook(file_alloc_security, 0, file); if (unlikely(rc)) security_file_free(file); return rc; } void security_file_free(struct file *file) { void *blob; call_void_hook(file_free_security, file); blob = file->f_security; if (blob) { file->f_security = NULL; kmem_cache_free(lsm_file_cache, blob); } } int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_ioctl, 0, file, cmd, arg); } EXPORT_SYMBOL_GPL(security_file_ioctl); /** * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode * @file: associated file * @cmd: ioctl cmd * @arg: ioctl arguments * * Compat version of security_file_ioctl() that correctly handles 32-bit * processes running on 64-bit kernels. * * Return: Returns 0 if permission is granted. */ int security_file_ioctl_compat(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_ioctl_compat, 0, file, cmd, arg); } EXPORT_SYMBOL_GPL(security_file_ioctl_compat); static inline unsigned long mmap_prot(struct file *file, unsigned long prot) { /* * Does we have PROT_READ and does the application expect * it to imply PROT_EXEC? If not, nothing to talk about... */ if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) return prot; if (!(current->personality & READ_IMPLIES_EXEC)) return prot; /* * if that's an anonymous mapping, let it. */ if (!file) return prot | PROT_EXEC; /* * ditto if it's not on noexec mount, except that on !MMU we need * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case */ if (!path_noexec(&file->f_path)) { #ifndef CONFIG_MMU if (file->f_op->mmap_capabilities) { unsigned caps = file->f_op->mmap_capabilities(file); if (!(caps & NOMMU_MAP_EXEC)) return prot; } #endif return prot | PROT_EXEC; } /* anything on noexec mount won't get PROT_EXEC */ return prot; } int security_mmap_file(struct file *file, unsigned long prot, unsigned long flags) { unsigned long prot_adj = mmap_prot(file, prot); int ret; ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); if (ret) return ret; return ima_file_mmap(file, prot, prot_adj, flags); } int security_mmap_addr(unsigned long addr) { return call_int_hook(mmap_addr, 0, addr); } int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { int ret; ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); if (ret) return ret; return ima_file_mprotect(vma, prot); } int security_file_lock(struct file *file, unsigned int cmd) { return call_int_hook(file_lock, 0, file, cmd); } int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_fcntl, 0, file, cmd, arg); } void security_file_set_fowner(struct file *file) { call_void_hook(file_set_fowner, file); } int security_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int sig) { return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); } int security_file_receive(struct file *file) { return call_int_hook(file_receive, 0, file); } int security_file_open(struct file *file) { int ret; ret = call_int_hook(file_open, 0, file); if (ret) return ret; return fsnotify_perm(file, MAY_OPEN); } int security_task_alloc(struct task_struct *task, unsigned long clone_flags) { int rc = lsm_task_alloc(task); if (rc) return rc; rc = call_int_hook(task_alloc, 0, task, clone_flags); if (unlikely(rc)) security_task_free(task); return rc; } void security_task_free(struct task_struct *task) { call_void_hook(task_free, task); kfree(task->security); task->security = NULL; } int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) { int rc = lsm_cred_alloc(cred, gfp); if (rc) return rc; rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); if (unlikely(rc)) security_cred_free(cred); return rc; } void security_cred_free(struct cred *cred) { /* * There is a failure case in prepare_creds() that * may result in a call here with ->security being NULL. */ if (unlikely(cred->security == NULL)) return; call_void_hook(cred_free, cred); kfree(cred->security); cred->security = NULL; } int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) { int rc = lsm_cred_alloc(new, gfp); if (rc) return rc; rc = call_int_hook(cred_prepare, 0, new, old, gfp); if (unlikely(rc)) security_cred_free(new); return rc; } void security_transfer_creds(struct cred *new, const struct cred *old) { call_void_hook(cred_transfer, new, old); } void security_cred_getsecid(const struct cred *c, u32 *secid) { *secid = 0; call_void_hook(cred_getsecid, c, secid); } EXPORT_SYMBOL(security_cred_getsecid); int security_kernel_act_as(struct cred *new, u32 secid) { return call_int_hook(kernel_act_as, 0, new, secid); } int security_kernel_create_files_as(struct cred *new, struct inode *inode) { return call_int_hook(kernel_create_files_as, 0, new, inode); } int security_kernel_module_request(char *kmod_name) { int ret; ret = call_int_hook(kernel_module_request, 0, kmod_name); if (ret) return ret; return integrity_kernel_module_request(kmod_name); } int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, bool contents) { int ret; ret = call_int_hook(kernel_read_file, 0, file, id, contents); if (ret) return ret; return ima_read_file(file, id, contents); } EXPORT_SYMBOL_GPL(security_kernel_read_file); int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, enum kernel_read_file_id id) { int ret; ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); if (ret) return ret; return ima_post_read_file(file, buf, size, id); } EXPORT_SYMBOL_GPL(security_kernel_post_read_file); int security_kernel_load_data(enum kernel_load_data_id id, bool contents) { int ret; ret = call_int_hook(kernel_load_data, 0, id, contents); if (ret) return ret; return ima_load_data(id, contents); } EXPORT_SYMBOL_GPL(security_kernel_load_data); int security_kernel_post_load_data(char *buf, loff_t size, enum kernel_load_data_id id, char *description) { int ret; ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, description); if (ret) return ret; return ima_post_load_data(buf, size, id, description); } EXPORT_SYMBOL_GPL(security_kernel_post_load_data); int security_task_fix_setuid(struct cred *new, const struct cred *old, int flags) { return call_int_hook(task_fix_setuid, 0, new, old, flags); } int security_task_fix_setgid(struct cred *new, const struct cred *old, int flags) { return call_int_hook(task_fix_setgid, 0, new, old, flags); } int security_task_setpgid(struct task_struct *p, pid_t pgid) { return call_int_hook(task_setpgid, 0, p, pgid); } int security_task_getpgid(struct task_struct *p) { return call_int_hook(task_getpgid, 0, p); } int security_task_getsid(struct task_struct *p) { return call_int_hook(task_getsid, 0, p); } void security_task_getsecid(struct task_struct *p, u32 *secid) { *secid = 0; call_void_hook(task_getsecid, p, secid); } EXPORT_SYMBOL(security_task_getsecid); int security_task_setnice(struct task_struct *p, int nice) { return call_int_hook(task_setnice, 0, p, nice); } int security_task_setioprio(struct task_struct *p, int ioprio) { return call_int_hook(task_setioprio, 0, p, ioprio); } int security_task_getioprio(struct task_struct *p) { return call_int_hook(task_getioprio, 0, p); } int security_task_prlimit(const struct cred *cred, const struct cred *tcred, unsigned int flags) { return call_int_hook(task_prlimit, 0, cred, tcred, flags); } int security_task_setrlimit(struct task_struct *p, unsigned int resource, struct rlimit *new_rlim) { return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); } int security_task_setscheduler(struct task_struct *p) { return call_int_hook(task_setscheduler, 0, p); } int security_task_getscheduler(struct task_struct *p) { return call_int_hook(task_getscheduler, 0, p); } int security_task_movememory(struct task_struct *p) { return call_int_hook(task_movememory, 0, p); } int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, int sig, const struct cred *cred) { return call_int_hook(task_kill, 0, p, info, sig, cred); } int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { int thisrc; int rc = LSM_RET_DEFAULT(task_prctl); struct security_hook_list *hp; hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); if (thisrc != LSM_RET_DEFAULT(task_prctl)) { rc = thisrc; if (thisrc != 0) break; } } return rc; } void security_task_to_inode(struct task_struct *p, struct inode *inode) { call_void_hook(task_to_inode, p, inode); } int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) { return call_int_hook(ipc_permission, 0, ipcp, flag); } void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) { *secid = 0; call_void_hook(ipc_getsecid, ipcp, secid); } int security_msg_msg_alloc(struct msg_msg *msg) { int rc = lsm_msg_msg_alloc(msg); if (unlikely(rc)) return rc; rc = call_int_hook(msg_msg_alloc_security, 0, msg); if (unlikely(rc)) security_msg_msg_free(msg); return rc; } void security_msg_msg_free(struct msg_msg *msg) { call_void_hook(msg_msg_free_security, msg); kfree(msg->security); msg->security = NULL; } int security_msg_queue_alloc(struct kern_ipc_perm *msq) { int rc = lsm_ipc_alloc(msq); if (unlikely(rc)) return rc; rc = call_int_hook(msg_queue_alloc_security, 0, msq); if (unlikely(rc)) security_msg_queue_free(msq); return rc; } void security_msg_queue_free(struct kern_ipc_perm *msq) { call_void_hook(msg_queue_free_security, msq); kfree(msq->security); msq->security = NULL; } int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) { return call_int_hook(msg_queue_associate, 0, msq, msqflg); } int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) { return call_int_hook(msg_queue_msgctl, 0, msq, cmd); } int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) { return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); } int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode) { return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); } int security_shm_alloc(struct kern_ipc_perm *shp) { int rc = lsm_ipc_alloc(shp); if (unlikely(rc)) return rc; rc = call_int_hook(shm_alloc_security, 0, shp); if (unlikely(rc)) security_shm_free(shp); return rc; } void security_shm_free(struct kern_ipc_perm *shp) { call_void_hook(shm_free_security, shp); kfree(shp->security); shp->security = NULL; } int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) { return call_int_hook(shm_associate, 0, shp, shmflg); } int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) { return call_int_hook(shm_shmctl, 0, shp, cmd); } int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) { return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); } int security_sem_alloc(struct kern_ipc_perm *sma) { int rc = lsm_ipc_alloc(sma); if (unlikely(rc)) return rc; rc = call_int_hook(sem_alloc_security, 0, sma); if (unlikely(rc)) security_sem_free(sma); return rc; } void security_sem_free(struct kern_ipc_perm *sma) { call_void_hook(sem_free_security, sma); kfree(sma->security); sma->security = NULL; } int security_sem_associate(struct kern_ipc_perm *sma, int semflg) { return call_int_hook(sem_associate, 0, sma, semflg); } int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) { return call_int_hook(sem_semctl, 0, sma, cmd); } int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, unsigned nsops, int alter) { return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); } void security_d_instantiate(struct dentry *dentry, struct inode *inode) { if (unlikely(inode && IS_PRIVATE(inode))) return; call_void_hook(d_instantiate, dentry, inode); } EXPORT_SYMBOL(security_d_instantiate); int security_getprocattr(struct task_struct *p, const char *lsm, char *name, char **value) { struct security_hook_list *hp; hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { if (lsm != NULL && strcmp(lsm, hp->lsm)) continue; return hp->hook.getprocattr(p, name, value); } return LSM_RET_DEFAULT(getprocattr); } int security_setprocattr(const char *lsm, const char *name, void *value, size_t size) { struct security_hook_list *hp; hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { if (lsm != NULL && strcmp(lsm, hp->lsm)) continue; return hp->hook.setprocattr(name, value, size); } return LSM_RET_DEFAULT(setprocattr); } int security_netlink_send(struct sock *sk, struct sk_buff *skb) { return call_int_hook(netlink_send, 0, sk, skb); } int security_ismaclabel(const char *name) { return call_int_hook(ismaclabel, 0, name); } EXPORT_SYMBOL(security_ismaclabel); int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { struct security_hook_list *hp; int rc; /* * Currently, only one LSM can implement secid_to_secctx (i.e this * LSM hook is not "stackable"). */ hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { rc = hp->hook.secid_to_secctx(secid, secdata, seclen); if (rc != LSM_RET_DEFAULT(secid_to_secctx)) return rc; } return LSM_RET_DEFAULT(secid_to_secctx); } EXPORT_SYMBOL(security_secid_to_secctx); int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) { *secid = 0; return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); } EXPORT_SYMBOL(security_secctx_to_secid); void security_release_secctx(char *secdata, u32 seclen) { call_void_hook(release_secctx, secdata, seclen); } EXPORT_SYMBOL(security_release_secctx); void security_inode_invalidate_secctx(struct inode *inode) { call_void_hook(inode_invalidate_secctx, inode); } EXPORT_SYMBOL(security_inode_invalidate_secctx); int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) { return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_notifysecctx); int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) { return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_setsecctx); int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) { struct security_hook_list *hp; int rc; /* * Only one module will provide a security context. */ hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) { rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen); if (rc != LSM_RET_DEFAULT(inode_getsecctx)) return rc; } return LSM_RET_DEFAULT(inode_getsecctx); } EXPORT_SYMBOL(security_inode_getsecctx); #ifdef CONFIG_WATCH_QUEUE int security_post_notification(const struct cred *w_cred, const struct cred *cred, struct watch_notification *n) { return call_int_hook(post_notification, 0, w_cred, cred, n); } #endif /* CONFIG_WATCH_QUEUE */ #ifdef CONFIG_KEY_NOTIFICATIONS int security_watch_key(struct key *key) { return call_int_hook(watch_key, 0, key); } #endif #ifdef CONFIG_SECURITY_NETWORK int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) { return call_int_hook(unix_stream_connect, 0, sock, other, newsk); } EXPORT_SYMBOL(security_unix_stream_connect); int security_unix_may_send(struct socket *sock, struct socket *other) { return call_int_hook(unix_may_send, 0, sock, other); } EXPORT_SYMBOL(security_unix_may_send); int security_socket_create(int family, int type, int protocol, int kern) { return call_int_hook(socket_create, 0, family, type, protocol, kern); } int security_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { return call_int_hook(socket_post_create, 0, sock, family, type, protocol, kern); } int security_socket_socketpair(struct socket *socka, struct socket *sockb) { return call_int_hook(socket_socketpair, 0, socka, sockb); } EXPORT_SYMBOL(security_socket_socketpair); int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { return call_int_hook(socket_bind, 0, sock, address, addrlen); } int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { return call_int_hook(socket_connect, 0, sock, address, addrlen); } int security_socket_listen(struct socket *sock, int backlog) { return call_int_hook(socket_listen, 0, sock, backlog); } int security_socket_accept(struct socket *sock, struct socket *newsock) { return call_int_hook(socket_accept, 0, sock, newsock); } int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return call_int_hook(socket_sendmsg, 0, sock, msg, size); } int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); } int security_socket_getsockname(struct socket *sock) { return call_int_hook(socket_getsockname, 0, sock); } int security_socket_getpeername(struct socket *sock) { return call_int_hook(socket_getpeername, 0, sock); } int security_socket_getsockopt(struct socket *sock, int level, int optname) { return call_int_hook(socket_getsockopt, 0, sock, level, optname); } int security_socket_setsockopt(struct socket *sock, int level, int optname) { return call_int_hook(socket_setsockopt, 0, sock, level, optname); } int security_socket_shutdown(struct socket *sock, int how) { return call_int_hook(socket_shutdown, 0, sock, how); } int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); } EXPORT_SYMBOL(security_sock_rcv_skb); int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, sockptr_t optlen, unsigned int len) { struct security_hook_list *hp; int rc; /* * Only one module will provide a security context. */ hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream, list) { rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen, len); if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream)) return rc; } return LSM_RET_DEFAULT(socket_getpeersec_stream); } int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { struct security_hook_list *hp; int rc; /* * Only one module will provide a security context. */ hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram, list) { rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid); if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram)) return rc; } return LSM_RET_DEFAULT(socket_getpeersec_dgram); } EXPORT_SYMBOL(security_socket_getpeersec_dgram); int security_sk_alloc(struct sock *sk, int family, gfp_t priority) { return call_int_hook(sk_alloc_security, 0, sk, family, priority); } void security_sk_free(struct sock *sk) { call_void_hook(sk_free_security, sk); } void security_sk_clone(const struct sock *sk, struct sock *newsk) { call_void_hook(sk_clone_security, sk, newsk); } EXPORT_SYMBOL(security_sk_clone); void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) { call_void_hook(sk_getsecid, sk, &flic->flowic_secid); } EXPORT_SYMBOL(security_sk_classify_flow); void security_req_classify_flow(const struct request_sock *req, struct flowi_common *flic) { call_void_hook(req_classify_flow, req, flic); } EXPORT_SYMBOL(security_req_classify_flow); void security_sock_graft(struct sock *sk, struct socket *parent) { call_void_hook(sock_graft, sk, parent); } EXPORT_SYMBOL(security_sock_graft); int security_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { return call_int_hook(inet_conn_request, 0, sk, skb, req); } EXPORT_SYMBOL(security_inet_conn_request); void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { call_void_hook(inet_csk_clone, newsk, req); } void security_inet_conn_established(struct sock *sk, struct sk_buff *skb) { call_void_hook(inet_conn_established, sk, skb); } EXPORT_SYMBOL(security_inet_conn_established); int security_secmark_relabel_packet(u32 secid) { return call_int_hook(secmark_relabel_packet, 0, secid); } EXPORT_SYMBOL(security_secmark_relabel_packet); void security_secmark_refcount_inc(void) { call_void_hook(secmark_refcount_inc); } EXPORT_SYMBOL(security_secmark_refcount_inc); void security_secmark_refcount_dec(void) { call_void_hook(secmark_refcount_dec); } EXPORT_SYMBOL(security_secmark_refcount_dec); int security_tun_dev_alloc_security(void **security) { return call_int_hook(tun_dev_alloc_security, 0, security); } EXPORT_SYMBOL(security_tun_dev_alloc_security); void security_tun_dev_free_security(void *security) { call_void_hook(tun_dev_free_security, security); } EXPORT_SYMBOL(security_tun_dev_free_security); int security_tun_dev_create(void) { return call_int_hook(tun_dev_create, 0); } EXPORT_SYMBOL(security_tun_dev_create); int security_tun_dev_attach_queue(void *security) { return call_int_hook(tun_dev_attach_queue, 0, security); } EXPORT_SYMBOL(security_tun_dev_attach_queue); int security_tun_dev_attach(struct sock *sk, void *security) { return call_int_hook(tun_dev_attach, 0, sk, security); } EXPORT_SYMBOL(security_tun_dev_attach); int security_tun_dev_open(void *security) { return call_int_hook(tun_dev_open, 0, security); } EXPORT_SYMBOL(security_tun_dev_open); int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) { return call_int_hook(sctp_assoc_request, 0, ep, skb); } EXPORT_SYMBOL(security_sctp_assoc_request); int security_sctp_bind_connect(struct sock *sk, int optname, struct sockaddr *address, int addrlen) { return call_int_hook(sctp_bind_connect, 0, sk, optname, address, addrlen); } EXPORT_SYMBOL(security_sctp_bind_connect); void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, struct sock *newsk) { call_void_hook(sctp_sk_clone, ep, sk, newsk); } EXPORT_SYMBOL(security_sctp_sk_clone); #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_INFINIBAND int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) { return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); } EXPORT_SYMBOL(security_ib_pkey_access); int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) { return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); } EXPORT_SYMBOL(security_ib_endport_manage_subnet); int security_ib_alloc_security(void **sec) { return call_int_hook(ib_alloc_security, 0, sec); } EXPORT_SYMBOL(security_ib_alloc_security); void security_ib_free_security(void *sec) { call_void_hook(ib_free_security, sec); } EXPORT_SYMBOL(security_ib_free_security); #endif /* CONFIG_SECURITY_INFINIBAND */ #ifdef CONFIG_SECURITY_NETWORK_XFRM int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx, gfp_t gfp) { return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); } EXPORT_SYMBOL(security_xfrm_policy_alloc); int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp) { return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); } void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) { call_void_hook(xfrm_policy_free_security, ctx); } EXPORT_SYMBOL(security_xfrm_policy_free); int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) { return call_int_hook(xfrm_policy_delete_security, 0, ctx); } int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) { return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); } EXPORT_SYMBOL(security_xfrm_state_alloc); int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid) { return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); } int security_xfrm_state_delete(struct xfrm_state *x) { return call_int_hook(xfrm_state_delete_security, 0, x); } EXPORT_SYMBOL(security_xfrm_state_delete); void security_xfrm_state_free(struct xfrm_state *x) { call_void_hook(xfrm_state_free_security, x); } int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) { return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); } int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, const struct flowi_common *flic) { struct security_hook_list *hp; int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); /* * Since this function is expected to return 0 or 1, the judgment * becomes difficult if multiple LSMs supply this call. Fortunately, * we can use the first LSM's judgment because currently only SELinux * supplies this call. * * For speed optimization, we explicitly break the loop rather than * using the macro */ hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, list) { rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); break; } return rc; } int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) { return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); } void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) { int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 0); BUG_ON(rc); } EXPORT_SYMBOL(security_skb_classify_flow); #endif /* CONFIG_SECURITY_NETWORK_XFRM */ #ifdef CONFIG_KEYS int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags) { return call_int_hook(key_alloc, 0, key, cred, flags); } void security_key_free(struct key *key) { call_void_hook(key_free, key); } int security_key_permission(key_ref_t key_ref, const struct cred *cred, enum key_need_perm need_perm) { return call_int_hook(key_permission, 0, key_ref, cred, need_perm); } int security_key_getsecurity(struct key *key, char **_buffer) { *_buffer = NULL; return call_int_hook(key_getsecurity, 0, key, _buffer); } #endif /* CONFIG_KEYS */ #ifdef CONFIG_AUDIT int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule, gfp_t gfp) { return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule, gfp); } int security_audit_rule_known(struct audit_krule *krule) { return call_int_hook(audit_rule_known, 0, krule); } void security_audit_rule_free(void *lsmrule) { call_void_hook(audit_rule_free, lsmrule); } int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) { return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_BPF_SYSCALL int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) { return call_int_hook(bpf, 0, cmd, attr, size); } int security_bpf_map(struct bpf_map *map, fmode_t fmode) { return call_int_hook(bpf_map, 0, map, fmode); } int security_bpf_prog(struct bpf_prog *prog) { return call_int_hook(bpf_prog, 0, prog); } int security_bpf_map_alloc(struct bpf_map *map) { return call_int_hook(bpf_map_alloc_security, 0, map); } int security_bpf_prog_alloc(struct bpf_prog_aux *aux) { return call_int_hook(bpf_prog_alloc_security, 0, aux); } void security_bpf_map_free(struct bpf_map *map) { call_void_hook(bpf_map_free_security, map); } void security_bpf_prog_free(struct bpf_prog_aux *aux) { call_void_hook(bpf_prog_free_security, aux); } #endif /* CONFIG_BPF_SYSCALL */ int security_locked_down(enum lockdown_reason what) { return call_int_hook(locked_down, 0, what); } EXPORT_SYMBOL(security_locked_down); #ifdef CONFIG_PERF_EVENTS int security_perf_event_open(struct perf_event_attr *attr, int type) { return call_int_hook(perf_event_open, 0, attr, type); } int security_perf_event_alloc(struct perf_event *event) { return call_int_hook(perf_event_alloc, 0, event); } void security_perf_event_free(struct perf_event *event) { call_void_hook(perf_event_free, event); } int security_perf_event_read(struct perf_event *event) { return call_int_hook(perf_event_read, 0, event); } int security_perf_event_write(struct perf_event *event) { return call_int_hook(perf_event_write, 0, event); } #endif /* CONFIG_PERF_EVENTS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_NSPROXY_H #define _LINUX_NSPROXY_H #include <linux/spinlock.h> #include <linux/sched.h> struct mnt_namespace; struct uts_namespace; struct ipc_namespace; struct pid_namespace; struct cgroup_namespace; struct fs_struct; /* * A structure to contain pointers to all per-process * namespaces - fs (mount), uts, network, sysvipc, etc. * * The pid namespace is an exception -- it's accessed using * task_active_pid_ns. The pid namespace here is the * namespace that children will use. * * 'count' is the number of tasks holding a reference. * The count for each namespace, then, will be the number * of nsproxies pointing to it, not the number of tasks. * * The nsproxy is shared by tasks which share all namespaces. * As soon as a single namespace is cloned or unshared, the * nsproxy is copied. */ struct nsproxy { atomic_t count; struct uts_namespace *uts_ns; struct ipc_namespace *ipc_ns; struct mnt_namespace *mnt_ns; struct pid_namespace *pid_ns_for_children; struct net *net_ns; struct time_namespace *time_ns; struct time_namespace *time_ns_for_children; struct cgroup_namespace *cgroup_ns; }; extern struct nsproxy init_nsproxy; /* * A structure to encompass all bits needed to install * a partial or complete new set of namespaces. * * If a new user namespace is requested cred will * point to a modifiable set of credentials. If a pointer * to a modifiable set is needed nsset_cred() must be * used and tested. */ struct nsset { unsigned flags; struct nsproxy *nsproxy; struct fs_struct *fs; const struct cred *cred; }; static inline struct cred *nsset_cred(struct nsset *set) { if (set->flags & CLONE_NEWUSER) return (struct cred *)set->cred; return NULL; } /* * the namespaces access rules are: * * 1. only current task is allowed to change tsk->nsproxy pointer or * any pointer on the nsproxy itself. Current must hold the task_lock * when changing tsk->nsproxy. * * 2. when accessing (i.e. reading) current task's namespaces - no * precautions should be taken - just dereference the pointers * * 3. the access to other task namespaces is performed like this * task_lock(task); * nsproxy = task->nsproxy; * if (nsproxy != NULL) { * / * * * work with the namespaces here * * e.g. get the reference on one of them * * / * } / * * * NULL task->nsproxy means that this task is * * almost dead (zombie) * * / * task_unlock(task); * */ int copy_namespaces(unsigned long flags, struct task_struct *tsk); void exit_task_namespaces(struct task_struct *tsk); void switch_task_namespaces(struct task_struct *tsk, struct nsproxy *new); void free_nsproxy(struct nsproxy *ns); int unshare_nsproxy_namespaces(unsigned long, struct nsproxy **, struct cred *, struct fs_struct *); int __init nsproxy_cache_init(void); static inline void put_nsproxy(struct nsproxy *ns) { if (atomic_dec_and_test(&ns->count)) { free_nsproxy(ns); } } static inline void get_nsproxy(struct nsproxy *ns) { atomic_inc(&ns->count); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETLINK_H #define __LINUX_NETLINK_H #include <linux/capability.h> #include <linux/skbuff.h> #include <linux/export.h> #include <net/scm.h> #include <uapi/linux/netlink.h> struct net; static inline struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb) { return (struct nlmsghdr *)skb->data; } enum netlink_skb_flags { NETLINK_SKB_DST = 0x8, /* Dst set in sendto or sendmsg */ }; struct netlink_skb_parms { struct scm_creds creds; /* Skb credentials */ __u32 portid; __u32 dst_group; __u32 flags; struct sock *sk; bool nsid_is_set; int nsid; }; #define NETLINK_CB(skb) (*(struct netlink_skb_parms*)&((skb)->cb)) #define NETLINK_CREDS(skb) (&NETLINK_CB((skb)).creds) void netlink_table_grab(void); void netlink_table_ungrab(void); #define NL_CFG_F_NONROOT_RECV (1 << 0) #define NL_CFG_F_NONROOT_SEND (1 << 1) /* optional Netlink kernel configuration parameters */ struct netlink_kernel_cfg { unsigned int groups; unsigned int flags; void (*input)(struct sk_buff *skb); struct mutex *cb_mutex; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); bool (*compare)(struct net *net, struct sock *sk); }; struct sock *__netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg); static inline struct sock * netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg) { return __netlink_kernel_create(net, unit, THIS_MODULE, cfg); } /* this can be increased when necessary - don't expose to userland */ #define NETLINK_MAX_COOKIE_LEN 20 /** * struct netlink_ext_ack - netlink extended ACK report struct * @_msg: message string to report - don't access directly, use * %NL_SET_ERR_MSG * @bad_attr: attribute with error * @policy: policy for a bad attribute * @cookie: cookie data to return to userspace (for success) * @cookie_len: actual cookie data length */ struct netlink_ext_ack { const char *_msg; const struct nlattr *bad_attr; const struct nla_policy *policy; u8 cookie[NETLINK_MAX_COOKIE_LEN]; u8 cookie_len; }; /* Always use this macro, this allows later putting the * message into a separate section or such for things * like translation or listing all possible messages. * Currently string formatting is not supported (due * to the lack of an output buffer.) */ #define NL_SET_ERR_MSG(extack, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) \ __extack->_msg = __msg; \ } while (0) #define NL_SET_ERR_MSG_MOD(extack, msg) \ NL_SET_ERR_MSG((extack), KBUILD_MODNAME ": " msg) #define NL_SET_BAD_ATTR_POLICY(extack, attr, pol) do { \ if ((extack)) { \ (extack)->bad_attr = (attr); \ (extack)->policy = (pol); \ } \ } while (0) #define NL_SET_BAD_ATTR(extack, attr) NL_SET_BAD_ATTR_POLICY(extack, attr, NULL) #define NL_SET_ERR_MSG_ATTR_POL(extack, attr, pol, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) { \ __extack->_msg = __msg; \ __extack->bad_attr = (attr); \ __extack->policy = (pol); \ } \ } while (0) #define NL_SET_ERR_MSG_ATTR(extack, attr, msg) \ NL_SET_ERR_MSG_ATTR_POL(extack, attr, NULL, msg) static inline void nl_set_extack_cookie_u64(struct netlink_ext_ack *extack, u64 cookie) { u64 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } static inline void nl_set_extack_cookie_u32(struct netlink_ext_ack *extack, u32 cookie) { u32 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } void netlink_kernel_release(struct sock *sk); int __netlink_change_ngroups(struct sock *sk, unsigned int groups); int netlink_change_ngroups(struct sock *sk, unsigned int groups); void __netlink_clear_multicast_users(struct sock *sk, unsigned int group); void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack); int netlink_has_listeners(struct sock *sk, unsigned int group); bool netlink_strict_get_check(struct sk_buff *skb); int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 portid, int nonblock); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation); int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation, int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), void *filter_data); int netlink_set_err(struct sock *ssk, __u32 portid, __u32 group, int code); int netlink_register_notifier(struct notifier_block *nb); int netlink_unregister_notifier(struct notifier_block *nb); /* finegrained unicast helpers: */ struct sock *netlink_getsockbyfilp(struct file *filp); int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk); void netlink_detachskb(struct sock *sk, struct sk_buff *skb); int netlink_sendskb(struct sock *sk, struct sk_buff *skb); static inline struct sk_buff * netlink_skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff *nskb; nskb = skb_clone(skb, gfp_mask); if (!nskb) return NULL; /* This is a large skb, set destructor callback to release head */ if (is_vmalloc_addr(skb->head)) nskb->destructor = skb->destructor; return nskb; } /* * skb should fit one page. This choice is good for headerless malloc. * But we should limit to 8K so that userspace does not have to * use enormous buffer sizes on recvmsg() calls just to avoid * MSG_TRUNC when PAGE_SIZE is very large. */ #if PAGE_SIZE < 8192UL #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(PAGE_SIZE) #else #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(8192UL) #endif #define NLMSG_DEFAULT_SIZE (NLMSG_GOODSIZE - NLMSG_HDRLEN) struct netlink_callback { struct sk_buff *skb; const struct nlmsghdr *nlh; int (*dump)(struct sk_buff * skb, struct netlink_callback *cb); int (*done)(struct netlink_callback *cb); void *data; /* the module that dump function belong to */ struct module *module; struct netlink_ext_ack *extack; u16 family; u16 answer_flags; u32 min_dump_alloc; unsigned int prev_seq, seq; bool strict_check; union { u8 ctx[48]; /* args is deprecated. Cast a struct over ctx instead * for proper type safety. */ long args[6]; }; }; struct netlink_notify { struct net *net; u32 portid; int protocol; }; struct nlmsghdr * __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags); struct netlink_dump_control { int (*start)(struct netlink_callback *); int (*dump)(struct sk_buff *skb, struct netlink_callback *); int (*done)(struct netlink_callback *); void *data; struct module *module; u32 min_dump_alloc; }; int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control); static inline int netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control) { if (!control->module) control->module = THIS_MODULE; return __netlink_dump_start(ssk, skb, nlh, control); } struct netlink_tap { struct net_device *dev; struct module *module; struct list_head list; }; int netlink_add_tap(struct netlink_tap *nt); int netlink_remove_tap(struct netlink_tap *nt); bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *ns, int cap); bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *ns, int cap); bool netlink_capable(const struct sk_buff *skb, int cap); bool netlink_net_capable(const struct sk_buff *skb, int cap); #endif /* __LINUX_NETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RMAP_H #define _LINUX_RMAP_H /* * Declarations for Reverse Mapping functions in mm/rmap.c */ #include <linux/list.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/rwsem.h> #include <linux/memcontrol.h> #include <linux/highmem.h> /* * The anon_vma heads a list of private "related" vmas, to scan if * an anonymous page pointing to this anon_vma needs to be unmapped: * the vmas on the list will be related by forking, or by splitting. * * Since vmas come and go as they are split and merged (particularly * in mprotect), the mapping field of an anonymous page cannot point * directly to a vma: instead it points to an anon_vma, on whose list * the related vmas can be easily linked or unlinked. * * After unlinking the last vma on the list, we must garbage collect * the anon_vma object itself: we're guaranteed no page can be * pointing to this anon_vma once its vma list is empty. */ struct anon_vma { struct anon_vma *root; /* Root of this anon_vma tree */ struct rw_semaphore rwsem; /* W: modification, R: walking the list */ /* * The refcount is taken on an anon_vma when there is no * guarantee that the vma of page tables will exist for * the duration of the operation. A caller that takes * the reference is responsible for clearing up the * anon_vma if they are the last user on release */ atomic_t refcount; /* * Count of child anon_vmas. Equals to the count of all anon_vmas that * have ->parent pointing to this one, including itself. * * This counter is used for making decision about reusing anon_vma * instead of forking new one. See comments in function anon_vma_clone. */ unsigned long num_children; /* Count of VMAs whose ->anon_vma pointer points to this object. */ unsigned long num_active_vmas; struct anon_vma *parent; /* Parent of this anon_vma */ /* * NOTE: the LSB of the rb_root.rb_node is set by * mm_take_all_locks() _after_ taking the above lock. So the * rb_root must only be read/written after taking the above lock * to be sure to see a valid next pointer. The LSB bit itself * is serialized by a system wide lock only visible to * mm_take_all_locks() (mm_all_locks_mutex). */ /* Interval tree of private "related" vmas */ struct rb_root_cached rb_root; }; /* * The copy-on-write semantics of fork mean that an anon_vma * can become associated with multiple processes. Furthermore, * each child process will have its own anon_vma, where new * pages for that process are instantiated. * * This structure allows us to find the anon_vmas associated * with a VMA, or the VMAs associated with an anon_vma. * The "same_vma" list contains the anon_vma_chains linking * all the anon_vmas associated with this VMA. * The "rb" field indexes on an interval tree the anon_vma_chains * which link all the VMAs associated with this anon_vma. */ struct anon_vma_chain { struct vm_area_struct *vma; struct anon_vma *anon_vma; struct list_head same_vma; /* locked by mmap_lock & page_table_lock */ struct rb_node rb; /* locked by anon_vma->rwsem */ unsigned long rb_subtree_last; #ifdef CONFIG_DEBUG_VM_RB unsigned long cached_vma_start, cached_vma_last; #endif }; enum ttu_flags { TTU_MIGRATION = 0x1, /* migration mode */ TTU_MUNLOCK = 0x2, /* munlock mode */ TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */ TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */ TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */ TTU_IGNORE_HWPOISON = 0x20, /* corrupted page is recoverable */ TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible * and caller guarantees they will * do a final flush if necessary */ TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock: * caller holds it */ TTU_SPLIT_FREEZE = 0x100, /* freeze pte under splitting thp */ }; #ifdef CONFIG_MMU static inline void get_anon_vma(struct anon_vma *anon_vma) { atomic_inc(&anon_vma->refcount); } void __put_anon_vma(struct anon_vma *anon_vma); static inline void put_anon_vma(struct anon_vma *anon_vma) { if (atomic_dec_and_test(&anon_vma->refcount)) __put_anon_vma(anon_vma); } static inline void anon_vma_lock_write(struct anon_vma *anon_vma) { down_write(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_write(struct anon_vma *anon_vma) { up_write(&anon_vma->root->rwsem); } static inline void anon_vma_lock_read(struct anon_vma *anon_vma) { down_read(&anon_vma->root->rwsem); } static inline void anon_vma_unlock_read(struct anon_vma *anon_vma) { up_read(&anon_vma->root->rwsem); } /* * anon_vma helper functions. */ void anon_vma_init(void); /* create anon_vma_cachep */ int __anon_vma_prepare(struct vm_area_struct *); void unlink_anon_vmas(struct vm_area_struct *); int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *); int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *); static inline int anon_vma_prepare(struct vm_area_struct *vma) { if (likely(vma->anon_vma)) return 0; return __anon_vma_prepare(vma); } static inline void anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) { VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma); unlink_anon_vmas(next); } struct anon_vma *page_get_anon_vma(struct page *page); /* bitflags for do_page_add_anon_rmap() */ #define RMAP_EXCLUSIVE 0x01 #define RMAP_COMPOUND 0x02 /* * rmap interfaces called when adding or removing pte of page */ void page_move_anon_rmap(struct page *, struct vm_area_struct *); void page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void do_page_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, int); void page_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long, bool); void page_add_file_rmap(struct page *, bool); void page_remove_rmap(struct page *, bool); void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *, unsigned long); static inline void page_dup_rmap(struct page *page, bool compound) { atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount); } /* * Called from mm/vmscan.c to handle paging out */ int page_referenced(struct page *, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags); bool try_to_unmap(struct page *, enum ttu_flags flags); /* Avoid racy checks */ #define PVMW_SYNC (1 << 0) /* Look for migarion entries rather than present PTEs */ #define PVMW_MIGRATION (1 << 1) struct page_vma_mapped_walk { struct page *page; struct vm_area_struct *vma; unsigned long address; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; unsigned int flags; }; static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw) { /* HugeTLB pte is set to the relevant page table entry without pte_mapped. */ if (pvmw->pte && !PageHuge(pvmw->page)) pte_unmap(pvmw->pte); if (pvmw->ptl) spin_unlock(pvmw->ptl); } bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw); /* * Used by swapoff to help locate where page is expected in vma. */ unsigned long page_address_in_vma(struct page *, struct vm_area_struct *); /* * Cleans the PTEs of shared mappings. * (and since clean PTEs should also be readonly, write protects them too) * * returns the number of cleaned PTEs. */ int page_mkclean(struct page *); /* * called in munlock()/munmap() path to check for other vmas holding * the page mlocked. */ void try_to_munlock(struct page *); void remove_migration_ptes(struct page *old, struct page *new, bool locked); /* * Called by memory-failure.c to kill processes. */ struct anon_vma *page_lock_anon_vma_read(struct page *page); void page_unlock_anon_vma_read(struct anon_vma *anon_vma); int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma); /* * rmap_walk_control: To control rmap traversing for specific needs * * arg: passed to rmap_one() and invalid_vma() * rmap_one: executed on each vma where page is mapped * done: for checking traversing termination condition * anon_lock: for getting anon_lock by optimized way rather than default * invalid_vma: for skipping uninterested vma */ struct rmap_walk_control { void *arg; /* * Return false if page table scanning in rmap_walk should be stopped. * Otherwise, return true. */ bool (*rmap_one)(struct page *page, struct vm_area_struct *vma, unsigned long addr, void *arg); int (*done)(struct page *page); struct anon_vma *(*anon_lock)(struct page *page); bool (*invalid_vma)(struct vm_area_struct *vma, void *arg); }; void rmap_walk(struct page *page, struct rmap_walk_control *rwc); void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc); #else /* !CONFIG_MMU */ #define anon_vma_init() do {} while (0) #define anon_vma_prepare(vma) (0) #define anon_vma_link(vma) do {} while (0) static inline int page_referenced(struct page *page, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { *vm_flags = 0; return 0; } #define try_to_unmap(page, refs) false static inline int page_mkclean(struct page *page) { return 0; } #endif /* CONFIG_MMU */ #endif /* _LINUX_RMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_STACK_H #define _LINUX_SCHED_TASK_STACK_H /* * task->stack (kernel stack) handling interfaces: */ #include <linux/sched.h> #include <linux/magic.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. */ static __always_inline void *task_stack_page(const struct task_struct *task) { return task->stack; } #define setup_thread_stack(new,old) do { } while(0) static __always_inline unsigned long *end_of_stack(const struct task_struct *task) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task->stack + THREAD_SIZE) - 1; #else return task->stack; #endif } #elif !defined(__HAVE_THREAD_FUNCTIONS) #define task_stack_page(task) ((void *)(task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } /* * Return the address of the last usable long on the stack. * * When the stack grows down, this is just above the thread * info struct. Going any lower will corrupt the threadinfo. * * When the stack grows up, this is the highest address. * Beyond that position, we corrupt data on the next page. */ static inline unsigned long *end_of_stack(struct task_struct *p) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; #else return (unsigned long *)(task_thread_info(p) + 1); #endif } #endif #ifdef CONFIG_THREAD_INFO_IN_TASK static inline void *try_get_task_stack(struct task_struct *tsk) { return refcount_inc_not_zero(&tsk->stack_refcount) ? task_stack_page(tsk) : NULL; } extern void put_task_stack(struct task_struct *tsk); #else static inline void *try_get_task_stack(struct task_struct *tsk) { return task_stack_page(tsk); } static inline void put_task_stack(struct task_struct *tsk) {} #endif #define task_stack_end_corrupted(task) \ (*(end_of_stack(task)) != STACK_END_MAGIC) static inline int object_is_on_stack(const void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_stack_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ # ifdef CONFIG_STACK_GROWSUP n--; # else n++; # endif } while (!*n); # ifdef CONFIG_STACK_GROWSUP return (unsigned long)end_of_stack(p) - (unsigned long)n; # else return (unsigned long)n - (unsigned long)end_of_stack(p); # endif } #endif extern void set_task_stack_end_magic(struct task_struct *tsk); #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif #endif /* _LINUX_SCHED_TASK_STACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KERNEL_STAT_H #define _LINUX_KERNEL_STAT_H #include <linux/smp.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/vtime.h> #include <asm/irq.h> /* * 'kernel_stat.h' contains the definitions needed for doing * some kernel statistics (CPU usage, context switches ...), * used by rstatd/perfmeter */ enum cpu_usage_stat { CPUTIME_USER, CPUTIME_NICE, CPUTIME_SYSTEM, CPUTIME_SOFTIRQ, CPUTIME_IRQ, CPUTIME_IDLE, CPUTIME_IOWAIT, CPUTIME_STEAL, CPUTIME_GUEST, CPUTIME_GUEST_NICE, NR_STATS, }; struct kernel_cpustat { u64 cpustat[NR_STATS]; }; struct kernel_stat { unsigned long irqs_sum; unsigned int softirqs[NR_SOFTIRQS]; }; DECLARE_PER_CPU(struct kernel_stat, kstat); DECLARE_PER_CPU(struct kernel_cpustat, kernel_cpustat); /* Must have preemption disabled for this to be meaningful. */ #define kstat_this_cpu this_cpu_ptr(&kstat) #define kcpustat_this_cpu this_cpu_ptr(&kernel_cpustat) #define kstat_cpu(cpu) per_cpu(kstat, cpu) #define kcpustat_cpu(cpu) per_cpu(kernel_cpustat, cpu) extern unsigned long long nr_context_switches(void); extern unsigned int kstat_irqs_cpu(unsigned int irq, int cpu); extern void kstat_incr_irq_this_cpu(unsigned int irq); static inline void kstat_incr_softirqs_this_cpu(unsigned int irq) { __this_cpu_inc(kstat.softirqs[irq]); } static inline unsigned int kstat_softirqs_cpu(unsigned int irq, int cpu) { return kstat_cpu(cpu).softirqs[irq]; } /* * Number of interrupts per specific IRQ source, since bootup */ extern unsigned int kstat_irqs(unsigned int irq); extern unsigned int kstat_irqs_usr(unsigned int irq); /* * Number of interrupts per cpu, since bootup */ static inline unsigned long kstat_cpu_irqs_sum(unsigned int cpu) { return kstat_cpu(cpu).irqs_sum; } #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu); extern void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu); #else static inline u64 kcpustat_field(struct kernel_cpustat *kcpustat, enum cpu_usage_stat usage, int cpu) { return kcpustat->cpustat[usage]; } static inline void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu) { *dst = kcpustat_cpu(cpu); } #endif extern void account_user_time(struct task_struct *, u64); extern void account_guest_time(struct task_struct *, u64); extern void account_system_time(struct task_struct *, int, u64); extern void account_system_index_time(struct task_struct *, u64, enum cpu_usage_stat); extern void account_steal_time(u64); extern void account_idle_time(u64); extern u64 get_idle_time(struct kernel_cpustat *kcs, int cpu); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE static inline void account_process_tick(struct task_struct *tsk, int user) { vtime_flush(tsk); } #else extern void account_process_tick(struct task_struct *, int user); #endif extern void account_idle_ticks(unsigned long ticks); #endif /* _LINUX_KERNEL_STAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PVCLOCK_H #define _ASM_X86_PVCLOCK_H #include <asm/clocksource.h> #include <asm/pvclock-abi.h> /* some helper functions for xen and kvm pv clock sources */ u64 pvclock_clocksource_read(struct pvclock_vcpu_time_info *src); u8 pvclock_read_flags(struct pvclock_vcpu_time_info *src); void pvclock_set_flags(u8 flags); unsigned long pvclock_tsc_khz(struct pvclock_vcpu_time_info *src); void pvclock_read_wallclock(struct pvclock_wall_clock *wall, struct pvclock_vcpu_time_info *vcpu, struct timespec64 *ts); void pvclock_resume(void); void pvclock_touch_watchdogs(void); static __always_inline unsigned pvclock_read_begin(const struct pvclock_vcpu_time_info *src) { unsigned version = src->version & ~1; /* Make sure that the version is read before the data. */ virt_rmb(); return version; } static __always_inline bool pvclock_read_retry(const struct pvclock_vcpu_time_info *src, unsigned version) { /* Make sure that the version is re-read after the data. */ virt_rmb(); return unlikely(version != src->version); } /* * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, * yielding a 64-bit result. */ static inline u64 pvclock_scale_delta(u64 delta, u32 mul_frac, int shift) { u64 product; #ifdef __i386__ u32 tmp1, tmp2; #else ulong tmp; #endif if (shift < 0) delta >>= -shift; else delta <<= shift; #ifdef __i386__ __asm__ ( "mul %5 ; " "mov %4,%%eax ; " "mov %%edx,%4 ; " "mul %5 ; " "xor %5,%5 ; " "add %4,%%eax ; " "adc %5,%%edx ; " : "=A" (product), "=r" (tmp1), "=r" (tmp2) : "a" ((u32)delta), "1" ((u32)(delta >> 32)), "2" (mul_frac) ); #elif defined(__x86_64__) __asm__ ( "mulq %[mul_frac] ; shrd $32, %[hi], %[lo]" : [lo]"=a"(product), [hi]"=d"(tmp) : "0"(delta), [mul_frac]"rm"((u64)mul_frac)); #else #error implement me! #endif return product; } static __always_inline u64 __pvclock_read_cycles(const struct pvclock_vcpu_time_info *src, u64 tsc) { u64 delta = tsc - src->tsc_timestamp; u64 offset = pvclock_scale_delta(delta, src->tsc_to_system_mul, src->tsc_shift); return src->system_time + offset; } struct pvclock_vsyscall_time_info { struct pvclock_vcpu_time_info pvti; } __attribute__((__aligned__(SMP_CACHE_BYTES))); #define PVTI_SIZE sizeof(struct pvclock_vsyscall_time_info) #ifdef CONFIG_PARAVIRT_CLOCK void pvclock_set_pvti_cpu0_va(struct pvclock_vsyscall_time_info *pvti); struct pvclock_vsyscall_time_info *pvclock_get_pvti_cpu0_va(void); #else static inline struct pvclock_vsyscall_time_info *pvclock_get_pvti_cpu0_va(void) { return NULL; } #endif #endif /* _ASM_X86_PVCLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MBCACHE_H #define _LINUX_MBCACHE_H #include <linux/hash.h> #include <linux/list_bl.h> #include <linux/list.h> #include <linux/atomic.h> #include <linux/fs.h> struct mb_cache; /* Cache entry flags */ enum { MBE_REFERENCED_B = 0, MBE_REUSABLE_B }; struct mb_cache_entry { /* List of entries in cache - protected by cache->c_list_lock */ struct list_head e_list; /* * Hash table list - protected by hash chain bitlock. The entry is * guaranteed to be hashed while e_refcnt > 0. */ struct hlist_bl_node e_hash_list; /* * Entry refcount. Once it reaches zero, entry is unhashed and freed. * While refcount > 0, the entry is guaranteed to stay in the hash and * e.g. mb_cache_entry_try_delete() will fail. */ atomic_t e_refcnt; /* Key in hash - stable during lifetime of the entry */ u32 e_key; unsigned long e_flags; /* User provided value - stable during lifetime of the entry */ u64 e_value; }; struct mb_cache *mb_cache_create(int bucket_bits); void mb_cache_destroy(struct mb_cache *cache); int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, u64 value, bool reusable); void __mb_cache_entry_free(struct mb_cache *cache, struct mb_cache_entry *entry); void mb_cache_entry_wait_unused(struct mb_cache_entry *entry); static inline void mb_cache_entry_put(struct mb_cache *cache, struct mb_cache_entry *entry) { unsigned int cnt = atomic_dec_return(&entry->e_refcnt); if (cnt > 0) { if (cnt <= 2) wake_up_var(&entry->e_refcnt); return; } __mb_cache_entry_free(cache, entry); } struct mb_cache_entry *mb_cache_entry_delete_or_get(struct mb_cache *cache, u32 key, u64 value); void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, u32 key); struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, struct mb_cache_entry *entry); void mb_cache_entry_touch(struct mb_cache *cache, struct mb_cache_entry *entry); #endif /* _LINUX_MBCACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) /* LWTUNNEL_XMIT_CONTINUE should be distinguishable from dst_output return * values (NET_XMIT_xxx and NETDEV_TX_xxx in linux/netdevice.h) for safety. */ enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE = 0x100, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM power #if !defined(_TRACE_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_POWER_H #include <linux/cpufreq.h> #include <linux/ktime.h> #include <linux/pm_qos.h> #include <linux/tracepoint.h> #include <linux/trace_events.h> #define TPS(x) tracepoint_string(x) DECLARE_EVENT_CLASS(cpu, TP_PROTO(unsigned int state, unsigned int cpu_id), TP_ARGS(state, cpu_id), TP_STRUCT__entry( __field( u32, state ) __field( u32, cpu_id ) ), TP_fast_assign( __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("state=%lu cpu_id=%lu", (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(cpu, cpu_idle, TP_PROTO(unsigned int state, unsigned int cpu_id), TP_ARGS(state, cpu_id) ); TRACE_EVENT(powernv_throttle, TP_PROTO(int chip_id, const char *reason, int pmax), TP_ARGS(chip_id, reason, pmax), TP_STRUCT__entry( __field(int, chip_id) __string(reason, reason) __field(int, pmax) ), TP_fast_assign( __entry->chip_id = chip_id; __assign_str(reason, reason); __entry->pmax = pmax; ), TP_printk("Chip %d Pmax %d %s", __entry->chip_id, __entry->pmax, __get_str(reason)) ); TRACE_EVENT(pstate_sample, TP_PROTO(u32 core_busy, u32 scaled_busy, u32 from, u32 to, u64 mperf, u64 aperf, u64 tsc, u32 freq, u32 io_boost ), TP_ARGS(core_busy, scaled_busy, from, to, mperf, aperf, tsc, freq, io_boost ), TP_STRUCT__entry( __field(u32, core_busy) __field(u32, scaled_busy) __field(u32, from) __field(u32, to) __field(u64, mperf) __field(u64, aperf) __field(u64, tsc) __field(u32, freq) __field(u32, io_boost) ), TP_fast_assign( __entry->core_busy = core_busy; __entry->scaled_busy = scaled_busy; __entry->from = from; __entry->to = to; __entry->mperf = mperf; __entry->aperf = aperf; __entry->tsc = tsc; __entry->freq = freq; __entry->io_boost = io_boost; ), TP_printk("core_busy=%lu scaled=%lu from=%lu to=%lu mperf=%llu aperf=%llu tsc=%llu freq=%lu io_boost=%lu", (unsigned long)__entry->core_busy, (unsigned long)__entry->scaled_busy, (unsigned long)__entry->from, (unsigned long)__entry->to, (unsigned long long)__entry->mperf, (unsigned long long)__entry->aperf, (unsigned long long)__entry->tsc, (unsigned long)__entry->freq, (unsigned long)__entry->io_boost ) ); /* This file can get included multiple times, TRACE_HEADER_MULTI_READ at top */ #ifndef _PWR_EVENT_AVOID_DOUBLE_DEFINING #define _PWR_EVENT_AVOID_DOUBLE_DEFINING #define PWR_EVENT_EXIT -1 #endif #define pm_verb_symbolic(event) \ __print_symbolic(event, \ { PM_EVENT_SUSPEND, "suspend" }, \ { PM_EVENT_RESUME, "resume" }, \ { PM_EVENT_FREEZE, "freeze" }, \ { PM_EVENT_QUIESCE, "quiesce" }, \ { PM_EVENT_HIBERNATE, "hibernate" }, \ { PM_EVENT_THAW, "thaw" }, \ { PM_EVENT_RESTORE, "restore" }, \ { PM_EVENT_RECOVER, "recover" }) DEFINE_EVENT(cpu, cpu_frequency, TP_PROTO(unsigned int frequency, unsigned int cpu_id), TP_ARGS(frequency, cpu_id) ); TRACE_EVENT(cpu_frequency_limits, TP_PROTO(struct cpufreq_policy *policy), TP_ARGS(policy), TP_STRUCT__entry( __field(u32, min_freq) __field(u32, max_freq) __field(u32, cpu_id) ), TP_fast_assign( __entry->min_freq = policy->min; __entry->max_freq = policy->max; __entry->cpu_id = policy->cpu; ), TP_printk("min=%lu max=%lu cpu_id=%lu", (unsigned long)__entry->min_freq, (unsigned long)__entry->max_freq, (unsigned long)__entry->cpu_id) ); TRACE_EVENT(device_pm_callback_start, TP_PROTO(struct device *dev, const char *pm_ops, int event), TP_ARGS(dev, pm_ops, event), TP_STRUCT__entry( __string(device, dev_name(dev)) __string(driver, dev_driver_string(dev)) __string(parent, dev->parent ? dev_name(dev->parent) : "none") __string(pm_ops, pm_ops ? pm_ops : "none ") __field(int, event) ), TP_fast_assign( __assign_str(device, dev_name(dev)); __assign_str(driver, dev_driver_string(dev)); __assign_str(parent, dev->parent ? dev_name(dev->parent) : "none"); __assign_str(pm_ops, pm_ops ? pm_ops : "none "); __entry->event = event; ), TP_printk("%s %s, parent: %s, %s[%s]", __get_str(driver), __get_str(device), __get_str(parent), __get_str(pm_ops), pm_verb_symbolic(__entry->event)) ); TRACE_EVENT(device_pm_callback_end, TP_PROTO(struct device *dev, int error), TP_ARGS(dev, error), TP_STRUCT__entry( __string(device, dev_name(dev)) __string(driver, dev_driver_string(dev)) __field(int, error) ), TP_fast_assign( __assign_str(device, dev_name(dev)); __assign_str(driver, dev_driver_string(dev)); __entry->error = error; ), TP_printk("%s %s, err=%d", __get_str(driver), __get_str(device), __entry->error) ); TRACE_EVENT(suspend_resume, TP_PROTO(const char *action, int val, bool start), TP_ARGS(action, val, start), TP_STRUCT__entry( __field(const char *, action) __field(int, val) __field(bool, start) ), TP_fast_assign( __entry->action = action; __entry->val = val; __entry->start = start; ), TP_printk("%s[%u] %s", __entry->action, (unsigned int)__entry->val, (__entry->start)?"begin":"end") ); DECLARE_EVENT_CLASS(wakeup_source, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; ), TP_printk("%s state=0x%lx", __get_str(name), (unsigned long)__entry->state) ); DEFINE_EVENT(wakeup_source, wakeup_source_activate, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state) ); DEFINE_EVENT(wakeup_source, wakeup_source_deactivate, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state) ); /* * The clock events are used for clock enable/disable and for * clock rate change */ DECLARE_EVENT_CLASS(clock, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) __field( u64, cpu_id ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("%s state=%lu cpu_id=%lu", __get_str(name), (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(clock, clock_enable, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); DEFINE_EVENT(clock, clock_disable, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); DEFINE_EVENT(clock, clock_set_rate, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); /* * The power domain events are used for power domains transitions */ DECLARE_EVENT_CLASS(power_domain, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) __field( u64, cpu_id ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("%s state=%lu cpu_id=%lu", __get_str(name), (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(power_domain, power_domain_target, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); /* * CPU latency QoS events used for global CPU latency QoS list updates */ DECLARE_EVENT_CLASS(cpu_latency_qos_request, TP_PROTO(s32 value), TP_ARGS(value), TP_STRUCT__entry( __field( s32, value ) ), TP_fast_assign( __entry->value = value; ), TP_printk("CPU_DMA_LATENCY value=%d", __entry->value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_add_request, TP_PROTO(s32 value), TP_ARGS(value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_update_request, TP_PROTO(s32 value), TP_ARGS(value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_remove_request, TP_PROTO(s32 value), TP_ARGS(value) ); /* * General PM QoS events used for updates of PM QoS request lists */ DECLARE_EVENT_CLASS(pm_qos_update, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value), TP_STRUCT__entry( __field( enum pm_qos_req_action, action ) __field( int, prev_value ) __field( int, curr_value ) ), TP_fast_assign( __entry->action = action; __entry->prev_value = prev_value; __entry->curr_value = curr_value; ), TP_printk("action=%s prev_value=%d curr_value=%d", __print_symbolic(__entry->action, { PM_QOS_ADD_REQ, "ADD_REQ" }, { PM_QOS_UPDATE_REQ, "UPDATE_REQ" }, { PM_QOS_REMOVE_REQ, "REMOVE_REQ" }), __entry->prev_value, __entry->curr_value) ); DEFINE_EVENT(pm_qos_update, pm_qos_update_target, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value) ); DEFINE_EVENT_PRINT(pm_qos_update, pm_qos_update_flags, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value), TP_printk("action=%s prev_value=0x%x curr_value=0x%x", __print_symbolic(__entry->action, { PM_QOS_ADD_REQ, "ADD_REQ" }, { PM_QOS_UPDATE_REQ, "UPDATE_REQ" }, { PM_QOS_REMOVE_REQ, "REMOVE_REQ" }), __entry->prev_value, __entry->curr_value) ); DECLARE_EVENT_CLASS(dev_pm_qos_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value), TP_STRUCT__entry( __string( name, name ) __field( enum dev_pm_qos_req_type, type ) __field( s32, new_value ) ), TP_fast_assign( __assign_str(name, name); __entry->type = type; __entry->new_value = new_value; ), TP_printk("device=%s type=%s new_value=%d", __get_str(name), __print_symbolic(__entry->type, { DEV_PM_QOS_RESUME_LATENCY, "DEV_PM_QOS_RESUME_LATENCY" }, { DEV_PM_QOS_FLAGS, "DEV_PM_QOS_FLAGS" }), __entry->new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_add_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_update_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_remove_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); #endif /* _TRACE_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/eventfd.h * * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> * */ #ifndef _LINUX_EVENTFD_H #define _LINUX_EVENTFD_H #include <linux/fcntl.h> #include <linux/wait.h> #include <linux/err.h> #include <linux/percpu-defs.h> #include <linux/percpu.h> /* * CAREFUL: Check include/uapi/asm-generic/fcntl.h when defining * new flags, since they might collide with O_* ones. We want * to re-use O_* flags that couldn't possibly have a meaning * from eventfd, in order to leave a free define-space for * shared O_* flags. */ #define EFD_SEMAPHORE (1 << 0) #define EFD_CLOEXEC O_CLOEXEC #define EFD_NONBLOCK O_NONBLOCK #define EFD_SHARED_FCNTL_FLAGS (O_CLOEXEC | O_NONBLOCK) #define EFD_FLAGS_SET (EFD_SHARED_FCNTL_FLAGS | EFD_SEMAPHORE) struct eventfd_ctx; struct file; #ifdef CONFIG_EVENTFD void eventfd_ctx_put(struct eventfd_ctx *ctx); struct file *eventfd_fget(int fd); struct eventfd_ctx *eventfd_ctx_fdget(int fd); struct eventfd_ctx *eventfd_ctx_fileget(struct file *file); __u64 eventfd_signal(struct eventfd_ctx *ctx, __u64 n); __u64 eventfd_signal_mask(struct eventfd_ctx *ctx, __u64 n, unsigned mask); int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait, __u64 *cnt); void eventfd_ctx_do_read(struct eventfd_ctx *ctx, __u64 *cnt); DECLARE_PER_CPU(int, eventfd_wake_count); static inline bool eventfd_signal_count(void) { return this_cpu_read(eventfd_wake_count); } #else /* CONFIG_EVENTFD */ /* * Ugly ugly ugly error layer to support modules that uses eventfd but * pretend to work in !CONFIG_EVENTFD configurations. Namely, AIO. */ static inline struct eventfd_ctx *eventfd_ctx_fdget(int fd) { return ERR_PTR(-ENOSYS); } static inline int eventfd_signal(struct eventfd_ctx *ctx, __u64 n) { return -ENOSYS; } static inline int eventfd_signal_mask(struct eventfd_ctx *ctx, __u64 n, unsigned mask) { return -ENOSYS; } static inline void eventfd_ctx_put(struct eventfd_ctx *ctx) { } static inline int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait, __u64 *cnt) { return -ENOSYS; } static inline bool eventfd_signal_count(void) { return false; } static inline void eventfd_ctx_do_read(struct eventfd_ctx *ctx, __u64 *cnt) { } #endif #endif /* _LINUX_EVENTFD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 1997-1998 Transmeta Corporation - All Rights Reserved * Copyright 2005-2006 Ian Kent <raven@themaw.net> */ /* Internal header file for autofs */ #include <linux/auto_fs.h> #include <linux/auto_dev-ioctl.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/completion.h> #include <linux/file.h> #include <linux/magic.h> /* This is the range of ioctl() numbers we claim as ours */ #define AUTOFS_IOC_FIRST AUTOFS_IOC_READY #define AUTOFS_IOC_COUNT 32 #define AUTOFS_DEV_IOCTL_IOC_FIRST (AUTOFS_DEV_IOCTL_VERSION) #define AUTOFS_DEV_IOCTL_IOC_COUNT \ (AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD - AUTOFS_DEV_IOCTL_VERSION_CMD) #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) KBUILD_MODNAME ":pid:%d:%s: " fmt, current->pid, __func__ extern struct file_system_type autofs_fs_type; /* * Unified info structure. This is pointed to by both the dentry and * inode structures. Each file in the filesystem has an instance of this * structure. It holds a reference to the dentry, so dentries are never * flushed while the file exists. All name lookups are dealt with at the * dentry level, although the filesystem can interfere in the validation * process. Readdir is implemented by traversing the dentry lists. */ struct autofs_info { struct dentry *dentry; struct inode *inode; int flags; struct completion expire_complete; struct list_head active; struct list_head expiring; struct autofs_sb_info *sbi; unsigned long last_used; int count; kuid_t uid; kgid_t gid; struct rcu_head rcu; }; #define AUTOFS_INF_EXPIRING (1<<0) /* dentry in the process of expiring */ #define AUTOFS_INF_WANT_EXPIRE (1<<1) /* the dentry is being considered * for expiry, so RCU_walk is * not permitted. If it progresses to * actual expiry attempt, the flag is * not cleared when EXPIRING is set - * in that case it gets cleared only * when it comes to clearing EXPIRING. */ #define AUTOFS_INF_PENDING (1<<2) /* dentry pending mount */ struct autofs_wait_queue { wait_queue_head_t queue; struct autofs_wait_queue *next; autofs_wqt_t wait_queue_token; /* We use the following to see what we are waiting for */ struct qstr name; u32 dev; u64 ino; kuid_t uid; kgid_t gid; pid_t pid; pid_t tgid; /* This is for status reporting upon return */ int status; unsigned int wait_ctr; }; #define AUTOFS_SBI_MAGIC 0x6d4a556d #define AUTOFS_SBI_CATATONIC 0x0001 #define AUTOFS_SBI_STRICTEXPIRE 0x0002 #define AUTOFS_SBI_IGNORE 0x0004 struct autofs_sb_info { u32 magic; int pipefd; struct file *pipe; struct pid *oz_pgrp; int version; int sub_version; int min_proto; int max_proto; unsigned int flags; unsigned long exp_timeout; unsigned int type; struct super_block *sb; struct mutex wq_mutex; struct mutex pipe_mutex; spinlock_t fs_lock; struct autofs_wait_queue *queues; /* Wait queue pointer */ spinlock_t lookup_lock; struct list_head active_list; struct list_head expiring_list; struct rcu_head rcu; }; static inline struct autofs_sb_info *autofs_sbi(struct super_block *sb) { return (struct autofs_sb_info *)(sb->s_fs_info); } static inline struct autofs_info *autofs_dentry_ino(struct dentry *dentry) { return (struct autofs_info *)(dentry->d_fsdata); } /* autofs_oz_mode(): do we see the man behind the curtain? (The * processes which do manipulations for us in user space sees the raw * filesystem without "magic".) */ static inline int autofs_oz_mode(struct autofs_sb_info *sbi) { return ((sbi->flags & AUTOFS_SBI_CATATONIC) || task_pgrp(current) == sbi->oz_pgrp); } struct inode *autofs_get_inode(struct super_block *, umode_t); void autofs_free_ino(struct autofs_info *); /* Expiration */ int is_autofs_dentry(struct dentry *); int autofs_expire_wait(const struct path *path, int rcu_walk); int autofs_expire_run(struct super_block *, struct vfsmount *, struct autofs_sb_info *, struct autofs_packet_expire __user *); int autofs_do_expire_multi(struct super_block *sb, struct vfsmount *mnt, struct autofs_sb_info *sbi, unsigned int how); int autofs_expire_multi(struct super_block *, struct vfsmount *, struct autofs_sb_info *, int __user *); /* Device node initialization */ int autofs_dev_ioctl_init(void); void autofs_dev_ioctl_exit(void); /* Operations structures */ extern const struct inode_operations autofs_symlink_inode_operations; extern const struct inode_operations autofs_dir_inode_operations; extern const struct file_operations autofs_dir_operations; extern const struct file_operations autofs_root_operations; extern const struct dentry_operations autofs_dentry_operations; /* VFS automount flags management functions */ static inline void __managed_dentry_set_managed(struct dentry *dentry) { dentry->d_flags |= (DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_set_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_set_managed(dentry); spin_unlock(&dentry->d_lock); } static inline void __managed_dentry_clear_managed(struct dentry *dentry) { dentry->d_flags &= ~(DCACHE_NEED_AUTOMOUNT|DCACHE_MANAGE_TRANSIT); } static inline void managed_dentry_clear_managed(struct dentry *dentry) { spin_lock(&dentry->d_lock); __managed_dentry_clear_managed(dentry); spin_unlock(&dentry->d_lock); } /* Initializing function */ int autofs_fill_super(struct super_block *, void *, int); struct autofs_info *autofs_new_ino(struct autofs_sb_info *); void autofs_clean_ino(struct autofs_info *); static inline int autofs_prepare_pipe(struct file *pipe) { if (!(pipe->f_mode & FMODE_CAN_WRITE)) return -EINVAL; if (!S_ISFIFO(file_inode(pipe)->i_mode)) return -EINVAL; /* We want a packet pipe */ pipe->f_flags |= O_DIRECT; /* We don't expect -EAGAIN */ pipe->f_flags &= ~O_NONBLOCK; return 0; } /* Queue management functions */ int autofs_wait(struct autofs_sb_info *, const struct path *, enum autofs_notify); int autofs_wait_release(struct autofs_sb_info *, autofs_wqt_t, int); void autofs_catatonic_mode(struct autofs_sb_info *); static inline u32 autofs_get_dev(struct autofs_sb_info *sbi) { return new_encode_dev(sbi->sb->s_dev); } static inline u64 autofs_get_ino(struct autofs_sb_info *sbi) { return d_inode(sbi->sb->s_root)->i_ino; } static inline void __autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); } } static inline void autofs_add_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (list_empty(&ino->expiring)) list_add(&ino->expiring, &sbi->expiring_list); spin_unlock(&sbi->lookup_lock); } } static inline void autofs_del_expiring(struct dentry *dentry) { struct autofs_sb_info *sbi = autofs_sbi(dentry->d_sb); struct autofs_info *ino = autofs_dentry_ino(dentry); if (ino) { spin_lock(&sbi->lookup_lock); if (!list_empty(&ino->expiring)) list_del_init(&ino->expiring); spin_unlock(&sbi->lookup_lock); } } void autofs_kill_sb(struct super_block *);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 // SPDX-License-Identifier: GPL-2.0+ /* * ext4_jbd2.h * * Written by Stephen C. Tweedie <sct@redhat.com>, 1999 * * Copyright 1998--1999 Red Hat corp --- All Rights Reserved * * Ext4-specific journaling extensions. */ #ifndef _EXT4_JBD2_H #define _EXT4_JBD2_H #include <linux/fs.h> #include <linux/jbd2.h> #include "ext4.h" #define EXT4_JOURNAL(inode) (EXT4_SB((inode)->i_sb)->s_journal) /* Define the number of blocks we need to account to a transaction to * modify one block of data. * * We may have to touch one inode, one bitmap buffer, up to three * indirection blocks, the group and superblock summaries, and the data * block to complete the transaction. * * For extents-enabled fs we may have to allocate and modify up to * 5 levels of tree, data block (for each of these we need bitmap + group * summaries), root which is stored in the inode, sb */ #define EXT4_SINGLEDATA_TRANS_BLOCKS(sb) \ (ext4_has_feature_extents(sb) ? 20U : 8U) /* Extended attribute operations touch at most two data buffers, * two bitmap buffers, and two group summaries, in addition to the inode * and the superblock, which are already accounted for. */ #define EXT4_XATTR_TRANS_BLOCKS 6U /* Define the minimum size for a transaction which modifies data. This * needs to take into account the fact that we may end up modifying two * quota files too (one for the group, one for the user quota). The * superblock only gets updated once, of course, so don't bother * counting that again for the quota updates. */ #define EXT4_DATA_TRANS_BLOCKS(sb) (EXT4_SINGLEDATA_TRANS_BLOCKS(sb) + \ EXT4_XATTR_TRANS_BLOCKS - 2 + \ EXT4_MAXQUOTAS_TRANS_BLOCKS(sb)) /* * Define the number of metadata blocks we need to account to modify data. * * This include super block, inode block, quota blocks and xattr blocks */ #define EXT4_META_TRANS_BLOCKS(sb) (EXT4_XATTR_TRANS_BLOCKS + \ EXT4_MAXQUOTAS_TRANS_BLOCKS(sb)) /* Define an arbitrary limit for the amount of data we will anticipate * writing to any given transaction. For unbounded transactions such as * write(2) and truncate(2) we can write more than this, but we always * start off at the maximum transaction size and grow the transaction * optimistically as we go. */ #define EXT4_MAX_TRANS_DATA 64U /* We break up a large truncate or write transaction once the handle's * buffer credits gets this low, we need either to extend the * transaction or to start a new one. Reserve enough space here for * inode, bitmap, superblock, group and indirection updates for at least * one block, plus two quota updates. Quota allocations are not * needed. */ #define EXT4_RESERVE_TRANS_BLOCKS 12U /* * Number of credits needed if we need to insert an entry into a * directory. For each new index block, we need 4 blocks (old index * block, new index block, bitmap block, bg summary). For normal * htree directories there are 2 levels; if the largedir feature * enabled it's 3 levels. */ #define EXT4_INDEX_EXTRA_TRANS_BLOCKS 12U #ifdef CONFIG_QUOTA /* Amount of blocks needed for quota update - we know that the structure was * allocated so we need to update only data block */ #define EXT4_QUOTA_TRANS_BLOCKS(sb) ((test_opt(sb, QUOTA) ||\ ext4_has_feature_quota(sb)) ? 1 : 0) /* Amount of blocks needed for quota insert/delete - we do some block writes * but inode, sb and group updates are done only once */ #define EXT4_QUOTA_INIT_BLOCKS(sb) ((test_opt(sb, QUOTA) ||\ ext4_has_feature_quota(sb)) ?\ (DQUOT_INIT_ALLOC*(EXT4_SINGLEDATA_TRANS_BLOCKS(sb)-3)\ +3+DQUOT_INIT_REWRITE) : 0) #define EXT4_QUOTA_DEL_BLOCKS(sb) ((test_opt(sb, QUOTA) ||\ ext4_has_feature_quota(sb)) ?\ (DQUOT_DEL_ALLOC*(EXT4_SINGLEDATA_TRANS_BLOCKS(sb)-3)\ +3+DQUOT_DEL_REWRITE) : 0) #else #define EXT4_QUOTA_TRANS_BLOCKS(sb) 0 #define EXT4_QUOTA_INIT_BLOCKS(sb) 0 #define EXT4_QUOTA_DEL_BLOCKS(sb) 0 #endif #define EXT4_MAXQUOTAS_TRANS_BLOCKS(sb) (EXT4_MAXQUOTAS*EXT4_QUOTA_TRANS_BLOCKS(sb)) #define EXT4_MAXQUOTAS_INIT_BLOCKS(sb) (EXT4_MAXQUOTAS*EXT4_QUOTA_INIT_BLOCKS(sb)) #define EXT4_MAXQUOTAS_DEL_BLOCKS(sb) (EXT4_MAXQUOTAS*EXT4_QUOTA_DEL_BLOCKS(sb)) /* * Ext4 handle operation types -- for logging purposes */ #define EXT4_HT_MISC 0 #define EXT4_HT_INODE 1 #define EXT4_HT_WRITE_PAGE 2 #define EXT4_HT_MAP_BLOCKS 3 #define EXT4_HT_DIR 4 #define EXT4_HT_TRUNCATE 5 #define EXT4_HT_QUOTA 6 #define EXT4_HT_RESIZE 7 #define EXT4_HT_MIGRATE 8 #define EXT4_HT_MOVE_EXTENTS 9 #define EXT4_HT_XATTR 10 #define EXT4_HT_EXT_CONVERT 11 #define EXT4_HT_MAX 12 /** * struct ext4_journal_cb_entry - Base structure for callback information. * * This struct is a 'seed' structure for a using with your own callback * structs. If you are using callbacks you must allocate one of these * or another struct of your own definition which has this struct * as it's first element and pass it to ext4_journal_callback_add(). */ struct ext4_journal_cb_entry { /* list information for other callbacks attached to the same handle */ struct list_head jce_list; /* Function to call with this callback structure */ void (*jce_func)(struct super_block *sb, struct ext4_journal_cb_entry *jce, int error); /* user data goes here */ }; /** * ext4_journal_callback_add: add a function to call after transaction commit * @handle: active journal transaction handle to register callback on * @func: callback function to call after the transaction has committed: * @sb: superblock of current filesystem for transaction * @jce: returned journal callback data * @rc: journal state at commit (0 = transaction committed properly) * @jce: journal callback data (internal and function private data struct) * * The registered function will be called in the context of the journal thread * after the transaction for which the handle was created has completed. * * No locks are held when the callback function is called, so it is safe to * call blocking functions from within the callback, but the callback should * not block or run for too long, or the filesystem will be blocked waiting for * the next transaction to commit. No journaling functions can be used, or * there is a risk of deadlock. * * There is no guaranteed calling order of multiple registered callbacks on * the same transaction. */ static inline void _ext4_journal_callback_add(handle_t *handle, struct ext4_journal_cb_entry *jce) { /* Add the jce to transaction's private list */ list_add_tail(&jce->jce_list, &handle->h_transaction->t_private_list); } static inline void ext4_journal_callback_add(handle_t *handle, void (*func)(struct super_block *sb, struct ext4_journal_cb_entry *jce, int rc), struct ext4_journal_cb_entry *jce) { struct ext4_sb_info *sbi = EXT4_SB(handle->h_transaction->t_journal->j_private); /* Add the jce to transaction's private list */ jce->jce_func = func; spin_lock(&sbi->s_md_lock); _ext4_journal_callback_add(handle, jce); spin_unlock(&sbi->s_md_lock); } /** * ext4_journal_callback_del: delete a registered callback * @handle: active journal transaction handle on which callback was registered * @jce: registered journal callback entry to unregister * Return true if object was successfully removed */ static inline bool ext4_journal_callback_try_del(handle_t *handle, struct ext4_journal_cb_entry *jce) { bool deleted; struct ext4_sb_info *sbi = EXT4_SB(handle->h_transaction->t_journal->j_private); spin_lock(&sbi->s_md_lock); deleted = !list_empty(&jce->jce_list); list_del_init(&jce->jce_list); spin_unlock(&sbi->s_md_lock); return deleted; } int ext4_mark_iloc_dirty(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc); /* * On success, We end up with an outstanding reference count against * iloc->bh. This _must_ be cleaned up later. */ int ext4_reserve_inode_write(handle_t *handle, struct inode *inode, struct ext4_iloc *iloc); #define ext4_mark_inode_dirty(__h, __i) \ __ext4_mark_inode_dirty((__h), (__i), __func__, __LINE__) int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, const char *func, unsigned int line); int ext4_expand_extra_isize(struct inode *inode, unsigned int new_extra_isize, struct ext4_iloc *iloc); /* * Wrapper functions with which ext4 calls into JBD. */ int __ext4_journal_get_write_access(const char *where, unsigned int line, handle_t *handle, struct buffer_head *bh); int __ext4_forget(const char *where, unsigned int line, handle_t *handle, int is_metadata, struct inode *inode, struct buffer_head *bh, ext4_fsblk_t blocknr); int __ext4_journal_get_create_access(const char *where, unsigned int line, handle_t *handle, struct buffer_head *bh); int __ext4_handle_dirty_metadata(const char *where, unsigned int line, handle_t *handle, struct inode *inode, struct buffer_head *bh); int __ext4_handle_dirty_super(const char *where, unsigned int line, handle_t *handle, struct super_block *sb); #define ext4_journal_get_write_access(handle, bh) \ __ext4_journal_get_write_access(__func__, __LINE__, (handle), (bh)) #define ext4_forget(handle, is_metadata, inode, bh, block_nr) \ __ext4_forget(__func__, __LINE__, (handle), (is_metadata), (inode), \ (bh), (block_nr)) #define ext4_journal_get_create_access(handle, bh) \ __ext4_journal_get_create_access(__func__, __LINE__, (handle), (bh)) #define ext4_handle_dirty_metadata(handle, inode, bh) \ __ext4_handle_dirty_metadata(__func__, __LINE__, (handle), (inode), \ (bh)) #define ext4_handle_dirty_super(handle, sb) \ __ext4_handle_dirty_super(__func__, __LINE__, (handle), (sb)) handle_t *__ext4_journal_start_sb(struct super_block *sb, unsigned int line, int type, int blocks, int rsv_blocks, int revoke_creds); int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle); #define EXT4_NOJOURNAL_MAX_REF_COUNT ((unsigned long) 4096) /* Note: Do not use this for NULL handles. This is only to determine if * a properly allocated handle is using a journal or not. */ static inline int ext4_handle_valid(handle_t *handle) { if ((unsigned long)handle < EXT4_NOJOURNAL_MAX_REF_COUNT) return 0; return 1; } static inline void ext4_handle_sync(handle_t *handle) { if (ext4_handle_valid(handle)) handle->h_sync = 1; } static inline int ext4_handle_is_aborted(handle_t *handle) { if (ext4_handle_valid(handle)) return is_handle_aborted(handle); return 0; } static inline int ext4_free_metadata_revoke_credits(struct super_block *sb, int blocks) { /* Freeing each metadata block can result in freeing one cluster */ return blocks * EXT4_SB(sb)->s_cluster_ratio; } static inline int ext4_trans_default_revoke_credits(struct super_block *sb) { return ext4_free_metadata_revoke_credits(sb, 8); } #define ext4_journal_start_sb(sb, type, nblocks) \ __ext4_journal_start_sb((sb), __LINE__, (type), (nblocks), 0, \ ext4_trans_default_revoke_credits(sb)) #define ext4_journal_start(inode, type, nblocks) \ __ext4_journal_start((inode), __LINE__, (type), (nblocks), 0, \ ext4_trans_default_revoke_credits((inode)->i_sb)) #define ext4_journal_start_with_reserve(inode, type, blocks, rsv_blocks)\ __ext4_journal_start((inode), __LINE__, (type), (blocks), (rsv_blocks),\ ext4_trans_default_revoke_credits((inode)->i_sb)) #define ext4_journal_start_with_revoke(inode, type, blocks, revoke_creds) \ __ext4_journal_start((inode), __LINE__, (type), (blocks), 0, \ (revoke_creds)) static inline handle_t *__ext4_journal_start(struct inode *inode, unsigned int line, int type, int blocks, int rsv_blocks, int revoke_creds) { return __ext4_journal_start_sb(inode->i_sb, line, type, blocks, rsv_blocks, revoke_creds); } #define ext4_journal_stop(handle) \ __ext4_journal_stop(__func__, __LINE__, (handle)) #define ext4_journal_start_reserved(handle, type) \ __ext4_journal_start_reserved((handle), __LINE__, (type)) handle_t *__ext4_journal_start_reserved(handle_t *handle, unsigned int line, int type); static inline handle_t *ext4_journal_current_handle(void) { return journal_current_handle(); } static inline int ext4_journal_extend(handle_t *handle, int nblocks, int revoke) { if (ext4_handle_valid(handle)) return jbd2_journal_extend(handle, nblocks, revoke); return 0; } static inline int ext4_journal_restart(handle_t *handle, int nblocks, int revoke) { if (ext4_handle_valid(handle)) return jbd2__journal_restart(handle, nblocks, revoke, GFP_NOFS); return 0; } int __ext4_journal_ensure_credits(handle_t *handle, int check_cred, int extend_cred, int revoke_cred); /* * Ensure @handle has at least @check_creds credits available. If not, * transaction will be extended or restarted to contain at least @extend_cred * credits. Before restarting transaction @fn is executed to allow for cleanup * before the transaction is restarted. * * The return value is < 0 in case of error, 0 in case the handle has enough * credits or transaction extension succeeded, 1 in case transaction had to be * restarted. */ #define ext4_journal_ensure_credits_fn(handle, check_cred, extend_cred, \ revoke_cred, fn) \ ({ \ __label__ __ensure_end; \ int err = __ext4_journal_ensure_credits((handle), (check_cred), \ (extend_cred), (revoke_cred)); \ \ if (err <= 0) \ goto __ensure_end; \ err = (fn); \ if (err < 0) \ goto __ensure_end; \ err = ext4_journal_restart((handle), (extend_cred), (revoke_cred)); \ if (err == 0) \ err = 1; \ __ensure_end: \ err; \ }) /* * Ensure given handle has at least requested amount of credits available, * possibly restarting transaction if needed. We also make sure the transaction * has space for at least ext4_trans_default_revoke_credits(sb) revoke records * as freeing one or two blocks is very common pattern and requesting this is * very cheap. */ static inline int ext4_journal_ensure_credits(handle_t *handle, int credits, int revoke_creds) { return ext4_journal_ensure_credits_fn(handle, credits, credits, revoke_creds, 0); } static inline int ext4_journal_blocks_per_page(struct inode *inode) { if (EXT4_JOURNAL(inode) != NULL) return jbd2_journal_blocks_per_page(inode); return 0; } static inline int ext4_journal_force_commit(journal_t *journal) { if (journal) return jbd2_journal_force_commit(journal); return 0; } static inline int ext4_jbd2_inode_add_write(handle_t *handle, struct inode *inode, loff_t start_byte, loff_t length) { if (ext4_handle_valid(handle)) return jbd2_journal_inode_ranged_write(handle, EXT4_I(inode)->jinode, start_byte, length); return 0; } static inline int ext4_jbd2_inode_add_wait(handle_t *handle, struct inode *inode, loff_t start_byte, loff_t length) { if (ext4_handle_valid(handle)) return jbd2_journal_inode_ranged_wait(handle, EXT4_I(inode)->jinode, start_byte, length); return 0; } static inline void ext4_update_inode_fsync_trans(handle_t *handle, struct inode *inode, int datasync) { struct ext4_inode_info *ei = EXT4_I(inode); if (ext4_handle_valid(handle) && !is_handle_aborted(handle)) { ei->i_sync_tid = handle->h_transaction->t_tid; if (datasync) ei->i_datasync_tid = handle->h_transaction->t_tid; } } /* super.c */ int ext4_force_commit(struct super_block *sb); /* * Ext4 inode journal modes */ #define EXT4_INODE_JOURNAL_DATA_MODE 0x01 /* journal data mode */ #define EXT4_INODE_ORDERED_DATA_MODE 0x02 /* ordered data mode */ #define EXT4_INODE_WRITEBACK_DATA_MODE 0x04 /* writeback data mode */ int ext4_inode_journal_mode(struct inode *inode); static inline int ext4_should_journal_data(struct inode *inode) { return ext4_inode_journal_mode(inode) & EXT4_INODE_JOURNAL_DATA_MODE; } static inline int ext4_should_order_data(struct inode *inode) { return ext4_inode_journal_mode(inode) & EXT4_INODE_ORDERED_DATA_MODE; } static inline int ext4_should_writeback_data(struct inode *inode) { return ext4_inode_journal_mode(inode) & EXT4_INODE_WRITEBACK_DATA_MODE; } static inline int ext4_free_data_revoke_credits(struct inode *inode, int blocks) { if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) return 0; if (!ext4_should_journal_data(inode)) return 0; /* * Data blocks in one extent are contiguous, just account for partial * clusters at extent boundaries */ return blocks + 2*(EXT4_SB(inode->i_sb)->s_cluster_ratio - 1); } /* * This function controls whether or not we should try to go down the * dioread_nolock code paths, which makes it safe to avoid taking * i_mutex for direct I/O reads. This only works for extent-based * files, and it doesn't work if data journaling is enabled, since the * dioread_nolock code uses b_private to pass information back to the * I/O completion handler, and this conflicts with the jbd's use of * b_private. */ static inline int ext4_should_dioread_nolock(struct inode *inode) { if (!test_opt(inode->i_sb, DIOREAD_NOLOCK)) return 0; if (!S_ISREG(inode->i_mode)) return 0; if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) return 0; if (ext4_should_journal_data(inode)) return 0; /* temporary fix to prevent generic/422 test failures */ if (!test_opt(inode->i_sb, DELALLOC)) return 0; return 1; } #endif /* _EXT4_JBD2_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TIME64_H #define _LINUX_TIME64_H #include <linux/math64.h> #include <vdso/time64.h> typedef __s64 time64_t; typedef __u64 timeu64_t; #include <uapi/linux/time.h> struct timespec64 { time64_t tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */ }; struct itimerspec64 { struct timespec64 it_interval; struct timespec64 it_value; }; /* Located here for timespec[64]_valid_strict */ #define TIME64_MAX ((s64)~((u64)1 << 63)) #define TIME64_MIN (-TIME64_MAX - 1) #define KTIME_MAX ((s64)~((u64)1 << 63)) #define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC) /* * Limits for settimeofday(): * * To prevent setting the time close to the wraparound point time setting * is limited so a reasonable uptime can be accomodated. Uptime of 30 years * should be really sufficient, which means the cutoff is 2232. At that * point the cutoff is just a small part of the larger problem. */ #define TIME_UPTIME_SEC_MAX (30LL * 365 * 24 *3600) #define TIME_SETTOD_SEC_MAX (KTIME_SEC_MAX - TIME_UPTIME_SEC_MAX) static inline int timespec64_equal(const struct timespec64 *a, const struct timespec64 *b) { return (a->tv_sec == b->tv_sec) && (a->tv_nsec == b->tv_nsec); } /* * lhs < rhs: return <0 * lhs == rhs: return 0 * lhs > rhs: return >0 */ static inline int timespec64_compare(const struct timespec64 *lhs, const struct timespec64 *rhs) { if (lhs->tv_sec < rhs->tv_sec) return -1; if (lhs->tv_sec > rhs->tv_sec) return 1; return lhs->tv_nsec - rhs->tv_nsec; } extern void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec); static inline struct timespec64 timespec64_add(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec + rhs.tv_sec, lhs.tv_nsec + rhs.tv_nsec); return ts_delta; } /* * sub = lhs - rhs, in normalized form */ static inline struct timespec64 timespec64_sub(struct timespec64 lhs, struct timespec64 rhs) { struct timespec64 ts_delta; set_normalized_timespec64(&ts_delta, lhs.tv_sec - rhs.tv_sec, lhs.tv_nsec - rhs.tv_nsec); return ts_delta; } /* * Returns true if the timespec64 is norm, false if denorm: */ static inline bool timespec64_valid(const struct timespec64 *ts) { /* Dates before 1970 are bogus */ if (ts->tv_sec < 0) return false; /* Can't have more nanoseconds then a second */ if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) return false; return true; } static inline bool timespec64_valid_strict(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values that could overflow ktime_t */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return false; return true; } static inline bool timespec64_valid_settod(const struct timespec64 *ts) { if (!timespec64_valid(ts)) return false; /* Disallow values which cause overflow issues vs. CLOCK_REALTIME */ if ((unsigned long long)ts->tv_sec >= TIME_SETTOD_SEC_MAX) return false; return true; } /** * timespec64_to_ns - Convert timespec64 to nanoseconds * @ts: pointer to the timespec64 variable to be converted * * Returns the scalar nanosecond representation of the timespec64 * parameter. */ static inline s64 timespec64_to_ns(const struct timespec64 *ts) { /* Prevent multiplication overflow */ if ((unsigned long long)ts->tv_sec >= KTIME_SEC_MAX) return KTIME_MAX; return ((s64) ts->tv_sec * NSEC_PER_SEC) + ts->tv_nsec; } /** * ns_to_timespec64 - Convert nanoseconds to timespec64 * @nsec: the nanoseconds value to be converted * * Returns the timespec64 representation of the nsec parameter. */ extern struct timespec64 ns_to_timespec64(const s64 nsec); /** * timespec64_add_ns - Adds nanoseconds to a timespec64 * @a: pointer to timespec64 to be incremented * @ns: unsigned nanoseconds value to be added * * This must always be inlined because its used from the x86-64 vdso, * which cannot call other kernel functions. */ static __always_inline void timespec64_add_ns(struct timespec64 *a, u64 ns) { a->tv_sec += __iter_div_u64_rem(a->tv_nsec + ns, NSEC_PER_SEC, &ns); a->tv_nsec = ns; } /* * timespec64_add_safe assumes both values are positive and checks for * overflow. It will return TIME64_MAX in case of overflow. */ extern struct timespec64 timespec64_add_safe(const struct timespec64 lhs, const struct timespec64 rhs); #endif /* _LINUX_TIME64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr, int create); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif, int create) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr, create); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr, int create) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr, create); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAP_H #define _LINUX_SWAP_H #include <linux/spinlock.h> #include <linux/linkage.h> #include <linux/mmzone.h> #include <linux/list.h> #include <linux/memcontrol.h> #include <linux/sched.h> #include <linux/node.h> #include <linux/fs.h> #include <linux/atomic.h> #include <linux/page-flags.h> #include <asm/page.h> struct notifier_block; struct bio; struct pagevec; #define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */ #define SWAP_FLAG_PRIO_MASK 0x7fff #define SWAP_FLAG_PRIO_SHIFT 0 #define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */ #define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */ #define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */ #define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \ SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \ SWAP_FLAG_DISCARD_PAGES) #define SWAP_BATCH 64 static inline int current_is_kswapd(void) { return current->flags & PF_KSWAPD; } /* * MAX_SWAPFILES defines the maximum number of swaptypes: things which can * be swapped to. The swap type and the offset into that swap type are * encoded into pte's and into pgoff_t's in the swapcache. Using five bits * for the type means that the maximum number of swapcache pages is 27 bits * on 32-bit-pgoff_t architectures. And that assumes that the architecture packs * the type/offset into the pte as 5/27 as well. */ #define MAX_SWAPFILES_SHIFT 5 /* * Use some of the swap files numbers for other purposes. This * is a convenient way to hook into the VM to trigger special * actions on faults. */ /* * Unaddressable device memory support. See include/linux/hmm.h and * Documentation/vm/hmm.rst. Short description is we need struct pages for * device memory that is unaddressable (inaccessible) by CPU, so that we can * migrate part of a process memory to device memory. * * When a page is migrated from CPU to device, we set the CPU page table entry * to a special SWP_DEVICE_* entry. */ #ifdef CONFIG_DEVICE_PRIVATE #define SWP_DEVICE_NUM 2 #define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM) #define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1) #else #define SWP_DEVICE_NUM 0 #endif /* * NUMA node memory migration support */ #ifdef CONFIG_MIGRATION #define SWP_MIGRATION_NUM 2 #define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM) #define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1) #else #define SWP_MIGRATION_NUM 0 #endif /* * Handling of hardware poisoned pages with memory corruption. */ #ifdef CONFIG_MEMORY_FAILURE #define SWP_HWPOISON_NUM 1 #define SWP_HWPOISON MAX_SWAPFILES #else #define SWP_HWPOISON_NUM 0 #endif #define MAX_SWAPFILES \ ((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \ SWP_MIGRATION_NUM - SWP_HWPOISON_NUM) /* * Magic header for a swap area. The first part of the union is * what the swap magic looks like for the old (limited to 128MB) * swap area format, the second part of the union adds - in the * old reserved area - some extra information. Note that the first * kilobyte is reserved for boot loader or disk label stuff... * * Having the magic at the end of the PAGE_SIZE makes detecting swap * areas somewhat tricky on machines that support multiple page sizes. * For 2.5 we'll probably want to move the magic to just beyond the * bootbits... */ union swap_header { struct { char reserved[PAGE_SIZE - 10]; char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */ } magic; struct { char bootbits[1024]; /* Space for disklabel etc. */ __u32 version; __u32 last_page; __u32 nr_badpages; unsigned char sws_uuid[16]; unsigned char sws_volume[16]; __u32 padding[117]; __u32 badpages[1]; } info; }; /* * current->reclaim_state points to one of these when a task is running * memory reclaim */ struct reclaim_state { unsigned long reclaimed_slab; }; #ifdef __KERNEL__ struct address_space; struct sysinfo; struct writeback_control; struct zone; /* * A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of * disk blocks. A list of swap extents maps the entire swapfile. (Where the * term `swapfile' refers to either a blockdevice or an IS_REG file. Apart * from setup, they're handled identically. * * We always assume that blocks are of size PAGE_SIZE. */ struct swap_extent { struct rb_node rb_node; pgoff_t start_page; pgoff_t nr_pages; sector_t start_block; }; /* * Max bad pages in the new format.. */ #define MAX_SWAP_BADPAGES \ ((offsetof(union swap_header, magic.magic) - \ offsetof(union swap_header, info.badpages)) / sizeof(int)) enum { SWP_USED = (1 << 0), /* is slot in swap_info[] used? */ SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */ SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */ SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */ SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */ SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */ SWP_BLKDEV = (1 << 6), /* its a block device */ SWP_ACTIVATED = (1 << 7), /* set after swap_activate success */ SWP_FS_OPS = (1 << 8), /* swapfile operations go through fs */ SWP_AREA_DISCARD = (1 << 9), /* single-time swap area discards */ SWP_PAGE_DISCARD = (1 << 10), /* freed swap page-cluster discards */ SWP_STABLE_WRITES = (1 << 11), /* no overwrite PG_writeback pages */ SWP_SYNCHRONOUS_IO = (1 << 12), /* synchronous IO is efficient */ SWP_VALID = (1 << 13), /* swap is valid to be operated on? */ /* add others here before... */ SWP_SCANNING = (1 << 14), /* refcount in scan_swap_map */ }; #define SWAP_CLUSTER_MAX 32UL #define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX /* Bit flag in swap_map */ #define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */ #define COUNT_CONTINUED 0x80 /* Flag swap_map continuation for full count */ /* Special value in first swap_map */ #define SWAP_MAP_MAX 0x3e /* Max count */ #define SWAP_MAP_BAD 0x3f /* Note page is bad */ #define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs */ /* Special value in each swap_map continuation */ #define SWAP_CONT_MAX 0x7f /* Max count */ /* * We use this to track usage of a cluster. A cluster is a block of swap disk * space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All * free clusters are organized into a list. We fetch an entry from the list to * get a free cluster. * * The data field stores next cluster if the cluster is free or cluster usage * counter otherwise. The flags field determines if a cluster is free. This is * protected by swap_info_struct.lock. */ struct swap_cluster_info { spinlock_t lock; /* * Protect swap_cluster_info fields * and swap_info_struct->swap_map * elements correspond to the swap * cluster */ unsigned int data:24; unsigned int flags:8; }; #define CLUSTER_FLAG_FREE 1 /* This cluster is free */ #define CLUSTER_FLAG_NEXT_NULL 2 /* This cluster has no next cluster */ #define CLUSTER_FLAG_HUGE 4 /* This cluster is backing a transparent huge page */ /* * We assign a cluster to each CPU, so each CPU can allocate swap entry from * its own cluster and swapout sequentially. The purpose is to optimize swapout * throughput. */ struct percpu_cluster { struct swap_cluster_info index; /* Current cluster index */ unsigned int next; /* Likely next allocation offset */ }; struct swap_cluster_list { struct swap_cluster_info head; struct swap_cluster_info tail; }; /* * The in-memory structure used to track swap areas. */ struct swap_info_struct { unsigned long flags; /* SWP_USED etc: see above */ signed short prio; /* swap priority of this type */ struct plist_node list; /* entry in swap_active_head */ signed char type; /* strange name for an index */ unsigned int max; /* extent of the swap_map */ unsigned char *swap_map; /* vmalloc'ed array of usage counts */ struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */ struct swap_cluster_list free_clusters; /* free clusters list */ unsigned int lowest_bit; /* index of first free in swap_map */ unsigned int highest_bit; /* index of last free in swap_map */ unsigned int pages; /* total of usable pages of swap */ unsigned int inuse_pages; /* number of those currently in use */ unsigned int cluster_next; /* likely index for next allocation */ unsigned int cluster_nr; /* countdown to next cluster search */ unsigned int __percpu *cluster_next_cpu; /*percpu index for next allocation */ struct percpu_cluster __percpu *percpu_cluster; /* per cpu's swap location */ struct rb_root swap_extent_root;/* root of the swap extent rbtree */ struct block_device *bdev; /* swap device or bdev of swap file */ struct file *swap_file; /* seldom referenced */ unsigned int old_block_size; /* seldom referenced */ #ifdef CONFIG_FRONTSWAP unsigned long *frontswap_map; /* frontswap in-use, one bit per page */ atomic_t frontswap_pages; /* frontswap pages in-use counter */ #endif spinlock_t lock; /* * protect map scan related fields like * swap_map, lowest_bit, highest_bit, * inuse_pages, cluster_next, * cluster_nr, lowest_alloc, * highest_alloc, free/discard cluster * list. other fields are only changed * at swapon/swapoff, so are protected * by swap_lock. changing flags need * hold this lock and swap_lock. If * both locks need hold, hold swap_lock * first. */ spinlock_t cont_lock; /* * protect swap count continuation page * list. */ struct work_struct discard_work; /* discard worker */ struct swap_cluster_list discard_clusters; /* discard clusters list */ struct plist_node avail_lists[]; /* * entries in swap_avail_heads, one * entry per node. * Must be last as the number of the * array is nr_node_ids, which is not * a fixed value so have to allocate * dynamically. * And it has to be an array so that * plist_for_each_* can work. */ }; #ifdef CONFIG_64BIT #define SWAP_RA_ORDER_CEILING 5 #else /* Avoid stack overflow, because we need to save part of page table */ #define SWAP_RA_ORDER_CEILING 3 #define SWAP_RA_PTE_CACHE_SIZE (1 << SWAP_RA_ORDER_CEILING) #endif struct vma_swap_readahead { unsigned short win; unsigned short offset; unsigned short nr_pte; #ifdef CONFIG_64BIT pte_t *ptes; #else pte_t ptes[SWAP_RA_PTE_CACHE_SIZE]; #endif }; /* linux/mm/workingset.c */ void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages); void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg); void workingset_refault(struct page *page, void *shadow); void workingset_activation(struct page *page); /* Only track the nodes of mappings with shadow entries */ void workingset_update_node(struct xa_node *node); #define mapping_set_update(xas, mapping) do { \ if (!dax_mapping(mapping) && !shmem_mapping(mapping)) \ xas_set_update(xas, workingset_update_node); \ } while (0) /* linux/mm/page_alloc.c */ extern unsigned long totalreserve_pages; extern unsigned long nr_free_buffer_pages(void); /* Definition of global_zone_page_state not available yet */ #define nr_free_pages() global_zone_page_state(NR_FREE_PAGES) /* linux/mm/swap.c */ extern void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages); extern void lru_note_cost_page(struct page *); extern void lru_cache_add(struct page *); extern void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec, struct list_head *head); extern void mark_page_accessed(struct page *); extern void lru_add_drain(void); extern void lru_add_drain_cpu(int cpu); extern void lru_add_drain_cpu_zone(struct zone *zone); extern void lru_add_drain_all(void); extern void rotate_reclaimable_page(struct page *page); extern void deactivate_file_page(struct page *page); extern void deactivate_page(struct page *page); extern void mark_page_lazyfree(struct page *page); extern void swap_setup(void); extern void lru_cache_add_inactive_or_unevictable(struct page *page, struct vm_area_struct *vma); /* linux/mm/vmscan.c */ extern unsigned long zone_reclaimable_pages(struct zone *zone); extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *mask); extern int __isolate_lru_page(struct page *page, isolate_mode_t mode); extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, unsigned long nr_pages, gfp_t gfp_mask, bool may_swap); extern unsigned long mem_cgroup_shrink_node(struct mem_cgroup *mem, gfp_t gfp_mask, bool noswap, pg_data_t *pgdat, unsigned long *nr_scanned); extern unsigned long shrink_all_memory(unsigned long nr_pages); extern int vm_swappiness; extern int remove_mapping(struct address_space *mapping, struct page *page); extern unsigned long reclaim_pages(struct list_head *page_list); #ifdef CONFIG_NUMA extern int node_reclaim_mode; extern int sysctl_min_unmapped_ratio; extern int sysctl_min_slab_ratio; #else #define node_reclaim_mode 0 #endif extern void check_move_unevictable_pages(struct pagevec *pvec); extern int kswapd_run(int nid); extern void kswapd_stop(int nid); #ifdef CONFIG_SWAP #include <linux/blk_types.h> /* for bio_end_io_t */ /* linux/mm/page_io.c */ extern int swap_readpage(struct page *page, bool do_poll); extern int swap_writepage(struct page *page, struct writeback_control *wbc); extern void end_swap_bio_write(struct bio *bio); extern int __swap_writepage(struct page *page, struct writeback_control *wbc, bio_end_io_t end_write_func); extern int swap_set_page_dirty(struct page *page); int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block); int generic_swapfile_activate(struct swap_info_struct *, struct file *, sector_t *); /* linux/mm/swap_state.c */ /* One swap address space for each 64M swap space */ #define SWAP_ADDRESS_SPACE_SHIFT 14 #define SWAP_ADDRESS_SPACE_PAGES (1 << SWAP_ADDRESS_SPACE_SHIFT) extern struct address_space *swapper_spaces[]; #define swap_address_space(entry) \ (&swapper_spaces[swp_type(entry)][swp_offset(entry) \ >> SWAP_ADDRESS_SPACE_SHIFT]) extern unsigned long total_swapcache_pages(void); extern void show_swap_cache_info(void); extern int add_to_swap(struct page *page); extern void *get_shadow_from_swap_cache(swp_entry_t entry); extern int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp, void **shadowp); extern void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow); extern void delete_from_swap_cache(struct page *); extern void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end); extern void free_page_and_swap_cache(struct page *); extern void free_pages_and_swap_cache(struct page **, int); extern struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr); struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index); extern struct page *read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool do_poll); extern struct page *__read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool *new_page_allocated); extern struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); extern struct page *swapin_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); /* linux/mm/swapfile.c */ extern atomic_long_t nr_swap_pages; extern long total_swap_pages; extern atomic_t nr_rotate_swap; extern bool has_usable_swap(void); /* Swap 50% full? Release swapcache more aggressively.. */ static inline bool vm_swap_full(void) { return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages; } static inline long get_nr_swap_pages(void) { return atomic_long_read(&nr_swap_pages); } extern void si_swapinfo(struct sysinfo *); extern swp_entry_t get_swap_page(struct page *page); extern void put_swap_page(struct page *page, swp_entry_t entry); extern swp_entry_t get_swap_page_of_type(int); extern int get_swap_pages(int n, swp_entry_t swp_entries[], int entry_size); extern int add_swap_count_continuation(swp_entry_t, gfp_t); extern void swap_shmem_alloc(swp_entry_t); extern int swap_duplicate(swp_entry_t); extern int swapcache_prepare(swp_entry_t); extern void swap_free(swp_entry_t); extern void swapcache_free_entries(swp_entry_t *entries, int n); extern int free_swap_and_cache(swp_entry_t); int swap_type_of(dev_t device, sector_t offset); int find_first_swap(dev_t *device); extern unsigned int count_swap_pages(int, int); extern sector_t map_swap_page(struct page *, struct block_device **); extern sector_t swapdev_block(int, pgoff_t); extern int page_swapcount(struct page *); extern int __swap_count(swp_entry_t entry); extern int __swp_swapcount(swp_entry_t entry); extern int swp_swapcount(swp_entry_t entry); extern struct swap_info_struct *page_swap_info(struct page *); extern struct swap_info_struct *swp_swap_info(swp_entry_t entry); extern bool reuse_swap_page(struct page *, int *); extern int try_to_free_swap(struct page *); struct backing_dev_info; extern int init_swap_address_space(unsigned int type, unsigned long nr_pages); extern void exit_swap_address_space(unsigned int type); extern struct swap_info_struct *get_swap_device(swp_entry_t entry); sector_t swap_page_sector(struct page *page); static inline void put_swap_device(struct swap_info_struct *si) { rcu_read_unlock(); } #else /* CONFIG_SWAP */ static inline int swap_readpage(struct page *page, bool do_poll) { return 0; } static inline struct swap_info_struct *swp_swap_info(swp_entry_t entry) { return NULL; } #define swap_address_space(entry) (NULL) #define get_nr_swap_pages() 0L #define total_swap_pages 0L #define total_swapcache_pages() 0UL #define vm_swap_full() 0 #define si_swapinfo(val) \ do { (val)->freeswap = (val)->totalswap = 0; } while (0) /* only sparc can not include linux/pagemap.h in this file * so leave put_page and release_pages undeclared... */ #define free_page_and_swap_cache(page) \ put_page(page) #define free_pages_and_swap_cache(pages, nr) \ release_pages((pages), (nr)); static inline void show_swap_cache_info(void) { } #define free_swap_and_cache(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) #define swapcache_prepare(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask) { return 0; } static inline void swap_shmem_alloc(swp_entry_t swp) { } static inline int swap_duplicate(swp_entry_t swp) { return 0; } static inline void swap_free(swp_entry_t swp) { } static inline void put_swap_page(struct page *page, swp_entry_t swp) { } static inline struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline int swap_writepage(struct page *p, struct writeback_control *wbc) { return 0; } static inline struct page *lookup_swap_cache(swp_entry_t swp, struct vm_area_struct *vma, unsigned long addr) { return NULL; } static inline struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) { return find_get_page(mapping, index); } static inline int add_to_swap(struct page *page) { return 0; } static inline void *get_shadow_from_swap_cache(swp_entry_t entry) { return NULL; } static inline int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask, void **shadowp) { return -1; } static inline void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow) { } static inline void delete_from_swap_cache(struct page *page) { } static inline void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end) { } static inline int page_swapcount(struct page *page) { return 0; } static inline int __swap_count(swp_entry_t entry) { return 0; } static inline int __swp_swapcount(swp_entry_t entry) { return 0; } static inline int swp_swapcount(swp_entry_t entry) { return 0; } #define reuse_swap_page(page, total_map_swapcount) \ (page_trans_huge_mapcount(page, total_map_swapcount) == 1) static inline int try_to_free_swap(struct page *page) { return 0; } static inline swp_entry_t get_swap_page(struct page *page) { swp_entry_t entry; entry.val = 0; return entry; } #endif /* CONFIG_SWAP */ #ifdef CONFIG_THP_SWAP extern int split_swap_cluster(swp_entry_t entry); #else static inline int split_swap_cluster(swp_entry_t entry) { return 0; } #endif #ifdef CONFIG_MEMCG static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg) { /* Cgroup2 doesn't have per-cgroup swappiness */ if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return vm_swappiness; /* root ? */ if (mem_cgroup_disabled() || mem_cgroup_is_root(memcg)) return vm_swappiness; return memcg->swappiness; } #else static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) { return vm_swappiness; } #endif #if defined(CONFIG_SWAP) && defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) extern void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask); #else static inline void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) { } #endif #ifdef CONFIG_MEMCG_SWAP extern void mem_cgroup_swapout(struct page *page, swp_entry_t entry); extern int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry); extern void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages); extern long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg); extern bool mem_cgroup_swap_full(struct page *page); #else static inline void mem_cgroup_swapout(struct page *page, swp_entry_t entry) { } static inline int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) { return 0; } static inline void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) { } static inline long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) { return get_nr_swap_pages(); } static inline bool mem_cgroup_swap_full(struct page *page) { return vm_swap_full(); } #endif #endif /* __KERNEL__*/ #endif /* _LINUX_SWAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 /* SPDX-License-Identifier: GPL-2.0 */ /* include/net/dsfield.h - Manipulation of the Differentiated Services field */ /* Written 1998-2000 by Werner Almesberger, EPFL ICA */ #ifndef __NET_DSFIELD_H #define __NET_DSFIELD_H #include <linux/types.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <asm/byteorder.h> static inline __u8 ipv4_get_dsfield(const struct iphdr *iph) { return iph->tos; } static inline __u8 ipv6_get_dsfield(const struct ipv6hdr *ipv6h) { return ntohs(*(__force const __be16 *)ipv6h) >> 4; } static inline void ipv4_change_dsfield(struct iphdr *iph,__u8 mask, __u8 value) { __u32 check = ntohs((__force __be16)iph->check); __u8 dsfield; dsfield = (iph->tos & mask) | value; check += iph->tos; if ((check+1) >> 16) check = (check+1) & 0xffff; check -= dsfield; check += check >> 16; /* adjust carry */ iph->check = (__force __sum16)htons(check); iph->tos = dsfield; } static inline void ipv6_change_dsfield(struct ipv6hdr *ipv6h,__u8 mask, __u8 value) { __be16 *p = (__force __be16 *)ipv6h; *p = (*p & htons((((u16)mask << 4) | 0xf00f))) | htons((u16)value << 4); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KASAN_H #define _LINUX_KASAN_H #include <linux/types.h> struct kmem_cache; struct page; struct vm_struct; struct task_struct; #ifdef CONFIG_KASAN #include <linux/pgtable.h> #include <asm/kasan.h> /* kasan_data struct is used in KUnit tests for KASAN expected failures */ struct kunit_kasan_expectation { bool report_expected; bool report_found; }; extern unsigned char kasan_early_shadow_page[PAGE_SIZE]; extern pte_t kasan_early_shadow_pte[PTRS_PER_PTE]; extern pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD]; extern pud_t kasan_early_shadow_pud[PTRS_PER_PUD]; extern p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D]; int kasan_populate_early_shadow(const void *shadow_start, const void *shadow_end); static inline void *kasan_mem_to_shadow(const void *addr) { return (void *)((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } /* Enable reporting bugs after kasan_disable_current() */ extern void kasan_enable_current(void); /* Disable reporting bugs for current task */ extern void kasan_disable_current(void); void kasan_unpoison_shadow(const void *address, size_t size); void kasan_unpoison_task_stack(struct task_struct *task); void kasan_alloc_pages(struct page *page, unsigned int order); void kasan_free_pages(struct page *page, unsigned int order); void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags); void kasan_poison_slab(struct page *page); void kasan_unpoison_object_data(struct kmem_cache *cache, void *object); void kasan_poison_object_data(struct kmem_cache *cache, void *object); void * __must_check kasan_init_slab_obj(struct kmem_cache *cache, const void *object); void * __must_check kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags); void kasan_kfree_large(void *ptr, unsigned long ip); void kasan_poison_kfree(void *ptr, unsigned long ip); void * __must_check kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags); void * __must_check kasan_krealloc(const void *object, size_t new_size, gfp_t flags); void * __must_check kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags); bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip); struct kasan_cache { int alloc_meta_offset; int free_meta_offset; }; /* * These functions provide a special case to support backing module * allocations with real shadow memory. With KASAN vmalloc, the special * case is unnecessary, as the work is handled in the generic case. */ #ifndef CONFIG_KASAN_VMALLOC int kasan_module_alloc(void *addr, size_t size); void kasan_free_shadow(const struct vm_struct *vm); #else static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} #endif int kasan_add_zero_shadow(void *start, unsigned long size); void kasan_remove_zero_shadow(void *start, unsigned long size); size_t __ksize(const void *); static inline void kasan_unpoison_slab(const void *ptr) { kasan_unpoison_shadow(ptr, __ksize(ptr)); } size_t kasan_metadata_size(struct kmem_cache *cache); bool kasan_save_enable_multi_shot(void); void kasan_restore_multi_shot(bool enabled); #else /* CONFIG_KASAN */ static inline void kasan_unpoison_shadow(const void *address, size_t size) {} static inline void kasan_unpoison_task_stack(struct task_struct *task) {} static inline void kasan_enable_current(void) {} static inline void kasan_disable_current(void) {} static inline void kasan_alloc_pages(struct page *page, unsigned int order) {} static inline void kasan_free_pages(struct page *page, unsigned int order) {} static inline void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) {} static inline void kasan_poison_slab(struct page *page) {} static inline void kasan_unpoison_object_data(struct kmem_cache *cache, void *object) {} static inline void kasan_poison_object_data(struct kmem_cache *cache, void *object) {} static inline void *kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { return (void *)object; } static inline void *kasan_kmalloc_large(void *ptr, size_t size, gfp_t flags) { return ptr; } static inline void kasan_kfree_large(void *ptr, unsigned long ip) {} static inline void kasan_poison_kfree(void *ptr, unsigned long ip) {} static inline void *kasan_kmalloc(struct kmem_cache *s, const void *object, size_t size, gfp_t flags) { return (void *)object; } static inline void *kasan_krealloc(const void *object, size_t new_size, gfp_t flags) { return (void *)object; } static inline void *kasan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) { return object; } static inline bool kasan_slab_free(struct kmem_cache *s, void *object, unsigned long ip) { return false; } static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } static inline void kasan_free_shadow(const struct vm_struct *vm) {} static inline int kasan_add_zero_shadow(void *start, unsigned long size) { return 0; } static inline void kasan_remove_zero_shadow(void *start, unsigned long size) {} static inline void kasan_unpoison_slab(const void *ptr) { } static inline size_t kasan_metadata_size(struct kmem_cache *cache) { return 0; } #endif /* CONFIG_KASAN */ #ifdef CONFIG_KASAN_GENERIC #define KASAN_SHADOW_INIT 0 void kasan_cache_shrink(struct kmem_cache *cache); void kasan_cache_shutdown(struct kmem_cache *cache); void kasan_record_aux_stack(void *ptr); #else /* CONFIG_KASAN_GENERIC */ static inline void kasan_cache_shrink(struct kmem_cache *cache) {} static inline void kasan_cache_shutdown(struct kmem_cache *cache) {} static inline void kasan_record_aux_stack(void *ptr) {} #endif /* CONFIG_KASAN_GENERIC */ #ifdef CONFIG_KASAN_SW_TAGS #define KASAN_SHADOW_INIT 0xFF void kasan_init_tags(void); void *kasan_reset_tag(const void *addr); bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); #else /* CONFIG_KASAN_SW_TAGS */ static inline void kasan_init_tags(void) { } static inline void *kasan_reset_tag(const void *addr) { return (void *)addr; } #endif /* CONFIG_KASAN_SW_TAGS */ #ifdef CONFIG_KASAN_VMALLOC int kasan_populate_vmalloc(unsigned long addr, unsigned long size); void kasan_poison_vmalloc(const void *start, unsigned long size); void kasan_unpoison_vmalloc(const void *start, unsigned long size); void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end); #else static inline int kasan_populate_vmalloc(unsigned long start, unsigned long size) { return 0; } static inline void kasan_poison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_unpoison_vmalloc(const void *start, unsigned long size) { } static inline void kasan_release_vmalloc(unsigned long start, unsigned long end, unsigned long free_region_start, unsigned long free_region_end) {} #endif #ifdef CONFIG_KASAN void kasan_non_canonical_hook(unsigned long addr); #else /* CONFIG_KASAN */ static inline void kasan_non_canonical_hook(unsigned long addr) { } #endif /* CONFIG_KASAN */ #endif /* LINUX_KASAN_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 // SPDX-License-Identifier: GPL-2.0-or-later /* * NETLINK Kernel-user communication protocol. * * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * Patrick McHardy <kaber@trash.net> * * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith * added netlink_proto_exit * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> * use nlk_sk, as sk->protinfo is on a diet 8) * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> * - inc module use count of module that owns * the kernel socket in case userspace opens * socket of same protocol * - remove all module support, since netlink is * mandatory if CONFIG_NET=y these days */ #include <linux/module.h> #include <linux/capability.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/socket.h> #include <linux/un.h> #include <linux/fcntl.h> #include <linux/termios.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/notifier.h> #include <linux/security.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/random.h> #include <linux/bitops.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/audit.h> #include <linux/mutex.h> #include <linux/vmalloc.h> #include <linux/if_arp.h> #include <linux/rhashtable.h> #include <asm/cacheflush.h> #include <linux/hash.h> #include <linux/genetlink.h> #include <linux/net_namespace.h> #include <linux/nospec.h> #include <linux/btf_ids.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/sock.h> #include <net/scm.h> #include <net/netlink.h> #include "af_netlink.h" struct listeners { struct rcu_head rcu; unsigned long masks[]; }; /* state bits */ #define NETLINK_S_CONGESTED 0x0 static inline int netlink_is_kernel(struct sock *sk) { return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; } struct netlink_table *nl_table __read_mostly; EXPORT_SYMBOL_GPL(nl_table); static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { "nlk_cb_mutex-ROUTE", "nlk_cb_mutex-1", "nlk_cb_mutex-USERSOCK", "nlk_cb_mutex-FIREWALL", "nlk_cb_mutex-SOCK_DIAG", "nlk_cb_mutex-NFLOG", "nlk_cb_mutex-XFRM", "nlk_cb_mutex-SELINUX", "nlk_cb_mutex-ISCSI", "nlk_cb_mutex-AUDIT", "nlk_cb_mutex-FIB_LOOKUP", "nlk_cb_mutex-CONNECTOR", "nlk_cb_mutex-NETFILTER", "nlk_cb_mutex-IP6_FW", "nlk_cb_mutex-DNRTMSG", "nlk_cb_mutex-KOBJECT_UEVENT", "nlk_cb_mutex-GENERIC", "nlk_cb_mutex-17", "nlk_cb_mutex-SCSITRANSPORT", "nlk_cb_mutex-ECRYPTFS", "nlk_cb_mutex-RDMA", "nlk_cb_mutex-CRYPTO", "nlk_cb_mutex-SMC", "nlk_cb_mutex-23", "nlk_cb_mutex-24", "nlk_cb_mutex-25", "nlk_cb_mutex-26", "nlk_cb_mutex-27", "nlk_cb_mutex-28", "nlk_cb_mutex-29", "nlk_cb_mutex-30", "nlk_cb_mutex-31", "nlk_cb_mutex-MAX_LINKS" }; static int netlink_dump(struct sock *sk, bool lock_taken); /* nl_table locking explained: * Lookup and traversal are protected with an RCU read-side lock. Insertion * and removal are protected with per bucket lock while using RCU list * modification primitives and may run in parallel to RCU protected lookups. * Destruction of the Netlink socket may only occur *after* nl_table_lock has * been acquired * either during or after the socket has been removed from * the list and after an RCU grace period. */ DEFINE_RWLOCK(nl_table_lock); EXPORT_SYMBOL_GPL(nl_table_lock); static atomic_t nl_table_users = ATOMIC_INIT(0); #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); static BLOCKING_NOTIFIER_HEAD(netlink_chain); static const struct rhashtable_params netlink_rhashtable_params; static inline u32 netlink_group_mask(u32 group) { if (group > 32) return 0; return group ? 1 << (group - 1) : 0; } static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, gfp_t gfp_mask) { unsigned int len = skb->len; struct sk_buff *new; new = alloc_skb(len, gfp_mask); if (new == NULL) return NULL; NETLINK_CB(new).portid = NETLINK_CB(skb).portid; NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; NETLINK_CB(new).creds = NETLINK_CB(skb).creds; skb_put_data(new, skb->data, len); return new; } static unsigned int netlink_tap_net_id; struct netlink_tap_net { struct list_head netlink_tap_all; struct mutex netlink_tap_lock; }; int netlink_add_tap(struct netlink_tap *nt) { struct net *net = dev_net(nt->dev); struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); if (unlikely(nt->dev->type != ARPHRD_NETLINK)) return -EINVAL; mutex_lock(&nn->netlink_tap_lock); list_add_rcu(&nt->list, &nn->netlink_tap_all); mutex_unlock(&nn->netlink_tap_lock); __module_get(nt->module); return 0; } EXPORT_SYMBOL_GPL(netlink_add_tap); static int __netlink_remove_tap(struct netlink_tap *nt) { struct net *net = dev_net(nt->dev); struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); bool found = false; struct netlink_tap *tmp; mutex_lock(&nn->netlink_tap_lock); list_for_each_entry(tmp, &nn->netlink_tap_all, list) { if (nt == tmp) { list_del_rcu(&nt->list); found = true; goto out; } } pr_warn("__netlink_remove_tap: %p not found\n", nt); out: mutex_unlock(&nn->netlink_tap_lock); if (found) module_put(nt->module); return found ? 0 : -ENODEV; } int netlink_remove_tap(struct netlink_tap *nt) { int ret; ret = __netlink_remove_tap(nt); synchronize_net(); return ret; } EXPORT_SYMBOL_GPL(netlink_remove_tap); static __net_init int netlink_tap_init_net(struct net *net) { struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); INIT_LIST_HEAD(&nn->netlink_tap_all); mutex_init(&nn->netlink_tap_lock); return 0; } static struct pernet_operations netlink_tap_net_ops = { .init = netlink_tap_init_net, .id = &netlink_tap_net_id, .size = sizeof(struct netlink_tap_net), }; static bool netlink_filter_tap(const struct sk_buff *skb) { struct sock *sk = skb->sk; /* We take the more conservative approach and * whitelist socket protocols that may pass. */ switch (sk->sk_protocol) { case NETLINK_ROUTE: case NETLINK_USERSOCK: case NETLINK_SOCK_DIAG: case NETLINK_NFLOG: case NETLINK_XFRM: case NETLINK_FIB_LOOKUP: case NETLINK_NETFILTER: case NETLINK_GENERIC: return true; } return false; } static int __netlink_deliver_tap_skb(struct sk_buff *skb, struct net_device *dev) { struct sk_buff *nskb; struct sock *sk = skb->sk; int ret = -ENOMEM; if (!net_eq(dev_net(dev), sock_net(sk))) return 0; dev_hold(dev); if (is_vmalloc_addr(skb->head)) nskb = netlink_to_full_skb(skb, GFP_ATOMIC); else nskb = skb_clone(skb, GFP_ATOMIC); if (nskb) { nskb->dev = dev; nskb->protocol = htons((u16) sk->sk_protocol); nskb->pkt_type = netlink_is_kernel(sk) ? PACKET_KERNEL : PACKET_USER; skb_reset_network_header(nskb); ret = dev_queue_xmit(nskb); if (unlikely(ret > 0)) ret = net_xmit_errno(ret); } dev_put(dev); return ret; } static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) { int ret; struct netlink_tap *tmp; if (!netlink_filter_tap(skb)) return; list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { ret = __netlink_deliver_tap_skb(skb, tmp->dev); if (unlikely(ret)) break; } } static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) { struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); rcu_read_lock(); if (unlikely(!list_empty(&nn->netlink_tap_all))) __netlink_deliver_tap(skb, nn); rcu_read_unlock(); } static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, struct sk_buff *skb) { if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) netlink_deliver_tap(sock_net(dst), skb); } static void netlink_overrun(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { if (!test_and_set_bit(NETLINK_S_CONGESTED, &nlk_sk(sk)->state)) { sk->sk_err = ENOBUFS; sk->sk_error_report(sk); } } atomic_inc(&sk->sk_drops); } static void netlink_rcv_wake(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); if (skb_queue_empty_lockless(&sk->sk_receive_queue)) clear_bit(NETLINK_S_CONGESTED, &nlk->state); if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) wake_up_interruptible(&nlk->wait); } static void netlink_skb_destructor(struct sk_buff *skb) { if (is_vmalloc_addr(skb->head)) { if (!skb->cloned || !atomic_dec_return(&(skb_shinfo(skb)->dataref))) vfree_atomic(skb->head); skb->head = NULL; } if (skb->sk != NULL) sock_rfree(skb); } static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { WARN_ON(skb->sk != NULL); skb->sk = sk; skb->destructor = netlink_skb_destructor; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } static void netlink_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); if (!sock_flag(sk, SOCK_DEAD)) { printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); return; } WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(refcount_read(&sk->sk_wmem_alloc)); WARN_ON(nlk_sk(sk)->groups); } /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on * SMP. Look, when several writers sleep and reader wakes them up, all but one * immediately hit write lock and grab all the cpus. Exclusive sleep solves * this, _but_ remember, it adds useless work on UP machines. */ void netlink_table_grab(void) __acquires(nl_table_lock) { might_sleep(); write_lock_irq(&nl_table_lock); if (atomic_read(&nl_table_users)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue_exclusive(&nl_table_wait, &wait); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&nl_table_users) == 0) break; write_unlock_irq(&nl_table_lock); schedule(); write_lock_irq(&nl_table_lock); } __set_current_state(TASK_RUNNING); remove_wait_queue(&nl_table_wait, &wait); } } void netlink_table_ungrab(void) __releases(nl_table_lock) { write_unlock_irq(&nl_table_lock); wake_up(&nl_table_wait); } static inline void netlink_lock_table(void) { unsigned long flags; /* read_lock() synchronizes us to netlink_table_grab */ read_lock_irqsave(&nl_table_lock, flags); atomic_inc(&nl_table_users); read_unlock_irqrestore(&nl_table_lock, flags); } static inline void netlink_unlock_table(void) { if (atomic_dec_and_test(&nl_table_users)) wake_up(&nl_table_wait); } struct netlink_compare_arg { possible_net_t pnet; u32 portid; }; /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ #define netlink_compare_arg_len \ (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) static inline int netlink_compare(struct rhashtable_compare_arg *arg, const void *ptr) { const struct netlink_compare_arg *x = arg->key; const struct netlink_sock *nlk = ptr; return nlk->portid != x->portid || !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); } static void netlink_compare_arg_init(struct netlink_compare_arg *arg, struct net *net, u32 portid) { memset(arg, 0, sizeof(*arg)); write_pnet(&arg->pnet, net); arg->portid = portid; } static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, struct net *net) { struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, net, portid); return rhashtable_lookup_fast(&table->hash, &arg, netlink_rhashtable_params); } static int __netlink_insert(struct netlink_table *table, struct sock *sk) { struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); return rhashtable_lookup_insert_key(&table->hash, &arg, &nlk_sk(sk)->node, netlink_rhashtable_params); } static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) { struct netlink_table *table = &nl_table[protocol]; struct sock *sk; rcu_read_lock(); sk = __netlink_lookup(table, portid, net); if (sk) sock_hold(sk); rcu_read_unlock(); return sk; } static const struct proto_ops netlink_ops; static void netlink_update_listeners(struct sock *sk) { struct netlink_table *tbl = &nl_table[sk->sk_protocol]; unsigned long mask; unsigned int i; struct listeners *listeners; listeners = nl_deref_protected(tbl->listeners); if (!listeners) return; for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { mask = 0; sk_for_each_bound(sk, &tbl->mc_list) { if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) mask |= nlk_sk(sk)->groups[i]; } listeners->masks[i] = mask; } /* this function is only called with the netlink table "grabbed", which * makes sure updates are visible before bind or setsockopt return. */ } static int netlink_insert(struct sock *sk, u32 portid) { struct netlink_table *table = &nl_table[sk->sk_protocol]; int err; lock_sock(sk); err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; if (nlk_sk(sk)->bound) goto err; /* portid can be read locklessly from netlink_getname(). */ WRITE_ONCE(nlk_sk(sk)->portid, portid); sock_hold(sk); err = __netlink_insert(table, sk); if (err) { /* In case the hashtable backend returns with -EBUSY * from here, it must not escape to the caller. */ if (unlikely(err == -EBUSY)) err = -EOVERFLOW; if (err == -EEXIST) err = -EADDRINUSE; sock_put(sk); goto err; } /* We need to ensure that the socket is hashed and visible. */ smp_wmb(); /* Paired with lockless reads from netlink_bind(), * netlink_connect() and netlink_sendmsg(). */ WRITE_ONCE(nlk_sk(sk)->bound, portid); err: release_sock(sk); return err; } static void netlink_remove(struct sock *sk) { struct netlink_table *table; table = &nl_table[sk->sk_protocol]; if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, netlink_rhashtable_params)) { WARN_ON(refcount_read(&sk->sk_refcnt) == 1); __sock_put(sk); } netlink_table_grab(); if (nlk_sk(sk)->subscriptions) { __sk_del_bind_node(sk); netlink_update_listeners(sk); } if (sk->sk_protocol == NETLINK_GENERIC) atomic_inc(&genl_sk_destructing_cnt); netlink_table_ungrab(); } static struct proto netlink_proto = { .name = "NETLINK", .owner = THIS_MODULE, .obj_size = sizeof(struct netlink_sock), }; static int __netlink_create(struct net *net, struct socket *sock, struct mutex *cb_mutex, int protocol, int kern) { struct sock *sk; struct netlink_sock *nlk; sock->ops = &netlink_ops; sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); nlk = nlk_sk(sk); if (cb_mutex) { nlk->cb_mutex = cb_mutex; } else { nlk->cb_mutex = &nlk->cb_def_mutex; mutex_init(nlk->cb_mutex); lockdep_set_class_and_name(nlk->cb_mutex, nlk_cb_mutex_keys + protocol, nlk_cb_mutex_key_strings[protocol]); } init_waitqueue_head(&nlk->wait); sk->sk_destruct = netlink_sock_destruct; sk->sk_protocol = protocol; return 0; } static int netlink_create(struct net *net, struct socket *sock, int protocol, int kern) { struct module *module = NULL; struct mutex *cb_mutex; struct netlink_sock *nlk; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); int err = 0; sock->state = SS_UNCONNECTED; if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT; if (protocol < 0 || protocol >= MAX_LINKS) return -EPROTONOSUPPORT; protocol = array_index_nospec(protocol, MAX_LINKS); netlink_lock_table(); #ifdef CONFIG_MODULES if (!nl_table[protocol].registered) { netlink_unlock_table(); request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); netlink_lock_table(); } #endif if (nl_table[protocol].registered && try_module_get(nl_table[protocol].module)) module = nl_table[protocol].module; else err = -EPROTONOSUPPORT; cb_mutex = nl_table[protocol].cb_mutex; bind = nl_table[protocol].bind; unbind = nl_table[protocol].unbind; netlink_unlock_table(); if (err < 0) goto out; err = __netlink_create(net, sock, cb_mutex, protocol, kern); if (err < 0) goto out_module; local_bh_disable(); sock_prot_inuse_add(net, &netlink_proto, 1); local_bh_enable(); nlk = nlk_sk(sock->sk); nlk->module = module; nlk->netlink_bind = bind; nlk->netlink_unbind = unbind; out: return err; out_module: module_put(module); goto out; } static void deferred_put_nlk_sk(struct rcu_head *head) { struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); struct sock *sk = &nlk->sk; kfree(nlk->groups); nlk->groups = NULL; if (!refcount_dec_and_test(&sk->sk_refcnt)) return; sk_free(sk); } static int netlink_release(struct socket *sock) { struct sock *sk = sock->sk; struct netlink_sock *nlk; if (!sk) return 0; netlink_remove(sk); sock_orphan(sk); nlk = nlk_sk(sk); /* * OK. Socket is unlinked, any packets that arrive now * will be purged. */ /* must not acquire netlink_table_lock in any way again before unbind * and notifying genetlink is done as otherwise it might deadlock */ if (nlk->netlink_unbind) { int i; for (i = 0; i < nlk->ngroups; i++) if (test_bit(i, nlk->groups)) nlk->netlink_unbind(sock_net(sk), i + 1); } if (sk->sk_protocol == NETLINK_GENERIC && atomic_dec_return(&genl_sk_destructing_cnt) == 0) wake_up(&genl_sk_destructing_waitq); sock->sk = NULL; wake_up_interruptible_all(&nlk->wait); skb_queue_purge(&sk->sk_write_queue); if (nlk->portid && nlk->bound) { struct netlink_notify n = { .net = sock_net(sk), .protocol = sk->sk_protocol, .portid = nlk->portid, }; blocking_notifier_call_chain(&netlink_chain, NETLINK_URELEASE, &n); } /* Terminate any outstanding dump */ if (nlk->cb_running) { if (nlk->cb.done) nlk->cb.done(&nlk->cb); module_put(nlk->cb.module); kfree_skb(nlk->cb.skb); } module_put(nlk->module); if (netlink_is_kernel(sk)) { netlink_table_grab(); BUG_ON(nl_table[sk->sk_protocol].registered == 0); if (--nl_table[sk->sk_protocol].registered == 0) { struct listeners *old; old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); kfree_rcu(old, rcu); nl_table[sk->sk_protocol].module = NULL; nl_table[sk->sk_protocol].bind = NULL; nl_table[sk->sk_protocol].unbind = NULL; nl_table[sk->sk_protocol].flags = 0; nl_table[sk->sk_protocol].registered = 0; } netlink_table_ungrab(); } local_bh_disable(); sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); local_bh_enable(); call_rcu(&nlk->rcu, deferred_put_nlk_sk); return 0; } static int netlink_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct netlink_table *table = &nl_table[sk->sk_protocol]; s32 portid = task_tgid_vnr(current); int err; s32 rover = -4096; bool ok; retry: cond_resched(); rcu_read_lock(); ok = !__netlink_lookup(table, portid, net); rcu_read_unlock(); if (!ok) { /* Bind collision, search negative portid values. */ if (rover == -4096) /* rover will be in range [S32_MIN, -4097] */ rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); else if (rover >= -4096) rover = -4097; portid = rover--; goto retry; } err = netlink_insert(sk, portid); if (err == -EADDRINUSE) goto retry; /* If 2 threads race to autobind, that is fine. */ if (err == -EBUSY) err = 0; return err; } /** * __netlink_ns_capable - General netlink message capability test * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in the user namespace @user_ns. */ bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *user_ns, int cap) { return ((nsp->flags & NETLINK_SKB_DST) || file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && ns_capable(user_ns, cap); } EXPORT_SYMBOL(__netlink_ns_capable); /** * netlink_ns_capable - General netlink message capability test * @skb: socket buffer holding a netlink command from userspace * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in the user namespace @user_ns. */ bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *user_ns, int cap) { return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); } EXPORT_SYMBOL(netlink_ns_capable); /** * netlink_capable - Netlink global message capability test * @skb: socket buffer holding a netlink command from userspace * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap in all user namespaces. */ bool netlink_capable(const struct sk_buff *skb, int cap) { return netlink_ns_capable(skb, &init_user_ns, cap); } EXPORT_SYMBOL(netlink_capable); /** * netlink_net_capable - Netlink network namespace message capability test * @skb: socket buffer holding a netlink command from userspace * @cap: The capability to use * * Test to see if the opener of the socket we received the message * from had when the netlink socket was created and the sender of the * message has the capability @cap over the network namespace of * the socket we received the message from. */ bool netlink_net_capable(const struct sk_buff *skb, int cap) { return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); } EXPORT_SYMBOL(netlink_net_capable); static inline int netlink_allowed(const struct socket *sock, unsigned int flag) { return (nl_table[sock->sk->sk_protocol].flags & flag) || ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); } static void netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) { struct netlink_sock *nlk = nlk_sk(sk); if (nlk->subscriptions && !subscriptions) __sk_del_bind_node(sk); else if (!nlk->subscriptions && subscriptions) sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); nlk->subscriptions = subscriptions; } static int netlink_realloc_groups(struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); unsigned int groups; unsigned long *new_groups; int err = 0; netlink_table_grab(); groups = nl_table[sk->sk_protocol].groups; if (!nl_table[sk->sk_protocol].registered) { err = -ENOENT; goto out_unlock; } if (nlk->ngroups >= groups) goto out_unlock; new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); if (new_groups == NULL) { err = -ENOMEM; goto out_unlock; } memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); nlk->groups = new_groups; nlk->ngroups = groups; out_unlock: netlink_table_ungrab(); return err; } static void netlink_undo_bind(int group, long unsigned int groups, struct sock *sk) { struct netlink_sock *nlk = nlk_sk(sk); int undo; if (!nlk->netlink_unbind) return; for (undo = 0; undo < group; undo++) if (test_bit(undo, &groups)) nlk->netlink_unbind(sock_net(sk), undo + 1); } static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct netlink_sock *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; int err = 0; unsigned long groups; bool bound; if (addr_len < sizeof(struct sockaddr_nl)) return -EINVAL; if (nladdr->nl_family != AF_NETLINK) return -EINVAL; groups = nladdr->nl_groups; /* Only superuser is allowed to listen multicasts */ if (groups) { if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) return -EPERM; err = netlink_realloc_groups(sk); if (err) return err; } if (nlk->ngroups < BITS_PER_LONG) groups &= (1UL << nlk->ngroups) - 1; /* Paired with WRITE_ONCE() in netlink_insert() */ bound = READ_ONCE(nlk->bound); if (bound) { /* Ensure nlk->portid is up-to-date. */ smp_rmb(); if (nladdr->nl_pid != nlk->portid) return -EINVAL; } if (nlk->netlink_bind && groups) { int group; /* nl_groups is a u32, so cap the maximum groups we can bind */ for (group = 0; group < BITS_PER_TYPE(u32); group++) { if (!test_bit(group, &groups)) continue; err = nlk->netlink_bind(net, group + 1); if (!err) continue; netlink_undo_bind(group, groups, sk); return err; } } /* No need for barriers here as we return to user-space without * using any of the bound attributes. */ netlink_lock_table(); if (!bound) { err = nladdr->nl_pid ? netlink_insert(sk, nladdr->nl_pid) : netlink_autobind(sock); if (err) { netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); goto unlock; } } if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) goto unlock; netlink_unlock_table(); netlink_table_grab(); netlink_update_subscriptions(sk, nlk->subscriptions + hweight32(groups) - hweight32(nlk->groups[0])); nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; netlink_update_listeners(sk); netlink_table_ungrab(); return 0; unlock: netlink_unlock_table(); return err; } static int netlink_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { int err = 0; struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; if (alen < sizeof(addr->sa_family)) return -EINVAL; if (addr->sa_family == AF_UNSPEC) { /* paired with READ_ONCE() in netlink_getsockbyportid() */ WRITE_ONCE(sk->sk_state, NETLINK_UNCONNECTED); /* dst_portid and dst_group can be read locklessly */ WRITE_ONCE(nlk->dst_portid, 0); WRITE_ONCE(nlk->dst_group, 0); return 0; } if (addr->sa_family != AF_NETLINK) return -EINVAL; if (alen < sizeof(struct sockaddr_nl)) return -EINVAL; if ((nladdr->nl_groups || nladdr->nl_pid) && !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) return -EPERM; /* No need for barriers here as we return to user-space without * using any of the bound attributes. * Paired with WRITE_ONCE() in netlink_insert(). */ if (!READ_ONCE(nlk->bound)) err = netlink_autobind(sock); if (err == 0) { /* paired with READ_ONCE() in netlink_getsockbyportid() */ WRITE_ONCE(sk->sk_state, NETLINK_CONNECTED); /* dst_portid and dst_group can be read locklessly */ WRITE_ONCE(nlk->dst_portid, nladdr->nl_pid); WRITE_ONCE(nlk->dst_group, ffs(nladdr->nl_groups)); } return err; } static int netlink_getname(struct socket *sock, struct sockaddr *addr, int peer) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); nladdr->nl_family = AF_NETLINK; nladdr->nl_pad = 0; if (peer) { /* Paired with WRITE_ONCE() in netlink_connect() */ nladdr->nl_pid = READ_ONCE(nlk->dst_portid); nladdr->nl_groups = netlink_group_mask(READ_ONCE(nlk->dst_group)); } else { /* Paired with WRITE_ONCE() in netlink_insert() */ nladdr->nl_pid = READ_ONCE(nlk->portid); netlink_lock_table(); nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; netlink_unlock_table(); } return sizeof(*nladdr); } static int netlink_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { /* try to hand this ioctl down to the NIC drivers. */ return -ENOIOCTLCMD; } static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) { struct sock *sock; struct netlink_sock *nlk; sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); if (!sock) return ERR_PTR(-ECONNREFUSED); /* Don't bother queuing skb if kernel socket has no input function */ nlk = nlk_sk(sock); /* dst_portid and sk_state can be changed in netlink_connect() */ if (READ_ONCE(sock->sk_state) == NETLINK_CONNECTED && READ_ONCE(nlk->dst_portid) != nlk_sk(ssk)->portid) { sock_put(sock); return ERR_PTR(-ECONNREFUSED); } return sock; } struct sock *netlink_getsockbyfilp(struct file *filp) { struct inode *inode = file_inode(filp); struct sock *sock; if (!S_ISSOCK(inode->i_mode)) return ERR_PTR(-ENOTSOCK); sock = SOCKET_I(inode)->sk; if (sock->sk_family != AF_NETLINK) return ERR_PTR(-EINVAL); sock_hold(sock); return sock; } static struct sk_buff *netlink_alloc_large_skb(unsigned int size, int broadcast) { struct sk_buff *skb; void *data; if (size <= NLMSG_GOODSIZE || broadcast) return alloc_skb(size, GFP_KERNEL); size = SKB_DATA_ALIGN(size) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); data = vmalloc(size); if (data == NULL) return NULL; skb = __build_skb(data, size); if (skb == NULL) vfree(data); else skb->destructor = netlink_skb_destructor; return skb; } /* * Attach a skb to a netlink socket. * The caller must hold a reference to the destination socket. On error, the * reference is dropped. The skb is not send to the destination, just all * all error checks are performed and memory in the queue is reserved. * Return values: * < 0: error. skb freed, reference to sock dropped. * 0: continue * 1: repeat lookup - reference dropped while waiting for socket memory. */ int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk) { struct netlink_sock *nlk; nlk = nlk_sk(sk); if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(NETLINK_S_CONGESTED, &nlk->state))) { DECLARE_WAITQUEUE(wait, current); if (!*timeo) { if (!ssk || netlink_is_kernel(ssk)) netlink_overrun(sk); sock_put(sk); kfree_skb(skb); return -EAGAIN; } __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&nlk->wait, &wait); if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || test_bit(NETLINK_S_CONGESTED, &nlk->state)) && !sock_flag(sk, SOCK_DEAD)) *timeo = schedule_timeout(*timeo); __set_current_state(TASK_RUNNING); remove_wait_queue(&nlk->wait, &wait); sock_put(sk); if (signal_pending(current)) { kfree_skb(skb); return sock_intr_errno(*timeo); } return 1; } netlink_skb_set_owner_r(skb, sk); return 0; } static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) { int len = skb->len; netlink_deliver_tap(sock_net(sk), skb); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_data_ready(sk); return len; } int netlink_sendskb(struct sock *sk, struct sk_buff *skb) { int len = __netlink_sendskb(sk, skb); sock_put(sk); return len; } void netlink_detachskb(struct sock *sk, struct sk_buff *skb) { kfree_skb(skb); sock_put(sk); } static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) { int delta; WARN_ON(skb->sk != NULL); delta = skb->end - skb->tail; if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) return skb; if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, allocation); if (!nskb) return skb; consume_skb(skb); skb = nskb; } pskb_expand_head(skb, 0, -delta, (allocation & ~__GFP_DIRECT_RECLAIM) | __GFP_NOWARN | __GFP_NORETRY); return skb; } static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, struct sock *ssk) { int ret; struct netlink_sock *nlk = nlk_sk(sk); ret = -ECONNREFUSED; if (nlk->netlink_rcv != NULL) { ret = skb->len; netlink_skb_set_owner_r(skb, sk); NETLINK_CB(skb).sk = ssk; netlink_deliver_tap_kernel(sk, ssk, skb); nlk->netlink_rcv(skb); consume_skb(skb); } else { kfree_skb(skb); } sock_put(sk); return ret; } int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 portid, int nonblock) { struct sock *sk; int err; long timeo; skb = netlink_trim(skb, gfp_any()); timeo = sock_sndtimeo(ssk, nonblock); retry: sk = netlink_getsockbyportid(ssk, portid); if (IS_ERR(sk)) { kfree_skb(skb); return PTR_ERR(sk); } if (netlink_is_kernel(sk)) return netlink_unicast_kernel(sk, skb, ssk); if (sk_filter(sk, skb)) { err = skb->len; kfree_skb(skb); sock_put(sk); return err; } err = netlink_attachskb(sk, skb, &timeo, ssk); if (err == 1) goto retry; if (err) return err; return netlink_sendskb(sk, skb); } EXPORT_SYMBOL(netlink_unicast); int netlink_has_listeners(struct sock *sk, unsigned int group) { int res = 0; struct listeners *listeners; BUG_ON(!netlink_is_kernel(sk)); rcu_read_lock(); listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) res = test_bit(group - 1, listeners->masks); rcu_read_unlock(); return res; } EXPORT_SYMBOL_GPL(netlink_has_listeners); bool netlink_strict_get_check(struct sk_buff *skb) { const struct netlink_sock *nlk = nlk_sk(NETLINK_CB(skb).sk); return nlk->flags & NETLINK_F_STRICT_CHK; } EXPORT_SYMBOL_GPL(netlink_strict_get_check); static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) { struct netlink_sock *nlk = nlk_sk(sk); if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { netlink_skb_set_owner_r(skb, sk); __netlink_sendskb(sk, skb); return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); } return -1; } struct netlink_broadcast_data { struct sock *exclude_sk; struct net *net; u32 portid; u32 group; int failure; int delivery_failure; int congested; int delivered; gfp_t allocation; struct sk_buff *skb, *skb2; int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); void *tx_data; }; static void do_one_broadcast(struct sock *sk, struct netlink_broadcast_data *p) { struct netlink_sock *nlk = nlk_sk(sk); int val; if (p->exclude_sk == sk) return; if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || !test_bit(p->group - 1, nlk->groups)) return; if (!net_eq(sock_net(sk), p->net)) { if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) return; if (!peernet_has_id(sock_net(sk), p->net)) return; if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, CAP_NET_BROADCAST)) return; } if (p->failure) { netlink_overrun(sk); return; } sock_hold(sk); if (p->skb2 == NULL) { if (skb_shared(p->skb)) { p->skb2 = skb_clone(p->skb, p->allocation); } else { p->skb2 = skb_get(p->skb); /* * skb ownership may have been set when * delivered to a previous socket. */ skb_orphan(p->skb2); } } if (p->skb2 == NULL) { netlink_overrun(sk); /* Clone failed. Notify ALL listeners. */ p->failure = 1; if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) p->delivery_failure = 1; goto out; } if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { kfree_skb(p->skb2); p->skb2 = NULL; goto out; } if (sk_filter(sk, p->skb2)) { kfree_skb(p->skb2); p->skb2 = NULL; goto out; } NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) NETLINK_CB(p->skb2).nsid_is_set = true; val = netlink_broadcast_deliver(sk, p->skb2); if (val < 0) { netlink_overrun(sk); if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) p->delivery_failure = 1; } else { p->congested |= val; p->delivered = 1; p->skb2 = NULL; } out: sock_put(sk); } int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, u32 group, gfp_t allocation, int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), void *filter_data) { struct net *net = sock_net(ssk); struct netlink_broadcast_data info; struct sock *sk; skb = netlink_trim(skb, allocation); info.exclude_sk = ssk; info.net = net; info.portid = portid; info.group = group; info.failure = 0; info.delivery_failure = 0; info.congested = 0; info.delivered = 0; info.allocation = allocation; info.skb = skb; info.skb2 = NULL; info.tx_filter = filter; info.tx_data = filter_data; /* While we sleep in clone, do not allow to change socket list */ netlink_lock_table(); sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) do_one_broadcast(sk, &info); consume_skb(skb); netlink_unlock_table(); if (info.delivery_failure) { kfree_skb(info.skb2); return -ENOBUFS; } consume_skb(info.skb2); if (info.delivered) { if (info.congested && gfpflags_allow_blocking(allocation)) yield(); return 0; } return -ESRCH; } EXPORT_SYMBOL(netlink_broadcast_filtered); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, u32 group, gfp_t allocation) { return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, NULL, NULL); } EXPORT_SYMBOL(netlink_broadcast); struct netlink_set_err_data { struct sock *exclude_sk; u32 portid; u32 group; int code; }; static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) { struct netlink_sock *nlk = nlk_sk(sk); int ret = 0; if (sk == p->exclude_sk) goto out; if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) goto out; if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || !test_bit(p->group - 1, nlk->groups)) goto out; if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { ret = 1; goto out; } sk->sk_err = p->code; sk->sk_error_report(sk); out: return ret; } /** * netlink_set_err - report error to broadcast listeners * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() * @portid: the PORTID of a process that we want to skip (if any) * @group: the broadcast group that will notice the error * @code: error code, must be negative (as usual in kernelspace) * * This function returns the number of broadcast listeners that have set the * NETLINK_NO_ENOBUFS socket option. */ int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) { struct netlink_set_err_data info; unsigned long flags; struct sock *sk; int ret = 0; info.exclude_sk = ssk; info.portid = portid; info.group = group; /* sk->sk_err wants a positive error value */ info.code = -code; read_lock_irqsave(&nl_table_lock, flags); sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) ret += do_one_set_err(sk, &info); read_unlock_irqrestore(&nl_table_lock, flags); return ret; } EXPORT_SYMBOL(netlink_set_err); /* must be called with netlink table grabbed */ static void netlink_update_socket_mc(struct netlink_sock *nlk, unsigned int group, int is_new) { int old, new = !!is_new, subscriptions; old = test_bit(group - 1, nlk->groups); subscriptions = nlk->subscriptions - old + new; if (new) __set_bit(group - 1, nlk->groups); else __clear_bit(group - 1, nlk->groups); netlink_update_subscriptions(&nlk->sk, subscriptions); netlink_update_listeners(&nlk->sk); } static int netlink_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); unsigned int val = 0; int err; if (level != SOL_NETLINK) return -ENOPROTOOPT; if (optlen >= sizeof(int) && copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; switch (optname) { case NETLINK_PKTINFO: if (val) nlk->flags |= NETLINK_F_RECV_PKTINFO; else nlk->flags &= ~NETLINK_F_RECV_PKTINFO; err = 0; break; case NETLINK_ADD_MEMBERSHIP: case NETLINK_DROP_MEMBERSHIP: { if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) return -EPERM; err = netlink_realloc_groups(sk); if (err) return err; if (!val || val - 1 >= nlk->ngroups) return -EINVAL; if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { err = nlk->netlink_bind(sock_net(sk), val); if (err) return err; } netlink_table_grab(); netlink_update_socket_mc(nlk, val, optname == NETLINK_ADD_MEMBERSHIP); netlink_table_ungrab(); if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) nlk->netlink_unbind(sock_net(sk), val); err = 0; break; } case NETLINK_BROADCAST_ERROR: if (val) nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; else nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; err = 0; break; case NETLINK_NO_ENOBUFS: if (val) { nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; clear_bit(NETLINK_S_CONGESTED, &nlk->state); wake_up_interruptible(&nlk->wait); } else { nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; } err = 0; break; case NETLINK_LISTEN_ALL_NSID: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) return -EPERM; if (val) nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; else nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; err = 0; break; case NETLINK_CAP_ACK: if (val) nlk->flags |= NETLINK_F_CAP_ACK; else nlk->flags &= ~NETLINK_F_CAP_ACK; err = 0; break; case NETLINK_EXT_ACK: if (val) nlk->flags |= NETLINK_F_EXT_ACK; else nlk->flags &= ~NETLINK_F_EXT_ACK; err = 0; break; case NETLINK_GET_STRICT_CHK: if (val) nlk->flags |= NETLINK_F_STRICT_CHK; else nlk->flags &= ~NETLINK_F_STRICT_CHK; err = 0; break; default: err = -ENOPROTOOPT; } return err; } static int netlink_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); unsigned int flag; int len, val; if (level != SOL_NETLINK) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case NETLINK_PKTINFO: flag = NETLINK_F_RECV_PKTINFO; break; case NETLINK_BROADCAST_ERROR: flag = NETLINK_F_BROADCAST_SEND_ERROR; break; case NETLINK_NO_ENOBUFS: flag = NETLINK_F_RECV_NO_ENOBUFS; break; case NETLINK_LIST_MEMBERSHIPS: { int pos, idx, shift, err = 0; netlink_lock_table(); for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { if (len - pos < sizeof(u32)) break; idx = pos / sizeof(unsigned long); shift = (pos % sizeof(unsigned long)) * 8; if (put_user((u32)(nlk->groups[idx] >> shift), (u32 __user *)(optval + pos))) { err = -EFAULT; break; } } if (put_user(ALIGN(BITS_TO_BYTES(nlk->ngroups), sizeof(u32)), optlen)) err = -EFAULT; netlink_unlock_table(); return err; } case NETLINK_CAP_ACK: flag = NETLINK_F_CAP_ACK; break; case NETLINK_EXT_ACK: flag = NETLINK_F_EXT_ACK; break; case NETLINK_GET_STRICT_CHK: flag = NETLINK_F_STRICT_CHK; break; default: return -ENOPROTOOPT; } if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = nlk->flags & flag ? 1 : 0; if (put_user(len, optlen) || copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) { struct nl_pktinfo info; info.group = NETLINK_CB(skb).dst_group; put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); } static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, struct sk_buff *skb) { if (!NETLINK_CB(skb).nsid_is_set) return; put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), &NETLINK_CB(skb).nsid); } static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); u32 dst_portid; u32 dst_group; struct sk_buff *skb; int err; struct scm_cookie scm; u32 netlink_skb_flags = 0; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; if (len == 0) { pr_warn_once("Zero length message leads to an empty skb\n"); return -ENODATA; } err = scm_send(sock, msg, &scm, true); if (err < 0) return err; if (msg->msg_namelen) { err = -EINVAL; if (msg->msg_namelen < sizeof(struct sockaddr_nl)) goto out; if (addr->nl_family != AF_NETLINK) goto out; dst_portid = addr->nl_pid; dst_group = ffs(addr->nl_groups); err = -EPERM; if ((dst_group || dst_portid) && !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) goto out; netlink_skb_flags |= NETLINK_SKB_DST; } else { /* Paired with WRITE_ONCE() in netlink_connect() */ dst_portid = READ_ONCE(nlk->dst_portid); dst_group = READ_ONCE(nlk->dst_group); } /* Paired with WRITE_ONCE() in netlink_insert() */ if (!READ_ONCE(nlk->bound)) { err = netlink_autobind(sock); if (err) goto out; } else { /* Ensure nlk is hashed and visible. */ smp_rmb(); } err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; err = -ENOBUFS; skb = netlink_alloc_large_skb(len, dst_group); if (skb == NULL) goto out; NETLINK_CB(skb).portid = nlk->portid; NETLINK_CB(skb).dst_group = dst_group; NETLINK_CB(skb).creds = scm.creds; NETLINK_CB(skb).flags = netlink_skb_flags; err = -EFAULT; if (memcpy_from_msg(skb_put(skb, len), msg, len)) { kfree_skb(skb); goto out; } err = security_netlink_send(sk, skb); if (err) { kfree_skb(skb); goto out; } if (dst_group) { refcount_inc(&skb->users); netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); } err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); out: scm_destroy(&scm); return err; } static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct scm_cookie scm; struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); int noblock = flags & MSG_DONTWAIT; size_t copied, max_recvmsg_len; struct sk_buff *skb, *data_skb; int err, ret; if (flags & MSG_OOB) return -EOPNOTSUPP; copied = 0; skb = skb_recv_datagram(sk, flags, noblock, &err); if (skb == NULL) goto out; data_skb = skb; #ifdef CONFIG_COMPAT_NETLINK_MESSAGES if (unlikely(skb_shinfo(skb)->frag_list)) { /* * If this skb has a frag_list, then here that means that we * will have to use the frag_list skb's data for compat tasks * and the regular skb's data for normal (non-compat) tasks. * * If we need to send the compat skb, assign it to the * 'data_skb' variable so that it will be used below for data * copying. We keep 'skb' for everything else, including * freeing both later. */ if (flags & MSG_CMSG_COMPAT) data_skb = skb_shinfo(skb)->frag_list; } #endif /* Record the max length of recvmsg() calls for future allocations */ max_recvmsg_len = max(READ_ONCE(nlk->max_recvmsg_len), len); max_recvmsg_len = min_t(size_t, max_recvmsg_len, SKB_WITH_OVERHEAD(32768)); WRITE_ONCE(nlk->max_recvmsg_len, max_recvmsg_len); copied = data_skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(data_skb, 0, msg, copied); if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); addr->nl_family = AF_NETLINK; addr->nl_pad = 0; addr->nl_pid = NETLINK_CB(skb).portid; addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); msg->msg_namelen = sizeof(*addr); } if (nlk->flags & NETLINK_F_RECV_PKTINFO) netlink_cmsg_recv_pktinfo(msg, skb); if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) netlink_cmsg_listen_all_nsid(sk, msg, skb); memset(&scm, 0, sizeof(scm)); scm.creds = *NETLINK_CREDS(skb); if (flags & MSG_TRUNC) copied = data_skb->len; skb_free_datagram(sk, skb); if (READ_ONCE(nlk->cb_running) && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { ret = netlink_dump(sk, false); if (ret) { sk->sk_err = -ret; sk->sk_error_report(sk); } } scm_recv(sock, msg, &scm, flags); out: netlink_rcv_wake(sk); return err ? : copied; } static void netlink_data_ready(struct sock *sk) { BUG(); } /* * We export these functions to other modules. They provide a * complete set of kernel non-blocking support for message * queueing. */ struct sock * __netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg) { struct socket *sock; struct sock *sk; struct netlink_sock *nlk; struct listeners *listeners = NULL; struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; unsigned int groups; BUG_ON(!nl_table); if (unit < 0 || unit >= MAX_LINKS) return NULL; if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) return NULL; if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) goto out_sock_release_nosk; sk = sock->sk; if (!cfg || cfg->groups < 32) groups = 32; else groups = cfg->groups; listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); if (!listeners) goto out_sock_release; sk->sk_data_ready = netlink_data_ready; if (cfg && cfg->input) nlk_sk(sk)->netlink_rcv = cfg->input; if (netlink_insert(sk, 0)) goto out_sock_release; nlk = nlk_sk(sk); nlk->flags |= NETLINK_F_KERNEL_SOCKET; netlink_table_grab(); if (!nl_table[unit].registered) { nl_table[unit].groups = groups; rcu_assign_pointer(nl_table[unit].listeners, listeners); nl_table[unit].cb_mutex = cb_mutex; nl_table[unit].module = module; if (cfg) { nl_table[unit].bind = cfg->bind; nl_table[unit].unbind = cfg->unbind; nl_table[unit].flags = cfg->flags; if (cfg->compare) nl_table[unit].compare = cfg->compare; } nl_table[unit].registered = 1; } else { kfree(listeners); nl_table[unit].registered++; } netlink_table_ungrab(); return sk; out_sock_release: kfree(listeners); netlink_kernel_release(sk); return NULL; out_sock_release_nosk: sock_release(sock); return NULL; } EXPORT_SYMBOL(__netlink_kernel_create); void netlink_kernel_release(struct sock *sk) { if (sk == NULL || sk->sk_socket == NULL) return; sock_release(sk->sk_socket); } EXPORT_SYMBOL(netlink_kernel_release); int __netlink_change_ngroups(struct sock *sk, unsigned int groups) { struct listeners *new, *old; struct netlink_table *tbl = &nl_table[sk->sk_protocol]; if (groups < 32) groups = 32; if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); if (!new) return -ENOMEM; old = nl_deref_protected(tbl->listeners); memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); rcu_assign_pointer(tbl->listeners, new); kfree_rcu(old, rcu); } tbl->groups = groups; return 0; } /** * netlink_change_ngroups - change number of multicast groups * * This changes the number of multicast groups that are available * on a certain netlink family. Note that it is not possible to * change the number of groups to below 32. Also note that it does * not implicitly call netlink_clear_multicast_users() when the * number of groups is reduced. * * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). * @groups: The new number of groups. */ int netlink_change_ngroups(struct sock *sk, unsigned int groups) { int err; netlink_table_grab(); err = __netlink_change_ngroups(sk, groups); netlink_table_ungrab(); return err; } void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) { struct sock *sk; struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; struct hlist_node *tmp; sk_for_each_bound_safe(sk, tmp, &tbl->mc_list) netlink_update_socket_mc(nlk_sk(sk), group, 0); } struct nlmsghdr * __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) { struct nlmsghdr *nlh; int size = nlmsg_msg_size(len); nlh = skb_put(skb, NLMSG_ALIGN(size)); nlh->nlmsg_type = type; nlh->nlmsg_len = size; nlh->nlmsg_flags = flags; nlh->nlmsg_pid = portid; nlh->nlmsg_seq = seq; if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); return nlh; } EXPORT_SYMBOL(__nlmsg_put); /* * It looks a bit ugly. * It would be better to create kernel thread. */ static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, struct netlink_callback *cb, struct netlink_ext_ack *extack) { struct nlmsghdr *nlh; nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), NLM_F_MULTI | cb->answer_flags); if (WARN_ON(!nlh)) return -ENOBUFS; nl_dump_check_consistent(cb, nlh); memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); if (extack->_msg && nlk->flags & NETLINK_F_EXT_ACK) { nlh->nlmsg_flags |= NLM_F_ACK_TLVS; if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)) nlmsg_end(skb, nlh); } return 0; } static int netlink_dump(struct sock *sk, bool lock_taken) { struct netlink_sock *nlk = nlk_sk(sk); struct netlink_ext_ack extack = {}; struct netlink_callback *cb; struct sk_buff *skb = NULL; size_t max_recvmsg_len; struct module *module; int err = -ENOBUFS; int alloc_min_size; int alloc_size; if (!lock_taken) mutex_lock(nlk->cb_mutex); if (!nlk->cb_running) { err = -EINVAL; goto errout_skb; } if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) goto errout_skb; /* NLMSG_GOODSIZE is small to avoid high order allocations being * required, but it makes sense to _attempt_ a 16K bytes allocation * to reduce number of system calls on dump operations, if user * ever provided a big enough buffer. */ cb = &nlk->cb; alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); max_recvmsg_len = READ_ONCE(nlk->max_recvmsg_len); if (alloc_min_size < max_recvmsg_len) { alloc_size = max_recvmsg_len; skb = alloc_skb(alloc_size, (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | __GFP_NOWARN | __GFP_NORETRY); } if (!skb) { alloc_size = alloc_min_size; skb = alloc_skb(alloc_size, GFP_KERNEL); } if (!skb) goto errout_skb; /* Trim skb to allocated size. User is expected to provide buffer as * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at * netlink_recvmsg())). dump will pack as many smaller messages as * could fit within the allocated skb. skb is typically allocated * with larger space than required (could be as much as near 2x the * requested size with align to next power of 2 approach). Allowing * dump to use the excess space makes it difficult for a user to have a * reasonable static buffer based on the expected largest dump of a * single netdev. The outcome is MSG_TRUNC error. */ skb_reserve(skb, skb_tailroom(skb) - alloc_size); /* Make sure malicious BPF programs can not read unitialized memory * from skb->head -> skb->data */ skb_reset_network_header(skb); skb_reset_mac_header(skb); netlink_skb_set_owner_r(skb, sk); if (nlk->dump_done_errno > 0) { cb->extack = &extack; nlk->dump_done_errno = cb->dump(skb, cb); cb->extack = NULL; } if (nlk->dump_done_errno > 0 || skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { mutex_unlock(nlk->cb_mutex); if (sk_filter(sk, skb)) kfree_skb(skb); else __netlink_sendskb(sk, skb); return 0; } if (netlink_dump_done(nlk, skb, cb, &extack)) goto errout_skb; #ifdef CONFIG_COMPAT_NETLINK_MESSAGES /* frag_list skb's data is used for compat tasks * and the regular skb's data for normal (non-compat) tasks. * See netlink_recvmsg(). */ if (unlikely(skb_shinfo(skb)->frag_list)) { if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) goto errout_skb; } #endif if (sk_filter(sk, skb)) kfree_skb(skb); else __netlink_sendskb(sk, skb); if (cb->done) cb->done(cb); WRITE_ONCE(nlk->cb_running, false); module = cb->module; skb = cb->skb; mutex_unlock(nlk->cb_mutex); module_put(module); consume_skb(skb); return 0; errout_skb: mutex_unlock(nlk->cb_mutex); kfree_skb(skb); return err; } int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control) { struct netlink_sock *nlk, *nlk2; struct netlink_callback *cb; struct sock *sk; int ret; refcount_inc(&skb->users); sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); if (sk == NULL) { ret = -ECONNREFUSED; goto error_free; } nlk = nlk_sk(sk); mutex_lock(nlk->cb_mutex); /* A dump is in progress... */ if (nlk->cb_running) { ret = -EBUSY; goto error_unlock; } /* add reference of module which cb->dump belongs to */ if (!try_module_get(control->module)) { ret = -EPROTONOSUPPORT; goto error_unlock; } cb = &nlk->cb; memset(cb, 0, sizeof(*cb)); cb->dump = control->dump; cb->done = control->done; cb->nlh = nlh; cb->data = control->data; cb->module = control->module; cb->min_dump_alloc = control->min_dump_alloc; cb->skb = skb; nlk2 = nlk_sk(NETLINK_CB(skb).sk); cb->strict_check = !!(nlk2->flags & NETLINK_F_STRICT_CHK); if (control->start) { ret = control->start(cb); if (ret) goto error_put; } WRITE_ONCE(nlk->cb_running, true); nlk->dump_done_errno = INT_MAX; ret = netlink_dump(sk, true); sock_put(sk); if (ret) return ret; /* We successfully started a dump, by returning -EINTR we * signal not to send ACK even if it was requested. */ return -EINTR; error_put: module_put(control->module); error_unlock: sock_put(sk); mutex_unlock(nlk->cb_mutex); error_free: kfree_skb(skb); return ret; } EXPORT_SYMBOL(__netlink_dump_start); void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack) { struct sk_buff *skb; struct nlmsghdr *rep; struct nlmsgerr *errmsg; size_t payload = sizeof(*errmsg); size_t tlvlen = 0; struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); unsigned int flags = 0; bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK; /* Error messages get the original request appened, unless the user * requests to cap the error message, and get extra error data if * requested. */ if (nlk_has_extack && extack && extack->_msg) tlvlen += nla_total_size(strlen(extack->_msg) + 1); if (err && !(nlk->flags & NETLINK_F_CAP_ACK)) payload += nlmsg_len(nlh); else flags |= NLM_F_CAPPED; if (err && nlk_has_extack && extack && extack->bad_attr) tlvlen += nla_total_size(sizeof(u32)); if (nlk_has_extack && extack && extack->cookie_len) tlvlen += nla_total_size(extack->cookie_len); if (err && nlk_has_extack && extack && extack->policy) tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); if (tlvlen) flags |= NLM_F_ACK_TLVS; skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); if (!skb) { NETLINK_CB(in_skb).sk->sk_err = ENOBUFS; NETLINK_CB(in_skb).sk->sk_error_report(NETLINK_CB(in_skb).sk); return; } rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, NLMSG_ERROR, payload, flags); errmsg = nlmsg_data(rep); errmsg->error = err; memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); if (nlk_has_extack && extack) { if (extack->_msg) { WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)); } if (err && extack->bad_attr && !WARN_ON((u8 *)extack->bad_attr < in_skb->data || (u8 *)extack->bad_attr >= in_skb->data + in_skb->len)) WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, (u8 *)extack->bad_attr - (u8 *)nlh)); if (extack->cookie_len) WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, extack->cookie_len, extack->cookie)); if (extack->policy) netlink_policy_dump_write_attr(skb, extack->policy, NLMSGERR_ATTR_POLICY); } nlmsg_end(skb, rep); netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); } EXPORT_SYMBOL(netlink_ack); int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, struct nlmsghdr *, struct netlink_ext_ack *)) { struct netlink_ext_ack extack; struct nlmsghdr *nlh; int err; while (skb->len >= nlmsg_total_size(0)) { int msglen; memset(&extack, 0, sizeof(extack)); nlh = nlmsg_hdr(skb); err = 0; if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) return 0; /* Only requests are handled by the kernel */ if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) goto ack; /* Skip control messages */ if (nlh->nlmsg_type < NLMSG_MIN_TYPE) goto ack; err = cb(skb, nlh, &extack); if (err == -EINTR) goto skip; ack: if (nlh->nlmsg_flags & NLM_F_ACK || err) netlink_ack(skb, nlh, err, &extack); skip: msglen = NLMSG_ALIGN(nlh->nlmsg_len); if (msglen > skb->len) msglen = skb->len; skb_pull(skb, msglen); } return 0; } EXPORT_SYMBOL(netlink_rcv_skb); /** * nlmsg_notify - send a notification netlink message * @sk: netlink socket to use * @skb: notification message * @portid: destination netlink portid for reports or 0 * @group: destination multicast group or 0 * @report: 1 to report back, 0 to disable * @flags: allocation flags */ int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, unsigned int group, int report, gfp_t flags) { int err = 0; if (group) { int exclude_portid = 0; if (report) { refcount_inc(&skb->users); exclude_portid = portid; } /* errors reported via destination sk->sk_err, but propagate * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); if (err == -ESRCH) err = 0; } if (report) { int err2; err2 = nlmsg_unicast(sk, skb, portid); if (!err) err = err2; } return err; } EXPORT_SYMBOL(nlmsg_notify); #ifdef CONFIG_PROC_FS struct nl_seq_iter { struct seq_net_private p; struct rhashtable_iter hti; int link; }; static void netlink_walk_start(struct nl_seq_iter *iter) { rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); rhashtable_walk_start(&iter->hti); } static void netlink_walk_stop(struct nl_seq_iter *iter) { rhashtable_walk_stop(&iter->hti); rhashtable_walk_exit(&iter->hti); } static void *__netlink_seq_next(struct seq_file *seq) { struct nl_seq_iter *iter = seq->private; struct netlink_sock *nlk; do { for (;;) { nlk = rhashtable_walk_next(&iter->hti); if (IS_ERR(nlk)) { if (PTR_ERR(nlk) == -EAGAIN) continue; return nlk; } if (nlk) break; netlink_walk_stop(iter); if (++iter->link >= MAX_LINKS) return NULL; netlink_walk_start(iter); } } while (sock_net(&nlk->sk) != seq_file_net(seq)); return nlk; } static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) __acquires(RCU) { struct nl_seq_iter *iter = seq->private; void *obj = SEQ_START_TOKEN; loff_t pos; iter->link = 0; netlink_walk_start(iter); for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) obj = __netlink_seq_next(seq); return obj; } static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return __netlink_seq_next(seq); } static void netlink_native_seq_stop(struct seq_file *seq, void *v) { struct nl_seq_iter *iter = seq->private; if (iter->link >= MAX_LINKS) return; netlink_walk_stop(iter); } static int netlink_native_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "sk Eth Pid Groups " "Rmem Wmem Dump Locks Drops Inode\n"); } else { struct sock *s = v; struct netlink_sock *nlk = nlk_sk(s); seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", s, s->sk_protocol, nlk->portid, nlk->groups ? (u32)nlk->groups[0] : 0, sk_rmem_alloc_get(s), sk_wmem_alloc_get(s), READ_ONCE(nlk->cb_running), refcount_read(&s->sk_refcnt), atomic_read(&s->sk_drops), sock_i_ino(s) ); } return 0; } #ifdef CONFIG_BPF_SYSCALL struct bpf_iter__netlink { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct netlink_sock *, sk); }; DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) static int netlink_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, void *v) { struct bpf_iter__netlink ctx; meta->seq_num--; /* skip SEQ_START_TOKEN */ ctx.meta = meta; ctx.sk = nlk_sk((struct sock *)v); return bpf_iter_run_prog(prog, &ctx); } static int netlink_seq_show(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; meta.seq = seq; prog = bpf_iter_get_info(&meta, false); if (!prog) return netlink_native_seq_show(seq, v); if (v != SEQ_START_TOKEN) return netlink_prog_seq_show(prog, &meta, v); return 0; } static void netlink_seq_stop(struct seq_file *seq, void *v) { struct bpf_iter_meta meta; struct bpf_prog *prog; if (!v) { meta.seq = seq; prog = bpf_iter_get_info(&meta, true); if (prog) (void)netlink_prog_seq_show(prog, &meta, v); } netlink_native_seq_stop(seq, v); } #else static int netlink_seq_show(struct seq_file *seq, void *v) { return netlink_native_seq_show(seq, v); } static void netlink_seq_stop(struct seq_file *seq, void *v) { netlink_native_seq_stop(seq, v); } #endif static const struct seq_operations netlink_seq_ops = { .start = netlink_seq_start, .next = netlink_seq_next, .stop = netlink_seq_stop, .show = netlink_seq_show, }; #endif int netlink_register_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&netlink_chain, nb); } EXPORT_SYMBOL(netlink_register_notifier); int netlink_unregister_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&netlink_chain, nb); } EXPORT_SYMBOL(netlink_unregister_notifier); static const struct proto_ops netlink_ops = { .family = PF_NETLINK, .owner = THIS_MODULE, .release = netlink_release, .bind = netlink_bind, .connect = netlink_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = netlink_getname, .poll = datagram_poll, .ioctl = netlink_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = netlink_setsockopt, .getsockopt = netlink_getsockopt, .sendmsg = netlink_sendmsg, .recvmsg = netlink_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct net_proto_family netlink_family_ops = { .family = PF_NETLINK, .create = netlink_create, .owner = THIS_MODULE, /* for consistency 8) */ }; static int __net_init netlink_net_init(struct net *net) { #ifdef CONFIG_PROC_FS if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, sizeof(struct nl_seq_iter))) return -ENOMEM; #endif return 0; } static void __net_exit netlink_net_exit(struct net *net) { #ifdef CONFIG_PROC_FS remove_proc_entry("netlink", net->proc_net); #endif } static void __init netlink_add_usersock_entry(void) { struct listeners *listeners; int groups = 32; listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); if (!listeners) panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); netlink_table_grab(); nl_table[NETLINK_USERSOCK].groups = groups; rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); nl_table[NETLINK_USERSOCK].module = THIS_MODULE; nl_table[NETLINK_USERSOCK].registered = 1; nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; netlink_table_ungrab(); } static struct pernet_operations __net_initdata netlink_net_ops = { .init = netlink_net_init, .exit = netlink_net_exit, }; static inline u32 netlink_hash(const void *data, u32 len, u32 seed) { const struct netlink_sock *nlk = data; struct netlink_compare_arg arg; netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); } static const struct rhashtable_params netlink_rhashtable_params = { .head_offset = offsetof(struct netlink_sock, node), .key_len = netlink_compare_arg_len, .obj_hashfn = netlink_hash, .obj_cmpfn = netlink_compare, .automatic_shrinking = true, }; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) BTF_ID_LIST(btf_netlink_sock_id) BTF_ID(struct, netlink_sock) static const struct bpf_iter_seq_info netlink_seq_info = { .seq_ops = &netlink_seq_ops, .init_seq_private = bpf_iter_init_seq_net, .fini_seq_private = bpf_iter_fini_seq_net, .seq_priv_size = sizeof(struct nl_seq_iter), }; static struct bpf_iter_reg netlink_reg_info = { .target = "netlink", .ctx_arg_info_size = 1, .ctx_arg_info = { { offsetof(struct bpf_iter__netlink, sk), PTR_TO_BTF_ID_OR_NULL }, }, .seq_info = &netlink_seq_info, }; static int __init bpf_iter_register(void) { netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; return bpf_iter_reg_target(&netlink_reg_info); } #endif static int __init netlink_proto_init(void) { int i; int err = proto_register(&netlink_proto, 0); if (err != 0) goto out; #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) err = bpf_iter_register(); if (err) goto out; #endif BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); if (!nl_table) goto panic; for (i = 0; i < MAX_LINKS; i++) { if (rhashtable_init(&nl_table[i].hash, &netlink_rhashtable_params) < 0) { while (--i > 0) rhashtable_destroy(&nl_table[i].hash); kfree(nl_table); goto panic; } } netlink_add_usersock_entry(); sock_register(&netlink_family_ops); register_pernet_subsys(&netlink_net_ops); register_pernet_subsys(&netlink_tap_net_ops); /* The netlink device handler may be needed early. */ rtnetlink_init(); out: return err; panic: panic("netlink_init: Cannot allocate nl_table\n"); } core_initcall(netlink_proto_init);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* audit.h -- Auditing support * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * Written by Rickard E. (Rik) Faith <faith@redhat.com> */ #ifndef _LINUX_AUDIT_H_ #define _LINUX_AUDIT_H_ #include <linux/sched.h> #include <linux/ptrace.h> #include <uapi/linux/audit.h> #include <uapi/linux/netfilter/nf_tables.h> #define AUDIT_INO_UNSET ((unsigned long)-1) #define AUDIT_DEV_UNSET ((dev_t)-1) struct audit_sig_info { uid_t uid; pid_t pid; char ctx[]; }; struct audit_buffer; struct audit_context; struct inode; struct netlink_skb_parms; struct path; struct linux_binprm; struct mq_attr; struct mqstat; struct audit_watch; struct audit_tree; struct sk_buff; struct audit_krule { u32 pflags; u32 flags; u32 listnr; u32 action; u32 mask[AUDIT_BITMASK_SIZE]; u32 buflen; /* for data alloc on list rules */ u32 field_count; char *filterkey; /* ties events to rules */ struct audit_field *fields; struct audit_field *arch_f; /* quick access to arch field */ struct audit_field *inode_f; /* quick access to an inode field */ struct audit_watch *watch; /* associated watch */ struct audit_tree *tree; /* associated watched tree */ struct audit_fsnotify_mark *exe; struct list_head rlist; /* entry in audit_{watch,tree}.rules list */ struct list_head list; /* for AUDIT_LIST* purposes only */ u64 prio; }; /* Flag to indicate legacy AUDIT_LOGINUID unset usage */ #define AUDIT_LOGINUID_LEGACY 0x1 struct audit_field { u32 type; union { u32 val; kuid_t uid; kgid_t gid; struct { char *lsm_str; void *lsm_rule; }; }; u32 op; }; enum audit_ntp_type { AUDIT_NTP_OFFSET, AUDIT_NTP_FREQ, AUDIT_NTP_STATUS, AUDIT_NTP_TAI, AUDIT_NTP_TICK, AUDIT_NTP_ADJUST, AUDIT_NTP_NVALS /* count */ }; #ifdef CONFIG_AUDITSYSCALL struct audit_ntp_val { long long oldval, newval; }; struct audit_ntp_data { struct audit_ntp_val vals[AUDIT_NTP_NVALS]; }; #else struct audit_ntp_data {}; #endif enum audit_nfcfgop { AUDIT_XT_OP_REGISTER, AUDIT_XT_OP_REPLACE, AUDIT_XT_OP_UNREGISTER, AUDIT_NFT_OP_TABLE_REGISTER, AUDIT_NFT_OP_TABLE_UNREGISTER, AUDIT_NFT_OP_CHAIN_REGISTER, AUDIT_NFT_OP_CHAIN_UNREGISTER, AUDIT_NFT_OP_RULE_REGISTER, AUDIT_NFT_OP_RULE_UNREGISTER, AUDIT_NFT_OP_SET_REGISTER, AUDIT_NFT_OP_SET_UNREGISTER, AUDIT_NFT_OP_SETELEM_REGISTER, AUDIT_NFT_OP_SETELEM_UNREGISTER, AUDIT_NFT_OP_GEN_REGISTER, AUDIT_NFT_OP_OBJ_REGISTER, AUDIT_NFT_OP_OBJ_UNREGISTER, AUDIT_NFT_OP_OBJ_RESET, AUDIT_NFT_OP_FLOWTABLE_REGISTER, AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, AUDIT_NFT_OP_INVALID, }; extern int is_audit_feature_set(int which); extern int __init audit_register_class(int class, unsigned *list); extern int audit_classify_syscall(int abi, unsigned syscall); extern int audit_classify_arch(int arch); /* only for compat system calls */ extern unsigned compat_write_class[]; extern unsigned compat_read_class[]; extern unsigned compat_dir_class[]; extern unsigned compat_chattr_class[]; extern unsigned compat_signal_class[]; extern int audit_classify_compat_syscall(int abi, unsigned syscall); /* audit_names->type values */ #define AUDIT_TYPE_UNKNOWN 0 /* we don't know yet */ #define AUDIT_TYPE_NORMAL 1 /* a "normal" audit record */ #define AUDIT_TYPE_PARENT 2 /* a parent audit record */ #define AUDIT_TYPE_CHILD_DELETE 3 /* a child being deleted */ #define AUDIT_TYPE_CHILD_CREATE 4 /* a child being created */ /* maximized args number that audit_socketcall can process */ #define AUDITSC_ARGS 6 /* bit values for ->signal->audit_tty */ #define AUDIT_TTY_ENABLE BIT(0) #define AUDIT_TTY_LOG_PASSWD BIT(1) struct filename; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 #ifdef CONFIG_AUDIT /* These are defined in audit.c */ /* Public API */ extern __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...); extern struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type); extern __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...); extern void audit_log_end(struct audit_buffer *ab); extern bool audit_string_contains_control(const char *string, size_t len); extern void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len); extern void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n); extern void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n); extern void audit_log_untrustedstring(struct audit_buffer *ab, const char *string); extern void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path); extern void audit_log_key(struct audit_buffer *ab, char *key); extern void audit_log_path_denied(int type, const char *operation); extern void audit_log_lost(const char *message); extern int audit_log_task_context(struct audit_buffer *ab); extern void audit_log_task_info(struct audit_buffer *ab); extern int audit_update_lsm_rules(void); /* Private API (for audit.c only) */ extern int audit_rule_change(int type, int seq, void *data, size_t datasz); extern int audit_list_rules_send(struct sk_buff *request_skb, int seq); extern int audit_set_loginuid(kuid_t loginuid); static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return tsk->loginuid; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return tsk->sessionid; } extern u32 audit_enabled; extern int audit_signal_info(int sig, struct task_struct *t); #else /* CONFIG_AUDIT */ static inline __printf(4, 5) void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { } static inline struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { return NULL; } static inline __printf(2, 3) void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { } static inline void audit_log_end(struct audit_buffer *ab) { } static inline void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { } static inline void audit_log_n_string(struct audit_buffer *ab, const char *buf, size_t n) { } static inline void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t n) { } static inline void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { } static inline void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { } static inline void audit_log_key(struct audit_buffer *ab, char *key) { } static inline void audit_log_path_denied(int type, const char *operation) { } static inline int audit_log_task_context(struct audit_buffer *ab) { return 0; } static inline void audit_log_task_info(struct audit_buffer *ab) { } static inline kuid_t audit_get_loginuid(struct task_struct *tsk) { return INVALID_UID; } static inline unsigned int audit_get_sessionid(struct task_struct *tsk) { return AUDIT_SID_UNSET; } #define audit_enabled AUDIT_OFF static inline int audit_signal_info(int sig, struct task_struct *t) { return 0; } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_AUDIT_COMPAT_GENERIC #define audit_is_compat(arch) (!((arch) & __AUDIT_ARCH_64BIT)) #else #define audit_is_compat(arch) false #endif #define AUDIT_INODE_PARENT 1 /* dentry represents the parent */ #define AUDIT_INODE_HIDDEN 2 /* audit record should be hidden */ #define AUDIT_INODE_NOEVAL 4 /* audit record incomplete */ #ifdef CONFIG_AUDITSYSCALL #include <asm/syscall.h> /* for syscall_get_arch() */ /* These are defined in auditsc.c */ /* Public API */ extern int audit_alloc(struct task_struct *task); extern void __audit_free(struct task_struct *task); extern void __audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3); extern void __audit_syscall_exit(int ret_success, long ret_value); extern struct filename *__audit_reusename(const __user char *uptr); extern void __audit_getname(struct filename *name); extern void __audit_getcwd(void); extern void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags); extern void __audit_file(const struct file *); extern void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type); extern void audit_seccomp(unsigned long syscall, long signr, int code); extern void audit_seccomp_actions_logged(const char *names, const char *old_names, int res); extern void __audit_ptrace(struct task_struct *t); static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { task->audit_context = ctx; } static inline struct audit_context *audit_context(void) { return current->audit_context; } static inline bool audit_dummy_context(void) { void *p = audit_context(); return !p || *(int *)p; } static inline void audit_free(struct task_struct *task) { if (unlikely(task->audit_context)) __audit_free(task); } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { if (unlikely(audit_context())) __audit_syscall_entry(major, a0, a1, a2, a3); } static inline void audit_syscall_exit(void *pt_regs) { if (unlikely(audit_context())) { int success = is_syscall_success(pt_regs); long return_code = regs_return_value(pt_regs); __audit_syscall_exit(success, return_code); } } static inline struct filename *audit_reusename(const __user char *name) { if (unlikely(!audit_dummy_context())) return __audit_reusename(name); return NULL; } static inline void audit_getname(struct filename *name) { if (unlikely(!audit_dummy_context())) __audit_getname(name); } static inline void audit_getcwd(void) { if (unlikely(audit_context())) __audit_getcwd(); } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, aflags); } static inline void audit_file(struct file *file) { if (unlikely(!audit_dummy_context())) __audit_file(file); } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { if (unlikely(!audit_dummy_context())) __audit_inode(name, dentry, AUDIT_INODE_PARENT | AUDIT_INODE_HIDDEN); } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { if (unlikely(!audit_dummy_context())) __audit_inode_child(parent, dentry, type); } void audit_core_dumps(long signr); static inline void audit_ptrace(struct task_struct *t) { if (unlikely(!audit_dummy_context())) __audit_ptrace(t); } /* Private API (for audit.c only) */ extern void __audit_ipc_obj(struct kern_ipc_perm *ipcp); extern void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode); extern void __audit_bprm(struct linux_binprm *bprm); extern int __audit_socketcall(int nargs, unsigned long *args); extern int __audit_sockaddr(int len, void *addr); extern void __audit_fd_pair(int fd1, int fd2); extern void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr); extern void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout); extern void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification); extern void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat); extern int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old); extern void __audit_log_capset(const struct cred *new, const struct cred *old); extern void __audit_mmap_fd(int fd, int flags); extern void __audit_log_kern_module(char *name); extern void __audit_fanotify(unsigned int response); extern void __audit_tk_injoffset(struct timespec64 offset); extern void __audit_ntp_log(const struct audit_ntp_data *ad); extern void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp); static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { if (unlikely(!audit_dummy_context())) __audit_ipc_obj(ipcp); } static inline void audit_fd_pair(int fd1, int fd2) { if (unlikely(!audit_dummy_context())) __audit_fd_pair(fd1, fd2); } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { if (unlikely(!audit_dummy_context())) __audit_ipc_set_perm(qbytes, uid, gid, mode); } static inline void audit_bprm(struct linux_binprm *bprm) { if (unlikely(!audit_dummy_context())) __audit_bprm(bprm); } static inline int audit_socketcall(int nargs, unsigned long *args) { if (unlikely(!audit_dummy_context())) return __audit_socketcall(nargs, args); return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { unsigned long a[AUDITSC_ARGS]; int i; if (audit_dummy_context()) return 0; for (i = 0; i < nargs; i++) a[i] = (unsigned long)args[i]; return __audit_socketcall(nargs, a); } static inline int audit_sockaddr(int len, void *addr) { if (unlikely(!audit_dummy_context())) return __audit_sockaddr(len, addr); return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { if (unlikely(!audit_dummy_context())) __audit_mq_open(oflag, mode, attr); } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { if (unlikely(!audit_dummy_context())) __audit_mq_sendrecv(mqdes, msg_len, msg_prio, abs_timeout); } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { if (unlikely(!audit_dummy_context())) __audit_mq_notify(mqdes, notification); } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { if (unlikely(!audit_dummy_context())) __audit_mq_getsetattr(mqdes, mqstat); } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) return __audit_log_bprm_fcaps(bprm, new, old); return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { if (unlikely(!audit_dummy_context())) __audit_log_capset(new, old); } static inline void audit_mmap_fd(int fd, int flags) { if (unlikely(!audit_dummy_context())) __audit_mmap_fd(fd, flags); } static inline void audit_log_kern_module(char *name) { if (!audit_dummy_context()) __audit_log_kern_module(name); } static inline void audit_fanotify(unsigned int response) { if (!audit_dummy_context()) __audit_fanotify(response); } static inline void audit_tk_injoffset(struct timespec64 offset) { /* ignore no-op events */ if (offset.tv_sec == 0 && offset.tv_nsec == 0) return; if (!audit_dummy_context()) __audit_tk_injoffset(offset); } static inline void audit_ntp_init(struct audit_ntp_data *ad) { memset(ad, 0, sizeof(*ad)); } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].oldval = val; } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { ad->vals[type].newval = val; } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { if (!audit_dummy_context()) __audit_ntp_log(ad); } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { if (audit_enabled) __audit_log_nfcfg(name, af, nentries, op, gfp); } extern int audit_n_rules; extern int audit_signals; #else /* CONFIG_AUDITSYSCALL */ static inline int audit_alloc(struct task_struct *task) { return 0; } static inline void audit_free(struct task_struct *task) { } static inline void audit_syscall_entry(int major, unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3) { } static inline void audit_syscall_exit(void *pt_regs) { } static inline bool audit_dummy_context(void) { return true; } static inline void audit_set_context(struct task_struct *task, struct audit_context *ctx) { } static inline struct audit_context *audit_context(void) { return NULL; } static inline struct filename *audit_reusename(const __user char *name) { return NULL; } static inline void audit_getname(struct filename *name) { } static inline void audit_getcwd(void) { } static inline void audit_inode(struct filename *name, const struct dentry *dentry, unsigned int aflags) { } static inline void audit_file(struct file *file) { } static inline void audit_inode_parent_hidden(struct filename *name, const struct dentry *dentry) { } static inline void audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { } static inline void audit_core_dumps(long signr) { } static inline void audit_seccomp(unsigned long syscall, long signr, int code) { } static inline void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { } static inline void audit_ipc_obj(struct kern_ipc_perm *ipcp) { } static inline void audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { } static inline void audit_bprm(struct linux_binprm *bprm) { } static inline int audit_socketcall(int nargs, unsigned long *args) { return 0; } static inline int audit_socketcall_compat(int nargs, u32 *args) { return 0; } static inline void audit_fd_pair(int fd1, int fd2) { } static inline int audit_sockaddr(int len, void *addr) { return 0; } static inline void audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { } static inline void audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { } static inline void audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { } static inline void audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { } static inline int audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { return 0; } static inline void audit_log_capset(const struct cred *new, const struct cred *old) { } static inline void audit_mmap_fd(int fd, int flags) { } static inline void audit_log_kern_module(char *name) { } static inline void audit_fanotify(unsigned int response) { } static inline void audit_tk_injoffset(struct timespec64 offset) { } static inline void audit_ntp_init(struct audit_ntp_data *ad) { } static inline void audit_ntp_set_old(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_set_new(struct audit_ntp_data *ad, enum audit_ntp_type type, long long val) { } static inline void audit_ntp_log(const struct audit_ntp_data *ad) { } static inline void audit_ptrace(struct task_struct *t) { } static inline void audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { } #define audit_n_rules 0 #define audit_signals 0 #endif /* CONFIG_AUDITSYSCALL */ static inline bool audit_loginuid_set(struct task_struct *tsk) { return uid_valid(audit_get_loginuid(tsk)); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Forwarding Information Base. * * Authors: A.N.Kuznetsov, <kuznet@ms2.inr.ac.ru> */ #ifndef _NET_IP_FIB_H #define _NET_IP_FIB_H #include <net/flow.h> #include <linux/seq_file.h> #include <linux/rcupdate.h> #include <net/fib_notifier.h> #include <net/fib_rules.h> #include <net/inetpeer.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/refcount.h> struct fib_config { u8 fc_dst_len; u8 fc_tos; u8 fc_protocol; u8 fc_scope; u8 fc_type; u8 fc_gw_family; /* 2 bytes unused */ u32 fc_table; __be32 fc_dst; union { __be32 fc_gw4; struct in6_addr fc_gw6; }; int fc_oif; u32 fc_flags; u32 fc_priority; __be32 fc_prefsrc; u32 fc_nh_id; struct nlattr *fc_mx; struct rtnexthop *fc_mp; int fc_mx_len; int fc_mp_len; u32 fc_flow; u32 fc_nlflags; struct nl_info fc_nlinfo; struct nlattr *fc_encap; u16 fc_encap_type; }; struct fib_info; struct rtable; struct fib_nh_exception { struct fib_nh_exception __rcu *fnhe_next; int fnhe_genid; __be32 fnhe_daddr; u32 fnhe_pmtu; bool fnhe_mtu_locked; __be32 fnhe_gw; unsigned long fnhe_expires; struct rtable __rcu *fnhe_rth_input; struct rtable __rcu *fnhe_rth_output; unsigned long fnhe_stamp; struct rcu_head rcu; }; struct fnhe_hash_bucket { struct fib_nh_exception __rcu *chain; }; #define FNHE_HASH_SHIFT 11 #define FNHE_HASH_SIZE (1 << FNHE_HASH_SHIFT) #define FNHE_RECLAIM_DEPTH 5 struct fib_nh_common { struct net_device *nhc_dev; int nhc_oif; unsigned char nhc_scope; u8 nhc_family; u8 nhc_gw_family; unsigned char nhc_flags; struct lwtunnel_state *nhc_lwtstate; union { __be32 ipv4; struct in6_addr ipv6; } nhc_gw; int nhc_weight; atomic_t nhc_upper_bound; /* v4 specific, but allows fib6_nh with v4 routes */ struct rtable __rcu * __percpu *nhc_pcpu_rth_output; struct rtable __rcu *nhc_rth_input; struct fnhe_hash_bucket __rcu *nhc_exceptions; }; struct fib_nh { struct fib_nh_common nh_common; struct hlist_node nh_hash; struct fib_info *nh_parent; #ifdef CONFIG_IP_ROUTE_CLASSID __u32 nh_tclassid; #endif __be32 nh_saddr; int nh_saddr_genid; #define fib_nh_family nh_common.nhc_family #define fib_nh_dev nh_common.nhc_dev #define fib_nh_oif nh_common.nhc_oif #define fib_nh_flags nh_common.nhc_flags #define fib_nh_lws nh_common.nhc_lwtstate #define fib_nh_scope nh_common.nhc_scope #define fib_nh_gw_family nh_common.nhc_gw_family #define fib_nh_gw4 nh_common.nhc_gw.ipv4 #define fib_nh_gw6 nh_common.nhc_gw.ipv6 #define fib_nh_weight nh_common.nhc_weight #define fib_nh_upper_bound nh_common.nhc_upper_bound }; /* * This structure contains data shared by many of routes. */ struct nexthop; struct fib_info { struct hlist_node fib_hash; struct hlist_node fib_lhash; struct list_head nh_list; struct net *fib_net; int fib_treeref; refcount_t fib_clntref; unsigned int fib_flags; unsigned char fib_dead; unsigned char fib_protocol; unsigned char fib_scope; unsigned char fib_type; __be32 fib_prefsrc; u32 fib_tb_id; u32 fib_priority; struct dst_metrics *fib_metrics; #define fib_mtu fib_metrics->metrics[RTAX_MTU-1] #define fib_window fib_metrics->metrics[RTAX_WINDOW-1] #define fib_rtt fib_metrics->metrics[RTAX_RTT-1] #define fib_advmss fib_metrics->metrics[RTAX_ADVMSS-1] int fib_nhs; bool fib_nh_is_v6; bool nh_updated; bool pfsrc_removed; struct nexthop *nh; struct rcu_head rcu; struct fib_nh fib_nh[]; }; #ifdef CONFIG_IP_MULTIPLE_TABLES struct fib_rule; #endif struct fib_table; struct fib_result { __be32 prefix; unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; u32 tclassid; struct fib_nh_common *nhc; struct fib_info *fi; struct fib_table *table; struct hlist_head *fa_head; }; struct fib_result_nl { __be32 fl_addr; /* To be looked up*/ u32 fl_mark; unsigned char fl_tos; unsigned char fl_scope; unsigned char tb_id_in; unsigned char tb_id; /* Results */ unsigned char prefixlen; unsigned char nh_sel; unsigned char type; unsigned char scope; int err; }; #ifdef CONFIG_IP_MULTIPLE_TABLES #define FIB_TABLE_HASHSZ 256 #else #define FIB_TABLE_HASHSZ 2 #endif __be32 fib_info_update_nhc_saddr(struct net *net, struct fib_nh_common *nhc, unsigned char scope); __be32 fib_result_prefsrc(struct net *net, struct fib_result *res); #define FIB_RES_NHC(res) ((res).nhc) #define FIB_RES_DEV(res) (FIB_RES_NHC(res)->nhc_dev) #define FIB_RES_OIF(res) (FIB_RES_NHC(res)->nhc_oif) struct fib_rt_info { struct fib_info *fi; u32 tb_id; __be32 dst; int dst_len; u8 tos; u8 type; u8 offload:1, trap:1, unused:6; }; struct fib_entry_notifier_info { struct fib_notifier_info info; /* must be first */ u32 dst; int dst_len; struct fib_info *fi; u8 tos; u8 type; u32 tb_id; }; struct fib_nh_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_nh *fib_nh; }; int call_fib4_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info); int call_fib4_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info); int __net_init fib4_notifier_init(struct net *net); void __net_exit fib4_notifier_exit(struct net *net); void fib_info_notify_update(struct net *net, struct nl_info *info); int fib_notify(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); struct fib_table { struct hlist_node tb_hlist; u32 tb_id; int tb_num_default; struct rcu_head rcu; unsigned long *tb_data; unsigned long __data[]; }; struct fib_dump_filter { u32 table_id; /* filter_set is an optimization that an entry is set */ bool filter_set; bool dump_routes; bool dump_exceptions; unsigned char protocol; unsigned char rt_type; unsigned int flags; struct net_device *dev; }; int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, struct fib_result *res, int fib_flags); int fib_table_insert(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_delete(struct net *, struct fib_table *, struct fib_config *, struct netlink_ext_ack *extack); int fib_table_dump(struct fib_table *table, struct sk_buff *skb, struct netlink_callback *cb, struct fib_dump_filter *filter); int fib_table_flush(struct net *net, struct fib_table *table, bool flush_all); struct fib_table *fib_trie_unmerge(struct fib_table *main_tb); void fib_table_flush_external(struct fib_table *table); void fib_free_table(struct fib_table *tb); #ifndef CONFIG_IP_MULTIPLE_TABLES #define TABLE_LOCAL_INDEX (RT_TABLE_LOCAL & (FIB_TABLE_HASHSZ - 1)) #define TABLE_MAIN_INDEX (RT_TABLE_MAIN & (FIB_TABLE_HASHSZ - 1)) static inline struct fib_table *fib_get_table(struct net *net, u32 id) { struct hlist_node *tb_hlist; struct hlist_head *ptr; ptr = id == RT_TABLE_LOCAL ? &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX] : &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]; tb_hlist = rcu_dereference_rtnl(hlist_first_rcu(ptr)); return hlist_entry(tb_hlist, struct fib_table, tb_hlist); } static inline struct fib_table *fib_new_table(struct net *net, u32 id) { return fib_get_table(net, id); } static inline int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; rcu_read_lock(); tb = fib_get_table(net, RT_TABLE_MAIN); if (tb) err = fib_table_lookup(tb, flp, res, flags | FIB_LOOKUP_NOREF); if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return false; } static inline bool fib4_rule_default(const struct fib_rule *rule) { return true; } static inline int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { return 0; } static inline unsigned int fib4_rules_seq_read(struct net *net) { return 0; } static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { return false; } #else /* CONFIG_IP_MULTIPLE_TABLES */ int __net_init fib4_rules_init(struct net *net); void __net_exit fib4_rules_exit(struct net *net); struct fib_table *fib_new_table(struct net *net, u32 id); struct fib_table *fib_get_table(struct net *net, u32 id); int __fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags); static inline int fib_lookup(struct net *net, struct flowi4 *flp, struct fib_result *res, unsigned int flags) { struct fib_table *tb; int err = -ENETUNREACH; flags |= FIB_LOOKUP_NOREF; if (net->ipv4.fib_has_custom_rules) return __fib_lookup(net, flp, res, flags); rcu_read_lock(); res->tclassid = 0; tb = rcu_dereference_rtnl(net->ipv4.fib_main); if (tb) err = fib_table_lookup(tb, flp, res, flags); if (!err) goto out; tb = rcu_dereference_rtnl(net->ipv4.fib_default); if (tb) err = fib_table_lookup(tb, flp, res, flags); out: if (err == -EAGAIN) err = -ENETUNREACH; rcu_read_unlock(); return err; } static inline bool fib4_has_custom_rules(const struct net *net) { return net->ipv4.fib_has_custom_rules; } bool fib4_rule_default(const struct fib_rule *rule); int fib4_rules_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack); unsigned int fib4_rules_seq_read(struct net *net); static inline bool fib4_rules_early_flow_dissect(struct net *net, struct sk_buff *skb, struct flowi4 *fl4, struct flow_keys *flkeys) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; if (!net->ipv4.fib_rules_require_fldissect) return false; skb_flow_dissect_flow_keys(skb, flkeys, flag); fl4->fl4_sport = flkeys->ports.src; fl4->fl4_dport = flkeys->ports.dst; fl4->flowi4_proto = flkeys->basic.ip_proto; return true; } #endif /* CONFIG_IP_MULTIPLE_TABLES */ /* Exported by fib_frontend.c */ extern const struct nla_policy rtm_ipv4_policy[]; void ip_fib_init(void); int fib_gw_from_via(struct fib_config *cfg, struct nlattr *nla, struct netlink_ext_ack *extack); __be32 fib_compute_spec_dst(struct sk_buff *skb); bool fib_info_nh_uses_dev(struct fib_info *fi, const struct net_device *dev); int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst, u8 tos, int oif, struct net_device *dev, struct in_device *idev, u32 *itag); #ifdef CONFIG_IP_ROUTE_CLASSID static inline int fib_num_tclassid_users(struct net *net) { return atomic_read(&net->ipv4.fib_num_tclassid_users); } #else static inline int fib_num_tclassid_users(struct net *net) { return 0; } #endif int fib_unmerge(struct net *net); static inline bool nhc_l3mdev_matches_dev(const struct fib_nh_common *nhc, const struct net_device *dev) { if (nhc->nhc_dev == dev || l3mdev_master_ifindex_rcu(nhc->nhc_dev) == dev->ifindex) return true; return false; } /* Exported by fib_semantics.c */ int ip_fib_check_default(__be32 gw, struct net_device *dev); int fib_sync_down_dev(struct net_device *dev, unsigned long event, bool force); int fib_sync_down_addr(struct net_device *dev, __be32 local); int fib_sync_up(struct net_device *dev, unsigned char nh_flags); void fib_sync_mtu(struct net_device *dev, u32 orig_mtu); void fib_nhc_update_mtu(struct fib_nh_common *nhc, u32 new, u32 orig); #ifdef CONFIG_IP_ROUTE_MULTIPATH int fib_multipath_hash(const struct net *net, const struct flowi4 *fl4, const struct sk_buff *skb, struct flow_keys *flkeys); #endif int fib_check_nh(struct net *net, struct fib_nh *nh, u32 table, u8 scope, struct netlink_ext_ack *extack); void fib_select_multipath(struct fib_result *res, int hash); void fib_select_path(struct net *net, struct fib_result *res, struct flowi4 *fl4, const struct sk_buff *skb); int fib_nh_init(struct net *net, struct fib_nh *fib_nh, struct fib_config *cfg, int nh_weight, struct netlink_ext_ack *extack); void fib_nh_release(struct net *net, struct fib_nh *fib_nh); int fib_nh_common_init(struct net *net, struct fib_nh_common *nhc, struct nlattr *fc_encap, u16 fc_encap_type, void *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack); void fib_nh_common_release(struct fib_nh_common *nhc); /* Exported by fib_trie.c */ void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri); void fib_trie_init(void); struct fib_table *fib_trie_table(u32 id, struct fib_table *alias); bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, const struct flowi4 *flp); static inline void fib_combine_itag(u32 *itag, const struct fib_result *res) { #ifdef CONFIG_IP_ROUTE_CLASSID struct fib_nh_common *nhc = res->nhc; #ifdef CONFIG_IP_MULTIPLE_TABLES u32 rtag; #endif if (nhc->nhc_family == AF_INET) { struct fib_nh *nh; nh = container_of(nhc, struct fib_nh, nh_common); *itag = nh->nh_tclassid << 16; } else { *itag = 0; } #ifdef CONFIG_IP_MULTIPLE_TABLES rtag = res->tclassid; if (*itag == 0) *itag = (rtag<<16); *itag |= (rtag>>16); #endif #endif } void fib_flush(struct net *net); void free_fib_info(struct fib_info *fi); static inline void fib_info_hold(struct fib_info *fi) { refcount_inc(&fi->fib_clntref); } static inline void fib_info_put(struct fib_info *fi) { if (refcount_dec_and_test(&fi->fib_clntref)) free_fib_info(fi); } #ifdef CONFIG_PROC_FS int __net_init fib_proc_init(struct net *net); void __net_exit fib_proc_exit(struct net *net); #else static inline int fib_proc_init(struct net *net) { return 0; } static inline void fib_proc_exit(struct net *net) { } #endif u32 ip_mtu_from_fib_result(struct fib_result *res, __be32 daddr); int ip_valid_fib_dump_req(struct net *net, const struct nlmsghdr *nlh, struct fib_dump_filter *filter, struct netlink_callback *cb); int fib_nexthop_info(struct sk_buff *skb, const struct fib_nh_common *nh, u8 rt_family, unsigned char *flags, bool skip_oif); int fib_add_nexthop(struct sk_buff *skb, const struct fib_nh_common *nh, int nh_weight, u8 rt_family, u32 nh_tclassid); #endif /* _NET_FIB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 /* Copyright (C) 2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * This file is provided under a dual BSD/GPLv2 license. * * SipHash: a fast short-input PRF * https://131002.net/siphash/ * * This implementation is specifically for SipHash2-4 for a secure PRF * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for * hashtables. */ #ifndef _LINUX_SIPHASH_H #define _LINUX_SIPHASH_H #include <linux/types.h> #include <linux/kernel.h> #define SIPHASH_ALIGNMENT __alignof__(u64) typedef struct { u64 key[2]; } siphash_key_t; static inline bool siphash_key_is_zero(const siphash_key_t *key) { return !(key->key[0] | key->key[1]); } u64 __siphash_aligned(const void *data, size_t len, const siphash_key_t *key); u64 __siphash_unaligned(const void *data, size_t len, const siphash_key_t *key); u64 siphash_1u64(const u64 a, const siphash_key_t *key); u64 siphash_2u64(const u64 a, const u64 b, const siphash_key_t *key); u64 siphash_3u64(const u64 a, const u64 b, const u64 c, const siphash_key_t *key); u64 siphash_4u64(const u64 a, const u64 b, const u64 c, const u64 d, const siphash_key_t *key); u64 siphash_1u32(const u32 a, const siphash_key_t *key); u64 siphash_3u32(const u32 a, const u32 b, const u32 c, const siphash_key_t *key); static inline u64 siphash_2u32(const u32 a, const u32 b, const siphash_key_t *key) { return siphash_1u64((u64)b << 32 | a, key); } static inline u64 siphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const siphash_key_t *key) { return siphash_2u64((u64)b << 32 | a, (u64)d << 32 | c, key); } static inline u64 ___siphash_aligned(const __le64 *data, size_t len, const siphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return siphash_1u32(le32_to_cpup((const __le32 *)data), key); if (__builtin_constant_p(len) && len == 8) return siphash_1u64(le64_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 16) return siphash_2u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 24) return siphash_3u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 32) return siphash_4u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), le64_to_cpu(data[3]), key); return __siphash_aligned(data, len, key); } /** * siphash - compute 64-bit siphash PRF value * @data: buffer to hash * @size: size of @data * @key: the siphash key */ static inline u64 siphash(const void *data, size_t len, const siphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, SIPHASH_ALIGNMENT)) return __siphash_unaligned(data, len, key); return ___siphash_aligned(data, len, key); } #define HSIPHASH_ALIGNMENT __alignof__(unsigned long) typedef struct { unsigned long key[2]; } hsiphash_key_t; u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key); u32 __hsiphash_unaligned(const void *data, size_t len, const hsiphash_key_t *key); u32 hsiphash_1u32(const u32 a, const hsiphash_key_t *key); u32 hsiphash_2u32(const u32 a, const u32 b, const hsiphash_key_t *key); u32 hsiphash_3u32(const u32 a, const u32 b, const u32 c, const hsiphash_key_t *key); u32 hsiphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const hsiphash_key_t *key); static inline u32 ___hsiphash_aligned(const __le32 *data, size_t len, const hsiphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return hsiphash_1u32(le32_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 8) return hsiphash_2u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 12) return hsiphash_3u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 16) return hsiphash_4u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), le32_to_cpu(data[3]), key); return __hsiphash_aligned(data, len, key); } /** * hsiphash - compute 32-bit hsiphash PRF value * @data: buffer to hash * @size: size of @data * @key: the hsiphash key */ static inline u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, HSIPHASH_ALIGNMENT)) return __hsiphash_unaligned(data, len, key); return ___hsiphash_aligned(data, len, key); } /* * These macros expose the raw SipHash and HalfSipHash permutations. * Do not use them directly! If you think you have a use for them, * be sure to CC the maintainer of this file explaining why. */ #define SIPHASH_PERMUTATION(a, b, c, d) ( \ (a) += (b), (b) = rol64((b), 13), (b) ^= (a), (a) = rol64((a), 32), \ (c) += (d), (d) = rol64((d), 16), (d) ^= (c), \ (a) += (d), (d) = rol64((d), 21), (d) ^= (a), \ (c) += (b), (b) = rol64((b), 17), (b) ^= (c), (c) = rol64((c), 32)) #define SIPHASH_CONST_0 0x736f6d6570736575ULL #define SIPHASH_CONST_1 0x646f72616e646f6dULL #define SIPHASH_CONST_2 0x6c7967656e657261ULL #define SIPHASH_CONST_3 0x7465646279746573ULL #define HSIPHASH_PERMUTATION(a, b, c, d) ( \ (a) += (b), (b) = rol32((b), 5), (b) ^= (a), (a) = rol32((a), 16), \ (c) += (d), (d) = rol32((d), 8), (d) ^= (c), \ (a) += (d), (d) = rol32((d), 7), (d) ^= (a), \ (c) += (b), (b) = rol32((b), 13), (b) ^= (c), (c) = rol32((c), 16)) #define HSIPHASH_CONST_0 0U #define HSIPHASH_CONST_1 0U #define HSIPHASH_CONST_2 0x6c796765U #define HSIPHASH_CONST_3 0x74656462U #endif /* _LINUX_SIPHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM workqueue #if !defined(_TRACE_WORKQUEUE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WORKQUEUE_H #include <linux/tracepoint.h> #include <linux/workqueue.h> struct pool_workqueue; /** * workqueue_queue_work - called when a work gets queued * @req_cpu: the requested cpu * @pwq: pointer to struct pool_workqueue * @work: pointer to struct work_struct * * This event occurs when a work is queued immediately or once a * delayed work is actually queued on a workqueue (ie: once the delay * has been reached). */ TRACE_EVENT(workqueue_queue_work, TP_PROTO(unsigned int req_cpu, struct pool_workqueue *pwq, struct work_struct *work), TP_ARGS(req_cpu, pwq, work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) __field( void *, workqueue) __field( unsigned int, req_cpu ) __field( unsigned int, cpu ) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; __entry->workqueue = pwq->wq; __entry->req_cpu = req_cpu; __entry->cpu = pwq->pool->cpu; ), TP_printk("work struct=%p function=%ps workqueue=%p req_cpu=%u cpu=%u", __entry->work, __entry->function, __entry->workqueue, __entry->req_cpu, __entry->cpu) ); /** * workqueue_activate_work - called when a work gets activated * @work: pointer to struct work_struct * * This event occurs when a queued work is put on the active queue, * which happens immediately after queueing unless @max_active limit * is reached. */ TRACE_EVENT(workqueue_activate_work, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) ), TP_fast_assign( __entry->work = work; ), TP_printk("work struct %p", __entry->work) ); /** * workqueue_execute_start - called immediately before the workqueue callback * @work: pointer to struct work_struct * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_start, TP_PROTO(struct work_struct *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); /** * workqueue_execute_end - called immediately after the workqueue callback * @work: pointer to struct work_struct * @function: pointer to worker function * * Allows to track workqueue execution. */ TRACE_EVENT(workqueue_execute_end, TP_PROTO(struct work_struct *work, work_func_t function), TP_ARGS(work, function), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = function; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); #endif /* _TRACE_WORKQUEUE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 // SPDX-License-Identifier: GPL-2.0 /* * ext4.h * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/include/linux/minix_fs.h * * Copyright (C) 1991, 1992 Linus Torvalds */ #ifndef _EXT4_H #define _EXT4_H #include <linux/types.h> #include <linux/blkdev.h> #include <linux/magic.h> #include <linux/jbd2.h> #include <linux/quota.h> #include <linux/rwsem.h> #include <linux/rbtree.h> #include <linux/seqlock.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/wait.h> #include <linux/sched/signal.h> #include <linux/blockgroup_lock.h> #include <linux/percpu_counter.h> #include <linux/ratelimit.h> #include <crypto/hash.h> #include <linux/falloc.h> #include <linux/percpu-rwsem.h> #include <linux/fiemap.h> #ifdef __KERNEL__ #include <linux/compat.h> #endif #include <linux/fscrypt.h> #include <linux/fsverity.h> #include <linux/compiler.h> /* * The fourth extended filesystem constants/structures */ /* * with AGGRESSIVE_CHECK allocator runs consistency checks over * structures. these checks slow things down a lot */ #define AGGRESSIVE_CHECK__ /* * with DOUBLE_CHECK defined mballoc creates persistent in-core * bitmaps, maintains and uses them to check for double allocations */ #define DOUBLE_CHECK__ /* * Define EXT4FS_DEBUG to produce debug messages */ #undef EXT4FS_DEBUG /* * Debug code */ #ifdef EXT4FS_DEBUG #define ext4_debug(f, a...) \ do { \ printk(KERN_DEBUG "EXT4-fs DEBUG (%s, %d): %s:", \ __FILE__, __LINE__, __func__); \ printk(KERN_DEBUG f, ## a); \ } while (0) #else #define ext4_debug(fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif /* * Turn on EXT_DEBUG to enable ext4_ext_show_path/leaf/move in extents.c */ #define EXT_DEBUG__ /* * Dynamic printk for controlled extents debugging. */ #ifdef CONFIG_EXT4_DEBUG #define ext_debug(ino, fmt, ...) \ pr_debug("[%s/%d] EXT4-fs (%s): ino %lu: (%s, %d): %s:" fmt, \ current->comm, task_pid_nr(current), \ ino->i_sb->s_id, ino->i_ino, __FILE__, __LINE__, \ __func__, ##__VA_ARGS__) #else #define ext_debug(ino, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif /* data type for block offset of block group */ typedef int ext4_grpblk_t; /* data type for filesystem-wide blocks number */ typedef unsigned long long ext4_fsblk_t; /* data type for file logical block number */ typedef __u32 ext4_lblk_t; /* data type for block group number */ typedef unsigned int ext4_group_t; enum SHIFT_DIRECTION { SHIFT_LEFT = 0, SHIFT_RIGHT, }; /* * Flags used in mballoc's allocation_context flags field. * * Also used to show what's going on for debugging purposes when the * flag field is exported via the traceport interface */ /* prefer goal again. length */ #define EXT4_MB_HINT_MERGE 0x0001 /* blocks already reserved */ #define EXT4_MB_HINT_RESERVED 0x0002 /* metadata is being allocated */ #define EXT4_MB_HINT_METADATA 0x0004 /* first blocks in the file */ #define EXT4_MB_HINT_FIRST 0x0008 /* search for the best chunk */ #define EXT4_MB_HINT_BEST 0x0010 /* data is being allocated */ #define EXT4_MB_HINT_DATA 0x0020 /* don't preallocate (for tails) */ #define EXT4_MB_HINT_NOPREALLOC 0x0040 /* allocate for locality group */ #define EXT4_MB_HINT_GROUP_ALLOC 0x0080 /* allocate goal blocks or none */ #define EXT4_MB_HINT_GOAL_ONLY 0x0100 /* goal is meaningful */ #define EXT4_MB_HINT_TRY_GOAL 0x0200 /* blocks already pre-reserved by delayed allocation */ #define EXT4_MB_DELALLOC_RESERVED 0x0400 /* We are doing stream allocation */ #define EXT4_MB_STREAM_ALLOC 0x0800 /* Use reserved root blocks if needed */ #define EXT4_MB_USE_ROOT_BLOCKS 0x1000 /* Use blocks from reserved pool */ #define EXT4_MB_USE_RESERVED 0x2000 /* Do strict check for free blocks while retrying block allocation */ #define EXT4_MB_STRICT_CHECK 0x4000 struct ext4_allocation_request { /* target inode for block we're allocating */ struct inode *inode; /* how many blocks we want to allocate */ unsigned int len; /* logical block in target inode */ ext4_lblk_t logical; /* the closest logical allocated block to the left */ ext4_lblk_t lleft; /* the closest logical allocated block to the right */ ext4_lblk_t lright; /* phys. target (a hint) */ ext4_fsblk_t goal; /* phys. block for the closest logical allocated block to the left */ ext4_fsblk_t pleft; /* phys. block for the closest logical allocated block to the right */ ext4_fsblk_t pright; /* flags. see above EXT4_MB_HINT_* */ unsigned int flags; }; /* * Logical to physical block mapping, used by ext4_map_blocks() * * This structure is used to pass requests into ext4_map_blocks() as * well as to store the information returned by ext4_map_blocks(). It * takes less room on the stack than a struct buffer_head. */ #define EXT4_MAP_NEW BIT(BH_New) #define EXT4_MAP_MAPPED BIT(BH_Mapped) #define EXT4_MAP_UNWRITTEN BIT(BH_Unwritten) #define EXT4_MAP_BOUNDARY BIT(BH_Boundary) #define EXT4_MAP_FLAGS (EXT4_MAP_NEW | EXT4_MAP_MAPPED |\ EXT4_MAP_UNWRITTEN | EXT4_MAP_BOUNDARY) struct ext4_map_blocks { ext4_fsblk_t m_pblk; ext4_lblk_t m_lblk; unsigned int m_len; unsigned int m_flags; }; /* * Block validity checking, system zone rbtree. */ struct ext4_system_blocks { struct rb_root root; struct rcu_head rcu; }; /* * Flags for ext4_io_end->flags */ #define EXT4_IO_END_UNWRITTEN 0x0001 struct ext4_io_end_vec { struct list_head list; /* list of io_end_vec */ loff_t offset; /* offset in the file */ ssize_t size; /* size of the extent */ }; /* * For converting unwritten extents on a work queue. 'handle' is used for * buffered writeback. */ typedef struct ext4_io_end { struct list_head list; /* per-file finished IO list */ handle_t *handle; /* handle reserved for extent * conversion */ struct inode *inode; /* file being written to */ struct bio *bio; /* Linked list of completed * bios covering the extent */ unsigned int flag; /* unwritten or not */ atomic_t count; /* reference counter */ struct list_head list_vec; /* list of ext4_io_end_vec */ } ext4_io_end_t; struct ext4_io_submit { struct writeback_control *io_wbc; struct bio *io_bio; ext4_io_end_t *io_end; sector_t io_next_block; }; /* * Special inodes numbers */ #define EXT4_BAD_INO 1 /* Bad blocks inode */ #define EXT4_ROOT_INO 2 /* Root inode */ #define EXT4_USR_QUOTA_INO 3 /* User quota inode */ #define EXT4_GRP_QUOTA_INO 4 /* Group quota inode */ #define EXT4_BOOT_LOADER_INO 5 /* Boot loader inode */ #define EXT4_UNDEL_DIR_INO 6 /* Undelete directory inode */ #define EXT4_RESIZE_INO 7 /* Reserved group descriptors inode */ #define EXT4_JOURNAL_INO 8 /* Journal inode */ /* First non-reserved inode for old ext4 filesystems */ #define EXT4_GOOD_OLD_FIRST_INO 11 /* * Maximal count of links to a file */ #define EXT4_LINK_MAX 65000 /* * Macro-instructions used to manage several block sizes */ #define EXT4_MIN_BLOCK_SIZE 1024 #define EXT4_MAX_BLOCK_SIZE 65536 #define EXT4_MIN_BLOCK_LOG_SIZE 10 #define EXT4_MAX_BLOCK_LOG_SIZE 16 #define EXT4_MAX_CLUSTER_LOG_SIZE 30 #ifdef __KERNEL__ # define EXT4_BLOCK_SIZE(s) ((s)->s_blocksize) #else # define EXT4_BLOCK_SIZE(s) (EXT4_MIN_BLOCK_SIZE << (s)->s_log_block_size) #endif #define EXT4_ADDR_PER_BLOCK(s) (EXT4_BLOCK_SIZE(s) / sizeof(__u32)) #define EXT4_CLUSTER_SIZE(s) (EXT4_BLOCK_SIZE(s) << \ EXT4_SB(s)->s_cluster_bits) #ifdef __KERNEL__ # define EXT4_BLOCK_SIZE_BITS(s) ((s)->s_blocksize_bits) # define EXT4_CLUSTER_BITS(s) (EXT4_SB(s)->s_cluster_bits) #else # define EXT4_BLOCK_SIZE_BITS(s) ((s)->s_log_block_size + 10) #endif #ifdef __KERNEL__ #define EXT4_ADDR_PER_BLOCK_BITS(s) (EXT4_SB(s)->s_addr_per_block_bits) #define EXT4_INODE_SIZE(s) (EXT4_SB(s)->s_inode_size) #define EXT4_FIRST_INO(s) (EXT4_SB(s)->s_first_ino) #else #define EXT4_INODE_SIZE(s) (((s)->s_rev_level == EXT4_GOOD_OLD_REV) ? \ EXT4_GOOD_OLD_INODE_SIZE : \ (s)->s_inode_size) #define EXT4_FIRST_INO(s) (((s)->s_rev_level == EXT4_GOOD_OLD_REV) ? \ EXT4_GOOD_OLD_FIRST_INO : \ (s)->s_first_ino) #endif #define EXT4_BLOCK_ALIGN(size, blkbits) ALIGN((size), (1 << (blkbits))) #define EXT4_MAX_BLOCKS(size, offset, blkbits) \ ((EXT4_BLOCK_ALIGN(size + offset, blkbits) >> blkbits) - (offset >> \ blkbits)) /* Translate a block number to a cluster number */ #define EXT4_B2C(sbi, blk) ((blk) >> (sbi)->s_cluster_bits) /* Translate a cluster number to a block number */ #define EXT4_C2B(sbi, cluster) ((cluster) << (sbi)->s_cluster_bits) /* Translate # of blks to # of clusters */ #define EXT4_NUM_B2C(sbi, blks) (((blks) + (sbi)->s_cluster_ratio - 1) >> \ (sbi)->s_cluster_bits) /* Mask out the low bits to get the starting block of the cluster */ #define EXT4_PBLK_CMASK(s, pblk) ((pblk) & \ ~((ext4_fsblk_t) (s)->s_cluster_ratio - 1)) #define EXT4_LBLK_CMASK(s, lblk) ((lblk) & \ ~((ext4_lblk_t) (s)->s_cluster_ratio - 1)) /* Fill in the low bits to get the last block of the cluster */ #define EXT4_LBLK_CFILL(sbi, lblk) ((lblk) | \ ((ext4_lblk_t) (sbi)->s_cluster_ratio - 1)) /* Get the cluster offset */ #define EXT4_PBLK_COFF(s, pblk) ((pblk) & \ ((ext4_fsblk_t) (s)->s_cluster_ratio - 1)) #define EXT4_LBLK_COFF(s, lblk) ((lblk) & \ ((ext4_lblk_t) (s)->s_cluster_ratio - 1)) /* * Structure of a blocks group descriptor */ struct ext4_group_desc { __le32 bg_block_bitmap_lo; /* Blocks bitmap block */ __le32 bg_inode_bitmap_lo; /* Inodes bitmap block */ __le32 bg_inode_table_lo; /* Inodes table block */ __le16 bg_free_blocks_count_lo;/* Free blocks count */ __le16 bg_free_inodes_count_lo;/* Free inodes count */ __le16 bg_used_dirs_count_lo; /* Directories count */ __le16 bg_flags; /* EXT4_BG_flags (INODE_UNINIT, etc) */ __le32 bg_exclude_bitmap_lo; /* Exclude bitmap for snapshots */ __le16 bg_block_bitmap_csum_lo;/* crc32c(s_uuid+grp_num+bbitmap) LE */ __le16 bg_inode_bitmap_csum_lo;/* crc32c(s_uuid+grp_num+ibitmap) LE */ __le16 bg_itable_unused_lo; /* Unused inodes count */ __le16 bg_checksum; /* crc16(sb_uuid+group+desc) */ __le32 bg_block_bitmap_hi; /* Blocks bitmap block MSB */ __le32 bg_inode_bitmap_hi; /* Inodes bitmap block MSB */ __le32 bg_inode_table_hi; /* Inodes table block MSB */ __le16 bg_free_blocks_count_hi;/* Free blocks count MSB */ __le16 bg_free_inodes_count_hi;/* Free inodes count MSB */ __le16 bg_used_dirs_count_hi; /* Directories count MSB */ __le16 bg_itable_unused_hi; /* Unused inodes count MSB */ __le32 bg_exclude_bitmap_hi; /* Exclude bitmap block MSB */ __le16 bg_block_bitmap_csum_hi;/* crc32c(s_uuid+grp_num+bbitmap) BE */ __le16 bg_inode_bitmap_csum_hi;/* crc32c(s_uuid+grp_num+ibitmap) BE */ __u32 bg_reserved; }; #define EXT4_BG_INODE_BITMAP_CSUM_HI_END \ (offsetof(struct ext4_group_desc, bg_inode_bitmap_csum_hi) + \ sizeof(__le16)) #define EXT4_BG_BLOCK_BITMAP_CSUM_HI_END \ (offsetof(struct ext4_group_desc, bg_block_bitmap_csum_hi) + \ sizeof(__le16)) /* * Structure of a flex block group info */ struct flex_groups { atomic64_t free_clusters; atomic_t free_inodes; atomic_t used_dirs; }; #define EXT4_BG_INODE_UNINIT 0x0001 /* Inode table/bitmap not in use */ #define EXT4_BG_BLOCK_UNINIT 0x0002 /* Block bitmap not in use */ #define EXT4_BG_INODE_ZEROED 0x0004 /* On-disk itable initialized to zero */ /* * Macro-instructions used to manage group descriptors */ #define EXT4_MIN_DESC_SIZE 32 #define EXT4_MIN_DESC_SIZE_64BIT 64 #define EXT4_MAX_DESC_SIZE EXT4_MIN_BLOCK_SIZE #define EXT4_DESC_SIZE(s) (EXT4_SB(s)->s_desc_size) #ifdef __KERNEL__ # define EXT4_BLOCKS_PER_GROUP(s) (EXT4_SB(s)->s_blocks_per_group) # define EXT4_CLUSTERS_PER_GROUP(s) (EXT4_SB(s)->s_clusters_per_group) # define EXT4_DESC_PER_BLOCK(s) (EXT4_SB(s)->s_desc_per_block) # define EXT4_INODES_PER_GROUP(s) (EXT4_SB(s)->s_inodes_per_group) # define EXT4_DESC_PER_BLOCK_BITS(s) (EXT4_SB(s)->s_desc_per_block_bits) #else # define EXT4_BLOCKS_PER_GROUP(s) ((s)->s_blocks_per_group) # define EXT4_DESC_PER_BLOCK(s) (EXT4_BLOCK_SIZE(s) / EXT4_DESC_SIZE(s)) # define EXT4_INODES_PER_GROUP(s) ((s)->s_inodes_per_group) #endif /* * Constants relative to the data blocks */ #define EXT4_NDIR_BLOCKS 12 #define EXT4_IND_BLOCK EXT4_NDIR_BLOCKS #define EXT4_DIND_BLOCK (EXT4_IND_BLOCK + 1) #define EXT4_TIND_BLOCK (EXT4_DIND_BLOCK + 1) #define EXT4_N_BLOCKS (EXT4_TIND_BLOCK + 1) /* * Inode flags */ #define EXT4_SECRM_FL 0x00000001 /* Secure deletion */ #define EXT4_UNRM_FL 0x00000002 /* Undelete */ #define EXT4_COMPR_FL 0x00000004 /* Compress file */ #define EXT4_SYNC_FL 0x00000008 /* Synchronous updates */ #define EXT4_IMMUTABLE_FL 0x00000010 /* Immutable file */ #define EXT4_APPEND_FL 0x00000020 /* writes to file may only append */ #define EXT4_NODUMP_FL 0x00000040 /* do not dump file */ #define EXT4_NOATIME_FL 0x00000080 /* do not update atime */ /* Reserved for compression usage... */ #define EXT4_DIRTY_FL 0x00000100 #define EXT4_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */ #define EXT4_NOCOMPR_FL 0x00000400 /* Don't compress */ /* nb: was previously EXT2_ECOMPR_FL */ #define EXT4_ENCRYPT_FL 0x00000800 /* encrypted file */ /* End compression flags --- maybe not all used */ #define EXT4_INDEX_FL 0x00001000 /* hash-indexed directory */ #define EXT4_IMAGIC_FL 0x00002000 /* AFS directory */ #define EXT4_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */ #define EXT4_NOTAIL_FL 0x00008000 /* file tail should not be merged */ #define EXT4_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ #define EXT4_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/ #define EXT4_HUGE_FILE_FL 0x00040000 /* Set to each huge file */ #define EXT4_EXTENTS_FL 0x00080000 /* Inode uses extents */ #define EXT4_VERITY_FL 0x00100000 /* Verity protected inode */ #define EXT4_EA_INODE_FL 0x00200000 /* Inode used for large EA */ /* 0x00400000 was formerly EXT4_EOFBLOCKS_FL */ #define EXT4_DAX_FL 0x02000000 /* Inode is DAX */ #define EXT4_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */ #define EXT4_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ #define EXT4_CASEFOLD_FL 0x40000000 /* Casefolded directory */ #define EXT4_RESERVED_FL 0x80000000 /* reserved for ext4 lib */ /* User modifiable flags */ #define EXT4_FL_USER_MODIFIABLE (EXT4_SECRM_FL | \ EXT4_UNRM_FL | \ EXT4_COMPR_FL | \ EXT4_SYNC_FL | \ EXT4_IMMUTABLE_FL | \ EXT4_APPEND_FL | \ EXT4_NODUMP_FL | \ EXT4_NOATIME_FL | \ EXT4_JOURNAL_DATA_FL | \ EXT4_NOTAIL_FL | \ EXT4_DIRSYNC_FL | \ EXT4_TOPDIR_FL | \ EXT4_EXTENTS_FL | \ 0x00400000 /* EXT4_EOFBLOCKS_FL */ | \ EXT4_DAX_FL | \ EXT4_PROJINHERIT_FL | \ EXT4_CASEFOLD_FL) /* User visible flags */ #define EXT4_FL_USER_VISIBLE (EXT4_FL_USER_MODIFIABLE | \ EXT4_DIRTY_FL | \ EXT4_COMPRBLK_FL | \ EXT4_NOCOMPR_FL | \ EXT4_ENCRYPT_FL | \ EXT4_INDEX_FL | \ EXT4_VERITY_FL | \ EXT4_INLINE_DATA_FL) /* Flags we can manipulate with through FS_IOC_FSSETXATTR */ #define EXT4_FL_XFLAG_VISIBLE (EXT4_SYNC_FL | \ EXT4_IMMUTABLE_FL | \ EXT4_APPEND_FL | \ EXT4_NODUMP_FL | \ EXT4_NOATIME_FL | \ EXT4_PROJINHERIT_FL | \ EXT4_DAX_FL) /* Flags that should be inherited by new inodes from their parent. */ #define EXT4_FL_INHERITED (EXT4_SECRM_FL | EXT4_UNRM_FL | EXT4_COMPR_FL |\ EXT4_SYNC_FL | EXT4_NODUMP_FL | EXT4_NOATIME_FL |\ EXT4_NOCOMPR_FL | EXT4_JOURNAL_DATA_FL |\ EXT4_NOTAIL_FL | EXT4_DIRSYNC_FL |\ EXT4_PROJINHERIT_FL | EXT4_CASEFOLD_FL |\ EXT4_DAX_FL) /* Flags that are appropriate for regular files (all but dir-specific ones). */ #define EXT4_REG_FLMASK (~(EXT4_DIRSYNC_FL | EXT4_TOPDIR_FL | EXT4_CASEFOLD_FL |\ EXT4_PROJINHERIT_FL)) /* Flags that are appropriate for non-directories/regular files. */ #define EXT4_OTHER_FLMASK (EXT4_NODUMP_FL | EXT4_NOATIME_FL) /* The only flags that should be swapped */ #define EXT4_FL_SHOULD_SWAP (EXT4_HUGE_FILE_FL | EXT4_EXTENTS_FL) /* Flags which are mutually exclusive to DAX */ #define EXT4_DAX_MUT_EXCL (EXT4_VERITY_FL | EXT4_ENCRYPT_FL |\ EXT4_JOURNAL_DATA_FL | EXT4_INLINE_DATA_FL) /* Mask out flags that are inappropriate for the given type of inode. */ static inline __u32 ext4_mask_flags(umode_t mode, __u32 flags) { if (S_ISDIR(mode)) return flags; else if (S_ISREG(mode)) return flags & EXT4_REG_FLMASK; else return flags & EXT4_OTHER_FLMASK; } /* * Inode flags used for atomic set/get */ enum { EXT4_INODE_SECRM = 0, /* Secure deletion */ EXT4_INODE_UNRM = 1, /* Undelete */ EXT4_INODE_COMPR = 2, /* Compress file */ EXT4_INODE_SYNC = 3, /* Synchronous updates */ EXT4_INODE_IMMUTABLE = 4, /* Immutable file */ EXT4_INODE_APPEND = 5, /* writes to file may only append */ EXT4_INODE_NODUMP = 6, /* do not dump file */ EXT4_INODE_NOATIME = 7, /* do not update atime */ /* Reserved for compression usage... */ EXT4_INODE_DIRTY = 8, EXT4_INODE_COMPRBLK = 9, /* One or more compressed clusters */ EXT4_INODE_NOCOMPR = 10, /* Don't compress */ EXT4_INODE_ENCRYPT = 11, /* Encrypted file */ /* End compression flags --- maybe not all used */ EXT4_INODE_INDEX = 12, /* hash-indexed directory */ EXT4_INODE_IMAGIC = 13, /* AFS directory */ EXT4_INODE_JOURNAL_DATA = 14, /* file data should be journaled */ EXT4_INODE_NOTAIL = 15, /* file tail should not be merged */ EXT4_INODE_DIRSYNC = 16, /* dirsync behaviour (directories only) */ EXT4_INODE_TOPDIR = 17, /* Top of directory hierarchies*/ EXT4_INODE_HUGE_FILE = 18, /* Set to each huge file */ EXT4_INODE_EXTENTS = 19, /* Inode uses extents */ EXT4_INODE_VERITY = 20, /* Verity protected inode */ EXT4_INODE_EA_INODE = 21, /* Inode used for large EA */ /* 22 was formerly EXT4_INODE_EOFBLOCKS */ EXT4_INODE_DAX = 25, /* Inode is DAX */ EXT4_INODE_INLINE_DATA = 28, /* Data in inode. */ EXT4_INODE_PROJINHERIT = 29, /* Create with parents projid */ EXT4_INODE_CASEFOLD = 30, /* Casefolded directory */ EXT4_INODE_RESERVED = 31, /* reserved for ext4 lib */ }; /* * Since it's pretty easy to mix up bit numbers and hex values, we use a * build-time check to make sure that EXT4_XXX_FL is consistent with respect to * EXT4_INODE_XXX. If all is well, the macros will be dropped, so, it won't cost * any extra space in the compiled kernel image, otherwise, the build will fail. * It's important that these values are the same, since we are using * EXT4_INODE_XXX to test for flag values, but EXT4_XXX_FL must be consistent * with the values of FS_XXX_FL defined in include/linux/fs.h and the on-disk * values found in ext2, ext3 and ext4 filesystems, and of course the values * defined in e2fsprogs. * * It's not paranoia if the Murphy's Law really *is* out to get you. :-) */ #define TEST_FLAG_VALUE(FLAG) (EXT4_##FLAG##_FL == (1U << EXT4_INODE_##FLAG)) #define CHECK_FLAG_VALUE(FLAG) BUILD_BUG_ON(!TEST_FLAG_VALUE(FLAG)) static inline void ext4_check_flag_values(void) { CHECK_FLAG_VALUE(SECRM); CHECK_FLAG_VALUE(UNRM); CHECK_FLAG_VALUE(COMPR); CHECK_FLAG_VALUE(SYNC); CHECK_FLAG_VALUE(IMMUTABLE); CHECK_FLAG_VALUE(APPEND); CHECK_FLAG_VALUE(NODUMP); CHECK_FLAG_VALUE(NOATIME); CHECK_FLAG_VALUE(DIRTY); CHECK_FLAG_VALUE(COMPRBLK); CHECK_FLAG_VALUE(NOCOMPR); CHECK_FLAG_VALUE(ENCRYPT); CHECK_FLAG_VALUE(INDEX); CHECK_FLAG_VALUE(IMAGIC); CHECK_FLAG_VALUE(JOURNAL_DATA); CHECK_FLAG_VALUE(NOTAIL); CHECK_FLAG_VALUE(DIRSYNC); CHECK_FLAG_VALUE(TOPDIR); CHECK_FLAG_VALUE(HUGE_FILE); CHECK_FLAG_VALUE(EXTENTS); CHECK_FLAG_VALUE(VERITY); CHECK_FLAG_VALUE(EA_INODE); CHECK_FLAG_VALUE(INLINE_DATA); CHECK_FLAG_VALUE(PROJINHERIT); CHECK_FLAG_VALUE(CASEFOLD); CHECK_FLAG_VALUE(RESERVED); } /* Used to pass group descriptor data when online resize is done */ struct ext4_new_group_input { __u32 group; /* Group number for this data */ __u64 block_bitmap; /* Absolute block number of block bitmap */ __u64 inode_bitmap; /* Absolute block number of inode bitmap */ __u64 inode_table; /* Absolute block number of inode table start */ __u32 blocks_count; /* Total number of blocks in this group */ __u16 reserved_blocks; /* Number of reserved blocks in this group */ __u16 unused; }; #if defined(__KERNEL__) && defined(CONFIG_COMPAT) struct compat_ext4_new_group_input { u32 group; compat_u64 block_bitmap; compat_u64 inode_bitmap; compat_u64 inode_table; u32 blocks_count; u16 reserved_blocks; u16 unused; }; #endif /* The struct ext4_new_group_input in kernel space, with free_blocks_count */ struct ext4_new_group_data { __u32 group; __u64 block_bitmap; __u64 inode_bitmap; __u64 inode_table; __u32 blocks_count; __u16 reserved_blocks; __u16 mdata_blocks; __u32 free_clusters_count; }; /* Indexes used to index group tables in ext4_new_group_data */ enum { BLOCK_BITMAP = 0, /* block bitmap */ INODE_BITMAP, /* inode bitmap */ INODE_TABLE, /* inode tables */ GROUP_TABLE_COUNT, }; /* * Flags used by ext4_map_blocks() */ /* Allocate any needed blocks and/or convert an unwritten extent to be an initialized ext4 */ #define EXT4_GET_BLOCKS_CREATE 0x0001 /* Request the creation of an unwritten extent */ #define EXT4_GET_BLOCKS_UNWRIT_EXT 0x0002 #define EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT (EXT4_GET_BLOCKS_UNWRIT_EXT|\ EXT4_GET_BLOCKS_CREATE) /* Caller is from the delayed allocation writeout path * finally doing the actual allocation of delayed blocks */ #define EXT4_GET_BLOCKS_DELALLOC_RESERVE 0x0004 /* caller is from the direct IO path, request to creation of an unwritten extents if not allocated, split the unwritten extent if blocks has been preallocated already*/ #define EXT4_GET_BLOCKS_PRE_IO 0x0008 #define EXT4_GET_BLOCKS_CONVERT 0x0010 #define EXT4_GET_BLOCKS_IO_CREATE_EXT (EXT4_GET_BLOCKS_PRE_IO|\ EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT) /* Convert extent to initialized after IO complete */ #define EXT4_GET_BLOCKS_IO_CONVERT_EXT (EXT4_GET_BLOCKS_CONVERT|\ EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT) /* Eventual metadata allocation (due to growing extent tree) * should not fail, so try to use reserved blocks for that.*/ #define EXT4_GET_BLOCKS_METADATA_NOFAIL 0x0020 /* Don't normalize allocation size (used for fallocate) */ #define EXT4_GET_BLOCKS_NO_NORMALIZE 0x0040 /* Convert written extents to unwritten */ #define EXT4_GET_BLOCKS_CONVERT_UNWRITTEN 0x0100 /* Write zeros to newly created written extents */ #define EXT4_GET_BLOCKS_ZERO 0x0200 #define EXT4_GET_BLOCKS_CREATE_ZERO (EXT4_GET_BLOCKS_CREATE |\ EXT4_GET_BLOCKS_ZERO) /* Caller will submit data before dropping transaction handle. This * allows jbd2 to avoid submitting data before commit. */ #define EXT4_GET_BLOCKS_IO_SUBMIT 0x0400 /* * The bit position of these flags must not overlap with any of the * EXT4_GET_BLOCKS_*. They are used by ext4_find_extent(), * read_extent_tree_block(), ext4_split_extent_at(), * ext4_ext_insert_extent(), and ext4_ext_create_new_leaf(). * EXT4_EX_NOCACHE is used to indicate that the we shouldn't be * caching the extents when reading from the extent tree while a * truncate or punch hole operation is in progress. */ #define EXT4_EX_NOCACHE 0x40000000 #define EXT4_EX_FORCE_CACHE 0x20000000 #define EXT4_EX_NOFAIL 0x10000000 /* * Flags used by ext4_free_blocks */ #define EXT4_FREE_BLOCKS_METADATA 0x0001 #define EXT4_FREE_BLOCKS_FORGET 0x0002 #define EXT4_FREE_BLOCKS_VALIDATED 0x0004 #define EXT4_FREE_BLOCKS_NO_QUOT_UPDATE 0x0008 #define EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER 0x0010 #define EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER 0x0020 #define EXT4_FREE_BLOCKS_RERESERVE_CLUSTER 0x0040 /* * ioctl commands */ #define EXT4_IOC_GETVERSION _IOR('f', 3, long) #define EXT4_IOC_SETVERSION _IOW('f', 4, long) #define EXT4_IOC_GETVERSION_OLD FS_IOC_GETVERSION #define EXT4_IOC_SETVERSION_OLD FS_IOC_SETVERSION #define EXT4_IOC_GETRSVSZ _IOR('f', 5, long) #define EXT4_IOC_SETRSVSZ _IOW('f', 6, long) #define EXT4_IOC_GROUP_EXTEND _IOW('f', 7, unsigned long) #define EXT4_IOC_GROUP_ADD _IOW('f', 8, struct ext4_new_group_input) #define EXT4_IOC_MIGRATE _IO('f', 9) /* note ioctl 10 reserved for an early version of the FIEMAP ioctl */ /* note ioctl 11 reserved for filesystem-independent FIEMAP ioctl */ #define EXT4_IOC_ALLOC_DA_BLKS _IO('f', 12) #define EXT4_IOC_MOVE_EXT _IOWR('f', 15, struct move_extent) #define EXT4_IOC_RESIZE_FS _IOW('f', 16, __u64) #define EXT4_IOC_SWAP_BOOT _IO('f', 17) #define EXT4_IOC_PRECACHE_EXTENTS _IO('f', 18) /* ioctl codes 19--39 are reserved for fscrypt */ #define EXT4_IOC_CLEAR_ES_CACHE _IO('f', 40) #define EXT4_IOC_GETSTATE _IOW('f', 41, __u32) #define EXT4_IOC_GET_ES_CACHE _IOWR('f', 42, struct fiemap) #define EXT4_IOC_SHUTDOWN _IOR ('X', 125, __u32) /* * Flags for going down operation */ #define EXT4_GOING_FLAGS_DEFAULT 0x0 /* going down */ #define EXT4_GOING_FLAGS_LOGFLUSH 0x1 /* flush log but not data */ #define EXT4_GOING_FLAGS_NOLOGFLUSH 0x2 /* don't flush log nor data */ /* * Flags returned by EXT4_IOC_GETSTATE * * We only expose to userspace a subset of the state flags in * i_state_flags */ #define EXT4_STATE_FLAG_EXT_PRECACHED 0x00000001 #define EXT4_STATE_FLAG_NEW 0x00000002 #define EXT4_STATE_FLAG_NEWENTRY 0x00000004 #define EXT4_STATE_FLAG_DA_ALLOC_CLOSE 0x00000008 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) /* * ioctl commands in 32 bit emulation */ #define EXT4_IOC32_GETVERSION _IOR('f', 3, int) #define EXT4_IOC32_SETVERSION _IOW('f', 4, int) #define EXT4_IOC32_GETRSVSZ _IOR('f', 5, int) #define EXT4_IOC32_SETRSVSZ _IOW('f', 6, int) #define EXT4_IOC32_GROUP_EXTEND _IOW('f', 7, unsigned int) #define EXT4_IOC32_GROUP_ADD _IOW('f', 8, struct compat_ext4_new_group_input) #define EXT4_IOC32_GETVERSION_OLD FS_IOC32_GETVERSION #define EXT4_IOC32_SETVERSION_OLD FS_IOC32_SETVERSION #endif /* * Returned by EXT4_IOC_GET_ES_CACHE as an additional possible flag. * It indicates that the entry in extent status cache is for a hole. */ #define EXT4_FIEMAP_EXTENT_HOLE 0x08000000 /* Max physical block we can address w/o extents */ #define EXT4_MAX_BLOCK_FILE_PHYS 0xFFFFFFFF /* Max logical block we can support */ #define EXT4_MAX_LOGICAL_BLOCK 0xFFFFFFFE /* * Structure of an inode on the disk */ struct ext4_inode { __le16 i_mode; /* File mode */ __le16 i_uid; /* Low 16 bits of Owner Uid */ __le32 i_size_lo; /* Size in bytes */ __le32 i_atime; /* Access time */ __le32 i_ctime; /* Inode Change time */ __le32 i_mtime; /* Modification time */ __le32 i_dtime; /* Deletion Time */ __le16 i_gid; /* Low 16 bits of Group Id */ __le16 i_links_count; /* Links count */ __le32 i_blocks_lo; /* Blocks count */ __le32 i_flags; /* File flags */ union { struct { __le32 l_i_version; } linux1; struct { __u32 h_i_translator; } hurd1; struct { __u32 m_i_reserved1; } masix1; } osd1; /* OS dependent 1 */ __le32 i_block[EXT4_N_BLOCKS];/* Pointers to blocks */ __le32 i_generation; /* File version (for NFS) */ __le32 i_file_acl_lo; /* File ACL */ __le32 i_size_high; __le32 i_obso_faddr; /* Obsoleted fragment address */ union { struct { __le16 l_i_blocks_high; /* were l_i_reserved1 */ __le16 l_i_file_acl_high; __le16 l_i_uid_high; /* these 2 fields */ __le16 l_i_gid_high; /* were reserved2[0] */ __le16 l_i_checksum_lo;/* crc32c(uuid+inum+inode) LE */ __le16 l_i_reserved; } linux2; struct { __le16 h_i_reserved1; /* Obsoleted fragment number/size which are removed in ext4 */ __u16 h_i_mode_high; __u16 h_i_uid_high; __u16 h_i_gid_high; __u32 h_i_author; } hurd2; struct { __le16 h_i_reserved1; /* Obsoleted fragment number/size which are removed in ext4 */ __le16 m_i_file_acl_high; __u32 m_i_reserved2[2]; } masix2; } osd2; /* OS dependent 2 */ __le16 i_extra_isize; __le16 i_checksum_hi; /* crc32c(uuid+inum+inode) BE */ __le32 i_ctime_extra; /* extra Change time (nsec << 2 | epoch) */ __le32 i_mtime_extra; /* extra Modification time(nsec << 2 | epoch) */ __le32 i_atime_extra; /* extra Access time (nsec << 2 | epoch) */ __le32 i_crtime; /* File Creation time */ __le32 i_crtime_extra; /* extra FileCreationtime (nsec << 2 | epoch) */ __le32 i_version_hi; /* high 32 bits for 64-bit version */ __le32 i_projid; /* Project ID */ }; struct move_extent { __u32 reserved; /* should be zero */ __u32 donor_fd; /* donor file descriptor */ __u64 orig_start; /* logical start offset in block for orig */ __u64 donor_start; /* logical start offset in block for donor */ __u64 len; /* block length to be moved */ __u64 moved_len; /* moved block length */ }; #define EXT4_EPOCH_BITS 2 #define EXT4_EPOCH_MASK ((1 << EXT4_EPOCH_BITS) - 1) #define EXT4_NSEC_MASK (~0UL << EXT4_EPOCH_BITS) /* * Extended fields will fit into an inode if the filesystem was formatted * with large inodes (-I 256 or larger) and there are not currently any EAs * consuming all of the available space. For new inodes we always reserve * enough space for the kernel's known extended fields, but for inodes * created with an old kernel this might not have been the case. None of * the extended inode fields is critical for correct filesystem operation. * This macro checks if a certain field fits in the inode. Note that * inode-size = GOOD_OLD_INODE_SIZE + i_extra_isize */ #define EXT4_FITS_IN_INODE(ext4_inode, einode, field) \ ((offsetof(typeof(*ext4_inode), field) + \ sizeof((ext4_inode)->field)) \ <= (EXT4_GOOD_OLD_INODE_SIZE + \ (einode)->i_extra_isize)) \ /* * We use an encoding that preserves the times for extra epoch "00": * * extra msb of adjust for signed * epoch 32-bit 32-bit tv_sec to * bits time decoded 64-bit tv_sec 64-bit tv_sec valid time range * 0 0 1 -0x80000000..-0x00000001 0x000000000 1901-12-13..1969-12-31 * 0 0 0 0x000000000..0x07fffffff 0x000000000 1970-01-01..2038-01-19 * 0 1 1 0x080000000..0x0ffffffff 0x100000000 2038-01-19..2106-02-07 * 0 1 0 0x100000000..0x17fffffff 0x100000000 2106-02-07..2174-02-25 * 1 0 1 0x180000000..0x1ffffffff 0x200000000 2174-02-25..2242-03-16 * 1 0 0 0x200000000..0x27fffffff 0x200000000 2242-03-16..2310-04-04 * 1 1 1 0x280000000..0x2ffffffff 0x300000000 2310-04-04..2378-04-22 * 1 1 0 0x300000000..0x37fffffff 0x300000000 2378-04-22..2446-05-10 * * Note that previous versions of the kernel on 64-bit systems would * incorrectly use extra epoch bits 1,1 for dates between 1901 and * 1970. e2fsck will correct this, assuming that it is run on the * affected filesystem before 2242. */ static inline __le32 ext4_encode_extra_time(struct timespec64 *time) { u32 extra =((time->tv_sec - (s32)time->tv_sec) >> 32) & EXT4_EPOCH_MASK; return cpu_to_le32(extra | (time->tv_nsec << EXT4_EPOCH_BITS)); } static inline void ext4_decode_extra_time(struct timespec64 *time, __le32 extra) { if (unlikely(extra & cpu_to_le32(EXT4_EPOCH_MASK))) time->tv_sec += (u64)(le32_to_cpu(extra) & EXT4_EPOCH_MASK) << 32; time->tv_nsec = (le32_to_cpu(extra) & EXT4_NSEC_MASK) >> EXT4_EPOCH_BITS; } #define EXT4_INODE_SET_XTIME(xtime, inode, raw_inode) \ do { \ if (EXT4_FITS_IN_INODE(raw_inode, EXT4_I(inode), xtime ## _extra)) {\ (raw_inode)->xtime = cpu_to_le32((inode)->xtime.tv_sec); \ (raw_inode)->xtime ## _extra = \ ext4_encode_extra_time(&(inode)->xtime); \ } \ else \ (raw_inode)->xtime = cpu_to_le32(clamp_t(int32_t, (inode)->xtime.tv_sec, S32_MIN, S32_MAX)); \ } while (0) #define EXT4_EINODE_SET_XTIME(xtime, einode, raw_inode) \ do { \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime)) \ (raw_inode)->xtime = cpu_to_le32((einode)->xtime.tv_sec); \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime ## _extra)) \ (raw_inode)->xtime ## _extra = \ ext4_encode_extra_time(&(einode)->xtime); \ } while (0) #define EXT4_INODE_GET_XTIME(xtime, inode, raw_inode) \ do { \ (inode)->xtime.tv_sec = (signed)le32_to_cpu((raw_inode)->xtime); \ if (EXT4_FITS_IN_INODE(raw_inode, EXT4_I(inode), xtime ## _extra)) { \ ext4_decode_extra_time(&(inode)->xtime, \ raw_inode->xtime ## _extra); \ } \ else \ (inode)->xtime.tv_nsec = 0; \ } while (0) #define EXT4_EINODE_GET_XTIME(xtime, einode, raw_inode) \ do { \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime)) \ (einode)->xtime.tv_sec = \ (signed)le32_to_cpu((raw_inode)->xtime); \ else \ (einode)->xtime.tv_sec = 0; \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime ## _extra)) \ ext4_decode_extra_time(&(einode)->xtime, \ raw_inode->xtime ## _extra); \ else \ (einode)->xtime.tv_nsec = 0; \ } while (0) #define i_disk_version osd1.linux1.l_i_version #if defined(__KERNEL__) || defined(__linux__) #define i_reserved1 osd1.linux1.l_i_reserved1 #define i_file_acl_high osd2.linux2.l_i_file_acl_high #define i_blocks_high osd2.linux2.l_i_blocks_high #define i_uid_low i_uid #define i_gid_low i_gid #define i_uid_high osd2.linux2.l_i_uid_high #define i_gid_high osd2.linux2.l_i_gid_high #define i_checksum_lo osd2.linux2.l_i_checksum_lo #elif defined(__GNU__) #define i_translator osd1.hurd1.h_i_translator #define i_uid_high osd2.hurd2.h_i_uid_high #define i_gid_high osd2.hurd2.h_i_gid_high #define i_author osd2.hurd2.h_i_author #elif defined(__masix__) #define i_reserved1 osd1.masix1.m_i_reserved1 #define i_file_acl_high osd2.masix2.m_i_file_acl_high #define i_reserved2 osd2.masix2.m_i_reserved2 #endif /* defined(__KERNEL__) || defined(__linux__) */ #include "extents_status.h" #include "fast_commit.h" /* * Lock subclasses for i_data_sem in the ext4_inode_info structure. * * These are needed to avoid lockdep false positives when we need to * allocate blocks to the quota inode during ext4_map_blocks(), while * holding i_data_sem for a normal (non-quota) inode. Since we don't * do quota tracking for the quota inode, this avoids deadlock (as * well as infinite recursion, since it isn't turtles all the way * down...) * * I_DATA_SEM_NORMAL - Used for most inodes * I_DATA_SEM_OTHER - Used by move_inode.c for the second normal inode * where the second inode has larger inode number * than the first * I_DATA_SEM_QUOTA - Used for quota inodes only * I_DATA_SEM_EA - Used for ea_inodes only */ enum { I_DATA_SEM_NORMAL = 0, I_DATA_SEM_OTHER, I_DATA_SEM_QUOTA, I_DATA_SEM_EA }; /* * fourth extended file system inode data in memory */ struct ext4_inode_info { __le32 i_data[15]; /* unconverted */ __u32 i_dtime; ext4_fsblk_t i_file_acl; /* * i_block_group is the number of the block group which contains * this file's inode. Constant across the lifetime of the inode, * it is used for making block allocation decisions - we try to * place a file's data blocks near its inode block, and new inodes * near to their parent directory's inode. */ ext4_group_t i_block_group; ext4_lblk_t i_dir_start_lookup; #if (BITS_PER_LONG < 64) unsigned long i_state_flags; /* Dynamic state flags */ #endif unsigned long i_flags; /* * Extended attributes can be read independently of the main file * data. Taking i_mutex even when reading would cause contention * between readers of EAs and writers of regular file data, so * instead we synchronize on xattr_sem when reading or changing * EAs. */ struct rw_semaphore xattr_sem; struct list_head i_orphan; /* unlinked but open inodes */ /* Fast commit related info */ struct list_head i_fc_list; /* * inodes that need fast commit * protected by sbi->s_fc_lock. */ /* Start of lblk range that needs to be committed in this fast commit */ ext4_lblk_t i_fc_lblk_start; /* End of lblk range that needs to be committed in this fast commit */ ext4_lblk_t i_fc_lblk_len; /* Number of ongoing updates on this inode */ atomic_t i_fc_updates; /* Fast commit wait queue for this inode */ wait_queue_head_t i_fc_wait; /* Protect concurrent accesses on i_fc_lblk_start, i_fc_lblk_len */ struct mutex i_fc_lock; /* * i_disksize keeps track of what the inode size is ON DISK, not * in memory. During truncate, i_size is set to the new size by * the VFS prior to calling ext4_truncate(), but the filesystem won't * set i_disksize to 0 until the truncate is actually under way. * * The intent is that i_disksize always represents the blocks which * are used by this file. This allows recovery to restart truncate * on orphans if we crash during truncate. We actually write i_disksize * into the on-disk inode when writing inodes out, instead of i_size. * * The only time when i_disksize and i_size may be different is when * a truncate is in progress. The only things which change i_disksize * are ext4_get_block (growth) and ext4_truncate (shrinkth). */ loff_t i_disksize; /* * i_data_sem is for serialising ext4_truncate() against * ext4_getblock(). In the 2.4 ext2 design, great chunks of inode's * data tree are chopped off during truncate. We can't do that in * ext4 because whenever we perform intermediate commits during * truncate, the inode and all the metadata blocks *must* be in a * consistent state which allows truncation of the orphans to restart * during recovery. Hence we must fix the get_block-vs-truncate race * by other means, so we have i_data_sem. */ struct rw_semaphore i_data_sem; /* * i_mmap_sem is for serializing page faults with truncate / punch hole * operations. We have to make sure that new page cannot be faulted in * a section of the inode that is being punched. We cannot easily use * i_data_sem for this since we need protection for the whole punch * operation and i_data_sem ranks below transaction start so we have * to occasionally drop it. */ struct rw_semaphore i_mmap_sem; struct inode vfs_inode; struct jbd2_inode *jinode; spinlock_t i_raw_lock; /* protects updates to the raw inode */ /* * File creation time. Its function is same as that of * struct timespec64 i_{a,c,m}time in the generic inode. */ struct timespec64 i_crtime; /* mballoc */ atomic_t i_prealloc_active; struct list_head i_prealloc_list; spinlock_t i_prealloc_lock; /* extents status tree */ struct ext4_es_tree i_es_tree; rwlock_t i_es_lock; struct list_head i_es_list; unsigned int i_es_all_nr; /* protected by i_es_lock */ unsigned int i_es_shk_nr; /* protected by i_es_lock */ ext4_lblk_t i_es_shrink_lblk; /* Offset where we start searching for extents to shrink. Protected by i_es_lock */ /* ialloc */ ext4_group_t i_last_alloc_group; /* allocation reservation info for delalloc */ /* In case of bigalloc, this refer to clusters rather than blocks */ unsigned int i_reserved_data_blocks; /* pending cluster reservations for bigalloc file systems */ struct ext4_pending_tree i_pending_tree; /* on-disk additional length */ __u16 i_extra_isize; /* Indicate the inline data space. */ u16 i_inline_off; u16 i_inline_size; #ifdef CONFIG_QUOTA /* quota space reservation, managed internally by quota code */ qsize_t i_reserved_quota; #endif /* Lock protecting lists below */ spinlock_t i_completed_io_lock; /* * Completed IOs that need unwritten extents handling and have * transaction reserved */ struct list_head i_rsv_conversion_list; struct work_struct i_rsv_conversion_work; atomic_t i_unwritten; /* Nr. of inflight conversions pending */ spinlock_t i_block_reservation_lock; /* * Transactions that contain inode's metadata needed to complete * fsync and fdatasync, respectively. */ tid_t i_sync_tid; tid_t i_datasync_tid; #ifdef CONFIG_QUOTA struct dquot *i_dquot[MAXQUOTAS]; #endif /* Precomputed uuid+inum+igen checksum for seeding inode checksums */ __u32 i_csum_seed; kprojid_t i_projid; }; /* * File system states */ #define EXT4_VALID_FS 0x0001 /* Unmounted cleanly */ #define EXT4_ERROR_FS 0x0002 /* Errors detected */ #define EXT4_ORPHAN_FS 0x0004 /* Orphans being recovered */ #define EXT4_FC_REPLAY 0x0020 /* Fast commit replay ongoing */ /* * Misc. filesystem flags */ #define EXT2_FLAGS_SIGNED_HASH 0x0001 /* Signed dirhash in use */ #define EXT2_FLAGS_UNSIGNED_HASH 0x0002 /* Unsigned dirhash in use */ #define EXT2_FLAGS_TEST_FILESYS 0x0004 /* to test development code */ /* * Mount flags set via mount options or defaults */ #define EXT4_MOUNT_NO_MBCACHE 0x00001 /* Do not use mbcache */ #define EXT4_MOUNT_GRPID 0x00004 /* Create files with directory's group */ #define EXT4_MOUNT_DEBUG 0x00008 /* Some debugging messages */ #define EXT4_MOUNT_ERRORS_CONT 0x00010 /* Continue on errors */ #define EXT4_MOUNT_ERRORS_RO 0x00020 /* Remount fs ro on errors */ #define EXT4_MOUNT_ERRORS_PANIC 0x00040 /* Panic on errors */ #define EXT4_MOUNT_ERRORS_MASK 0x00070 #define EXT4_MOUNT_MINIX_DF 0x00080 /* Mimics the Minix statfs */ #define EXT4_MOUNT_NOLOAD 0x00100 /* Don't use existing journal*/ #ifdef CONFIG_FS_DAX #define EXT4_MOUNT_DAX_ALWAYS 0x00200 /* Direct Access */ #else #define EXT4_MOUNT_DAX_ALWAYS 0 #endif #define EXT4_MOUNT_DATA_FLAGS 0x00C00 /* Mode for data writes: */ #define EXT4_MOUNT_JOURNAL_DATA 0x00400 /* Write data to journal */ #define EXT4_MOUNT_ORDERED_DATA 0x00800 /* Flush data before commit */ #define EXT4_MOUNT_WRITEBACK_DATA 0x00C00 /* No data ordering */ #define EXT4_MOUNT_UPDATE_JOURNAL 0x01000 /* Update the journal format */ #define EXT4_MOUNT_NO_UID32 0x02000 /* Disable 32-bit UIDs */ #define EXT4_MOUNT_XATTR_USER 0x04000 /* Extended user attributes */ #define EXT4_MOUNT_POSIX_ACL 0x08000 /* POSIX Access Control Lists */ #define EXT4_MOUNT_NO_AUTO_DA_ALLOC 0x10000 /* No auto delalloc mapping */ #define EXT4_MOUNT_BARRIER 0x20000 /* Use block barriers */ #define EXT4_MOUNT_QUOTA 0x40000 /* Some quota option set */ #define EXT4_MOUNT_USRQUOTA 0x80000 /* "old" user quota, * enable enforcement for hidden * quota files */ #define EXT4_MOUNT_GRPQUOTA 0x100000 /* "old" group quota, enable * enforcement for hidden quota * files */ #define EXT4_MOUNT_PRJQUOTA 0x200000 /* Enable project quota * enforcement */ #define EXT4_MOUNT_DIOREAD_NOLOCK 0x400000 /* Enable support for dio read nolocking */ #define EXT4_MOUNT_JOURNAL_CHECKSUM 0x800000 /* Journal checksums */ #define EXT4_MOUNT_JOURNAL_ASYNC_COMMIT 0x1000000 /* Journal Async Commit */ #define EXT4_MOUNT_WARN_ON_ERROR 0x2000000 /* Trigger WARN_ON on error */ #define EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS 0x4000000 #define EXT4_MOUNT_DELALLOC 0x8000000 /* Delalloc support */ #define EXT4_MOUNT_DATA_ERR_ABORT 0x10000000 /* Abort on file data write */ #define EXT4_MOUNT_BLOCK_VALIDITY 0x20000000 /* Block validity checking */ #define EXT4_MOUNT_DISCARD 0x40000000 /* Issue DISCARD requests */ #define EXT4_MOUNT_INIT_INODE_TABLE 0x80000000 /* Initialize uninitialized itables */ /* * Mount flags set either automatically (could not be set by mount option) * based on per file system feature or property or in special cases such as * distinguishing between explicit mount option definition and default. */ #define EXT4_MOUNT2_EXPLICIT_DELALLOC 0x00000001 /* User explicitly specified delalloc */ #define EXT4_MOUNT2_STD_GROUP_SIZE 0x00000002 /* We have standard group size of blocksize * 8 blocks */ #define EXT4_MOUNT2_HURD_COMPAT 0x00000004 /* Support HURD-castrated file systems */ #define EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM 0x00000008 /* User explicitly specified journal checksum */ #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */ #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */ #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */ #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \ ~EXT4_MOUNT_##opt #define set_opt(sb, opt) EXT4_SB(sb)->s_mount_opt |= \ EXT4_MOUNT_##opt #define test_opt(sb, opt) (EXT4_SB(sb)->s_mount_opt & \ EXT4_MOUNT_##opt) #define clear_opt2(sb, opt) EXT4_SB(sb)->s_mount_opt2 &= \ ~EXT4_MOUNT2_##opt #define set_opt2(sb, opt) EXT4_SB(sb)->s_mount_opt2 |= \ EXT4_MOUNT2_##opt #define test_opt2(sb, opt) (EXT4_SB(sb)->s_mount_opt2 & \ EXT4_MOUNT2_##opt) #define ext4_test_and_set_bit __test_and_set_bit_le #define ext4_set_bit __set_bit_le #define ext4_set_bit_atomic ext2_set_bit_atomic #define ext4_test_and_clear_bit __test_and_clear_bit_le #define ext4_clear_bit __clear_bit_le #define ext4_clear_bit_atomic ext2_clear_bit_atomic #define ext4_test_bit test_bit_le #define ext4_find_next_zero_bit find_next_zero_bit_le #define ext4_find_next_bit find_next_bit_le extern void ext4_set_bits(void *bm, int cur, int len); /* * Maximal mount counts between two filesystem checks */ #define EXT4_DFL_MAX_MNT_COUNT 20 /* Allow 20 mounts */ #define EXT4_DFL_CHECKINTERVAL 0 /* Don't use interval check */ /* * Behaviour when detecting errors */ #define EXT4_ERRORS_CONTINUE 1 /* Continue execution */ #define EXT4_ERRORS_RO 2 /* Remount fs read-only */ #define EXT4_ERRORS_PANIC 3 /* Panic */ #define EXT4_ERRORS_DEFAULT EXT4_ERRORS_CONTINUE /* Metadata checksum algorithm codes */ #define EXT4_CRC32C_CHKSUM 1 /* * Structure of the super block */ struct ext4_super_block { /*00*/ __le32 s_inodes_count; /* Inodes count */ __le32 s_blocks_count_lo; /* Blocks count */ __le32 s_r_blocks_count_lo; /* Reserved blocks count */ __le32 s_free_blocks_count_lo; /* Free blocks count */ /*10*/ __le32 s_free_inodes_count; /* Free inodes count */ __le32 s_first_data_block; /* First Data Block */ __le32 s_log_block_size; /* Block size */ __le32 s_log_cluster_size; /* Allocation cluster size */ /*20*/ __le32 s_blocks_per_group; /* # Blocks per group */ __le32 s_clusters_per_group; /* # Clusters per group */ __le32 s_inodes_per_group; /* # Inodes per group */ __le32 s_mtime; /* Mount time */ /*30*/ __le32 s_wtime; /* Write time */ __le16 s_mnt_count; /* Mount count */ __le16 s_max_mnt_count; /* Maximal mount count */ __le16 s_magic; /* Magic signature */ __le16 s_state; /* File system state */ __le16 s_errors; /* Behaviour when detecting errors */ __le16 s_minor_rev_level; /* minor revision level */ /*40*/ __le32 s_lastcheck; /* time of last check */ __le32 s_checkinterval; /* max. time between checks */ __le32 s_creator_os; /* OS */ __le32 s_rev_level; /* Revision level */ /*50*/ __le16 s_def_resuid; /* Default uid for reserved blocks */ __le16 s_def_resgid; /* Default gid for reserved blocks */ /* * These fields are for EXT4_DYNAMIC_REV superblocks only. * * Note: the difference between the compatible feature set and * the incompatible feature set is that if there is a bit set * in the incompatible feature set that the kernel doesn't * know about, it should refuse to mount the filesystem. * * e2fsck's requirements are more strict; if it doesn't know * about a feature in either the compatible or incompatible * feature set, it must abort and not try to meddle with * things it doesn't understand... */ __le32 s_first_ino; /* First non-reserved inode */ __le16 s_inode_size; /* size of inode structure */ __le16 s_block_group_nr; /* block group # of this superblock */ __le32 s_feature_compat; /* compatible feature set */ /*60*/ __le32 s_feature_incompat; /* incompatible feature set */ __le32 s_feature_ro_compat; /* readonly-compatible feature set */ /*68*/ __u8 s_uuid[16]; /* 128-bit uuid for volume */ /*78*/ char s_volume_name[16]; /* volume name */ /*88*/ char s_last_mounted[64] __nonstring; /* directory where last mounted */ /*C8*/ __le32 s_algorithm_usage_bitmap; /* For compression */ /* * Performance hints. Directory preallocation should only * happen if the EXT4_FEATURE_COMPAT_DIR_PREALLOC flag is on. */ __u8 s_prealloc_blocks; /* Nr of blocks to try to preallocate*/ __u8 s_prealloc_dir_blocks; /* Nr to preallocate for dirs */ __le16 s_reserved_gdt_blocks; /* Per group desc for online growth */ /* * Journaling support valid if EXT4_FEATURE_COMPAT_HAS_JOURNAL set. */ /*D0*/ __u8 s_journal_uuid[16]; /* uuid of journal superblock */ /*E0*/ __le32 s_journal_inum; /* inode number of journal file */ __le32 s_journal_dev; /* device number of journal file */ __le32 s_last_orphan; /* start of list of inodes to delete */ __le32 s_hash_seed[4]; /* HTREE hash seed */ __u8 s_def_hash_version; /* Default hash version to use */ __u8 s_jnl_backup_type; __le16 s_desc_size; /* size of group descriptor */ /*100*/ __le32 s_default_mount_opts; __le32 s_first_meta_bg; /* First metablock block group */ __le32 s_mkfs_time; /* When the filesystem was created */ __le32 s_jnl_blocks[17]; /* Backup of the journal inode */ /* 64bit support valid if EXT4_FEATURE_COMPAT_64BIT */ /*150*/ __le32 s_blocks_count_hi; /* Blocks count */ __le32 s_r_blocks_count_hi; /* Reserved blocks count */ __le32 s_free_blocks_count_hi; /* Free blocks count */ __le16 s_min_extra_isize; /* All inodes have at least # bytes */ __le16 s_want_extra_isize; /* New inodes should reserve # bytes */ __le32 s_flags; /* Miscellaneous flags */ __le16 s_raid_stride; /* RAID stride */ __le16 s_mmp_update_interval; /* # seconds to wait in MMP checking */ __le64 s_mmp_block; /* Block for multi-mount protection */ __le32 s_raid_stripe_width; /* blocks on all data disks (N*stride)*/ __u8 s_log_groups_per_flex; /* FLEX_BG group size */ __u8 s_checksum_type; /* metadata checksum algorithm used */ __u8 s_encryption_level; /* versioning level for encryption */ __u8 s_reserved_pad; /* Padding to next 32bits */ __le64 s_kbytes_written; /* nr of lifetime kilobytes written */ __le32 s_snapshot_inum; /* Inode number of active snapshot */ __le32 s_snapshot_id; /* sequential ID of active snapshot */ __le64 s_snapshot_r_blocks_count; /* reserved blocks for active snapshot's future use */ __le32 s_snapshot_list; /* inode number of the head of the on-disk snapshot list */ #define EXT4_S_ERR_START offsetof(struct ext4_super_block, s_error_count) __le32 s_error_count; /* number of fs errors */ __le32 s_first_error_time; /* first time an error happened */ __le32 s_first_error_ino; /* inode involved in first error */ __le64 s_first_error_block; /* block involved of first error */ __u8 s_first_error_func[32] __nonstring; /* function where the error happened */ __le32 s_first_error_line; /* line number where error happened */ __le32 s_last_error_time; /* most recent time of an error */ __le32 s_last_error_ino; /* inode involved in last error */ __le32 s_last_error_line; /* line number where error happened */ __le64 s_last_error_block; /* block involved of last error */ __u8 s_last_error_func[32] __nonstring; /* function where the error happened */ #define EXT4_S_ERR_END offsetof(struct ext4_super_block, s_mount_opts) __u8 s_mount_opts[64]; __le32 s_usr_quota_inum; /* inode for tracking user quota */ __le32 s_grp_quota_inum; /* inode for tracking group quota */ __le32 s_overhead_clusters; /* overhead blocks/clusters in fs */ __le32 s_backup_bgs[2]; /* groups with sparse_super2 SBs */ __u8 s_encrypt_algos[4]; /* Encryption algorithms in use */ __u8 s_encrypt_pw_salt[16]; /* Salt used for string2key algorithm */ __le32 s_lpf_ino; /* Location of the lost+found inode */ __le32 s_prj_quota_inum; /* inode for tracking project quota */ __le32 s_checksum_seed; /* crc32c(uuid) if csum_seed set */ __u8 s_wtime_hi; __u8 s_mtime_hi; __u8 s_mkfs_time_hi; __u8 s_lastcheck_hi; __u8 s_first_error_time_hi; __u8 s_last_error_time_hi; __u8 s_first_error_errcode; __u8 s_last_error_errcode; __le16 s_encoding; /* Filename charset encoding */ __le16 s_encoding_flags; /* Filename charset encoding flags */ __le32 s_reserved[95]; /* Padding to the end of the block */ __le32 s_checksum; /* crc32c(superblock) */ }; #define EXT4_S_ERR_LEN (EXT4_S_ERR_END - EXT4_S_ERR_START) #ifdef __KERNEL__ /* Number of quota types we support */ #define EXT4_MAXQUOTAS 3 #define EXT4_ENC_UTF8_12_1 1 /* * fourth extended-fs super-block data in memory */ struct ext4_sb_info { unsigned long s_desc_size; /* Size of a group descriptor in bytes */ unsigned long s_inodes_per_block;/* Number of inodes per block */ unsigned long s_blocks_per_group;/* Number of blocks in a group */ unsigned long s_clusters_per_group; /* Number of clusters in a group */ unsigned long s_inodes_per_group;/* Number of inodes in a group */ unsigned long s_itb_per_group; /* Number of inode table blocks per group */ unsigned long s_gdb_count; /* Number of group descriptor blocks */ unsigned long s_desc_per_block; /* Number of group descriptors per block */ ext4_group_t s_groups_count; /* Number of groups in the fs */ ext4_group_t s_blockfile_groups;/* Groups acceptable for non-extent files */ unsigned long s_overhead; /* # of fs overhead clusters */ unsigned int s_cluster_ratio; /* Number of blocks per cluster */ unsigned int s_cluster_bits; /* log2 of s_cluster_ratio */ loff_t s_bitmap_maxbytes; /* max bytes for bitmap files */ struct buffer_head * s_sbh; /* Buffer containing the super block */ struct ext4_super_block *s_es; /* Pointer to the super block in the buffer */ struct buffer_head * __rcu *s_group_desc; unsigned int s_mount_opt; unsigned int s_mount_opt2; unsigned long s_mount_flags; unsigned int s_def_mount_opt; ext4_fsblk_t s_sb_block; atomic64_t s_resv_clusters; kuid_t s_resuid; kgid_t s_resgid; unsigned short s_mount_state; unsigned short s_pad; int s_addr_per_block_bits; int s_desc_per_block_bits; int s_inode_size; int s_first_ino; unsigned int s_inode_readahead_blks; unsigned int s_inode_goal; u32 s_hash_seed[4]; int s_def_hash_version; int s_hash_unsigned; /* 3 if hash should be signed, 0 if not */ struct percpu_counter s_freeclusters_counter; struct percpu_counter s_freeinodes_counter; struct percpu_counter s_dirs_counter; struct percpu_counter s_dirtyclusters_counter; struct percpu_counter s_sra_exceeded_retry_limit; struct blockgroup_lock *s_blockgroup_lock; struct proc_dir_entry *s_proc; struct kobject s_kobj; struct completion s_kobj_unregister; struct super_block *s_sb; struct buffer_head *s_mmp_bh; /* Journaling */ struct journal_s *s_journal; struct list_head s_orphan; struct mutex s_orphan_lock; unsigned long s_ext4_flags; /* Ext4 superblock flags */ unsigned long s_commit_interval; u32 s_max_batch_time; u32 s_min_batch_time; struct block_device *s_journal_bdev; #ifdef CONFIG_QUOTA /* Names of quota files with journalled quota */ char __rcu *s_qf_names[EXT4_MAXQUOTAS]; int s_jquota_fmt; /* Format of quota to use */ #endif unsigned int s_want_extra_isize; /* New inodes should reserve # bytes */ struct ext4_system_blocks __rcu *s_system_blks; #ifdef EXTENTS_STATS /* ext4 extents stats */ unsigned long s_ext_min; unsigned long s_ext_max; unsigned long s_depth_max; spinlock_t s_ext_stats_lock; unsigned long s_ext_blocks; unsigned long s_ext_extents; #endif /* for buddy allocator */ struct ext4_group_info ** __rcu *s_group_info; struct inode *s_buddy_cache; spinlock_t s_md_lock; unsigned short *s_mb_offsets; unsigned int *s_mb_maxs; unsigned int s_group_info_size; unsigned int s_mb_free_pending; struct list_head s_freed_data_list; /* List of blocks to be freed after commit completed */ /* tunables */ unsigned long s_stripe; unsigned int s_mb_stream_request; unsigned int s_mb_max_to_scan; unsigned int s_mb_min_to_scan; unsigned int s_mb_stats; unsigned int s_mb_order2_reqs; unsigned int s_mb_group_prealloc; unsigned int s_mb_max_inode_prealloc; unsigned int s_max_dir_size_kb; /* where last allocation was done - for stream allocation */ unsigned long s_mb_last_group; unsigned long s_mb_last_start; unsigned int s_mb_prefetch; unsigned int s_mb_prefetch_limit; /* stats for buddy allocator */ atomic_t s_bal_reqs; /* number of reqs with len > 1 */ atomic_t s_bal_success; /* we found long enough chunks */ atomic_t s_bal_allocated; /* in blocks */ atomic_t s_bal_ex_scanned; /* total extents scanned */ atomic_t s_bal_groups_scanned; /* number of groups scanned */ atomic_t s_bal_goals; /* goal hits */ atomic_t s_bal_breaks; /* too long searches */ atomic_t s_bal_2orders; /* 2^order hits */ atomic64_t s_bal_cX_groups_considered[4]; atomic64_t s_bal_cX_hits[4]; atomic64_t s_bal_cX_failed[4]; /* cX loop didn't find blocks */ atomic_t s_mb_buddies_generated; /* number of buddies generated */ atomic64_t s_mb_generation_time; atomic_t s_mb_lost_chunks; atomic_t s_mb_preallocated; atomic_t s_mb_discarded; atomic_t s_lock_busy; /* locality groups */ struct ext4_locality_group __percpu *s_locality_groups; /* for write statistics */ unsigned long s_sectors_written_start; u64 s_kbytes_written; /* the size of zero-out chunk */ unsigned int s_extent_max_zeroout_kb; unsigned int s_log_groups_per_flex; struct flex_groups * __rcu *s_flex_groups; ext4_group_t s_flex_groups_allocated; /* workqueue for reserved extent conversions (buffered io) */ struct workqueue_struct *rsv_conversion_wq; /* timer for periodic error stats printing */ struct timer_list s_err_report; /* Lazy inode table initialization info */ struct ext4_li_request *s_li_request; /* Wait multiplier for lazy initialization thread */ unsigned int s_li_wait_mult; /* Kernel thread for multiple mount protection */ struct task_struct *s_mmp_tsk; /* record the last minlen when FITRIM is called. */ unsigned long s_last_trim_minblks; /* Reference to checksum algorithm driver via cryptoapi */ struct crypto_shash *s_chksum_driver; /* Precomputed FS UUID checksum for seeding other checksums */ __u32 s_csum_seed; /* Reclaim extents from extent status tree */ struct shrinker s_es_shrinker; struct list_head s_es_list; /* List of inodes with reclaimable extents */ long s_es_nr_inode; struct ext4_es_stats s_es_stats; struct mb_cache *s_ea_block_cache; struct mb_cache *s_ea_inode_cache; spinlock_t s_es_lock ____cacheline_aligned_in_smp; /* Ratelimit ext4 messages. */ struct ratelimit_state s_err_ratelimit_state; struct ratelimit_state s_warning_ratelimit_state; struct ratelimit_state s_msg_ratelimit_state; atomic_t s_warning_count; atomic_t s_msg_count; /* Encryption policy for '-o test_dummy_encryption' */ struct fscrypt_dummy_policy s_dummy_enc_policy; /* * Barrier between writepages ops and changing any inode's JOURNAL_DATA * or EXTENTS flag. */ struct percpu_rw_semaphore s_writepages_rwsem; struct dax_device *s_daxdev; #ifdef CONFIG_EXT4_DEBUG unsigned long s_simulate_fail; #endif /* Record the errseq of the backing block device */ errseq_t s_bdev_wb_err; spinlock_t s_bdev_wb_lock; /* Ext4 fast commit stuff */ atomic_t s_fc_subtid; atomic_t s_fc_ineligible_updates; /* * After commit starts, the main queue gets locked, and the further * updates get added in the staging queue. */ #define FC_Q_MAIN 0 #define FC_Q_STAGING 1 struct list_head s_fc_q[2]; /* Inodes staged for fast commit * that have data changes in them. */ struct list_head s_fc_dentry_q[2]; /* directory entry updates */ unsigned int s_fc_bytes; /* * Main fast commit lock. This lock protects accesses to the * following fields: * ei->i_fc_list, s_fc_dentry_q, s_fc_q, s_fc_bytes, s_fc_bh. */ spinlock_t s_fc_lock; struct buffer_head *s_fc_bh; struct ext4_fc_stats s_fc_stats; u64 s_fc_avg_commit_time; #ifdef CONFIG_EXT4_DEBUG int s_fc_debug_max_replay; #endif struct ext4_fc_replay_state s_fc_replay_state; }; static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct ext4_inode_info *EXT4_I(struct inode *inode) { return container_of(inode, struct ext4_inode_info, vfs_inode); } static inline int ext4_valid_inum(struct super_block *sb, unsigned long ino) { return ino == EXT4_ROOT_INO || (ino >= EXT4_FIRST_INO(sb) && ino <= le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)); } /* * Returns: sbi->field[index] * Used to access an array element from the following sbi fields which require * rcu protection to avoid dereferencing an invalid pointer due to reassignment * - s_group_desc * - s_group_info * - s_flex_group */ #define sbi_array_rcu_deref(sbi, field, index) \ ({ \ typeof(*((sbi)->field)) _v; \ rcu_read_lock(); \ _v = ((typeof(_v)*)rcu_dereference((sbi)->field))[index]; \ rcu_read_unlock(); \ _v; \ }) /* * run-time mount flags */ enum { EXT4_MF_MNTDIR_SAMPLED, EXT4_MF_FS_ABORTED, /* Fatal error detected */ EXT4_MF_FC_INELIGIBLE, /* Fast commit ineligible */ EXT4_MF_FC_COMMITTING /* File system underoing a fast * commit. */ }; static inline void ext4_set_mount_flag(struct super_block *sb, int bit) { set_bit(bit, &EXT4_SB(sb)->s_mount_flags); } static inline void ext4_clear_mount_flag(struct super_block *sb, int bit) { clear_bit(bit, &EXT4_SB(sb)->s_mount_flags); } static inline int ext4_test_mount_flag(struct super_block *sb, int bit) { return test_bit(bit, &EXT4_SB(sb)->s_mount_flags); } /* * Simulate_fail codes */ #define EXT4_SIM_BBITMAP_EIO 1 #define EXT4_SIM_BBITMAP_CRC 2 #define EXT4_SIM_IBITMAP_EIO 3 #define EXT4_SIM_IBITMAP_CRC 4 #define EXT4_SIM_INODE_EIO 5 #define EXT4_SIM_INODE_CRC 6 #define EXT4_SIM_DIRBLOCK_EIO 7 #define EXT4_SIM_DIRBLOCK_CRC 8 static inline bool ext4_simulate_fail(struct super_block *sb, unsigned long code) { #ifdef CONFIG_EXT4_DEBUG struct ext4_sb_info *sbi = EXT4_SB(sb); if (unlikely(sbi->s_simulate_fail == code)) { sbi->s_simulate_fail = 0; return true; } #endif return false; } static inline void ext4_simulate_fail_bh(struct super_block *sb, struct buffer_head *bh, unsigned long code) { if (!IS_ERR(bh) && ext4_simulate_fail(sb, code)) clear_buffer_uptodate(bh); } /* * Error number codes for s_{first,last}_error_errno * * Linux errno numbers are architecture specific, so we need to translate * them into something which is architecture independent. We don't define * codes for all errno's; just the ones which are most likely to be the cause * of an ext4_error() call. */ #define EXT4_ERR_UNKNOWN 1 #define EXT4_ERR_EIO 2 #define EXT4_ERR_ENOMEM 3 #define EXT4_ERR_EFSBADCRC 4 #define EXT4_ERR_EFSCORRUPTED 5 #define EXT4_ERR_ENOSPC 6 #define EXT4_ERR_ENOKEY 7 #define EXT4_ERR_EROFS 8 #define EXT4_ERR_EFBIG 9 #define EXT4_ERR_EEXIST 10 #define EXT4_ERR_ERANGE 11 #define EXT4_ERR_EOVERFLOW 12 #define EXT4_ERR_EBUSY 13 #define EXT4_ERR_ENOTDIR 14 #define EXT4_ERR_ENOTEMPTY 15 #define EXT4_ERR_ESHUTDOWN 16 #define EXT4_ERR_EFAULT 17 /* * Inode dynamic state flags */ enum { EXT4_STATE_JDATA, /* journaled data exists */ EXT4_STATE_NEW, /* inode is newly created */ EXT4_STATE_XATTR, /* has in-inode xattrs */ EXT4_STATE_NO_EXPAND, /* No space for expansion */ EXT4_STATE_DA_ALLOC_CLOSE, /* Alloc DA blks on close */ EXT4_STATE_EXT_MIGRATE, /* Inode is migrating */ EXT4_STATE_NEWENTRY, /* File just added to dir */ EXT4_STATE_MAY_INLINE_DATA, /* may have in-inode data */ EXT4_STATE_EXT_PRECACHED, /* extents have been precached */ EXT4_STATE_LUSTRE_EA_INODE, /* Lustre-style ea_inode */ EXT4_STATE_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ EXT4_STATE_FC_COMMITTING, /* Fast commit ongoing */ }; #define EXT4_INODE_BIT_FNS(name, field, offset) \ static inline int ext4_test_inode_##name(struct inode *inode, int bit) \ { \ return test_bit(bit + (offset), &EXT4_I(inode)->i_##field); \ } \ static inline void ext4_set_inode_##name(struct inode *inode, int bit) \ { \ set_bit(bit + (offset), &EXT4_I(inode)->i_##field); \ } \ static inline void ext4_clear_inode_##name(struct inode *inode, int bit) \ { \ clear_bit(bit + (offset), &EXT4_I(inode)->i_##field); \ } /* Add these declarations here only so that these functions can be * found by name. Otherwise, they are very hard to locate. */ static inline int ext4_test_inode_flag(struct inode *inode, int bit); static inline void ext4_set_inode_flag(struct inode *inode, int bit); static inline void ext4_clear_inode_flag(struct inode *inode, int bit); EXT4_INODE_BIT_FNS(flag, flags, 0) /* Add these declarations here only so that these functions can be * found by name. Otherwise, they are very hard to locate. */ static inline int ext4_test_inode_state(struct inode *inode, int bit); static inline void ext4_set_inode_state(struct inode *inode, int bit); static inline void ext4_clear_inode_state(struct inode *inode, int bit); #if (BITS_PER_LONG < 64) EXT4_INODE_BIT_FNS(state, state_flags, 0) static inline void ext4_clear_state_flags(struct ext4_inode_info *ei) { (ei)->i_state_flags = 0; } #else EXT4_INODE_BIT_FNS(state, flags, 32) static inline void ext4_clear_state_flags(struct ext4_inode_info *ei) { /* We depend on the fact that callers will set i_flags */ } #endif #else /* Assume that user mode programs are passing in an ext4fs superblock, not * a kernel struct super_block. This will allow us to call the feature-test * macros from user land. */ #define EXT4_SB(sb) (sb) #endif static inline bool ext4_verity_in_progress(struct inode *inode) { return IS_ENABLED(CONFIG_FS_VERITY) && ext4_test_inode_state(inode, EXT4_STATE_VERITY_IN_PROGRESS); } #define NEXT_ORPHAN(inode) EXT4_I(inode)->i_dtime /* * Codes for operating systems */ #define EXT4_OS_LINUX 0 #define EXT4_OS_HURD 1 #define EXT4_OS_MASIX 2 #define EXT4_OS_FREEBSD 3 #define EXT4_OS_LITES 4 /* * Revision levels */ #define EXT4_GOOD_OLD_REV 0 /* The good old (original) format */ #define EXT4_DYNAMIC_REV 1 /* V2 format w/ dynamic inode sizes */ #define EXT4_CURRENT_REV EXT4_GOOD_OLD_REV #define EXT4_MAX_SUPP_REV EXT4_DYNAMIC_REV #define EXT4_GOOD_OLD_INODE_SIZE 128 #define EXT4_EXTRA_TIMESTAMP_MAX (((s64)1 << 34) - 1 + S32_MIN) #define EXT4_NON_EXTRA_TIMESTAMP_MAX S32_MAX #define EXT4_TIMESTAMP_MIN S32_MIN /* * Feature set definitions */ #define EXT4_FEATURE_COMPAT_DIR_PREALLOC 0x0001 #define EXT4_FEATURE_COMPAT_IMAGIC_INODES 0x0002 #define EXT4_FEATURE_COMPAT_HAS_JOURNAL 0x0004 #define EXT4_FEATURE_COMPAT_EXT_ATTR 0x0008 #define EXT4_FEATURE_COMPAT_RESIZE_INODE 0x0010 #define EXT4_FEATURE_COMPAT_DIR_INDEX 0x0020 #define EXT4_FEATURE_COMPAT_SPARSE_SUPER2 0x0200 /* * The reason why "FAST_COMMIT" is a compat feature is that, FS becomes * incompatible only if fast commit blocks are present in the FS. Since we * clear the journal (and thus the fast commit blocks), we don't mark FS as * incompatible. We also have a JBD2 incompat feature, which gets set when * there are fast commit blocks present in the journal. */ #define EXT4_FEATURE_COMPAT_FAST_COMMIT 0x0400 #define EXT4_FEATURE_COMPAT_STABLE_INODES 0x0800 #define EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER 0x0001 #define EXT4_FEATURE_RO_COMPAT_LARGE_FILE 0x0002 #define EXT4_FEATURE_RO_COMPAT_BTREE_DIR 0x0004 #define EXT4_FEATURE_RO_COMPAT_HUGE_FILE 0x0008 #define EXT4_FEATURE_RO_COMPAT_GDT_CSUM 0x0010 #define EXT4_FEATURE_RO_COMPAT_DIR_NLINK 0x0020 #define EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE 0x0040 #define EXT4_FEATURE_RO_COMPAT_QUOTA 0x0100 #define EXT4_FEATURE_RO_COMPAT_BIGALLOC 0x0200 /* * METADATA_CSUM also enables group descriptor checksums (GDT_CSUM). When * METADATA_CSUM is set, group descriptor checksums use the same algorithm as * all other data structures' checksums. However, the METADATA_CSUM and * GDT_CSUM bits are mutually exclusive. */ #define EXT4_FEATURE_RO_COMPAT_METADATA_CSUM 0x0400 #define EXT4_FEATURE_RO_COMPAT_READONLY 0x1000 #define EXT4_FEATURE_RO_COMPAT_PROJECT 0x2000 #define EXT4_FEATURE_RO_COMPAT_VERITY 0x8000 #define EXT4_FEATURE_INCOMPAT_COMPRESSION 0x0001 #define EXT4_FEATURE_INCOMPAT_FILETYPE 0x0002 #define EXT4_FEATURE_INCOMPAT_RECOVER 0x0004 /* Needs recovery */ #define EXT4_FEATURE_INCOMPAT_JOURNAL_DEV 0x0008 /* Journal device */ #define EXT4_FEATURE_INCOMPAT_META_BG 0x0010 #define EXT4_FEATURE_INCOMPAT_EXTENTS 0x0040 /* extents support */ #define EXT4_FEATURE_INCOMPAT_64BIT 0x0080 #define EXT4_FEATURE_INCOMPAT_MMP 0x0100 #define EXT4_FEATURE_INCOMPAT_FLEX_BG 0x0200 #define EXT4_FEATURE_INCOMPAT_EA_INODE 0x0400 /* EA in inode */ #define EXT4_FEATURE_INCOMPAT_DIRDATA 0x1000 /* data in dirent */ #define EXT4_FEATURE_INCOMPAT_CSUM_SEED 0x2000 #define EXT4_FEATURE_INCOMPAT_LARGEDIR 0x4000 /* >2GB or 3-lvl htree */ #define EXT4_FEATURE_INCOMPAT_INLINE_DATA 0x8000 /* data in inode */ #define EXT4_FEATURE_INCOMPAT_ENCRYPT 0x10000 #define EXT4_FEATURE_INCOMPAT_CASEFOLD 0x20000 extern void ext4_update_dynamic_rev(struct super_block *sb); #define EXT4_FEATURE_COMPAT_FUNCS(name, flagname) \ static inline bool ext4_has_feature_##name(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_compat & \ cpu_to_le32(EXT4_FEATURE_COMPAT_##flagname)) != 0); \ } \ static inline void ext4_set_feature_##name(struct super_block *sb) \ { \ ext4_update_dynamic_rev(sb); \ EXT4_SB(sb)->s_es->s_feature_compat |= \ cpu_to_le32(EXT4_FEATURE_COMPAT_##flagname); \ } \ static inline void ext4_clear_feature_##name(struct super_block *sb) \ { \ EXT4_SB(sb)->s_es->s_feature_compat &= \ ~cpu_to_le32(EXT4_FEATURE_COMPAT_##flagname); \ } #define EXT4_FEATURE_RO_COMPAT_FUNCS(name, flagname) \ static inline bool ext4_has_feature_##name(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_ro_compat & \ cpu_to_le32(EXT4_FEATURE_RO_COMPAT_##flagname)) != 0); \ } \ static inline void ext4_set_feature_##name(struct super_block *sb) \ { \ ext4_update_dynamic_rev(sb); \ EXT4_SB(sb)->s_es->s_feature_ro_compat |= \ cpu_to_le32(EXT4_FEATURE_RO_COMPAT_##flagname); \ } \ static inline void ext4_clear_feature_##name(struct super_block *sb) \ { \ EXT4_SB(sb)->s_es->s_feature_ro_compat &= \ ~cpu_to_le32(EXT4_FEATURE_RO_COMPAT_##flagname); \ } #define EXT4_FEATURE_INCOMPAT_FUNCS(name, flagname) \ static inline bool ext4_has_feature_##name(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_incompat & \ cpu_to_le32(EXT4_FEATURE_INCOMPAT_##flagname)) != 0); \ } \ static inline void ext4_set_feature_##name(struct super_block *sb) \ { \ ext4_update_dynamic_rev(sb); \ EXT4_SB(sb)->s_es->s_feature_incompat |= \ cpu_to_le32(EXT4_FEATURE_INCOMPAT_##flagname); \ } \ static inline void ext4_clear_feature_##name(struct super_block *sb) \ { \ EXT4_SB(sb)->s_es->s_feature_incompat &= \ ~cpu_to_le32(EXT4_FEATURE_INCOMPAT_##flagname); \ } EXT4_FEATURE_COMPAT_FUNCS(dir_prealloc, DIR_PREALLOC) EXT4_FEATURE_COMPAT_FUNCS(imagic_inodes, IMAGIC_INODES) EXT4_FEATURE_COMPAT_FUNCS(journal, HAS_JOURNAL) EXT4_FEATURE_COMPAT_FUNCS(xattr, EXT_ATTR) EXT4_FEATURE_COMPAT_FUNCS(resize_inode, RESIZE_INODE) EXT4_FEATURE_COMPAT_FUNCS(dir_index, DIR_INDEX) EXT4_FEATURE_COMPAT_FUNCS(sparse_super2, SPARSE_SUPER2) EXT4_FEATURE_COMPAT_FUNCS(fast_commit, FAST_COMMIT) EXT4_FEATURE_COMPAT_FUNCS(stable_inodes, STABLE_INODES) EXT4_FEATURE_RO_COMPAT_FUNCS(sparse_super, SPARSE_SUPER) EXT4_FEATURE_RO_COMPAT_FUNCS(large_file, LARGE_FILE) EXT4_FEATURE_RO_COMPAT_FUNCS(btree_dir, BTREE_DIR) EXT4_FEATURE_RO_COMPAT_FUNCS(huge_file, HUGE_FILE) EXT4_FEATURE_RO_COMPAT_FUNCS(gdt_csum, GDT_CSUM) EXT4_FEATURE_RO_COMPAT_FUNCS(dir_nlink, DIR_NLINK) EXT4_FEATURE_RO_COMPAT_FUNCS(extra_isize, EXTRA_ISIZE) EXT4_FEATURE_RO_COMPAT_FUNCS(quota, QUOTA) EXT4_FEATURE_RO_COMPAT_FUNCS(bigalloc, BIGALLOC) EXT4_FEATURE_RO_COMPAT_FUNCS(metadata_csum, METADATA_CSUM) EXT4_FEATURE_RO_COMPAT_FUNCS(readonly, READONLY) EXT4_FEATURE_RO_COMPAT_FUNCS(project, PROJECT) EXT4_FEATURE_RO_COMPAT_FUNCS(verity, VERITY) EXT4_FEATURE_INCOMPAT_FUNCS(compression, COMPRESSION) EXT4_FEATURE_INCOMPAT_FUNCS(filetype, FILETYPE) EXT4_FEATURE_INCOMPAT_FUNCS(journal_needs_recovery, RECOVER) EXT4_FEATURE_INCOMPAT_FUNCS(journal_dev, JOURNAL_DEV) EXT4_FEATURE_INCOMPAT_FUNCS(meta_bg, META_BG) EXT4_FEATURE_INCOMPAT_FUNCS(extents, EXTENTS) EXT4_FEATURE_INCOMPAT_FUNCS(64bit, 64BIT) EXT4_FEATURE_INCOMPAT_FUNCS(mmp, MMP) EXT4_FEATURE_INCOMPAT_FUNCS(flex_bg, FLEX_BG) EXT4_FEATURE_INCOMPAT_FUNCS(ea_inode, EA_INODE) EXT4_FEATURE_INCOMPAT_FUNCS(dirdata, DIRDATA) EXT4_FEATURE_INCOMPAT_FUNCS(csum_seed, CSUM_SEED) EXT4_FEATURE_INCOMPAT_FUNCS(largedir, LARGEDIR) EXT4_FEATURE_INCOMPAT_FUNCS(inline_data, INLINE_DATA) EXT4_FEATURE_INCOMPAT_FUNCS(encrypt, ENCRYPT) EXT4_FEATURE_INCOMPAT_FUNCS(casefold, CASEFOLD) #define EXT2_FEATURE_COMPAT_SUPP EXT4_FEATURE_COMPAT_EXT_ATTR #define EXT2_FEATURE_INCOMPAT_SUPP (EXT4_FEATURE_INCOMPAT_FILETYPE| \ EXT4_FEATURE_INCOMPAT_META_BG) #define EXT2_FEATURE_RO_COMPAT_SUPP (EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER| \ EXT4_FEATURE_RO_COMPAT_LARGE_FILE| \ EXT4_FEATURE_RO_COMPAT_BTREE_DIR) #define EXT3_FEATURE_COMPAT_SUPP EXT4_FEATURE_COMPAT_EXT_ATTR #define EXT3_FEATURE_INCOMPAT_SUPP (EXT4_FEATURE_INCOMPAT_FILETYPE| \ EXT4_FEATURE_INCOMPAT_RECOVER| \ EXT4_FEATURE_INCOMPAT_META_BG) #define EXT3_FEATURE_RO_COMPAT_SUPP (EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER| \ EXT4_FEATURE_RO_COMPAT_LARGE_FILE| \ EXT4_FEATURE_RO_COMPAT_BTREE_DIR) #define EXT4_FEATURE_COMPAT_SUPP EXT4_FEATURE_COMPAT_EXT_ATTR #define EXT4_FEATURE_INCOMPAT_SUPP (EXT4_FEATURE_INCOMPAT_FILETYPE| \ EXT4_FEATURE_INCOMPAT_RECOVER| \ EXT4_FEATURE_INCOMPAT_META_BG| \ EXT4_FEATURE_INCOMPAT_EXTENTS| \ EXT4_FEATURE_INCOMPAT_64BIT| \ EXT4_FEATURE_INCOMPAT_FLEX_BG| \ EXT4_FEATURE_INCOMPAT_EA_INODE| \ EXT4_FEATURE_INCOMPAT_MMP | \ EXT4_FEATURE_INCOMPAT_INLINE_DATA | \ EXT4_FEATURE_INCOMPAT_ENCRYPT | \ EXT4_FEATURE_INCOMPAT_CASEFOLD | \ EXT4_FEATURE_INCOMPAT_CSUM_SEED | \ EXT4_FEATURE_INCOMPAT_LARGEDIR) #define EXT4_FEATURE_RO_COMPAT_SUPP (EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER| \ EXT4_FEATURE_RO_COMPAT_LARGE_FILE| \ EXT4_FEATURE_RO_COMPAT_GDT_CSUM| \ EXT4_FEATURE_RO_COMPAT_DIR_NLINK | \ EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE | \ EXT4_FEATURE_RO_COMPAT_BTREE_DIR |\ EXT4_FEATURE_RO_COMPAT_HUGE_FILE |\ EXT4_FEATURE_RO_COMPAT_BIGALLOC |\ EXT4_FEATURE_RO_COMPAT_METADATA_CSUM|\ EXT4_FEATURE_RO_COMPAT_QUOTA |\ EXT4_FEATURE_RO_COMPAT_PROJECT |\ EXT4_FEATURE_RO_COMPAT_VERITY) #define EXTN_FEATURE_FUNCS(ver) \ static inline bool ext4_has_unknown_ext##ver##_compat_features(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_compat & \ cpu_to_le32(~EXT##ver##_FEATURE_COMPAT_SUPP)) != 0); \ } \ static inline bool ext4_has_unknown_ext##ver##_ro_compat_features(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_ro_compat & \ cpu_to_le32(~EXT##ver##_FEATURE_RO_COMPAT_SUPP)) != 0); \ } \ static inline bool ext4_has_unknown_ext##ver##_incompat_features(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_incompat & \ cpu_to_le32(~EXT##ver##_FEATURE_INCOMPAT_SUPP)) != 0); \ } EXTN_FEATURE_FUNCS(2) EXTN_FEATURE_FUNCS(3) EXTN_FEATURE_FUNCS(4) static inline bool ext4_has_compat_features(struct super_block *sb) { return (EXT4_SB(sb)->s_es->s_feature_compat != 0); } static inline bool ext4_has_ro_compat_features(struct super_block *sb) { return (EXT4_SB(sb)->s_es->s_feature_ro_compat != 0); } static inline bool ext4_has_incompat_features(struct super_block *sb) { return (EXT4_SB(sb)->s_es->s_feature_incompat != 0); } /* * Superblock flags */ #define EXT4_FLAGS_RESIZING 0 #define EXT4_FLAGS_SHUTDOWN 1 #define EXT4_FLAGS_BDEV_IS_DAX 2 static inline int ext4_forced_shutdown(struct ext4_sb_info *sbi) { return test_bit(EXT4_FLAGS_SHUTDOWN, &sbi->s_ext4_flags); } /* * Default values for user and/or group using reserved blocks */ #define EXT4_DEF_RESUID 0 #define EXT4_DEF_RESGID 0 /* * Default project ID */ #define EXT4_DEF_PROJID 0 #define EXT4_DEF_INODE_READAHEAD_BLKS 32 /* * Default mount options */ #define EXT4_DEFM_DEBUG 0x0001 #define EXT4_DEFM_BSDGROUPS 0x0002 #define EXT4_DEFM_XATTR_USER 0x0004 #define EXT4_DEFM_ACL 0x0008 #define EXT4_DEFM_UID16 0x0010 #define EXT4_DEFM_JMODE 0x0060 #define EXT4_DEFM_JMODE_DATA 0x0020 #define EXT4_DEFM_JMODE_ORDERED 0x0040 #define EXT4_DEFM_JMODE_WBACK 0x0060 #define EXT4_DEFM_NOBARRIER 0x0100 #define EXT4_DEFM_BLOCK_VALIDITY 0x0200 #define EXT4_DEFM_DISCARD 0x0400 #define EXT4_DEFM_NODELALLOC 0x0800 /* * Default journal batch times */ #define EXT4_DEF_MIN_BATCH_TIME 0 #define EXT4_DEF_MAX_BATCH_TIME 15000 /* 15ms */ /* * Minimum number of groups in a flexgroup before we separate out * directories into the first block group of a flexgroup */ #define EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME 4 /* * Structure of a directory entry */ #define EXT4_NAME_LEN 255 /* * Base length of the ext4 directory entry excluding the name length */ #define EXT4_BASE_DIR_LEN (sizeof(struct ext4_dir_entry_2) - EXT4_NAME_LEN) struct ext4_dir_entry { __le32 inode; /* Inode number */ __le16 rec_len; /* Directory entry length */ __le16 name_len; /* Name length */ char name[EXT4_NAME_LEN]; /* File name */ }; /* * The new version of the directory entry. Since EXT4 structures are * stored in intel byte order, and the name_len field could never be * bigger than 255 chars, it's safe to reclaim the extra byte for the * file_type field. */ struct ext4_dir_entry_2 { __le32 inode; /* Inode number */ __le16 rec_len; /* Directory entry length */ __u8 name_len; /* Name length */ __u8 file_type; /* See file type macros EXT4_FT_* below */ char name[EXT4_NAME_LEN]; /* File name */ }; /* * This is a bogus directory entry at the end of each leaf block that * records checksums. */ struct ext4_dir_entry_tail { __le32 det_reserved_zero1; /* Pretend to be unused */ __le16 det_rec_len; /* 12 */ __u8 det_reserved_zero2; /* Zero name length */ __u8 det_reserved_ft; /* 0xDE, fake file type */ __le32 det_checksum; /* crc32c(uuid+inum+dirblock) */ }; #define EXT4_DIRENT_TAIL(block, blocksize) \ ((struct ext4_dir_entry_tail *)(((void *)(block)) + \ ((blocksize) - \ sizeof(struct ext4_dir_entry_tail)))) /* * Ext4 directory file types. Only the low 3 bits are used. The * other bits are reserved for now. */ #define EXT4_FT_UNKNOWN 0 #define EXT4_FT_REG_FILE 1 #define EXT4_FT_DIR 2 #define EXT4_FT_CHRDEV 3 #define EXT4_FT_BLKDEV 4 #define EXT4_FT_FIFO 5 #define EXT4_FT_SOCK 6 #define EXT4_FT_SYMLINK 7 #define EXT4_FT_MAX 8 #define EXT4_FT_DIR_CSUM 0xDE /* * EXT4_DIR_PAD defines the directory entries boundaries * * NOTE: It must be a multiple of 4 */ #define EXT4_DIR_PAD 4 #define EXT4_DIR_ROUND (EXT4_DIR_PAD - 1) #define EXT4_DIR_REC_LEN(name_len) (((name_len) + 8 + EXT4_DIR_ROUND) & \ ~EXT4_DIR_ROUND) #define EXT4_MAX_REC_LEN ((1<<16)-1) /* * If we ever get support for fs block sizes > page_size, we'll need * to remove the #if statements in the next two functions... */ static inline unsigned int ext4_rec_len_from_disk(__le16 dlen, unsigned blocksize) { unsigned len = le16_to_cpu(dlen); #if (PAGE_SIZE >= 65536) if (len == EXT4_MAX_REC_LEN || len == 0) return blocksize; return (len & 65532) | ((len & 3) << 16); #else return len; #endif } static inline __le16 ext4_rec_len_to_disk(unsigned len, unsigned blocksize) { if ((len > blocksize) || (blocksize > (1 << 18)) || (len & 3)) BUG(); #if (PAGE_SIZE >= 65536) if (len < 65536) return cpu_to_le16(len); if (len == blocksize) { if (blocksize == 65536) return cpu_to_le16(EXT4_MAX_REC_LEN); else return cpu_to_le16(0); } return cpu_to_le16((len & 65532) | ((len >> 16) & 3)); #else return cpu_to_le16(len); #endif } /* * Hash Tree Directory indexing * (c) Daniel Phillips, 2001 */ #define is_dx(dir) (ext4_has_feature_dir_index((dir)->i_sb) && \ ext4_test_inode_flag((dir), EXT4_INODE_INDEX)) #define EXT4_DIR_LINK_MAX(dir) unlikely((dir)->i_nlink >= EXT4_LINK_MAX && \ !(ext4_has_feature_dir_nlink((dir)->i_sb) && is_dx(dir))) #define EXT4_DIR_LINK_EMPTY(dir) ((dir)->i_nlink == 2 || (dir)->i_nlink == 1) /* Legal values for the dx_root hash_version field: */ #define DX_HASH_LEGACY 0 #define DX_HASH_HALF_MD4 1 #define DX_HASH_TEA 2 #define DX_HASH_LEGACY_UNSIGNED 3 #define DX_HASH_HALF_MD4_UNSIGNED 4 #define DX_HASH_TEA_UNSIGNED 5 static inline u32 ext4_chksum(struct ext4_sb_info *sbi, u32 crc, const void *address, unsigned int length) { struct { struct shash_desc shash; char ctx[4]; } desc; BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver)!=sizeof(desc.ctx)); desc.shash.tfm = sbi->s_chksum_driver; *(u32 *)desc.ctx = crc; BUG_ON(crypto_shash_update(&desc.shash, address, length)); return *(u32 *)desc.ctx; } #ifdef __KERNEL__ /* hash info structure used by the directory hash */ struct dx_hash_info { u32 hash; u32 minor_hash; int hash_version; u32 *seed; }; /* 32 and 64 bit signed EOF for dx directories */ #define EXT4_HTREE_EOF_32BIT ((1UL << (32 - 1)) - 1) #define EXT4_HTREE_EOF_64BIT ((1ULL << (64 - 1)) - 1) /* * Control parameters used by ext4_htree_next_block */ #define HASH_NB_ALWAYS 1 struct ext4_filename { const struct qstr *usr_fname; struct fscrypt_str disk_name; struct dx_hash_info hinfo; #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_str crypto_buf; #endif #ifdef CONFIG_UNICODE struct fscrypt_str cf_name; #endif }; #define fname_name(p) ((p)->disk_name.name) #define fname_len(p) ((p)->disk_name.len) /* * Describe an inode's exact location on disk and in memory */ struct ext4_iloc { struct buffer_head *bh; unsigned long offset; ext4_group_t block_group; }; static inline struct ext4_inode *ext4_raw_inode(struct ext4_iloc *iloc) { return (struct ext4_inode *) (iloc->bh->b_data + iloc->offset); } static inline bool ext4_is_quota_file(struct inode *inode) { return IS_NOQUOTA(inode) && !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL); } /* * This structure is stuffed into the struct file's private_data field * for directories. It is where we put information so that we can do * readdir operations in hash tree order. */ struct dir_private_info { struct rb_root root; struct rb_node *curr_node; struct fname *extra_fname; loff_t last_pos; __u32 curr_hash; __u32 curr_minor_hash; __u32 next_hash; }; /* calculate the first block number of the group */ static inline ext4_fsblk_t ext4_group_first_block_no(struct super_block *sb, ext4_group_t group_no) { return group_no * (ext4_fsblk_t)EXT4_BLOCKS_PER_GROUP(sb) + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); } /* * Special error return code only used by dx_probe() and its callers. */ #define ERR_BAD_DX_DIR (-(MAX_ERRNO - 1)) /* htree levels for ext4 */ #define EXT4_HTREE_LEVEL_COMPAT 2 #define EXT4_HTREE_LEVEL 3 static inline int ext4_dir_htree_level(struct super_block *sb) { return ext4_has_feature_largedir(sb) ? EXT4_HTREE_LEVEL : EXT4_HTREE_LEVEL_COMPAT; } /* * Timeout and state flag for lazy initialization inode thread. */ #define EXT4_DEF_LI_WAIT_MULT 10 #define EXT4_DEF_LI_MAX_START_DELAY 5 #define EXT4_LAZYINIT_QUIT 0x0001 #define EXT4_LAZYINIT_RUNNING 0x0002 /* * Lazy inode table initialization info */ struct ext4_lazy_init { unsigned long li_state; struct list_head li_request_list; struct mutex li_list_mtx; }; enum ext4_li_mode { EXT4_LI_MODE_PREFETCH_BBITMAP, EXT4_LI_MODE_ITABLE, }; struct ext4_li_request { struct super_block *lr_super; enum ext4_li_mode lr_mode; ext4_group_t lr_first_not_zeroed; ext4_group_t lr_next_group; struct list_head lr_request; unsigned long lr_next_sched; unsigned long lr_timeout; }; struct ext4_features { struct kobject f_kobj; struct completion f_kobj_unregister; }; /* * This structure will be used for multiple mount protection. It will be * written into the block number saved in the s_mmp_block field in the * superblock. Programs that check MMP should assume that if * SEQ_FSCK (or any unknown code above SEQ_MAX) is present then it is NOT safe * to use the filesystem, regardless of how old the timestamp is. */ #define EXT4_MMP_MAGIC 0x004D4D50U /* ASCII for MMP */ #define EXT4_MMP_SEQ_CLEAN 0xFF4D4D50U /* mmp_seq value for clean unmount */ #define EXT4_MMP_SEQ_FSCK 0xE24D4D50U /* mmp_seq value when being fscked */ #define EXT4_MMP_SEQ_MAX 0xE24D4D4FU /* maximum valid mmp_seq value */ struct mmp_struct { __le32 mmp_magic; /* Magic number for MMP */ __le32 mmp_seq; /* Sequence no. updated periodically */ /* * mmp_time, mmp_nodename & mmp_bdevname are only used for information * purposes and do not affect the correctness of the algorithm */ __le64 mmp_time; /* Time last updated */ char mmp_nodename[64]; /* Node which last updated MMP block */ char mmp_bdevname[32]; /* Bdev which last updated MMP block */ /* * mmp_check_interval is used to verify if the MMP block has been * updated on the block device. The value is updated based on the * maximum time to write the MMP block during an update cycle. */ __le16 mmp_check_interval; __le16 mmp_pad1; __le32 mmp_pad2[226]; __le32 mmp_checksum; /* crc32c(uuid+mmp_block) */ }; /* arguments passed to the mmp thread */ struct mmpd_data { struct buffer_head *bh; /* bh from initial read_mmp_block() */ struct super_block *sb; /* super block of the fs */ }; /* * Check interval multiplier * The MMP block is written every update interval and initially checked every * update interval x the multiplier (the value is then adapted based on the * write latency). The reason is that writes can be delayed under load and we * don't want readers to incorrectly assume that the filesystem is no longer * in use. */ #define EXT4_MMP_CHECK_MULT 2UL /* * Minimum interval for MMP checking in seconds. */ #define EXT4_MMP_MIN_CHECK_INTERVAL 5UL /* * Maximum interval for MMP checking in seconds. */ #define EXT4_MMP_MAX_CHECK_INTERVAL 300UL /* * Function prototypes */ /* * Ok, these declarations are also in <linux/kernel.h> but none of the * ext4 source programs needs to include it so they are duplicated here. */ # define NORET_TYPE /**/ # define ATTRIB_NORET __attribute__((noreturn)) # define NORET_AND noreturn, /* bitmap.c */ extern unsigned int ext4_count_free(char *bitmap, unsigned numchars); void ext4_inode_bitmap_csum_set(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh, int sz); int ext4_inode_bitmap_csum_verify(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh, int sz); void ext4_block_bitmap_csum_set(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh); int ext4_block_bitmap_csum_verify(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh); /* balloc.c */ extern void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr, ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp); extern ext4_group_t ext4_get_group_number(struct super_block *sb, ext4_fsblk_t block); extern unsigned int ext4_block_group(struct super_block *sb, ext4_fsblk_t blocknr); extern ext4_grpblk_t ext4_block_group_offset(struct super_block *sb, ext4_fsblk_t blocknr); extern int ext4_bg_has_super(struct super_block *sb, ext4_group_t group); extern unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group); extern ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode, ext4_fsblk_t goal, unsigned int flags, unsigned long *count, int *errp); extern int ext4_claim_free_clusters(struct ext4_sb_info *sbi, s64 nclusters, unsigned int flags); extern ext4_fsblk_t ext4_count_free_clusters(struct super_block *); extern void ext4_check_blocks_bitmap(struct super_block *); extern struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb, ext4_group_t block_group, struct buffer_head ** bh); extern struct ext4_group_info *ext4_get_group_info(struct super_block *sb, ext4_group_t group); extern int ext4_should_retry_alloc(struct super_block *sb, int *retries); extern struct buffer_head *ext4_read_block_bitmap_nowait(struct super_block *sb, ext4_group_t block_group, bool ignore_locked); extern int ext4_wait_block_bitmap(struct super_block *sb, ext4_group_t block_group, struct buffer_head *bh); extern struct buffer_head *ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group); extern unsigned ext4_free_clusters_after_init(struct super_block *sb, ext4_group_t block_group, struct ext4_group_desc *gdp); ext4_fsblk_t ext4_inode_to_goal_block(struct inode *); #ifdef CONFIG_UNICODE extern void ext4_fname_setup_ci_filename(struct inode *dir, const struct qstr *iname, struct fscrypt_str *fname); #endif #ifdef CONFIG_FS_ENCRYPTION static inline void ext4_fname_from_fscrypt_name(struct ext4_filename *dst, const struct fscrypt_name *src) { memset(dst, 0, sizeof(*dst)); dst->usr_fname = src->usr_fname; dst->disk_name = src->disk_name; dst->hinfo.hash = src->hash; dst->hinfo.minor_hash = src->minor_hash; dst->crypto_buf = src->crypto_buf; } static inline int ext4_fname_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct ext4_filename *fname) { struct fscrypt_name name; int err; err = fscrypt_setup_filename(dir, iname, lookup, &name); if (err) return err; ext4_fname_from_fscrypt_name(fname, &name); #ifdef CONFIG_UNICODE ext4_fname_setup_ci_filename(dir, iname, &fname->cf_name); #endif return 0; } static inline int ext4_fname_prepare_lookup(struct inode *dir, struct dentry *dentry, struct ext4_filename *fname) { struct fscrypt_name name; int err; err = fscrypt_prepare_lookup(dir, dentry, &name); if (err) return err; ext4_fname_from_fscrypt_name(fname, &name); #ifdef CONFIG_UNICODE ext4_fname_setup_ci_filename(dir, &dentry->d_name, &fname->cf_name); #endif return 0; } static inline void ext4_fname_free_filename(struct ext4_filename *fname) { struct fscrypt_name name; name.crypto_buf = fname->crypto_buf; fscrypt_free_filename(&name); fname->crypto_buf.name = NULL; fname->usr_fname = NULL; fname->disk_name.name = NULL; #ifdef CONFIG_UNICODE kfree(fname->cf_name.name); fname->cf_name.name = NULL; #endif } #else /* !CONFIG_FS_ENCRYPTION */ static inline int ext4_fname_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct ext4_filename *fname) { fname->usr_fname = iname; fname->disk_name.name = (unsigned char *) iname->name; fname->disk_name.len = iname->len; #ifdef CONFIG_UNICODE ext4_fname_setup_ci_filename(dir, iname, &fname->cf_name); #endif return 0; } static inline int ext4_fname_prepare_lookup(struct inode *dir, struct dentry *dentry, struct ext4_filename *fname) { return ext4_fname_setup_filename(dir, &dentry->d_name, 1, fname); } static inline void ext4_fname_free_filename(struct ext4_filename *fname) { #ifdef CONFIG_UNICODE kfree(fname->cf_name.name); fname->cf_name.name = NULL; #endif } #endif /* !CONFIG_FS_ENCRYPTION */ /* dir.c */ extern int __ext4_check_dir_entry(const char *, unsigned int, struct inode *, struct file *, struct ext4_dir_entry_2 *, struct buffer_head *, char *, int, unsigned int); #define ext4_check_dir_entry(dir, filp, de, bh, buf, size, offset) \ unlikely(__ext4_check_dir_entry(__func__, __LINE__, (dir), (filp), \ (de), (bh), (buf), (size), (offset))) extern int ext4_htree_store_dirent(struct file *dir_file, __u32 hash, __u32 minor_hash, struct ext4_dir_entry_2 *dirent, struct fscrypt_str *ent_name); extern void ext4_htree_free_dir_info(struct dir_private_info *p); extern int ext4_find_dest_de(struct inode *dir, struct inode *inode, struct buffer_head *bh, void *buf, int buf_size, struct ext4_filename *fname, struct ext4_dir_entry_2 **dest_de); void ext4_insert_dentry(struct inode *inode, struct ext4_dir_entry_2 *de, int buf_size, struct ext4_filename *fname); static inline void ext4_update_dx_flag(struct inode *inode) { if (!ext4_has_feature_dir_index(inode->i_sb) && ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { /* ext4_iget() should have caught this... */ WARN_ON_ONCE(ext4_has_feature_metadata_csum(inode->i_sb)); ext4_clear_inode_flag(inode, EXT4_INODE_INDEX); } } static const unsigned char ext4_filetype_table[] = { DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK }; static inline unsigned char get_dtype(struct super_block *sb, int filetype) { if (!ext4_has_feature_filetype(sb) || filetype >= EXT4_FT_MAX) return DT_UNKNOWN; return ext4_filetype_table[filetype]; } extern int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf, int buf_size); /* fsync.c */ extern int ext4_sync_file(struct file *, loff_t, loff_t, int); /* hash.c */ extern int ext4fs_dirhash(const struct inode *dir, const char *name, int len, struct dx_hash_info *hinfo); /* ialloc.c */ extern int ext4_mark_inode_used(struct super_block *sb, int ino); extern struct inode *__ext4_new_inode(handle_t *, struct inode *, umode_t, const struct qstr *qstr, __u32 goal, uid_t *owner, __u32 i_flags, int handle_type, unsigned int line_no, int nblocks); #define ext4_new_inode(handle, dir, mode, qstr, goal, owner, i_flags) \ __ext4_new_inode((handle), (dir), (mode), (qstr), (goal), (owner), \ i_flags, 0, 0, 0) #define ext4_new_inode_start_handle(dir, mode, qstr, goal, owner, \ type, nblocks) \ __ext4_new_inode(NULL, (dir), (mode), (qstr), (goal), (owner), \ 0, (type), __LINE__, (nblocks)) extern void ext4_free_inode(handle_t *, struct inode *); extern struct inode * ext4_orphan_get(struct super_block *, unsigned long); extern unsigned long ext4_count_free_inodes(struct super_block *); extern unsigned long ext4_count_dirs(struct super_block *); extern void ext4_check_inodes_bitmap(struct super_block *); extern void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap); extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, int barrier); extern void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate); /* fast_commit.c */ int ext4_fc_info_show(struct seq_file *seq, void *v); void ext4_fc_init(struct super_block *sb, journal_t *journal); void ext4_fc_init_inode(struct inode *inode); void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, ext4_lblk_t end); void __ext4_fc_track_unlink(handle_t *handle, struct inode *inode, struct dentry *dentry); void __ext4_fc_track_link(handle_t *handle, struct inode *inode, struct dentry *dentry); void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry); void ext4_fc_track_link(handle_t *handle, struct dentry *dentry); void __ext4_fc_track_create(handle_t *handle, struct inode *inode, struct dentry *dentry); void ext4_fc_track_create(handle_t *handle, struct dentry *dentry); void ext4_fc_track_inode(handle_t *handle, struct inode *inode); void ext4_fc_mark_ineligible(struct super_block *sb, int reason); void ext4_fc_start_ineligible(struct super_block *sb, int reason); void ext4_fc_stop_ineligible(struct super_block *sb); void ext4_fc_start_update(struct inode *inode); void ext4_fc_stop_update(struct inode *inode); void ext4_fc_del(struct inode *inode); bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t block); void ext4_fc_replay_cleanup(struct super_block *sb); int ext4_fc_commit(journal_t *journal, tid_t commit_tid); int __init ext4_fc_init_dentry_cache(void); void ext4_fc_destroy_dentry_cache(void); int ext4_fc_record_regions(struct super_block *sb, int ino, ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay); /* mballoc.c */ extern const struct seq_operations ext4_mb_seq_groups_ops; extern long ext4_mb_stats; extern long ext4_mb_max_to_scan; extern int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset); extern int ext4_mb_init(struct super_block *); extern int ext4_mb_release(struct super_block *); extern ext4_fsblk_t ext4_mb_new_blocks(handle_t *, struct ext4_allocation_request *, int *); extern int ext4_mb_reserve_blocks(struct super_block *, int); extern void ext4_discard_preallocations(struct inode *, unsigned int); extern int __init ext4_init_mballoc(void); extern void ext4_exit_mballoc(void); extern ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, unsigned int nr, int *cnt); extern void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, unsigned int nr); extern void ext4_free_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh, ext4_fsblk_t block, unsigned long count, int flags); extern int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups); extern int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t i, struct ext4_group_desc *desc); extern int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, ext4_fsblk_t block, unsigned long count); extern int ext4_trim_fs(struct super_block *, struct fstrim_range *); extern void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid); extern void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, int len, int state); /* inode.c */ void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, struct ext4_inode_info *ei); int ext4_inode_is_fast_symlink(struct inode *inode); struct buffer_head *ext4_getblk(handle_t *, struct inode *, ext4_lblk_t, int); struct buffer_head *ext4_bread(handle_t *, struct inode *, ext4_lblk_t, int); int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, bool wait, struct buffer_head **bhs); int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); int ext4_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create); int ext4_walk_page_buffers(handle_t *handle, struct buffer_head *head, unsigned from, unsigned to, int *partial, int (*fn)(handle_t *handle, struct buffer_head *bh)); int do_journal_get_write_access(handle_t *handle, struct buffer_head *bh); #define FALL_BACK_TO_NONDELALLOC 1 #define CONVERT_INLINE_DATA 2 typedef enum { EXT4_IGET_NORMAL = 0, EXT4_IGET_SPECIAL = 0x0001, /* OK to iget a system inode */ EXT4_IGET_HANDLE = 0x0002, /* Inode # is from a handle */ EXT4_IGET_BAD = 0x0004, /* Allow to iget a bad inode */ EXT4_IGET_EA_INODE = 0x0008 /* Inode should contain an EA value */ } ext4_iget_flags; extern struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, ext4_iget_flags flags, const char *function, unsigned int line); #define ext4_iget(sb, ino, flags) \ __ext4_iget((sb), (ino), (flags), __func__, __LINE__) extern int ext4_write_inode(struct inode *, struct writeback_control *); extern int ext4_setattr(struct dentry *, struct iattr *); extern int ext4_getattr(const struct path *, struct kstat *, u32, unsigned int); extern void ext4_evict_inode(struct inode *); extern void ext4_clear_inode(struct inode *); extern int ext4_file_getattr(const struct path *, struct kstat *, u32, unsigned int); extern int ext4_sync_inode(handle_t *, struct inode *); extern void ext4_dirty_inode(struct inode *, int); extern int ext4_change_inode_journal_flag(struct inode *, int); extern int ext4_get_inode_loc(struct inode *, struct ext4_iloc *); extern int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, struct ext4_iloc *iloc); extern int ext4_inode_attach_jinode(struct inode *inode); extern int ext4_can_truncate(struct inode *inode); extern int ext4_truncate(struct inode *); extern int ext4_break_layouts(struct inode *); extern int ext4_punch_hole(struct file *file, loff_t offset, loff_t length); extern void ext4_set_inode_flags(struct inode *, bool init); extern int ext4_alloc_da_blocks(struct inode *inode); extern void ext4_set_aops(struct inode *inode); extern int ext4_writepage_trans_blocks(struct inode *); extern int ext4_chunk_trans_blocks(struct inode *, int nrblocks); extern int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, loff_t lstart, loff_t lend); extern vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf); extern vm_fault_t ext4_filemap_fault(struct vm_fault *vmf); extern qsize_t *ext4_get_reserved_space(struct inode *inode); extern int ext4_get_projid(struct inode *inode, kprojid_t *projid); extern void ext4_da_release_space(struct inode *inode, int to_free); extern void ext4_da_update_reserve_space(struct inode *inode, int used, int quota_claim); extern int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, ext4_lblk_t len); /* indirect.c */ extern int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, struct ext4_map_blocks *map, int flags); extern int ext4_ind_trans_blocks(struct inode *inode, int nrblocks); extern void ext4_ind_truncate(handle_t *, struct inode *inode); extern int ext4_ind_remove_space(handle_t *handle, struct inode *inode, ext4_lblk_t start, ext4_lblk_t end); /* ioctl.c */ extern long ext4_ioctl(struct file *, unsigned int, unsigned long); extern long ext4_compat_ioctl(struct file *, unsigned int, unsigned long); extern void ext4_reset_inode_seed(struct inode *inode); /* migrate.c */ extern int ext4_ext_migrate(struct inode *); extern int ext4_ind_migrate(struct inode *inode); /* namei.c */ extern int ext4_init_new_dir(handle_t *handle, struct inode *dir, struct inode *inode); extern int ext4_dirblock_csum_verify(struct inode *inode, struct buffer_head *bh); extern int ext4_orphan_add(handle_t *, struct inode *); extern int ext4_orphan_del(handle_t *, struct inode *); extern int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash, __u32 start_minor_hash, __u32 *next_hash); extern int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size, struct inode *dir, struct ext4_filename *fname, unsigned int offset, struct ext4_dir_entry_2 **res_dir); extern int ext4_generic_delete_entry(struct inode *dir, struct ext4_dir_entry_2 *de_del, struct buffer_head *bh, void *entry_buf, int buf_size, int csum_size); extern bool ext4_empty_dir(struct inode *inode); /* resize.c */ extern void ext4_kvfree_array_rcu(void *to_free); extern int ext4_group_add(struct super_block *sb, struct ext4_new_group_data *input); extern int ext4_group_extend(struct super_block *sb, struct ext4_super_block *es, ext4_fsblk_t n_blocks_count); extern int ext4_resize_fs(struct super_block *sb, ext4_fsblk_t n_blocks_count); /* super.c */ extern struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags); extern struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, sector_t block); extern void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io); extern int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io); extern int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait); extern void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block); extern int ext4_seq_options_show(struct seq_file *seq, void *offset); extern int ext4_calculate_overhead(struct super_block *sb); extern void ext4_superblock_csum_set(struct super_block *sb); extern int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup); extern const char *ext4_decode_error(struct super_block *sb, int errno, char nbuf[16]); extern void ext4_mark_group_bitmap_corrupted(struct super_block *sb, ext4_group_t block_group, unsigned int flags); extern unsigned int ext4_num_base_meta_blocks(struct super_block *sb, ext4_group_t block_group); extern __printf(6, 7) void __ext4_error(struct super_block *, const char *, unsigned int, int, __u64, const char *, ...); extern __printf(6, 7) void __ext4_error_inode(struct inode *, const char *, unsigned int, ext4_fsblk_t, int, const char *, ...); extern __printf(5, 6) void __ext4_error_file(struct file *, const char *, unsigned int, ext4_fsblk_t, const char *, ...); extern void __ext4_std_error(struct super_block *, const char *, unsigned int, int); extern __printf(5, 6) void __ext4_abort(struct super_block *, const char *, unsigned int, int, const char *, ...); extern __printf(4, 5) void __ext4_warning(struct super_block *, const char *, unsigned int, const char *, ...); extern __printf(4, 5) void __ext4_warning_inode(const struct inode *inode, const char *function, unsigned int line, const char *fmt, ...); extern __printf(3, 4) void __ext4_msg(struct super_block *, const char *, const char *, ...); extern void __dump_mmp_msg(struct super_block *, struct mmp_struct *mmp, const char *, unsigned int, const char *); extern __printf(7, 8) void __ext4_grp_locked_error(const char *, unsigned int, struct super_block *, ext4_group_t, unsigned long, ext4_fsblk_t, const char *, ...); #define EXT4_ERROR_INODE(inode, fmt, a...) \ ext4_error_inode((inode), __func__, __LINE__, 0, (fmt), ## a) #define EXT4_ERROR_INODE_ERR(inode, err, fmt, a...) \ __ext4_error_inode((inode), __func__, __LINE__, 0, (err), (fmt), ## a) #define ext4_error_inode_block(inode, block, err, fmt, a...) \ __ext4_error_inode((inode), __func__, __LINE__, (block), (err), \ (fmt), ## a) #define EXT4_ERROR_FILE(file, block, fmt, a...) \ ext4_error_file((file), __func__, __LINE__, (block), (fmt), ## a) #ifdef CONFIG_PRINTK #define ext4_error_inode(inode, func, line, block, fmt, ...) \ __ext4_error_inode(inode, func, line, block, 0, fmt, ##__VA_ARGS__) #define ext4_error_inode_err(inode, func, line, block, err, fmt, ...) \ __ext4_error_inode((inode), (func), (line), (block), \ (err), (fmt), ##__VA_ARGS__) #define ext4_error_file(file, func, line, block, fmt, ...) \ __ext4_error_file(file, func, line, block, fmt, ##__VA_ARGS__) #define ext4_error(sb, fmt, ...) \ __ext4_error((sb), __func__, __LINE__, 0, 0, (fmt), ##__VA_ARGS__) #define ext4_error_err(sb, err, fmt, ...) \ __ext4_error((sb), __func__, __LINE__, (err), 0, (fmt), ##__VA_ARGS__) #define ext4_abort(sb, err, fmt, ...) \ __ext4_abort((sb), __func__, __LINE__, (err), (fmt), ##__VA_ARGS__) #define ext4_warning(sb, fmt, ...) \ __ext4_warning(sb, __func__, __LINE__, fmt, ##__VA_ARGS__) #define ext4_warning_inode(inode, fmt, ...) \ __ext4_warning_inode(inode, __func__, __LINE__, fmt, ##__VA_ARGS__) #define ext4_msg(sb, level, fmt, ...) \ __ext4_msg(sb, level, fmt, ##__VA_ARGS__) #define dump_mmp_msg(sb, mmp, msg) \ __dump_mmp_msg(sb, mmp, __func__, __LINE__, msg) #define ext4_grp_locked_error(sb, grp, ino, block, fmt, ...) \ __ext4_grp_locked_error(__func__, __LINE__, sb, grp, ino, block, \ fmt, ##__VA_ARGS__) #else #define ext4_error_inode(inode, func, line, block, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error_inode(inode, "", 0, block, 0, " "); \ } while (0) #define ext4_error_inode_err(inode, func, line, block, err, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error_inode(inode, "", 0, block, err, " "); \ } while (0) #define ext4_error_file(file, func, line, block, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error_file(file, "", 0, block, " "); \ } while (0) #define ext4_error(sb, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error(sb, "", 0, 0, 0, " "); \ } while (0) #define ext4_error_err(sb, err, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error(sb, "", 0, err, 0, " "); \ } while (0) #define ext4_abort(sb, err, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_abort(sb, "", 0, err, " "); \ } while (0) #define ext4_warning(sb, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_warning(sb, "", 0, " "); \ } while (0) #define ext4_warning_inode(inode, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_warning_inode(inode, "", 0, " "); \ } while (0) #define ext4_msg(sb, level, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_msg(sb, "", " "); \ } while (0) #define dump_mmp_msg(sb, mmp, msg) \ __dump_mmp_msg(sb, mmp, "", 0, "") #define ext4_grp_locked_error(sb, grp, ino, block, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_grp_locked_error("", 0, sb, grp, ino, block, " "); \ } while (0) #endif extern ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, struct ext4_group_desc *bg); extern ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, struct ext4_group_desc *bg); extern ext4_fsblk_t ext4_inode_table(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_free_group_clusters(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_free_inodes_count(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_used_dirs_count(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_itable_unused_count(struct super_block *sb, struct ext4_group_desc *bg); extern void ext4_block_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk); extern void ext4_inode_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk); extern void ext4_inode_table_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk); extern void ext4_free_group_clusters_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern void ext4_free_inodes_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern void ext4_used_dirs_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern void ext4_itable_unused_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern int ext4_group_desc_csum_verify(struct super_block *sb, __u32 group, struct ext4_group_desc *gdp); extern void ext4_group_desc_csum_set(struct super_block *sb, __u32 group, struct ext4_group_desc *gdp); extern int ext4_register_li_request(struct super_block *sb, ext4_group_t first_not_zeroed); static inline int ext4_has_metadata_csum(struct super_block *sb) { WARN_ON_ONCE(ext4_has_feature_metadata_csum(sb) && !EXT4_SB(sb)->s_chksum_driver); return ext4_has_feature_metadata_csum(sb) && (EXT4_SB(sb)->s_chksum_driver != NULL); } static inline int ext4_has_group_desc_csum(struct super_block *sb) { return ext4_has_feature_gdt_csum(sb) || ext4_has_metadata_csum(sb); } #define ext4_read_incompat_64bit_val(es, name) \ (((es)->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT) \ ? (ext4_fsblk_t)le32_to_cpu(es->name##_hi) << 32 : 0) | \ le32_to_cpu(es->name##_lo)) static inline ext4_fsblk_t ext4_blocks_count(struct ext4_super_block *es) { return ext4_read_incompat_64bit_val(es, s_blocks_count); } static inline ext4_fsblk_t ext4_r_blocks_count(struct ext4_super_block *es) { return ext4_read_incompat_64bit_val(es, s_r_blocks_count); } static inline ext4_fsblk_t ext4_free_blocks_count(struct ext4_super_block *es) { return ext4_read_incompat_64bit_val(es, s_free_blocks_count); } static inline void ext4_blocks_count_set(struct ext4_super_block *es, ext4_fsblk_t blk) { es->s_blocks_count_lo = cpu_to_le32((u32)blk); es->s_blocks_count_hi = cpu_to_le32(blk >> 32); } static inline void ext4_free_blocks_count_set(struct ext4_super_block *es, ext4_fsblk_t blk) { es->s_free_blocks_count_lo = cpu_to_le32((u32)blk); es->s_free_blocks_count_hi = cpu_to_le32(blk >> 32); } static inline void ext4_r_blocks_count_set(struct ext4_super_block *es, ext4_fsblk_t blk) { es->s_r_blocks_count_lo = cpu_to_le32((u32)blk); es->s_r_blocks_count_hi = cpu_to_le32(blk >> 32); } static inline loff_t ext4_isize(struct super_block *sb, struct ext4_inode *raw_inode) { if (ext4_has_feature_largedir(sb) || S_ISREG(le16_to_cpu(raw_inode->i_mode))) return ((loff_t)le32_to_cpu(raw_inode->i_size_high) << 32) | le32_to_cpu(raw_inode->i_size_lo); return (loff_t) le32_to_cpu(raw_inode->i_size_lo); } static inline void ext4_isize_set(struct ext4_inode *raw_inode, loff_t i_size) { raw_inode->i_size_lo = cpu_to_le32(i_size); raw_inode->i_size_high = cpu_to_le32(i_size >> 32); } /* * Reading s_groups_count requires using smp_rmb() afterwards. See * the locking protocol documented in the comments of ext4_group_add() * in resize.c */ static inline ext4_group_t ext4_get_groups_count(struct super_block *sb) { ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; smp_rmb(); return ngroups; } static inline ext4_group_t ext4_flex_group(struct ext4_sb_info *sbi, ext4_group_t block_group) { return block_group >> sbi->s_log_groups_per_flex; } static inline unsigned int ext4_flex_bg_size(struct ext4_sb_info *sbi) { return 1 << sbi->s_log_groups_per_flex; } #define ext4_std_error(sb, errno) \ do { \ if ((errno)) \ __ext4_std_error((sb), __func__, __LINE__, (errno)); \ } while (0) #ifdef CONFIG_SMP /* Each CPU can accumulate percpu_counter_batch clusters in their local * counters. So we need to make sure we have free clusters more * than percpu_counter_batch * nr_cpu_ids. Also add a window of 4 times. */ #define EXT4_FREECLUSTERS_WATERMARK (4 * (percpu_counter_batch * nr_cpu_ids)) #else #define EXT4_FREECLUSTERS_WATERMARK 0 #endif /* Update i_disksize. Requires i_mutex to avoid races with truncate */ static inline void ext4_update_i_disksize(struct inode *inode, loff_t newsize) { WARN_ON_ONCE(S_ISREG(inode->i_mode) && !inode_is_locked(inode)); down_write(&EXT4_I(inode)->i_data_sem); if (newsize > EXT4_I(inode)->i_disksize) WRITE_ONCE(EXT4_I(inode)->i_disksize, newsize); up_write(&EXT4_I(inode)->i_data_sem); } /* Update i_size, i_disksize. Requires i_mutex to avoid races with truncate */ static inline int ext4_update_inode_size(struct inode *inode, loff_t newsize) { int changed = 0; if (newsize > inode->i_size) { i_size_write(inode, newsize); changed = 1; } if (newsize > EXT4_I(inode)->i_disksize) { ext4_update_i_disksize(inode, newsize); changed |= 2; } return changed; } int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, loff_t len); struct ext4_group_info { unsigned long bb_state; #ifdef AGGRESSIVE_CHECK unsigned long bb_check_counter; #endif struct rb_root bb_free_root; ext4_grpblk_t bb_first_free; /* first free block */ ext4_grpblk_t bb_free; /* total free blocks */ ext4_grpblk_t bb_fragments; /* nr of freespace fragments */ ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */ struct list_head bb_prealloc_list; #ifdef DOUBLE_CHECK void *bb_bitmap; #endif struct rw_semaphore alloc_sem; ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block * regions, index is order. * bb_counters[3] = 5 means * 5 free 8-block regions. */ }; #define EXT4_GROUP_INFO_NEED_INIT_BIT 0 #define EXT4_GROUP_INFO_WAS_TRIMMED_BIT 1 #define EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT 2 #define EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT 3 #define EXT4_GROUP_INFO_BBITMAP_CORRUPT \ (1 << EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT) #define EXT4_GROUP_INFO_IBITMAP_CORRUPT \ (1 << EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT) #define EXT4_GROUP_INFO_BBITMAP_READ_BIT 4 #define EXT4_MB_GRP_NEED_INIT(grp) \ (test_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_BBITMAP_CORRUPT(grp) \ (test_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_IBITMAP_CORRUPT(grp) \ (test_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_WAS_TRIMMED(grp) \ (test_bit(EXT4_GROUP_INFO_WAS_TRIMMED_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_SET_TRIMMED(grp) \ (set_bit(EXT4_GROUP_INFO_WAS_TRIMMED_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_CLEAR_TRIMMED(grp) \ (clear_bit(EXT4_GROUP_INFO_WAS_TRIMMED_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_TEST_AND_SET_READ(grp) \ (test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_READ_BIT, &((grp)->bb_state))) #define EXT4_MAX_CONTENTION 8 #define EXT4_CONTENTION_THRESHOLD 2 static inline spinlock_t *ext4_group_lock_ptr(struct super_block *sb, ext4_group_t group) { return bgl_lock_ptr(EXT4_SB(sb)->s_blockgroup_lock, group); } /* * Returns true if the filesystem is busy enough that attempts to * access the block group locks has run into contention. */ static inline int ext4_fs_is_busy(struct ext4_sb_info *sbi) { return (atomic_read(&sbi->s_lock_busy) > EXT4_CONTENTION_THRESHOLD); } static inline void ext4_lock_group(struct super_block *sb, ext4_group_t group) { spinlock_t *lock = ext4_group_lock_ptr(sb, group); if (spin_trylock(lock)) /* * We're able to grab the lock right away, so drop the * lock contention counter. */ atomic_add_unless(&EXT4_SB(sb)->s_lock_busy, -1, 0); else { /* * The lock is busy, so bump the contention counter, * and then wait on the spin lock. */ atomic_add_unless(&EXT4_SB(sb)->s_lock_busy, 1, EXT4_MAX_CONTENTION); spin_lock(lock); } } static inline void ext4_unlock_group(struct super_block *sb, ext4_group_t group) { spin_unlock(ext4_group_lock_ptr(sb, group)); } /* * Block validity checking */ #define ext4_check_indirect_blockref(inode, bh) \ ext4_check_blockref(__func__, __LINE__, inode, \ (__le32 *)(bh)->b_data, \ EXT4_ADDR_PER_BLOCK((inode)->i_sb)) #define ext4_ind_check_inode(inode) \ ext4_check_blockref(__func__, __LINE__, inode, \ EXT4_I(inode)->i_data, \ EXT4_NDIR_BLOCKS) /* * Inodes and files operations */ /* dir.c */ extern const struct file_operations ext4_dir_operations; #ifdef CONFIG_UNICODE extern const struct dentry_operations ext4_dentry_ops; #endif /* file.c */ extern const struct inode_operations ext4_file_inode_operations; extern const struct file_operations ext4_file_operations; extern loff_t ext4_llseek(struct file *file, loff_t offset, int origin); /* inline.c */ extern int ext4_get_max_inline_size(struct inode *inode); extern int ext4_find_inline_data_nolock(struct inode *inode); extern int ext4_init_inline_data(handle_t *handle, struct inode *inode, unsigned int len); extern int ext4_destroy_inline_data(handle_t *handle, struct inode *inode); extern int ext4_readpage_inline(struct inode *inode, struct page *page); extern int ext4_try_to_write_inline_data(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, unsigned flags, struct page **pagep); extern int ext4_write_inline_data_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, struct page *page); extern struct buffer_head * ext4_journalled_write_inline_data(struct inode *inode, unsigned len, struct page *page); extern int ext4_da_write_inline_data_begin(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); extern int ext4_da_write_inline_data_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, struct page *page); extern int ext4_try_add_inline_entry(handle_t *handle, struct ext4_filename *fname, struct inode *dir, struct inode *inode); extern int ext4_try_create_inline_dir(handle_t *handle, struct inode *parent, struct inode *inode); extern int ext4_read_inline_dir(struct file *filp, struct dir_context *ctx, int *has_inline_data); extern int ext4_inlinedir_to_tree(struct file *dir_file, struct inode *dir, ext4_lblk_t block, struct dx_hash_info *hinfo, __u32 start_hash, __u32 start_minor_hash, int *has_inline_data); extern struct buffer_head *ext4_find_inline_entry(struct inode *dir, struct ext4_filename *fname, struct ext4_dir_entry_2 **res_dir, int *has_inline_data); extern int ext4_delete_inline_entry(handle_t *handle, struct inode *dir, struct ext4_dir_entry_2 *de_del, struct buffer_head *bh, int *has_inline_data); extern bool empty_inline_dir(struct inode *dir, int *has_inline_data); extern struct buffer_head *ext4_get_first_inline_block(struct inode *inode, struct ext4_dir_entry_2 **parent_de, int *retval); extern int ext4_inline_data_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, int *has_inline, __u64 start, __u64 len); struct iomap; extern int ext4_inline_data_iomap(struct inode *inode, struct iomap *iomap); extern int ext4_inline_data_truncate(struct inode *inode, int *has_inline); extern int ext4_convert_inline_data(struct inode *inode); static inline int ext4_has_inline_data(struct inode *inode) { return ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) && EXT4_I(inode)->i_inline_off; } /* namei.c */ extern const struct inode_operations ext4_dir_inode_operations; extern const struct inode_operations ext4_special_inode_operations; extern struct dentry *ext4_get_parent(struct dentry *child); extern struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode, struct ext4_dir_entry_2 *de, int blocksize, int csum_size, unsigned int parent_ino, int dotdot_real_len); extern void ext4_initialize_dirent_tail(struct buffer_head *bh, unsigned int blocksize); extern int ext4_handle_dirty_dirblock(handle_t *handle, struct inode *inode, struct buffer_head *bh); extern int ext4_ci_compare(const struct inode *parent, const struct qstr *fname, const struct qstr *entry, bool quick); extern int __ext4_unlink(struct inode *dir, const struct qstr *d_name, struct inode *inode, struct dentry *dentry); extern int __ext4_link(struct inode *dir, struct inode *inode, struct dentry *dentry); #define S_SHIFT 12 static const unsigned char ext4_type_by_mode[(S_IFMT >> S_SHIFT) + 1] = { [S_IFREG >> S_SHIFT] = EXT4_FT_REG_FILE, [S_IFDIR >> S_SHIFT] = EXT4_FT_DIR, [S_IFCHR >> S_SHIFT] = EXT4_FT_CHRDEV, [S_IFBLK >> S_SHIFT] = EXT4_FT_BLKDEV, [S_IFIFO >> S_SHIFT] = EXT4_FT_FIFO, [S_IFSOCK >> S_SHIFT] = EXT4_FT_SOCK, [S_IFLNK >> S_SHIFT] = EXT4_FT_SYMLINK, }; static inline void ext4_set_de_type(struct super_block *sb, struct ext4_dir_entry_2 *de, umode_t mode) { if (ext4_has_feature_filetype(sb)) de->file_type = ext4_type_by_mode[(mode & S_IFMT)>>S_SHIFT]; } /* readpages.c */ extern int ext4_mpage_readpages(struct inode *inode, struct readahead_control *rac, struct page *page); extern int __init ext4_init_post_read_processing(void); extern void ext4_exit_post_read_processing(void); /* symlink.c */ extern const struct inode_operations ext4_encrypted_symlink_inode_operations; extern const struct inode_operations ext4_symlink_inode_operations; extern const struct inode_operations ext4_fast_symlink_inode_operations; /* sysfs.c */ extern int ext4_register_sysfs(struct super_block *sb); extern void ext4_unregister_sysfs(struct super_block *sb); extern int __init ext4_init_sysfs(void); extern void ext4_exit_sysfs(void); /* block_validity */ extern void ext4_release_system_zone(struct super_block *sb); extern int ext4_setup_system_zone(struct super_block *sb); extern int __init ext4_init_system_zone(void); extern void ext4_exit_system_zone(void); extern int ext4_inode_block_valid(struct inode *inode, ext4_fsblk_t start_blk, unsigned int count); extern int ext4_check_blockref(const char *, unsigned int, struct inode *, __le32 *, unsigned int); extern int ext4_sb_block_valid(struct super_block *sb, struct inode *inode, ext4_fsblk_t start_blk, unsigned int count); /* extents.c */ struct ext4_ext_path; struct ext4_extent; /* * Maximum number of logical blocks in a file; ext4_extent's ee_block is * __le32. */ #define EXT_MAX_BLOCKS 0xffffffff extern void ext4_ext_tree_init(handle_t *handle, struct inode *inode); extern int ext4_ext_index_trans_blocks(struct inode *inode, int extents); extern int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, struct ext4_map_blocks *map, int flags); extern int ext4_ext_truncate(handle_t *, struct inode *); extern int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, ext4_lblk_t end); extern void ext4_ext_init(struct super_block *); extern void ext4_ext_release(struct super_block *); extern long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, loff_t offset, ssize_t len); extern int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end); extern int ext4_map_blocks(handle_t *handle, struct inode *inode, struct ext4_map_blocks *map, int flags); extern int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int num, struct ext4_ext_path *path); extern int ext4_ext_insert_extent(handle_t *, struct inode *, struct ext4_ext_path **, struct ext4_extent *, int); extern struct ext4_ext_path *ext4_find_extent(struct inode *, ext4_lblk_t, struct ext4_ext_path **, int flags); extern void ext4_ext_drop_refs(struct ext4_ext_path *); extern int ext4_ext_check_inode(struct inode *inode); extern ext4_lblk_t ext4_ext_next_allocated_block(struct ext4_ext_path *path); extern int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len); extern int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len); extern int ext4_ext_precache(struct inode *inode); extern int ext4_swap_extents(handle_t *handle, struct inode *inode1, struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, ext4_lblk_t count, int mark_unwritten,int *err); extern int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu); extern int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, int check_cred, int restart_cred, int revoke_cred); extern void ext4_ext_replay_shrink_inode(struct inode *inode, ext4_lblk_t end); extern int ext4_ext_replay_set_iblocks(struct inode *inode); extern int ext4_ext_replay_update_ex(struct inode *inode, ext4_lblk_t start, int len, int unwritten, ext4_fsblk_t pblk); extern int ext4_ext_clear_bb(struct inode *inode); /* move_extent.c */ extern void ext4_double_down_write_data_sem(struct inode *first, struct inode *second); extern void ext4_double_up_write_data_sem(struct inode *orig_inode, struct inode *donor_inode); extern int ext4_move_extents(struct file *o_filp, struct file *d_filp, __u64 start_orig, __u64 start_donor, __u64 len, __u64 *moved_len); /* page-io.c */ extern int __init ext4_init_pageio(void); extern void ext4_exit_pageio(void); extern ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags); extern ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end); extern int ext4_put_io_end(ext4_io_end_t *io_end); extern void ext4_put_io_end_defer(ext4_io_end_t *io_end); extern void ext4_io_submit_init(struct ext4_io_submit *io, struct writeback_control *wbc); extern void ext4_end_io_rsv_work(struct work_struct *work); extern void ext4_io_submit(struct ext4_io_submit *io); extern int ext4_bio_write_page(struct ext4_io_submit *io, struct page *page, int len, struct writeback_control *wbc, bool keep_towrite); extern struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end); extern struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end); /* mmp.c */ extern int ext4_multi_mount_protect(struct super_block *, ext4_fsblk_t); /* mmp.c */ extern void ext4_stop_mmpd(struct ext4_sb_info *sbi); /* verity.c */ extern const struct fsverity_operations ext4_verityops; /* * Add new method to test whether block and inode bitmaps are properly * initialized. With uninit_bg reading the block from disk is not enough * to mark the bitmap uptodate. We need to also zero-out the bitmap */ #define BH_BITMAP_UPTODATE BH_JBDPrivateStart static inline int bitmap_uptodate(struct buffer_head *bh) { return (buffer_uptodate(bh) && test_bit(BH_BITMAP_UPTODATE, &(bh)->b_state)); } static inline void set_bitmap_uptodate(struct buffer_head *bh) { set_bit(BH_BITMAP_UPTODATE, &(bh)->b_state); } #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) /* For ioend & aio unwritten conversion wait queues */ #define EXT4_WQ_HASH_SZ 37 #define ext4_ioend_wq(v) (&ext4__ioend_wq[((unsigned long)(v)) %\ EXT4_WQ_HASH_SZ]) extern wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; extern int ext4_resize_begin(struct super_block *sb); extern void ext4_resize_end(struct super_block *sb); static inline void ext4_set_io_unwritten_flag(struct inode *inode, struct ext4_io_end *io_end) { if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { io_end->flag |= EXT4_IO_END_UNWRITTEN; atomic_inc(&EXT4_I(inode)->i_unwritten); } } static inline void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end) { struct inode *inode = io_end->inode; if (io_end->flag & EXT4_IO_END_UNWRITTEN) { io_end->flag &= ~EXT4_IO_END_UNWRITTEN; /* Wake up anyone waiting on unwritten extent conversion */ if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) wake_up_all(ext4_ioend_wq(inode)); } } extern const struct iomap_ops ext4_iomap_ops; extern const struct iomap_ops ext4_iomap_overwrite_ops; extern const struct iomap_ops ext4_iomap_report_ops; static inline int ext4_buffer_uptodate(struct buffer_head *bh) { /* * If the buffer has the write error flag, we have failed * to write out data in the block. In this case, we don't * have to read the block because we may read the old data * successfully. */ if (!buffer_uptodate(bh) && buffer_write_io_error(bh)) set_buffer_uptodate(bh); return buffer_uptodate(bh); } #endif /* __KERNEL__ */ #define EFSBADCRC EBADMSG /* Bad CRC detected */ #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ #endif /* _EXT4_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 /* SPDX-License-Identifier: GPL-2.0 */ /* * * Generic internet FLOW. * */ #ifndef _NET_FLOW_H #define _NET_FLOW_H #include <linux/socket.h> #include <linux/in6.h> #include <linux/atomic.h> #include <net/flow_dissector.h> #include <linux/uidgid.h> /* * ifindex generation is per-net namespace, and loopback is * always the 1st device in ns (see net_dev_init), thus any * loopback device should get ifindex 1 */ #define LOOPBACK_IFINDEX 1 struct flowi_tunnel { __be64 tun_id; }; struct flowi_common { int flowic_oif; int flowic_iif; int flowic_l3mdev; __u32 flowic_mark; __u8 flowic_tos; __u8 flowic_scope; __u8 flowic_proto; __u8 flowic_flags; #define FLOWI_FLAG_ANYSRC 0x01 #define FLOWI_FLAG_KNOWN_NH 0x02 __u32 flowic_secid; kuid_t flowic_uid; __u32 flowic_multipath_hash; struct flowi_tunnel flowic_tun_key; }; union flowi_uli { struct { __be16 dport; __be16 sport; } ports; struct { __u8 type; __u8 code; } icmpt; __be32 spi; __be32 gre_key; struct { __u8 type; } mht; }; struct flowi4 { struct flowi_common __fl_common; #define flowi4_oif __fl_common.flowic_oif #define flowi4_iif __fl_common.flowic_iif #define flowi4_l3mdev __fl_common.flowic_l3mdev #define flowi4_mark __fl_common.flowic_mark #define flowi4_tos __fl_common.flowic_tos #define flowi4_scope __fl_common.flowic_scope #define flowi4_proto __fl_common.flowic_proto #define flowi4_flags __fl_common.flowic_flags #define flowi4_secid __fl_common.flowic_secid #define flowi4_tun_key __fl_common.flowic_tun_key #define flowi4_uid __fl_common.flowic_uid #define flowi4_multipath_hash __fl_common.flowic_multipath_hash /* (saddr,daddr) must be grouped, same order as in IP header */ __be32 saddr; __be32 daddr; union flowi_uli uli; #define fl4_sport uli.ports.sport #define fl4_dport uli.ports.dport #define fl4_icmp_type uli.icmpt.type #define fl4_icmp_code uli.icmpt.code #define fl4_ipsec_spi uli.spi #define fl4_mh_type uli.mht.type #define fl4_gre_key uli.gre_key } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline void flowi4_init_output(struct flowi4 *fl4, int oif, __u32 mark, __u8 tos, __u8 scope, __u8 proto, __u8 flags, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, kuid_t uid) { fl4->flowi4_oif = oif; fl4->flowi4_iif = LOOPBACK_IFINDEX; fl4->flowi4_l3mdev = 0; fl4->flowi4_mark = mark; fl4->flowi4_tos = tos; fl4->flowi4_scope = scope; fl4->flowi4_proto = proto; fl4->flowi4_flags = flags; fl4->flowi4_secid = 0; fl4->flowi4_tun_key.tun_id = 0; fl4->flowi4_uid = uid; fl4->daddr = daddr; fl4->saddr = saddr; fl4->fl4_dport = dport; fl4->fl4_sport = sport; fl4->flowi4_multipath_hash = 0; } /* Reset some input parameters after previous lookup */ static inline void flowi4_update_output(struct flowi4 *fl4, int oif, __u8 tos, __be32 daddr, __be32 saddr) { fl4->flowi4_oif = oif; fl4->flowi4_tos = tos; fl4->daddr = daddr; fl4->saddr = saddr; } struct flowi6 { struct flowi_common __fl_common; #define flowi6_oif __fl_common.flowic_oif #define flowi6_iif __fl_common.flowic_iif #define flowi6_l3mdev __fl_common.flowic_l3mdev #define flowi6_mark __fl_common.flowic_mark #define flowi6_scope __fl_common.flowic_scope #define flowi6_proto __fl_common.flowic_proto #define flowi6_flags __fl_common.flowic_flags #define flowi6_secid __fl_common.flowic_secid #define flowi6_tun_key __fl_common.flowic_tun_key #define flowi6_uid __fl_common.flowic_uid struct in6_addr daddr; struct in6_addr saddr; /* Note: flowi6_tos is encoded in flowlabel, too. */ __be32 flowlabel; union flowi_uli uli; #define fl6_sport uli.ports.sport #define fl6_dport uli.ports.dport #define fl6_icmp_type uli.icmpt.type #define fl6_icmp_code uli.icmpt.code #define fl6_ipsec_spi uli.spi #define fl6_mh_type uli.mht.type #define fl6_gre_key uli.gre_key __u32 mp_hash; } __attribute__((__aligned__(BITS_PER_LONG/8))); struct flowi { union { struct flowi_common __fl_common; struct flowi4 ip4; struct flowi6 ip6; } u; #define flowi_oif u.__fl_common.flowic_oif #define flowi_iif u.__fl_common.flowic_iif #define flowi_l3mdev u.__fl_common.flowic_l3mdev #define flowi_mark u.__fl_common.flowic_mark #define flowi_tos u.__fl_common.flowic_tos #define flowi_scope u.__fl_common.flowic_scope #define flowi_proto u.__fl_common.flowic_proto #define flowi_flags u.__fl_common.flowic_flags #define flowi_secid u.__fl_common.flowic_secid #define flowi_tun_key u.__fl_common.flowic_tun_key #define flowi_uid u.__fl_common.flowic_uid } __attribute__((__aligned__(BITS_PER_LONG/8))); static inline struct flowi *flowi4_to_flowi(struct flowi4 *fl4) { return container_of(fl4, struct flowi, u.ip4); } static inline struct flowi_common *flowi4_to_flowi_common(struct flowi4 *fl4) { return &(flowi4_to_flowi(fl4)->u.__fl_common); } static inline struct flowi *flowi6_to_flowi(struct flowi6 *fl6) { return container_of(fl6, struct flowi, u.ip6); } static inline struct flowi_common *flowi6_to_flowi_common(struct flowi6 *fl6) { return &(flowi6_to_flowi(fl6)->u.__fl_common); } __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM compaction #if !defined(_TRACE_COMPACTION_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_COMPACTION_H #include <linux/types.h> #include <linux/list.h> #include <linux/tracepoint.h> #include <trace/events/mmflags.h> DECLARE_EVENT_CLASS(mm_compaction_isolate_template, TP_PROTO( unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_scanned, unsigned long nr_taken), TP_ARGS(start_pfn, end_pfn, nr_scanned, nr_taken), TP_STRUCT__entry( __field(unsigned long, start_pfn) __field(unsigned long, end_pfn) __field(unsigned long, nr_scanned) __field(unsigned long, nr_taken) ), TP_fast_assign( __entry->start_pfn = start_pfn; __entry->end_pfn = end_pfn; __entry->nr_scanned = nr_scanned; __entry->nr_taken = nr_taken; ), TP_printk("range=(0x%lx ~ 0x%lx) nr_scanned=%lu nr_taken=%lu", __entry->start_pfn, __entry->end_pfn, __entry->nr_scanned, __entry->nr_taken) ); DEFINE_EVENT(mm_compaction_isolate_template, mm_compaction_isolate_migratepages, TP_PROTO( unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_scanned, unsigned long nr_taken), TP_ARGS(start_pfn, end_pfn, nr_scanned, nr_taken) ); DEFINE_EVENT(mm_compaction_isolate_template, mm_compaction_isolate_freepages, TP_PROTO( unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_scanned, unsigned long nr_taken), TP_ARGS(start_pfn, end_pfn, nr_scanned, nr_taken) ); #ifdef CONFIG_COMPACTION TRACE_EVENT(mm_compaction_migratepages, TP_PROTO(unsigned long nr_all, int migrate_rc, struct list_head *migratepages), TP_ARGS(nr_all, migrate_rc, migratepages), TP_STRUCT__entry( __field(unsigned long, nr_migrated) __field(unsigned long, nr_failed) ), TP_fast_assign( unsigned long nr_failed = 0; struct list_head *page_lru; /* * migrate_pages() returns either a non-negative number * with the number of pages that failed migration, or an * error code, in which case we need to count the remaining * pages manually */ if (migrate_rc >= 0) nr_failed = migrate_rc; else list_for_each(page_lru, migratepages) nr_failed++; __entry->nr_migrated = nr_all - nr_failed; __entry->nr_failed = nr_failed; ), TP_printk("nr_migrated=%lu nr_failed=%lu", __entry->nr_migrated, __entry->nr_failed) ); TRACE_EVENT(mm_compaction_begin, TP_PROTO(unsigned long zone_start, unsigned long migrate_pfn, unsigned long free_pfn, unsigned long zone_end, bool sync), TP_ARGS(zone_start, migrate_pfn, free_pfn, zone_end, sync), TP_STRUCT__entry( __field(unsigned long, zone_start) __field(unsigned long, migrate_pfn) __field(unsigned long, free_pfn) __field(unsigned long, zone_end) __field(bool, sync) ), TP_fast_assign( __entry->zone_start = zone_start; __entry->migrate_pfn = migrate_pfn; __entry->free_pfn = free_pfn; __entry->zone_end = zone_end; __entry->sync = sync; ), TP_printk("zone_start=0x%lx migrate_pfn=0x%lx free_pfn=0x%lx zone_end=0x%lx, mode=%s", __entry->zone_start, __entry->migrate_pfn, __entry->free_pfn, __entry->zone_end, __entry->sync ? "sync" : "async") ); TRACE_EVENT(mm_compaction_end, TP_PROTO(unsigned long zone_start, unsigned long migrate_pfn, unsigned long free_pfn, unsigned long zone_end, bool sync, int status), TP_ARGS(zone_start, migrate_pfn, free_pfn, zone_end, sync, status), TP_STRUCT__entry( __field(unsigned long, zone_start) __field(unsigned long, migrate_pfn) __field(unsigned long, free_pfn) __field(unsigned long, zone_end) __field(bool, sync) __field(int, status) ), TP_fast_assign( __entry->zone_start = zone_start; __entry->migrate_pfn = migrate_pfn; __entry->free_pfn = free_pfn; __entry->zone_end = zone_end; __entry->sync = sync; __entry->status = status; ), TP_printk("zone_start=0x%lx migrate_pfn=0x%lx free_pfn=0x%lx zone_end=0x%lx, mode=%s status=%s", __entry->zone_start, __entry->migrate_pfn, __entry->free_pfn, __entry->zone_end, __entry->sync ? "sync" : "async", __print_symbolic(__entry->status, COMPACTION_STATUS)) ); TRACE_EVENT(mm_compaction_try_to_compact_pages, TP_PROTO( int order, gfp_t gfp_mask, int prio), TP_ARGS(order, gfp_mask, prio), TP_STRUCT__entry( __field(int, order) __field(gfp_t, gfp_mask) __field(int, prio) ), TP_fast_assign( __entry->order = order; __entry->gfp_mask = gfp_mask; __entry->prio = prio; ), TP_printk("order=%d gfp_mask=%s priority=%d", __entry->order, show_gfp_flags(__entry->gfp_mask), __entry->prio) ); DECLARE_EVENT_CLASS(mm_compaction_suitable_template, TP_PROTO(struct zone *zone, int order, int ret), TP_ARGS(zone, order, ret), TP_STRUCT__entry( __field(int, nid) __field(enum zone_type, idx) __field(int, order) __field(int, ret) ), TP_fast_assign( __entry->nid = zone_to_nid(zone); __entry->idx = zone_idx(zone); __entry->order = order; __entry->ret = ret; ), TP_printk("node=%d zone=%-8s order=%d ret=%s", __entry->nid, __print_symbolic(__entry->idx, ZONE_TYPE), __entry->order, __print_symbolic(__entry->ret, COMPACTION_STATUS)) ); DEFINE_EVENT(mm_compaction_suitable_template, mm_compaction_finished, TP_PROTO(struct zone *zone, int order, int ret), TP_ARGS(zone, order, ret) ); DEFINE_EVENT(mm_compaction_suitable_template, mm_compaction_suitable, TP_PROTO(struct zone *zone, int order, int ret), TP_ARGS(zone, order, ret) ); DECLARE_EVENT_CLASS(mm_compaction_defer_template, TP_PROTO(struct zone *zone, int order), TP_ARGS(zone, order), TP_STRUCT__entry( __field(int, nid) __field(enum zone_type, idx) __field(int, order) __field(unsigned int, considered) __field(unsigned int, defer_shift) __field(int, order_failed) ), TP_fast_assign( __entry->nid = zone_to_nid(zone); __entry->idx = zone_idx(zone); __entry->order = order; __entry->considered = zone->compact_considered; __entry->defer_shift = zone->compact_defer_shift; __entry->order_failed = zone->compact_order_failed; ), TP_printk("node=%d zone=%-8s order=%d order_failed=%d consider=%u limit=%lu", __entry->nid, __print_symbolic(__entry->idx, ZONE_TYPE), __entry->order, __entry->order_failed, __entry->considered, 1UL << __entry->defer_shift) ); DEFINE_EVENT(mm_compaction_defer_template, mm_compaction_deferred, TP_PROTO(struct zone *zone, int order), TP_ARGS(zone, order) ); DEFINE_EVENT(mm_compaction_defer_template, mm_compaction_defer_compaction, TP_PROTO(struct zone *zone, int order), TP_ARGS(zone, order) ); DEFINE_EVENT(mm_compaction_defer_template, mm_compaction_defer_reset, TP_PROTO(struct zone *zone, int order), TP_ARGS(zone, order) ); TRACE_EVENT(mm_compaction_kcompactd_sleep, TP_PROTO(int nid), TP_ARGS(nid), TP_STRUCT__entry( __field(int, nid) ), TP_fast_assign( __entry->nid = nid; ), TP_printk("nid=%d", __entry->nid) ); DECLARE_EVENT_CLASS(kcompactd_wake_template, TP_PROTO(int nid, int order, enum zone_type highest_zoneidx), TP_ARGS(nid, order, highest_zoneidx), TP_STRUCT__entry( __field(int, nid) __field(int, order) __field(enum zone_type, highest_zoneidx) ), TP_fast_assign( __entry->nid = nid; __entry->order = order; __entry->highest_zoneidx = highest_zoneidx; ), /* * classzone_idx is previous name of the highest_zoneidx. * Reason not to change it is the ABI requirement of the tracepoint. */ TP_printk("nid=%d order=%d classzone_idx=%-8s", __entry->nid, __entry->order, __print_symbolic(__entry->highest_zoneidx, ZONE_TYPE)) ); DEFINE_EVENT(kcompactd_wake_template, mm_compaction_wakeup_kcompactd, TP_PROTO(int nid, int order, enum zone_type highest_zoneidx), TP_ARGS(nid, order, highest_zoneidx) ); DEFINE_EVENT(kcompactd_wake_template, mm_compaction_kcompactd_wake, TP_PROTO(int nid, int order, enum zone_type highest_zoneidx), TP_ARGS(nid, order, highest_zoneidx) ); #endif #endif /* _TRACE_COMPACTION_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ /* * generic net pointers */ #ifndef __NET_GENERIC_H__ #define __NET_GENERIC_H__ #include <linux/bug.h> #include <linux/rcupdate.h> /* * Generic net pointers are to be used by modules to put some private * stuff on the struct net without explicit struct net modification * * The rules are simple: * 1. set pernet_operations->id. After register_pernet_device you * will have the id of your private pointer. * 2. set pernet_operations->size to have the code allocate and free * a private structure pointed to from struct net. * 3. do not change this pointer while the net is alive; * 4. do not try to have any private reference on the net_generic object. * * After accomplishing all of the above, the private pointer can be * accessed with the net_generic() call. */ struct net_generic { union { struct { unsigned int len; struct rcu_head rcu; } s; void *ptr[0]; }; }; static inline void *net_generic(const struct net *net, unsigned int id) { struct net_generic *ng; void *ptr; rcu_read_lock(); ng = rcu_dereference(net->gen); ptr = ng->ptr[id]; rcu_read_unlock(); return ptr; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_BL_H #define _LINUX_LIST_BL_H #include <linux/list.h> #include <linux/bit_spinlock.h> /* * Special version of lists, where head of the list has a lock in the lowest * bit. This is useful for scalable hash tables without increasing memory * footprint overhead. * * For modification operations, the 0 bit of hlist_bl_head->first * pointer must be set. * * With some small modifications, this can easily be adapted to store several * arbitrary bits (not just a single lock bit), if the need arises to store * some fast and compact auxiliary data. */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define LIST_BL_LOCKMASK 1UL #else #define LIST_BL_LOCKMASK 0UL #endif #ifdef CONFIG_DEBUG_LIST #define LIST_BL_BUG_ON(x) BUG_ON(x) #else #define LIST_BL_BUG_ON(x) #endif struct hlist_bl_head { struct hlist_bl_node *first; }; struct hlist_bl_node { struct hlist_bl_node *next, **pprev; }; #define INIT_HLIST_BL_HEAD(ptr) \ ((ptr)->first = NULL) static inline void INIT_HLIST_BL_NODE(struct hlist_bl_node *h) { h->next = NULL; h->pprev = NULL; } #define hlist_bl_entry(ptr, type, member) container_of(ptr,type,member) static inline bool hlist_bl_unhashed(const struct hlist_bl_node *h) { return !h->pprev; } static inline struct hlist_bl_node *hlist_bl_first(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)h->first & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_set_first(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); h->first = (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK); } static inline bool hlist_bl_empty(const struct hlist_bl_head *h) { return !((unsigned long)READ_ONCE(h->first) & ~LIST_BL_LOCKMASK); } static inline void hlist_bl_add_head(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; hlist_bl_set_first(h, n); } static inline void hlist_bl_add_before(struct hlist_bl_node *n, struct hlist_bl_node *next) { struct hlist_bl_node **pprev = next->pprev; n->pprev = pprev; n->next = next; next->pprev = &n->next; /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((uintptr_t)n | ((uintptr_t)*pprev & LIST_BL_LOCKMASK))); } static inline void hlist_bl_add_behind(struct hlist_bl_node *n, struct hlist_bl_node *prev) { n->next = prev->next; n->pprev = &prev->next; prev->next = n; if (n->next) n->next->pprev = &n->next; } static inline void __hlist_bl_del(struct hlist_bl_node *n) { struct hlist_bl_node *next = n->next; struct hlist_bl_node **pprev = n->pprev; LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); /* pprev may be `first`, so be careful not to lose the lock bit */ WRITE_ONCE(*pprev, (struct hlist_bl_node *) ((unsigned long)next | ((unsigned long)*pprev & LIST_BL_LOCKMASK))); if (next) next->pprev = pprev; } static inline void hlist_bl_del(struct hlist_bl_node *n) { __hlist_bl_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } static inline void hlist_bl_del_init(struct hlist_bl_node *n) { if (!hlist_bl_unhashed(n)) { __hlist_bl_del(n); INIT_HLIST_BL_NODE(n); } } static inline void hlist_bl_lock(struct hlist_bl_head *b) { bit_spin_lock(0, (unsigned long *)b); } static inline void hlist_bl_unlock(struct hlist_bl_head *b) { __bit_spin_unlock(0, (unsigned long *)b); } static inline bool hlist_bl_is_locked(struct hlist_bl_head *b) { return bit_spin_is_locked(0, (unsigned long *)b); } /** * hlist_bl_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_bl_for_each_entry(tpos, pos, head, member) \ for (pos = hlist_bl_first(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_bl_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @n: another &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_bl_for_each_entry_safe(tpos, pos, n, head, member) \ for (pos = hlist_bl_first(head); \ pos && ({ n = pos->next; 1; }) && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1;}); \ pos = n) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Interfaces handler. * * Version: @(#)dev.h 1.0.10 08/12/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> * Alan Cox, <alan@lxorguk.ukuu.org.uk> * Bjorn Ekwall. <bj0rn@blox.se> * Pekka Riikonen <priikone@poseidon.pspt.fi> * * Moved to /usr/include/linux for NET3 */ #ifndef _LINUX_NETDEVICE_H #define _LINUX_NETDEVICE_H #include <linux/timer.h> #include <linux/bug.h> #include <linux/delay.h> #include <linux/atomic.h> #include <linux/prefetch.h> #include <asm/cache.h> #include <asm/byteorder.h> #include <linux/percpu.h> #include <linux/rculist.h> #include <linux/workqueue.h> #include <linux/dynamic_queue_limits.h> #include <linux/ethtool.h> #include <net/net_namespace.h> #ifdef CONFIG_DCB #include <net/dcbnl.h> #endif #include <net/netprio_cgroup.h> #include <net/xdp.h> #include <linux/netdev_features.h> #include <linux/neighbour.h> #include <uapi/linux/netdevice.h> #include <uapi/linux/if_bonding.h> #include <uapi/linux/pkt_cls.h> #include <linux/hashtable.h> struct netpoll_info; struct device; struct phy_device; struct dsa_port; struct ip_tunnel_parm; struct macsec_context; struct macsec_ops; struct sfp_bus; /* 802.11 specific */ struct wireless_dev; /* 802.15.4 specific */ struct wpan_dev; struct mpls_dev; /* UDP Tunnel offloads */ struct udp_tunnel_info; struct udp_tunnel_nic_info; struct udp_tunnel_nic; struct bpf_prog; struct xdp_buff; void synchronize_net(void); void netdev_set_default_ethtool_ops(struct net_device *dev, const struct ethtool_ops *ops); /* Backlog congestion levels */ #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ #define NET_RX_DROP 1 /* packet dropped */ #define MAX_NEST_DEV 8 /* * Transmit return codes: transmit return codes originate from three different * namespaces: * * - qdisc return codes * - driver transmit return codes * - errno values * * Drivers are allowed to return any one of those in their hard_start_xmit() * function. Real network devices commonly used with qdiscs should only return * the driver transmit return codes though - when qdiscs are used, the actual * transmission happens asynchronously, so the value is not propagated to * higher layers. Virtual network devices transmit synchronously; in this case * the driver transmit return codes are consumed by dev_queue_xmit(), and all * others are propagated to higher layers. */ /* qdisc ->enqueue() return codes. */ #define NET_XMIT_SUCCESS 0x00 #define NET_XMIT_DROP 0x01 /* skb dropped */ #define NET_XMIT_CN 0x02 /* congestion notification */ #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It * indicates that the device will soon be dropping packets, or already drops * some packets of the same priority; prompting us to send less aggressively. */ #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) /* Driver transmit return codes */ #define NETDEV_TX_MASK 0xf0 enum netdev_tx { __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ NETDEV_TX_OK = 0x00, /* driver took care of packet */ NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ }; typedef enum netdev_tx netdev_tx_t; /* * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. */ static inline bool dev_xmit_complete(int rc) { /* * Positive cases with an skb consumed by a driver: * - successful transmission (rc == NETDEV_TX_OK) * - error while transmitting (rc < 0) * - error while queueing to a different device (rc & NET_XMIT_MASK) */ if (likely(rc < NET_XMIT_MASK)) return true; return false; } /* * Compute the worst-case header length according to the protocols * used. */ #if defined(CONFIG_HYPERV_NET) # define LL_MAX_HEADER 128 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) # if defined(CONFIG_MAC80211_MESH) # define LL_MAX_HEADER 128 # else # define LL_MAX_HEADER 96 # endif #else # define LL_MAX_HEADER 32 #endif #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) #define MAX_HEADER LL_MAX_HEADER #else #define MAX_HEADER (LL_MAX_HEADER + 48) #endif /* * Old network device statistics. Fields are native words * (unsigned long) so they can be read and written atomically. */ #define NET_DEV_STAT(FIELD) \ union { \ unsigned long FIELD; \ atomic_long_t __##FIELD; \ } struct net_device_stats { NET_DEV_STAT(rx_packets); NET_DEV_STAT(tx_packets); NET_DEV_STAT(rx_bytes); NET_DEV_STAT(tx_bytes); NET_DEV_STAT(rx_errors); NET_DEV_STAT(tx_errors); NET_DEV_STAT(rx_dropped); NET_DEV_STAT(tx_dropped); NET_DEV_STAT(multicast); NET_DEV_STAT(collisions); NET_DEV_STAT(rx_length_errors); NET_DEV_STAT(rx_over_errors); NET_DEV_STAT(rx_crc_errors); NET_DEV_STAT(rx_frame_errors); NET_DEV_STAT(rx_fifo_errors); NET_DEV_STAT(rx_missed_errors); NET_DEV_STAT(tx_aborted_errors); NET_DEV_STAT(tx_carrier_errors); NET_DEV_STAT(tx_fifo_errors); NET_DEV_STAT(tx_heartbeat_errors); NET_DEV_STAT(tx_window_errors); NET_DEV_STAT(rx_compressed); NET_DEV_STAT(tx_compressed); }; #undef NET_DEV_STAT #include <linux/cache.h> #include <linux/skbuff.h> #ifdef CONFIG_RPS #include <linux/static_key.h> extern struct static_key_false rps_needed; extern struct static_key_false rfs_needed; #endif struct neighbour; struct neigh_parms; struct sk_buff; struct netdev_hw_addr { struct list_head list; unsigned char addr[MAX_ADDR_LEN]; unsigned char type; #define NETDEV_HW_ADDR_T_LAN 1 #define NETDEV_HW_ADDR_T_SAN 2 #define NETDEV_HW_ADDR_T_UNICAST 3 #define NETDEV_HW_ADDR_T_MULTICAST 4 bool global_use; int sync_cnt; int refcount; int synced; struct rcu_head rcu_head; }; struct netdev_hw_addr_list { struct list_head list; int count; }; #define netdev_hw_addr_list_count(l) ((l)->count) #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) #define netdev_hw_addr_list_for_each(ha, l) \ list_for_each_entry(ha, &(l)->list, list) #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) #define netdev_for_each_uc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->uc) #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) #define netdev_for_each_mc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->mc) struct hh_cache { unsigned int hh_len; seqlock_t hh_lock; /* cached hardware header; allow for machine alignment needs. */ #define HH_DATA_MOD 16 #define HH_DATA_OFF(__len) \ (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) #define HH_DATA_ALIGN(__len) \ (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; }; /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. * Alternative is: * dev->hard_header_len ? (dev->hard_header_len + * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 * * We could use other alignment values, but we must maintain the * relationship HH alignment <= LL alignment. */ #define LL_RESERVED_SPACE(dev) \ ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) struct header_ops { int (*create) (struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len); int (*parse)(const struct sk_buff *skb, unsigned char *haddr); int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); void (*cache_update)(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); bool (*validate)(const char *ll_header, unsigned int len); __be16 (*parse_protocol)(const struct sk_buff *skb); }; /* These flag bits are private to the generic network queueing * layer; they may not be explicitly referenced by any other * code. */ enum netdev_state_t { __LINK_STATE_START, __LINK_STATE_PRESENT, __LINK_STATE_NOCARRIER, __LINK_STATE_LINKWATCH_PENDING, __LINK_STATE_DORMANT, __LINK_STATE_TESTING, }; /* * This structure holds boot-time configured netdevice settings. They * are then used in the device probing. */ struct netdev_boot_setup { char name[IFNAMSIZ]; struct ifmap map; }; #define NETDEV_BOOT_SETUP_MAX 8 int __init netdev_boot_setup(char *str); struct gro_list { struct list_head list; int count; }; /* * size of gro hash buckets, must less than bit number of * napi_struct::gro_bitmask */ #define GRO_HASH_BUCKETS 8 /* * Structure for NAPI scheduling similar to tasklet but with weighting */ struct napi_struct { /* The poll_list must only be managed by the entity which * changes the state of the NAPI_STATE_SCHED bit. This means * whoever atomically sets that bit can add this napi_struct * to the per-CPU poll_list, and whoever clears that bit * can remove from the list right before clearing the bit. */ struct list_head poll_list; unsigned long state; int weight; int defer_hard_irqs_count; unsigned long gro_bitmask; int (*poll)(struct napi_struct *, int); #ifdef CONFIG_NETPOLL int poll_owner; #endif struct net_device *dev; struct gro_list gro_hash[GRO_HASH_BUCKETS]; struct sk_buff *skb; struct list_head rx_list; /* Pending GRO_NORMAL skbs */ int rx_count; /* length of rx_list */ struct hrtimer timer; struct list_head dev_list; struct hlist_node napi_hash_node; unsigned int napi_id; }; enum { NAPI_STATE_SCHED, /* Poll is scheduled */ NAPI_STATE_MISSED, /* reschedule a napi */ NAPI_STATE_DISABLE, /* Disable pending */ NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ NAPI_STATE_LISTED, /* NAPI added to system lists */ NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ }; enum { NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), }; enum gro_result { GRO_MERGED, GRO_MERGED_FREE, GRO_HELD, GRO_NORMAL, GRO_DROP, GRO_CONSUMED, }; typedef enum gro_result gro_result_t; /* * enum rx_handler_result - Possible return values for rx_handlers. * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it * further. * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in * case skb->dev was changed by rx_handler. * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. * * rx_handlers are functions called from inside __netif_receive_skb(), to do * special processing of the skb, prior to delivery to protocol handlers. * * Currently, a net_device can only have a single rx_handler registered. Trying * to register a second rx_handler will return -EBUSY. * * To register a rx_handler on a net_device, use netdev_rx_handler_register(). * To unregister a rx_handler on a net_device, use * netdev_rx_handler_unregister(). * * Upon return, rx_handler is expected to tell __netif_receive_skb() what to * do with the skb. * * If the rx_handler consumed the skb in some way, it should return * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for * the skb to be delivered in some other way. * * If the rx_handler changed skb->dev, to divert the skb to another * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the * new device will be called if it exists. * * If the rx_handler decides the skb should be ignored, it should return * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that * are registered on exact device (ptype->dev == skb->dev). * * If the rx_handler didn't change skb->dev, but wants the skb to be normally * delivered, it should return RX_HANDLER_PASS. * * A device without a registered rx_handler will behave as if rx_handler * returned RX_HANDLER_PASS. */ enum rx_handler_result { RX_HANDLER_CONSUMED, RX_HANDLER_ANOTHER, RX_HANDLER_EXACT, RX_HANDLER_PASS, }; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); void __napi_schedule(struct napi_struct *n); void __napi_schedule_irqoff(struct napi_struct *n); static inline bool napi_disable_pending(struct napi_struct *n) { return test_bit(NAPI_STATE_DISABLE, &n->state); } bool napi_schedule_prep(struct napi_struct *n); /** * napi_schedule - schedule NAPI poll * @n: NAPI context * * Schedule NAPI poll routine to be called if it is not already * running. */ static inline void napi_schedule(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule(n); } /** * napi_schedule_irqoff - schedule NAPI poll * @n: NAPI context * * Variant of napi_schedule(), assuming hard irqs are masked. */ static inline void napi_schedule_irqoff(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule_irqoff(n); } /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ static inline bool napi_reschedule(struct napi_struct *napi) { if (napi_schedule_prep(napi)) { __napi_schedule(napi); return true; } return false; } bool napi_complete_done(struct napi_struct *n, int work_done); /** * napi_complete - NAPI processing complete * @n: NAPI context * * Mark NAPI processing as complete. * Consider using napi_complete_done() instead. * Return false if device should avoid rearming interrupts. */ static inline bool napi_complete(struct napi_struct *n) { return napi_complete_done(n, 0); } /** * napi_disable - prevent NAPI from scheduling * @n: NAPI context * * Stop NAPI from being scheduled on this context. * Waits till any outstanding processing completes. */ void napi_disable(struct napi_struct *n); /** * napi_enable - enable NAPI scheduling * @n: NAPI context * * Resume NAPI from being scheduled on this context. * Must be paired with napi_disable. */ static inline void napi_enable(struct napi_struct *n) { BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); smp_mb__before_atomic(); clear_bit(NAPI_STATE_SCHED, &n->state); clear_bit(NAPI_STATE_NPSVC, &n->state); } /** * napi_synchronize - wait until NAPI is not running * @n: NAPI context * * Wait until NAPI is done being scheduled on this context. * Waits till any outstanding processing completes but * does not disable future activations. */ static inline void napi_synchronize(const struct napi_struct *n) { if (IS_ENABLED(CONFIG_SMP)) while (test_bit(NAPI_STATE_SCHED, &n->state)) msleep(1); else barrier(); } /** * napi_if_scheduled_mark_missed - if napi is running, set the * NAPIF_STATE_MISSED * @n: NAPI context * * If napi is running, set the NAPIF_STATE_MISSED, and return true if * NAPI is scheduled. **/ static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) { unsigned long val, new; do { val = READ_ONCE(n->state); if (val & NAPIF_STATE_DISABLE) return true; if (!(val & NAPIF_STATE_SCHED)) return false; new = val | NAPIF_STATE_MISSED; } while (cmpxchg(&n->state, val, new) != val); return true; } enum netdev_queue_state_t { __QUEUE_STATE_DRV_XOFF, __QUEUE_STATE_STACK_XOFF, __QUEUE_STATE_FROZEN, }; #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ QUEUE_STATE_FROZEN) #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ QUEUE_STATE_FROZEN) /* * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The * netif_tx_* functions below are used to manipulate this flag. The * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit * queue independently. The netif_xmit_*stopped functions below are called * to check if the queue has been stopped by the driver or stack (either * of the XOFF bits are set in the state). Drivers should not need to call * netif_xmit*stopped functions, they should only be using netif_tx_*. */ struct netdev_queue { /* * read-mostly part */ struct net_device *dev; struct Qdisc __rcu *qdisc; struct Qdisc *qdisc_sleeping; #ifdef CONFIG_SYSFS struct kobject kobj; #endif #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) int numa_node; #endif unsigned long tx_maxrate; /* * Number of TX timeouts for this queue * (/sys/class/net/DEV/Q/trans_timeout) */ unsigned long trans_timeout; /* Subordinate device that the queue has been assigned to */ struct net_device *sb_dev; #ifdef CONFIG_XDP_SOCKETS struct xsk_buff_pool *pool; #endif /* * write-mostly part */ spinlock_t _xmit_lock ____cacheline_aligned_in_smp; int xmit_lock_owner; /* * Time (in jiffies) of last Tx */ unsigned long trans_start; unsigned long state; #ifdef CONFIG_BQL struct dql dql; #endif } ____cacheline_aligned_in_smp; extern int sysctl_fb_tunnels_only_for_init_net; extern int sysctl_devconf_inherit_init_net; /* * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns * == 1 : For initns only * == 2 : For none. */ static inline bool net_has_fallback_tunnels(const struct net *net) { #if IS_ENABLED(CONFIG_SYSCTL) int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); return !fb_tunnels_only_for_init_net || (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); #else return true; #endif } static inline int net_inherit_devconf(void) { #if IS_ENABLED(CONFIG_SYSCTL) return READ_ONCE(sysctl_devconf_inherit_init_net); #else return 0; #endif } static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) return q->numa_node; #else return NUMA_NO_NODE; #endif } static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) q->numa_node = node; #endif } #ifdef CONFIG_RPS /* * This structure holds an RPS map which can be of variable length. The * map is an array of CPUs. */ struct rps_map { unsigned int len; struct rcu_head rcu; u16 cpus[]; }; #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) /* * The rps_dev_flow structure contains the mapping of a flow to a CPU, the * tail pointer for that CPU's input queue at the time of last enqueue, and * a hardware filter index. */ struct rps_dev_flow { u16 cpu; u16 filter; unsigned int last_qtail; }; #define RPS_NO_FILTER 0xffff /* * The rps_dev_flow_table structure contains a table of flow mappings. */ struct rps_dev_flow_table { unsigned int mask; struct rcu_head rcu; struct rps_dev_flow flows[]; }; #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ ((_num) * sizeof(struct rps_dev_flow))) /* * The rps_sock_flow_table contains mappings of flows to the last CPU * on which they were processed by the application (set in recvmsg). * Each entry is a 32bit value. Upper part is the high-order bits * of flow hash, lower part is CPU number. * rps_cpu_mask is used to partition the space, depending on number of * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, * meaning we use 32-6=26 bits for the hash. */ struct rps_sock_flow_table { u32 mask; u32 ents[] ____cacheline_aligned_in_smp; }; #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) #define RPS_NO_CPU 0xffff extern u32 rps_cpu_mask; extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, u32 hash) { if (table && hash) { unsigned int index = hash & table->mask; u32 val = hash & ~rps_cpu_mask; /* We only give a hint, preemption can change CPU under us */ val |= raw_smp_processor_id(); /* The following WRITE_ONCE() is paired with the READ_ONCE() * here, and another one in get_rps_cpu(). */ if (READ_ONCE(table->ents[index]) != val) WRITE_ONCE(table->ents[index], val); } } #ifdef CONFIG_RFS_ACCEL bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, u16 filter_id); #endif #endif /* CONFIG_RPS */ /* This structure contains an instance of an RX queue. */ struct netdev_rx_queue { #ifdef CONFIG_RPS struct rps_map __rcu *rps_map; struct rps_dev_flow_table __rcu *rps_flow_table; #endif struct kobject kobj; struct net_device *dev; struct xdp_rxq_info xdp_rxq; #ifdef CONFIG_XDP_SOCKETS struct xsk_buff_pool *pool; #endif } ____cacheline_aligned_in_smp; /* * RX queue sysfs structures and functions. */ struct rx_queue_attribute { struct attribute attr; ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); ssize_t (*store)(struct netdev_rx_queue *queue, const char *buf, size_t len); }; #ifdef CONFIG_XPS /* * This structure holds an XPS map which can be of variable length. The * map is an array of queues. */ struct xps_map { unsigned int len; unsigned int alloc_len; struct rcu_head rcu; u16 queues[]; }; #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ - sizeof(struct xps_map)) / sizeof(u16)) /* * This structure holds all XPS maps for device. Maps are indexed by CPU. */ struct xps_dev_maps { struct rcu_head rcu; struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ }; #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ (_rxqs * (_tcs) * sizeof(struct xps_map *))) #endif /* CONFIG_XPS */ #define TC_MAX_QUEUE 16 #define TC_BITMASK 15 /* HW offloaded queuing disciplines txq count and offset maps */ struct netdev_tc_txq { u16 count; u16 offset; }; #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) /* * This structure is to hold information about the device * configured to run FCoE protocol stack. */ struct netdev_fcoe_hbainfo { char manufacturer[64]; char serial_number[64]; char hardware_version[64]; char driver_version[64]; char optionrom_version[64]; char firmware_version[64]; char model[256]; char model_description[256]; }; #endif #define MAX_PHYS_ITEM_ID_LEN 32 /* This structure holds a unique identifier to identify some * physical item (port for example) used by a netdevice. */ struct netdev_phys_item_id { unsigned char id[MAX_PHYS_ITEM_ID_LEN]; unsigned char id_len; }; static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, struct netdev_phys_item_id *b) { return a->id_len == b->id_len && memcmp(a->id, b->id, a->id_len) == 0; } typedef u16 (*select_queue_fallback_t)(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); enum tc_setup_type { TC_SETUP_QDISC_MQPRIO, TC_SETUP_CLSU32, TC_SETUP_CLSFLOWER, TC_SETUP_CLSMATCHALL, TC_SETUP_CLSBPF, TC_SETUP_BLOCK, TC_SETUP_QDISC_CBS, TC_SETUP_QDISC_RED, TC_SETUP_QDISC_PRIO, TC_SETUP_QDISC_MQ, TC_SETUP_QDISC_ETF, TC_SETUP_ROOT_QDISC, TC_SETUP_QDISC_GRED, TC_SETUP_QDISC_TAPRIO, TC_SETUP_FT, TC_SETUP_QDISC_ETS, TC_SETUP_QDISC_TBF, TC_SETUP_QDISC_FIFO, }; /* These structures hold the attributes of bpf state that are being passed * to the netdevice through the bpf op. */ enum bpf_netdev_command { /* Set or clear a bpf program used in the earliest stages of packet * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee * is responsible for calling bpf_prog_put on any old progs that are * stored. In case of error, the callee need not release the new prog * reference, but on success it takes ownership and must bpf_prog_put * when it is no longer used. */ XDP_SETUP_PROG, XDP_SETUP_PROG_HW, /* BPF program for offload callbacks, invoked at program load time. */ BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE, XDP_SETUP_XSK_POOL, }; struct bpf_prog_offload_ops; struct netlink_ext_ack; struct xdp_umem; struct xdp_dev_bulk_queue; struct bpf_xdp_link; enum bpf_xdp_mode { XDP_MODE_SKB = 0, XDP_MODE_DRV = 1, XDP_MODE_HW = 2, __MAX_XDP_MODE }; struct bpf_xdp_entity { struct bpf_prog *prog; struct bpf_xdp_link *link; }; struct netdev_bpf { enum bpf_netdev_command command; union { /* XDP_SETUP_PROG */ struct { u32 flags; struct bpf_prog *prog; struct netlink_ext_ack *extack; }; /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ struct { struct bpf_offloaded_map *offmap; }; /* XDP_SETUP_XSK_POOL */ struct { struct xsk_buff_pool *pool; u16 queue_id; } xsk; }; }; /* Flags for ndo_xsk_wakeup. */ #define XDP_WAKEUP_RX (1 << 0) #define XDP_WAKEUP_TX (1 << 1) #ifdef CONFIG_XFRM_OFFLOAD struct xfrmdev_ops { int (*xdo_dev_state_add) (struct xfrm_state *x); void (*xdo_dev_state_delete) (struct xfrm_state *x); void (*xdo_dev_state_free) (struct xfrm_state *x); bool (*xdo_dev_offload_ok) (struct sk_buff *skb, struct xfrm_state *x); void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); }; #endif struct dev_ifalias { struct rcu_head rcuhead; char ifalias[]; }; struct devlink; struct tlsdev_ops; struct netdev_name_node { struct hlist_node hlist; struct list_head list; struct net_device *dev; const char *name; }; int netdev_name_node_alt_create(struct net_device *dev, const char *name); int netdev_name_node_alt_destroy(struct net_device *dev, const char *name); struct netdev_net_notifier { struct list_head list; struct notifier_block *nb; }; /* * This structure defines the management hooks for network devices. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*ndo_init)(struct net_device *dev); * This function is called once when a network device is registered. * The network device can use this for any late stage initialization * or semantic validation. It can fail with an error code which will * be propagated back to register_netdev. * * void (*ndo_uninit)(struct net_device *dev); * This function is called when device is unregistered or when registration * fails. It is not called if init fails. * * int (*ndo_open)(struct net_device *dev); * This function is called when a network device transitions to the up * state. * * int (*ndo_stop)(struct net_device *dev); * This function is called when a network device transitions to the down * state. * * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, * struct net_device *dev); * Called when a packet needs to be transmitted. * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop * the queue before that can happen; it's for obsolete devices and weird * corner cases, but the stack really does a non-trivial amount * of useless work if you return NETDEV_TX_BUSY. * Required; cannot be NULL. * * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, * struct net_device *dev * netdev_features_t features); * Called by core transmit path to determine if device is capable of * performing offload operations on a given packet. This is to give * the device an opportunity to implement any restrictions that cannot * be otherwise expressed by feature flags. The check is called with * the set of features that the stack has calculated and it returns * those the driver believes to be appropriate. * * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, * struct net_device *sb_dev); * Called to decide which queue to use when device supports multiple * transmit queues. * * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); * This function is called to allow device receiver to make * changes to configuration when multicast or promiscuous is enabled. * * void (*ndo_set_rx_mode)(struct net_device *dev); * This function is called device changes address list filtering. * If driver handles unicast address filtering, it should set * IFF_UNICAST_FLT in its priv_flags. * * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); * This function is called when the Media Access Control address * needs to be changed. If this interface is not defined, the * MAC address can not be changed. * * int (*ndo_validate_addr)(struct net_device *dev); * Test if Media Access Control address is valid for the device. * * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); * Called when a user requests an ioctl which can't be handled by * the generic interface code. If not defined ioctls return * not supported error code. * * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); * Used to set network devices bus interface parameters. This interface * is retained for legacy reasons; new devices should use the bus * interface (PCI) for low level management. * * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); * Called when a user wants to change the Maximum Transfer Unit * of a device. * * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); * Callback used when the transmitter has not made any progress * for dev->watchdog ticks. * * void (*ndo_get_stats64)(struct net_device *dev, * struct rtnl_link_stats64 *storage); * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); * Called when a user wants to get the network device usage * statistics. Drivers must do one of the following: * 1. Define @ndo_get_stats64 to fill in a zero-initialised * rtnl_link_stats64 structure passed by the caller. * 2. Define @ndo_get_stats to update a net_device_stats structure * (which should normally be dev->stats) and return a pointer to * it. The structure may be changed asynchronously only if each * field is written atomically. * 3. Update dev->stats asynchronously and atomically, and define * neither operation. * * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) * Return true if this device supports offload stats of this attr_id. * * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, * void *attr_data) * Get statistics for offload operations by attr_id. Write it into the * attr_data pointer. * * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device supports VLAN filtering this function is called when a * VLAN id is registered. * * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); * If device supports VLAN filtering this function is called when a * VLAN id is unregistered. * * void (*ndo_poll_controller)(struct net_device *dev); * * SR-IOV management functions. * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, * u8 qos, __be16 proto); * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, * int max_tx_rate); * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); * int (*ndo_get_vf_config)(struct net_device *dev, * int vf, struct ifla_vf_info *ivf); * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); * int (*ndo_set_vf_port)(struct net_device *dev, int vf, * struct nlattr *port[]); * * Enable or disable the VF ability to query its RSS Redirection Table and * Hash Key. This is needed since on some devices VF share this information * with PF and querying it may introduce a theoretical security risk. * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, * void *type_data); * Called to setup any 'tc' scheduler, classifier or action on @dev. * This is always called from the stack with the rtnl lock held and netif * tx queues stopped. This allows the netdevice to perform queue * management safely. * * Fiber Channel over Ethernet (FCoE) offload functions. * int (*ndo_fcoe_enable)(struct net_device *dev); * Called when the FCoE protocol stack wants to start using LLD for FCoE * so the underlying device can perform whatever needed configuration or * initialization to support acceleration of FCoE traffic. * * int (*ndo_fcoe_disable)(struct net_device *dev); * Called when the FCoE protocol stack wants to stop using LLD for FCoE * so the underlying device can perform whatever needed clean-ups to * stop supporting acceleration of FCoE traffic. * * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Initiator wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); * Called when the FCoE Initiator/Target is done with the DDPed I/O as * indicated by the FC exchange id 'xid', so the underlying device can * clean up and reuse resources for later DDP requests. * * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Target wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, * struct netdev_fcoe_hbainfo *hbainfo); * Called when the FCoE Protocol stack wants information on the underlying * device. This information is utilized by the FCoE protocol stack to * register attributes with Fiber Channel management service as per the * FC-GS Fabric Device Management Information(FDMI) specification. * * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); * Called when the underlying device wants to override default World Wide * Name (WWN) generation mechanism in FCoE protocol stack to pass its own * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE * protocol stack to use. * * RFS acceleration. * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, * u16 rxq_index, u32 flow_id); * Set hardware filter for RFS. rxq_index is the target queue index; * flow_id is a flow ID to be passed to rps_may_expire_flow() later. * Return the filter ID on success, or a negative error code. * * Slave management functions (for bridge, bonding, etc). * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to make another netdev an underling. * * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to release previously enslaved netdev. * * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, * struct sk_buff *skb, * bool all_slaves); * Get the xmit slave of master device. If all_slaves is true, function * assume all the slaves can transmit. * * Feature/offload setting functions. * netdev_features_t (*ndo_fix_features)(struct net_device *dev, * netdev_features_t features); * Adjusts the requested feature flags according to device-specific * constraints, and returns the resulting flags. Must not modify * the device state. * * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); * Called to update device configuration to new features. Passed * feature set might be less than what was returned by ndo_fix_features()). * Must return >0 or -errno if it changed dev->features itself. * * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid, u16 flags, * struct netlink_ext_ack *extack); * Adds an FDB entry to dev for addr. * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], * struct net_device *dev, * const unsigned char *addr, u16 vid) * Deletes the FDB entry from dev coresponding to addr. * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, * struct net_device *dev, struct net_device *filter_dev, * int *idx) * Used to add FDB entries to dump requests. Implementers should add * entries to skb and update idx with the number of entries. * * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, * u16 flags, struct netlink_ext_ack *extack) * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, * struct net_device *dev, u32 filter_mask, * int nlflags) * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, * u16 flags); * * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); * Called to change device carrier. Soft-devices (like dummy, team, etc) * which do not represent real hardware may define this to allow their * userspace components to manage their virtual carrier state. Devices * that determine carrier state from physical hardware properties (eg * network cables) or protocol-dependent mechanisms (eg * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. * * int (*ndo_get_phys_port_id)(struct net_device *dev, * struct netdev_phys_item_id *ppid); * Called to get ID of physical port of this device. If driver does * not implement this, it is assumed that the hw is not able to have * multiple net devices on single physical port. * * int (*ndo_get_port_parent_id)(struct net_device *dev, * struct netdev_phys_item_id *ppid) * Called to get the parent ID of the physical port of this device. * * void (*ndo_udp_tunnel_add)(struct net_device *dev, * struct udp_tunnel_info *ti); * Called by UDP tunnel to notify a driver about the UDP port and socket * address family that a UDP tunnel is listnening to. It is called only * when a new port starts listening. The operation is protected by the * RTNL. * * void (*ndo_udp_tunnel_del)(struct net_device *dev, * struct udp_tunnel_info *ti); * Called by UDP tunnel to notify the driver about a UDP port and socket * address family that the UDP tunnel is not listening to anymore. The * operation is protected by the RTNL. * * void* (*ndo_dfwd_add_station)(struct net_device *pdev, * struct net_device *dev) * Called by upper layer devices to accelerate switching or other * station functionality into hardware. 'pdev is the lowerdev * to use for the offload and 'dev' is the net device that will * back the offload. Returns a pointer to the private structure * the upper layer will maintain. * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) * Called by upper layer device to delete the station created * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing * the station and priv is the structure returned by the add * operation. * int (*ndo_set_tx_maxrate)(struct net_device *dev, * int queue_index, u32 maxrate); * Called when a user wants to set a max-rate limitation of specific * TX queue. * int (*ndo_get_iflink)(const struct net_device *dev); * Called to get the iflink value of this device. * void (*ndo_change_proto_down)(struct net_device *dev, * bool proto_down); * This function is used to pass protocol port error state information * to the switch driver. The switch driver can react to the proto_down * by doing a phys down on the associated switch port. * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); * This function is used to get egress tunnel information for given skb. * This is useful for retrieving outer tunnel header parameters while * sampling packet. * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); * This function is used to specify the headroom that the skb must * consider when allocation skb during packet reception. Setting * appropriate rx headroom value allows avoiding skb head copy on * forward. Setting a negative value resets the rx headroom to the * default value. * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); * This function is used to set or query state related to XDP on the * netdevice and manage BPF offload. See definition of * enum bpf_netdev_command for details. * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, * u32 flags); * This function is used to submit @n XDP packets for transmit on a * netdevice. Returns number of frames successfully transmitted, frames * that got dropped are freed/returned via xdp_return_frame(). * Returns negative number, means general error invoking ndo, meaning * no frames were xmit'ed and core-caller will free all frames. * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); * This function is used to wake up the softirq, ksoftirqd or kthread * responsible for sending and/or receiving packets on a specific * queue id bound to an AF_XDP socket. The flags field specifies if * only RX, only Tx, or both should be woken up using the flags * XDP_WAKEUP_RX and XDP_WAKEUP_TX. * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); * Get devlink port instance associated with a given netdev. * Called with a reference on the netdevice and devlink locks only, * rtnl_lock is not held. * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, * int cmd); * Add, change, delete or get information on an IPv4 tunnel. * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); * If a device is paired with a peer device, return the peer instance. * The caller must be under RCU read context. */ struct net_device_ops { int (*ndo_init)(struct net_device *dev); void (*ndo_uninit)(struct net_device *dev); int (*ndo_open)(struct net_device *dev); int (*ndo_stop)(struct net_device *dev); netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, struct net_device *dev); netdev_features_t (*ndo_features_check)(struct sk_buff *skb, struct net_device *dev, netdev_features_t features); u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); void (*ndo_change_rx_flags)(struct net_device *dev, int flags); void (*ndo_set_rx_mode)(struct net_device *dev); int (*ndo_set_mac_address)(struct net_device *dev, void *addr); int (*ndo_validate_addr)(struct net_device *dev); int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); int (*ndo_neigh_setup)(struct net_device *dev, struct neigh_parms *); void (*ndo_tx_timeout) (struct net_device *dev, unsigned int txqueue); void (*ndo_get_stats64)(struct net_device *dev, struct rtnl_link_stats64 *storage); bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, void *attr_data); struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); #ifdef CONFIG_NET_POLL_CONTROLLER void (*ndo_poll_controller)(struct net_device *dev); int (*ndo_netpoll_setup)(struct net_device *dev, struct netpoll_info *info); void (*ndo_netpoll_cleanup)(struct net_device *dev); #endif int (*ndo_set_vf_mac)(struct net_device *dev, int queue, u8 *mac); int (*ndo_set_vf_vlan)(struct net_device *dev, int queue, u16 vlan, u8 qos, __be16 proto); int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, int max_tx_rate); int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); int (*ndo_get_vf_config)(struct net_device *dev, int vf, struct ifla_vf_info *ivf); int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); int (*ndo_get_vf_stats)(struct net_device *dev, int vf, struct ifla_vf_stats *vf_stats); int (*ndo_set_vf_port)(struct net_device *dev, int vf, struct nlattr *port[]); int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); int (*ndo_get_vf_guid)(struct net_device *dev, int vf, struct ifla_vf_guid *node_guid, struct ifla_vf_guid *port_guid); int (*ndo_set_vf_guid)(struct net_device *dev, int vf, u64 guid, int guid_type); int (*ndo_set_vf_rss_query_en)( struct net_device *dev, int vf, bool setting); int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, void *type_data); #if IS_ENABLED(CONFIG_FCOE) int (*ndo_fcoe_enable)(struct net_device *dev); int (*ndo_fcoe_disable)(struct net_device *dev); int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, struct netdev_fcoe_hbainfo *hbainfo); #endif #if IS_ENABLED(CONFIG_LIBFCOE) #define NETDEV_FCOE_WWNN 0 #define NETDEV_FCOE_WWPN 1 int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); #endif #ifdef CONFIG_RFS_ACCEL int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id); #endif int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev, struct netlink_ext_ack *extack); int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, struct sk_buff *skb, bool all_slaves); netdev_features_t (*ndo_fix_features)(struct net_device *dev, netdev_features_t features); int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); int (*ndo_neigh_construct)(struct net_device *dev, struct neighbour *n); void (*ndo_neigh_destroy)(struct net_device *dev, struct neighbour *n); int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags, struct netlink_ext_ack *extack); int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid); int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int *idx); int (*ndo_fdb_get)(struct sk_buff *skb, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u32 portid, u32 seq, struct netlink_ext_ack *extack); int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags, struct netlink_ext_ack *extack); int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u32 filter_mask, int nlflags); int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, u16 flags); int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); int (*ndo_get_phys_port_id)(struct net_device *dev, struct netdev_phys_item_id *ppid); int (*ndo_get_port_parent_id)(struct net_device *dev, struct netdev_phys_item_id *ppid); int (*ndo_get_phys_port_name)(struct net_device *dev, char *name, size_t len); void (*ndo_udp_tunnel_add)(struct net_device *dev, struct udp_tunnel_info *ti); void (*ndo_udp_tunnel_del)(struct net_device *dev, struct udp_tunnel_info *ti); void* (*ndo_dfwd_add_station)(struct net_device *pdev, struct net_device *dev); void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv); int (*ndo_set_tx_maxrate)(struct net_device *dev, int queue_index, u32 maxrate); int (*ndo_get_iflink)(const struct net_device *dev); int (*ndo_change_proto_down)(struct net_device *dev, bool proto_down); int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, u32 flags); int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, int cmd); struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); }; /** * enum net_device_priv_flags - &struct net_device priv_flags * * These are the &struct net_device, they are only set internally * by drivers and used in the kernel. These flags are invisible to * userspace; this means that the order of these flags can change * during any kernel release. * * You should have a pretty good reason to be extending these flags. * * @IFF_802_1Q_VLAN: 802.1Q VLAN device * @IFF_EBRIDGE: Ethernet bridging device * @IFF_BONDING: bonding master or slave * @IFF_ISATAP: ISATAP interface (RFC4214) * @IFF_WAN_HDLC: WAN HDLC device * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to * release skb->dst * @IFF_DONT_BRIDGE: disallow bridging this ether dev * @IFF_DISABLE_NETPOLL: disable netpoll at run-time * @IFF_MACVLAN_PORT: device used as macvlan port * @IFF_BRIDGE_PORT: device used as bridge port * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit * @IFF_UNICAST_FLT: Supports unicast filtering * @IFF_TEAM_PORT: device used as team port * @IFF_SUPP_NOFCS: device supports sending custom FCS * @IFF_LIVE_ADDR_CHANGE: device supports hardware address * change when it's running * @IFF_MACVLAN: Macvlan device * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account * underlying stacked devices * @IFF_L3MDEV_MASTER: device is an L3 master device * @IFF_NO_QUEUE: device can run without qdisc attached * @IFF_OPENVSWITCH: device is a Open vSwitch master * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device * @IFF_TEAM: device is a team device * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external * entity (i.e. the master device for bridged veth) * @IFF_MACSEC: device is a MACsec device * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook * @IFF_FAILOVER: device is a failover master device * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running */ enum netdev_priv_flags { IFF_802_1Q_VLAN = 1<<0, IFF_EBRIDGE = 1<<1, IFF_BONDING = 1<<2, IFF_ISATAP = 1<<3, IFF_WAN_HDLC = 1<<4, IFF_XMIT_DST_RELEASE = 1<<5, IFF_DONT_BRIDGE = 1<<6, IFF_DISABLE_NETPOLL = 1<<7, IFF_MACVLAN_PORT = 1<<8, IFF_BRIDGE_PORT = 1<<9, IFF_OVS_DATAPATH = 1<<10, IFF_TX_SKB_SHARING = 1<<11, IFF_UNICAST_FLT = 1<<12, IFF_TEAM_PORT = 1<<13, IFF_SUPP_NOFCS = 1<<14, IFF_LIVE_ADDR_CHANGE = 1<<15, IFF_MACVLAN = 1<<16, IFF_XMIT_DST_RELEASE_PERM = 1<<17, IFF_L3MDEV_MASTER = 1<<18, IFF_NO_QUEUE = 1<<19, IFF_OPENVSWITCH = 1<<20, IFF_L3MDEV_SLAVE = 1<<21, IFF_TEAM = 1<<22, IFF_RXFH_CONFIGURED = 1<<23, IFF_PHONY_HEADROOM = 1<<24, IFF_MACSEC = 1<<25, IFF_NO_RX_HANDLER = 1<<26, IFF_FAILOVER = 1<<27, IFF_FAILOVER_SLAVE = 1<<28, IFF_L3MDEV_RX_HANDLER = 1<<29, IFF_LIVE_RENAME_OK = 1<<30, }; #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN #define IFF_EBRIDGE IFF_EBRIDGE #define IFF_BONDING IFF_BONDING #define IFF_ISATAP IFF_ISATAP #define IFF_WAN_HDLC IFF_WAN_HDLC #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING #define IFF_UNICAST_FLT IFF_UNICAST_FLT #define IFF_TEAM_PORT IFF_TEAM_PORT #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE #define IFF_MACVLAN IFF_MACVLAN #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER #define IFF_NO_QUEUE IFF_NO_QUEUE #define IFF_OPENVSWITCH IFF_OPENVSWITCH #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE #define IFF_TEAM IFF_TEAM #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED #define IFF_MACSEC IFF_MACSEC #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER #define IFF_FAILOVER IFF_FAILOVER #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK /* Specifies the type of the struct net_device::ml_priv pointer */ enum netdev_ml_priv_type { ML_PRIV_NONE, ML_PRIV_CAN, }; /** * struct net_device - The DEVICE structure. * * Actually, this whole structure is a big mistake. It mixes I/O * data with strictly "high-level" data, and it has to know about * almost every data structure used in the INET module. * * @name: This is the first field of the "visible" part of this structure * (i.e. as seen by users in the "Space.c" file). It is the name * of the interface. * * @name_node: Name hashlist node * @ifalias: SNMP alias * @mem_end: Shared memory end * @mem_start: Shared memory start * @base_addr: Device I/O address * @irq: Device IRQ number * * @state: Generic network queuing layer state, see netdev_state_t * @dev_list: The global list of network devices * @napi_list: List entry used for polling NAPI devices * @unreg_list: List entry when we are unregistering the * device; see the function unregister_netdev * @close_list: List entry used when we are closing the device * @ptype_all: Device-specific packet handlers for all protocols * @ptype_specific: Device-specific, protocol-specific packet handlers * * @adj_list: Directly linked devices, like slaves for bonding * @features: Currently active device features * @hw_features: User-changeable features * * @wanted_features: User-requested features * @vlan_features: Mask of features inheritable by VLAN devices * * @hw_enc_features: Mask of features inherited by encapsulating devices * This field indicates what encapsulation * offloads the hardware is capable of doing, * and drivers will need to set them appropriately. * * @mpls_features: Mask of features inheritable by MPLS * @gso_partial_features: value(s) from NETIF_F_GSO\* * * @ifindex: interface index * @group: The group the device belongs to * * @stats: Statistics struct, which was left as a legacy, use * rtnl_link_stats64 instead * * @rx_dropped: Dropped packets by core network, * do not use this in drivers * @tx_dropped: Dropped packets by core network, * do not use this in drivers * @rx_nohandler: nohandler dropped packets by core network on * inactive devices, do not use this in drivers * @carrier_up_count: Number of times the carrier has been up * @carrier_down_count: Number of times the carrier has been down * * @wireless_handlers: List of functions to handle Wireless Extensions, * instead of ioctl, * see <net/iw_handler.h> for details. * @wireless_data: Instance data managed by the core of wireless extensions * * @netdev_ops: Includes several pointers to callbacks, * if one wants to override the ndo_*() functions * @ethtool_ops: Management operations * @l3mdev_ops: Layer 3 master device operations * @ndisc_ops: Includes callbacks for different IPv6 neighbour * discovery handling. Necessary for e.g. 6LoWPAN. * @xfrmdev_ops: Transformation offload operations * @tlsdev_ops: Transport Layer Security offload operations * @header_ops: Includes callbacks for creating,parsing,caching,etc * of Layer 2 headers. * * @flags: Interface flags (a la BSD) * @priv_flags: Like 'flags' but invisible to userspace, * see if.h for the definitions * @gflags: Global flags ( kept as legacy ) * @padded: How much padding added by alloc_netdev() * @operstate: RFC2863 operstate * @link_mode: Mapping policy to operstate * @if_port: Selectable AUI, TP, ... * @dma: DMA channel * @mtu: Interface MTU value * @min_mtu: Interface Minimum MTU value * @max_mtu: Interface Maximum MTU value * @type: Interface hardware type * @hard_header_len: Maximum hardware header length. * @min_header_len: Minimum hardware header length * * @needed_headroom: Extra headroom the hardware may need, but not in all * cases can this be guaranteed * @needed_tailroom: Extra tailroom the hardware may need, but not in all * cases can this be guaranteed. Some cases also use * LL_MAX_HEADER instead to allocate the skb * * interface address info: * * @perm_addr: Permanent hw address * @addr_assign_type: Hw address assignment type * @addr_len: Hardware address length * @upper_level: Maximum depth level of upper devices. * @lower_level: Maximum depth level of lower devices. * @neigh_priv_len: Used in neigh_alloc() * @dev_id: Used to differentiate devices that share * the same link layer address * @dev_port: Used to differentiate devices that share * the same function * @addr_list_lock: XXX: need comments on this one * @name_assign_type: network interface name assignment type * @uc_promisc: Counter that indicates promiscuous mode * has been enabled due to the need to listen to * additional unicast addresses in a device that * does not implement ndo_set_rx_mode() * @uc: unicast mac addresses * @mc: multicast mac addresses * @dev_addrs: list of device hw addresses * @queues_kset: Group of all Kobjects in the Tx and RX queues * @promiscuity: Number of times the NIC is told to work in * promiscuous mode; if it becomes 0 the NIC will * exit promiscuous mode * @allmulti: Counter, enables or disables allmulticast mode * * @vlan_info: VLAN info * @dsa_ptr: dsa specific data * @tipc_ptr: TIPC specific data * @atalk_ptr: AppleTalk link * @ip_ptr: IPv4 specific data * @ip6_ptr: IPv6 specific data * @ax25_ptr: AX.25 specific data * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network * device struct * @mpls_ptr: mpls_dev struct pointer * * @dev_addr: Hw address (before bcast, * because most packets are unicast) * * @_rx: Array of RX queues * @num_rx_queues: Number of RX queues * allocated at register_netdev() time * @real_num_rx_queues: Number of RX queues currently active in device * @xdp_prog: XDP sockets filter program pointer * @gro_flush_timeout: timeout for GRO layer in NAPI * @napi_defer_hard_irqs: If not zero, provides a counter that would * allow to avoid NIC hard IRQ, on busy queues. * * @rx_handler: handler for received packets * @rx_handler_data: XXX: need comments on this one * @miniq_ingress: ingress/clsact qdisc specific data for * ingress processing * @ingress_queue: XXX: need comments on this one * @nf_hooks_ingress: netfilter hooks executed for ingress packets * @broadcast: hw bcast address * * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, * indexed by RX queue number. Assigned by driver. * This must only be set if the ndo_rx_flow_steer * operation is defined * @index_hlist: Device index hash chain * * @_tx: Array of TX queues * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time * @real_num_tx_queues: Number of TX queues currently active in device * @qdisc: Root qdisc from userspace point of view * @tx_queue_len: Max frames per queue allowed * @tx_global_lock: XXX: need comments on this one * @xdp_bulkq: XDP device bulk queue * @xps_cpus_map: all CPUs map for XPS device * @xps_rxqs_map: all RXQs map for XPS device * * @xps_maps: XXX: need comments on this one * @miniq_egress: clsact qdisc specific data for * egress processing * @qdisc_hash: qdisc hash table * @watchdog_timeo: Represents the timeout that is used by * the watchdog (see dev_watchdog()) * @watchdog_timer: List of timers * * @proto_down_reason: reason a netdev interface is held down * @pcpu_refcnt: Number of references to this device * @todo_list: Delayed register/unregister * @link_watch_list: XXX: need comments on this one * * @reg_state: Register/unregister state machine * @dismantle: Device is going to be freed * @rtnl_link_state: This enum represents the phases of creating * a new link * * @needs_free_netdev: Should unregister perform free_netdev? * @priv_destructor: Called from unregister * @npinfo: XXX: need comments on this one * @nd_net: Network namespace this network device is inside * * @ml_priv: Mid-layer private * @ml_priv_type: Mid-layer private type * @lstats: Loopback statistics * @tstats: Tunnel statistics * @dstats: Dummy statistics * @vstats: Virtual ethernet statistics * * @garp_port: GARP * @mrp_port: MRP * * @dev: Class/net/name entry * @sysfs_groups: Space for optional device, statistics and wireless * sysfs groups * * @sysfs_rx_queue_group: Space for optional per-rx queue attributes * @rtnl_link_ops: Rtnl_link_ops * * @gso_max_size: Maximum size of generic segmentation offload * @gso_max_segs: Maximum number of segments that can be passed to the * NIC for GSO * * @dcbnl_ops: Data Center Bridging netlink ops * @num_tc: Number of traffic classes in the net device * @tc_to_txq: XXX: need comments on this one * @prio_tc_map: XXX: need comments on this one * * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp * * @priomap: XXX: need comments on this one * @phydev: Physical device may attach itself * for hardware timestamping * @sfp_bus: attached &struct sfp_bus structure. * * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount * * @proto_down: protocol port state information can be sent to the * switch driver and used to set the phys state of the * switch port. * * @wol_enabled: Wake-on-LAN is enabled * * @net_notifier_list: List of per-net netdev notifier block * that follow this device when it is moved * to another network namespace. * * @macsec_ops: MACsec offloading ops * * @udp_tunnel_nic_info: static structure describing the UDP tunnel * offload capabilities of the device * @udp_tunnel_nic: UDP tunnel offload state * @xdp_state: stores info on attached XDP BPF programs * * @nested_level: Used as as a parameter of spin_lock_nested() of * dev->addr_list_lock. * @unlink_list: As netif_addr_lock() can be called recursively, * keep a list of interfaces to be deleted. * * FIXME: cleanup struct net_device such that network protocol info * moves out. */ struct net_device { char name[IFNAMSIZ]; struct netdev_name_node *name_node; struct dev_ifalias __rcu *ifalias; /* * I/O specific fields * FIXME: Merge these and struct ifmap into one */ unsigned long mem_end; unsigned long mem_start; unsigned long base_addr; int irq; /* * Some hardware also needs these fields (state,dev_list, * napi_list,unreg_list,close_list) but they are not * part of the usual set specified in Space.c. */ unsigned long state; struct list_head dev_list; struct list_head napi_list; struct list_head unreg_list; struct list_head close_list; struct list_head ptype_all; struct list_head ptype_specific; struct { struct list_head upper; struct list_head lower; } adj_list; netdev_features_t features; netdev_features_t hw_features; netdev_features_t wanted_features; netdev_features_t vlan_features; netdev_features_t hw_enc_features; netdev_features_t mpls_features; netdev_features_t gso_partial_features; int ifindex; int group; struct net_device_stats stats; atomic_long_t rx_dropped; atomic_long_t tx_dropped; atomic_long_t rx_nohandler; /* Stats to monitor link on/off, flapping */ atomic_t carrier_up_count; atomic_t carrier_down_count; #ifdef CONFIG_WIRELESS_EXT const struct iw_handler_def *wireless_handlers; struct iw_public_data *wireless_data; #endif const struct net_device_ops *netdev_ops; const struct ethtool_ops *ethtool_ops; #ifdef CONFIG_NET_L3_MASTER_DEV const struct l3mdev_ops *l3mdev_ops; #endif #if IS_ENABLED(CONFIG_IPV6) const struct ndisc_ops *ndisc_ops; #endif #ifdef CONFIG_XFRM_OFFLOAD const struct xfrmdev_ops *xfrmdev_ops; #endif #if IS_ENABLED(CONFIG_TLS_DEVICE) const struct tlsdev_ops *tlsdev_ops; #endif const struct header_ops *header_ops; unsigned int flags; unsigned int priv_flags; unsigned short gflags; unsigned short padded; unsigned char operstate; unsigned char link_mode; unsigned char if_port; unsigned char dma; /* Note : dev->mtu is often read without holding a lock. * Writers usually hold RTNL. * It is recommended to use READ_ONCE() to annotate the reads, * and to use WRITE_ONCE() to annotate the writes. */ unsigned int mtu; unsigned int min_mtu; unsigned int max_mtu; unsigned short type; unsigned short hard_header_len; unsigned char min_header_len; unsigned char name_assign_type; unsigned short needed_headroom; unsigned short needed_tailroom; /* Interface address info. */ unsigned char perm_addr[MAX_ADDR_LEN]; unsigned char addr_assign_type; unsigned char addr_len; unsigned char upper_level; unsigned char lower_level; unsigned short neigh_priv_len; unsigned short dev_id; unsigned short dev_port; spinlock_t addr_list_lock; struct netdev_hw_addr_list uc; struct netdev_hw_addr_list mc; struct netdev_hw_addr_list dev_addrs; #ifdef CONFIG_SYSFS struct kset *queues_kset; #endif #ifdef CONFIG_LOCKDEP struct list_head unlink_list; #endif unsigned int promiscuity; unsigned int allmulti; bool uc_promisc; #ifdef CONFIG_LOCKDEP unsigned char nested_level; #endif /* Protocol-specific pointers */ #if IS_ENABLED(CONFIG_VLAN_8021Q) struct vlan_info __rcu *vlan_info; #endif #if IS_ENABLED(CONFIG_NET_DSA) struct dsa_port *dsa_ptr; #endif #if IS_ENABLED(CONFIG_TIPC) struct tipc_bearer __rcu *tipc_ptr; #endif #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) void *atalk_ptr; #endif struct in_device __rcu *ip_ptr; struct inet6_dev __rcu *ip6_ptr; #if IS_ENABLED(CONFIG_AX25) void *ax25_ptr; #endif struct wireless_dev *ieee80211_ptr; struct wpan_dev *ieee802154_ptr; #if IS_ENABLED(CONFIG_MPLS_ROUTING) struct mpls_dev __rcu *mpls_ptr; #endif /* * Cache lines mostly used on receive path (including eth_type_trans()) */ /* Interface address info used in eth_type_trans() */ unsigned char *dev_addr; struct netdev_rx_queue *_rx; unsigned int num_rx_queues; unsigned int real_num_rx_queues; struct bpf_prog __rcu *xdp_prog; unsigned long gro_flush_timeout; int napi_defer_hard_irqs; rx_handler_func_t __rcu *rx_handler; void __rcu *rx_handler_data; #ifdef CONFIG_NET_CLS_ACT struct mini_Qdisc __rcu *miniq_ingress; #endif struct netdev_queue __rcu *ingress_queue; #ifdef CONFIG_NETFILTER_INGRESS struct nf_hook_entries __rcu *nf_hooks_ingress; #endif unsigned char broadcast[MAX_ADDR_LEN]; #ifdef CONFIG_RFS_ACCEL struct cpu_rmap *rx_cpu_rmap; #endif struct hlist_node index_hlist; /* * Cache lines mostly used on transmit path */ struct netdev_queue *_tx ____cacheline_aligned_in_smp; unsigned int num_tx_queues; unsigned int real_num_tx_queues; struct Qdisc __rcu *qdisc; unsigned int tx_queue_len; spinlock_t tx_global_lock; struct xdp_dev_bulk_queue __percpu *xdp_bulkq; #ifdef CONFIG_XPS struct xps_dev_maps __rcu *xps_cpus_map; struct xps_dev_maps __rcu *xps_rxqs_map; #endif #ifdef CONFIG_NET_CLS_ACT struct mini_Qdisc __rcu *miniq_egress; #endif #ifdef CONFIG_NET_SCHED DECLARE_HASHTABLE (qdisc_hash, 4); #endif /* These may be needed for future network-power-down code. */ struct timer_list watchdog_timer; int watchdog_timeo; u32 proto_down_reason; struct list_head todo_list; int __percpu *pcpu_refcnt; struct list_head link_watch_list; enum { NETREG_UNINITIALIZED=0, NETREG_REGISTERED, /* completed register_netdevice */ NETREG_UNREGISTERING, /* called unregister_netdevice */ NETREG_UNREGISTERED, /* completed unregister todo */ NETREG_RELEASED, /* called free_netdev */ NETREG_DUMMY, /* dummy device for NAPI poll */ } reg_state:8; bool dismantle; enum { RTNL_LINK_INITIALIZED, RTNL_LINK_INITIALIZING, } rtnl_link_state:16; bool needs_free_netdev; void (*priv_destructor)(struct net_device *dev); #ifdef CONFIG_NETPOLL struct netpoll_info __rcu *npinfo; #endif possible_net_t nd_net; /* mid-layer private */ void *ml_priv; enum netdev_ml_priv_type ml_priv_type; union { struct pcpu_lstats __percpu *lstats; struct pcpu_sw_netstats __percpu *tstats; struct pcpu_dstats __percpu *dstats; }; #if IS_ENABLED(CONFIG_GARP) struct garp_port __rcu *garp_port; #endif #if IS_ENABLED(CONFIG_MRP) struct mrp_port __rcu *mrp_port; #endif struct device dev; const struct attribute_group *sysfs_groups[4]; const struct attribute_group *sysfs_rx_queue_group; const struct rtnl_link_ops *rtnl_link_ops; /* for setting kernel sock attribute on TCP connection setup */ #define GSO_MAX_SIZE 65536 unsigned int gso_max_size; #define GSO_MAX_SEGS 65535 u16 gso_max_segs; #ifdef CONFIG_DCB const struct dcbnl_rtnl_ops *dcbnl_ops; #endif s16 num_tc; struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; u8 prio_tc_map[TC_BITMASK + 1]; #if IS_ENABLED(CONFIG_FCOE) unsigned int fcoe_ddp_xid; #endif #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) struct netprio_map __rcu *priomap; #endif struct phy_device *phydev; struct sfp_bus *sfp_bus; struct lock_class_key *qdisc_tx_busylock; struct lock_class_key *qdisc_running_key; bool proto_down; unsigned wol_enabled:1; struct list_head net_notifier_list; #if IS_ENABLED(CONFIG_MACSEC) /* MACsec management functions */ const struct macsec_ops *macsec_ops; #endif const struct udp_tunnel_nic_info *udp_tunnel_nic_info; struct udp_tunnel_nic *udp_tunnel_nic; /* protected by rtnl_lock */ struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; }; #define to_net_dev(d) container_of(d, struct net_device, dev) static inline bool netif_elide_gro(const struct net_device *dev) { if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) return true; return false; } #define NETDEV_ALIGN 32 static inline int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) { return dev->prio_tc_map[prio & TC_BITMASK]; } static inline int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) { if (tc >= dev->num_tc) return -EINVAL; dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; return 0; } int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); void netdev_reset_tc(struct net_device *dev); int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); int netdev_set_num_tc(struct net_device *dev, u8 num_tc); static inline int netdev_get_num_tc(struct net_device *dev) { return dev->num_tc; } static inline void net_prefetch(void *p) { prefetch(p); #if L1_CACHE_BYTES < 128 prefetch((u8 *)p + L1_CACHE_BYTES); #endif } static inline void net_prefetchw(void *p) { prefetchw(p); #if L1_CACHE_BYTES < 128 prefetchw((u8 *)p + L1_CACHE_BYTES); #endif } void netdev_unbind_sb_channel(struct net_device *dev, struct net_device *sb_dev); int netdev_bind_sb_channel_queue(struct net_device *dev, struct net_device *sb_dev, u8 tc, u16 count, u16 offset); int netdev_set_sb_channel(struct net_device *dev, u16 channel); static inline int netdev_get_sb_channel(struct net_device *dev) { return max_t(int, -dev->num_tc, 0); } static inline struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, unsigned int index) { return &dev->_tx[index]; } static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, const struct sk_buff *skb) { return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); } static inline void netdev_for_each_tx_queue(struct net_device *dev, void (*f)(struct net_device *, struct netdev_queue *, void *), void *arg) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) f(dev, &dev->_tx[i], arg); } #define netdev_lockdep_set_classes(dev) \ { \ static struct lock_class_key qdisc_tx_busylock_key; \ static struct lock_class_key qdisc_running_key; \ static struct lock_class_key qdisc_xmit_lock_key; \ static struct lock_class_key dev_addr_list_lock_key; \ unsigned int i; \ \ (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ (dev)->qdisc_running_key = &qdisc_running_key; \ lockdep_set_class(&(dev)->addr_list_lock, \ &dev_addr_list_lock_key); \ for (i = 0; i < (dev)->num_tx_queues; i++) \ lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ &qdisc_xmit_lock_key); \ } u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); /* returns the headroom that the master device needs to take in account * when forwarding to this dev */ static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) { return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; } static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) { if (dev->netdev_ops->ndo_set_rx_headroom) dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); } /* set the device rx headroom to the dev's default */ static inline void netdev_reset_rx_headroom(struct net_device *dev) { netdev_set_rx_headroom(dev, -1); } static inline void *netdev_get_ml_priv(struct net_device *dev, enum netdev_ml_priv_type type) { if (dev->ml_priv_type != type) return NULL; return dev->ml_priv; } static inline void netdev_set_ml_priv(struct net_device *dev, void *ml_priv, enum netdev_ml_priv_type type) { WARN(dev->ml_priv_type && dev->ml_priv_type != type, "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", dev->ml_priv_type, type); WARN(!dev->ml_priv_type && dev->ml_priv, "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); dev->ml_priv = ml_priv; dev->ml_priv_type = type; } /* * Net namespace inlines */ static inline struct net *dev_net(const struct net_device *dev) { return read_pnet(&dev->nd_net); } static inline struct net *dev_net_rcu(const struct net_device *dev) { return read_pnet_rcu(&dev->nd_net); } static inline void dev_net_set(struct net_device *dev, struct net *net) { write_pnet(&dev->nd_net, net); } /** * netdev_priv - access network device private data * @dev: network device * * Get network device private data */ static inline void *netdev_priv(const struct net_device *dev) { return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); } /* Set the sysfs physical device reference for the network logical device * if set prior to registration will cause a symlink during initialization. */ #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) /* Set the sysfs device type for the network logical device to allow * fine-grained identification of different network device types. For * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. */ #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) /* Default NAPI poll() weight * Device drivers are strongly advised to not use bigger value */ #define NAPI_POLL_WEIGHT 64 /** * netif_napi_add - initialize a NAPI context * @dev: network device * @napi: NAPI context * @poll: polling function * @weight: default weight * * netif_napi_add() must be used to initialize a NAPI context prior to calling * *any* of the other NAPI-related functions. */ void netif_napi_add(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int weight); /** * netif_tx_napi_add - initialize a NAPI context * @dev: network device * @napi: NAPI context * @poll: polling function * @weight: default weight * * This variant of netif_napi_add() should be used from drivers using NAPI * to exclusively poll a TX queue. * This will avoid we add it into napi_hash[], thus polluting this hash table. */ static inline void netif_tx_napi_add(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int weight) { set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); netif_napi_add(dev, napi, poll, weight); } /** * __netif_napi_del - remove a NAPI context * @napi: NAPI context * * Warning: caller must observe RCU grace period before freeing memory * containing @napi. Drivers might want to call this helper to combine * all the needed RCU grace periods into a single one. */ void __netif_napi_del(struct napi_struct *napi); /** * netif_napi_del - remove a NAPI context * @napi: NAPI context * * netif_napi_del() removes a NAPI context from the network device NAPI list */ static inline void netif_napi_del(struct napi_struct *napi) { __netif_napi_del(napi); synchronize_net(); } struct napi_gro_cb { /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ void *frag0; /* Length of frag0. */ unsigned int frag0_len; /* This indicates where we are processing relative to skb->data. */ int data_offset; /* This is non-zero if the packet cannot be merged with the new skb. */ u16 flush; /* Save the IP ID here and check when we get to the transport layer */ u16 flush_id; /* Number of segments aggregated. */ u16 count; /* Start offset for remote checksum offload */ u16 gro_remcsum_start; /* jiffies when first packet was created/queued */ unsigned long age; /* Used in ipv6_gro_receive() and foo-over-udp */ u16 proto; /* This is non-zero if the packet may be of the same flow. */ u8 same_flow:1; /* Used in tunnel GRO receive */ u8 encap_mark:1; /* GRO checksum is valid */ u8 csum_valid:1; /* Number of checksums via CHECKSUM_UNNECESSARY */ u8 csum_cnt:3; /* Free the skb? */ u8 free:2; #define NAPI_GRO_FREE 1 #define NAPI_GRO_FREE_STOLEN_HEAD 2 /* Used in foo-over-udp, set in udp[46]_gro_receive */ u8 is_ipv6:1; /* Used in GRE, set in fou/gue_gro_receive */ u8 is_fou:1; /* Used to determine if flush_id can be ignored */ u8 is_atomic:1; /* Number of gro_receive callbacks this packet already went through */ u8 recursion_counter:4; /* GRO is done by frag_list pointer chaining. */ u8 is_flist:1; /* used to support CHECKSUM_COMPLETE for tunneling protocols */ __wsum csum; /* used in skb_gro_receive() slow path */ struct sk_buff *last; }; #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) #define GRO_RECURSION_LIMIT 15 static inline int gro_recursion_inc_test(struct sk_buff *skb) { return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; } typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); static inline struct sk_buff *call_gro_receive(gro_receive_t cb, struct list_head *head, struct sk_buff *skb) { if (unlikely(gro_recursion_inc_test(skb))) { NAPI_GRO_CB(skb)->flush |= 1; return NULL; } return cb(head, skb); } typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, struct sk_buff *); static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, struct sock *sk, struct list_head *head, struct sk_buff *skb) { if (unlikely(gro_recursion_inc_test(skb))) { NAPI_GRO_CB(skb)->flush |= 1; return NULL; } return cb(sk, head, skb); } struct packet_type { __be16 type; /* This is really htons(ether_type). */ bool ignore_outgoing; struct net_device *dev; /* NULL is wildcarded here */ int (*func) (struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *); void (*list_func) (struct list_head *, struct packet_type *, struct net_device *); bool (*id_match)(struct packet_type *ptype, struct sock *sk); struct net *af_packet_net; void *af_packet_priv; struct list_head list; }; struct offload_callbacks { struct sk_buff *(*gso_segment)(struct sk_buff *skb, netdev_features_t features); struct sk_buff *(*gro_receive)(struct list_head *head, struct sk_buff *skb); int (*gro_complete)(struct sk_buff *skb, int nhoff); }; struct packet_offload { __be16 type; /* This is really htons(ether_type). */ u16 priority; struct offload_callbacks callbacks; struct list_head list; }; /* often modified stats are per-CPU, other are shared (netdev->stats) */ struct pcpu_sw_netstats { u64 rx_packets; u64 rx_bytes; u64 tx_packets; u64 tx_bytes; struct u64_stats_sync syncp; } __aligned(4 * sizeof(u64)); struct pcpu_lstats { u64_stats_t packets; u64_stats_t bytes; struct u64_stats_sync syncp; } __aligned(2 * sizeof(u64)); void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) { struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); u64_stats_update_begin(&tstats->syncp); tstats->rx_bytes += len; tstats->rx_packets++; u64_stats_update_end(&tstats->syncp); } static inline void dev_lstats_add(struct net_device *dev, unsigned int len) { struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); u64_stats_update_begin(&lstats->syncp); u64_stats_add(&lstats->bytes, len); u64_stats_inc(&lstats->packets); u64_stats_update_end(&lstats->syncp); } #define __netdev_alloc_pcpu_stats(type, gfp) \ ({ \ typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ if (pcpu_stats) { \ int __cpu; \ for_each_possible_cpu(__cpu) { \ typeof(type) *stat; \ stat = per_cpu_ptr(pcpu_stats, __cpu); \ u64_stats_init(&stat->syncp); \ } \ } \ pcpu_stats; \ }) #define netdev_alloc_pcpu_stats(type) \ __netdev_alloc_pcpu_stats(type, GFP_KERNEL) enum netdev_lag_tx_type { NETDEV_LAG_TX_TYPE_UNKNOWN, NETDEV_LAG_TX_TYPE_RANDOM, NETDEV_LAG_TX_TYPE_BROADCAST, NETDEV_LAG_TX_TYPE_ROUNDROBIN, NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, NETDEV_LAG_TX_TYPE_HASH, }; enum netdev_lag_hash { NETDEV_LAG_HASH_NONE, NETDEV_LAG_HASH_L2, NETDEV_LAG_HASH_L34, NETDEV_LAG_HASH_L23, NETDEV_LAG_HASH_E23, NETDEV_LAG_HASH_E34, NETDEV_LAG_HASH_UNKNOWN, }; struct netdev_lag_upper_info { enum netdev_lag_tx_type tx_type; enum netdev_lag_hash hash_type; }; struct netdev_lag_lower_state_info { u8 link_up : 1, tx_enabled : 1; }; #include <linux/notifier.h> /* netdevice notifier chain. Please remember to update netdev_cmd_to_name() * and the rtnetlink notification exclusion list in rtnetlink_event() when * adding new types. */ enum netdev_cmd { NETDEV_UP = 1, /* For now you can't veto a device up/down */ NETDEV_DOWN, NETDEV_REBOOT, /* Tell a protocol stack a network interface detected a hardware crash and restarted - we can use this eg to kick tcp sessions once done */ NETDEV_CHANGE, /* Notify device state change */ NETDEV_REGISTER, NETDEV_UNREGISTER, NETDEV_CHANGEMTU, /* notify after mtu change happened */ NETDEV_CHANGEADDR, /* notify after the address change */ NETDEV_PRE_CHANGEADDR, /* notify before the address change */ NETDEV_GOING_DOWN, NETDEV_CHANGENAME, NETDEV_FEAT_CHANGE, NETDEV_BONDING_FAILOVER, NETDEV_PRE_UP, NETDEV_PRE_TYPE_CHANGE, NETDEV_POST_TYPE_CHANGE, NETDEV_POST_INIT, NETDEV_RELEASE, NETDEV_NOTIFY_PEERS, NETDEV_JOIN, NETDEV_CHANGEUPPER, NETDEV_RESEND_IGMP, NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ NETDEV_CHANGEINFODATA, NETDEV_BONDING_INFO, NETDEV_PRECHANGEUPPER, NETDEV_CHANGELOWERSTATE, NETDEV_UDP_TUNNEL_PUSH_INFO, NETDEV_UDP_TUNNEL_DROP_INFO, NETDEV_CHANGE_TX_QUEUE_LEN, NETDEV_CVLAN_FILTER_PUSH_INFO, NETDEV_CVLAN_FILTER_DROP_INFO, NETDEV_SVLAN_FILTER_PUSH_INFO, NETDEV_SVLAN_FILTER_DROP_INFO, }; const char *netdev_cmd_to_name(enum netdev_cmd cmd); int register_netdevice_notifier(struct notifier_block *nb); int unregister_netdevice_notifier(struct notifier_block *nb); int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); int unregister_netdevice_notifier_net(struct net *net, struct notifier_block *nb); int register_netdevice_notifier_dev_net(struct net_device *dev, struct notifier_block *nb, struct netdev_net_notifier *nn); int unregister_netdevice_notifier_dev_net(struct net_device *dev, struct notifier_block *nb, struct netdev_net_notifier *nn); struct netdev_notifier_info { struct net_device *dev; struct netlink_ext_ack *extack; }; struct netdev_notifier_info_ext { struct netdev_notifier_info info; /* must be first */ union { u32 mtu; } ext; }; struct netdev_notifier_change_info { struct netdev_notifier_info info; /* must be first */ unsigned int flags_changed; }; struct netdev_notifier_changeupper_info { struct netdev_notifier_info info; /* must be first */ struct net_device *upper_dev; /* new upper dev */ bool master; /* is upper dev master */ bool linking; /* is the notification for link or unlink */ void *upper_info; /* upper dev info */ }; struct netdev_notifier_changelowerstate_info { struct netdev_notifier_info info; /* must be first */ void *lower_state_info; /* is lower dev state */ }; struct netdev_notifier_pre_changeaddr_info { struct netdev_notifier_info info; /* must be first */ const unsigned char *dev_addr; }; static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, struct net_device *dev) { info->dev = dev; info->extack = NULL; } static inline struct net_device * netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) { return info->dev; } static inline struct netlink_ext_ack * netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) { return info->extack; } int call_netdevice_notifiers(unsigned long val, struct net_device *dev); extern rwlock_t dev_base_lock; /* Device list lock */ #define for_each_netdev(net, d) \ list_for_each_entry(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_reverse(net, d) \ list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_rcu(net, d) \ list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_safe(net, d, n) \ list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue(net, d) \ list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue_reverse(net, d) \ list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ dev_list) #define for_each_netdev_continue_rcu(net, d) \ list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_in_bond_rcu(bond, slave) \ for_each_netdev_rcu(&init_net, slave) \ if (netdev_master_upper_dev_get_rcu(slave) == (bond)) #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) static inline struct net_device *next_net_device(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = dev->dev_list.next; return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *next_net_device_rcu(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = rcu_dereference(list_next_rcu(&dev->dev_list)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *first_net_device(struct net *net) { return list_empty(&net->dev_base_head) ? NULL : net_device_entry(net->dev_base_head.next); } static inline struct net_device *first_net_device_rcu(struct net *net) { struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } int netdev_boot_setup_check(struct net_device *dev); unsigned long netdev_boot_base(const char *prefix, int unit); struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, const char *hwaddr); struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); void dev_add_pack(struct packet_type *pt); void dev_remove_pack(struct packet_type *pt); void __dev_remove_pack(struct packet_type *pt); void dev_add_offload(struct packet_offload *po); void dev_remove_offload(struct packet_offload *po); int dev_get_iflink(const struct net_device *dev); int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, unsigned short mask); struct net_device *dev_get_by_name(struct net *net, const char *name); struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); struct net_device *__dev_get_by_name(struct net *net, const char *name); int dev_alloc_name(struct net_device *dev, const char *name); int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); void dev_close(struct net_device *dev); void dev_close_many(struct list_head *head, bool unlink); void dev_disable_lro(struct net_device *dev); int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); int dev_queue_xmit(struct sk_buff *skb); int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) { int ret; ret = __dev_direct_xmit(skb, queue_id); if (!dev_xmit_complete(ret)) kfree_skb(skb); return ret; } int register_netdevice(struct net_device *dev); void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); void unregister_netdevice_many(struct list_head *head); static inline void unregister_netdevice(struct net_device *dev) { unregister_netdevice_queue(dev, NULL); } int netdev_refcnt_read(const struct net_device *dev); void free_netdev(struct net_device *dev); void netdev_freemem(struct net_device *dev); int init_dummy_netdev(struct net_device *dev); struct net_device *netdev_get_xmit_slave(struct net_device *dev, struct sk_buff *skb, bool all_slaves); struct net_device *dev_get_by_index(struct net *net, int ifindex); struct net_device *__dev_get_by_index(struct net *net, int ifindex); struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); struct net_device *dev_get_by_napi_id(unsigned int napi_id); int netdev_get_name(struct net *net, char *name, int ifindex); int dev_restart(struct net_device *dev); int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb); static inline unsigned int skb_gro_offset(const struct sk_buff *skb) { return NAPI_GRO_CB(skb)->data_offset; } static inline unsigned int skb_gro_len(const struct sk_buff *skb) { return skb->len - NAPI_GRO_CB(skb)->data_offset; } static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) { NAPI_GRO_CB(skb)->data_offset += len; } static inline void *skb_gro_header_fast(struct sk_buff *skb, unsigned int offset) { return NAPI_GRO_CB(skb)->frag0 + offset; } static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) { return NAPI_GRO_CB(skb)->frag0_len < hlen; } static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) { NAPI_GRO_CB(skb)->frag0 = NULL; NAPI_GRO_CB(skb)->frag0_len = 0; } static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, unsigned int offset) { if (!pskb_may_pull(skb, hlen)) return NULL; skb_gro_frag0_invalidate(skb); return skb->data + offset; } static inline void *skb_gro_network_header(struct sk_buff *skb) { return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + skb_network_offset(skb); } static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { if (NAPI_GRO_CB(skb)->csum_valid) NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, csum_partial(start, len, 0)); } /* GRO checksum functions. These are logical equivalents of the normal * checksum functions (in skbuff.h) except that they operate on the GRO * offsets and fields in sk_buff. */ __sum16 __skb_gro_checksum_complete(struct sk_buff *skb); static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) { return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); } static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, bool zero_okay, __sum16 check) { return ((skb->ip_summed != CHECKSUM_PARTIAL || skb_checksum_start_offset(skb) < skb_gro_offset(skb)) && !skb_at_gro_remcsum_start(skb) && NAPI_GRO_CB(skb)->csum_cnt == 0 && (!zero_okay || check)); } static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, __wsum psum) { if (NAPI_GRO_CB(skb)->csum_valid && !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) return 0; NAPI_GRO_CB(skb)->csum = psum; return __skb_gro_checksum_complete(skb); } static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) { if (NAPI_GRO_CB(skb)->csum_cnt > 0) { /* Consume a checksum from CHECKSUM_UNNECESSARY */ NAPI_GRO_CB(skb)->csum_cnt--; } else { /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we * verified a new top level checksum or an encapsulated one * during GRO. This saves work if we fallback to normal path. */ __skb_incr_checksum_unnecessary(skb); } } #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ compute_pseudo) \ ({ \ __sum16 __ret = 0; \ if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ __ret = __skb_gro_checksum_validate_complete(skb, \ compute_pseudo(skb, proto)); \ if (!__ret) \ skb_gro_incr_csum_unnecessary(skb); \ __ret; \ }) #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) #define skb_gro_checksum_validate_zero_check(skb, proto, check, \ compute_pseudo) \ __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) #define skb_gro_checksum_simple_validate(skb) \ __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) { return (NAPI_GRO_CB(skb)->csum_cnt == 0 && !NAPI_GRO_CB(skb)->csum_valid); } static inline void __skb_gro_checksum_convert(struct sk_buff *skb, __wsum pseudo) { NAPI_GRO_CB(skb)->csum = ~pseudo; NAPI_GRO_CB(skb)->csum_valid = 1; } #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \ do { \ if (__skb_gro_checksum_convert_check(skb)) \ __skb_gro_checksum_convert(skb, \ compute_pseudo(skb, proto)); \ } while (0) struct gro_remcsum { int offset; __wsum delta; }; static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) { grc->offset = 0; grc->delta = 0; } static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, unsigned int off, size_t hdrlen, int start, int offset, struct gro_remcsum *grc, bool nopartial) { __wsum delta; size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); if (!nopartial) { NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; return ptr; } ptr = skb_gro_header_fast(skb, off); if (skb_gro_header_hard(skb, off + plen)) { ptr = skb_gro_header_slow(skb, off + plen, off); if (!ptr) return NULL; } delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, start, offset); /* Adjust skb->csum since we changed the packet */ NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); grc->offset = off + hdrlen + offset; grc->delta = delta; return ptr; } static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, struct gro_remcsum *grc) { void *ptr; size_t plen = grc->offset + sizeof(u16); if (!grc->delta) return; ptr = skb_gro_header_fast(skb, grc->offset); if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { ptr = skb_gro_header_slow(skb, plen, grc->offset); if (!ptr) return; } remcsum_unadjust((__sum16 *)ptr, grc->delta); } #ifdef CONFIG_XFRM_OFFLOAD static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) { if (PTR_ERR(pp) != -EINPROGRESS) NAPI_GRO_CB(skb)->flush |= flush; } static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, struct sk_buff *pp, int flush, struct gro_remcsum *grc) { if (PTR_ERR(pp) != -EINPROGRESS) { NAPI_GRO_CB(skb)->flush |= flush; skb_gro_remcsum_cleanup(skb, grc); skb->remcsum_offload = 0; } } #else static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) { NAPI_GRO_CB(skb)->flush |= flush; } static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, struct sk_buff *pp, int flush, struct gro_remcsum *grc) { NAPI_GRO_CB(skb)->flush |= flush; skb_gro_remcsum_cleanup(skb, grc); skb->remcsum_offload = 0; } #endif static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { if (!dev->header_ops || !dev->header_ops->create) return 0; return dev->header_ops->create(skb, dev, type, daddr, saddr, len); } static inline int dev_parse_header(const struct sk_buff *skb, unsigned char *haddr) { const struct net_device *dev = skb->dev; if (!dev->header_ops || !dev->header_ops->parse) return 0; return dev->header_ops->parse(skb, haddr); } static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) { const struct net_device *dev = skb->dev; if (!dev->header_ops || !dev->header_ops->parse_protocol) return 0; return dev->header_ops->parse_protocol(skb); } /* ll_header must have at least hard_header_len allocated */ static inline bool dev_validate_header(const struct net_device *dev, char *ll_header, int len) { if (likely(len >= dev->hard_header_len)) return true; if (len < dev->min_header_len) return false; if (capable(CAP_SYS_RAWIO)) { memset(ll_header + len, 0, dev->hard_header_len - len); return true; } if (dev->header_ops && dev->header_ops->validate) return dev->header_ops->validate(ll_header, len); return false; } static inline bool dev_has_header(const struct net_device *dev) { return dev->header_ops && dev->header_ops->create; } #ifdef CONFIG_NET_FLOW_LIMIT #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ struct sd_flow_limit { u64 count; unsigned int num_buckets; unsigned int history_head; u16 history[FLOW_LIMIT_HISTORY]; u8 buckets[]; }; extern int netdev_flow_limit_table_len; #endif /* CONFIG_NET_FLOW_LIMIT */ /* * Incoming packets are placed on per-CPU queues */ struct softnet_data { struct list_head poll_list; struct sk_buff_head process_queue; /* stats */ unsigned int processed; unsigned int time_squeeze; unsigned int received_rps; #ifdef CONFIG_RPS struct softnet_data *rps_ipi_list; #endif #ifdef CONFIG_NET_FLOW_LIMIT struct sd_flow_limit __rcu *flow_limit; #endif struct Qdisc *output_queue; struct Qdisc **output_queue_tailp; struct sk_buff *completion_queue; #ifdef CONFIG_XFRM_OFFLOAD struct sk_buff_head xfrm_backlog; #endif /* written and read only by owning cpu: */ struct { u16 recursion; u8 more; } xmit; #ifdef CONFIG_RPS /* input_queue_head should be written by cpu owning this struct, * and only read by other cpus. Worth using a cache line. */ unsigned int input_queue_head ____cacheline_aligned_in_smp; /* Elements below can be accessed between CPUs for RPS/RFS */ call_single_data_t csd ____cacheline_aligned_in_smp; struct softnet_data *rps_ipi_next; unsigned int cpu; unsigned int input_queue_tail; #endif unsigned int dropped; struct sk_buff_head input_pkt_queue; struct napi_struct backlog; }; static inline void input_queue_head_incr(struct softnet_data *sd) { #ifdef CONFIG_RPS sd->input_queue_head++; #endif } static inline void input_queue_tail_incr_save(struct softnet_data *sd, unsigned int *qtail) { #ifdef CONFIG_RPS *qtail = ++sd->input_queue_tail; #endif } DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); static inline int dev_recursion_level(void) { return this_cpu_read(softnet_data.xmit.recursion); } #define XMIT_RECURSION_LIMIT 8 static inline bool dev_xmit_recursion(void) { return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > XMIT_RECURSION_LIMIT); } static inline void dev_xmit_recursion_inc(void) { __this_cpu_inc(softnet_data.xmit.recursion); } static inline void dev_xmit_recursion_dec(void) { __this_cpu_dec(softnet_data.xmit.recursion); } void __netif_schedule(struct Qdisc *q); void netif_schedule_queue(struct netdev_queue *txq); static inline void netif_tx_schedule_all(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) netif_schedule_queue(netdev_get_tx_queue(dev, i)); } static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) { clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_start_queue - allow transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. */ static inline void netif_start_queue(struct net_device *dev) { netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_start_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_start_queue(txq); } } void netif_tx_wake_queue(struct netdev_queue *dev_queue); /** * netif_wake_queue - restart transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. * Used for flow control when transmit resources are available. */ static inline void netif_wake_queue(struct net_device *dev) { netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_wake_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_wake_queue(txq); } } static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) { set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_stop_queue - stop transmitted packets * @dev: network device * * Stop upper layers calling the device hard_start_xmit routine. * Used for flow control when transmit resources are unavailable. */ static inline void netif_stop_queue(struct net_device *dev) { netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); } void netif_tx_stop_all_queues(struct net_device *dev); static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) { return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); } /** * netif_queue_stopped - test if transmit queue is flowblocked * @dev: network device * * Test if transmit queue on device is currently unable to send. */ static inline bool netif_queue_stopped(const struct net_device *dev) { return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); } static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_ANY_XOFF; } static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; } static inline bool netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; } /** * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write * @dev_queue: pointer to transmit queue * * BQL enabled drivers might use this helper in their ndo_start_xmit(), * to give appropriate hint to the CPU. */ static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) { #ifdef CONFIG_BQL prefetchw(&dev_queue->dql.num_queued); #endif } /** * netdev_txq_bql_complete_prefetchw - prefetch bql data for write * @dev_queue: pointer to transmit queue * * BQL enabled drivers might use this helper in their TX completion path, * to give appropriate hint to the CPU. */ static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) { #ifdef CONFIG_BQL prefetchw(&dev_queue->dql.limit); #endif } static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, unsigned int bytes) { #ifdef CONFIG_BQL dql_queued(&dev_queue->dql, bytes); if (likely(dql_avail(&dev_queue->dql) >= 0)) return; set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); /* * The XOFF flag must be set before checking the dql_avail below, * because in netdev_tx_completed_queue we update the dql_completed * before checking the XOFF flag. */ smp_mb(); /* check again in case another CPU has just made room avail */ if (unlikely(dql_avail(&dev_queue->dql) >= 0)) clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); #endif } /* Variant of netdev_tx_sent_queue() for drivers that are aware * that they should not test BQL status themselves. * We do want to change __QUEUE_STATE_STACK_XOFF only for the last * skb of a batch. * Returns true if the doorbell must be used to kick the NIC. */ static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, unsigned int bytes, bool xmit_more) { if (xmit_more) { #ifdef CONFIG_BQL dql_queued(&dev_queue->dql, bytes); #endif return netif_tx_queue_stopped(dev_queue); } netdev_tx_sent_queue(dev_queue, bytes); return true; } /** * netdev_sent_queue - report the number of bytes queued to hardware * @dev: network device * @bytes: number of bytes queued to the hardware device queue * * Report the number of bytes queued for sending/completion to the network * device hardware queue. @bytes should be a good approximation and should * exactly match netdev_completed_queue() @bytes */ static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) { netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); } static inline bool __netdev_sent_queue(struct net_device *dev, unsigned int bytes, bool xmit_more) { return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, xmit_more); } static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, unsigned int pkts, unsigned int bytes) { #ifdef CONFIG_BQL if (unlikely(!bytes)) return; dql_completed(&dev_queue->dql, bytes); /* * Without the memory barrier there is a small possiblity that * netdev_tx_sent_queue will miss the update and cause the queue to * be stopped forever */ smp_mb(); if (unlikely(dql_avail(&dev_queue->dql) < 0)) return; if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) netif_schedule_queue(dev_queue); #endif } /** * netdev_completed_queue - report bytes and packets completed by device * @dev: network device * @pkts: actual number of packets sent over the medium * @bytes: actual number of bytes sent over the medium * * Report the number of bytes and packets transmitted by the network device * hardware queue over the physical medium, @bytes must exactly match the * @bytes amount passed to netdev_sent_queue() */ static inline void netdev_completed_queue(struct net_device *dev, unsigned int pkts, unsigned int bytes) { netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); } static inline void netdev_tx_reset_queue(struct netdev_queue *q) { #ifdef CONFIG_BQL clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); dql_reset(&q->dql); #endif } /** * netdev_reset_queue - reset the packets and bytes count of a network device * @dev_queue: network device * * Reset the bytes and packet count of a network device and clear the * software flow control OFF bit for this network device */ static inline void netdev_reset_queue(struct net_device *dev_queue) { netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); } /** * netdev_cap_txqueue - check if selected tx queue exceeds device queues * @dev: network device * @queue_index: given tx queue index * * Returns 0 if given tx queue index >= number of device tx queues, * otherwise returns the originally passed tx queue index. */ static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) { if (unlikely(queue_index >= dev->real_num_tx_queues)) { net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", dev->name, queue_index, dev->real_num_tx_queues); return 0; } return queue_index; } /** * netif_running - test if up * @dev: network device * * Test if the device has been brought up. */ static inline bool netif_running(const struct net_device *dev) { return test_bit(__LINK_STATE_START, &dev->state); } /* * Routines to manage the subqueues on a device. We only need start, * stop, and a check if it's stopped. All other device management is * done at the overall netdevice level. * Also test the device if we're multiqueue. */ /** * netif_start_subqueue - allow sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Start individual transmit queue of a device with multiple transmit queues. */ static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_start_queue(txq); } /** * netif_stop_subqueue - stop sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Stop individual transmit queue of a device with multiple transmit queues. */ static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_stop_queue(txq); } /** * netif_subqueue_stopped - test status of subqueue * @dev: network device * @queue_index: sub queue index * * Check individual transmit queue of a device with multiple transmit queues. */ static inline bool __netif_subqueue_stopped(const struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); return netif_tx_queue_stopped(txq); } static inline bool netif_subqueue_stopped(const struct net_device *dev, struct sk_buff *skb) { return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); } /** * netif_wake_subqueue - allow sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Resume individual transmit queue of a device with multiple transmit queues. */ static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_wake_queue(txq); } #ifdef CONFIG_XPS int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, u16 index); int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, u16 index, bool is_rxqs_map); /** * netif_attr_test_mask - Test a CPU or Rx queue set in a mask * @j: CPU/Rx queue index * @mask: bitmask of all cpus/rx queues * @nr_bits: number of bits in the bitmask * * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. */ static inline bool netif_attr_test_mask(unsigned long j, const unsigned long *mask, unsigned int nr_bits) { cpu_max_bits_warn(j, nr_bits); return test_bit(j, mask); } /** * netif_attr_test_online - Test for online CPU/Rx queue * @j: CPU/Rx queue index * @online_mask: bitmask for CPUs/Rx queues that are online * @nr_bits: number of bits in the bitmask * * Returns true if a CPU/Rx queue is online. */ static inline bool netif_attr_test_online(unsigned long j, const unsigned long *online_mask, unsigned int nr_bits) { cpu_max_bits_warn(j, nr_bits); if (online_mask) return test_bit(j, online_mask); return (j < nr_bits); } /** * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask * @n: CPU/Rx queue index * @srcp: the cpumask/Rx queue mask pointer * @nr_bits: number of bits in the bitmask * * Returns >= nr_bits if no further CPUs/Rx queues set. */ static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, unsigned int nr_bits) { /* -1 is a legal arg here. */ if (n != -1) cpu_max_bits_warn(n, nr_bits); if (srcp) return find_next_bit(srcp, nr_bits, n + 1); return n + 1; } /** * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p * @n: CPU/Rx queue index * @src1p: the first CPUs/Rx queues mask pointer * @src2p: the second CPUs/Rx queues mask pointer * @nr_bits: number of bits in the bitmask * * Returns >= nr_bits if no further CPUs/Rx queues set in both. */ static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, const unsigned long *src2p, unsigned int nr_bits) { /* -1 is a legal arg here. */ if (n != -1) cpu_max_bits_warn(n, nr_bits); if (src1p && src2p) return find_next_and_bit(src1p, src2p, nr_bits, n + 1); else if (src1p) return find_next_bit(src1p, nr_bits, n + 1); else if (src2p) return find_next_bit(src2p, nr_bits, n + 1); return n + 1; } #else static inline int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, u16 index) { return 0; } static inline int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, u16 index, bool is_rxqs_map) { return 0; } #endif /** * netif_is_multiqueue - test if device has multiple transmit queues * @dev: network device * * Check if device has multiple transmit queues */ static inline bool netif_is_multiqueue(const struct net_device *dev) { return dev->num_tx_queues > 1; } int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); #ifdef CONFIG_SYSFS int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); #else static inline int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxqs) { dev->real_num_rx_queues = rxqs; return 0; } #endif static inline struct netdev_rx_queue * __netif_get_rx_queue(struct net_device *dev, unsigned int rxq) { return dev->_rx + rxq; } #ifdef CONFIG_SYSFS static inline unsigned int get_netdev_rx_queue_index( struct netdev_rx_queue *queue) { struct net_device *dev = queue->dev; int index = queue - dev->_rx; BUG_ON(index >= dev->num_rx_queues); return index; } #endif #define DEFAULT_MAX_NUM_RSS_QUEUES (8) int netif_get_num_default_rss_queues(void); enum skb_free_reason { SKB_REASON_CONSUMED, SKB_REASON_DROPPED, }; void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); /* * It is not allowed to call kfree_skb() or consume_skb() from hardware * interrupt context or with hardware interrupts being disabled. * (in_irq() || irqs_disabled()) * * We provide four helpers that can be used in following contexts : * * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, * replacing kfree_skb(skb) * * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. * Typically used in place of consume_skb(skb) in TX completion path * * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, * replacing kfree_skb(skb) * * dev_consume_skb_any(skb) when caller doesn't know its current irq context, * and consumed a packet. Used in place of consume_skb(skb) */ static inline void dev_kfree_skb_irq(struct sk_buff *skb) { __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); } static inline void dev_consume_skb_irq(struct sk_buff *skb) { __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); } static inline void dev_kfree_skb_any(struct sk_buff *skb) { __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); } static inline void dev_consume_skb_any(struct sk_buff *skb) { __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); } void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); int netif_rx(struct sk_buff *skb); int netif_rx_ni(struct sk_buff *skb); int netif_rx_any_context(struct sk_buff *skb); int netif_receive_skb(struct sk_buff *skb); int netif_receive_skb_core(struct sk_buff *skb); void netif_receive_skb_list(struct list_head *head); gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); void napi_gro_flush(struct napi_struct *napi, bool flush_old); struct sk_buff *napi_get_frags(struct napi_struct *napi); gro_result_t napi_gro_frags(struct napi_struct *napi); struct packet_offload *gro_find_receive_by_type(__be16 type); struct packet_offload *gro_find_complete_by_type(__be16 type); static inline void napi_free_frags(struct napi_struct *napi) { kfree_skb(napi->skb); napi->skb = NULL; } bool netdev_is_rx_handler_busy(struct net_device *dev); int netdev_rx_handler_register(struct net_device *dev, rx_handler_func_t *rx_handler, void *rx_handler_data); void netdev_rx_handler_unregister(struct net_device *dev); bool dev_valid_name(const char *name); static inline bool is_socket_ioctl_cmd(unsigned int cmd) { return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; } int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, bool *need_copyout); int dev_ifconf(struct net *net, struct ifconf *, int); int dev_ethtool(struct net *net, struct ifreq *); unsigned int dev_get_flags(const struct net_device *); int __dev_change_flags(struct net_device *dev, unsigned int flags, struct netlink_ext_ack *extack); int dev_change_flags(struct net_device *dev, unsigned int flags, struct netlink_ext_ack *extack); void __dev_notify_flags(struct net_device *, unsigned int old_flags, unsigned int gchanges); int dev_change_name(struct net_device *, const char *); int dev_set_alias(struct net_device *, const char *, size_t); int dev_get_alias(const struct net_device *, char *, size_t); int dev_change_net_namespace(struct net_device *, struct net *, const char *); int __dev_set_mtu(struct net_device *, int); int dev_validate_mtu(struct net_device *dev, int mtu, struct netlink_ext_ack *extack); int dev_set_mtu_ext(struct net_device *dev, int mtu, struct netlink_ext_ack *extack); int dev_set_mtu(struct net_device *, int); int dev_change_tx_queue_len(struct net_device *, unsigned long); void dev_set_group(struct net_device *, int); int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, struct netlink_ext_ack *extack); int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, struct netlink_ext_ack *extack); int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, struct netlink_ext_ack *extack); int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); int dev_change_carrier(struct net_device *, bool new_carrier); int dev_get_phys_port_id(struct net_device *dev, struct netdev_phys_item_id *ppid); int dev_get_phys_port_name(struct net_device *dev, char *name, size_t len); int dev_get_port_parent_id(struct net_device *dev, struct netdev_phys_item_id *ppid, bool recurse); bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); int dev_change_proto_down(struct net_device *dev, bool proto_down); int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, u32 value); struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq, int *ret); typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, int fd, int expected_fd, u32 flags); int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); int xdp_umem_query(struct net_device *dev, u16 queue_id); int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb); static __always_inline int ____dev_forward_skb(struct net_device *dev, struct sk_buff *skb) { if (skb_orphan_frags(skb, GFP_ATOMIC) || unlikely(!is_skb_forwardable(dev, skb))) { atomic_long_inc(&dev->rx_dropped); kfree_skb(skb); return NET_RX_DROP; } skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); skb->priority = 0; return 0; } bool dev_nit_active(struct net_device *dev); void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); extern int netdev_budget; extern unsigned int netdev_budget_usecs; /* Called by rtnetlink.c:rtnl_unlock() */ void netdev_run_todo(void); /** * dev_put - release reference to device * @dev: network device * * Release reference to device to allow it to be freed. */ static inline void dev_put(struct net_device *dev) { if (dev) this_cpu_dec(*dev->pcpu_refcnt); } /** * dev_hold - get reference to device * @dev: network device * * Hold reference to device to keep it from being freed. */ static inline void dev_hold(struct net_device *dev) { if (dev) this_cpu_inc(*dev->pcpu_refcnt); } /* Carrier loss detection, dial on demand. The functions netif_carrier_on * and _off may be called from IRQ context, but it is caller * who is responsible for serialization of these calls. * * The name carrier is inappropriate, these functions should really be * called netif_lowerlayer_*() because they represent the state of any * kind of lower layer not just hardware media. */ void linkwatch_init_dev(struct net_device *dev); void linkwatch_fire_event(struct net_device *dev); void linkwatch_forget_dev(struct net_device *dev); /** * netif_carrier_ok - test if carrier present * @dev: network device * * Check if carrier is present on device */ static inline bool netif_carrier_ok(const struct net_device *dev) { return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); } unsigned long dev_trans_start(struct net_device *dev); void __netdev_watchdog_up(struct net_device *dev); void netif_carrier_on(struct net_device *dev); void netif_carrier_off(struct net_device *dev); /** * netif_dormant_on - mark device as dormant. * @dev: network device * * Mark device as dormant (as per RFC2863). * * The dormant state indicates that the relevant interface is not * actually in a condition to pass packets (i.e., it is not 'up') but is * in a "pending" state, waiting for some external event. For "on- * demand" interfaces, this new state identifies the situation where the * interface is waiting for events to place it in the up state. */ static inline void netif_dormant_on(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant_off - set device as not dormant. * @dev: network device * * Device is not in dormant state. */ static inline void netif_dormant_off(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant - test if device is dormant * @dev: network device * * Check if device is dormant. */ static inline bool netif_dormant(const struct net_device *dev) { return test_bit(__LINK_STATE_DORMANT, &dev->state); } /** * netif_testing_on - mark device as under test. * @dev: network device * * Mark device as under test (as per RFC2863). * * The testing state indicates that some test(s) must be performed on * the interface. After completion, of the test, the interface state * will change to up, dormant, or down, as appropriate. */ static inline void netif_testing_on(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) linkwatch_fire_event(dev); } /** * netif_testing_off - set device as not under test. * @dev: network device * * Device is not in testing state. */ static inline void netif_testing_off(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) linkwatch_fire_event(dev); } /** * netif_testing - test if device is under test * @dev: network device * * Check if device is under test */ static inline bool netif_testing(const struct net_device *dev) { return test_bit(__LINK_STATE_TESTING, &dev->state); } /** * netif_oper_up - test if device is operational * @dev: network device * * Check if carrier is operational */ static inline bool netif_oper_up(const struct net_device *dev) { return (dev->operstate == IF_OPER_UP || dev->operstate == IF_OPER_UNKNOWN /* backward compat */); } /** * netif_device_present - is device available or removed * @dev: network device * * Check if device has not been removed from system. */ static inline bool netif_device_present(struct net_device *dev) { return test_bit(__LINK_STATE_PRESENT, &dev->state); } void netif_device_detach(struct net_device *dev); void netif_device_attach(struct net_device *dev); /* * Network interface message level settings */ enum { NETIF_MSG_DRV_BIT, NETIF_MSG_PROBE_BIT, NETIF_MSG_LINK_BIT, NETIF_MSG_TIMER_BIT, NETIF_MSG_IFDOWN_BIT, NETIF_MSG_IFUP_BIT, NETIF_MSG_RX_ERR_BIT, NETIF_MSG_TX_ERR_BIT, NETIF_MSG_TX_QUEUED_BIT, NETIF_MSG_INTR_BIT, NETIF_MSG_TX_DONE_BIT, NETIF_MSG_RX_STATUS_BIT, NETIF_MSG_PKTDATA_BIT, NETIF_MSG_HW_BIT, NETIF_MSG_WOL_BIT, /* When you add a new bit above, update netif_msg_class_names array * in net/ethtool/common.c */ NETIF_MSG_CLASS_COUNT, }; /* Both ethtool_ops interface and internal driver implementation use u32 */ static_assert(NETIF_MSG_CLASS_COUNT <= 32); #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) #define NETIF_MSG_DRV __NETIF_MSG(DRV) #define NETIF_MSG_PROBE __NETIF_MSG(PROBE) #define NETIF_MSG_LINK __NETIF_MSG(LINK) #define NETIF_MSG_TIMER __NETIF_MSG(TIMER) #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) #define NETIF_MSG_IFUP __NETIF_MSG(IFUP) #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) #define NETIF_MSG_INTR __NETIF_MSG(INTR) #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) #define NETIF_MSG_HW __NETIF_MSG(HW) #define NETIF_MSG_WOL __NETIF_MSG(WOL) #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) { /* use default */ if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) return default_msg_enable_bits; if (debug_value == 0) /* no output */ return 0; /* set low N bits */ return (1U << debug_value) - 1; } static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) { spin_lock(&txq->_xmit_lock); /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, cpu); } static inline bool __netif_tx_acquire(struct netdev_queue *txq) { __acquire(&txq->_xmit_lock); return true; } static inline void __netif_tx_release(struct netdev_queue *txq) { __release(&txq->_xmit_lock); } static inline void __netif_tx_lock_bh(struct netdev_queue *txq) { spin_lock_bh(&txq->_xmit_lock); /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); } static inline bool __netif_tx_trylock(struct netdev_queue *txq) { bool ok = spin_trylock(&txq->_xmit_lock); if (likely(ok)) { /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); } return ok; } static inline void __netif_tx_unlock(struct netdev_queue *txq) { /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, -1); spin_unlock(&txq->_xmit_lock); } static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) { /* Pairs with READ_ONCE() in __dev_queue_xmit() */ WRITE_ONCE(txq->xmit_lock_owner, -1); spin_unlock_bh(&txq->_xmit_lock); } static inline void txq_trans_update(struct netdev_queue *txq) { if (txq->xmit_lock_owner != -1) txq->trans_start = jiffies; } /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ static inline void netif_trans_update(struct net_device *dev) { struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); if (txq->trans_start != jiffies) txq->trans_start = jiffies; } /** * netif_tx_lock - grab network device transmit lock * @dev: network device * * Get network device transmit lock */ static inline void netif_tx_lock(struct net_device *dev) { unsigned int i; int cpu; spin_lock(&dev->tx_global_lock); cpu = smp_processor_id(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); /* We are the only thread of execution doing a * freeze, but we have to grab the _xmit_lock in * order to synchronize with threads which are in * the ->hard_start_xmit() handler and already * checked the frozen bit. */ __netif_tx_lock(txq, cpu); set_bit(__QUEUE_STATE_FROZEN, &txq->state); __netif_tx_unlock(txq); } } static inline void netif_tx_lock_bh(struct net_device *dev) { local_bh_disable(); netif_tx_lock(dev); } static inline void netif_tx_unlock(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); /* No need to grab the _xmit_lock here. If the * queue is not stopped for another reason, we * force a schedule. */ clear_bit(__QUEUE_STATE_FROZEN, &txq->state); netif_schedule_queue(txq); } spin_unlock(&dev->tx_global_lock); } static inline void netif_tx_unlock_bh(struct net_device *dev) { netif_tx_unlock(dev); local_bh_enable(); } #define HARD_TX_LOCK(dev, txq, cpu) { \ if ((dev->features & NETIF_F_LLTX) == 0) { \ __netif_tx_lock(txq, cpu); \ } else { \ __netif_tx_acquire(txq); \ } \ } #define HARD_TX_TRYLOCK(dev, txq) \ (((dev->features & NETIF_F_LLTX) == 0) ? \ __netif_tx_trylock(txq) : \ __netif_tx_acquire(txq)) #define HARD_TX_UNLOCK(dev, txq) { \ if ((dev->features & NETIF_F_LLTX) == 0) { \ __netif_tx_unlock(txq); \ } else { \ __netif_tx_release(txq); \ } \ } static inline void netif_tx_disable(struct net_device *dev) { unsigned int i; int cpu; local_bh_disable(); cpu = smp_processor_id(); spin_lock(&dev->tx_global_lock); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); } spin_unlock(&dev->tx_global_lock); local_bh_enable(); } static inline void netif_addr_lock(struct net_device *dev) { unsigned char nest_level = 0; #ifdef CONFIG_LOCKDEP nest_level = dev->nested_level; #endif spin_lock_nested(&dev->addr_list_lock, nest_level); } static inline void netif_addr_lock_bh(struct net_device *dev) { unsigned char nest_level = 0; #ifdef CONFIG_LOCKDEP nest_level = dev->nested_level; #endif local_bh_disable(); spin_lock_nested(&dev->addr_list_lock, nest_level); } static inline void netif_addr_unlock(struct net_device *dev) { spin_unlock(&dev->addr_list_lock); } static inline void netif_addr_unlock_bh(struct net_device *dev) { spin_unlock_bh(&dev->addr_list_lock); } /* * dev_addrs walker. Should be used only for read access. Call with * rcu_read_lock held. */ #define for_each_dev_addr(dev, ha) \ list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) /* These functions live elsewhere (drivers/net/net_init.c, but related) */ void ether_setup(struct net_device *dev); /* Support for loadable net-drivers */ struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *), unsigned int txqs, unsigned int rxqs); #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ count) int register_netdev(struct net_device *dev); void unregister_netdev(struct net_device *dev); int devm_register_netdev(struct device *dev, struct net_device *ndev); /* General hardware address lists handling functions */ int __hw_addr_sync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)); int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *, int), int (*unsync)(struct net_device *, const unsigned char *, int)); void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *, int)); void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)); void __hw_addr_init(struct netdev_hw_addr_list *list); /* Functions used for device addresses handling */ static inline void __dev_addr_set(struct net_device *dev, const u8 *addr, size_t len) { memcpy(dev->dev_addr, addr, len); } static inline void dev_addr_set(struct net_device *dev, const u8 *addr) { __dev_addr_set(dev, addr, dev->addr_len); } static inline void dev_addr_mod(struct net_device *dev, unsigned int offset, const u8 *addr, size_t len) { memcpy(&dev->dev_addr[offset], addr, len); } int dev_addr_add(struct net_device *dev, const unsigned char *addr, unsigned char addr_type); int dev_addr_del(struct net_device *dev, const unsigned char *addr, unsigned char addr_type); void dev_addr_flush(struct net_device *dev); int dev_addr_init(struct net_device *dev); /* Functions used for unicast addresses handling */ int dev_uc_add(struct net_device *dev, const unsigned char *addr); int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); int dev_uc_del(struct net_device *dev, const unsigned char *addr); int dev_uc_sync(struct net_device *to, struct net_device *from); int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); void dev_uc_unsync(struct net_device *to, struct net_device *from); void dev_uc_flush(struct net_device *dev); void dev_uc_init(struct net_device *dev); /** * __dev_uc_sync - Synchonize device's unicast list * @dev: device to sync * @sync: function to call if address should be added * @unsync: function to call if address should be removed * * Add newly added addresses to the interface, and release * addresses that have been deleted. */ static inline int __dev_uc_sync(struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)) { return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); } /** * __dev_uc_unsync - Remove synchronized addresses from device * @dev: device to sync * @unsync: function to call if address should be removed * * Remove all addresses that were added to the device by dev_uc_sync(). */ static inline void __dev_uc_unsync(struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)) { __hw_addr_unsync_dev(&dev->uc, dev, unsync); } /* Functions used for multicast addresses handling */ int dev_mc_add(struct net_device *dev, const unsigned char *addr); int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); int dev_mc_del(struct net_device *dev, const unsigned char *addr); int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); int dev_mc_sync(struct net_device *to, struct net_device *from); int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); void dev_mc_unsync(struct net_device *to, struct net_device *from); void dev_mc_flush(struct net_device *dev); void dev_mc_init(struct net_device *dev); /** * __dev_mc_sync - Synchonize device's multicast list * @dev: device to sync * @sync: function to call if address should be added * @unsync: function to call if address should be removed * * Add newly added addresses to the interface, and release * addresses that have been deleted. */ static inline int __dev_mc_sync(struct net_device *dev, int (*sync)(struct net_device *, const unsigned char *), int (*unsync)(struct net_device *, const unsigned char *)) { return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); } /** * __dev_mc_unsync - Remove synchronized addresses from device * @dev: device to sync * @unsync: function to call if address should be removed * * Remove all addresses that were added to the device by dev_mc_sync(). */ static inline void __dev_mc_unsync(struct net_device *dev, int (*unsync)(struct net_device *, const unsigned char *)) { __hw_addr_unsync_dev(&dev->mc, dev, unsync); } /* Functions used for secondary unicast and multicast support */ void dev_set_rx_mode(struct net_device *dev); void __dev_set_rx_mode(struct net_device *dev); int dev_set_promiscuity(struct net_device *dev, int inc); int dev_set_allmulti(struct net_device *dev, int inc); void netdev_state_change(struct net_device *dev); void netdev_notify_peers(struct net_device *dev); void netdev_features_change(struct net_device *dev); /* Load a device via the kmod */ void dev_load(struct net *net, const char *name); struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, struct rtnl_link_stats64 *storage); void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, const struct net_device_stats *netdev_stats); void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, const struct pcpu_sw_netstats __percpu *netstats); extern int netdev_max_backlog; extern int netdev_tstamp_prequeue; extern int weight_p; extern int dev_weight_rx_bias; extern int dev_weight_tx_bias; extern int dev_rx_weight; extern int dev_tx_weight; extern int gro_normal_batch; enum { NESTED_SYNC_IMM_BIT, NESTED_SYNC_TODO_BIT, }; #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) #define NESTED_SYNC_IMM __NESTED_SYNC(IMM) #define NESTED_SYNC_TODO __NESTED_SYNC(TODO) struct netdev_nested_priv { unsigned char flags; void *data; }; bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, struct list_head **iter); struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, struct list_head **iter); #ifdef CONFIG_LOCKDEP static LIST_HEAD(net_unlink_list); static inline void net_unlink_todo(struct net_device *dev) { if (list_empty(&dev->unlink_list)) list_add_tail(&dev->unlink_list, &net_unlink_list); } #endif /* iterate through upper list, must be called under RCU read lock */ #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ for (iter = &(dev)->adj_list.upper, \ updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ updev; \ updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) int netdev_walk_all_upper_dev_rcu(struct net_device *dev, int (*fn)(struct net_device *upper_dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv); bool netdev_has_upper_dev_all_rcu(struct net_device *dev, struct net_device *upper_dev); bool netdev_has_any_upper_dev(struct net_device *dev); void *netdev_lower_get_next_private(struct net_device *dev, struct list_head **iter); void *netdev_lower_get_next_private_rcu(struct net_device *dev, struct list_head **iter); #define netdev_for_each_lower_private(dev, priv, iter) \ for (iter = (dev)->adj_list.lower.next, \ priv = netdev_lower_get_next_private(dev, &(iter)); \ priv; \ priv = netdev_lower_get_next_private(dev, &(iter))) #define netdev_for_each_lower_private_rcu(dev, priv, iter) \ for (iter = &(dev)->adj_list.lower, \ priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ priv; \ priv = netdev_lower_get_next_private_rcu(dev, &(iter))) void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter); #define netdev_for_each_lower_dev(dev, ldev, iter) \ for (iter = (dev)->adj_list.lower.next, \ ldev = netdev_lower_get_next(dev, &(iter)); \ ldev; \ ldev = netdev_lower_get_next(dev, &(iter))) struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, struct list_head **iter); int netdev_walk_all_lower_dev(struct net_device *dev, int (*fn)(struct net_device *lower_dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv); int netdev_walk_all_lower_dev_rcu(struct net_device *dev, int (*fn)(struct net_device *lower_dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv); void *netdev_adjacent_get_private(struct list_head *adj_list); void *netdev_lower_get_first_private_rcu(struct net_device *dev); struct net_device *netdev_master_upper_dev_get(struct net_device *dev); struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, struct netlink_ext_ack *extack); int netdev_master_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, void *upper_priv, void *upper_info, struct netlink_ext_ack *extack); void netdev_upper_dev_unlink(struct net_device *dev, struct net_device *upper_dev); int netdev_adjacent_change_prepare(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev, struct netlink_ext_ack *extack); void netdev_adjacent_change_commit(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev); void netdev_adjacent_change_abort(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev); void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); void *netdev_lower_dev_get_private(struct net_device *dev, struct net_device *lower_dev); void netdev_lower_state_changed(struct net_device *lower_dev, void *lower_state_info); /* RSS keys are 40 or 52 bytes long */ #define NETDEV_RSS_KEY_LEN 52 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; void netdev_rss_key_fill(void *buffer, size_t len); int skb_checksum_help(struct sk_buff *skb); int skb_crc32c_csum_help(struct sk_buff *skb); int skb_csum_hwoffload_help(struct sk_buff *skb, const netdev_features_t features); struct sk_buff *__skb_gso_segment(struct sk_buff *skb, netdev_features_t features, bool tx_path); struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, netdev_features_t features); struct netdev_bonding_info { ifslave slave; ifbond master; }; struct netdev_notifier_bonding_info { struct netdev_notifier_info info; /* must be first */ struct netdev_bonding_info bonding_info; }; void netdev_bonding_info_change(struct net_device *dev, struct netdev_bonding_info *bonding_info); #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); #else static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data) { } #endif static inline struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) { return __skb_gso_segment(skb, features, true); } __be16 skb_network_protocol(struct sk_buff *skb, int *depth); static inline bool can_checksum_protocol(netdev_features_t features, __be16 protocol) { if (protocol == htons(ETH_P_FCOE)) return !!(features & NETIF_F_FCOE_CRC); /* Assume this is an IP checksum (not SCTP CRC) */ if (features & NETIF_F_HW_CSUM) { /* Can checksum everything */ return true; } switch (protocol) { case htons(ETH_P_IP): return !!(features & NETIF_F_IP_CSUM); case htons(ETH_P_IPV6): return !!(features & NETIF_F_IPV6_CSUM); default: return false; } } #ifdef CONFIG_BUG void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); #else static inline void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) { } #endif /* rx skb timestamps */ void net_enable_timestamp(void); void net_disable_timestamp(void); #ifdef CONFIG_PROC_FS int __init dev_proc_init(void); #else #define dev_proc_init() 0 #endif static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, struct sk_buff *skb, struct net_device *dev, bool more) { __this_cpu_write(softnet_data.xmit.more, more); return ops->ndo_start_xmit(skb, dev); } static inline bool netdev_xmit_more(void) { return __this_cpu_read(softnet_data.xmit.more); } static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq, bool more) { const struct net_device_ops *ops = dev->netdev_ops; netdev_tx_t rc; rc = __netdev_start_xmit(ops, skb, dev, more); if (rc == NETDEV_TX_OK) txq_trans_update(txq); return rc; } int netdev_class_create_file_ns(const struct class_attribute *class_attr, const void *ns); void netdev_class_remove_file_ns(const struct class_attribute *class_attr, const void *ns); extern const struct kobj_ns_type_operations net_ns_type_operations; const char *netdev_drivername(const struct net_device *dev); void linkwatch_run_queue(void); static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, netdev_features_t f2) { if ((f1 ^ f2) & NETIF_F_HW_CSUM) { if (f1 & NETIF_F_HW_CSUM) f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); else f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); } return f1 & f2; } static inline netdev_features_t netdev_get_wanted_features( struct net_device *dev) { return (dev->features & ~dev->hw_features) | dev->wanted_features; } netdev_features_t netdev_increment_features(netdev_features_t all, netdev_features_t one, netdev_features_t mask); /* Allow TSO being used on stacked device : * Performing the GSO segmentation before last device * is a performance improvement. */ static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, netdev_features_t mask) { return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); } int __netdev_update_features(struct net_device *dev); void netdev_update_features(struct net_device *dev); void netdev_change_features(struct net_device *dev); void netif_stacked_transfer_operstate(const struct net_device *rootdev, struct net_device *dev); netdev_features_t passthru_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features); netdev_features_t netif_skb_features(struct sk_buff *skb); static inline bool net_gso_ok(netdev_features_t features, int gso_type) { netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; /* check flags correspondence */ BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); return (features & feature) == feature; } static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) { return net_gso_ok(features, skb_shinfo(skb)->gso_type) && (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); } static inline bool netif_needs_gso(struct sk_buff *skb, netdev_features_t features) { return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && (skb->ip_summed != CHECKSUM_UNNECESSARY))); } static inline void netif_set_gso_max_size(struct net_device *dev, unsigned int size) { dev->gso_max_size = size; } static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, int pulled_hlen, u16 mac_offset, int mac_len) { skb->protocol = protocol; skb->encapsulation = 1; skb_push(skb, pulled_hlen); skb_reset_transport_header(skb); skb->mac_header = mac_offset; skb->network_header = skb->mac_header + mac_len; skb->mac_len = mac_len; } static inline bool netif_is_macsec(const struct net_device *dev) { return dev->priv_flags & IFF_MACSEC; } static inline bool netif_is_macvlan(const struct net_device *dev) { return dev->priv_flags & IFF_MACVLAN; } static inline bool netif_is_macvlan_port(const struct net_device *dev) { return dev->priv_flags & IFF_MACVLAN_PORT; } static inline bool netif_is_bond_master(const struct net_device *dev) { return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; } static inline bool netif_is_bond_slave(const struct net_device *dev) { return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; } static inline bool netif_supports_nofcs(struct net_device *dev) { return dev->priv_flags & IFF_SUPP_NOFCS; } static inline bool netif_has_l3_rx_handler(const struct net_device *dev) { return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; } static inline bool netif_is_l3_master(const struct net_device *dev) { return dev->priv_flags & IFF_L3MDEV_MASTER; } static inline bool netif_is_l3_slave(const struct net_device *dev) { return dev->priv_flags & IFF_L3MDEV_SLAVE; } static inline bool netif_is_bridge_master(const struct net_device *dev) { return dev->priv_flags & IFF_EBRIDGE; } static inline bool netif_is_bridge_port(const struct net_device *dev) { return dev->priv_flags & IFF_BRIDGE_PORT; } static inline bool netif_is_ovs_master(const struct net_device *dev) { return dev->priv_flags & IFF_OPENVSWITCH; } static inline bool netif_is_ovs_port(const struct net_device *dev) { return dev->priv_flags & IFF_OVS_DATAPATH; } static inline bool netif_is_any_bridge_port(const struct net_device *dev) { return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); } static inline bool netif_is_team_master(const struct net_device *dev) { return dev->priv_flags & IFF_TEAM; } static inline bool netif_is_team_port(const struct net_device *dev) { return dev->priv_flags & IFF_TEAM_PORT; } static inline bool netif_is_lag_master(const struct net_device *dev) { return netif_is_bond_master(dev) || netif_is_team_master(dev); } static inline bool netif_is_lag_port(const struct net_device *dev) { return netif_is_bond_slave(dev) || netif_is_team_port(dev); } static inline bool netif_is_rxfh_configured(const struct net_device *dev) { return dev->priv_flags & IFF_RXFH_CONFIGURED; } static inline bool netif_is_failover(const struct net_device *dev) { return dev->priv_flags & IFF_FAILOVER; } static inline bool netif_is_failover_slave(const struct net_device *dev) { return dev->priv_flags & IFF_FAILOVER_SLAVE; } /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ static inline void netif_keep_dst(struct net_device *dev) { dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); } /* return true if dev can't cope with mtu frames that need vlan tag insertion */ static inline bool netif_reduces_vlan_mtu(struct net_device *dev) { /* TODO: reserve and use an additional IFF bit, if we get more users */ return dev->priv_flags & IFF_MACSEC; } extern struct pernet_operations __net_initdata loopback_net_ops; /* Logging, debugging and troubleshooting/diagnostic helpers. */ /* netdev_printk helpers, similar to dev_printk */ static inline const char *netdev_name(const struct net_device *dev) { if (!dev->name[0] || strchr(dev->name, '%')) return "(unnamed net_device)"; return dev->name; } static inline bool netdev_unregistering(const struct net_device *dev) { return dev->reg_state == NETREG_UNREGISTERING; } static inline const char *netdev_reg_state(const struct net_device *dev) { switch (dev->reg_state) { case NETREG_UNINITIALIZED: return " (uninitialized)"; case NETREG_REGISTERED: return ""; case NETREG_UNREGISTERING: return " (unregistering)"; case NETREG_UNREGISTERED: return " (unregistered)"; case NETREG_RELEASED: return " (released)"; case NETREG_DUMMY: return " (dummy)"; } WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); return " (unknown)"; } __printf(3, 4) __cold void netdev_printk(const char *level, const struct net_device *dev, const char *format, ...); __printf(2, 3) __cold void netdev_emerg(const struct net_device *dev, const char *format, ...); __printf(2, 3) __cold void netdev_alert(const struct net_device *dev, const char *format, ...); __printf(2, 3) __cold void netdev_crit(const struct net_device *dev, const char *format, ...); __printf(2, 3) __cold void netdev_err(const struct net_device *dev, const char *format, ...); __printf(2, 3) __cold void netdev_warn(const struct net_device *dev, const char *format, ...); __printf(2, 3) __cold void netdev_notice(const struct net_device *dev, const char *format, ...); __printf(2, 3) __cold void netdev_info(const struct net_device *dev, const char *format, ...); #define netdev_level_once(level, dev, fmt, ...) \ do { \ static bool __print_once __read_mostly; \ \ if (!__print_once) { \ __print_once = true; \ netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ } \ } while (0) #define netdev_emerg_once(dev, fmt, ...) \ netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) #define netdev_alert_once(dev, fmt, ...) \ netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) #define netdev_crit_once(dev, fmt, ...) \ netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) #define netdev_err_once(dev, fmt, ...) \ netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) #define netdev_warn_once(dev, fmt, ...) \ netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) #define netdev_notice_once(dev, fmt, ...) \ netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) #define netdev_info_once(dev, fmt, ...) \ netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) #define MODULE_ALIAS_NETDEV(device) \ MODULE_ALIAS("netdev-" device) #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define netdev_dbg(__dev, format, args...) \ do { \ dynamic_netdev_dbg(__dev, format, ##args); \ } while (0) #elif defined(DEBUG) #define netdev_dbg(__dev, format, args...) \ netdev_printk(KERN_DEBUG, __dev, format, ##args) #else #define netdev_dbg(__dev, format, args...) \ ({ \ if (0) \ netdev_printk(KERN_DEBUG, __dev, format, ##args); \ }) #endif #if defined(VERBOSE_DEBUG) #define netdev_vdbg netdev_dbg #else #define netdev_vdbg(dev, format, args...) \ ({ \ if (0) \ netdev_printk(KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif /* * netdev_WARN() acts like dev_printk(), but with the key difference * of using a WARN/WARN_ON to get the message out, including the * file/line information and a backtrace. */ #define netdev_WARN(dev, format, args...) \ WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ netdev_reg_state(dev), ##args) #define netdev_WARN_ONCE(dev, format, args...) \ WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ netdev_reg_state(dev), ##args) /* netif printk helpers, similar to netdev_printk */ #define netif_printk(priv, type, level, dev, fmt, args...) \ do { \ if (netif_msg_##type(priv)) \ netdev_printk(level, (dev), fmt, ##args); \ } while (0) #define netif_level(level, priv, type, dev, fmt, args...) \ do { \ if (netif_msg_##type(priv)) \ netdev_##level(dev, fmt, ##args); \ } while (0) #define netif_emerg(priv, type, dev, fmt, args...) \ netif_level(emerg, priv, type, dev, fmt, ##args) #define netif_alert(priv, type, dev, fmt, args...) \ netif_level(alert, priv, type, dev, fmt, ##args) #define netif_crit(priv, type, dev, fmt, args...) \ netif_level(crit, priv, type, dev, fmt, ##args) #define netif_err(priv, type, dev, fmt, args...) \ netif_level(err, priv, type, dev, fmt, ##args) #define netif_warn(priv, type, dev, fmt, args...) \ netif_level(warn, priv, type, dev, fmt, ##args) #define netif_notice(priv, type, dev, fmt, args...) \ netif_level(notice, priv, type, dev, fmt, ##args) #define netif_info(priv, type, dev, fmt, args...) \ netif_level(info, priv, type, dev, fmt, ##args) #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define netif_dbg(priv, type, netdev, format, args...) \ do { \ if (netif_msg_##type(priv)) \ dynamic_netdev_dbg(netdev, format, ##args); \ } while (0) #elif defined(DEBUG) #define netif_dbg(priv, type, dev, format, args...) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) #else #define netif_dbg(priv, type, dev, format, args...) \ ({ \ if (0) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif /* if @cond then downgrade to debug, else print at @level */ #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ do { \ if (cond) \ netif_dbg(priv, type, netdev, fmt, ##args); \ else \ netif_ ## level(priv, type, netdev, fmt, ##args); \ } while (0) #if defined(VERBOSE_DEBUG) #define netif_vdbg netif_dbg #else #define netif_vdbg(priv, type, dev, format, args...) \ ({ \ if (0) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif /* * The list of packet types we will receive (as opposed to discard) * and the routines to invoke. * * Why 16. Because with 16 the only overlap we get on a hash of the * low nibble of the protocol value is RARP/SNAP/X.25. * * 0800 IP * 0001 802.3 * 0002 AX.25 * 0004 802.2 * 8035 RARP * 0005 SNAP * 0805 X.25 * 0806 ARP * 8137 IPX * 0009 Localtalk * 86DD IPv6 */ #define PTYPE_HASH_SIZE (16) #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) extern struct net_device *blackhole_netdev; /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) #define DEV_STATS_ADD(DEV, FIELD, VAL) \ atomic_long_add((VAL), &(DEV)->stats.__##FIELD) #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD) #endif /* _LINUX_NETDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_RWSEM_H #define _LINUX_PERCPU_RWSEM_H #include <linux/atomic.h> #include <linux/percpu.h> #include <linux/rcuwait.h> #include <linux/wait.h> #include <linux/rcu_sync.h> #include <linux/lockdep.h> struct percpu_rw_semaphore { struct rcu_sync rss; unsigned int __percpu *read_count; struct rcuwait writer; wait_queue_head_t waiters; atomic_t block; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; #ifdef CONFIG_DEBUG_LOCK_ALLOC #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname }, #else #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) #endif #define __DEFINE_PERCPU_RWSEM(name, is_static) \ static DEFINE_PER_CPU(unsigned int, __percpu_rwsem_rc_##name); \ is_static struct percpu_rw_semaphore name = { \ .rss = __RCU_SYNC_INITIALIZER(name.rss), \ .read_count = &__percpu_rwsem_rc_##name, \ .writer = __RCUWAIT_INITIALIZER(name.writer), \ .waiters = __WAIT_QUEUE_HEAD_INITIALIZER(name.waiters), \ .block = ATOMIC_INIT(0), \ __PERCPU_RWSEM_DEP_MAP_INIT(name) \ } #define DEFINE_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, /* not static */) #define DEFINE_STATIC_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, static) extern bool __percpu_down_read(struct percpu_rw_semaphore *, bool); static inline void percpu_down_read(struct percpu_rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); preempt_disable(); /* * We are in an RCU-sched read-side critical section, so the writer * cannot both change sem->state from readers_fast and start checking * counters while we are here. So if we see !sem->state, we know that * the writer won't be checking until we're past the preempt_enable() * and that once the synchronize_rcu() is done, the writer will see * anything we did within this RCU-sched read-size critical section. */ if (likely(rcu_sync_is_idle(&sem->rss))) this_cpu_inc(*sem->read_count); else __percpu_down_read(sem, false); /* Unconditional memory barrier */ /* * The preempt_enable() prevents the compiler from * bleeding the critical section out. */ preempt_enable(); } static inline bool percpu_down_read_trylock(struct percpu_rw_semaphore *sem) { bool ret = true; preempt_disable(); /* * Same as in percpu_down_read(). */ if (likely(rcu_sync_is_idle(&sem->rss))) this_cpu_inc(*sem->read_count); else ret = __percpu_down_read(sem, true); /* Unconditional memory barrier */ preempt_enable(); /* * The barrier() from preempt_enable() prevents the compiler from * bleeding the critical section out. */ if (ret) rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); return ret; } static inline void percpu_up_read(struct percpu_rw_semaphore *sem) { rwsem_release(&sem->dep_map, _RET_IP_); preempt_disable(); /* * Same as in percpu_down_read(). */ if (likely(rcu_sync_is_idle(&sem->rss))) { this_cpu_dec(*sem->read_count); } else { /* * slowpath; reader will only ever wake a single blocked * writer. */ smp_mb(); /* B matches C */ /* * In other words, if they see our decrement (presumably to * aggregate zero, as that is the only time it matters) they * will also see our critical section. */ this_cpu_dec(*sem->read_count); rcuwait_wake_up(&sem->writer); } preempt_enable(); } extern void percpu_down_write(struct percpu_rw_semaphore *); extern void percpu_up_write(struct percpu_rw_semaphore *); extern int __percpu_init_rwsem(struct percpu_rw_semaphore *, const char *, struct lock_class_key *); extern void percpu_free_rwsem(struct percpu_rw_semaphore *); #define percpu_init_rwsem(sem) \ ({ \ static struct lock_class_key rwsem_key; \ __percpu_init_rwsem(sem, #sem, &rwsem_key); \ }) #define percpu_rwsem_is_held(sem) lockdep_is_held(sem) #define percpu_rwsem_assert_held(sem) lockdep_assert_held(sem) static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem, bool read, unsigned long ip) { lock_release(&sem->dep_map, ip); } static inline void percpu_rwsem_acquire(struct percpu_rw_semaphore *sem, bool read, unsigned long ip) { lock_acquire(&sem->dep_map, 0, 1, read, 1, NULL, ip); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* delayacct.h - per-task delay accounting * * Copyright (C) Shailabh Nagar, IBM Corp. 2006 */ #ifndef _LINUX_DELAYACCT_H #define _LINUX_DELAYACCT_H #include <uapi/linux/taskstats.h> /* * Per-task flags relevant to delay accounting * maintained privately to avoid exhausting similar flags in sched.h:PF_* * Used to set current->delays->flags */ #define DELAYACCT_PF_SWAPIN 0x00000001 /* I am doing a swapin */ #define DELAYACCT_PF_BLKIO 0x00000002 /* I am waiting on IO */ #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info { raw_spinlock_t lock; unsigned int flags; /* Private per-task flags */ /* For each stat XXX, add following, aligned appropriately * * struct timespec XXX_start, XXX_end; * u64 XXX_delay; * u32 XXX_count; * * Atomicity of updates to XXX_delay, XXX_count protected by * single lock above (split into XXX_lock if contention is an issue). */ /* * XXX_count is incremented on every XXX operation, the delay * associated with the operation is added to XXX_delay. * XXX_delay contains the accumulated delay time in nanoseconds. */ u64 blkio_start; /* Shared by blkio, swapin */ u64 blkio_delay; /* wait for sync block io completion */ u64 swapin_delay; /* wait for swapin block io completion */ u32 blkio_count; /* total count of the number of sync block */ /* io operations performed */ u32 swapin_count; /* total count of the number of swapin block */ /* io operations performed */ u64 freepages_start; u64 freepages_delay; /* wait for memory reclaim */ u64 thrashing_start; u64 thrashing_delay; /* wait for thrashing page */ u32 freepages_count; /* total count of memory reclaim */ u32 thrashing_count; /* total count of thrash waits */ }; #endif #include <linux/sched.h> #include <linux/slab.h> #ifdef CONFIG_TASK_DELAY_ACCT extern int delayacct_on; /* Delay accounting turned on/off */ extern struct kmem_cache *delayacct_cache; extern void delayacct_init(void); extern void __delayacct_tsk_init(struct task_struct *); extern void __delayacct_tsk_exit(struct task_struct *); extern void __delayacct_blkio_start(void); extern void __delayacct_blkio_end(struct task_struct *); extern int __delayacct_add_tsk(struct taskstats *, struct task_struct *); extern __u64 __delayacct_blkio_ticks(struct task_struct *); extern void __delayacct_freepages_start(void); extern void __delayacct_freepages_end(void); extern void __delayacct_thrashing_start(void); extern void __delayacct_thrashing_end(void); static inline int delayacct_is_task_waiting_on_io(struct task_struct *p) { if (p->delays) return (p->delays->flags & DELAYACCT_PF_BLKIO); else return 0; } static inline void delayacct_set_flag(int flag) { if (current->delays) current->delays->flags |= flag; } static inline void delayacct_clear_flag(int flag) { if (current->delays) current->delays->flags &= ~flag; } static inline void delayacct_tsk_init(struct task_struct *tsk) { /* reinitialize in case parent's non-null pointer was dup'ed*/ tsk->delays = NULL; if (delayacct_on) __delayacct_tsk_init(tsk); } /* Free tsk->delays. Called from bad fork and __put_task_struct * where there's no risk of tsk->delays being accessed elsewhere */ static inline void delayacct_tsk_free(struct task_struct *tsk) { if (tsk->delays) kmem_cache_free(delayacct_cache, tsk->delays); tsk->delays = NULL; } static inline void delayacct_blkio_start(void) { delayacct_set_flag(DELAYACCT_PF_BLKIO); if (current->delays) __delayacct_blkio_start(); } static inline void delayacct_blkio_end(struct task_struct *p) { if (p->delays) __delayacct_blkio_end(p); delayacct_clear_flag(DELAYACCT_PF_BLKIO); } static inline int delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk) { if (!delayacct_on || !tsk->delays) return 0; return __delayacct_add_tsk(d, tsk); } static inline __u64 delayacct_blkio_ticks(struct task_struct *tsk) { if (tsk->delays) return __delayacct_blkio_ticks(tsk); return 0; } static inline void delayacct_freepages_start(void) { if (current->delays) __delayacct_freepages_start(); } static inline void delayacct_freepages_end(void) { if (current->delays) __delayacct_freepages_end(); } static inline void delayacct_thrashing_start(void) { if (current->delays) __delayacct_thrashing_start(); } static inline void delayacct_thrashing_end(void) { if (current->delays) __delayacct_thrashing_end(); } #else static inline void delayacct_set_flag(int flag) {} static inline void delayacct_clear_flag(int flag) {} static inline void delayacct_init(void) {} static inline void delayacct_tsk_init(struct task_struct *tsk) {} static inline void delayacct_tsk_free(struct task_struct *tsk) {} static inline void delayacct_blkio_start(void) {} static inline void delayacct_blkio_end(struct task_struct *p) {} static inline int delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk) { return 0; } static inline __u64 delayacct_blkio_ticks(struct task_struct *tsk) { return 0; } static inline int delayacct_is_task_waiting_on_io(struct task_struct *p) { return 0; } static inline void delayacct_freepages_start(void) {} static inline void delayacct_freepages_end(void) {} static inline void delayacct_thrashing_start(void) {} static inline void delayacct_thrashing_end(void) {} #endif /* CONFIG_TASK_DELAY_ACCT */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGEMAP_H #define _LINUX_PAGEMAP_H /* * Copyright 1995 Linus Torvalds */ #include <linux/mm.h> #include <linux/fs.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/compiler.h> #include <linux/uaccess.h> #include <linux/gfp.h> #include <linux/bitops.h> #include <linux/hardirq.h> /* for in_interrupt() */ #include <linux/hugetlb_inline.h> struct pagevec; /* * Bits in mapping->flags. */ enum mapping_flags { AS_EIO = 0, /* IO error on async write */ AS_ENOSPC = 1, /* ENOSPC on async write */ AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ AS_EXITING = 4, /* final truncate in progress */ /* writeback related tags are not used */ AS_NO_WRITEBACK_TAGS = 5, AS_THP_SUPPORT = 6, /* THPs supported */ }; /** * mapping_set_error - record a writeback error in the address_space * @mapping: the mapping in which an error should be set * @error: the error to set in the mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * mapping_set_error to record the error in the mapping so that it can be * reported when the application calls fsync(2). */ static inline void mapping_set_error(struct address_space *mapping, int error) { if (likely(!error)) return; /* Record in wb_err for checkers using errseq_t based tracking */ __filemap_set_wb_err(mapping, error); /* Record it in superblock */ if (mapping->host) errseq_set(&mapping->host->i_sb->s_wb_err, error); /* Record it in flags for now, for legacy callers */ if (error == -ENOSPC) set_bit(AS_ENOSPC, &mapping->flags); else set_bit(AS_EIO, &mapping->flags); } static inline void mapping_set_unevictable(struct address_space *mapping) { set_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_clear_unevictable(struct address_space *mapping) { clear_bit(AS_UNEVICTABLE, &mapping->flags); } static inline bool mapping_unevictable(struct address_space *mapping) { return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); } static inline void mapping_set_exiting(struct address_space *mapping) { set_bit(AS_EXITING, &mapping->flags); } static inline int mapping_exiting(struct address_space *mapping) { return test_bit(AS_EXITING, &mapping->flags); } static inline void mapping_set_no_writeback_tags(struct address_space *mapping) { set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline int mapping_use_writeback_tags(struct address_space *mapping) { return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); } static inline gfp_t mapping_gfp_mask(struct address_space * mapping) { return mapping->gfp_mask; } /* Restricts the given gfp_mask to what the mapping allows. */ static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, gfp_t gfp_mask) { return mapping_gfp_mask(mapping) & gfp_mask; } /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... */ static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) { m->gfp_mask = mask; } static inline bool mapping_thp_support(struct address_space *mapping) { return test_bit(AS_THP_SUPPORT, &mapping->flags); } static inline int filemap_nr_thps(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS return atomic_read(&mapping->nr_thps); #else return 0; #endif } static inline void filemap_nr_thps_inc(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_inc(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } static inline void filemap_nr_thps_dec(struct address_space *mapping) { #ifdef CONFIG_READ_ONLY_THP_FOR_FS if (!mapping_thp_support(mapping)) atomic_dec(&mapping->nr_thps); #else WARN_ON_ONCE(1); #endif } void release_pages(struct page **pages, int nr); /* * speculatively take a reference to a page. * If the page is free (_refcount == 0), then _refcount is untouched, and 0 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. * * This function must be called inside the same rcu_read_lock() section as has * been used to lookup the page in the pagecache radix-tree (or page table): * this allows allocators to use a synchronize_rcu() to stabilize _refcount. * * Unless an RCU grace period has passed, the count of all pages coming out * of the allocator must be considered unstable. page_count may return higher * than expected, and put_page must be able to do the right thing when the * page has been finished with, no matter what it is subsequently allocated * for (because put_page is what is used here to drop an invalid speculative * reference). * * This is the interesting part of the lockless pagecache (and lockless * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) * has the following pattern: * 1. find page in radix tree * 2. conditionally increment refcount * 3. check the page is still in pagecache (if no, goto 1) * * Remove-side that cares about stability of _refcount (eg. reclaim) has the * following (with the i_pages lock held): * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) * B. remove page from pagecache * C. free the page * * There are 2 critical interleavings that matter: * - 2 runs before A: in this case, A sees elevated refcount and bails out * - A runs before 2: in this case, 2 sees zero refcount and retries; * subsequently, B will complete and 1 will find no page, causing the * lookup to return NULL. * * It is possible that between 1 and 2, the page is removed then the exact same * page is inserted into the same position in pagecache. That's OK: the * old find_get_page using a lock could equally have run before or after * such a re-insertion, depending on order that locks are granted. * * Lookups racing against pagecache insertion isn't a big problem: either 1 * will find the page or it will not. Likewise, the old find_get_page could run * either before the insertion or afterwards, depending on timing. */ static inline int __page_cache_add_speculative(struct page *page, int count) { #ifdef CONFIG_TINY_RCU # ifdef CONFIG_PREEMPT_COUNT VM_BUG_ON(!in_atomic() && !irqs_disabled()); # endif /* * Preempt must be disabled here - we rely on rcu_read_lock doing * this for us. * * Pagecache won't be truncated from interrupt context, so if we have * found a page in the radix tree here, we have pinned its refcount by * disabling preempt, and hence no need for the "speculative get" that * SMP requires. */ VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, count); #else if (unlikely(!page_ref_add_unless(page, count, 0))) { /* * Either the page has been freed, or will be freed. * In either case, retry here and the caller should * do the right thing (see comments above). */ return 0; } #endif VM_BUG_ON_PAGE(PageTail(page), page); return 1; } static inline int page_cache_get_speculative(struct page *page) { return __page_cache_add_speculative(page, 1); } static inline int page_cache_add_speculative(struct page *page, int count) { return __page_cache_add_speculative(page, count); } /** * attach_page_private - Attach private data to a page. * @page: Page to attach data to. * @data: Data to attach to page. * * Attaching private data to a page increments the page's reference count. * The data must be detached before the page will be freed. */ static inline void attach_page_private(struct page *page, void *data) { get_page(page); set_page_private(page, (unsigned long)data); SetPagePrivate(page); } /** * detach_page_private - Detach private data from a page. * @page: Page to detach data from. * * Removes the data that was previously attached to the page and decrements * the refcount on the page. * * Return: Data that was attached to the page. */ static inline void *detach_page_private(struct page *page) { void *data = (void *)page_private(page); if (!PagePrivate(page)) return NULL; ClearPagePrivate(page); set_page_private(page, 0); put_page(page); return data; } #ifdef CONFIG_NUMA extern struct page *__page_cache_alloc(gfp_t gfp); #else static inline struct page *__page_cache_alloc(gfp_t gfp) { return alloc_pages(gfp, 0); } #endif static inline struct page *page_cache_alloc(struct address_space *x) { return __page_cache_alloc(mapping_gfp_mask(x)); } static inline gfp_t readahead_gfp_mask(struct address_space *x) { return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; } typedef int filler_t(void *, struct page *); pgoff_t page_cache_next_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); pgoff_t page_cache_prev_miss(struct address_space *mapping, pgoff_t index, unsigned long max_scan); #define FGP_ACCESSED 0x00000001 #define FGP_LOCK 0x00000002 #define FGP_CREAT 0x00000004 #define FGP_WRITE 0x00000008 #define FGP_NOFS 0x00000010 #define FGP_NOWAIT 0x00000020 #define FGP_FOR_MMAP 0x00000040 #define FGP_HEAD 0x00000080 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, int fgp_flags, gfp_t cache_gfp_mask); /** * find_get_page - find and get a page reference * @mapping: the address_space to search * @offset: the page index * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned with an increased refcount. * * Otherwise, %NULL is returned. */ static inline struct page *find_get_page(struct address_space *mapping, pgoff_t offset) { return pagecache_get_page(mapping, offset, 0, 0); } static inline struct page *find_get_page_flags(struct address_space *mapping, pgoff_t offset, int fgp_flags) { return pagecache_get_page(mapping, offset, fgp_flags, 0); } /** * find_lock_page - locate, pin and lock a pagecache page * @mapping: the address_space to search * @index: the page index * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, it is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page or %NULL if there is no page in the cache for this * index. */ static inline struct page *find_lock_page(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK, 0); } /** * find_lock_head - Locate, pin and lock a pagecache page. * @mapping: The address_space to search. * @index: The page index. * * Looks up the page cache entry at @mapping & @index. If there is a * page cache page, its head page is returned locked and with an increased * refcount. * * Context: May sleep. * Return: A struct page which is !PageTail, or %NULL if there is no page * in the cache for this index. */ static inline struct page *find_lock_head(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); } /** * find_or_create_page - locate or add a pagecache page * @mapping: the page's address_space * @index: the page's index into the mapping * @gfp_mask: page allocation mode * * Looks up the page cache slot at @mapping & @offset. If there is a * page cache page, it is returned locked and with an increased * refcount. * * If the page is not present, a new page is allocated using @gfp_mask * and added to the page cache and the VM's LRU list. The page is * returned locked and with an increased refcount. * * On memory exhaustion, %NULL is returned. * * find_or_create_page() may sleep, even if @gfp_flags specifies an * atomic allocation! */ static inline struct page *find_or_create_page(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_ACCESSED|FGP_CREAT, gfp_mask); } /** * grab_cache_page_nowait - returns locked page at given index in given cache * @mapping: target address_space * @index: the page index * * Same as grab_cache_page(), but do not wait if the page is unavailable. * This is intended for speculative data generators, where the data can * be regenerated if the page couldn't be grabbed. This routine should * be safe to call while holding the lock for another page. * * Clear __GFP_FS when allocating the page to avoid recursion into the fs * and deadlock against the caller's locked page. */ static inline struct page *grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) { return pagecache_get_page(mapping, index, FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, mapping_gfp_mask(mapping)); } /* Does this page contain this index? */ static inline bool thp_contains(struct page *head, pgoff_t index) { /* HugeTLBfs indexes the page cache in units of hpage_size */ if (PageHuge(head)) return head->index == index; return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); } /* * Given the page we found in the page cache, return the page corresponding * to this index in the file */ static inline struct page *find_subpage(struct page *head, pgoff_t index) { /* HugeTLBfs wants the head page regardless */ if (PageHuge(head)) return head; return head + (index & (thp_nr_pages(head) - 1)); } unsigned find_get_entries(struct address_space *mapping, pgoff_t start, unsigned int nr_entries, struct page **entries, pgoff_t *indices); unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, pgoff_t end, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages(struct address_space *mapping, pgoff_t *start, unsigned int nr_pages, struct page **pages) { return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, pages); } unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, unsigned int nr_pages, struct page **pages); unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned int nr_pages, struct page **pages); static inline unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, struct page **pages) { return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, nr_pages, pages); } struct page *grab_cache_page_write_begin(struct address_space *mapping, pgoff_t index, unsigned flags); /* * Returns locked page at given index in given cache, creating it if needed. */ static inline struct page *grab_cache_page(struct address_space *mapping, pgoff_t index) { return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); } extern struct page * read_cache_page(struct address_space *mapping, pgoff_t index, filler_t *filler, void *data); extern struct page * read_cache_page_gfp(struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern int read_cache_pages(struct address_space *mapping, struct list_head *pages, filler_t *filler, void *data); static inline struct page *read_mapping_page(struct address_space *mapping, pgoff_t index, void *data) { return read_cache_page(mapping, index, NULL, data); } /* * Get index of the page within radix-tree (but not for hugetlb pages). * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_index(struct page *page) { pgoff_t pgoff; if (likely(!PageTransTail(page))) return page->index; /* * We don't initialize ->index for tail pages: calculate based on * head page */ pgoff = compound_head(page)->index; pgoff += page - compound_head(page); return pgoff; } extern pgoff_t hugetlb_basepage_index(struct page *page); /* * Get the offset in PAGE_SIZE (even for hugetlb pages). * (TODO: hugetlb pages should have ->index in PAGE_SIZE) */ static inline pgoff_t page_to_pgoff(struct page *page) { if (unlikely(PageHuge(page))) return hugetlb_basepage_index(page); return page_to_index(page); } /* * Return byte-offset into filesystem object for page. */ static inline loff_t page_offset(struct page *page) { return ((loff_t)page->index) << PAGE_SHIFT; } static inline loff_t page_file_offset(struct page *page) { return ((loff_t)page_index(page)) << PAGE_SHIFT; } extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address); static inline pgoff_t linear_page_index(struct vm_area_struct *vma, unsigned long address) { pgoff_t pgoff; if (unlikely(is_vm_hugetlb_page(vma))) return linear_hugepage_index(vma, address); pgoff = (address - vma->vm_start) >> PAGE_SHIFT; pgoff += vma->vm_pgoff; return pgoff; } struct wait_page_key { struct page *page; int bit_nr; int page_match; }; struct wait_page_queue { struct page *page; int bit_nr; wait_queue_entry_t wait; }; static inline bool wake_page_match(struct wait_page_queue *wait_page, struct wait_page_key *key) { if (wait_page->page != key->page) return false; key->page_match = 1; if (wait_page->bit_nr != key->bit_nr) return false; return true; } extern void __lock_page(struct page *page); extern int __lock_page_killable(struct page *page); extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags); extern void unlock_page(struct page *page); /* * Return true if the page was successfully locked */ static inline int trylock_page(struct page *page) { page = compound_head(page); return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); } /* * lock_page may only be called if we have the page's inode pinned. */ static inline void lock_page(struct page *page) { might_sleep(); if (!trylock_page(page)) __lock_page(page); } /* * lock_page_killable is like lock_page but can be interrupted by fatal * signals. It returns 0 if it locked the page and -EINTR if it was * killed while waiting. */ static inline int lock_page_killable(struct page *page) { might_sleep(); if (!trylock_page(page)) return __lock_page_killable(page); return 0; } /* * lock_page_async - Lock the page, unless this would block. If the page * is already locked, then queue a callback when the page becomes unlocked. * This callback can then retry the operation. * * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page * was already locked and the callback defined in 'wait' was queued. */ static inline int lock_page_async(struct page *page, struct wait_page_queue *wait) { if (!trylock_page(page)) return __lock_page_async(page, wait); return 0; } /* * lock_page_or_retry - Lock the page, unless this would block and the * caller indicated that it can handle a retry. * * Return value and mmap_lock implications depend on flags; see * __lock_page_or_retry(). */ static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, unsigned int flags) { might_sleep(); return trylock_page(page) || __lock_page_or_retry(page, mm, flags); } /* * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., * and should not be used directly. */ extern void wait_on_page_bit(struct page *page, int bit_nr); extern int wait_on_page_bit_killable(struct page *page, int bit_nr); /* * Wait for a page to be unlocked. * * This must be called with the caller "holding" the page, * ie with increased "page->count" so that the page won't * go away during the wait.. */ static inline void wait_on_page_locked(struct page *page) { if (PageLocked(page)) wait_on_page_bit(compound_head(page), PG_locked); } static inline int wait_on_page_locked_killable(struct page *page) { if (!PageLocked(page)) return 0; return wait_on_page_bit_killable(compound_head(page), PG_locked); } extern void put_and_wait_on_page_locked(struct page *page); void wait_on_page_writeback(struct page *page); extern void end_page_writeback(struct page *page); void wait_for_stable_page(struct page *page); void page_endio(struct page *page, bool is_write, int err); /* * Add an arbitrary waiter to a page's wait queue */ extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); /* * Fault everything in given userspace address range in. */ static inline int fault_in_pages_writeable(char __user *uaddr, int size) { char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; /* * Writing zeroes into userspace here is OK, because we know that if * the zero gets there, we'll be overwriting it. */ do { if (unlikely(__put_user(0, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) return __put_user(0, end); return 0; } static inline int fault_in_pages_readable(const char __user *uaddr, int size) { volatile char c; const char __user *end = uaddr + size - 1; if (unlikely(size == 0)) return 0; if (unlikely(uaddr > end)) return -EFAULT; do { if (unlikely(__get_user(c, uaddr) != 0)) return -EFAULT; uaddr += PAGE_SIZE; } while (uaddr <= end); /* Check whether the range spilled into the next page. */ if (((unsigned long)uaddr & PAGE_MASK) == ((unsigned long)end & PAGE_MASK)) { return __get_user(c, end); } (void)c; return 0; } int add_to_page_cache_locked(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); int add_to_page_cache_lru(struct page *page, struct address_space *mapping, pgoff_t index, gfp_t gfp_mask); extern void delete_from_page_cache(struct page *page); extern void __delete_from_page_cache(struct page *page, void *shadow); int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); void delete_from_page_cache_batch(struct address_space *mapping, struct pagevec *pvec); /* * Like add_to_page_cache_locked, but used to add newly allocated pages: * the page is new, so we can just run __SetPageLocked() against it. */ static inline int add_to_page_cache(struct page *page, struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) { int error; __SetPageLocked(page); error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); if (unlikely(error)) __ClearPageLocked(page); return error; } /** * struct readahead_control - Describes a readahead request. * * A readahead request is for consecutive pages. Filesystems which * implement the ->readahead method should call readahead_page() or * readahead_page_batch() in a loop and attempt to start I/O against * each page in the request. * * Most of the fields in this struct are private and should be accessed * by the functions below. * * @file: The file, used primarily by network filesystems for authentication. * May be NULL if invoked internally by the filesystem. * @mapping: Readahead this filesystem object. */ struct readahead_control { struct file *file; struct address_space *mapping; /* private: use the readahead_* accessors instead */ pgoff_t _index; unsigned int _nr_pages; unsigned int _batch_count; }; #define DEFINE_READAHEAD(rac, f, m, i) \ struct readahead_control rac = { \ .file = f, \ .mapping = m, \ ._index = i, \ } #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) void page_cache_ra_unbounded(struct readahead_control *, unsigned long nr_to_read, unsigned long lookahead_count); void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *, unsigned long req_count); void page_cache_async_ra(struct readahead_control *, struct file_ra_state *, struct page *, unsigned long req_count); /** * page_cache_sync_readahead - generic file readahead * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_sync_readahead() should be called when a cache miss happened: * it will submit the read. The readahead logic may decide to piggyback more * pages onto the read request if access patterns suggest it will improve * performance. */ static inline void page_cache_sync_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_sync_ra(&ractl, ra, req_count); } /** * page_cache_async_readahead - file readahead for marked pages * @mapping: address_space which holds the pagecache and I/O vectors * @ra: file_ra_state which holds the readahead state * @file: Used by the filesystem for authentication. * @page: The page at @index which triggered the readahead call. * @index: Index of first page to be read. * @req_count: Total number of pages being read by the caller. * * page_cache_async_readahead() should be called when a page is used which * is marked as PageReadahead; this is a marker to suggest that the application * has used up enough of the readahead window that we should start pulling in * more pages. */ static inline void page_cache_async_readahead(struct address_space *mapping, struct file_ra_state *ra, struct file *file, struct page *page, pgoff_t index, unsigned long req_count) { DEFINE_READAHEAD(ractl, file, mapping, index); page_cache_async_ra(&ractl, ra, page, req_count); } /** * readahead_page - Get the next page to read. * @rac: The current readahead request. * * Context: The page is locked and has an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: A pointer to the next page, or %NULL if we are done. */ static inline struct page *readahead_page(struct readahead_control *rac) { struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; if (!rac->_nr_pages) { rac->_batch_count = 0; return NULL; } page = xa_load(&rac->mapping->i_pages, rac->_index); VM_BUG_ON_PAGE(!PageLocked(page), page); rac->_batch_count = thp_nr_pages(page); return page; } static inline unsigned int __readahead_batch(struct readahead_control *rac, struct page **array, unsigned int array_sz) { unsigned int i = 0; XA_STATE(xas, &rac->mapping->i_pages, 0); struct page *page; BUG_ON(rac->_batch_count > rac->_nr_pages); rac->_nr_pages -= rac->_batch_count; rac->_index += rac->_batch_count; rac->_batch_count = 0; xas_set(&xas, rac->_index); rcu_read_lock(); xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { if (xas_retry(&xas, page)) continue; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageTail(page), page); array[i++] = page; rac->_batch_count += thp_nr_pages(page); /* * The page cache isn't using multi-index entries yet, * so the xas cursor needs to be manually moved to the * next index. This can be removed once the page cache * is converted. */ if (PageHead(page)) xas_set(&xas, rac->_index + rac->_batch_count); if (i == array_sz) break; } rcu_read_unlock(); return i; } /** * readahead_page_batch - Get a batch of pages to read. * @rac: The current readahead request. * @array: An array of pointers to struct page. * * Context: The pages are locked and have an elevated refcount. The caller * should decreases the refcount once the page has been submitted for I/O * and unlock the page once all I/O to that page has completed. * Return: The number of pages placed in the array. 0 indicates the request * is complete. */ #define readahead_page_batch(rac, array) \ __readahead_batch(rac, array, ARRAY_SIZE(array)) /** * readahead_pos - The byte offset into the file of this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_pos(struct readahead_control *rac) { return (loff_t)rac->_index * PAGE_SIZE; } /** * readahead_length - The number of bytes in this readahead request. * @rac: The readahead request. */ static inline loff_t readahead_length(struct readahead_control *rac) { return (loff_t)rac->_nr_pages * PAGE_SIZE; } /** * readahead_index - The index of the first page in this readahead request. * @rac: The readahead request. */ static inline pgoff_t readahead_index(struct readahead_control *rac) { return rac->_index; } /** * readahead_count - The number of pages in this readahead request. * @rac: The readahead request. */ static inline unsigned int readahead_count(struct readahead_control *rac) { return rac->_nr_pages; } static inline unsigned long dir_pages(struct inode *inode) { return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; } /** * page_mkwrite_check_truncate - check if page was truncated * @page: the page to check * @inode: the inode to check the page against * * Returns the number of bytes in the page up to EOF, * or -EFAULT if the page was truncated. */ static inline int page_mkwrite_check_truncate(struct page *page, struct inode *inode) { loff_t size = i_size_read(inode); pgoff_t index = size >> PAGE_SHIFT; int offset = offset_in_page(size); if (page->mapping != inode->i_mapping) return -EFAULT; /* page is wholly inside EOF */ if (page->index < index) return PAGE_SIZE; /* page is wholly past EOF */ if (page->index > index || !offset) return -EFAULT; /* page is partially inside EOF */ return offset; } /** * i_blocks_per_page - How many blocks fit in this page. * @inode: The inode which contains the blocks. * @page: The page (head page if the page is a THP). * * If the block size is larger than the size of this page, return zero. * * Context: The caller should hold a refcount on the page to prevent it * from being split. * Return: The number of filesystem blocks covered by this page. */ static inline unsigned int i_blocks_per_page(struct inode *inode, struct page *page) { return thp_size(page) >> inode->i_blkbits; } #endif /* _LINUX_PAGEMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 /* SPDX-License-Identifier: GPL-2.0 */ /* * sysctl.h: General linux system control interface * * Begun 24 March 1995, Stephen Tweedie * **************************************************************** **************************************************************** ** ** WARNING: ** The values in this file are exported to user space via ** the sysctl() binary interface. Do *NOT* change the ** numbering of any existing values here, and do not change ** any numbers within any one set of values. If you have to ** redefine an existing interface, use a new number for it. ** The kernel will then return -ENOTDIR to any application using ** the old binary interface. ** **************************************************************** **************************************************************** */ #ifndef _LINUX_SYSCTL_H #define _LINUX_SYSCTL_H #include <linux/list.h> #include <linux/rcupdate.h> #include <linux/wait.h> #include <linux/rbtree.h> #include <linux/uidgid.h> #include <uapi/linux/sysctl.h> /* For the /proc/sys support */ struct completion; struct ctl_table; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; /* Keep the same order as in fs/proc/proc_sysctl.c */ #define SYSCTL_NEG_ONE ((void *)&sysctl_vals[0]) #define SYSCTL_ZERO ((void *)&sysctl_vals[1]) #define SYSCTL_ONE ((void *)&sysctl_vals[2]) #define SYSCTL_TWO ((void *)&sysctl_vals[3]) #define SYSCTL_FOUR ((void *)&sysctl_vals[4]) #define SYSCTL_ONE_HUNDRED ((void *)&sysctl_vals[5]) #define SYSCTL_TWO_HUNDRED ((void *)&sysctl_vals[6]) #define SYSCTL_ONE_THOUSAND ((void *)&sysctl_vals[7]) #define SYSCTL_THREE_THOUSAND ((void *)&sysctl_vals[8]) #define SYSCTL_INT_MAX ((void *)&sysctl_vals[9]) extern const int sysctl_vals[]; typedef int proc_handler(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dostring(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dobool(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dointvec(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_douintvec(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_minmax(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_douintvec_minmax(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dou8vec_minmax(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dointvec_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_userhz_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_ms_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_doulongvec_minmax(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int, void *, size_t *, loff_t *); int proc_do_large_bitmap(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_do_static_key(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* * Register a set of sysctl names by calling register_sysctl_table * with an initialised array of struct ctl_table's. An entry with * NULL procname terminates the table. table->de will be * set up by the registration and need not be initialised in advance. * * sysctl names can be mirrored automatically under /proc/sys. The * procname supplied controls /proc naming. * * The table's mode will be honoured for proc-fs access. * * Leaf nodes in the sysctl tree will be represented by a single file * under /proc; non-leaf nodes will be represented by directories. A * null procname disables /proc mirroring at this node. * * The data and maxlen fields of the ctl_table * struct enable minimal validation of the values being written to be * performed, and the mode field allows minimal authentication. * * There must be a proc_handler routine for any terminal nodes * mirrored under /proc/sys (non-terminals are handled by a built-in * directory handler). Several default handlers are available to * cover common cases. */ /* Support for userspace poll() to watch for changes */ struct ctl_table_poll { atomic_t event; wait_queue_head_t wait; }; static inline void *proc_sys_poll_event(struct ctl_table_poll *poll) { return (void *)(unsigned long)atomic_read(&poll->event); } #define __CTL_TABLE_POLL_INITIALIZER(name) { \ .event = ATOMIC_INIT(0), \ .wait = __WAIT_QUEUE_HEAD_INITIALIZER(name.wait) } #define DEFINE_CTL_TABLE_POLL(name) \ struct ctl_table_poll name = __CTL_TABLE_POLL_INITIALIZER(name) /* A sysctl table is an array of struct ctl_table: */ struct ctl_table { const char *procname; /* Text ID for /proc/sys, or zero */ void *data; int maxlen; umode_t mode; struct ctl_table *child; /* Deprecated */ proc_handler *proc_handler; /* Callback for text formatting */ struct ctl_table_poll *poll; void *extra1; void *extra2; } __randomize_layout; struct ctl_node { struct rb_node node; struct ctl_table_header *header; }; /* struct ctl_table_header is used to maintain dynamic lists of struct ctl_table trees. */ struct ctl_table_header { union { struct { struct ctl_table *ctl_table; int used; int count; int nreg; }; struct rcu_head rcu; }; struct completion *unregistering; struct ctl_table *ctl_table_arg; struct ctl_table_root *root; struct ctl_table_set *set; struct ctl_dir *parent; struct ctl_node *node; struct hlist_head inodes; /* head for proc_inode->sysctl_inodes */ }; struct ctl_dir { /* Header must be at the start of ctl_dir */ struct ctl_table_header header; struct rb_root root; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set *); struct ctl_dir dir; }; struct ctl_table_root { struct ctl_table_set default_set; struct ctl_table_set *(*lookup)(struct ctl_table_root *root); void (*set_ownership)(struct ctl_table_header *head, struct ctl_table *table, kuid_t *uid, kgid_t *gid); int (*permissions)(struct ctl_table_header *head, struct ctl_table *table); }; /* struct ctl_path describes where in the hierarchy a table is added */ struct ctl_path { const char *procname; }; #ifdef CONFIG_SYSCTL void proc_sys_poll_notify(struct ctl_table_poll *poll); extern void setup_sysctl_set(struct ctl_table_set *p, struct ctl_table_root *root, int (*is_seen)(struct ctl_table_set *)); extern void retire_sysctl_set(struct ctl_table_set *set); struct ctl_table_header *__register_sysctl_table( struct ctl_table_set *set, const char *path, struct ctl_table *table); struct ctl_table_header *__register_sysctl_paths( struct ctl_table_set *set, const struct ctl_path *path, struct ctl_table *table); struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table); struct ctl_table_header *register_sysctl_table(struct ctl_table * table); struct ctl_table_header *register_sysctl_paths(const struct ctl_path *path, struct ctl_table *table); void unregister_sysctl_table(struct ctl_table_header * table); extern int sysctl_init(void); extern void __register_sysctl_init(const char *path, struct ctl_table *table, const char *table_name); #define register_sysctl_init(path, table) __register_sysctl_init(path, table, #table) void do_sysctl_args(void); extern int pwrsw_enabled; extern int unaligned_enabled; extern int unaligned_dump_stack; extern int no_unaligned_warning; extern struct ctl_table sysctl_mount_point[]; extern struct ctl_table random_table[]; extern struct ctl_table firmware_config_table[]; extern struct ctl_table epoll_table[]; #else /* CONFIG_SYSCTL */ static inline struct ctl_table_header *register_sysctl_table(struct ctl_table * table) { return NULL; } static inline struct ctl_table_header *register_sysctl_paths( const struct ctl_path *path, struct ctl_table *table) { return NULL; } static inline struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table) { return NULL; } static inline void unregister_sysctl_table(struct ctl_table_header * table) { } static inline void setup_sysctl_set(struct ctl_table_set *p, struct ctl_table_root *root, int (*is_seen)(struct ctl_table_set *)) { } static inline void do_sysctl_args(void) { } #endif /* CONFIG_SYSCTL */ int sysctl_max_threads(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); #endif /* _LINUX_SYSCTL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the TCP module. * * Version: @(#)tcp.h 1.0.5 05/23/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _TCP_H #define _TCP_H #define FASTRETRANS_DEBUG 1 #include <linux/list.h> #include <linux/tcp.h> #include <linux/bug.h> #include <linux/slab.h> #include <linux/cache.h> #include <linux/percpu.h> #include <linux/skbuff.h> #include <linux/kref.h> #include <linux/ktime.h> #include <linux/indirect_call_wrapper.h> #include <net/inet_connection_sock.h> #include <net/inet_timewait_sock.h> #include <net/inet_hashtables.h> #include <net/checksum.h> #include <net/request_sock.h> #include <net/sock_reuseport.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ip.h> #include <net/tcp_states.h> #include <net/inet_ecn.h> #include <net/dst.h> #include <net/mptcp.h> #include <linux/seq_file.h> #include <linux/memcontrol.h> #include <linux/bpf-cgroup.h> #include <linux/siphash.h> extern struct inet_hashinfo tcp_hashinfo; DECLARE_PER_CPU(unsigned int, tcp_orphan_count); int tcp_orphan_count_sum(void); void tcp_time_wait(struct sock *sk, int state, int timeo); #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) #define MAX_TCP_OPTION_SPACE 40 #define TCP_MIN_SND_MSS 48 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) /* * Never offer a window over 32767 without using window scaling. Some * poor stacks do signed 16bit maths! */ #define MAX_TCP_WINDOW 32767U /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ #define TCP_MIN_MSS 88U /* The initial MTU to use for probing */ #define TCP_BASE_MSS 1024 /* probing interval, default to 10 minutes as per RFC4821 */ #define TCP_PROBE_INTERVAL 600 /* Specify interval when tcp mtu probing will stop */ #define TCP_PROBE_THRESHOLD 8 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ #define TCP_FASTRETRANS_THRESH 3 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ #define TCP_MAX_QUICKACKS 16U /* Maximal number of window scale according to RFC1323 */ #define TCP_MAX_WSCALE 14U /* urg_data states */ #define TCP_URG_VALID 0x0100 #define TCP_URG_NOTYET 0x0200 #define TCP_URG_READ 0x0400 #define TCP_RETR1 3 /* * This is how many retries it does before it * tries to figure out if the gateway is * down. Minimal RFC value is 3; it corresponds * to ~3sec-8min depending on RTO. */ #define TCP_RETR2 15 /* * This should take at least * 90 minutes to time out. * RFC1122 says that the limit is 100 sec. * 15 is ~13-30min depending on RTO. */ #define TCP_SYN_RETRIES 6 /* This is how many retries are done * when active opening a connection. * RFC1122 says the minimum retry MUST * be at least 180secs. Nevertheless * this value is corresponding to * 63secs of retransmission with the * current initial RTO. */ #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done * when passive opening a connection. * This is corresponding to 31secs of * retransmission with the current * initial RTO. */ #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT * state, about 60 seconds */ #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN /* BSD style FIN_WAIT2 deadlock breaker. * It used to be 3min, new value is 60sec, * to combine FIN-WAIT-2 timeout with * TIME-WAIT timer. */ #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ #if HZ >= 100 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ #define TCP_ATO_MIN ((unsigned)(HZ/25)) #else #define TCP_DELACK_MIN 4U #define TCP_ATO_MIN 4U #endif #define TCP_RTO_MAX ((unsigned)(120*HZ)) #define TCP_RTO_MIN ((unsigned)(HZ/5)) #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now * used as a fallback RTO for the * initial data transmission if no * valid RTT sample has been acquired, * most likely due to retrans in 3WHS. */ #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes * for local resources. */ #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ #define TCP_KEEPALIVE_INTVL (75*HZ) #define MAX_TCP_KEEPIDLE 32767 #define MAX_TCP_KEEPINTVL 32767 #define MAX_TCP_KEEPCNT 127 #define MAX_TCP_SYNCNT 127 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated * after this time. It should be equal * (or greater than) TCP_TIMEWAIT_LEN * to provide reliability equal to one * provided by timewait state. */ #define TCP_PAWS_WINDOW 1 /* Replay window for per-host * timestamps. It must be less than * minimal timewait lifetime. */ /* * TCP option */ #define TCPOPT_NOP 1 /* Padding */ #define TCPOPT_EOL 0 /* End of options */ #define TCPOPT_MSS 2 /* Segment size negotiating */ #define TCPOPT_WINDOW 3 /* Window scaling */ #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ #define TCPOPT_SACK 5 /* SACK Block */ #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ #define TCPOPT_EXP 254 /* Experimental */ /* Magic number to be after the option value for sharing TCP * experimental options. See draft-ietf-tcpm-experimental-options-00.txt */ #define TCPOPT_FASTOPEN_MAGIC 0xF989 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 /* * TCP option lengths */ #define TCPOLEN_MSS 4 #define TCPOLEN_WINDOW 3 #define TCPOLEN_SACK_PERM 2 #define TCPOLEN_TIMESTAMP 10 #define TCPOLEN_MD5SIG 18 #define TCPOLEN_FASTOPEN_BASE 2 #define TCPOLEN_EXP_FASTOPEN_BASE 4 #define TCPOLEN_EXP_SMC_BASE 6 /* But this is what stacks really send out. */ #define TCPOLEN_TSTAMP_ALIGNED 12 #define TCPOLEN_WSCALE_ALIGNED 4 #define TCPOLEN_SACKPERM_ALIGNED 4 #define TCPOLEN_SACK_BASE 2 #define TCPOLEN_SACK_BASE_ALIGNED 4 #define TCPOLEN_SACK_PERBLOCK 8 #define TCPOLEN_MD5SIG_ALIGNED 20 #define TCPOLEN_MSS_ALIGNED 4 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 /* Flags in tp->nonagle */ #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ #define TCP_NAGLE_CORK 2 /* Socket is corked */ #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ /* TCP thin-stream limits */ #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ /* TCP initial congestion window as per rfc6928 */ #define TCP_INIT_CWND 10 /* Bit Flags for sysctl_tcp_fastopen */ #define TFO_CLIENT_ENABLE 1 #define TFO_SERVER_ENABLE 2 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ /* Accept SYN data w/o any cookie option */ #define TFO_SERVER_COOKIE_NOT_REQD 0x200 /* Force enable TFO on all listeners, i.e., not requiring the * TCP_FASTOPEN socket option. */ #define TFO_SERVER_WO_SOCKOPT1 0x400 /* sysctl variables for tcp */ extern int sysctl_tcp_max_orphans; extern long sysctl_tcp_mem[3]; #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ extern atomic_long_t tcp_memory_allocated; extern struct percpu_counter tcp_sockets_allocated; extern unsigned long tcp_memory_pressure; /* optimized version of sk_under_memory_pressure() for TCP sockets */ static inline bool tcp_under_memory_pressure(const struct sock *sk) { if (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) return true; return READ_ONCE(tcp_memory_pressure); } /* * The next routines deal with comparing 32 bit unsigned ints * and worry about wraparound (automatic with unsigned arithmetic). */ static inline bool before(__u32 seq1, __u32 seq2) { return (__s32)(seq1-seq2) < 0; } #define after(seq2, seq1) before(seq1, seq2) /* is s2<=s1<=s3 ? */ static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) { return seq3 - seq2 >= seq1 - seq2; } static inline bool tcp_out_of_memory(struct sock *sk) { if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) return true; return false; } void sk_forced_mem_schedule(struct sock *sk, int size); bool tcp_check_oom(struct sock *sk, int shift); extern struct proto tcp_prot; #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) void tcp_tasklet_init(void); int tcp_v4_err(struct sk_buff *skb, u32); void tcp_shutdown(struct sock *sk, int how); int tcp_v4_early_demux(struct sk_buff *skb); int tcp_v4_rcv(struct sk_buff *skb); int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags); ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, size_t size, int flags); int tcp_send_mss(struct sock *sk, int *size_goal, int flags); void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal); void tcp_release_cb(struct sock *sk); void tcp_wfree(struct sk_buff *skb); void tcp_write_timer_handler(struct sock *sk); void tcp_delack_timer_handler(struct sock *sk); int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); void tcp_rcv_space_adjust(struct sock *sk); int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); void tcp_twsk_destructor(struct sock *sk); ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags); static inline void tcp_dec_quickack_mode(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.quick) { /* How many ACKs S/ACKing new data have we sent? */ const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; if (pkts >= icsk->icsk_ack.quick) { icsk->icsk_ack.quick = 0; /* Leaving quickack mode we deflate ATO. */ icsk->icsk_ack.ato = TCP_ATO_MIN; } else icsk->icsk_ack.quick -= pkts; } } #define TCP_ECN_OK 1 #define TCP_ECN_QUEUE_CWR 2 #define TCP_ECN_DEMAND_CWR 4 #define TCP_ECN_SEEN 8 enum tcp_tw_status { TCP_TW_SUCCESS = 0, TCP_TW_RST = 1, TCP_TW_ACK = 2, TCP_TW_SYN = 3 }; enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, const struct tcphdr *th); struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, struct request_sock *req, bool fastopen, bool *lost_race); int tcp_child_process(struct sock *parent, struct sock *child, struct sk_buff *skb); void tcp_enter_loss(struct sock *sk); void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag); void tcp_clear_retrans(struct tcp_sock *tp); void tcp_update_metrics(struct sock *sk); void tcp_init_metrics(struct sock *sk); void tcp_metrics_init(void); bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); void __tcp_close(struct sock *sk, long timeout); void tcp_close(struct sock *sk, long timeout); void tcp_init_sock(struct sock *sk); void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); __poll_t tcp_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); bool tcp_bpf_bypass_getsockopt(int level, int optname); int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); void tcp_set_keepalive(struct sock *sk, int val); void tcp_syn_ack_timeout(const struct request_sock *req); int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len); int tcp_set_rcvlowat(struct sock *sk, int val); void tcp_data_ready(struct sock *sk); #ifdef CONFIG_MMU int tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); #endif void tcp_parse_options(const struct net *net, const struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab, struct tcp_fastopen_cookie *foc); const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); /* * BPF SKB-less helpers */ u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, struct tcphdr *th, u32 *cookie); u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, struct tcphdr *th, u32 *cookie); u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, const struct tcp_request_sock_ops *af_ops, struct sock *sk, struct tcphdr *th); /* * TCP v4 functions exported for the inet6 API */ void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); void tcp_v4_mtu_reduced(struct sock *sk); void tcp_req_err(struct sock *sk, u32 seq, bool abort); void tcp_ld_RTO_revert(struct sock *sk, u32 seq); int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); struct sock *tcp_create_openreq_child(const struct sock *sk, struct request_sock *req, struct sk_buff *skb); void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int tcp_connect(struct sock *sk); enum tcp_synack_type { TCP_SYNACK_NORMAL, TCP_SYNACK_FASTOPEN, TCP_SYNACK_COOKIE, }; struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb); int tcp_disconnect(struct sock *sk, int flags); void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); /* From syncookies.c */ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, u32 tsoff); int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, u32 cookie); struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, const struct tcp_request_sock_ops *af_ops, struct sock *sk, struct sk_buff *skb); #ifdef CONFIG_SYN_COOKIES /* Syncookies use a monotonic timer which increments every 60 seconds. * This counter is used both as a hash input and partially encoded into * the cookie value. A cookie is only validated further if the delta * between the current counter value and the encoded one is less than this, * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if * the counter advances immediately after a cookie is generated). */ #define MAX_SYNCOOKIE_AGE 2 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) /* syncookies: remember time of last synqueue overflow * But do not dirty this field too often (once per second is enough) * It is racy as we do not hold a lock, but race is very minor. */ static inline void tcp_synq_overflow(const struct sock *sk) { unsigned int last_overflow; unsigned int now = jiffies; if (sk->sk_reuseport) { struct sock_reuseport *reuse; reuse = rcu_dereference(sk->sk_reuseport_cb); if (likely(reuse)) { last_overflow = READ_ONCE(reuse->synq_overflow_ts); if (!time_between32(now, last_overflow, last_overflow + HZ)) WRITE_ONCE(reuse->synq_overflow_ts, now); return; } } last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); if (!time_between32(now, last_overflow, last_overflow + HZ)) WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); } /* syncookies: no recent synqueue overflow on this listening socket? */ static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) { unsigned int last_overflow; unsigned int now = jiffies; if (sk->sk_reuseport) { struct sock_reuseport *reuse; reuse = rcu_dereference(sk->sk_reuseport_cb); if (likely(reuse)) { last_overflow = READ_ONCE(reuse->synq_overflow_ts); return !time_between32(now, last_overflow - HZ, last_overflow + TCP_SYNCOOKIE_VALID); } } last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, * then we're under synflood. However, we have to use * 'last_overflow - HZ' as lower bound. That's because a concurrent * tcp_synq_overflow() could update .ts_recent_stamp after we read * jiffies but before we store .ts_recent_stamp into last_overflow, * which could lead to rejecting a valid syncookie. */ return !time_between32(now, last_overflow - HZ, last_overflow + TCP_SYNCOOKIE_VALID); } static inline u32 tcp_cookie_time(void) { u64 val = get_jiffies_64(); do_div(val, TCP_SYNCOOKIE_PERIOD); return val; } u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, u16 *mssp); __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); u64 cookie_init_timestamp(struct request_sock *req, u64 now); bool cookie_timestamp_decode(const struct net *net, struct tcp_options_received *opt); bool cookie_ecn_ok(const struct tcp_options_received *opt, const struct net *net, const struct dst_entry *dst); /* From net/ipv6/syncookies.c */ int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, u32 cookie); struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, const struct tcphdr *th, u16 *mssp); __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); #endif /* tcp_output.c */ void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, int nonagle); int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); void tcp_retransmit_timer(struct sock *sk); void tcp_xmit_retransmit_queue(struct sock *); void tcp_simple_retransmit(struct sock *); void tcp_enter_recovery(struct sock *sk, bool ece_ack); int tcp_trim_head(struct sock *, struct sk_buff *, u32); enum tcp_queue { TCP_FRAG_IN_WRITE_QUEUE, TCP_FRAG_IN_RTX_QUEUE, }; int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, struct sk_buff *skb, u32 len, unsigned int mss_now, gfp_t gfp); void tcp_send_probe0(struct sock *); void tcp_send_partial(struct sock *); int tcp_write_wakeup(struct sock *, int mib); void tcp_send_fin(struct sock *sk); void tcp_send_active_reset(struct sock *sk, gfp_t priority); int tcp_send_synack(struct sock *); void tcp_push_one(struct sock *, unsigned int mss_now); void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); void tcp_send_ack(struct sock *sk); void tcp_send_delayed_ack(struct sock *sk); void tcp_send_loss_probe(struct sock *sk); bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); void tcp_skb_collapse_tstamp(struct sk_buff *skb, const struct sk_buff *next_skb); /* tcp_input.c */ void tcp_rearm_rto(struct sock *sk); void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); void tcp_reset(struct sock *sk); void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); void tcp_fin(struct sock *sk); void tcp_check_space(struct sock *sk); /* tcp_timer.c */ void tcp_init_xmit_timers(struct sock *); static inline void tcp_clear_xmit_timers(struct sock *sk) { if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) __sock_put(sk); if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) __sock_put(sk); inet_csk_clear_xmit_timers(sk); } unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); unsigned int tcp_current_mss(struct sock *sk); u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); /* Bound MSS / TSO packet size with the half of the window */ static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) { int cutoff; /* When peer uses tiny windows, there is no use in packetizing * to sub-MSS pieces for the sake of SWS or making sure there * are enough packets in the pipe for fast recovery. * * On the other hand, for extremely large MSS devices, handling * smaller than MSS windows in this way does make sense. */ if (tp->max_window > TCP_MSS_DEFAULT) cutoff = (tp->max_window >> 1); else cutoff = tp->max_window; if (cutoff && pktsize > cutoff) return max_t(int, cutoff, 68U - tp->tcp_header_len); else return pktsize; } /* tcp.c */ void tcp_get_info(struct sock *, struct tcp_info *); /* Read 'sendfile()'-style from a TCP socket */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor); void tcp_initialize_rcv_mss(struct sock *sk); int tcp_mtu_to_mss(struct sock *sk, int pmtu); int tcp_mss_to_mtu(struct sock *sk, int mss); void tcp_mtup_init(struct sock *sk); static inline void tcp_bound_rto(const struct sock *sk) { if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) inet_csk(sk)->icsk_rto = TCP_RTO_MAX; } static inline u32 __tcp_set_rto(const struct tcp_sock *tp) { return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); } static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) { /* mptcp hooks are only on the slow path */ if (sk_is_mptcp((struct sock *)tp)) return; tp->pred_flags = htonl((tp->tcp_header_len << 26) | ntohl(TCP_FLAG_ACK) | snd_wnd); } static inline void tcp_fast_path_on(struct tcp_sock *tp) { __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); } static inline void tcp_fast_path_check(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && tp->rcv_wnd && atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && !tp->urg_data) tcp_fast_path_on(tp); } /* Compute the actual rto_min value */ static inline u32 tcp_rto_min(struct sock *sk) { const struct dst_entry *dst = __sk_dst_get(sk); u32 rto_min = inet_csk(sk)->icsk_rto_min; if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); return rto_min; } static inline u32 tcp_rto_min_us(struct sock *sk) { return jiffies_to_usecs(tcp_rto_min(sk)); } static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) { return dst_metric_locked(dst, RTAX_CC_ALGO); } /* Minimum RTT in usec. ~0 means not available. */ static inline u32 tcp_min_rtt(const struct tcp_sock *tp) { return minmax_get(&tp->rtt_min); } /* Compute the actual receive window we are currently advertising. * Rcv_nxt can be after the window if our peer push more data * than the offered window. */ static inline u32 tcp_receive_window(const struct tcp_sock *tp) { s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; if (win < 0) win = 0; return (u32) win; } /* Choose a new window, without checks for shrinking, and without * scaling applied to the result. The caller does these things * if necessary. This is a "raw" window selection. */ u32 __tcp_select_window(struct sock *sk); void tcp_send_window_probe(struct sock *sk); /* TCP uses 32bit jiffies to save some space. * Note that this is different from tcp_time_stamp, which * historically has been the same until linux-4.13. */ #define tcp_jiffies32 ((u32)jiffies) /* * Deliver a 32bit value for TCP timestamp option (RFC 7323) * It is no longer tied to jiffies, but to 1 ms clock. * Note: double check if you want to use tcp_jiffies32 instead of this. */ #define TCP_TS_HZ 1000 static inline u64 tcp_clock_ns(void) { return ktime_get_ns(); } static inline u64 tcp_clock_us(void) { return div_u64(tcp_clock_ns(), NSEC_PER_USEC); } /* This should only be used in contexts where tp->tcp_mstamp is up to date */ static inline u32 tcp_time_stamp(const struct tcp_sock *tp) { return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); } /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ static inline u64 tcp_ns_to_ts(u64 ns) { return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); } /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ static inline u32 tcp_time_stamp_raw(void) { return tcp_ns_to_ts(tcp_clock_ns()); } void tcp_mstamp_refresh(struct tcp_sock *tp); static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) { return max_t(s64, t1 - t0, 0); } static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) { return tcp_ns_to_ts(skb->skb_mstamp_ns); } /* provide the departure time in us unit */ static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) { return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); } #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) #define TCPHDR_FIN 0x01 #define TCPHDR_SYN 0x02 #define TCPHDR_RST 0x04 #define TCPHDR_PSH 0x08 #define TCPHDR_ACK 0x10 #define TCPHDR_URG 0x20 #define TCPHDR_ECE 0x40 #define TCPHDR_CWR 0x80 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) /* This is what the send packet queuing engine uses to pass * TCP per-packet control information to the transmission code. * We also store the host-order sequence numbers in here too. * This is 44 bytes if IPV6 is enabled. * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. */ struct tcp_skb_cb { __u32 seq; /* Starting sequence number */ __u32 end_seq; /* SEQ + FIN + SYN + datalen */ union { /* Note : tcp_tw_isn is used in input path only * (isn chosen by tcp_timewait_state_process()) * * tcp_gso_segs/size are used in write queue only, * cf tcp_skb_pcount()/tcp_skb_mss() */ __u32 tcp_tw_isn; struct { u16 tcp_gso_segs; u16 tcp_gso_size; }; }; __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ __u8 sacked; /* State flags for SACK. */ #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ #define TCPCB_LOST 0x04 /* SKB is lost */ #define TCPCB_TAGBITS 0x07 /* All tag bits */ #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ TCPCB_REPAIRED) __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ eor:1, /* Is skb MSG_EOR marked? */ has_rxtstamp:1, /* SKB has a RX timestamp */ unused:5; __u32 ack_seq; /* Sequence number ACK'd */ union { struct { /* There is space for up to 24 bytes */ __u32 in_flight:30,/* Bytes in flight at transmit */ is_app_limited:1, /* cwnd not fully used? */ unused:1; /* pkts S/ACKed so far upon tx of skb, incl retrans: */ __u32 delivered; /* start of send pipeline phase */ u64 first_tx_mstamp; /* when we reached the "delivered" count */ u64 delivered_mstamp; } tx; /* only used for outgoing skbs */ union { struct inet_skb_parm h4; #if IS_ENABLED(CONFIG_IPV6) struct inet6_skb_parm h6; #endif } header; /* For incoming skbs */ struct { __u32 flags; struct sock *sk_redir; void *data_end; } bpf; }; }; #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) { TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); } static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS; } static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb) { return TCP_SKB_CB(skb)->bpf.sk_redir; } static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb) { TCP_SKB_CB(skb)->bpf.sk_redir = NULL; } extern const struct inet_connection_sock_af_ops ipv4_specific; #if IS_ENABLED(CONFIG_IPV6) /* This is the variant of inet6_iif() that must be used by TCP, * as TCP moves IP6CB into a different location in skb->cb[] */ static inline int tcp_v6_iif(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->header.h6.iif; } static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; } /* TCP_SKB_CB reference means this can not be used from early demux */ static inline int tcp_v6_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) return TCP_SKB_CB(skb)->header.h6.iif; #endif return 0; } extern const struct inet_connection_sock_af_ops ipv6_specific; INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); void tcp_v6_early_demux(struct sk_buff *skb); #endif /* TCP_SKB_CB reference means this can not be used from early demux */ static inline int tcp_v4_sdif(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) return TCP_SKB_CB(skb)->header.h4.iif; #endif return 0; } /* Due to TSO, an SKB can be composed of multiple actual * packets. To keep these tracked properly, we use this. */ static inline int tcp_skb_pcount(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->tcp_gso_segs; } static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) { TCP_SKB_CB(skb)->tcp_gso_segs = segs; } static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) { TCP_SKB_CB(skb)->tcp_gso_segs += segs; } /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ static inline int tcp_skb_mss(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->tcp_gso_size; } static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) { return likely(!TCP_SKB_CB(skb)->eor); } static inline bool tcp_skb_can_collapse(const struct sk_buff *to, const struct sk_buff *from) { return likely(tcp_skb_can_collapse_to(to) && mptcp_skb_can_collapse(to, from)); } /* Events passed to congestion control interface */ enum tcp_ca_event { CA_EVENT_TX_START, /* first transmit when no packets in flight */ CA_EVENT_CWND_RESTART, /* congestion window restart */ CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ CA_EVENT_LOSS, /* loss timeout */ CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ }; /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ enum tcp_ca_ack_event_flags { CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ }; /* * Interface for adding new TCP congestion control handlers */ #define TCP_CA_NAME_MAX 16 #define TCP_CA_MAX 128 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) #define TCP_CA_UNSPEC 0 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ #define TCP_CONG_NON_RESTRICTED 0x1 /* Requires ECN/ECT set on all packets */ #define TCP_CONG_NEEDS_ECN 0x2 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) union tcp_cc_info; struct ack_sample { u32 pkts_acked; s32 rtt_us; u32 in_flight; }; /* A rate sample measures the number of (original/retransmitted) data * packets delivered "delivered" over an interval of time "interval_us". * The tcp_rate.c code fills in the rate sample, and congestion * control modules that define a cong_control function to run at the end * of ACK processing can optionally chose to consult this sample when * setting cwnd and pacing rate. * A sample is invalid if "delivered" or "interval_us" is negative. */ struct rate_sample { u64 prior_mstamp; /* starting timestamp for interval */ u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ s32 delivered; /* number of packets delivered over interval */ long interval_us; /* time for tp->delivered to incr "delivered" */ u32 snd_interval_us; /* snd interval for delivered packets */ u32 rcv_interval_us; /* rcv interval for delivered packets */ long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ int losses; /* number of packets marked lost upon ACK */ u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ u32 prior_in_flight; /* in flight before this ACK */ u32 last_end_seq; /* end_seq of most recently ACKed packet */ bool is_app_limited; /* is sample from packet with bubble in pipe? */ bool is_retrans; /* is sample from retransmission? */ bool is_ack_delayed; /* is this (likely) a delayed ACK? */ }; struct tcp_congestion_ops { struct list_head list; u32 key; u32 flags; /* initialize private data (optional) */ void (*init)(struct sock *sk); /* cleanup private data (optional) */ void (*release)(struct sock *sk); /* return slow start threshold (required) */ u32 (*ssthresh)(struct sock *sk); /* do new cwnd calculation (required) */ void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); /* call before changing ca_state (optional) */ void (*set_state)(struct sock *sk, u8 new_state); /* call when cwnd event occurs (optional) */ void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); /* call when ack arrives (optional) */ void (*in_ack_event)(struct sock *sk, u32 flags); /* new value of cwnd after loss (required) */ u32 (*undo_cwnd)(struct sock *sk); /* hook for packet ack accounting (optional) */ void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); /* override sysctl_tcp_min_tso_segs */ u32 (*min_tso_segs)(struct sock *sk); /* returns the multiplier used in tcp_sndbuf_expand (optional) */ u32 (*sndbuf_expand)(struct sock *sk); /* call when packets are delivered to update cwnd and pacing rate, * after all the ca_state processing. (optional) */ void (*cong_control)(struct sock *sk, const struct rate_sample *rs); /* get info for inet_diag (optional) */ size_t (*get_info)(struct sock *sk, u32 ext, int *attr, union tcp_cc_info *info); char name[TCP_CA_NAME_MAX]; struct module *owner; }; int tcp_register_congestion_control(struct tcp_congestion_ops *type); void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); void tcp_assign_congestion_control(struct sock *sk); void tcp_init_congestion_control(struct sock *sk); void tcp_cleanup_congestion_control(struct sock *sk); int tcp_set_default_congestion_control(struct net *net, const char *name); void tcp_get_default_congestion_control(struct net *net, char *name); void tcp_get_available_congestion_control(char *buf, size_t len); void tcp_get_allowed_congestion_control(char *buf, size_t len); int tcp_set_allowed_congestion_control(char *allowed); int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool cap_net_admin); u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); u32 tcp_reno_ssthresh(struct sock *sk); u32 tcp_reno_undo_cwnd(struct sock *sk); void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); extern struct tcp_congestion_ops tcp_reno; struct tcp_congestion_ops *tcp_ca_find(const char *name); struct tcp_congestion_ops *tcp_ca_find_key(u32 key); u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); #ifdef CONFIG_INET char *tcp_ca_get_name_by_key(u32 key, char *buffer); #else static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) { return NULL; } #endif static inline bool tcp_ca_needs_ecn(const struct sock *sk) { const struct inet_connection_sock *icsk = inet_csk(sk); return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; } static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ca_ops->set_state) icsk->icsk_ca_ops->set_state(sk, ca_state); icsk->icsk_ca_state = ca_state; } static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) { const struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ca_ops->cwnd_event) icsk->icsk_ca_ops->cwnd_event(sk, event); } /* From tcp_rate.c */ void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, struct rate_sample *rs); void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, bool is_sack_reneg, struct rate_sample *rs); void tcp_rate_check_app_limited(struct sock *sk); static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) { return t1 > t2 || (t1 == t2 && after(seq1, seq2)); } /* These functions determine how the current flow behaves in respect of SACK * handling. SACK is negotiated with the peer, and therefore it can vary * between different flows. * * tcp_is_sack - SACK enabled * tcp_is_reno - No SACK */ static inline int tcp_is_sack(const struct tcp_sock *tp) { return likely(tp->rx_opt.sack_ok); } static inline bool tcp_is_reno(const struct tcp_sock *tp) { return !tcp_is_sack(tp); } static inline unsigned int tcp_left_out(const struct tcp_sock *tp) { return tp->sacked_out + tp->lost_out; } /* This determines how many packets are "in the network" to the best * of our knowledge. In many cases it is conservative, but where * detailed information is available from the receiver (via SACK * blocks etc.) we can make more aggressive calculations. * * Use this for decisions involving congestion control, use just * tp->packets_out to determine if the send queue is empty or not. * * Read this equation as: * * "Packets sent once on transmission queue" MINUS * "Packets left network, but not honestly ACKed yet" PLUS * "Packets fast retransmitted" */ static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) { return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; } #define TCP_INFINITE_SSTHRESH 0x7fffffff static inline bool tcp_in_slow_start(const struct tcp_sock *tp) { return tp->snd_cwnd < tp->snd_ssthresh; } static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) { return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; } static inline bool tcp_in_cwnd_reduction(const struct sock *sk) { return (TCPF_CA_CWR | TCPF_CA_Recovery) & (1 << inet_csk(sk)->icsk_ca_state); } /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. * The exception is cwnd reduction phase, when cwnd is decreasing towards * ssthresh. */ static inline __u32 tcp_current_ssthresh(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); if (tcp_in_cwnd_reduction(sk)) return tp->snd_ssthresh; else return max(tp->snd_ssthresh, ((tp->snd_cwnd >> 1) + (tp->snd_cwnd >> 2))); } /* Use define here intentionally to get WARN_ON location shown at the caller */ #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) void tcp_enter_cwr(struct sock *sk); __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); /* The maximum number of MSS of available cwnd for which TSO defers * sending if not using sysctl_tcp_tso_win_divisor. */ static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) { return 3; } /* Returns end sequence number of the receiver's advertised window */ static inline u32 tcp_wnd_end(const struct tcp_sock *tp) { return tp->snd_una + tp->snd_wnd; } /* We follow the spirit of RFC2861 to validate cwnd but implement a more * flexible approach. The RFC suggests cwnd should not be raised unless * it was fully used previously. And that's exactly what we do in * congestion avoidance mode. But in slow start we allow cwnd to grow * as long as the application has used half the cwnd. * Example : * cwnd is 10 (IW10), but application sends 9 frames. * We allow cwnd to reach 18 when all frames are ACKed. * This check is safe because it's as aggressive as slow start which already * risks 100% overshoot. The advantage is that we discourage application to * either send more filler packets or data to artificially blow up the cwnd * usage, and allow application-limited process to probe bw more aggressively. */ static inline bool tcp_is_cwnd_limited(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); if (tp->is_cwnd_limited) return true; /* If in slow start, ensure cwnd grows to twice what was ACKed. */ if (tcp_in_slow_start(tp)) return tp->snd_cwnd < 2 * tp->max_packets_out; return false; } /* BBR congestion control needs pacing. * Same remark for SO_MAX_PACING_RATE. * sch_fq packet scheduler is efficiently handling pacing, * but is not always installed/used. * Return true if TCP stack should pace packets itself. */ static inline bool tcp_needs_internal_pacing(const struct sock *sk) { return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; } /* Estimates in how many jiffies next packet for this flow can be sent. * Scheduling a retransmit timer too early would be silly. */ static inline unsigned long tcp_pacing_delay(const struct sock *sk) { s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; return delay > 0 ? nsecs_to_jiffies(delay) : 0; } static inline void tcp_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), max_when); } /* Something is really bad, we could not queue an additional packet, * because qdisc is full or receiver sent a 0 window, or we are paced. * We do not want to add fuel to the fire, or abort too early, * so make sure the timer we arm now is at least 200ms in the future, * regardless of current icsk_rto value (as it could be ~2ms) */ static inline unsigned long tcp_probe0_base(const struct sock *sk) { return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); } /* Variant of inet_csk_rto_backoff() used for zero window probes */ static inline unsigned long tcp_probe0_when(const struct sock *sk, unsigned long max_when) { u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } static inline void tcp_check_probe_timer(struct sock *sk) { if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, tcp_probe0_base(sk), TCP_RTO_MAX); } static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) { tp->snd_wl1 = seq; } static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) { tp->snd_wl1 = seq; } /* * Calculate(/check) TCP checksum */ static inline __sum16 tcp_v4_check(int len, __be32 saddr, __be32 daddr, __wsum base) { return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline bool tcp_checksum_complete(struct sk_buff *skb) { return !skb_csum_unnecessary(skb) && __skb_checksum_complete(skb); } bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); int tcp_filter(struct sock *sk, struct sk_buff *skb); void tcp_set_state(struct sock *sk, int state); void tcp_done(struct sock *sk); int tcp_abort(struct sock *sk, int err); static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) { rx_opt->dsack = 0; rx_opt->num_sacks = 0; } void tcp_cwnd_restart(struct sock *sk, s32 delta); static inline void tcp_slow_start_after_idle_check(struct sock *sk) { const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; struct tcp_sock *tp = tcp_sk(sk); s32 delta; if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || tp->packets_out || ca_ops->cong_control) return; delta = tcp_jiffies32 - tp->lsndtime; if (delta > inet_csk(sk)->icsk_rto) tcp_cwnd_restart(sk, delta); } /* Determine a window scaling and initial window to offer. */ void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, __u32 *rcv_wnd, __u32 *window_clamp, int wscale_ok, __u8 *rcv_wscale, __u32 init_rcv_wnd); static inline int tcp_win_from_space(const struct sock *sk, int space) { int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale); return tcp_adv_win_scale <= 0 ? (space>>(-tcp_adv_win_scale)) : space - (space>>tcp_adv_win_scale); } /* Note: caller must be prepared to deal with negative returns */ static inline int tcp_space(const struct sock *sk) { return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - READ_ONCE(sk->sk_backlog.len) - atomic_read(&sk->sk_rmem_alloc)); } static inline int tcp_full_space(const struct sock *sk) { return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); } void tcp_cleanup_rbuf(struct sock *sk, int copied); /* We provision sk_rcvbuf around 200% of sk_rcvlowat. * If 87.5 % (7/8) of the space has been consumed, we want to override * SO_RCVLOWAT constraint, since we are receiving skbs with too small * len/truesize ratio. */ static inline bool tcp_rmem_pressure(const struct sock *sk) { int rcvbuf, threshold; if (tcp_under_memory_pressure(sk)) return true; rcvbuf = READ_ONCE(sk->sk_rcvbuf); threshold = rcvbuf - (rcvbuf >> 3); return atomic_read(&sk->sk_rmem_alloc) > threshold; } extern void tcp_openreq_init_rwin(struct request_sock *req, const struct sock *sk_listener, const struct dst_entry *dst); void tcp_enter_memory_pressure(struct sock *sk); void tcp_leave_memory_pressure(struct sock *sk); static inline int keepalive_intvl_when(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); int val; /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() * and do_tcp_setsockopt(). */ val = READ_ONCE(tp->keepalive_intvl); return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); } static inline int keepalive_time_when(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); int val; /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ val = READ_ONCE(tp->keepalive_time); return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); } static inline int keepalive_probes(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); int val; /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() * and do_tcp_setsockopt(). */ val = READ_ONCE(tp->keepalive_probes); return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); } static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) { const struct inet_connection_sock *icsk = &tp->inet_conn; return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, tcp_jiffies32 - tp->rcv_tstamp); } static inline int tcp_fin_time(const struct sock *sk) { int fin_timeout = tcp_sk(sk)->linger2 ? : READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); const int rto = inet_csk(sk)->icsk_rto; if (fin_timeout < (rto << 2) - (rto >> 1)) fin_timeout = (rto << 2) - (rto >> 1); return fin_timeout; } static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, int paws_win) { if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) return true; if (unlikely(!time_before32(ktime_get_seconds(), rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) return true; /* * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, * then following tcp messages have valid values. Ignore 0 value, * or else 'negative' tsval might forbid us to accept their packets. */ if (!rx_opt->ts_recent) return true; return false; } static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, int rst) { if (tcp_paws_check(rx_opt, 0)) return false; /* RST segments are not recommended to carry timestamp, and, if they do, it is recommended to ignore PAWS because "their cleanup function should take precedence over timestamps." Certainly, it is mistake. It is necessary to understand the reasons of this constraint to relax it: if peer reboots, clock may go out-of-sync and half-open connections will not be reset. Actually, the problem would be not existing if all the implementations followed draft about maintaining clock via reboots. Linux-2.2 DOES NOT! However, we can relax time bounds for RST segments to MSL. */ if (rst && !time_before32(ktime_get_seconds(), rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) return false; return true; } bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, int mib_idx, u32 *last_oow_ack_time); static inline void tcp_mib_init(struct net *net) { /* See RFC 2012 */ TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); } /* from STCP */ static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) { tp->lost_skb_hint = NULL; } static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) { tcp_clear_retrans_hints_partial(tp); tp->retransmit_skb_hint = NULL; } union tcp_md5_addr { struct in_addr a4; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr a6; #endif }; /* - key database */ struct tcp_md5sig_key { struct hlist_node node; u8 keylen; u8 family; /* AF_INET or AF_INET6 */ u8 prefixlen; union tcp_md5_addr addr; int l3index; /* set if key added with L3 scope */ u8 key[TCP_MD5SIG_MAXKEYLEN]; struct rcu_head rcu; }; /* - sock block */ struct tcp_md5sig_info { struct hlist_head head; struct rcu_head rcu; }; /* - pseudo header */ struct tcp4_pseudohdr { __be32 saddr; __be32 daddr; __u8 pad; __u8 protocol; __be16 len; }; struct tcp6_pseudohdr { struct in6_addr saddr; struct in6_addr daddr; __be32 len; __be32 protocol; /* including padding */ }; union tcp_md5sum_block { struct tcp4_pseudohdr ip4; #if IS_ENABLED(CONFIG_IPV6) struct tcp6_pseudohdr ip6; #endif }; /* - pool: digest algorithm, hash description and scratch buffer */ struct tcp_md5sig_pool { struct ahash_request *md5_req; void *scratch; }; /* - functions */ int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, const struct sock *sk, const struct sk_buff *skb); int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index, const u8 *newkey, u8 newkeylen, gfp_t gfp); int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, u8 prefixlen, int l3index); struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, const struct sock *addr_sk); #ifdef CONFIG_TCP_MD5SIG #include <linux/jump_label.h> extern struct static_key_false tcp_md5_needed; struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family); static inline struct tcp_md5sig_key * tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family) { if (!static_branch_unlikely(&tcp_md5_needed)) return NULL; return __tcp_md5_do_lookup(sk, l3index, addr, family); } #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) #else static inline struct tcp_md5sig_key * tcp_md5_do_lookup(const struct sock *sk, int l3index, const union tcp_md5_addr *addr, int family) { return NULL; } #define tcp_twsk_md5_key(twsk) NULL #endif bool tcp_alloc_md5sig_pool(void); struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); static inline void tcp_put_md5sig_pool(void) { local_bh_enable(); } int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, unsigned int header_len); int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key); /* From tcp_fastopen.c */ void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, struct tcp_fastopen_cookie *cookie); void tcp_fastopen_cache_set(struct sock *sk, u16 mss, struct tcp_fastopen_cookie *cookie, bool syn_lost, u16 try_exp); struct tcp_fastopen_request { /* Fast Open cookie. Size 0 means a cookie request */ struct tcp_fastopen_cookie cookie; struct msghdr *data; /* data in MSG_FASTOPEN */ size_t size; int copied; /* queued in tcp_connect() */ struct ubuf_info *uarg; }; void tcp_free_fastopen_req(struct tcp_sock *tp); void tcp_fastopen_destroy_cipher(struct sock *sk); void tcp_fastopen_ctx_destroy(struct net *net); int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, void *primary_key, void *backup_key); int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, u64 *key); void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct tcp_fastopen_cookie *foc, const struct dst_entry *dst); void tcp_fastopen_init_key_once(struct net *net); bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, struct tcp_fastopen_cookie *cookie); bool tcp_fastopen_defer_connect(struct sock *sk, int *err); #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) #define TCP_FASTOPEN_KEY_MAX 2 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) /* Fastopen key context */ struct tcp_fastopen_context { siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; int num; struct rcu_head rcu; }; extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; void tcp_fastopen_active_disable(struct sock *sk); bool tcp_fastopen_active_should_disable(struct sock *sk); void tcp_fastopen_active_disable_ofo_check(struct sock *sk); void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); /* Caller needs to wrap with rcu_read_(un)lock() */ static inline struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) { struct tcp_fastopen_context *ctx; ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); if (!ctx) ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); return ctx; } static inline bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, const struct tcp_fastopen_cookie *orig) { if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && orig->len == foc->len && !memcmp(orig->val, foc->val, foc->len)) return true; return false; } static inline int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) { return ctx->num; } /* Latencies incurred by various limits for a sender. They are * chronograph-like stats that are mutually exclusive. */ enum tcp_chrono { TCP_CHRONO_UNSPEC, TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ __TCP_CHRONO_MAX, }; void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); /* This helper is needed, because skb->tcp_tsorted_anchor uses * the same memory storage than skb->destructor/_skb_refdst */ static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) { skb->destructor = NULL; skb->_skb_refdst = 0UL; } #define tcp_skb_tsorted_save(skb) { \ unsigned long _save = skb->_skb_refdst; \ skb->_skb_refdst = 0UL; #define tcp_skb_tsorted_restore(skb) \ skb->_skb_refdst = _save; \ } void tcp_write_queue_purge(struct sock *sk); static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) { return skb_rb_first(&sk->tcp_rtx_queue); } static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) { return skb_rb_last(&sk->tcp_rtx_queue); } static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) { return skb_peek(&sk->sk_write_queue); } static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) { return skb_peek_tail(&sk->sk_write_queue); } #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) static inline struct sk_buff *tcp_send_head(const struct sock *sk) { return skb_peek(&sk->sk_write_queue); } static inline bool tcp_skb_is_last(const struct sock *sk, const struct sk_buff *skb) { return skb_queue_is_last(&sk->sk_write_queue, skb); } /** * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue * @sk: socket * * Since the write queue can have a temporary empty skb in it, * we must not use "return skb_queue_empty(&sk->sk_write_queue)" */ static inline bool tcp_write_queue_empty(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); return tp->write_seq == tp->snd_nxt; } static inline bool tcp_rtx_queue_empty(const struct sock *sk) { return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); } static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) { return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); } static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) { __skb_queue_tail(&sk->sk_write_queue, skb); /* Queue it, remembering where we must start sending. */ if (sk->sk_write_queue.next == skb) tcp_chrono_start(sk, TCP_CHRONO_BUSY); } /* Insert new before skb on the write queue of sk. */ static inline void tcp_insert_write_queue_before(struct sk_buff *new, struct sk_buff *skb, struct sock *sk) { __skb_queue_before(&sk->sk_write_queue, skb, new); } static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) { tcp_skb_tsorted_anchor_cleanup(skb); __skb_unlink(skb, &sk->sk_write_queue); } void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) { tcp_skb_tsorted_anchor_cleanup(skb); rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); } static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) { list_del(&skb->tcp_tsorted_anchor); tcp_rtx_queue_unlink(skb, sk); sk_wmem_free_skb(sk, skb); } static inline void tcp_push_pending_frames(struct sock *sk) { if (tcp_send_head(sk)) { struct tcp_sock *tp = tcp_sk(sk); __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); } } /* Start sequence of the skb just after the highest skb with SACKed * bit, valid only if sacked_out > 0 or when the caller has ensured * validity by itself. */ static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) { if (!tp->sacked_out) return tp->snd_una; if (tp->highest_sack == NULL) return tp->snd_nxt; return TCP_SKB_CB(tp->highest_sack)->seq; } static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) { tcp_sk(sk)->highest_sack = skb_rb_next(skb); } static inline struct sk_buff *tcp_highest_sack(struct sock *sk) { return tcp_sk(sk)->highest_sack; } static inline void tcp_highest_sack_reset(struct sock *sk) { tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); } /* Called when old skb is about to be deleted and replaced by new skb */ static inline void tcp_highest_sack_replace(struct sock *sk, struct sk_buff *old, struct sk_buff *new) { if (old == tcp_highest_sack(sk)) tcp_sk(sk)->highest_sack = new; } /* This helper checks if socket has IP_TRANSPARENT set */ static inline bool inet_sk_transparent(const struct sock *sk) { switch (sk->sk_state) { case TCP_TIME_WAIT: return inet_twsk(sk)->tw_transparent; case TCP_NEW_SYN_RECV: return inet_rsk(inet_reqsk(sk))->no_srccheck; } return inet_sk(sk)->transparent; } /* Determines whether this is a thin stream (which may suffer from * increased latency). Used to trigger latency-reducing mechanisms. */ static inline bool tcp_stream_is_thin(struct tcp_sock *tp) { return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); } /* /proc */ enum tcp_seq_states { TCP_SEQ_STATE_LISTENING, TCP_SEQ_STATE_ESTABLISHED, }; void *tcp_seq_start(struct seq_file *seq, loff_t *pos); void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); void tcp_seq_stop(struct seq_file *seq, void *v); struct tcp_seq_afinfo { sa_family_t family; }; struct tcp_iter_state { struct seq_net_private p; enum tcp_seq_states state; struct sock *syn_wait_sk; struct tcp_seq_afinfo *bpf_seq_afinfo; int bucket, offset, sbucket, num; loff_t last_pos; }; extern struct request_sock_ops tcp_request_sock_ops; extern struct request_sock_ops tcp6_request_sock_ops; void tcp_v4_destroy_sock(struct sock *sk); struct sk_buff *tcp_gso_segment(struct sk_buff *skb, netdev_features_t features); struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); int tcp_gro_complete(struct sk_buff *skb); void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) { struct net *net = sock_net((struct sock *)tp); u32 val; val = READ_ONCE(tp->notsent_lowat); return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); } /* @wake is one when sk_stream_write_space() calls us. * This sends EPOLLOUT only if notsent_bytes is half the limit. * This mimics the strategy used in sock_def_write_space(). */ static inline bool tcp_stream_memory_free(const struct sock *sk, int wake) { const struct tcp_sock *tp = tcp_sk(sk); u32 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); return (notsent_bytes << wake) < tcp_notsent_lowat(tp); } #ifdef CONFIG_PROC_FS int tcp4_proc_init(void); void tcp4_proc_exit(void); #endif int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); int tcp_conn_request(struct request_sock_ops *rsk_ops, const struct tcp_request_sock_ops *af_ops, struct sock *sk, struct sk_buff *skb); /* TCP af-specific functions */ struct tcp_sock_af_ops { #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, const struct sock *addr_sk); int (*calc_md5_hash)(char *location, const struct tcp_md5sig_key *md5, const struct sock *sk, const struct sk_buff *skb); int (*md5_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); #endif }; struct tcp_request_sock_ops { u16 mss_clamp; #ifdef CONFIG_TCP_MD5SIG struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, const struct sock *addr_sk); int (*calc_md5_hash) (char *location, const struct tcp_md5sig_key *md5, const struct sock *sk, const struct sk_buff *skb); #endif void (*init_req)(struct request_sock *req, const struct sock *sk_listener, struct sk_buff *skb); #ifdef CONFIG_SYN_COOKIES __u32 (*cookie_init_seq)(const struct sk_buff *skb, __u16 *mss); #endif struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl, const struct request_sock *req); u32 (*init_seq)(const struct sk_buff *skb); u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); int (*send_synack)(const struct sock *sk, struct dst_entry *dst, struct flowi *fl, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb); }; extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; #if IS_ENABLED(CONFIG_IPV6) extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; #endif #ifdef CONFIG_SYN_COOKIES static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, const struct sock *sk, struct sk_buff *skb, __u16 *mss) { tcp_synq_overflow(sk); __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); return ops->cookie_init_seq(skb, mss); } #else static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, const struct sock *sk, struct sk_buff *skb, __u16 *mss) { return 0; } #endif int tcpv4_offload_init(void); void tcp_v4_init(void); void tcp_init(void); /* tcp_recovery.c */ void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd); extern bool tcp_rack_mark_lost(struct sock *sk); extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, u64 xmit_time); extern void tcp_rack_reo_timeout(struct sock *sk); extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); /* At how many usecs into the future should the RTO fire? */ static inline s64 tcp_rto_delta_us(const struct sock *sk) { const struct sk_buff *skb = tcp_rtx_queue_head(sk); u32 rto = inet_csk(sk)->icsk_rto; if (likely(skb)) { u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; } else { WARN_ONCE(1, "rtx queue emtpy: " "out:%u sacked:%u lost:%u retrans:%u " "tlp_high_seq:%u sk_state:%u ca_state:%u " "advmss:%u mss_cache:%u pmtu:%u\n", tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, tcp_sk(sk)->tlp_high_seq, sk->sk_state, inet_csk(sk)->icsk_ca_state, tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, inet_csk(sk)->icsk_pmtu_cookie); return jiffies_to_usecs(rto); } } /* * Save and compile IPv4 options, return a pointer to it */ static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, struct sk_buff *skb) { const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; struct ip_options_rcu *dopt = NULL; if (opt->optlen) { int opt_size = sizeof(*dopt) + opt->optlen; dopt = kmalloc(opt_size, GFP_ATOMIC); if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { kfree(dopt); dopt = NULL; } } return dopt; } /* locally generated TCP pure ACKs have skb->truesize == 2 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) * This is much faster than dissecting the packet to find out. * (Think of GRE encapsulations, IPv4, IPv6, ...) */ static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) { return skb->truesize == 2; } static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) { skb->truesize = 2; } static inline int tcp_inq(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); int answ; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { answ = 0; } else if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || before(tp->urg_seq, tp->copied_seq) || !before(tp->urg_seq, tp->rcv_nxt)) { answ = tp->rcv_nxt - tp->copied_seq; /* Subtract 1, if FIN was received */ if (answ && sock_flag(sk, SOCK_DONE)) answ--; } else { answ = tp->urg_seq - tp->copied_seq; } return answ; } int tcp_peek_len(struct socket *sock); static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) { u16 segs_in; segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); tp->segs_in += segs_in; if (skb->len > tcp_hdrlen(skb)) tp->data_segs_in += segs_in; } /* * TCP listen path runs lockless. * We forced "struct sock" to be const qualified to make sure * we don't modify one of its field by mistake. * Here, we increment sk_drops which is an atomic_t, so we can safely * make sock writable again. */ static inline void tcp_listendrop(const struct sock *sk) { atomic_inc(&((struct sock *)sk)->sk_drops); __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); } enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); /* * Interface for adding Upper Level Protocols over TCP */ #define TCP_ULP_NAME_MAX 16 #define TCP_ULP_MAX 128 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) struct tcp_ulp_ops { struct list_head list; /* initialize ulp */ int (*init)(struct sock *sk); /* update ulp */ void (*update)(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)); /* cleanup ulp */ void (*release)(struct sock *sk); /* diagnostic */ int (*get_info)(struct sock *sk, struct sk_buff *skb); size_t (*get_info_size)(const struct sock *sk); /* clone ulp */ void (*clone)(const struct request_sock *req, struct sock *newsk, const gfp_t priority); char name[TCP_ULP_NAME_MAX]; struct module *owner; }; int tcp_register_ulp(struct tcp_ulp_ops *type); void tcp_unregister_ulp(struct tcp_ulp_ops *type); int tcp_set_ulp(struct sock *sk, const char *name); void tcp_get_available_ulp(char *buf, size_t len); void tcp_cleanup_ulp(struct sock *sk); void tcp_update_ulp(struct sock *sk, struct proto *p, void (*write_space)(struct sock *sk)); #define MODULE_ALIAS_TCP_ULP(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) struct sk_msg; struct sk_psock; #ifdef CONFIG_BPF_STREAM_PARSER struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); #else static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) { } #endif /* CONFIG_BPF_STREAM_PARSER */ #ifdef CONFIG_NET_SOCK_MSG int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, int flags); int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg, int len, int flags); #endif /* CONFIG_NET_SOCK_MSG */ #ifdef CONFIG_CGROUP_BPF static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, struct sk_buff *skb, unsigned int end_offset) { skops->skb = skb; skops->skb_data_end = skb->data + end_offset; } #else static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, struct sk_buff *skb, unsigned int end_offset) { } #endif /* Call BPF_SOCK_OPS program that returns an int. If the return value * is < 0, then the BPF op failed (for example if the loaded BPF * program does not support the chosen operation or there is no BPF * program loaded). */ #ifdef CONFIG_BPF static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) { struct bpf_sock_ops_kern sock_ops; int ret; memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); if (sk_fullsock(sk)) { sock_ops.is_fullsock = 1; sock_owned_by_me(sk); } sock_ops.sk = sk; sock_ops.op = op; if (nargs > 0) memcpy(sock_ops.args, args, nargs * sizeof(*args)); ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); if (ret == 0) ret = sock_ops.reply; else ret = -1; return ret; } static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) { u32 args[2] = {arg1, arg2}; return tcp_call_bpf(sk, op, 2, args); } static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, u32 arg3) { u32 args[3] = {arg1, arg2, arg3}; return tcp_call_bpf(sk, op, 3, args); } #else static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) { return -EPERM; } static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) { return -EPERM; } static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, u32 arg3) { return -EPERM; } #endif static inline u32 tcp_timeout_init(struct sock *sk) { int timeout; timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); if (timeout <= 0) timeout = TCP_TIMEOUT_INIT; return timeout; } static inline u32 tcp_rwnd_init_bpf(struct sock *sk) { int rwnd; rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); if (rwnd < 0) rwnd = 0; return rwnd; } static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) { return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); } static inline void tcp_bpf_rtt(struct sock *sk) { if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); } #if IS_ENABLED(CONFIG_SMC) extern struct static_key_false tcp_have_smc; #endif #if IS_ENABLED(CONFIG_TLS_DEVICE) void clean_acked_data_enable(struct inet_connection_sock *icsk, void (*cad)(struct sock *sk, u32 ack_seq)); void clean_acked_data_disable(struct inet_connection_sock *icsk); void clean_acked_data_flush(void); #endif DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); static inline void tcp_add_tx_delay(struct sk_buff *skb, const struct tcp_sock *tp) { if (static_branch_unlikely(&tcp_tx_delay_enabled)) skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; } /* Compute Earliest Departure Time for some control packets * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. */ static inline u64 tcp_transmit_time(const struct sock *sk) { if (static_branch_unlikely(&tcp_tx_delay_enabled)) { u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; } return 0; } #endif /* _TCP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DELAY_H #define _LINUX_DELAY_H /* * Copyright (C) 1993 Linus Torvalds * * Delay routines, using a pre-computed "loops_per_jiffy" value. * * Please note that ndelay(), udelay() and mdelay() may return early for * several reasons: * 1. computed loops_per_jiffy too low (due to the time taken to * execute the timer interrupt.) * 2. cache behaviour affecting the time it takes to execute the * loop function. * 3. CPU clock rate changes. * * Please see this thread: * https://lists.openwall.net/linux-kernel/2011/01/09/56 */ #include <linux/kernel.h> extern unsigned long loops_per_jiffy; #include <asm/delay.h> /* * Using udelay() for intervals greater than a few milliseconds can * risk overflow for high loops_per_jiffy (high bogomips) machines. The * mdelay() provides a wrapper to prevent this. For delays greater * than MAX_UDELAY_MS milliseconds, the wrapper is used. Architecture * specific values can be defined in asm-???/delay.h as an override. * The 2nd mdelay() definition ensures GCC will optimize away the * while loop for the common cases where n <= MAX_UDELAY_MS -- Paul G. */ #ifndef MAX_UDELAY_MS #define MAX_UDELAY_MS 5 #endif #ifndef mdelay #define mdelay(n) (\ (__builtin_constant_p(n) && (n)<=MAX_UDELAY_MS) ? udelay((n)*1000) : \ ({unsigned long __ms=(n); while (__ms--) udelay(1000);})) #endif #ifndef ndelay static inline void ndelay(unsigned long x) { udelay(DIV_ROUND_UP(x, 1000)); } #define ndelay(x) ndelay(x) #endif extern unsigned long lpj_fine; void calibrate_delay(void); void __attribute__((weak)) calibration_delay_done(void); void msleep(unsigned int msecs); unsigned long msleep_interruptible(unsigned int msecs); void usleep_range(unsigned long min, unsigned long max); static inline void ssleep(unsigned int seconds) { msleep(seconds * 1000); } /* see Documentation/timers/timers-howto.rst for the thresholds */ static inline void fsleep(unsigned long usecs) { if (usecs <= 10) udelay(usecs); else if (usecs <= 20000) usleep_range(usecs, 2 * usecs); else msleep(DIV_ROUND_UP(usecs, 1000)); } #endif /* defined(_LINUX_DELAY_H) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 /* SPDX-License-Identifier: GPL-2.0-only */ /* * linux/fs/pnode.h * * (C) Copyright IBM Corporation 2005. */ #ifndef _LINUX_PNODE_H #define _LINUX_PNODE_H #include <linux/list.h> #include "mount.h" #define IS_MNT_SHARED(m) ((m)->mnt.mnt_flags & MNT_SHARED) #define IS_MNT_SLAVE(m) ((m)->mnt_master) #define IS_MNT_NEW(m) (!(m)->mnt_ns || is_anon_ns((m)->mnt_ns)) #define CLEAR_MNT_SHARED(m) ((m)->mnt.mnt_flags &= ~MNT_SHARED) #define IS_MNT_UNBINDABLE(m) ((m)->mnt.mnt_flags & MNT_UNBINDABLE) #define IS_MNT_MARKED(m) ((m)->mnt.mnt_flags & MNT_MARKED) #define SET_MNT_MARK(m) ((m)->mnt.mnt_flags |= MNT_MARKED) #define CLEAR_MNT_MARK(m) ((m)->mnt.mnt_flags &= ~MNT_MARKED) #define IS_MNT_LOCKED(m) ((m)->mnt.mnt_flags & MNT_LOCKED) #define CL_EXPIRE 0x01 #define CL_SLAVE 0x02 #define CL_COPY_UNBINDABLE 0x04 #define CL_MAKE_SHARED 0x08 #define CL_PRIVATE 0x10 #define CL_SHARED_TO_SLAVE 0x20 #define CL_COPY_MNT_NS_FILE 0x40 #define CL_COPY_ALL (CL_COPY_UNBINDABLE | CL_COPY_MNT_NS_FILE) static inline void set_mnt_shared(struct mount *mnt) { mnt->mnt.mnt_flags &= ~MNT_SHARED_MASK; mnt->mnt.mnt_flags |= MNT_SHARED; } void change_mnt_propagation(struct mount *, int); int propagate_mnt(struct mount *, struct mountpoint *, struct mount *, struct hlist_head *); int propagate_umount(struct list_head *); int propagate_mount_busy(struct mount *, int); void propagate_mount_unlock(struct mount *); void mnt_release_group_id(struct mount *); int get_dominating_id(struct mount *mnt, const struct path *root); int mnt_get_count(struct mount *mnt); void mnt_set_mountpoint(struct mount *, struct mountpoint *, struct mount *); void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt); struct mount *copy_tree(struct mount *, struct dentry *, int); bool is_path_reachable(struct mount *, struct dentry *, const struct path *root); int count_mounts(struct mnt_namespace *ns, struct mount *mnt); #endif /* _LINUX_PNODE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HUGE_MM_H #define _LINUX_HUGE_MM_H #include <linux/sched/coredump.h> #include <linux/mm_types.h> #include <linux/fs.h> /* only for vma_is_dax() */ vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd); int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, struct vm_area_struct *vma); #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); #else static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) { } #endif vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd); struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, unsigned int flags); bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long next); int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr); int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr); bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd); int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, pgprot_t newprot, unsigned long cp_flags); vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, pgprot_t pgprot, bool write); /** * vmf_insert_pfn_pmd - insert a pmd size pfn * @vmf: Structure describing the fault * @pfn: pfn to insert * @pgprot: page protection to use * @write: whether it's a write fault * * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. * * Return: vm_fault_t value. */ static inline vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) { return vmf_insert_pfn_pmd_prot(vmf, pfn, vmf->vma->vm_page_prot, write); } vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, pgprot_t pgprot, bool write); /** * vmf_insert_pfn_pud - insert a pud size pfn * @vmf: Structure describing the fault * @pfn: pfn to insert * @pgprot: page protection to use * @write: whether it's a write fault * * Insert a pud size pfn. See vmf_insert_pfn() for additional info. * * Return: vm_fault_t value. */ static inline vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) { return vmf_insert_pfn_pud_prot(vmf, pfn, vmf->vma->vm_page_prot, write); } enum transparent_hugepage_flag { TRANSPARENT_HUGEPAGE_NEVER_DAX, TRANSPARENT_HUGEPAGE_FLAG, TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, #ifdef CONFIG_DEBUG_VM TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG, #endif }; struct kobject; struct kobj_attribute; ssize_t single_hugepage_flag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count, enum transparent_hugepage_flag flag); ssize_t single_hugepage_flag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf, enum transparent_hugepage_flag flag); extern struct kobj_attribute shmem_enabled_attr; #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define HPAGE_PMD_SHIFT PMD_SHIFT #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) #define HPAGE_PUD_SHIFT PUD_SHIFT #define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT) #define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1)) extern unsigned long transparent_hugepage_flags; static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, unsigned long haddr) { /* Don't have to check pgoff for anonymous vma */ if (!vma_is_anonymous(vma)) { if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, HPAGE_PMD_NR)) return false; } if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) return false; return true; } static inline bool transhuge_vma_enabled(struct vm_area_struct *vma, unsigned long vm_flags) { /* Explicitly disabled through madvise. */ if ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) return false; return true; } /* * to be used on vmas which are known to support THP. * Use transparent_hugepage_active otherwise */ static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma) { /* * If the hardware/firmware marked hugepage support disabled. */ if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX)) return false; if (!transhuge_vma_enabled(vma, vma->vm_flags)) return false; if (vma_is_temporary_stack(vma)) return false; if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_FLAG)) return true; if (vma_is_dax(vma)) return true; if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)) return !!(vma->vm_flags & VM_HUGEPAGE); return false; } bool transparent_hugepage_active(struct vm_area_struct *vma); #define transparent_hugepage_use_zero_page() \ (transparent_hugepage_flags & \ (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); void prep_transhuge_page(struct page *page); void free_transhuge_page(struct page *page); bool is_transparent_hugepage(struct page *page); bool can_split_huge_page(struct page *page, int *pextra_pins); int split_huge_page_to_list(struct page *page, struct list_head *list); static inline int split_huge_page(struct page *page) { return split_huge_page_to_list(page, NULL); } void deferred_split_huge_page(struct page *page); void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address, bool freeze, struct page *page); #define split_huge_pmd(__vma, __pmd, __address) \ do { \ pmd_t *____pmd = (__pmd); \ if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \ || pmd_devmap(*____pmd)) \ __split_huge_pmd(__vma, __pmd, __address, \ false, NULL); \ } while (0) void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, bool freeze, struct page *page); void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, unsigned long address); #define split_huge_pud(__vma, __pud, __address) \ do { \ pud_t *____pud = (__pud); \ if (pud_trans_huge(*____pud) \ || pud_devmap(*____pud)) \ __split_huge_pud(__vma, __pud, __address); \ } while (0) int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice); void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next); spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma); spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma); static inline int is_swap_pmd(pmd_t pmd) { return !pmd_none(pmd) && !pmd_present(pmd); } /* mmap_lock must be held on entry */ static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) { if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) return __pmd_trans_huge_lock(pmd, vma); else return NULL; } static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) { if (pud_trans_huge(*pud) || pud_devmap(*pud)) return __pud_trans_huge_lock(pud, vma); else return NULL; } /** * thp_head - Head page of a transparent huge page. * @page: Any page (tail, head or regular) found in the page cache. */ static inline struct page *thp_head(struct page *page) { return compound_head(page); } /** * thp_order - Order of a transparent huge page. * @page: Head page of a transparent huge page. */ static inline unsigned int thp_order(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); if (PageHead(page)) return HPAGE_PMD_ORDER; return 0; } /** * thp_nr_pages - The number of regular pages in this huge page. * @page: The head page of a huge page. */ static inline int thp_nr_pages(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); if (PageHead(page)) return HPAGE_PMD_NR; return 1; } struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap); struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud, int flags, struct dev_pagemap **pgmap); vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t orig_pmd); extern struct page *huge_zero_page; extern unsigned long huge_zero_pfn; static inline bool is_huge_zero_page(struct page *page) { return READ_ONCE(huge_zero_page) == page; } static inline bool is_huge_zero_pmd(pmd_t pmd) { return READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd) && pmd_present(pmd); } static inline bool is_huge_zero_pud(pud_t pud) { return false; } struct page *mm_get_huge_zero_page(struct mm_struct *mm); void mm_put_huge_zero_page(struct mm_struct *mm); #define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot)) static inline bool thp_migration_supported(void) { return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION); } static inline struct list_head *page_deferred_list(struct page *page) { /* * Global or memcg deferred list in the second tail pages is * occupied by compound_head. */ return &page[2].deferred_list; } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) #define HPAGE_PMD_MASK ({ BUILD_BUG(); 0; }) #define HPAGE_PMD_SIZE ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_MASK ({ BUILD_BUG(); 0; }) #define HPAGE_PUD_SIZE ({ BUILD_BUG(); 0; }) static inline struct page *thp_head(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return page; } static inline unsigned int thp_order(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return 0; } static inline int thp_nr_pages(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return 1; } static inline bool __transparent_hugepage_enabled(struct vm_area_struct *vma) { return false; } static inline bool transparent_hugepage_active(struct vm_area_struct *vma) { return false; } static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, unsigned long haddr) { return false; } static inline bool transhuge_vma_enabled(struct vm_area_struct *vma, unsigned long vm_flags) { return false; } static inline void prep_transhuge_page(struct page *page) {} static inline bool is_transparent_hugepage(struct page *page) { return false; } #define transparent_hugepage_flags 0UL #define thp_get_unmapped_area NULL static inline bool can_split_huge_page(struct page *page, int *pextra_pins) { BUILD_BUG(); return false; } static inline int split_huge_page_to_list(struct page *page, struct list_head *list) { return 0; } static inline int split_huge_page(struct page *page) { return 0; } static inline void deferred_split_huge_page(struct page *page) {} #define split_huge_pmd(__vma, __pmd, __address) \ do { } while (0) static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, unsigned long address, bool freeze, struct page *page) {} static inline void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, bool freeze, struct page *page) {} #define split_huge_pud(__vma, __pmd, __address) \ do { } while (0) static inline int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice) { BUG(); return 0; } static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, unsigned long end, long adjust_next) { } static inline int is_swap_pmd(pmd_t pmd) { return 0; } static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) { return NULL; } static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) { return NULL; } static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t orig_pmd) { return 0; } static inline bool is_huge_zero_page(struct page *page) { return false; } static inline bool is_huge_zero_pmd(pmd_t pmd) { return false; } static inline bool is_huge_zero_pud(pud_t pud) { return false; } static inline void mm_put_huge_zero_page(struct mm_struct *mm) { return; } static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap) { return NULL; } static inline struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud, int flags, struct dev_pagemap **pgmap) { return NULL; } static inline bool thp_migration_supported(void) { return false; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /** * thp_size - Size of a transparent huge page. * @page: Head page of a transparent huge page. * * Return: Number of bytes in this page. */ static inline unsigned long thp_size(struct page *page) { return PAGE_SIZE << thp_order(page); } #endif /* _LINUX_HUGE_MM_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 // SPDX-License-Identifier: GPL-2.0-only /* * NSA Security-Enhanced Linux (SELinux) security module * * This file contains the SELinux hook function implementations. * * Authors: Stephen Smalley, <sds@tycho.nsa.gov> * Chris Vance, <cvance@nai.com> * Wayne Salamon, <wsalamon@nai.com> * James Morris <jmorris@redhat.com> * * Copyright (C) 2001,2002 Networks Associates Technology, Inc. * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> * Eric Paris <eparis@redhat.com> * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * <dgoeddel@trustedcs.com> * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. * Paul Moore <paul@paul-moore.com> * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. * Yuichi Nakamura <ynakam@hitachisoft.jp> * Copyright (C) 2016 Mellanox Technologies */ #include <linux/init.h> #include <linux/kd.h> #include <linux/kernel.h> #include <linux/kernel_read_file.h> #include <linux/tracehook.h> #include <linux/errno.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/lsm_hooks.h> #include <linux/xattr.h> #include <linux/capability.h> #include <linux/unistd.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/proc_fs.h> #include <linux/swap.h> #include <linux/spinlock.h> #include <linux/syscalls.h> #include <linux/dcache.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/namei.h> #include <linux/mount.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/tty.h> #include <net/icmp.h> #include <net/ip.h> /* for local_port_range[] */ #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ #include <net/inet_connection_sock.h> #include <net/net_namespace.h> #include <net/netlabel.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/netdevice.h> /* for network interface checks */ #include <net/netlink.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/dccp.h> #include <linux/sctp.h> #include <net/sctp/structs.h> #include <linux/quota.h> #include <linux/un.h> /* for Unix socket types */ #include <net/af_unix.h> /* for Unix socket types */ #include <linux/parser.h> #include <linux/nfs_mount.h> #include <net/ipv6.h> #include <linux/hugetlb.h> #include <linux/personality.h> #include <linux/audit.h> #include <linux/string.h> #include <linux/mutex.h> #include <linux/posix-timers.h> #include <linux/syslog.h> #include <linux/user_namespace.h> #include <linux/export.h> #include <linux/msg.h> #include <linux/shm.h> #include <linux/bpf.h> #include <linux/kernfs.h> #include <linux/stringhash.h> /* for hashlen_string() */ #include <uapi/linux/mount.h> #include <linux/fsnotify.h> #include <linux/fanotify.h> #include "avc.h" #include "objsec.h" #include "netif.h" #include "netnode.h" #include "netport.h" #include "ibpkey.h" #include "xfrm.h" #include "netlabel.h" #include "audit.h" #include "avc_ss.h" struct selinux_state selinux_state; /* SECMARK reference count */ static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); #ifdef CONFIG_SECURITY_SELINUX_DEVELOP static int selinux_enforcing_boot __initdata; static int __init enforcing_setup(char *str) { unsigned long enforcing; if (!kstrtoul(str, 0, &enforcing)) selinux_enforcing_boot = enforcing ? 1 : 0; return 1; } __setup("enforcing=", enforcing_setup); #else #define selinux_enforcing_boot 1 #endif int selinux_enabled_boot __initdata = 1; #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM static int __init selinux_enabled_setup(char *str) { unsigned long enabled; if (!kstrtoul(str, 0, &enabled)) selinux_enabled_boot = enabled ? 1 : 0; return 1; } __setup("selinux=", selinux_enabled_setup); #endif static unsigned int selinux_checkreqprot_boot = CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; static int __init checkreqprot_setup(char *str) { unsigned long checkreqprot; if (!kstrtoul(str, 0, &checkreqprot)) { selinux_checkreqprot_boot = checkreqprot ? 1 : 0; if (checkreqprot) pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n"); } return 1; } __setup("checkreqprot=", checkreqprot_setup); /** * selinux_secmark_enabled - Check to see if SECMARK is currently enabled * * Description: * This function checks the SECMARK reference counter to see if any SECMARK * targets are currently configured, if the reference counter is greater than * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is * enabled, false (0) if SECMARK is disabled. If the always_check_network * policy capability is enabled, SECMARK is always considered enabled. * */ static int selinux_secmark_enabled(void) { return (selinux_policycap_alwaysnetwork() || atomic_read(&selinux_secmark_refcount)); } /** * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled * * Description: * This function checks if NetLabel or labeled IPSEC is enabled. Returns true * (1) if any are enabled or false (0) if neither are enabled. If the * always_check_network policy capability is enabled, peer labeling * is always considered enabled. * */ static int selinux_peerlbl_enabled(void) { return (selinux_policycap_alwaysnetwork() || netlbl_enabled() || selinux_xfrm_enabled()); } static int selinux_netcache_avc_callback(u32 event) { if (event == AVC_CALLBACK_RESET) { sel_netif_flush(); sel_netnode_flush(); sel_netport_flush(); synchronize_net(); } return 0; } static int selinux_lsm_notifier_avc_callback(u32 event) { if (event == AVC_CALLBACK_RESET) { sel_ib_pkey_flush(); call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); } return 0; } /* * initialise the security for the init task */ static void cred_init_security(void) { struct cred *cred = (struct cred *) current->real_cred; struct task_security_struct *tsec; tsec = selinux_cred(cred); tsec->osid = tsec->sid = SECINITSID_KERNEL; } /* * get the security ID of a set of credentials */ static inline u32 cred_sid(const struct cred *cred) { const struct task_security_struct *tsec; tsec = selinux_cred(cred); return tsec->sid; } /* * get the objective security ID of a task */ static inline u32 task_sid(const struct task_struct *task) { u32 sid; rcu_read_lock(); sid = cred_sid(__task_cred(task)); rcu_read_unlock(); return sid; } static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); /* * Try reloading inode security labels that have been marked as invalid. The * @may_sleep parameter indicates when sleeping and thus reloading labels is * allowed; when set to false, returns -ECHILD when the label is * invalid. The @dentry parameter should be set to a dentry of the inode. */ static int __inode_security_revalidate(struct inode *inode, struct dentry *dentry, bool may_sleep) { struct inode_security_struct *isec = selinux_inode(inode); might_sleep_if(may_sleep); if (selinux_initialized(&selinux_state) && isec->initialized != LABEL_INITIALIZED) { if (!may_sleep) return -ECHILD; /* * Try reloading the inode security label. This will fail if * @opt_dentry is NULL and no dentry for this inode can be * found; in that case, continue using the old label. */ inode_doinit_with_dentry(inode, dentry); } return 0; } static struct inode_security_struct *inode_security_novalidate(struct inode *inode) { return selinux_inode(inode); } static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) { int error; error = __inode_security_revalidate(inode, NULL, !rcu); if (error) return ERR_PTR(error); return selinux_inode(inode); } /* * Get the security label of an inode. */ static struct inode_security_struct *inode_security(struct inode *inode) { __inode_security_revalidate(inode, NULL, true); return selinux_inode(inode); } static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); return selinux_inode(inode); } /* * Get the security label of a dentry's backing inode. */ static struct inode_security_struct *backing_inode_security(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); __inode_security_revalidate(inode, dentry, true); return selinux_inode(inode); } static void inode_free_security(struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); struct superblock_security_struct *sbsec; if (!isec) return; sbsec = inode->i_sb->s_security; /* * As not all inode security structures are in a list, we check for * empty list outside of the lock to make sure that we won't waste * time taking a lock doing nothing. * * The list_del_init() function can be safely called more than once. * It should not be possible for this function to be called with * concurrent list_add(), but for better safety against future changes * in the code, we use list_empty_careful() here. */ if (!list_empty_careful(&isec->list)) { spin_lock(&sbsec->isec_lock); list_del_init(&isec->list); spin_unlock(&sbsec->isec_lock); } } static void superblock_free_security(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; sb->s_security = NULL; kfree(sbsec); } struct selinux_mnt_opts { const char *fscontext, *context, *rootcontext, *defcontext; }; static void selinux_free_mnt_opts(void *mnt_opts) { struct selinux_mnt_opts *opts = mnt_opts; kfree(opts->fscontext); kfree(opts->context); kfree(opts->rootcontext); kfree(opts->defcontext); kfree(opts); } enum { Opt_error = -1, Opt_context = 0, Opt_defcontext = 1, Opt_fscontext = 2, Opt_rootcontext = 3, Opt_seclabel = 4, }; #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} static struct { const char *name; int len; int opt; bool has_arg; } tokens[] = { A(context, true), A(fscontext, true), A(defcontext, true), A(rootcontext, true), A(seclabel, false), }; #undef A static int match_opt_prefix(char *s, int l, char **arg) { int i; for (i = 0; i < ARRAY_SIZE(tokens); i++) { size_t len = tokens[i].len; if (len > l || memcmp(s, tokens[i].name, len)) continue; if (tokens[i].has_arg) { if (len == l || s[len] != '=') continue; *arg = s + len + 1; } else if (len != l) continue; return tokens[i].opt; } return Opt_error; } #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" static int may_context_mount_sb_relabel(u32 sid, struct superblock_security_struct *sbsec, const struct cred *cred) { const struct task_security_struct *tsec = selinux_cred(cred); int rc; rc = avc_has_perm(&selinux_state, tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELFROM, NULL); if (rc) return rc; rc = avc_has_perm(&selinux_state, tsec->sid, sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELTO, NULL); return rc; } static int may_context_mount_inode_relabel(u32 sid, struct superblock_security_struct *sbsec, const struct cred *cred) { const struct task_security_struct *tsec = selinux_cred(cred); int rc; rc = avc_has_perm(&selinux_state, tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELFROM, NULL); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, NULL); return rc; } static int selinux_is_genfs_special_handling(struct super_block *sb) { /* Special handling. Genfs but also in-core setxattr handler */ return !strcmp(sb->s_type->name, "sysfs") || !strcmp(sb->s_type->name, "pstore") || !strcmp(sb->s_type->name, "debugfs") || !strcmp(sb->s_type->name, "tracefs") || !strcmp(sb->s_type->name, "rootfs") || (selinux_policycap_cgroupseclabel() && (!strcmp(sb->s_type->name, "cgroup") || !strcmp(sb->s_type->name, "cgroup2"))); } static int selinux_is_sblabel_mnt(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; /* * IMPORTANT: Double-check logic in this function when adding a new * SECURITY_FS_USE_* definition! */ BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); switch (sbsec->behavior) { case SECURITY_FS_USE_XATTR: case SECURITY_FS_USE_TRANS: case SECURITY_FS_USE_TASK: case SECURITY_FS_USE_NATIVE: return 1; case SECURITY_FS_USE_GENFS: return selinux_is_genfs_special_handling(sb); /* Never allow relabeling on context mounts */ case SECURITY_FS_USE_MNTPOINT: case SECURITY_FS_USE_NONE: default: return 0; } } static int sb_finish_set_opts(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; struct dentry *root = sb->s_root; struct inode *root_inode = d_backing_inode(root); int rc = 0; if (sbsec->behavior == SECURITY_FS_USE_XATTR) { /* Make sure that the xattr handler exists and that no error other than -ENODATA is returned by getxattr on the root directory. -ENODATA is ok, as this may be the first boot of the SELinux kernel before we have assigned xattr values to the filesystem. */ if (!(root_inode->i_opflags & IOP_XATTR)) { pr_warn("SELinux: (dev %s, type %s) has no " "xattr support\n", sb->s_id, sb->s_type->name); rc = -EOPNOTSUPP; goto out; } rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); if (rc < 0 && rc != -ENODATA) { if (rc == -EOPNOTSUPP) pr_warn("SELinux: (dev %s, type " "%s) has no security xattr handler\n", sb->s_id, sb->s_type->name); else pr_warn("SELinux: (dev %s, type " "%s) getxattr errno %d\n", sb->s_id, sb->s_type->name, -rc); goto out; } } sbsec->flags |= SE_SBINITIALIZED; /* * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply * leave the flag untouched because sb_clone_mnt_opts might be handing * us a superblock that needs the flag to be cleared. */ if (selinux_is_sblabel_mnt(sb)) sbsec->flags |= SBLABEL_MNT; else sbsec->flags &= ~SBLABEL_MNT; /* Initialize the root inode. */ rc = inode_doinit_with_dentry(root_inode, root); /* Initialize any other inodes associated with the superblock, e.g. inodes created prior to initial policy load or inodes created during get_sb by a pseudo filesystem that directly populates itself. */ spin_lock(&sbsec->isec_lock); while (!list_empty(&sbsec->isec_head)) { struct inode_security_struct *isec = list_first_entry(&sbsec->isec_head, struct inode_security_struct, list); struct inode *inode = isec->inode; list_del_init(&isec->list); spin_unlock(&sbsec->isec_lock); inode = igrab(inode); if (inode) { if (!IS_PRIVATE(inode)) inode_doinit_with_dentry(inode, NULL); iput(inode); } spin_lock(&sbsec->isec_lock); } spin_unlock(&sbsec->isec_lock); out: return rc; } static int bad_option(struct superblock_security_struct *sbsec, char flag, u32 old_sid, u32 new_sid) { char mnt_flags = sbsec->flags & SE_MNTMASK; /* check if the old mount command had the same options */ if (sbsec->flags & SE_SBINITIALIZED) if (!(sbsec->flags & flag) || (old_sid != new_sid)) return 1; /* check if we were passed the same options twice, * aka someone passed context=a,context=b */ if (!(sbsec->flags & SE_SBINITIALIZED)) if (mnt_flags & flag) return 1; return 0; } static int parse_sid(struct super_block *sb, const char *s, u32 *sid) { int rc = security_context_str_to_sid(&selinux_state, s, sid, GFP_KERNEL); if (rc) pr_warn("SELinux: security_context_str_to_sid" "(%s) failed for (dev %s, type %s) errno=%d\n", s, sb->s_id, sb->s_type->name, rc); return rc; } /* * Allow filesystems with binary mount data to explicitly set mount point * labeling information. */ static int selinux_set_mnt_opts(struct super_block *sb, void *mnt_opts, unsigned long kern_flags, unsigned long *set_kern_flags) { const struct cred *cred = current_cred(); struct superblock_security_struct *sbsec = sb->s_security; struct dentry *root = sbsec->sb->s_root; struct selinux_mnt_opts *opts = mnt_opts; struct inode_security_struct *root_isec; u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; u32 defcontext_sid = 0; int rc = 0; mutex_lock(&sbsec->lock); if (!selinux_initialized(&selinux_state)) { if (!opts) { /* Defer initialization until selinux_complete_init, after the initial policy is loaded and the security server is ready to handle calls. */ goto out; } rc = -EINVAL; pr_warn("SELinux: Unable to set superblock options " "before the security server is initialized\n"); goto out; } if (kern_flags && !set_kern_flags) { /* Specifying internal flags without providing a place to * place the results is not allowed */ rc = -EINVAL; goto out; } /* * Binary mount data FS will come through this function twice. Once * from an explicit call and once from the generic calls from the vfs. * Since the generic VFS calls will not contain any security mount data * we need to skip the double mount verification. * * This does open a hole in which we will not notice if the first * mount using this sb set explict options and a second mount using * this sb does not set any security options. (The first options * will be used for both mounts) */ if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) && !opts) goto out; root_isec = backing_inode_security_novalidate(root); /* * parse the mount options, check if they are valid sids. * also check if someone is trying to mount the same sb more * than once with different security options. */ if (opts) { if (opts->fscontext) { rc = parse_sid(sb, opts->fscontext, &fscontext_sid); if (rc) goto out; if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, fscontext_sid)) goto out_double_mount; sbsec->flags |= FSCONTEXT_MNT; } if (opts->context) { rc = parse_sid(sb, opts->context, &context_sid); if (rc) goto out; if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, context_sid)) goto out_double_mount; sbsec->flags |= CONTEXT_MNT; } if (opts->rootcontext) { rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); if (rc) goto out; if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, rootcontext_sid)) goto out_double_mount; sbsec->flags |= ROOTCONTEXT_MNT; } if (opts->defcontext) { rc = parse_sid(sb, opts->defcontext, &defcontext_sid); if (rc) goto out; if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, defcontext_sid)) goto out_double_mount; sbsec->flags |= DEFCONTEXT_MNT; } } if (sbsec->flags & SE_SBINITIALIZED) { /* previously mounted with options, but not on this attempt? */ if ((sbsec->flags & SE_MNTMASK) && !opts) goto out_double_mount; rc = 0; goto out; } if (strcmp(sb->s_type->name, "proc") == 0) sbsec->flags |= SE_SBPROC | SE_SBGENFS; if (!strcmp(sb->s_type->name, "debugfs") || !strcmp(sb->s_type->name, "tracefs") || !strcmp(sb->s_type->name, "binder") || !strcmp(sb->s_type->name, "bpf") || !strcmp(sb->s_type->name, "pstore")) sbsec->flags |= SE_SBGENFS; if (!strcmp(sb->s_type->name, "sysfs") || !strcmp(sb->s_type->name, "cgroup") || !strcmp(sb->s_type->name, "cgroup2")) sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; if (!sbsec->behavior) { /* * Determine the labeling behavior to use for this * filesystem type. */ rc = security_fs_use(&selinux_state, sb); if (rc) { pr_warn("%s: security_fs_use(%s) returned %d\n", __func__, sb->s_type->name, rc); goto out; } } /* * If this is a user namespace mount and the filesystem type is not * explicitly whitelisted, then no contexts are allowed on the command * line and security labels must be ignored. */ if (sb->s_user_ns != &init_user_ns && strcmp(sb->s_type->name, "tmpfs") && strcmp(sb->s_type->name, "ramfs") && strcmp(sb->s_type->name, "devpts")) { if (context_sid || fscontext_sid || rootcontext_sid || defcontext_sid) { rc = -EACCES; goto out; } if (sbsec->behavior == SECURITY_FS_USE_XATTR) { sbsec->behavior = SECURITY_FS_USE_MNTPOINT; rc = security_transition_sid(&selinux_state, current_sid(), current_sid(), SECCLASS_FILE, NULL, &sbsec->mntpoint_sid); if (rc) goto out; } goto out_set_opts; } /* sets the context of the superblock for the fs being mounted. */ if (fscontext_sid) { rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); if (rc) goto out; sbsec->sid = fscontext_sid; } /* * Switch to using mount point labeling behavior. * sets the label used on all file below the mountpoint, and will set * the superblock context if not already set. */ if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { sbsec->behavior = SECURITY_FS_USE_NATIVE; *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; } if (context_sid) { if (!fscontext_sid) { rc = may_context_mount_sb_relabel(context_sid, sbsec, cred); if (rc) goto out; sbsec->sid = context_sid; } else { rc = may_context_mount_inode_relabel(context_sid, sbsec, cred); if (rc) goto out; } if (!rootcontext_sid) rootcontext_sid = context_sid; sbsec->mntpoint_sid = context_sid; sbsec->behavior = SECURITY_FS_USE_MNTPOINT; } if (rootcontext_sid) { rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, cred); if (rc) goto out; root_isec->sid = rootcontext_sid; root_isec->initialized = LABEL_INITIALIZED; } if (defcontext_sid) { if (sbsec->behavior != SECURITY_FS_USE_XATTR && sbsec->behavior != SECURITY_FS_USE_NATIVE) { rc = -EINVAL; pr_warn("SELinux: defcontext option is " "invalid for this filesystem type\n"); goto out; } if (defcontext_sid != sbsec->def_sid) { rc = may_context_mount_inode_relabel(defcontext_sid, sbsec, cred); if (rc) goto out; } sbsec->def_sid = defcontext_sid; } out_set_opts: rc = sb_finish_set_opts(sb); out: mutex_unlock(&sbsec->lock); return rc; out_double_mount: rc = -EINVAL; pr_warn("SELinux: mount invalid. Same superblock, different " "security settings for (dev %s, type %s)\n", sb->s_id, sb->s_type->name); goto out; } static int selinux_cmp_sb_context(const struct super_block *oldsb, const struct super_block *newsb) { struct superblock_security_struct *old = oldsb->s_security; struct superblock_security_struct *new = newsb->s_security; char oldflags = old->flags & SE_MNTMASK; char newflags = new->flags & SE_MNTMASK; if (oldflags != newflags) goto mismatch; if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) goto mismatch; if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) goto mismatch; if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) goto mismatch; if (oldflags & ROOTCONTEXT_MNT) { struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); if (oldroot->sid != newroot->sid) goto mismatch; } return 0; mismatch: pr_warn("SELinux: mount invalid. Same superblock, " "different security settings for (dev %s, " "type %s)\n", newsb->s_id, newsb->s_type->name); return -EBUSY; } static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb, unsigned long kern_flags, unsigned long *set_kern_flags) { int rc = 0; const struct superblock_security_struct *oldsbsec = oldsb->s_security; struct superblock_security_struct *newsbsec = newsb->s_security; int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); int set_context = (oldsbsec->flags & CONTEXT_MNT); int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); /* * if the parent was able to be mounted it clearly had no special lsm * mount options. thus we can safely deal with this superblock later */ if (!selinux_initialized(&selinux_state)) return 0; /* * Specifying internal flags without providing a place to * place the results is not allowed. */ if (kern_flags && !set_kern_flags) return -EINVAL; /* how can we clone if the old one wasn't set up?? */ BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); /* if fs is reusing a sb, make sure that the contexts match */ if (newsbsec->flags & SE_SBINITIALIZED) { if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; return selinux_cmp_sb_context(oldsb, newsb); } mutex_lock(&newsbsec->lock); newsbsec->flags = oldsbsec->flags; newsbsec->sid = oldsbsec->sid; newsbsec->def_sid = oldsbsec->def_sid; newsbsec->behavior = oldsbsec->behavior; if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { rc = security_fs_use(&selinux_state, newsb); if (rc) goto out; } if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { newsbsec->behavior = SECURITY_FS_USE_NATIVE; *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; } if (set_context) { u32 sid = oldsbsec->mntpoint_sid; if (!set_fscontext) newsbsec->sid = sid; if (!set_rootcontext) { struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); newisec->sid = sid; } newsbsec->mntpoint_sid = sid; } if (set_rootcontext) { const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); newisec->sid = oldisec->sid; } sb_finish_set_opts(newsb); out: mutex_unlock(&newsbsec->lock); return rc; } static int selinux_add_opt(int token, const char *s, void **mnt_opts) { struct selinux_mnt_opts *opts = *mnt_opts; bool is_alloc_opts = false; if (token == Opt_seclabel) /* eaten and completely ignored */ return 0; if (!s) return -ENOMEM; if (!opts) { opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); if (!opts) return -ENOMEM; *mnt_opts = opts; is_alloc_opts = true; } switch (token) { case Opt_context: if (opts->context || opts->defcontext) goto Einval; opts->context = s; break; case Opt_fscontext: if (opts->fscontext) goto Einval; opts->fscontext = s; break; case Opt_rootcontext: if (opts->rootcontext) goto Einval; opts->rootcontext = s; break; case Opt_defcontext: if (opts->context || opts->defcontext) goto Einval; opts->defcontext = s; break; } return 0; Einval: if (is_alloc_opts) { kfree(opts); *mnt_opts = NULL; } pr_warn(SEL_MOUNT_FAIL_MSG); return -EINVAL; } static int selinux_add_mnt_opt(const char *option, const char *val, int len, void **mnt_opts) { int token = Opt_error; int rc, i; for (i = 0; i < ARRAY_SIZE(tokens); i++) { if (strcmp(option, tokens[i].name) == 0) { token = tokens[i].opt; break; } } if (token == Opt_error) return -EINVAL; if (token != Opt_seclabel) { val = kmemdup_nul(val, len, GFP_KERNEL); if (!val) { rc = -ENOMEM; goto free_opt; } } rc = selinux_add_opt(token, val, mnt_opts); if (unlikely(rc)) { kfree(val); goto free_opt; } return rc; free_opt: if (*mnt_opts) { selinux_free_mnt_opts(*mnt_opts); *mnt_opts = NULL; } return rc; } static int show_sid(struct seq_file *m, u32 sid) { char *context = NULL; u32 len; int rc; rc = security_sid_to_context(&selinux_state, sid, &context, &len); if (!rc) { bool has_comma = context && strchr(context, ','); seq_putc(m, '='); if (has_comma) seq_putc(m, '\"'); seq_escape(m, context, "\"\n\\"); if (has_comma) seq_putc(m, '\"'); } kfree(context); return rc; } static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; int rc; if (!(sbsec->flags & SE_SBINITIALIZED)) return 0; if (!selinux_initialized(&selinux_state)) return 0; if (sbsec->flags & FSCONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, FSCONTEXT_STR); rc = show_sid(m, sbsec->sid); if (rc) return rc; } if (sbsec->flags & CONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, CONTEXT_STR); rc = show_sid(m, sbsec->mntpoint_sid); if (rc) return rc; } if (sbsec->flags & DEFCONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, DEFCONTEXT_STR); rc = show_sid(m, sbsec->def_sid); if (rc) return rc; } if (sbsec->flags & ROOTCONTEXT_MNT) { struct dentry *root = sbsec->sb->s_root; struct inode_security_struct *isec = backing_inode_security(root); seq_putc(m, ','); seq_puts(m, ROOTCONTEXT_STR); rc = show_sid(m, isec->sid); if (rc) return rc; } if (sbsec->flags & SBLABEL_MNT) { seq_putc(m, ','); seq_puts(m, SECLABEL_STR); } return 0; } static inline u16 inode_mode_to_security_class(umode_t mode) { switch (mode & S_IFMT) { case S_IFSOCK: return SECCLASS_SOCK_FILE; case S_IFLNK: return SECCLASS_LNK_FILE; case S_IFREG: return SECCLASS_FILE; case S_IFBLK: return SECCLASS_BLK_FILE; case S_IFDIR: return SECCLASS_DIR; case S_IFCHR: return SECCLASS_CHR_FILE; case S_IFIFO: return SECCLASS_FIFO_FILE; } return SECCLASS_FILE; } static inline int default_protocol_stream(int protocol) { return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); } static inline int default_protocol_dgram(int protocol) { return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); } static inline u16 socket_type_to_security_class(int family, int type, int protocol) { int extsockclass = selinux_policycap_extsockclass(); switch (family) { case PF_UNIX: switch (type) { case SOCK_STREAM: case SOCK_SEQPACKET: return SECCLASS_UNIX_STREAM_SOCKET; case SOCK_DGRAM: case SOCK_RAW: return SECCLASS_UNIX_DGRAM_SOCKET; } break; case PF_INET: case PF_INET6: switch (type) { case SOCK_STREAM: case SOCK_SEQPACKET: if (default_protocol_stream(protocol)) return SECCLASS_TCP_SOCKET; else if (extsockclass && protocol == IPPROTO_SCTP) return SECCLASS_SCTP_SOCKET; else return SECCLASS_RAWIP_SOCKET; case SOCK_DGRAM: if (default_protocol_dgram(protocol)) return SECCLASS_UDP_SOCKET; else if (extsockclass && (protocol == IPPROTO_ICMP || protocol == IPPROTO_ICMPV6)) return SECCLASS_ICMP_SOCKET; else return SECCLASS_RAWIP_SOCKET; case SOCK_DCCP: return SECCLASS_DCCP_SOCKET; default: return SECCLASS_RAWIP_SOCKET; } break; case PF_NETLINK: switch (protocol) { case NETLINK_ROUTE: return SECCLASS_NETLINK_ROUTE_SOCKET; case NETLINK_SOCK_DIAG: return SECCLASS_NETLINK_TCPDIAG_SOCKET; case NETLINK_NFLOG: return SECCLASS_NETLINK_NFLOG_SOCKET; case NETLINK_XFRM: return SECCLASS_NETLINK_XFRM_SOCKET; case NETLINK_SELINUX: return SECCLASS_NETLINK_SELINUX_SOCKET; case NETLINK_ISCSI: return SECCLASS_NETLINK_ISCSI_SOCKET; case NETLINK_AUDIT: return SECCLASS_NETLINK_AUDIT_SOCKET; case NETLINK_FIB_LOOKUP: return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; case NETLINK_CONNECTOR: return SECCLASS_NETLINK_CONNECTOR_SOCKET; case NETLINK_NETFILTER: return SECCLASS_NETLINK_NETFILTER_SOCKET; case NETLINK_DNRTMSG: return SECCLASS_NETLINK_DNRT_SOCKET; case NETLINK_KOBJECT_UEVENT: return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; case NETLINK_GENERIC: return SECCLASS_NETLINK_GENERIC_SOCKET; case NETLINK_SCSITRANSPORT: return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; case NETLINK_RDMA: return SECCLASS_NETLINK_RDMA_SOCKET; case NETLINK_CRYPTO: return SECCLASS_NETLINK_CRYPTO_SOCKET; default: return SECCLASS_NETLINK_SOCKET; } case PF_PACKET: return SECCLASS_PACKET_SOCKET; case PF_KEY: return SECCLASS_KEY_SOCKET; case PF_APPLETALK: return SECCLASS_APPLETALK_SOCKET; } if (extsockclass) { switch (family) { case PF_AX25: return SECCLASS_AX25_SOCKET; case PF_IPX: return SECCLASS_IPX_SOCKET; case PF_NETROM: return SECCLASS_NETROM_SOCKET; case PF_ATMPVC: return SECCLASS_ATMPVC_SOCKET; case PF_X25: return SECCLASS_X25_SOCKET; case PF_ROSE: return SECCLASS_ROSE_SOCKET; case PF_DECnet: return SECCLASS_DECNET_SOCKET; case PF_ATMSVC: return SECCLASS_ATMSVC_SOCKET; case PF_RDS: return SECCLASS_RDS_SOCKET; case PF_IRDA: return SECCLASS_IRDA_SOCKET; case PF_PPPOX: return SECCLASS_PPPOX_SOCKET; case PF_LLC: return SECCLASS_LLC_SOCKET; case PF_CAN: return SECCLASS_CAN_SOCKET; case PF_TIPC: return SECCLASS_TIPC_SOCKET; case PF_BLUETOOTH: return SECCLASS_BLUETOOTH_SOCKET; case PF_IUCV: return SECCLASS_IUCV_SOCKET; case PF_RXRPC: return SECCLASS_RXRPC_SOCKET; case PF_ISDN: return SECCLASS_ISDN_SOCKET; case PF_PHONET: return SECCLASS_PHONET_SOCKET; case PF_IEEE802154: return SECCLASS_IEEE802154_SOCKET; case PF_CAIF: return SECCLASS_CAIF_SOCKET; case PF_ALG: return SECCLASS_ALG_SOCKET; case PF_NFC: return SECCLASS_NFC_SOCKET; case PF_VSOCK: return SECCLASS_VSOCK_SOCKET; case PF_KCM: return SECCLASS_KCM_SOCKET; case PF_QIPCRTR: return SECCLASS_QIPCRTR_SOCKET; case PF_SMC: return SECCLASS_SMC_SOCKET; case PF_XDP: return SECCLASS_XDP_SOCKET; #if PF_MAX > 45 #error New address family defined, please update this function. #endif } } return SECCLASS_SOCKET; } static int selinux_genfs_get_sid(struct dentry *dentry, u16 tclass, u16 flags, u32 *sid) { int rc; struct super_block *sb = dentry->d_sb; char *buffer, *path; buffer = (char *)__get_free_page(GFP_KERNEL); if (!buffer) return -ENOMEM; path = dentry_path_raw(dentry, buffer, PAGE_SIZE); if (IS_ERR(path)) rc = PTR_ERR(path); else { if (flags & SE_SBPROC) { /* each process gets a /proc/PID/ entry. Strip off the * PID part to get a valid selinux labeling. * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ while (path[1] >= '0' && path[1] <= '9') { path[1] = '/'; path++; } } rc = security_genfs_sid(&selinux_state, sb->s_type->name, path, tclass, sid); if (rc == -ENOENT) { /* No match in policy, mark as unlabeled. */ *sid = SECINITSID_UNLABELED; rc = 0; } } free_page((unsigned long)buffer); return rc; } static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, u32 def_sid, u32 *sid) { #define INITCONTEXTLEN 255 char *context; unsigned int len; int rc; len = INITCONTEXTLEN; context = kmalloc(len + 1, GFP_NOFS); if (!context) return -ENOMEM; context[len] = '\0'; rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); if (rc == -ERANGE) { kfree(context); /* Need a larger buffer. Query for the right size. */ rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); if (rc < 0) return rc; len = rc; context = kmalloc(len + 1, GFP_NOFS); if (!context) return -ENOMEM; context[len] = '\0'; rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); } if (rc < 0) { kfree(context); if (rc != -ENODATA) { pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", __func__, -rc, inode->i_sb->s_id, inode->i_ino); return rc; } *sid = def_sid; return 0; } rc = security_context_to_sid_default(&selinux_state, context, rc, sid, def_sid, GFP_NOFS); if (rc) { char *dev = inode->i_sb->s_id; unsigned long ino = inode->i_ino; if (rc == -EINVAL) { pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", ino, dev, context); } else { pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", __func__, context, -rc, dev, ino); } } kfree(context); return 0; } /* The inode's security attributes must be initialized before first use. */ static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) { struct superblock_security_struct *sbsec = NULL; struct inode_security_struct *isec = selinux_inode(inode); u32 task_sid, sid = 0; u16 sclass; struct dentry *dentry; int rc = 0; if (isec->initialized == LABEL_INITIALIZED) return 0; spin_lock(&isec->lock); if (isec->initialized == LABEL_INITIALIZED) goto out_unlock; if (isec->sclass == SECCLASS_FILE) isec->sclass = inode_mode_to_security_class(inode->i_mode); sbsec = inode->i_sb->s_security; if (!(sbsec->flags & SE_SBINITIALIZED)) { /* Defer initialization until selinux_complete_init, after the initial policy is loaded and the security server is ready to handle calls. */ spin_lock(&sbsec->isec_lock); if (list_empty(&isec->list)) list_add(&isec->list, &sbsec->isec_head); spin_unlock(&sbsec->isec_lock); goto out_unlock; } sclass = isec->sclass; task_sid = isec->task_sid; sid = isec->sid; isec->initialized = LABEL_PENDING; spin_unlock(&isec->lock); switch (sbsec->behavior) { case SECURITY_FS_USE_NATIVE: break; case SECURITY_FS_USE_XATTR: if (!(inode->i_opflags & IOP_XATTR)) { sid = sbsec->def_sid; break; } /* Need a dentry, since the xattr API requires one. Life would be simpler if we could just pass the inode. */ if (opt_dentry) { /* Called from d_instantiate or d_splice_alias. */ dentry = dget(opt_dentry); } else { /* * Called from selinux_complete_init, try to find a dentry. * Some filesystems really want a connected one, so try * that first. We could split SECURITY_FS_USE_XATTR in * two, depending upon that... */ dentry = d_find_alias(inode); if (!dentry) dentry = d_find_any_alias(inode); } if (!dentry) { /* * this is can be hit on boot when a file is accessed * before the policy is loaded. When we load policy we * may find inodes that have no dentry on the * sbsec->isec_head list. No reason to complain as these * will get fixed up the next time we go through * inode_doinit with a dentry, before these inodes could * be used again by userspace. */ goto out_invalid; } rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, &sid); dput(dentry); if (rc) goto out; break; case SECURITY_FS_USE_TASK: sid = task_sid; break; case SECURITY_FS_USE_TRANS: /* Default to the fs SID. */ sid = sbsec->sid; /* Try to obtain a transition SID. */ rc = security_transition_sid(&selinux_state, task_sid, sid, sclass, NULL, &sid); if (rc) goto out; break; case SECURITY_FS_USE_MNTPOINT: sid = sbsec->mntpoint_sid; break; default: /* Default to the fs superblock SID. */ sid = sbsec->sid; if ((sbsec->flags & SE_SBGENFS) && (!S_ISLNK(inode->i_mode) || selinux_policycap_genfs_seclabel_symlinks())) { /* We must have a dentry to determine the label on * procfs inodes */ if (opt_dentry) { /* Called from d_instantiate or * d_splice_alias. */ dentry = dget(opt_dentry); } else { /* Called from selinux_complete_init, try to * find a dentry. Some filesystems really want * a connected one, so try that first. */ dentry = d_find_alias(inode); if (!dentry) dentry = d_find_any_alias(inode); } /* * This can be hit on boot when a file is accessed * before the policy is loaded. When we load policy we * may find inodes that have no dentry on the * sbsec->isec_head list. No reason to complain as * these will get fixed up the next time we go through * inode_doinit() with a dentry, before these inodes * could be used again by userspace. */ if (!dentry) goto out_invalid; rc = selinux_genfs_get_sid(dentry, sclass, sbsec->flags, &sid); if (rc) { dput(dentry); goto out; } if ((sbsec->flags & SE_SBGENFS_XATTR) && (inode->i_opflags & IOP_XATTR)) { rc = inode_doinit_use_xattr(inode, dentry, sid, &sid); if (rc) { dput(dentry); goto out; } } dput(dentry); } break; } out: spin_lock(&isec->lock); if (isec->initialized == LABEL_PENDING) { if (rc) { isec->initialized = LABEL_INVALID; goto out_unlock; } isec->initialized = LABEL_INITIALIZED; isec->sid = sid; } out_unlock: spin_unlock(&isec->lock); return rc; out_invalid: spin_lock(&isec->lock); if (isec->initialized == LABEL_PENDING) { isec->initialized = LABEL_INVALID; isec->sid = sid; } spin_unlock(&isec->lock); return 0; } /* Convert a Linux signal to an access vector. */ static inline u32 signal_to_av(int sig) { u32 perm = 0; switch (sig) { case SIGCHLD: /* Commonly granted from child to parent. */ perm = PROCESS__SIGCHLD; break; case SIGKILL: /* Cannot be caught or ignored */ perm = PROCESS__SIGKILL; break; case SIGSTOP: /* Cannot be caught or ignored */ perm = PROCESS__SIGSTOP; break; default: /* All other signals. */ perm = PROCESS__SIGNAL; break; } return perm; } #if CAP_LAST_CAP > 63 #error Fix SELinux to handle capabilities > 63. #endif /* Check whether a task is allowed to use a capability. */ static int cred_has_capability(const struct cred *cred, int cap, unsigned int opts, bool initns) { struct common_audit_data ad; struct av_decision avd; u16 sclass; u32 sid = cred_sid(cred); u32 av = CAP_TO_MASK(cap); int rc; ad.type = LSM_AUDIT_DATA_CAP; ad.u.cap = cap; switch (CAP_TO_INDEX(cap)) { case 0: sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; break; case 1: sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; break; default: pr_err("SELinux: out of range capability %d\n", cap); BUG(); return -EINVAL; } rc = avc_has_perm_noaudit(&selinux_state, sid, sid, sclass, av, 0, &avd); if (!(opts & CAP_OPT_NOAUDIT)) { int rc2 = avc_audit(&selinux_state, sid, sid, sclass, av, &avd, rc, &ad, 0); if (rc2) return rc2; } return rc; } /* Check whether a task has a particular permission to an inode. The 'adp' parameter is optional and allows other audit data to be passed (e.g. the dentry). */ static int inode_has_perm(const struct cred *cred, struct inode *inode, u32 perms, struct common_audit_data *adp) { struct inode_security_struct *isec; u32 sid; validate_creds(cred); if (unlikely(IS_PRIVATE(inode))) return 0; sid = cred_sid(cred); isec = selinux_inode(inode); return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, perms, adp); } /* Same as inode_has_perm, but pass explicit audit data containing the dentry to help the auditing code to more easily generate the pathname if needed. */ static inline int dentry_has_perm(const struct cred *cred, struct dentry *dentry, u32 av) { struct inode *inode = d_backing_inode(dentry); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; __inode_security_revalidate(inode, dentry, true); return inode_has_perm(cred, inode, av, &ad); } /* Same as inode_has_perm, but pass explicit audit data containing the path to help the auditing code to more easily generate the pathname if needed. */ static inline int path_has_perm(const struct cred *cred, const struct path *path, u32 av) { struct inode *inode = d_backing_inode(path->dentry); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = *path; __inode_security_revalidate(inode, path->dentry, true); return inode_has_perm(cred, inode, av, &ad); } /* Same as path_has_perm, but uses the inode from the file struct. */ static inline int file_path_has_perm(const struct cred *cred, struct file *file, u32 av) { struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; return inode_has_perm(cred, file_inode(file), av, &ad); } #ifdef CONFIG_BPF_SYSCALL static int bpf_fd_pass(struct file *file, u32 sid); #endif /* Check whether a task can use an open file descriptor to access an inode in a given way. Check access to the descriptor itself, and then use dentry_has_perm to check a particular permission to the file. Access to the descriptor is implicitly granted if it has the same SID as the process. If av is zero, then access to the file is not checked, e.g. for cases where only the descriptor is affected like seek. */ static int file_has_perm(const struct cred *cred, struct file *file, u32 av) { struct file_security_struct *fsec = selinux_file(file); struct inode *inode = file_inode(file); struct common_audit_data ad; u32 sid = cred_sid(cred); int rc; ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) goto out; } #ifdef CONFIG_BPF_SYSCALL rc = bpf_fd_pass(file, cred_sid(cred)); if (rc) return rc; #endif /* av is zero if only checking access to the descriptor. */ rc = 0; if (av) rc = inode_has_perm(cred, inode, av, &ad); out: return rc; } /* * Determine the label for an inode that might be unioned. */ static int selinux_determine_inode_label(const struct task_security_struct *tsec, struct inode *dir, const struct qstr *name, u16 tclass, u32 *_new_isid) { const struct superblock_security_struct *sbsec = dir->i_sb->s_security; if ((sbsec->flags & SE_SBINITIALIZED) && (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { *_new_isid = sbsec->mntpoint_sid; } else if ((sbsec->flags & SBLABEL_MNT) && tsec->create_sid) { *_new_isid = tsec->create_sid; } else { const struct inode_security_struct *dsec = inode_security(dir); return security_transition_sid(&selinux_state, tsec->sid, dsec->sid, tclass, name, _new_isid); } return 0; } /* Check whether a task can create a file. */ static int may_create(struct inode *dir, struct dentry *dentry, u16 tclass) { const struct task_security_struct *tsec = selinux_cred(current_cred()); struct inode_security_struct *dsec; struct superblock_security_struct *sbsec; u32 sid, newsid; struct common_audit_data ad; int rc; dsec = inode_security(dir); sbsec = dir->i_sb->s_security; sid = tsec->sid; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; rc = avc_has_perm(&selinux_state, sid, dsec->sid, SECCLASS_DIR, DIR__ADD_NAME | DIR__SEARCH, &ad); if (rc) return rc; rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, &newsid); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, newsid, tclass, FILE__CREATE, &ad); if (rc) return rc; return avc_has_perm(&selinux_state, newsid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, &ad); } #define MAY_LINK 0 #define MAY_UNLINK 1 #define MAY_RMDIR 2 /* Check whether a task can link, unlink, or rmdir a file/directory. */ static int may_link(struct inode *dir, struct dentry *dentry, int kind) { struct inode_security_struct *dsec, *isec; struct common_audit_data ad; u32 sid = current_sid(); u32 av; int rc; dsec = inode_security(dir); isec = backing_inode_security(dentry); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; av = DIR__SEARCH; av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); rc = avc_has_perm(&selinux_state, sid, dsec->sid, SECCLASS_DIR, av, &ad); if (rc) return rc; switch (kind) { case MAY_LINK: av = FILE__LINK; break; case MAY_UNLINK: av = FILE__UNLINK; break; case MAY_RMDIR: av = DIR__RMDIR; break; default: pr_warn("SELinux: %s: unrecognized kind %d\n", __func__, kind); return 0; } rc = avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, av, &ad); return rc; } static inline int may_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; struct common_audit_data ad; u32 sid = current_sid(); u32 av; int old_is_dir, new_is_dir; int rc; old_dsec = inode_security(old_dir); old_isec = backing_inode_security(old_dentry); old_is_dir = d_is_dir(old_dentry); new_dsec = inode_security(new_dir); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = old_dentry; rc = avc_has_perm(&selinux_state, sid, old_dsec->sid, SECCLASS_DIR, DIR__REMOVE_NAME | DIR__SEARCH, &ad); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, old_isec->sid, old_isec->sclass, FILE__RENAME, &ad); if (rc) return rc; if (old_is_dir && new_dir != old_dir) { rc = avc_has_perm(&selinux_state, sid, old_isec->sid, old_isec->sclass, DIR__REPARENT, &ad); if (rc) return rc; } ad.u.dentry = new_dentry; av = DIR__ADD_NAME | DIR__SEARCH; if (d_is_positive(new_dentry)) av |= DIR__REMOVE_NAME; rc = avc_has_perm(&selinux_state, sid, new_dsec->sid, SECCLASS_DIR, av, &ad); if (rc) return rc; if (d_is_positive(new_dentry)) { new_isec = backing_inode_security(new_dentry); new_is_dir = d_is_dir(new_dentry); rc = avc_has_perm(&selinux_state, sid, new_isec->sid, new_isec->sclass, (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); if (rc) return rc; } return 0; } /* Check whether a task can perform a filesystem operation. */ static int superblock_has_perm(const struct cred *cred, struct super_block *sb, u32 perms, struct common_audit_data *ad) { struct superblock_security_struct *sbsec; u32 sid = cred_sid(cred); sbsec = sb->s_security; return avc_has_perm(&selinux_state, sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); } /* Convert a Linux mode and permission mask to an access vector. */ static inline u32 file_mask_to_av(int mode, int mask) { u32 av = 0; if (!S_ISDIR(mode)) { if (mask & MAY_EXEC) av |= FILE__EXECUTE; if (mask & MAY_READ) av |= FILE__READ; if (mask & MAY_APPEND) av |= FILE__APPEND; else if (mask & MAY_WRITE) av |= FILE__WRITE; } else { if (mask & MAY_EXEC) av |= DIR__SEARCH; if (mask & MAY_WRITE) av |= DIR__WRITE; if (mask & MAY_READ) av |= DIR__READ; } return av; } /* Convert a Linux file to an access vector. */ static inline u32 file_to_av(struct file *file) { u32 av = 0; if (file->f_mode & FMODE_READ) av |= FILE__READ; if (file->f_mode & FMODE_WRITE) { if (file->f_flags & O_APPEND) av |= FILE__APPEND; else av |= FILE__WRITE; } if (!av) { /* * Special file opened with flags 3 for ioctl-only use. */ av = FILE__IOCTL; } return av; } /* * Convert a file to an access vector and include the correct * open permission. */ static inline u32 open_file_to_av(struct file *file) { u32 av = file_to_av(file); struct inode *inode = file_inode(file); if (selinux_policycap_openperm() && inode->i_sb->s_magic != SOCKFS_MAGIC) av |= FILE__OPEN; return av; } /* Hook functions begin here. */ static int selinux_binder_set_context_mgr(const struct cred *mgr) { return avc_has_perm(&selinux_state, current_sid(), cred_sid(mgr), SECCLASS_BINDER, BINDER__SET_CONTEXT_MGR, NULL); } static int selinux_binder_transaction(const struct cred *from, const struct cred *to) { u32 mysid = current_sid(); u32 fromsid = cred_sid(from); u32 tosid = cred_sid(to); int rc; if (mysid != fromsid) { rc = avc_has_perm(&selinux_state, mysid, fromsid, SECCLASS_BINDER, BINDER__IMPERSONATE, NULL); if (rc) return rc; } return avc_has_perm(&selinux_state, fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, NULL); } static int selinux_binder_transfer_binder(const struct cred *from, const struct cred *to) { return avc_has_perm(&selinux_state, cred_sid(from), cred_sid(to), SECCLASS_BINDER, BINDER__TRANSFER, NULL); } static int selinux_binder_transfer_file(const struct cred *from, const struct cred *to, struct file *file) { u32 sid = cred_sid(to); struct file_security_struct *fsec = selinux_file(file); struct dentry *dentry = file->f_path.dentry; struct inode_security_struct *isec; struct common_audit_data ad; int rc; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = file->f_path; if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) return rc; } #ifdef CONFIG_BPF_SYSCALL rc = bpf_fd_pass(file, sid); if (rc) return rc; #endif if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; isec = backing_inode_security(dentry); return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, file_to_av(file), &ad); } static int selinux_ptrace_access_check(struct task_struct *child, unsigned int mode) { u32 sid = current_sid(); u32 csid = task_sid(child); if (mode & PTRACE_MODE_READ) return avc_has_perm(&selinux_state, sid, csid, SECCLASS_FILE, FILE__READ, NULL); return avc_has_perm(&selinux_state, sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); } static int selinux_ptrace_traceme(struct task_struct *parent) { return avc_has_perm(&selinux_state, task_sid(parent), current_sid(), SECCLASS_PROCESS, PROCESS__PTRACE, NULL); } static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return avc_has_perm(&selinux_state, current_sid(), task_sid(target), SECCLASS_PROCESS, PROCESS__GETCAP, NULL); } static int selinux_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { return avc_has_perm(&selinux_state, cred_sid(old), cred_sid(new), SECCLASS_PROCESS, PROCESS__SETCAP, NULL); } /* * (This comment used to live with the selinux_task_setuid hook, * which was removed). * * Since setuid only affects the current process, and since the SELinux * controls are not based on the Linux identity attributes, SELinux does not * need to control this operation. However, SELinux does control the use of * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. */ static int selinux_capable(const struct cred *cred, struct user_namespace *ns, int cap, unsigned int opts) { return cred_has_capability(cred, cap, opts, ns == &init_user_ns); } static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) { const struct cred *cred = current_cred(); int rc = 0; if (!sb) return 0; switch (cmds) { case Q_SYNC: case Q_QUOTAON: case Q_QUOTAOFF: case Q_SETINFO: case Q_SETQUOTA: case Q_XQUOTAOFF: case Q_XQUOTAON: case Q_XSETQLIM: rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); break; case Q_GETFMT: case Q_GETINFO: case Q_GETQUOTA: case Q_XGETQUOTA: case Q_XGETQSTAT: case Q_XGETQSTATV: case Q_XGETNEXTQUOTA: rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); break; default: rc = 0; /* let the kernel handle invalid cmds */ break; } return rc; } static int selinux_quota_on(struct dentry *dentry) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__QUOTAON); } static int selinux_syslog(int type) { switch (type) { case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ /* Set level of messages printed to console */ case SYSLOG_ACTION_CONSOLE_LEVEL: return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, NULL); } /* All other syslog types */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); } /* * Check that a process has enough memory to allocate a new virtual * mapping. 0 means there is enough memory for the allocation to * succeed and -ENOMEM implies there is not. * * Do not audit the selinux permission check, as this is applied to all * processes that allocate mappings. */ static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) { int rc, cap_sys_admin = 0; rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, CAP_OPT_NOAUDIT, true); if (rc == 0) cap_sys_admin = 1; return cap_sys_admin; } /* binprm security operations */ static u32 ptrace_parent_sid(void) { u32 sid = 0; struct task_struct *tracer; rcu_read_lock(); tracer = ptrace_parent(current); if (tracer) sid = task_sid(tracer); rcu_read_unlock(); return sid; } static int check_nnp_nosuid(const struct linux_binprm *bprm, const struct task_security_struct *old_tsec, const struct task_security_struct *new_tsec) { int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); int rc; u32 av; if (!nnp && !nosuid) return 0; /* neither NNP nor nosuid */ if (new_tsec->sid == old_tsec->sid) return 0; /* No change in credentials */ /* * If the policy enables the nnp_nosuid_transition policy capability, * then we permit transitions under NNP or nosuid if the * policy allows the corresponding permission between * the old and new contexts. */ if (selinux_policycap_nnp_nosuid_transition()) { av = 0; if (nnp) av |= PROCESS2__NNP_TRANSITION; if (nosuid) av |= PROCESS2__NOSUID_TRANSITION; rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS2, av, NULL); if (!rc) return 0; } /* * We also permit NNP or nosuid transitions to bounded SIDs, * i.e. SIDs that are guaranteed to only be allowed a subset * of the permissions of the current SID. */ rc = security_bounded_transition(&selinux_state, old_tsec->sid, new_tsec->sid); if (!rc) return 0; /* * On failure, preserve the errno values for NNP vs nosuid. * NNP: Operation not permitted for caller. * nosuid: Permission denied to file. */ if (nnp) return -EPERM; return -EACCES; } static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) { const struct task_security_struct *old_tsec; struct task_security_struct *new_tsec; struct inode_security_struct *isec; struct common_audit_data ad; struct inode *inode = file_inode(bprm->file); int rc; /* SELinux context only depends on initial program or script and not * the script interpreter */ old_tsec = selinux_cred(current_cred()); new_tsec = selinux_cred(bprm->cred); isec = inode_security(inode); /* Default to the current task SID. */ new_tsec->sid = old_tsec->sid; new_tsec->osid = old_tsec->sid; /* Reset fs, key, and sock SIDs on execve. */ new_tsec->create_sid = 0; new_tsec->keycreate_sid = 0; new_tsec->sockcreate_sid = 0; if (old_tsec->exec_sid) { new_tsec->sid = old_tsec->exec_sid; /* Reset exec SID on execve. */ new_tsec->exec_sid = 0; /* Fail on NNP or nosuid if not an allowed transition. */ rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); if (rc) return rc; } else { /* Check for a default transition on this program. */ rc = security_transition_sid(&selinux_state, old_tsec->sid, isec->sid, SECCLASS_PROCESS, NULL, &new_tsec->sid); if (rc) return rc; /* * Fallback to old SID on NNP or nosuid if not an allowed * transition. */ rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); if (rc) new_tsec->sid = old_tsec->sid; } ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = bprm->file; if (new_tsec->sid == old_tsec->sid) { rc = avc_has_perm(&selinux_state, old_tsec->sid, isec->sid, SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); if (rc) return rc; } else { /* Check permissions for the transition. */ rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); if (rc) return rc; rc = avc_has_perm(&selinux_state, new_tsec->sid, isec->sid, SECCLASS_FILE, FILE__ENTRYPOINT, &ad); if (rc) return rc; /* Check for shared state */ if (bprm->unsafe & LSM_UNSAFE_SHARE) { rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__SHARE, NULL); if (rc) return -EPERM; } /* Make sure that anyone attempting to ptrace over a task that * changes its SID has the appropriate permit */ if (bprm->unsafe & LSM_UNSAFE_PTRACE) { u32 ptsid = ptrace_parent_sid(); if (ptsid != 0) { rc = avc_has_perm(&selinux_state, ptsid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); if (rc) return -EPERM; } } /* Clear any possibly unsafe personality bits on exec: */ bprm->per_clear |= PER_CLEAR_ON_SETID; /* Enable secure mode for SIDs transitions unless the noatsecure permission is granted between the two SIDs, i.e. ahp returns 0. */ rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__NOATSECURE, NULL); bprm->secureexec |= !!rc; } return 0; } static int match_file(const void *p, struct file *file, unsigned fd) { return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; } /* Derived from fs/exec.c:flush_old_files. */ static inline void flush_unauthorized_files(const struct cred *cred, struct files_struct *files) { struct file *file, *devnull = NULL; struct tty_struct *tty; int drop_tty = 0; unsigned n; tty = get_current_tty(); if (tty) { spin_lock(&tty->files_lock); if (!list_empty(&tty->tty_files)) { struct tty_file_private *file_priv; /* Revalidate access to controlling tty. Use file_path_has_perm on the tty path directly rather than using file_has_perm, as this particular open file may belong to another process and we are only interested in the inode-based check here. */ file_priv = list_first_entry(&tty->tty_files, struct tty_file_private, list); file = file_priv->file; if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) drop_tty = 1; } spin_unlock(&tty->files_lock); tty_kref_put(tty); } /* Reset controlling tty. */ if (drop_tty) no_tty(); /* Revalidate access to inherited open files. */ n = iterate_fd(files, 0, match_file, cred); if (!n) /* none found? */ return; devnull = dentry_open(&selinux_null, O_RDWR, cred); if (IS_ERR(devnull)) devnull = NULL; /* replace all the matching ones with this */ do { replace_fd(n - 1, devnull, 0); } while ((n = iterate_fd(files, n, match_file, cred)) != 0); if (devnull) fput(devnull); } /* * Prepare a process for imminent new credential changes due to exec */ static void selinux_bprm_committing_creds(struct linux_binprm *bprm) { struct task_security_struct *new_tsec; struct rlimit *rlim, *initrlim; int rc, i; new_tsec = selinux_cred(bprm->cred); if (new_tsec->sid == new_tsec->osid) return; /* Close files for which the new task SID is not authorized. */ flush_unauthorized_files(bprm->cred, current->files); /* Always clear parent death signal on SID transitions. */ current->pdeath_signal = 0; /* Check whether the new SID can inherit resource limits from the old * SID. If not, reset all soft limits to the lower of the current * task's hard limit and the init task's soft limit. * * Note that the setting of hard limits (even to lower them) can be * controlled by the setrlimit check. The inclusion of the init task's * soft limit into the computation is to avoid resetting soft limits * higher than the default soft limit for cases where the default is * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. */ rc = avc_has_perm(&selinux_state, new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__RLIMITINH, NULL); if (rc) { /* protect against do_prlimit() */ task_lock(current); for (i = 0; i < RLIM_NLIMITS; i++) { rlim = current->signal->rlim + i; initrlim = init_task.signal->rlim + i; rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); } task_unlock(current); if (IS_ENABLED(CONFIG_POSIX_TIMERS)) update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); } } /* * Clean up the process immediately after the installation of new credentials * due to exec */ static void selinux_bprm_committed_creds(struct linux_binprm *bprm) { const struct task_security_struct *tsec = selinux_cred(current_cred()); u32 osid, sid; int rc; osid = tsec->osid; sid = tsec->sid; if (sid == osid) return; /* Check whether the new SID can inherit signal state from the old SID. * If not, clear itimers to avoid subsequent signal generation and * flush and unblock signals. * * This must occur _after_ the task SID has been updated so that any * kill done after the flush will be checked against the new SID. */ rc = avc_has_perm(&selinux_state, osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); if (rc) { clear_itimer(); spin_lock_irq(&current->sighand->siglock); if (!fatal_signal_pending(current)) { flush_sigqueue(&current->pending); flush_sigqueue(&current->signal->shared_pending); flush_signal_handlers(current, 1); sigemptyset(&current->blocked); recalc_sigpending(); } spin_unlock_irq(&current->sighand->siglock); } /* Wake up the parent if it is waiting so that it can recheck * wait permission to the new task SID. */ read_lock(&tasklist_lock); __wake_up_parent(current, current->real_parent); read_unlock(&tasklist_lock); } /* superblock security operations */ static int selinux_sb_alloc_security(struct super_block *sb) { struct superblock_security_struct *sbsec; sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); if (!sbsec) return -ENOMEM; mutex_init(&sbsec->lock); INIT_LIST_HEAD(&sbsec->isec_head); spin_lock_init(&sbsec->isec_lock); sbsec->sb = sb; sbsec->sid = SECINITSID_UNLABELED; sbsec->def_sid = SECINITSID_FILE; sbsec->mntpoint_sid = SECINITSID_UNLABELED; sb->s_security = sbsec; return 0; } static void selinux_sb_free_security(struct super_block *sb) { superblock_free_security(sb); } static inline int opt_len(const char *s) { bool open_quote = false; int len; char c; for (len = 0; (c = s[len]) != '\0'; len++) { if (c == '"') open_quote = !open_quote; if (c == ',' && !open_quote) break; } return len; } static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) { char *from = options; char *to = options; bool first = true; int rc; while (1) { int len = opt_len(from); int token; char *arg = NULL; token = match_opt_prefix(from, len, &arg); if (token != Opt_error) { char *p, *q; /* strip quotes */ if (arg) { for (p = q = arg; p < from + len; p++) { char c = *p; if (c != '"') *q++ = c; } arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); if (!arg) { rc = -ENOMEM; goto free_opt; } } rc = selinux_add_opt(token, arg, mnt_opts); if (unlikely(rc)) { kfree(arg); goto free_opt; } } else { if (!first) { // copy with preceding comma from--; len++; } if (to != from) memmove(to, from, len); to += len; first = false; } if (!from[len]) break; from += len + 1; } *to = '\0'; return 0; free_opt: if (*mnt_opts) { selinux_free_mnt_opts(*mnt_opts); *mnt_opts = NULL; } return rc; } static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) { struct selinux_mnt_opts *opts = mnt_opts; struct superblock_security_struct *sbsec = sb->s_security; u32 sid; int rc; if (!(sbsec->flags & SE_SBINITIALIZED)) return 0; if (!opts) return 0; if (opts->fscontext) { rc = parse_sid(sb, opts->fscontext, &sid); if (rc) return rc; if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) goto out_bad_option; } if (opts->context) { rc = parse_sid(sb, opts->context, &sid); if (rc) return rc; if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) goto out_bad_option; } if (opts->rootcontext) { struct inode_security_struct *root_isec; root_isec = backing_inode_security(sb->s_root); rc = parse_sid(sb, opts->rootcontext, &sid); if (rc) return rc; if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) goto out_bad_option; } if (opts->defcontext) { rc = parse_sid(sb, opts->defcontext, &sid); if (rc) return rc; if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) goto out_bad_option; } return 0; out_bad_option: pr_warn("SELinux: unable to change security options " "during remount (dev %s, type=%s)\n", sb->s_id, sb->s_type->name); return -EINVAL; } static int selinux_sb_kern_mount(struct super_block *sb) { const struct cred *cred = current_cred(); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = sb->s_root; return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); } static int selinux_sb_statfs(struct dentry *dentry) { const struct cred *cred = current_cred(); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry->d_sb->s_root; return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); } static int selinux_mount(const char *dev_name, const struct path *path, const char *type, unsigned long flags, void *data) { const struct cred *cred = current_cred(); if (flags & MS_REMOUNT) return superblock_has_perm(cred, path->dentry->d_sb, FILESYSTEM__REMOUNT, NULL); else return path_has_perm(cred, path, FILE__MOUNTON); } static int selinux_move_mount(const struct path *from_path, const struct path *to_path) { const struct cred *cred = current_cred(); return path_has_perm(cred, to_path, FILE__MOUNTON); } static int selinux_umount(struct vfsmount *mnt, int flags) { const struct cred *cred = current_cred(); return superblock_has_perm(cred, mnt->mnt_sb, FILESYSTEM__UNMOUNT, NULL); } static int selinux_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { const struct selinux_mnt_opts *src = src_fc->security; struct selinux_mnt_opts *opts; if (!src) return 0; fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); if (!fc->security) return -ENOMEM; opts = fc->security; if (src->fscontext) { opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); if (!opts->fscontext) return -ENOMEM; } if (src->context) { opts->context = kstrdup(src->context, GFP_KERNEL); if (!opts->context) return -ENOMEM; } if (src->rootcontext) { opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); if (!opts->rootcontext) return -ENOMEM; } if (src->defcontext) { opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); if (!opts->defcontext) return -ENOMEM; } return 0; } static const struct fs_parameter_spec selinux_fs_parameters[] = { fsparam_string(CONTEXT_STR, Opt_context), fsparam_string(DEFCONTEXT_STR, Opt_defcontext), fsparam_string(FSCONTEXT_STR, Opt_fscontext), fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), fsparam_flag (SECLABEL_STR, Opt_seclabel), {} }; static int selinux_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct fs_parse_result result; int opt, rc; opt = fs_parse(fc, selinux_fs_parameters, param, &result); if (opt < 0) return opt; rc = selinux_add_opt(opt, param->string, &fc->security); if (!rc) param->string = NULL; return rc; } /* inode security operations */ static int selinux_inode_alloc_security(struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); u32 sid = current_sid(); spin_lock_init(&isec->lock); INIT_LIST_HEAD(&isec->list); isec->inode = inode; isec->sid = SECINITSID_UNLABELED; isec->sclass = SECCLASS_FILE; isec->task_sid = sid; isec->initialized = LABEL_INVALID; return 0; } static void selinux_inode_free_security(struct inode *inode) { inode_free_security(inode); } static int selinux_dentry_init_security(struct dentry *dentry, int mode, const struct qstr *name, void **ctx, u32 *ctxlen) { u32 newsid; int rc; rc = selinux_determine_inode_label(selinux_cred(current_cred()), d_inode(dentry->d_parent), name, inode_mode_to_security_class(mode), &newsid); if (rc) return rc; return security_sid_to_context(&selinux_state, newsid, (char **)ctx, ctxlen); } static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, struct qstr *name, const struct cred *old, struct cred *new) { u32 newsid; int rc; struct task_security_struct *tsec; rc = selinux_determine_inode_label(selinux_cred(old), d_inode(dentry->d_parent), name, inode_mode_to_security_class(mode), &newsid); if (rc) return rc; tsec = selinux_cred(new); tsec->create_sid = newsid; return 0; } static int selinux_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, const char **name, void **value, size_t *len) { const struct task_security_struct *tsec = selinux_cred(current_cred()); struct superblock_security_struct *sbsec; u32 newsid, clen; int rc; char *context; sbsec = dir->i_sb->s_security; newsid = tsec->create_sid; rc = selinux_determine_inode_label(tsec, dir, qstr, inode_mode_to_security_class(inode->i_mode), &newsid); if (rc) return rc; /* Possibly defer initialization to selinux_complete_init. */ if (sbsec->flags & SE_SBINITIALIZED) { struct inode_security_struct *isec = selinux_inode(inode); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = newsid; isec->initialized = LABEL_INITIALIZED; } if (!selinux_initialized(&selinux_state) || !(sbsec->flags & SBLABEL_MNT)) return -EOPNOTSUPP; if (name) *name = XATTR_SELINUX_SUFFIX; if (value && len) { rc = security_sid_to_context_force(&selinux_state, newsid, &context, &clen); if (rc) return rc; *value = context; *len = clen; } return 0; } static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) { return may_create(dir, dentry, SECCLASS_FILE); } static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { return may_link(dir, old_dentry, MAY_LINK); } static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) { return may_link(dir, dentry, MAY_UNLINK); } static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) { return may_create(dir, dentry, SECCLASS_LNK_FILE); } static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) { return may_create(dir, dentry, SECCLASS_DIR); } static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) { return may_link(dir, dentry, MAY_RMDIR); } static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { return may_create(dir, dentry, inode_mode_to_security_class(mode)); } static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, struct inode *new_inode, struct dentry *new_dentry) { return may_rename(old_inode, old_dentry, new_inode, new_dentry); } static int selinux_inode_readlink(struct dentry *dentry) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__READ); } static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, bool rcu) { const struct cred *cred = current_cred(); struct common_audit_data ad; struct inode_security_struct *isec; u32 sid; validate_creds(cred); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; sid = cred_sid(cred); isec = inode_security_rcu(inode, rcu); if (IS_ERR(isec)) return PTR_ERR(isec); return avc_has_perm_flags(&selinux_state, sid, isec->sid, isec->sclass, FILE__READ, &ad, rcu ? MAY_NOT_BLOCK : 0); } static noinline int audit_inode_permission(struct inode *inode, u32 perms, u32 audited, u32 denied, int result) { struct common_audit_data ad; struct inode_security_struct *isec = selinux_inode(inode); int rc; ad.type = LSM_AUDIT_DATA_INODE; ad.u.inode = inode; rc = slow_avc_audit(&selinux_state, current_sid(), isec->sid, isec->sclass, perms, audited, denied, result, &ad); if (rc) return rc; return 0; } static int selinux_inode_permission(struct inode *inode, int mask) { const struct cred *cred = current_cred(); u32 perms; bool from_access; bool no_block = mask & MAY_NOT_BLOCK; struct inode_security_struct *isec; u32 sid; struct av_decision avd; int rc, rc2; u32 audited, denied; from_access = mask & MAY_ACCESS; mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); /* No permission to check. Existence test. */ if (!mask) return 0; validate_creds(cred); if (unlikely(IS_PRIVATE(inode))) return 0; perms = file_mask_to_av(inode->i_mode, mask); sid = cred_sid(cred); isec = inode_security_rcu(inode, no_block); if (IS_ERR(isec)) return PTR_ERR(isec); rc = avc_has_perm_noaudit(&selinux_state, sid, isec->sid, isec->sclass, perms, no_block ? AVC_NONBLOCKING : 0, &avd); audited = avc_audit_required(perms, &avd, rc, from_access ? FILE__AUDIT_ACCESS : 0, &denied); if (likely(!audited)) return rc; /* fall back to ref-walk if we have to generate audit */ if (no_block) return -ECHILD; rc2 = audit_inode_permission(inode, perms, audited, denied, rc); if (rc2) return rc2; return rc; } static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) { const struct cred *cred = current_cred(); struct inode *inode = d_backing_inode(dentry); unsigned int ia_valid = iattr->ia_valid; __u32 av = FILE__WRITE; /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ if (ia_valid & ATTR_FORCE) { ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | ATTR_FORCE); if (!ia_valid) return 0; } if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) return dentry_has_perm(cred, dentry, FILE__SETATTR); if (selinux_policycap_openperm() && inode->i_sb->s_magic != SOCKFS_MAGIC && (ia_valid & ATTR_SIZE) && !(ia_valid & ATTR_FILE)) av |= FILE__OPEN; return dentry_has_perm(cred, dentry, av); } static int selinux_inode_getattr(const struct path *path) { return path_has_perm(current_cred(), path, FILE__GETATTR); } static bool has_cap_mac_admin(bool audit) { const struct cred *cred = current_cred(); unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) return false; if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) return false; return true; } static int selinux_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct inode *inode = d_backing_inode(dentry); struct inode_security_struct *isec; struct superblock_security_struct *sbsec; struct common_audit_data ad; u32 newsid, sid = current_sid(); int rc = 0; if (strcmp(name, XATTR_NAME_SELINUX)) { rc = cap_inode_setxattr(dentry, name, value, size, flags); if (rc) return rc; /* Not an attribute we recognize, so just check the ordinary setattr permission. */ return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); } if (!selinux_initialized(&selinux_state)) return (inode_owner_or_capable(inode) ? 0 : -EPERM); sbsec = inode->i_sb->s_security; if (!(sbsec->flags & SBLABEL_MNT)) return -EOPNOTSUPP; if (!inode_owner_or_capable(inode)) return -EPERM; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; isec = backing_inode_security(dentry); rc = avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, FILE__RELABELFROM, &ad); if (rc) return rc; rc = security_context_to_sid(&selinux_state, value, size, &newsid, GFP_KERNEL); if (rc == -EINVAL) { if (!has_cap_mac_admin(true)) { struct audit_buffer *ab; size_t audit_size; /* We strip a nul only if it is at the end, otherwise the * context contains a nul and we should audit that */ if (value) { const char *str = value; if (str[size - 1] == '\0') audit_size = size - 1; else audit_size = size; } else { audit_size = 0; } ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR); audit_log_format(ab, "op=setxattr invalid_context="); audit_log_n_untrustedstring(ab, value, audit_size); audit_log_end(ab); return rc; } rc = security_context_to_sid_force(&selinux_state, value, size, &newsid); } if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, newsid, isec->sclass, FILE__RELABELTO, &ad); if (rc) return rc; rc = security_validate_transition(&selinux_state, isec->sid, newsid, sid, isec->sclass); if (rc) return rc; return avc_has_perm(&selinux_state, newsid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, &ad); } static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { struct inode *inode = d_backing_inode(dentry); struct inode_security_struct *isec; u32 newsid; int rc; if (strcmp(name, XATTR_NAME_SELINUX)) { /* Not an attribute we recognize, so nothing to do. */ return; } if (!selinux_initialized(&selinux_state)) { /* If we haven't even been initialized, then we can't validate * against a policy, so leave the label as invalid. It may * resolve to a valid label on the next revalidation try if * we've since initialized. */ return; } rc = security_context_to_sid_force(&selinux_state, value, size, &newsid); if (rc) { pr_err("SELinux: unable to map context to SID" "for (%s, %lu), rc=%d\n", inode->i_sb->s_id, inode->i_ino, -rc); return; } isec = backing_inode_security(dentry); spin_lock(&isec->lock); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = newsid; isec->initialized = LABEL_INITIALIZED; spin_unlock(&isec->lock); return; } static int selinux_inode_getxattr(struct dentry *dentry, const char *name) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__GETATTR); } static int selinux_inode_listxattr(struct dentry *dentry) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__GETATTR); } static int selinux_inode_removexattr(struct dentry *dentry, const char *name) { if (strcmp(name, XATTR_NAME_SELINUX)) { int rc = cap_inode_removexattr(dentry, name); if (rc) return rc; /* Not an attribute we recognize, so just check the ordinary setattr permission. */ return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); } if (!selinux_initialized(&selinux_state)) return 0; /* No one is allowed to remove a SELinux security label. You can change the label, but all data must be labeled. */ return -EACCES; } static int selinux_path_notify(const struct path *path, u64 mask, unsigned int obj_type) { int ret; u32 perm; struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = *path; /* * Set permission needed based on the type of mark being set. * Performs an additional check for sb watches. */ switch (obj_type) { case FSNOTIFY_OBJ_TYPE_VFSMOUNT: perm = FILE__WATCH_MOUNT; break; case FSNOTIFY_OBJ_TYPE_SB: perm = FILE__WATCH_SB; ret = superblock_has_perm(current_cred(), path->dentry->d_sb, FILESYSTEM__WATCH, &ad); if (ret) return ret; break; case FSNOTIFY_OBJ_TYPE_INODE: perm = FILE__WATCH; break; default: return -EINVAL; } /* blocking watches require the file:watch_with_perm permission */ if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) perm |= FILE__WATCH_WITH_PERM; /* watches on read-like events need the file:watch_reads permission */ if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) perm |= FILE__WATCH_READS; return path_has_perm(current_cred(), path, perm); } /* * Copy the inode security context value to the user. * * Permission check is handled by selinux_inode_getxattr hook. */ static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) { u32 size; int error; char *context = NULL; struct inode_security_struct *isec; /* * If we're not initialized yet, then we can't validate contexts, so * just let vfs_getxattr fall back to using the on-disk xattr. */ if (!selinux_initialized(&selinux_state) || strcmp(name, XATTR_SELINUX_SUFFIX)) return -EOPNOTSUPP; /* * If the caller has CAP_MAC_ADMIN, then get the raw context * value even if it is not defined by current policy; otherwise, * use the in-core value under current policy. * Use the non-auditing forms of the permission checks since * getxattr may be called by unprivileged processes commonly * and lack of permission just means that we fall back to the * in-core context value, not a denial. */ isec = inode_security(inode); if (has_cap_mac_admin(false)) error = security_sid_to_context_force(&selinux_state, isec->sid, &context, &size); else error = security_sid_to_context(&selinux_state, isec->sid, &context, &size); if (error) return error; error = size; if (alloc) { *buffer = context; goto out_nofree; } kfree(context); out_nofree: return error; } static int selinux_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct inode_security_struct *isec = inode_security_novalidate(inode); struct superblock_security_struct *sbsec = inode->i_sb->s_security; u32 newsid; int rc; if (strcmp(name, XATTR_SELINUX_SUFFIX)) return -EOPNOTSUPP; if (!(sbsec->flags & SBLABEL_MNT)) return -EOPNOTSUPP; if (!value || !size) return -EACCES; rc = security_context_to_sid(&selinux_state, value, size, &newsid, GFP_KERNEL); if (rc) return rc; spin_lock(&isec->lock); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = newsid; isec->initialized = LABEL_INITIALIZED; spin_unlock(&isec->lock); return 0; } static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { const int len = sizeof(XATTR_NAME_SELINUX); if (!selinux_initialized(&selinux_state)) return 0; if (buffer && len <= buffer_size) memcpy(buffer, XATTR_NAME_SELINUX, len); return len; } static void selinux_inode_getsecid(struct inode *inode, u32 *secid) { struct inode_security_struct *isec = inode_security_novalidate(inode); *secid = isec->sid; } static int selinux_inode_copy_up(struct dentry *src, struct cred **new) { u32 sid; struct task_security_struct *tsec; struct cred *new_creds = *new; if (new_creds == NULL) { new_creds = prepare_creds(); if (!new_creds) return -ENOMEM; } tsec = selinux_cred(new_creds); /* Get label from overlay inode and set it in create_sid */ selinux_inode_getsecid(d_inode(src), &sid); tsec->create_sid = sid; *new = new_creds; return 0; } static int selinux_inode_copy_up_xattr(const char *name) { /* The copy_up hook above sets the initial context on an inode, but we * don't then want to overwrite it by blindly copying all the lower * xattrs up. Instead, we have to filter out SELinux-related xattrs. */ if (strcmp(name, XATTR_NAME_SELINUX) == 0) return 1; /* Discard */ /* * Any other attribute apart from SELINUX is not claimed, supported * by selinux. */ return -EOPNOTSUPP; } /* kernfs node operations */ static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, struct kernfs_node *kn) { const struct task_security_struct *tsec = selinux_cred(current_cred()); u32 parent_sid, newsid, clen; int rc; char *context; rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); if (rc == -ENODATA) return 0; else if (rc < 0) return rc; clen = (u32)rc; context = kmalloc(clen, GFP_KERNEL); if (!context) return -ENOMEM; rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); if (rc < 0) { kfree(context); return rc; } rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, GFP_KERNEL); kfree(context); if (rc) return rc; if (tsec->create_sid) { newsid = tsec->create_sid; } else { u16 secclass = inode_mode_to_security_class(kn->mode); struct qstr q; q.name = kn->name; q.hash_len = hashlen_string(kn_dir, kn->name); rc = security_transition_sid(&selinux_state, tsec->sid, parent_sid, secclass, &q, &newsid); if (rc) return rc; } rc = security_sid_to_context_force(&selinux_state, newsid, &context, &clen); if (rc) return rc; rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, XATTR_CREATE); kfree(context); return rc; } /* file security operations */ static int selinux_revalidate_file_permission(struct file *file, int mask) { const struct cred *cred = current_cred(); struct inode *inode = file_inode(file); /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) mask |= MAY_APPEND; return file_has_perm(cred, file, file_mask_to_av(inode->i_mode, mask)); } static int selinux_file_permission(struct file *file, int mask) { struct inode *inode = file_inode(file); struct file_security_struct *fsec = selinux_file(file); struct inode_security_struct *isec; u32 sid = current_sid(); if (!mask) /* No permission to check. Existence test. */ return 0; isec = inode_security(inode); if (sid == fsec->sid && fsec->isid == isec->sid && fsec->pseqno == avc_policy_seqno(&selinux_state)) /* No change since file_open check. */ return 0; return selinux_revalidate_file_permission(file, mask); } static int selinux_file_alloc_security(struct file *file) { struct file_security_struct *fsec = selinux_file(file); u32 sid = current_sid(); fsec->sid = sid; fsec->fown_sid = sid; return 0; } /* * Check whether a task has the ioctl permission and cmd * operation to an inode. */ static int ioctl_has_perm(const struct cred *cred, struct file *file, u32 requested, u16 cmd) { struct common_audit_data ad; struct file_security_struct *fsec = selinux_file(file); struct inode *inode = file_inode(file); struct inode_security_struct *isec; struct lsm_ioctlop_audit ioctl; u32 ssid = cred_sid(cred); int rc; u8 driver = cmd >> 8; u8 xperm = cmd & 0xff; ad.type = LSM_AUDIT_DATA_IOCTL_OP; ad.u.op = &ioctl; ad.u.op->cmd = cmd; ad.u.op->path = file->f_path; if (ssid != fsec->sid) { rc = avc_has_perm(&selinux_state, ssid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) goto out; } if (unlikely(IS_PRIVATE(inode))) return 0; isec = inode_security(inode); rc = avc_has_extended_perms(&selinux_state, ssid, isec->sid, isec->sclass, requested, driver, xperm, &ad); out: return rc; } static int selinux_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { const struct cred *cred = current_cred(); int error = 0; switch (cmd) { case FIONREAD: case FIBMAP: case FIGETBSZ: case FS_IOC_GETFLAGS: case FS_IOC_GETVERSION: error = file_has_perm(cred, file, FILE__GETATTR); break; case FS_IOC_SETFLAGS: case FS_IOC_SETVERSION: error = file_has_perm(cred, file, FILE__SETATTR); break; /* sys_ioctl() checks */ case FIONBIO: case FIOASYNC: error = file_has_perm(cred, file, 0); break; case KDSKBENT: case KDSKBSENT: error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, CAP_OPT_NONE, true); break; case FIOCLEX: case FIONCLEX: if (!selinux_policycap_ioctl_skip_cloexec()) error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); break; /* default case assumes that the command will go * to the file's ioctl() function. */ default: error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); } return error; } static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd, unsigned long arg) { /* * If we are in a 64-bit kernel running 32-bit userspace, we need to * make sure we don't compare 32-bit flags to 64-bit flags. */ switch (cmd) { case FS_IOC32_GETFLAGS: cmd = FS_IOC_GETFLAGS; break; case FS_IOC32_SETFLAGS: cmd = FS_IOC_SETFLAGS; break; case FS_IOC32_GETVERSION: cmd = FS_IOC_GETVERSION; break; case FS_IOC32_SETVERSION: cmd = FS_IOC_SETVERSION; break; default: break; } return selinux_file_ioctl(file, cmd, arg); } static int default_noexec __ro_after_init; static int file_map_prot_check(struct file *file, unsigned long prot, int shared) { const struct cred *cred = current_cred(); u32 sid = cred_sid(cred); int rc = 0; if (default_noexec && (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || (!shared && (prot & PROT_WRITE)))) { /* * We are making executable an anonymous mapping or a * private file mapping that will also be writable. * This has an additional check. */ rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__EXECMEM, NULL); if (rc) goto error; } if (file) { /* read access is always possible with a mapping */ u32 av = FILE__READ; /* write access only matters if the mapping is shared */ if (shared && (prot & PROT_WRITE)) av |= FILE__WRITE; if (prot & PROT_EXEC) av |= FILE__EXECUTE; return file_has_perm(cred, file, av); } error: return rc; } static int selinux_mmap_addr(unsigned long addr) { int rc = 0; if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { u32 sid = current_sid(); rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_MEMPROTECT, MEMPROTECT__MMAP_ZERO, NULL); } return rc; } static int selinux_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { struct common_audit_data ad; int rc; if (file) { ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; rc = inode_has_perm(current_cred(), file_inode(file), FILE__MAP, &ad); if (rc) return rc; } if (checkreqprot_get(&selinux_state)) prot = reqprot; return file_map_prot_check(file, prot, (flags & MAP_TYPE) == MAP_SHARED); } static int selinux_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { const struct cred *cred = current_cred(); u32 sid = cred_sid(cred); if (checkreqprot_get(&selinux_state)) prot = reqprot; if (default_noexec && (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { int rc = 0; if (vma->vm_start >= vma->vm_mm->start_brk && vma->vm_end <= vma->vm_mm->brk) { rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__EXECHEAP, NULL); } else if (!vma->vm_file && ((vma->vm_start <= vma->vm_mm->start_stack && vma->vm_end >= vma->vm_mm->start_stack) || vma_is_stack_for_current(vma))) { rc = avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__EXECSTACK, NULL); } else if (vma->vm_file && vma->anon_vma) { /* * We are making executable a file mapping that has * had some COW done. Since pages might have been * written, check ability to execute the possibly * modified content. This typically should only * occur for text relocations. */ rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); } if (rc) return rc; } return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); } static int selinux_file_lock(struct file *file, unsigned int cmd) { const struct cred *cred = current_cred(); return file_has_perm(cred, file, FILE__LOCK); } static int selinux_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { const struct cred *cred = current_cred(); int err = 0; switch (cmd) { case F_SETFL: if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { err = file_has_perm(cred, file, FILE__WRITE); break; } fallthrough; case F_SETOWN: case F_SETSIG: case F_GETFL: case F_GETOWN: case F_GETSIG: case F_GETOWNER_UIDS: /* Just check FD__USE permission */ err = file_has_perm(cred, file, 0); break; case F_GETLK: case F_SETLK: case F_SETLKW: case F_OFD_GETLK: case F_OFD_SETLK: case F_OFD_SETLKW: #if BITS_PER_LONG == 32 case F_GETLK64: case F_SETLK64: case F_SETLKW64: #endif err = file_has_perm(cred, file, FILE__LOCK); break; } return err; } static void selinux_file_set_fowner(struct file *file) { struct file_security_struct *fsec; fsec = selinux_file(file); fsec->fown_sid = current_sid(); } static int selinux_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int signum) { struct file *file; u32 sid = task_sid(tsk); u32 perm; struct file_security_struct *fsec; /* struct fown_struct is never outside the context of a struct file */ file = container_of(fown, struct file, f_owner); fsec = selinux_file(file); if (!signum) perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ else perm = signal_to_av(signum); return avc_has_perm(&selinux_state, fsec->fown_sid, sid, SECCLASS_PROCESS, perm, NULL); } static int selinux_file_receive(struct file *file) { const struct cred *cred = current_cred(); return file_has_perm(cred, file, file_to_av(file)); } static int selinux_file_open(struct file *file) { struct file_security_struct *fsec; struct inode_security_struct *isec; fsec = selinux_file(file); isec = inode_security(file_inode(file)); /* * Save inode label and policy sequence number * at open-time so that selinux_file_permission * can determine whether revalidation is necessary. * Task label is already saved in the file security * struct as its SID. */ fsec->isid = isec->sid; fsec->pseqno = avc_policy_seqno(&selinux_state); /* * Since the inode label or policy seqno may have changed * between the selinux_inode_permission check and the saving * of state above, recheck that access is still permitted. * Otherwise, access might never be revalidated against the * new inode label or new policy. * This check is not redundant - do not remove. */ return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); } /* task security operations */ static int selinux_task_alloc(struct task_struct *task, unsigned long clone_flags) { u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); } /* * prepare a new set of credentials for modification */ static int selinux_cred_prepare(struct cred *new, const struct cred *old, gfp_t gfp) { const struct task_security_struct *old_tsec = selinux_cred(old); struct task_security_struct *tsec = selinux_cred(new); *tsec = *old_tsec; return 0; } /* * transfer the SELinux data to a blank set of creds */ static void selinux_cred_transfer(struct cred *new, const struct cred *old) { const struct task_security_struct *old_tsec = selinux_cred(old); struct task_security_struct *tsec = selinux_cred(new); *tsec = *old_tsec; } static void selinux_cred_getsecid(const struct cred *c, u32 *secid) { *secid = cred_sid(c); } /* * set the security data for a kernel service * - all the creation contexts are set to unlabelled */ static int selinux_kernel_act_as(struct cred *new, u32 secid) { struct task_security_struct *tsec = selinux_cred(new); u32 sid = current_sid(); int ret; ret = avc_has_perm(&selinux_state, sid, secid, SECCLASS_KERNEL_SERVICE, KERNEL_SERVICE__USE_AS_OVERRIDE, NULL); if (ret == 0) { tsec->sid = secid; tsec->create_sid = 0; tsec->keycreate_sid = 0; tsec->sockcreate_sid = 0; } return ret; } /* * set the file creation context in a security record to the same as the * objective context of the specified inode */ static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) { struct inode_security_struct *isec = inode_security(inode); struct task_security_struct *tsec = selinux_cred(new); u32 sid = current_sid(); int ret; ret = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_KERNEL_SERVICE, KERNEL_SERVICE__CREATE_FILES_AS, NULL); if (ret == 0) tsec->create_sid = isec->sid; return ret; } static int selinux_kernel_module_request(char *kmod_name) { struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_KMOD; ad.u.kmod_name = kmod_name; return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__MODULE_REQUEST, &ad); } static int selinux_kernel_module_from_file(struct file *file) { struct common_audit_data ad; struct inode_security_struct *isec; struct file_security_struct *fsec; u32 sid = current_sid(); int rc; /* init_module */ if (file == NULL) return avc_has_perm(&selinux_state, sid, sid, SECCLASS_SYSTEM, SYSTEM__MODULE_LOAD, NULL); /* finit_module */ ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; fsec = selinux_file(file); if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) return rc; } isec = inode_security(file_inode(file)); return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SYSTEM, SYSTEM__MODULE_LOAD, &ad); } static int selinux_kernel_read_file(struct file *file, enum kernel_read_file_id id, bool contents) { int rc = 0; switch (id) { case READING_MODULE: rc = selinux_kernel_module_from_file(contents ? file : NULL); break; default: break; } return rc; } static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) { int rc = 0; switch (id) { case LOADING_MODULE: rc = selinux_kernel_module_from_file(NULL); default: break; } return rc; } static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETPGID, NULL); } static int selinux_task_getpgid(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETPGID, NULL); } static int selinux_task_getsid(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETSESSION, NULL); } static void selinux_task_getsecid(struct task_struct *p, u32 *secid) { *secid = task_sid(p); } static int selinux_task_setnice(struct task_struct *p, int nice) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_setioprio(struct task_struct *p, int ioprio) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_getioprio(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETSCHED, NULL); } static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, unsigned int flags) { u32 av = 0; if (!flags) return 0; if (flags & LSM_PRLIMIT_WRITE) av |= PROCESS__SETRLIMIT; if (flags & LSM_PRLIMIT_READ) av |= PROCESS__GETRLIMIT; return avc_has_perm(&selinux_state, cred_sid(cred), cred_sid(tcred), SECCLASS_PROCESS, av, NULL); } static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, struct rlimit *new_rlim) { struct rlimit *old_rlim = p->signal->rlim + resource; /* Control the ability to change the hard limit (whether lowering or raising it), so that the hard limit can later be used as a safe reset point for the soft limit upon context transitions. See selinux_bprm_committing_creds. */ if (old_rlim->rlim_max != new_rlim->rlim_max) return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); return 0; } static int selinux_task_setscheduler(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_getscheduler(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__GETSCHED, NULL); } static int selinux_task_movememory(struct task_struct *p) { return avc_has_perm(&selinux_state, current_sid(), task_sid(p), SECCLASS_PROCESS, PROCESS__SETSCHED, NULL); } static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, int sig, const struct cred *cred) { u32 secid; u32 perm; if (!sig) perm = PROCESS__SIGNULL; /* null signal; existence test */ else perm = signal_to_av(sig); if (!cred) secid = current_sid(); else secid = cred_sid(cred); return avc_has_perm(&selinux_state, secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); } static void selinux_task_to_inode(struct task_struct *p, struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); u32 sid = task_sid(p); spin_lock(&isec->lock); isec->sclass = inode_mode_to_security_class(inode->i_mode); isec->sid = sid; isec->initialized = LABEL_INITIALIZED; spin_unlock(&isec->lock); } /* Returns error only if unable to parse addresses */ static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct common_audit_data *ad, u8 *proto) { int offset, ihlen, ret = -EINVAL; struct iphdr _iph, *ih; offset = skb_network_offset(skb); ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); if (ih == NULL) goto out; ihlen = ih->ihl * 4; if (ihlen < sizeof(_iph)) goto out; ad->u.net->v4info.saddr = ih->saddr; ad->u.net->v4info.daddr = ih->daddr; ret = 0; if (proto) *proto = ih->protocol; switch (ih->protocol) { case IPPROTO_TCP: { struct tcphdr _tcph, *th; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); if (th == NULL) break; ad->u.net->sport = th->source; ad->u.net->dport = th->dest; break; } case IPPROTO_UDP: { struct udphdr _udph, *uh; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); if (uh == NULL) break; ad->u.net->sport = uh->source; ad->u.net->dport = uh->dest; break; } case IPPROTO_DCCP: { struct dccp_hdr _dccph, *dh; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); if (dh == NULL) break; ad->u.net->sport = dh->dccph_sport; ad->u.net->dport = dh->dccph_dport; break; } #if IS_ENABLED(CONFIG_IP_SCTP) case IPPROTO_SCTP: { struct sctphdr _sctph, *sh; if (ntohs(ih->frag_off) & IP_OFFSET) break; offset += ihlen; sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); if (sh == NULL) break; ad->u.net->sport = sh->source; ad->u.net->dport = sh->dest; break; } #endif default: break; } out: return ret; } #if IS_ENABLED(CONFIG_IPV6) /* Returns error only if unable to parse addresses */ static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct common_audit_data *ad, u8 *proto) { u8 nexthdr; int ret = -EINVAL, offset; struct ipv6hdr _ipv6h, *ip6; __be16 frag_off; offset = skb_network_offset(skb); ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (ip6 == NULL) goto out; ad->u.net->v6info.saddr = ip6->saddr; ad->u.net->v6info.daddr = ip6->daddr; ret = 0; nexthdr = ip6->nexthdr; offset += sizeof(_ipv6h); offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); if (offset < 0) goto out; if (proto) *proto = nexthdr; switch (nexthdr) { case IPPROTO_TCP: { struct tcphdr _tcph, *th; th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); if (th == NULL) break; ad->u.net->sport = th->source; ad->u.net->dport = th->dest; break; } case IPPROTO_UDP: { struct udphdr _udph, *uh; uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); if (uh == NULL) break; ad->u.net->sport = uh->source; ad->u.net->dport = uh->dest; break; } case IPPROTO_DCCP: { struct dccp_hdr _dccph, *dh; dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); if (dh == NULL) break; ad->u.net->sport = dh->dccph_sport; ad->u.net->dport = dh->dccph_dport; break; } #if IS_ENABLED(CONFIG_IP_SCTP) case IPPROTO_SCTP: { struct sctphdr _sctph, *sh; sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); if (sh == NULL) break; ad->u.net->sport = sh->source; ad->u.net->dport = sh->dest; break; } #endif /* includes fragments */ default: break; } out: return ret; } #endif /* IPV6 */ static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, char **_addrp, int src, u8 *proto) { char *addrp; int ret; switch (ad->u.net->family) { case PF_INET: ret = selinux_parse_skb_ipv4(skb, ad, proto); if (ret) goto parse_error; addrp = (char *)(src ? &ad->u.net->v4info.saddr : &ad->u.net->v4info.daddr); goto okay; #if IS_ENABLED(CONFIG_IPV6) case PF_INET6: ret = selinux_parse_skb_ipv6(skb, ad, proto); if (ret) goto parse_error; addrp = (char *)(src ? &ad->u.net->v6info.saddr : &ad->u.net->v6info.daddr); goto okay; #endif /* IPV6 */ default: addrp = NULL; goto okay; } parse_error: pr_warn( "SELinux: failure in selinux_parse_skb()," " unable to parse packet\n"); return ret; okay: if (_addrp) *_addrp = addrp; return 0; } /** * selinux_skb_peerlbl_sid - Determine the peer label of a packet * @skb: the packet * @family: protocol family * @sid: the packet's peer label SID * * Description: * Check the various different forms of network peer labeling and determine * the peer label/SID for the packet; most of the magic actually occurs in * the security server function security_net_peersid_cmp(). The function * returns zero if the value in @sid is valid (although it may be SECSID_NULL) * or -EACCES if @sid is invalid due to inconsistencies with the different * peer labels. * */ static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) { int err; u32 xfrm_sid; u32 nlbl_sid; u32 nlbl_type; err = selinux_xfrm_skb_sid(skb, &xfrm_sid); if (unlikely(err)) return -EACCES; err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); if (unlikely(err)) return -EACCES; err = security_net_peersid_resolve(&selinux_state, nlbl_sid, nlbl_type, xfrm_sid, sid); if (unlikely(err)) { pr_warn( "SELinux: failure in selinux_skb_peerlbl_sid()," " unable to determine packet's peer label\n"); return -EACCES; } return 0; } /** * selinux_conn_sid - Determine the child socket label for a connection * @sk_sid: the parent socket's SID * @skb_sid: the packet's SID * @conn_sid: the resulting connection SID * * If @skb_sid is valid then the user:role:type information from @sk_sid is * combined with the MLS information from @skb_sid in order to create * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy * of @sk_sid. Returns zero on success, negative values on failure. * */ static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) { int err = 0; if (skb_sid != SECSID_NULL) err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, conn_sid); else *conn_sid = sk_sid; return err; } /* socket security operations */ static int socket_sockcreate_sid(const struct task_security_struct *tsec, u16 secclass, u32 *socksid) { if (tsec->sockcreate_sid > SECSID_NULL) { *socksid = tsec->sockcreate_sid; return 0; } return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, secclass, NULL, socksid); } static int sock_has_perm(struct sock *sk, u32 perms) { struct sk_security_struct *sksec = sk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; if (sksec->sid == SECINITSID_KERNEL) return 0; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = sk; return avc_has_perm(&selinux_state, current_sid(), sksec->sid, sksec->sclass, perms, &ad); } static int selinux_socket_create(int family, int type, int protocol, int kern) { const struct task_security_struct *tsec = selinux_cred(current_cred()); u32 newsid; u16 secclass; int rc; if (kern) return 0; secclass = socket_type_to_security_class(family, type, protocol); rc = socket_sockcreate_sid(tsec, secclass, &newsid); if (rc) return rc; return avc_has_perm(&selinux_state, tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); } static int selinux_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { const struct task_security_struct *tsec = selinux_cred(current_cred()); struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); struct sk_security_struct *sksec; u16 sclass = socket_type_to_security_class(family, type, protocol); u32 sid = SECINITSID_KERNEL; int err = 0; if (!kern) { err = socket_sockcreate_sid(tsec, sclass, &sid); if (err) return err; } isec->sclass = sclass; isec->sid = sid; isec->initialized = LABEL_INITIALIZED; if (sock->sk) { sksec = sock->sk->sk_security; sksec->sclass = sclass; sksec->sid = sid; /* Allows detection of the first association on this socket */ if (sksec->sclass == SECCLASS_SCTP_SOCKET) sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; err = selinux_netlbl_socket_post_create(sock->sk, family); } return err; } static int selinux_socket_socketpair(struct socket *socka, struct socket *sockb) { struct sk_security_struct *sksec_a = socka->sk->sk_security; struct sk_security_struct *sksec_b = sockb->sk->sk_security; sksec_a->peer_sid = sksec_b->sid; sksec_b->peer_sid = sksec_a->sid; return 0; } /* Range of port numbers used to automatically bind. Need to determine whether we should perform a name_bind permission check between the socket and the port number. */ static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { struct sock *sk = sock->sk; struct sk_security_struct *sksec = sk->sk_security; u16 family; int err; err = sock_has_perm(sk, SOCKET__BIND); if (err) goto out; /* If PF_INET or PF_INET6, check name_bind permission for the port. */ family = sk->sk_family; if (family == PF_INET || family == PF_INET6) { char *addrp; struct common_audit_data ad; struct lsm_network_audit net = {0,}; struct sockaddr_in *addr4 = NULL; struct sockaddr_in6 *addr6 = NULL; u16 family_sa; unsigned short snum; u32 sid, node_perm; /* * sctp_bindx(3) calls via selinux_sctp_bind_connect() * that validates multiple binding addresses. Because of this * need to check address->sa_family as it is possible to have * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. */ if (addrlen < offsetofend(struct sockaddr, sa_family)) return -EINVAL; family_sa = address->sa_family; switch (family_sa) { case AF_UNSPEC: case AF_INET: if (addrlen < sizeof(struct sockaddr_in)) return -EINVAL; addr4 = (struct sockaddr_in *)address; if (family_sa == AF_UNSPEC) { if (family == PF_INET6) { /* Length check from inet6_bind_sk() */ if (addrlen < SIN6_LEN_RFC2133) return -EINVAL; /* Family check from __inet6_bind() */ goto err_af; } /* see __inet_bind(), we only want to allow * AF_UNSPEC if the address is INADDR_ANY */ if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) goto err_af; family_sa = AF_INET; } snum = ntohs(addr4->sin_port); addrp = (char *)&addr4->sin_addr.s_addr; break; case AF_INET6: if (addrlen < SIN6_LEN_RFC2133) return -EINVAL; addr6 = (struct sockaddr_in6 *)address; snum = ntohs(addr6->sin6_port); addrp = (char *)&addr6->sin6_addr.s6_addr; break; default: goto err_af; } ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sport = htons(snum); ad.u.net->family = family_sa; if (snum) { int low, high; inet_get_local_port_range(sock_net(sk), &low, &high); if (inet_port_requires_bind_service(sock_net(sk), snum) || snum < low || snum > high) { err = sel_netport_sid(sk->sk_protocol, snum, &sid); if (err) goto out; err = avc_has_perm(&selinux_state, sksec->sid, sid, sksec->sclass, SOCKET__NAME_BIND, &ad); if (err) goto out; } } switch (sksec->sclass) { case SECCLASS_TCP_SOCKET: node_perm = TCP_SOCKET__NODE_BIND; break; case SECCLASS_UDP_SOCKET: node_perm = UDP_SOCKET__NODE_BIND; break; case SECCLASS_DCCP_SOCKET: node_perm = DCCP_SOCKET__NODE_BIND; break; case SECCLASS_SCTP_SOCKET: node_perm = SCTP_SOCKET__NODE_BIND; break; default: node_perm = RAWIP_SOCKET__NODE_BIND; break; } err = sel_netnode_sid(addrp, family_sa, &sid); if (err) goto out; if (family_sa == AF_INET) ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; else ad.u.net->v6info.saddr = addr6->sin6_addr; err = avc_has_perm(&selinux_state, sksec->sid, sid, sksec->sclass, node_perm, &ad); if (err) goto out; } out: return err; err_af: /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ if (sksec->sclass == SECCLASS_SCTP_SOCKET) return -EINVAL; return -EAFNOSUPPORT; } /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst */ static int selinux_socket_connect_helper(struct socket *sock, struct sockaddr *address, int addrlen) { struct sock *sk = sock->sk; struct sk_security_struct *sksec = sk->sk_security; int err; err = sock_has_perm(sk, SOCKET__CONNECT); if (err) return err; if (addrlen < offsetofend(struct sockaddr, sa_family)) return -EINVAL; /* connect(AF_UNSPEC) has special handling, as it is a documented * way to disconnect the socket */ if (address->sa_family == AF_UNSPEC) return 0; /* * If a TCP, DCCP or SCTP socket, check name_connect permission * for the port. */ if (sksec->sclass == SECCLASS_TCP_SOCKET || sksec->sclass == SECCLASS_DCCP_SOCKET || sksec->sclass == SECCLASS_SCTP_SOCKET) { struct common_audit_data ad; struct lsm_network_audit net = {0,}; struct sockaddr_in *addr4 = NULL; struct sockaddr_in6 *addr6 = NULL; unsigned short snum; u32 sid, perm; /* sctp_connectx(3) calls via selinux_sctp_bind_connect() * that validates multiple connect addresses. Because of this * need to check address->sa_family as it is possible to have * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. */ switch (address->sa_family) { case AF_INET: addr4 = (struct sockaddr_in *)address; if (addrlen < sizeof(struct sockaddr_in)) return -EINVAL; snum = ntohs(addr4->sin_port); break; case AF_INET6: addr6 = (struct sockaddr_in6 *)address; if (addrlen < SIN6_LEN_RFC2133) return -EINVAL; snum = ntohs(addr6->sin6_port); break; default: /* Note that SCTP services expect -EINVAL, whereas * others expect -EAFNOSUPPORT. */ if (sksec->sclass == SECCLASS_SCTP_SOCKET) return -EINVAL; else return -EAFNOSUPPORT; } err = sel_netport_sid(sk->sk_protocol, snum, &sid); if (err) return err; switch (sksec->sclass) { case SECCLASS_TCP_SOCKET: perm = TCP_SOCKET__NAME_CONNECT; break; case SECCLASS_DCCP_SOCKET: perm = DCCP_SOCKET__NAME_CONNECT; break; case SECCLASS_SCTP_SOCKET: perm = SCTP_SOCKET__NAME_CONNECT; break; } ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->dport = htons(snum); ad.u.net->family = address->sa_family; err = avc_has_perm(&selinux_state, sksec->sid, sid, sksec->sclass, perm, &ad); if (err) return err; } return 0; } /* Supports connect(2), see comments in selinux_socket_connect_helper() */ static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { int err; struct sock *sk = sock->sk; err = selinux_socket_connect_helper(sock, address, addrlen); if (err) return err; return selinux_netlbl_socket_connect(sk, address); } static int selinux_socket_listen(struct socket *sock, int backlog) { return sock_has_perm(sock->sk, SOCKET__LISTEN); } static int selinux_socket_accept(struct socket *sock, struct socket *newsock) { int err; struct inode_security_struct *isec; struct inode_security_struct *newisec; u16 sclass; u32 sid; err = sock_has_perm(sock->sk, SOCKET__ACCEPT); if (err) return err; isec = inode_security_novalidate(SOCK_INODE(sock)); spin_lock(&isec->lock); sclass = isec->sclass; sid = isec->sid; spin_unlock(&isec->lock); newisec = inode_security_novalidate(SOCK_INODE(newsock)); newisec->sclass = sclass; newisec->sid = sid; newisec->initialized = LABEL_INITIALIZED; return 0; } static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return sock_has_perm(sock->sk, SOCKET__WRITE); } static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return sock_has_perm(sock->sk, SOCKET__READ); } static int selinux_socket_getsockname(struct socket *sock) { return sock_has_perm(sock->sk, SOCKET__GETATTR); } static int selinux_socket_getpeername(struct socket *sock) { return sock_has_perm(sock->sk, SOCKET__GETATTR); } static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) { int err; err = sock_has_perm(sock->sk, SOCKET__SETOPT); if (err) return err; return selinux_netlbl_socket_setsockopt(sock, level, optname); } static int selinux_socket_getsockopt(struct socket *sock, int level, int optname) { return sock_has_perm(sock->sk, SOCKET__GETOPT); } static int selinux_socket_shutdown(struct socket *sock, int how) { return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); } static int selinux_socket_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) { struct sk_security_struct *sksec_sock = sock->sk_security; struct sk_security_struct *sksec_other = other->sk_security; struct sk_security_struct *sksec_new = newsk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; int err; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = other; err = avc_has_perm(&selinux_state, sksec_sock->sid, sksec_other->sid, sksec_other->sclass, UNIX_STREAM_SOCKET__CONNECTTO, &ad); if (err) return err; /* server child socket */ sksec_new->peer_sid = sksec_sock->sid; err = security_sid_mls_copy(&selinux_state, sksec_other->sid, sksec_sock->sid, &sksec_new->sid); if (err) return err; /* connecting socket */ sksec_sock->peer_sid = sksec_new->sid; return 0; } static int selinux_socket_unix_may_send(struct socket *sock, struct socket *other) { struct sk_security_struct *ssec = sock->sk->sk_security; struct sk_security_struct *osec = other->sk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = other->sk; return avc_has_perm(&selinux_state, ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, &ad); } static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, char *addrp, u16 family, u32 peer_sid, struct common_audit_data *ad) { int err; u32 if_sid; u32 node_sid; err = sel_netif_sid(ns, ifindex, &if_sid); if (err) return err; err = avc_has_perm(&selinux_state, peer_sid, if_sid, SECCLASS_NETIF, NETIF__INGRESS, ad); if (err) return err; err = sel_netnode_sid(addrp, family, &node_sid); if (err) return err; return avc_has_perm(&selinux_state, peer_sid, node_sid, SECCLASS_NODE, NODE__RECVFROM, ad); } static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, u16 family) { int err = 0; struct sk_security_struct *sksec = sk->sk_security; u32 sk_sid = sksec->sid; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = skb->skb_iif; ad.u.net->family = family; err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); if (err) return err; if (selinux_secmark_enabled()) { err = avc_has_perm(&selinux_state, sk_sid, skb->secmark, SECCLASS_PACKET, PACKET__RECV, &ad); if (err) return err; } err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); if (err) return err; err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); return err; } static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { int err; struct sk_security_struct *sksec = sk->sk_security; u16 family = sk->sk_family; u32 sk_sid = sksec->sid; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; u8 secmark_active; u8 peerlbl_active; if (family != PF_INET && family != PF_INET6) return 0; /* Handle mapped IPv4 packets arriving via IPv6 sockets */ if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) family = PF_INET; /* If any sort of compatibility mode is enabled then handoff processing * to the selinux_sock_rcv_skb_compat() function to deal with the * special handling. We do this in an attempt to keep this function * as fast and as clean as possible. */ if (!selinux_policycap_netpeer()) return selinux_sock_rcv_skb_compat(sk, skb, family); secmark_active = selinux_secmark_enabled(); peerlbl_active = selinux_peerlbl_enabled(); if (!secmark_active && !peerlbl_active) return 0; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = skb->skb_iif; ad.u.net->family = family; err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); if (err) return err; if (peerlbl_active) { u32 peer_sid; err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); if (err) return err; err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, addrp, family, peer_sid, &ad); if (err) { selinux_netlbl_err(skb, family, err, 0); return err; } err = avc_has_perm(&selinux_state, sk_sid, peer_sid, SECCLASS_PEER, PEER__RECV, &ad); if (err) { selinux_netlbl_err(skb, family, err, 0); return err; } } if (secmark_active) { err = avc_has_perm(&selinux_state, sk_sid, skb->secmark, SECCLASS_PACKET, PACKET__RECV, &ad); if (err) return err; } return err; } static int selinux_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, sockptr_t optlen, unsigned int len) { int err = 0; char *scontext = NULL; u32 scontext_len; struct sk_security_struct *sksec = sock->sk->sk_security; u32 peer_sid = SECSID_NULL; if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || sksec->sclass == SECCLASS_TCP_SOCKET || sksec->sclass == SECCLASS_SCTP_SOCKET) peer_sid = sksec->peer_sid; if (peer_sid == SECSID_NULL) return -ENOPROTOOPT; err = security_sid_to_context(&selinux_state, peer_sid, &scontext, &scontext_len); if (err) return err; if (scontext_len > len) { err = -ERANGE; goto out_len; } if (copy_to_sockptr(optval, scontext, scontext_len)) err = -EFAULT; out_len: if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len))) err = -EFAULT; kfree(scontext); return err; } static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { u32 peer_secid = SECSID_NULL; u16 family; struct inode_security_struct *isec; if (skb && skb->protocol == htons(ETH_P_IP)) family = PF_INET; else if (skb && skb->protocol == htons(ETH_P_IPV6)) family = PF_INET6; else if (sock) family = sock->sk->sk_family; else goto out; if (sock && family == PF_UNIX) { isec = inode_security_novalidate(SOCK_INODE(sock)); peer_secid = isec->sid; } else if (skb) selinux_skb_peerlbl_sid(skb, family, &peer_secid); out: *secid = peer_secid; if (peer_secid == SECSID_NULL) return -EINVAL; return 0; } static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) { struct sk_security_struct *sksec; sksec = kzalloc(sizeof(*sksec), priority); if (!sksec) return -ENOMEM; sksec->peer_sid = SECINITSID_UNLABELED; sksec->sid = SECINITSID_UNLABELED; sksec->sclass = SECCLASS_SOCKET; selinux_netlbl_sk_security_reset(sksec); sk->sk_security = sksec; return 0; } static void selinux_sk_free_security(struct sock *sk) { struct sk_security_struct *sksec = sk->sk_security; sk->sk_security = NULL; selinux_netlbl_sk_security_free(sksec); kfree(sksec); } static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) { struct sk_security_struct *sksec = sk->sk_security; struct sk_security_struct *newsksec = newsk->sk_security; newsksec->sid = sksec->sid; newsksec->peer_sid = sksec->peer_sid; newsksec->sclass = sksec->sclass; selinux_netlbl_sk_security_reset(newsksec); } static void selinux_sk_getsecid(struct sock *sk, u32 *secid) { if (!sk) *secid = SECINITSID_ANY_SOCKET; else { struct sk_security_struct *sksec = sk->sk_security; *secid = sksec->sid; } } static void selinux_sock_graft(struct sock *sk, struct socket *parent) { struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(parent)); struct sk_security_struct *sksec = sk->sk_security; if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || sk->sk_family == PF_UNIX) isec->sid = sksec->sid; sksec->sclass = isec->sclass; } /* Called whenever SCTP receives an INIT chunk. This happens when an incoming * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association * already present). */ static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) { struct sk_security_struct *sksec = ep->base.sk->sk_security; struct common_audit_data ad; struct lsm_network_audit net = {0,}; u8 peerlbl_active; u32 peer_sid = SECINITSID_UNLABELED; u32 conn_sid; int err = 0; if (!selinux_policycap_extsockclass()) return 0; peerlbl_active = selinux_peerlbl_enabled(); if (peerlbl_active) { /* This will return peer_sid = SECSID_NULL if there are * no peer labels, see security_net_peersid_resolve(). */ err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, &peer_sid); if (err) return err; if (peer_sid == SECSID_NULL) peer_sid = SECINITSID_UNLABELED; } if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { sksec->sctp_assoc_state = SCTP_ASSOC_SET; /* Here as first association on socket. As the peer SID * was allowed by peer recv (and the netif/node checks), * then it is approved by policy and used as the primary * peer SID for getpeercon(3). */ sksec->peer_sid = peer_sid; } else if (sksec->peer_sid != peer_sid) { /* Other association peer SIDs are checked to enforce * consistency among the peer SIDs. */ ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->sk = ep->base.sk; err = avc_has_perm(&selinux_state, sksec->peer_sid, peer_sid, sksec->sclass, SCTP_SOCKET__ASSOCIATION, &ad); if (err) return err; } /* Compute the MLS component for the connection and store * the information in ep. This will be used by SCTP TCP type * sockets and peeled off connections as they cause a new * socket to be generated. selinux_sctp_sk_clone() will then * plug this into the new socket. */ err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); if (err) return err; ep->secid = conn_sid; ep->peer_secid = peer_sid; /* Set any NetLabel labels including CIPSO/CALIPSO options. */ return selinux_netlbl_sctp_assoc_request(ep, skb); } /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting * based on their @optname. */ static int selinux_sctp_bind_connect(struct sock *sk, int optname, struct sockaddr *address, int addrlen) { int len, err = 0, walk_size = 0; void *addr_buf; struct sockaddr *addr; struct socket *sock; if (!selinux_policycap_extsockclass()) return 0; /* Process one or more addresses that may be IPv4 or IPv6 */ sock = sk->sk_socket; addr_buf = address; while (walk_size < addrlen) { if (walk_size + sizeof(sa_family_t) > addrlen) return -EINVAL; addr = addr_buf; switch (addr->sa_family) { case AF_UNSPEC: case AF_INET: len = sizeof(struct sockaddr_in); break; case AF_INET6: len = sizeof(struct sockaddr_in6); break; default: return -EINVAL; } if (walk_size + len > addrlen) return -EINVAL; err = -EINVAL; switch (optname) { /* Bind checks */ case SCTP_PRIMARY_ADDR: case SCTP_SET_PEER_PRIMARY_ADDR: case SCTP_SOCKOPT_BINDX_ADD: err = selinux_socket_bind(sock, addr, len); break; /* Connect checks */ case SCTP_SOCKOPT_CONNECTX: case SCTP_PARAM_SET_PRIMARY: case SCTP_PARAM_ADD_IP: case SCTP_SENDMSG_CONNECT: err = selinux_socket_connect_helper(sock, addr, len); if (err) return err; /* As selinux_sctp_bind_connect() is called by the * SCTP protocol layer, the socket is already locked, * therefore selinux_netlbl_socket_connect_locked() * is called here. The situations handled are: * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), * whenever a new IP address is added or when a new * primary address is selected. * Note that an SCTP connect(2) call happens before * the SCTP protocol layer and is handled via * selinux_socket_connect(). */ err = selinux_netlbl_socket_connect_locked(sk, addr); break; } if (err) return err; addr_buf += len; walk_size += len; } return 0; } /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, struct sock *newsk) { struct sk_security_struct *sksec = sk->sk_security; struct sk_security_struct *newsksec = newsk->sk_security; /* If policy does not support SECCLASS_SCTP_SOCKET then call * the non-sctp clone version. */ if (!selinux_policycap_extsockclass()) return selinux_sk_clone_security(sk, newsk); newsksec->sid = ep->secid; newsksec->peer_sid = ep->peer_secid; newsksec->sclass = sksec->sclass; selinux_netlbl_sctp_sk_clone(sk, newsk); } static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, struct request_sock *req) { struct sk_security_struct *sksec = sk->sk_security; int err; u16 family = req->rsk_ops->family; u32 connsid; u32 peersid; err = selinux_skb_peerlbl_sid(skb, family, &peersid); if (err) return err; err = selinux_conn_sid(sksec->sid, peersid, &connsid); if (err) return err; req->secid = connsid; req->peer_secid = peersid; return selinux_netlbl_inet_conn_request(req, family); } static void selinux_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { struct sk_security_struct *newsksec = newsk->sk_security; newsksec->sid = req->secid; newsksec->peer_sid = req->peer_secid; /* NOTE: Ideally, we should also get the isec->sid for the new socket in sync, but we don't have the isec available yet. So we will wait until sock_graft to do it, by which time it will have been created and available. */ /* We don't need to take any sort of lock here as we are the only * thread with access to newsksec */ selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); } static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) { u16 family = sk->sk_family; struct sk_security_struct *sksec = sk->sk_security; /* handle mapped IPv4 packets arriving via IPv6 sockets */ if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) family = PF_INET; selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); } static int selinux_secmark_relabel_packet(u32 sid) { const struct task_security_struct *__tsec; u32 tsid; __tsec = selinux_cred(current_cred()); tsid = __tsec->sid; return avc_has_perm(&selinux_state, tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); } static void selinux_secmark_refcount_inc(void) { atomic_inc(&selinux_secmark_refcount); } static void selinux_secmark_refcount_dec(void) { atomic_dec(&selinux_secmark_refcount); } static void selinux_req_classify_flow(const struct request_sock *req, struct flowi_common *flic) { flic->flowic_secid = req->secid; } static int selinux_tun_dev_alloc_security(void **security) { struct tun_security_struct *tunsec; tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); if (!tunsec) return -ENOMEM; tunsec->sid = current_sid(); *security = tunsec; return 0; } static void selinux_tun_dev_free_security(void *security) { kfree(security); } static int selinux_tun_dev_create(void) { u32 sid = current_sid(); /* we aren't taking into account the "sockcreate" SID since the socket * that is being created here is not a socket in the traditional sense, * instead it is a private sock, accessible only to the kernel, and * representing a wide range of network traffic spanning multiple * connections unlike traditional sockets - check the TUN driver to * get a better understanding of why this socket is special */ return avc_has_perm(&selinux_state, sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, NULL); } static int selinux_tun_dev_attach_queue(void *security) { struct tun_security_struct *tunsec = security; return avc_has_perm(&selinux_state, current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__ATTACH_QUEUE, NULL); } static int selinux_tun_dev_attach(struct sock *sk, void *security) { struct tun_security_struct *tunsec = security; struct sk_security_struct *sksec = sk->sk_security; /* we don't currently perform any NetLabel based labeling here and it * isn't clear that we would want to do so anyway; while we could apply * labeling without the support of the TUN user the resulting labeled * traffic from the other end of the connection would almost certainly * cause confusion to the TUN user that had no idea network labeling * protocols were being used */ sksec->sid = tunsec->sid; sksec->sclass = SECCLASS_TUN_SOCKET; return 0; } static int selinux_tun_dev_open(void *security) { struct tun_security_struct *tunsec = security; u32 sid = current_sid(); int err; err = avc_has_perm(&selinux_state, sid, tunsec->sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__RELABELFROM, NULL); if (err) return err; err = avc_has_perm(&selinux_state, sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__RELABELTO, NULL); if (err) return err; tunsec->sid = sid; return 0; } #ifdef CONFIG_NETFILTER static unsigned int selinux_ip_forward(struct sk_buff *skb, const struct net_device *indev, u16 family) { int err; char *addrp; u32 peer_sid; struct common_audit_data ad; struct lsm_network_audit net = {0,}; u8 secmark_active; u8 netlbl_active; u8 peerlbl_active; if (!selinux_policycap_netpeer()) return NF_ACCEPT; secmark_active = selinux_secmark_enabled(); netlbl_active = netlbl_enabled(); peerlbl_active = selinux_peerlbl_enabled(); if (!secmark_active && !peerlbl_active) return NF_ACCEPT; if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) return NF_DROP; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = indev->ifindex; ad.u.net->family = family; if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) return NF_DROP; if (peerlbl_active) { err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, addrp, family, peer_sid, &ad); if (err) { selinux_netlbl_err(skb, family, err, 1); return NF_DROP; } } if (secmark_active) if (avc_has_perm(&selinux_state, peer_sid, skb->secmark, SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) return NF_DROP; if (netlbl_active) /* we do this in the FORWARD path and not the POST_ROUTING * path because we want to make sure we apply the necessary * labeling before IPsec is applied so we can leverage AH * protection */ if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) return NF_DROP; return NF_ACCEPT; } static unsigned int selinux_ipv4_forward(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_forward(skb, state->in, PF_INET); } #if IS_ENABLED(CONFIG_IPV6) static unsigned int selinux_ipv6_forward(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_forward(skb, state->in, PF_INET6); } #endif /* IPV6 */ static unsigned int selinux_ip_output(struct sk_buff *skb, u16 family) { struct sock *sk; u32 sid; if (!netlbl_enabled()) return NF_ACCEPT; /* we do this in the LOCAL_OUT path and not the POST_ROUTING path * because we want to make sure we apply the necessary labeling * before IPsec is applied so we can leverage AH protection */ sk = skb->sk; if (sk) { struct sk_security_struct *sksec; if (sk_listener(sk)) /* if the socket is the listening state then this * packet is a SYN-ACK packet which means it needs to * be labeled based on the connection/request_sock and * not the parent socket. unfortunately, we can't * lookup the request_sock yet as it isn't queued on * the parent socket until after the SYN-ACK is sent. * the "solution" is to simply pass the packet as-is * as any IP option based labeling should be copied * from the initial connection request (in the IP * layer). it is far from ideal, but until we get a * security label in the packet itself this is the * best we can do. */ return NF_ACCEPT; /* standard practice, label using the parent socket */ sksec = sk->sk_security; sid = sksec->sid; } else sid = SECINITSID_KERNEL; if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) return NF_DROP; return NF_ACCEPT; } static unsigned int selinux_ipv4_output(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_output(skb, PF_INET); } #if IS_ENABLED(CONFIG_IPV6) static unsigned int selinux_ipv6_output(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_output(skb, PF_INET6); } #endif /* IPV6 */ static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, int ifindex, u16 family) { struct sock *sk = skb_to_full_sk(skb); struct sk_security_struct *sksec; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; u8 proto = 0; if (sk == NULL) return NF_ACCEPT; sksec = sk->sk_security; ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = ifindex; ad.u.net->family = family; if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) return NF_DROP; if (selinux_secmark_enabled()) if (avc_has_perm(&selinux_state, sksec->sid, skb->secmark, SECCLASS_PACKET, PACKET__SEND, &ad)) return NF_DROP_ERR(-ECONNREFUSED); if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) return NF_DROP_ERR(-ECONNREFUSED); return NF_ACCEPT; } static unsigned int selinux_ip_postroute(struct sk_buff *skb, const struct net_device *outdev, u16 family) { u32 secmark_perm; u32 peer_sid; int ifindex = outdev->ifindex; struct sock *sk; struct common_audit_data ad; struct lsm_network_audit net = {0,}; char *addrp; u8 secmark_active; u8 peerlbl_active; /* If any sort of compatibility mode is enabled then handoff processing * to the selinux_ip_postroute_compat() function to deal with the * special handling. We do this in an attempt to keep this function * as fast and as clean as possible. */ if (!selinux_policycap_netpeer()) return selinux_ip_postroute_compat(skb, ifindex, family); secmark_active = selinux_secmark_enabled(); peerlbl_active = selinux_peerlbl_enabled(); if (!secmark_active && !peerlbl_active) return NF_ACCEPT; sk = skb_to_full_sk(skb); #ifdef CONFIG_XFRM /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec * packet transformation so allow the packet to pass without any checks * since we'll have another chance to perform access control checks * when the packet is on it's final way out. * NOTE: there appear to be some IPv6 multicast cases where skb->dst * is NULL, in this case go ahead and apply access control. * NOTE: if this is a local socket (skb->sk != NULL) that is in the * TCP listening state we cannot wait until the XFRM processing * is done as we will miss out on the SA label if we do; * unfortunately, this means more work, but it is only once per * connection. */ if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && !(sk && sk_listener(sk))) return NF_ACCEPT; #endif if (sk == NULL) { /* Without an associated socket the packet is either coming * from the kernel or it is being forwarded; check the packet * to determine which and if the packet is being forwarded * query the packet directly to determine the security label. */ if (skb->skb_iif) { secmark_perm = PACKET__FORWARD_OUT; if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) return NF_DROP; } else { secmark_perm = PACKET__SEND; peer_sid = SECINITSID_KERNEL; } } else if (sk_listener(sk)) { /* Locally generated packet but the associated socket is in the * listening state which means this is a SYN-ACK packet. In * this particular case the correct security label is assigned * to the connection/request_sock but unfortunately we can't * query the request_sock as it isn't queued on the parent * socket until after the SYN-ACK packet is sent; the only * viable choice is to regenerate the label like we do in * selinux_inet_conn_request(). See also selinux_ip_output() * for similar problems. */ u32 skb_sid; struct sk_security_struct *sksec; sksec = sk->sk_security; if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) return NF_DROP; /* At this point, if the returned skb peerlbl is SECSID_NULL * and the packet has been through at least one XFRM * transformation then we must be dealing with the "final" * form of labeled IPsec packet; since we've already applied * all of our access controls on this packet we can safely * pass the packet. */ if (skb_sid == SECSID_NULL) { switch (family) { case PF_INET: if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) return NF_ACCEPT; break; case PF_INET6: if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) return NF_ACCEPT; break; default: return NF_DROP_ERR(-ECONNREFUSED); } } if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) return NF_DROP; secmark_perm = PACKET__SEND; } else { /* Locally generated packet, fetch the security label from the * associated socket. */ struct sk_security_struct *sksec = sk->sk_security; peer_sid = sksec->sid; secmark_perm = PACKET__SEND; } ad.type = LSM_AUDIT_DATA_NET; ad.u.net = &net; ad.u.net->netif = ifindex; ad.u.net->family = family; if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) return NF_DROP; if (secmark_active) if (avc_has_perm(&selinux_state, peer_sid, skb->secmark, SECCLASS_PACKET, secmark_perm, &ad)) return NF_DROP_ERR(-ECONNREFUSED); if (peerlbl_active) { u32 if_sid; u32 node_sid; if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) return NF_DROP; if (avc_has_perm(&selinux_state, peer_sid, if_sid, SECCLASS_NETIF, NETIF__EGRESS, &ad)) return NF_DROP_ERR(-ECONNREFUSED); if (sel_netnode_sid(addrp, family, &node_sid)) return NF_DROP; if (avc_has_perm(&selinux_state, peer_sid, node_sid, SECCLASS_NODE, NODE__SENDTO, &ad)) return NF_DROP_ERR(-ECONNREFUSED); } return NF_ACCEPT; } static unsigned int selinux_ipv4_postroute(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_postroute(skb, state->out, PF_INET); } #if IS_ENABLED(CONFIG_IPV6) static unsigned int selinux_ipv6_postroute(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return selinux_ip_postroute(skb, state->out, PF_INET6); } #endif /* IPV6 */ #endif /* CONFIG_NETFILTER */ static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) { int rc = 0; unsigned int msg_len; unsigned int data_len = skb->len; unsigned char *data = skb->data; struct nlmsghdr *nlh; struct sk_security_struct *sksec = sk->sk_security; u16 sclass = sksec->sclass; u32 perm; while (data_len >= nlmsg_total_size(0)) { nlh = (struct nlmsghdr *)data; /* NOTE: the nlmsg_len field isn't reliably set by some netlink * users which means we can't reject skb's with bogus * length fields; our solution is to follow what * netlink_rcv_skb() does and simply skip processing at * messages with length fields that are clearly junk */ if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) return 0; rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); if (rc == 0) { rc = sock_has_perm(sk, perm); if (rc) return rc; } else if (rc == -EINVAL) { /* -EINVAL is a missing msg/perm mapping */ pr_warn_ratelimited("SELinux: unrecognized netlink" " message: protocol=%hu nlmsg_type=%hu sclass=%s" " pid=%d comm=%s\n", sk->sk_protocol, nlh->nlmsg_type, secclass_map[sclass - 1].name, task_pid_nr(current), current->comm); if (enforcing_enabled(&selinux_state) && !security_get_allow_unknown(&selinux_state)) return rc; rc = 0; } else if (rc == -ENOENT) { /* -ENOENT is a missing socket/class mapping, ignore */ rc = 0; } else { return rc; } /* move to the next message after applying netlink padding */ msg_len = NLMSG_ALIGN(nlh->nlmsg_len); if (msg_len >= data_len) return 0; data_len -= msg_len; data += msg_len; } return rc; } static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) { isec->sclass = sclass; isec->sid = current_sid(); } static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, u32 perms) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(ipc_perms); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = ipc_perms->key; return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, perms, &ad); } static int selinux_msg_msg_alloc_security(struct msg_msg *msg) { struct msg_security_struct *msec; msec = selinux_msg_msg(msg); msec->sid = SECINITSID_UNLABELED; return 0; } /* message queue security operations */ static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(msq); ipc_init_security(isec, SECCLASS_MSGQ); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__CREATE, &ad); return rc; } static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(msq); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__ASSOCIATE, &ad); } static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) { int err; int perms; switch (cmd) { case IPC_INFO: case MSG_INFO: /* No specific object, just general system-wide information. */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); case IPC_STAT: case MSG_STAT: case MSG_STAT_ANY: perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; break; case IPC_SET: perms = MSGQ__SETATTR; break; case IPC_RMID: perms = MSGQ__DESTROY; break; default: return 0; } err = ipc_has_perm(msq, perms); return err; } static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) { struct ipc_security_struct *isec; struct msg_security_struct *msec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(msq); msec = selinux_msg_msg(msg); /* * First time through, need to assign label to the message */ if (msec->sid == SECINITSID_UNLABELED) { /* * Compute new sid based on current process and * message queue this message will be stored in */ rc = security_transition_sid(&selinux_state, sid, isec->sid, SECCLASS_MSG, NULL, &msec->sid); if (rc) return rc; } ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; /* Can this process write to the queue? */ rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__WRITE, &ad); if (!rc) /* Can this process send the message */ rc = avc_has_perm(&selinux_state, sid, msec->sid, SECCLASS_MSG, MSG__SEND, &ad); if (!rc) /* Can the message be put in the queue? */ rc = avc_has_perm(&selinux_state, msec->sid, isec->sid, SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); return rc; } static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode) { struct ipc_security_struct *isec; struct msg_security_struct *msec; struct common_audit_data ad; u32 sid = task_sid(target); int rc; isec = selinux_ipc(msq); msec = selinux_msg_msg(msg); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = msq->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_MSGQ, MSGQ__READ, &ad); if (!rc) rc = avc_has_perm(&selinux_state, sid, msec->sid, SECCLASS_MSG, MSG__RECEIVE, &ad); return rc; } /* Shared Memory security operations */ static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(shp); ipc_init_security(isec, SECCLASS_SHM); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = shp->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SHM, SHM__CREATE, &ad); return rc; } static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(shp); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = shp->key; return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SHM, SHM__ASSOCIATE, &ad); } /* Note, at this point, shp is locked down */ static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) { int perms; int err; switch (cmd) { case IPC_INFO: case SHM_INFO: /* No specific object, just general system-wide information. */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); case IPC_STAT: case SHM_STAT: case SHM_STAT_ANY: perms = SHM__GETATTR | SHM__ASSOCIATE; break; case IPC_SET: perms = SHM__SETATTR; break; case SHM_LOCK: case SHM_UNLOCK: perms = SHM__LOCK; break; case IPC_RMID: perms = SHM__DESTROY; break; default: return 0; } err = ipc_has_perm(shp, perms); return err; } static int selinux_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) { u32 perms; if (shmflg & SHM_RDONLY) perms = SHM__READ; else perms = SHM__READ | SHM__WRITE; return ipc_has_perm(shp, perms); } /* Semaphore security operations */ static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); int rc; isec = selinux_ipc(sma); ipc_init_security(isec, SECCLASS_SEM); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = sma->key; rc = avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SEM, SEM__CREATE, &ad); return rc; } static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) { struct ipc_security_struct *isec; struct common_audit_data ad; u32 sid = current_sid(); isec = selinux_ipc(sma); ad.type = LSM_AUDIT_DATA_IPC; ad.u.ipc_id = sma->key; return avc_has_perm(&selinux_state, sid, isec->sid, SECCLASS_SEM, SEM__ASSOCIATE, &ad); } /* Note, at this point, sma is locked down */ static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) { int err; u32 perms; switch (cmd) { case IPC_INFO: case SEM_INFO: /* No specific object, just general system-wide information. */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); case GETPID: case GETNCNT: case GETZCNT: perms = SEM__GETATTR; break; case GETVAL: case GETALL: perms = SEM__READ; break; case SETVAL: case SETALL: perms = SEM__WRITE; break; case IPC_RMID: perms = SEM__DESTROY; break; case IPC_SET: perms = SEM__SETATTR; break; case IPC_STAT: case SEM_STAT: case SEM_STAT_ANY: perms = SEM__GETATTR | SEM__ASSOCIATE; break; default: return 0; } err = ipc_has_perm(sma, perms); return err; } static int selinux_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, unsigned nsops, int alter) { u32 perms; if (alter) perms = SEM__READ | SEM__WRITE; else perms = SEM__READ; return ipc_has_perm(sma, perms); } static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) { u32 av = 0; av = 0; if (flag & S_IRUGO) av |= IPC__UNIX_READ; if (flag & S_IWUGO) av |= IPC__UNIX_WRITE; if (av == 0) return 0; return ipc_has_perm(ipcp, av); } static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) { struct ipc_security_struct *isec = selinux_ipc(ipcp); *secid = isec->sid; } static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) { if (inode) inode_doinit_with_dentry(inode, dentry); } static int selinux_getprocattr(struct task_struct *p, char *name, char **value) { const struct task_security_struct *__tsec; u32 sid; int error; unsigned len; rcu_read_lock(); __tsec = selinux_cred(__task_cred(p)); if (current != p) { error = avc_has_perm(&selinux_state, current_sid(), __tsec->sid, SECCLASS_PROCESS, PROCESS__GETATTR, NULL); if (error) goto bad; } if (!strcmp(name, "current")) sid = __tsec->sid; else if (!strcmp(name, "prev")) sid = __tsec->osid; else if (!strcmp(name, "exec")) sid = __tsec->exec_sid; else if (!strcmp(name, "fscreate")) sid = __tsec->create_sid; else if (!strcmp(name, "keycreate")) sid = __tsec->keycreate_sid; else if (!strcmp(name, "sockcreate")) sid = __tsec->sockcreate_sid; else { error = -EINVAL; goto bad; } rcu_read_unlock(); if (!sid) return 0; error = security_sid_to_context(&selinux_state, sid, value, &len); if (error) return error; return len; bad: rcu_read_unlock(); return error; } static int selinux_setprocattr(const char *name, void *value, size_t size) { struct task_security_struct *tsec; struct cred *new; u32 mysid = current_sid(), sid = 0, ptsid; int error; char *str = value; /* * Basic control over ability to set these attributes at all. */ if (!strcmp(name, "exec")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETEXEC, NULL); else if (!strcmp(name, "fscreate")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETFSCREATE, NULL); else if (!strcmp(name, "keycreate")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETKEYCREATE, NULL); else if (!strcmp(name, "sockcreate")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETSOCKCREATE, NULL); else if (!strcmp(name, "current")) error = avc_has_perm(&selinux_state, mysid, mysid, SECCLASS_PROCESS, PROCESS__SETCURRENT, NULL); else error = -EINVAL; if (error) return error; /* Obtain a SID for the context, if one was specified. */ if (size && str[0] && str[0] != '\n') { if (str[size-1] == '\n') { str[size-1] = 0; size--; } error = security_context_to_sid(&selinux_state, value, size, &sid, GFP_KERNEL); if (error == -EINVAL && !strcmp(name, "fscreate")) { if (!has_cap_mac_admin(true)) { struct audit_buffer *ab; size_t audit_size; /* We strip a nul only if it is at the end, otherwise the * context contains a nul and we should audit that */ if (str[size - 1] == '\0') audit_size = size - 1; else audit_size = size; ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR); audit_log_format(ab, "op=fscreate invalid_context="); audit_log_n_untrustedstring(ab, value, audit_size); audit_log_end(ab); return error; } error = security_context_to_sid_force( &selinux_state, value, size, &sid); } if (error) return error; } new = prepare_creds(); if (!new) return -ENOMEM; /* Permission checking based on the specified context is performed during the actual operation (execve, open/mkdir/...), when we know the full context of the operation. See selinux_bprm_creds_for_exec for the execve checks and may_create for the file creation checks. The operation will then fail if the context is not permitted. */ tsec = selinux_cred(new); if (!strcmp(name, "exec")) { tsec->exec_sid = sid; } else if (!strcmp(name, "fscreate")) { tsec->create_sid = sid; } else if (!strcmp(name, "keycreate")) { if (sid) { error = avc_has_perm(&selinux_state, mysid, sid, SECCLASS_KEY, KEY__CREATE, NULL); if (error) goto abort_change; } tsec->keycreate_sid = sid; } else if (!strcmp(name, "sockcreate")) { tsec->sockcreate_sid = sid; } else if (!strcmp(name, "current")) { error = -EINVAL; if (sid == 0) goto abort_change; /* Only allow single threaded processes to change context */ error = -EPERM; if (!current_is_single_threaded()) { error = security_bounded_transition(&selinux_state, tsec->sid, sid); if (error) goto abort_change; } /* Check permissions for the transition. */ error = avc_has_perm(&selinux_state, tsec->sid, sid, SECCLASS_PROCESS, PROCESS__DYNTRANSITION, NULL); if (error) goto abort_change; /* Check for ptracing, and update the task SID if ok. Otherwise, leave SID unchanged and fail. */ ptsid = ptrace_parent_sid(); if (ptsid != 0) { error = avc_has_perm(&selinux_state, ptsid, sid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); if (error) goto abort_change; } tsec->sid = sid; } else { error = -EINVAL; goto abort_change; } commit_creds(new); return size; abort_change: abort_creds(new); return error; } static int selinux_ismaclabel(const char *name) { return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); } static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return security_sid_to_context(&selinux_state, secid, secdata, seclen); } static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) { return security_context_to_sid(&selinux_state, secdata, seclen, secid, GFP_KERNEL); } static void selinux_release_secctx(char *secdata, u32 seclen) { kfree(secdata); } static void selinux_inode_invalidate_secctx(struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); spin_lock(&isec->lock); isec->initialized = LABEL_INVALID; spin_unlock(&isec->lock); } /* * called with inode->i_mutex locked */ static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) { int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); /* Do not return error when suppressing label (SBLABEL_MNT not set). */ return rc == -EOPNOTSUPP ? 0 : rc; } /* * called with inode->i_mutex locked */ static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) { return __vfs_setxattr_locked(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0, NULL); } static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) { int len = 0; len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, true); if (len < 0) return len; *ctxlen = len; return 0; } #ifdef CONFIG_KEYS static int selinux_key_alloc(struct key *k, const struct cred *cred, unsigned long flags) { const struct task_security_struct *tsec; struct key_security_struct *ksec; ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); if (!ksec) return -ENOMEM; tsec = selinux_cred(cred); if (tsec->keycreate_sid) ksec->sid = tsec->keycreate_sid; else ksec->sid = tsec->sid; k->security = ksec; return 0; } static void selinux_key_free(struct key *k) { struct key_security_struct *ksec = k->security; k->security = NULL; kfree(ksec); } static int selinux_key_permission(key_ref_t key_ref, const struct cred *cred, enum key_need_perm need_perm) { struct key *key; struct key_security_struct *ksec; u32 perm, sid; switch (need_perm) { case KEY_NEED_VIEW: perm = KEY__VIEW; break; case KEY_NEED_READ: perm = KEY__READ; break; case KEY_NEED_WRITE: perm = KEY__WRITE; break; case KEY_NEED_SEARCH: perm = KEY__SEARCH; break; case KEY_NEED_LINK: perm = KEY__LINK; break; case KEY_NEED_SETATTR: perm = KEY__SETATTR; break; case KEY_NEED_UNLINK: case KEY_SYSADMIN_OVERRIDE: case KEY_AUTHTOKEN_OVERRIDE: case KEY_DEFER_PERM_CHECK: return 0; default: WARN_ON(1); return -EPERM; } sid = cred_sid(cred); key = key_ref_to_ptr(key_ref); ksec = key->security; return avc_has_perm(&selinux_state, sid, ksec->sid, SECCLASS_KEY, perm, NULL); } static int selinux_key_getsecurity(struct key *key, char **_buffer) { struct key_security_struct *ksec = key->security; char *context = NULL; unsigned len; int rc; rc = security_sid_to_context(&selinux_state, ksec->sid, &context, &len); if (!rc) rc = len; *_buffer = context; return rc; } #ifdef CONFIG_KEY_NOTIFICATIONS static int selinux_watch_key(struct key *key) { struct key_security_struct *ksec = key->security; u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); } #endif #endif #ifdef CONFIG_SECURITY_INFINIBAND static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) { struct common_audit_data ad; int err; u32 sid = 0; struct ib_security_struct *sec = ib_sec; struct lsm_ibpkey_audit ibpkey; err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); if (err) return err; ad.type = LSM_AUDIT_DATA_IBPKEY; ibpkey.subnet_prefix = subnet_prefix; ibpkey.pkey = pkey_val; ad.u.ibpkey = &ibpkey; return avc_has_perm(&selinux_state, sec->sid, sid, SECCLASS_INFINIBAND_PKEY, INFINIBAND_PKEY__ACCESS, &ad); } static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, u8 port_num) { struct common_audit_data ad; int err; u32 sid = 0; struct ib_security_struct *sec = ib_sec; struct lsm_ibendport_audit ibendport; err = security_ib_endport_sid(&selinux_state, dev_name, port_num, &sid); if (err) return err; ad.type = LSM_AUDIT_DATA_IBENDPORT; strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); ibendport.port = port_num; ad.u.ibendport = &ibendport; return avc_has_perm(&selinux_state, sec->sid, sid, SECCLASS_INFINIBAND_ENDPORT, INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); } static int selinux_ib_alloc_security(void **ib_sec) { struct ib_security_struct *sec; sec = kzalloc(sizeof(*sec), GFP_KERNEL); if (!sec) return -ENOMEM; sec->sid = current_sid(); *ib_sec = sec; return 0; } static void selinux_ib_free_security(void *ib_sec) { kfree(ib_sec); } #endif #ifdef CONFIG_BPF_SYSCALL static int selinux_bpf(int cmd, union bpf_attr *attr, unsigned int size) { u32 sid = current_sid(); int ret; switch (cmd) { case BPF_MAP_CREATE: ret = avc_has_perm(&selinux_state, sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, NULL); break; case BPF_PROG_LOAD: ret = avc_has_perm(&selinux_state, sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, NULL); break; default: ret = 0; break; } return ret; } static u32 bpf_map_fmode_to_av(fmode_t fmode) { u32 av = 0; if (fmode & FMODE_READ) av |= BPF__MAP_READ; if (fmode & FMODE_WRITE) av |= BPF__MAP_WRITE; return av; } /* This function will check the file pass through unix socket or binder to see * if it is a bpf related object. And apply correspinding checks on the bpf * object based on the type. The bpf maps and programs, not like other files and * socket, are using a shared anonymous inode inside the kernel as their inode. * So checking that inode cannot identify if the process have privilege to * access the bpf object and that's why we have to add this additional check in * selinux_file_receive and selinux_binder_transfer_files. */ static int bpf_fd_pass(struct file *file, u32 sid) { struct bpf_security_struct *bpfsec; struct bpf_prog *prog; struct bpf_map *map; int ret; if (file->f_op == &bpf_map_fops) { map = file->private_data; bpfsec = map->security; ret = avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, bpf_map_fmode_to_av(file->f_mode), NULL); if (ret) return ret; } else if (file->f_op == &bpf_prog_fops) { prog = file->private_data; bpfsec = prog->aux->security; ret = avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, BPF__PROG_RUN, NULL); if (ret) return ret; } return 0; } static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) { u32 sid = current_sid(); struct bpf_security_struct *bpfsec; bpfsec = map->security; return avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, bpf_map_fmode_to_av(fmode), NULL); } static int selinux_bpf_prog(struct bpf_prog *prog) { u32 sid = current_sid(); struct bpf_security_struct *bpfsec; bpfsec = prog->aux->security; return avc_has_perm(&selinux_state, sid, bpfsec->sid, SECCLASS_BPF, BPF__PROG_RUN, NULL); } static int selinux_bpf_map_alloc(struct bpf_map *map) { struct bpf_security_struct *bpfsec; bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); if (!bpfsec) return -ENOMEM; bpfsec->sid = current_sid(); map->security = bpfsec; return 0; } static void selinux_bpf_map_free(struct bpf_map *map) { struct bpf_security_struct *bpfsec = map->security; map->security = NULL; kfree(bpfsec); } static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) { struct bpf_security_struct *bpfsec; bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); if (!bpfsec) return -ENOMEM; bpfsec->sid = current_sid(); aux->security = bpfsec; return 0; } static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) { struct bpf_security_struct *bpfsec = aux->security; aux->security = NULL; kfree(bpfsec); } #endif static int selinux_lockdown(enum lockdown_reason what) { struct common_audit_data ad; u32 sid = current_sid(); int invalid_reason = (what <= LOCKDOWN_NONE) || (what == LOCKDOWN_INTEGRITY_MAX) || (what >= LOCKDOWN_CONFIDENTIALITY_MAX); if (WARN(invalid_reason, "Invalid lockdown reason")) { audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR, "lockdown_reason=invalid"); return -EINVAL; } ad.type = LSM_AUDIT_DATA_LOCKDOWN; ad.u.reason = what; if (what <= LOCKDOWN_INTEGRITY_MAX) return avc_has_perm(&selinux_state, sid, sid, SECCLASS_LOCKDOWN, LOCKDOWN__INTEGRITY, &ad); else return avc_has_perm(&selinux_state, sid, sid, SECCLASS_LOCKDOWN, LOCKDOWN__CONFIDENTIALITY, &ad); } struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { .lbs_cred = sizeof(struct task_security_struct), .lbs_file = sizeof(struct file_security_struct), .lbs_inode = sizeof(struct inode_security_struct), .lbs_ipc = sizeof(struct ipc_security_struct), .lbs_msg_msg = sizeof(struct msg_security_struct), }; #ifdef CONFIG_PERF_EVENTS static int selinux_perf_event_open(struct perf_event_attr *attr, int type) { u32 requested, sid = current_sid(); if (type == PERF_SECURITY_OPEN) requested = PERF_EVENT__OPEN; else if (type == PERF_SECURITY_CPU) requested = PERF_EVENT__CPU; else if (type == PERF_SECURITY_KERNEL) requested = PERF_EVENT__KERNEL; else if (type == PERF_SECURITY_TRACEPOINT) requested = PERF_EVENT__TRACEPOINT; else return -EINVAL; return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT, requested, NULL); } static int selinux_perf_event_alloc(struct perf_event *event) { struct perf_event_security_struct *perfsec; perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); if (!perfsec) return -ENOMEM; perfsec->sid = current_sid(); event->security = perfsec; return 0; } static void selinux_perf_event_free(struct perf_event *event) { struct perf_event_security_struct *perfsec = event->security; event->security = NULL; kfree(perfsec); } static int selinux_perf_event_read(struct perf_event *event) { struct perf_event_security_struct *perfsec = event->security; u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, perfsec->sid, SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); } static int selinux_perf_event_write(struct perf_event *event) { struct perf_event_security_struct *perfsec = event->security; u32 sid = current_sid(); return avc_has_perm(&selinux_state, sid, perfsec->sid, SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); } #endif /* * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: * 1. any hooks that don't belong to (2.) or (3.) below, * 2. hooks that both access structures allocated by other hooks, and allocate * structures that can be later accessed by other hooks (mostly "cloning" * hooks), * 3. hooks that only allocate structures that can be later accessed by other * hooks ("allocating" hooks). * * Please follow block comment delimiters in the list to keep this order. * * This ordering is needed for SELinux runtime disable to work at least somewhat * safely. Breaking the ordering rules above might lead to NULL pointer derefs * when disabling SELinux at runtime. */ static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), LSM_HOOK_INIT(capget, selinux_capget), LSM_HOOK_INIT(capset, selinux_capset), LSM_HOOK_INIT(capable, selinux_capable), LSM_HOOK_INIT(quotactl, selinux_quotactl), LSM_HOOK_INIT(quota_on, selinux_quota_on), LSM_HOOK_INIT(syslog, selinux_syslog), LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), LSM_HOOK_INIT(netlink_send, selinux_netlink_send), LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), LSM_HOOK_INIT(sb_remount, selinux_sb_remount), LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), LSM_HOOK_INIT(sb_mount, selinux_mount), LSM_HOOK_INIT(sb_umount, selinux_umount), LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), LSM_HOOK_INIT(move_mount, selinux_move_mount), LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), LSM_HOOK_INIT(inode_create, selinux_inode_create), LSM_HOOK_INIT(inode_link, selinux_inode_link), LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), LSM_HOOK_INIT(inode_rename, selinux_inode_rename), LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), LSM_HOOK_INIT(inode_permission, selinux_inode_permission), LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), LSM_HOOK_INIT(path_notify, selinux_path_notify), LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), LSM_HOOK_INIT(file_permission, selinux_file_permission), LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat), LSM_HOOK_INIT(mmap_file, selinux_mmap_file), LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), LSM_HOOK_INIT(file_lock, selinux_file_lock), LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), LSM_HOOK_INIT(file_receive, selinux_file_receive), LSM_HOOK_INIT(file_open, selinux_file_open), LSM_HOOK_INIT(task_alloc, selinux_task_alloc), LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), LSM_HOOK_INIT(task_getsid, selinux_task_getsid), LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), LSM_HOOK_INIT(task_setnice, selinux_task_setnice), LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), LSM_HOOK_INIT(task_movememory, selinux_task_movememory), LSM_HOOK_INIT(task_kill, selinux_task_kill), LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), LSM_HOOK_INIT(shm_associate, selinux_shm_associate), LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), LSM_HOOK_INIT(sem_associate, selinux_sem_associate), LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), LSM_HOOK_INIT(sem_semop, selinux_sem_semop), LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), LSM_HOOK_INIT(getprocattr, selinux_getprocattr), LSM_HOOK_INIT(setprocattr, selinux_setprocattr), LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), LSM_HOOK_INIT(release_secctx, selinux_release_secctx), LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), LSM_HOOK_INIT(socket_create, selinux_socket_create), LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), LSM_HOOK_INIT(socket_bind, selinux_socket_bind), LSM_HOOK_INIT(socket_connect, selinux_socket_connect), LSM_HOOK_INIT(socket_listen, selinux_socket_listen), LSM_HOOK_INIT(socket_accept, selinux_socket_accept), LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), LSM_HOOK_INIT(socket_getpeersec_stream, selinux_socket_getpeersec_stream), LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), LSM_HOOK_INIT(sock_graft, selinux_sock_graft), LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), #ifdef CONFIG_SECURITY_INFINIBAND LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), LSM_HOOK_INIT(ib_endport_manage_subnet, selinux_ib_endport_manage_subnet), LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), #endif #ifdef CONFIG_SECURITY_NETWORK_XFRM LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), LSM_HOOK_INIT(xfrm_state_pol_flow_match, selinux_xfrm_state_pol_flow_match), LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), #endif #ifdef CONFIG_KEYS LSM_HOOK_INIT(key_free, selinux_key_free), LSM_HOOK_INIT(key_permission, selinux_key_permission), LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), #ifdef CONFIG_KEY_NOTIFICATIONS LSM_HOOK_INIT(watch_key, selinux_watch_key), #endif #endif #ifdef CONFIG_AUDIT LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), #endif #ifdef CONFIG_BPF_SYSCALL LSM_HOOK_INIT(bpf, selinux_bpf), LSM_HOOK_INIT(bpf_map, selinux_bpf_map), LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), #endif #ifdef CONFIG_PERF_EVENTS LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), #endif LSM_HOOK_INIT(locked_down, selinux_lockdown), /* * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE */ LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), #ifdef CONFIG_SECURITY_NETWORK_XFRM LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), #endif /* * PUT "ALLOCATING" HOOKS HERE */ LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), LSM_HOOK_INIT(msg_queue_alloc_security, selinux_msg_queue_alloc_security), LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), #ifdef CONFIG_SECURITY_INFINIBAND LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), #endif #ifdef CONFIG_SECURITY_NETWORK_XFRM LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), LSM_HOOK_INIT(xfrm_state_alloc_acquire, selinux_xfrm_state_alloc_acquire), #endif #ifdef CONFIG_KEYS LSM_HOOK_INIT(key_alloc, selinux_key_alloc), #endif #ifdef CONFIG_AUDIT LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), #endif #ifdef CONFIG_BPF_SYSCALL LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), #endif #ifdef CONFIG_PERF_EVENTS LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), #endif }; static __init int selinux_init(void) { pr_info("SELinux: Initializing.\n"); memset(&selinux_state, 0, sizeof(selinux_state)); enforcing_set(&selinux_state, selinux_enforcing_boot); checkreqprot_set(&selinux_state, selinux_checkreqprot_boot); selinux_avc_init(&selinux_state.avc); mutex_init(&selinux_state.status_lock); mutex_init(&selinux_state.policy_mutex); /* Set the security state for the initial task. */ cred_init_security(); default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); avc_init(); avtab_cache_init(); ebitmap_cache_init(); hashtab_cache_init(); security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) panic("SELinux: Unable to register AVC netcache callback\n"); if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) panic("SELinux: Unable to register AVC LSM notifier callback\n"); if (selinux_enforcing_boot) pr_debug("SELinux: Starting in enforcing mode\n"); else pr_debug("SELinux: Starting in permissive mode\n"); fs_validate_description("selinux", selinux_fs_parameters); return 0; } static void delayed_superblock_init(struct super_block *sb, void *unused) { selinux_set_mnt_opts(sb, NULL, 0, NULL); } void selinux_complete_init(void) { pr_debug("SELinux: Completing initialization.\n"); /* Set up any superblocks initialized prior to the policy load. */ pr_debug("SELinux: Setting up existing superblocks.\n"); iterate_supers(delayed_superblock_init, NULL); } /* SELinux requires early initialization in order to label all processes and objects when they are created. */ DEFINE_LSM(selinux) = { .name = "selinux", .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, .enabled = &selinux_enabled_boot, .blobs = &selinux_blob_sizes, .init = selinux_init, }; #if defined(CONFIG_NETFILTER) static const struct nf_hook_ops selinux_nf_ops[] = { { .hook = selinux_ipv4_postroute, .pf = NFPROTO_IPV4, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP_PRI_SELINUX_LAST, }, { .hook = selinux_ipv4_forward, .pf = NFPROTO_IPV4, .hooknum = NF_INET_FORWARD, .priority = NF_IP_PRI_SELINUX_FIRST, }, { .hook = selinux_ipv4_output, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_SELINUX_FIRST, }, #if IS_ENABLED(CONFIG_IPV6) { .hook = selinux_ipv6_postroute, .pf = NFPROTO_IPV6, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP6_PRI_SELINUX_LAST, }, { .hook = selinux_ipv6_forward, .pf = NFPROTO_IPV6, .hooknum = NF_INET_FORWARD, .priority = NF_IP6_PRI_SELINUX_FIRST, }, { .hook = selinux_ipv6_output, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_SELINUX_FIRST, }, #endif /* IPV6 */ }; static int __net_init selinux_nf_register(struct net *net) { return nf_register_net_hooks(net, selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); } static void __net_exit selinux_nf_unregister(struct net *net) { nf_unregister_net_hooks(net, selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); } static struct pernet_operations selinux_net_ops = { .init = selinux_nf_register, .exit = selinux_nf_unregister, }; static int __init selinux_nf_ip_init(void) { int err; if (!selinux_enabled_boot) return 0; pr_debug("SELinux: Registering netfilter hooks\n"); err = register_pernet_subsys(&selinux_net_ops); if (err) panic("SELinux: register_pernet_subsys: error %d\n", err); return 0; } __initcall(selinux_nf_ip_init); #ifdef CONFIG_SECURITY_SELINUX_DISABLE static void selinux_nf_ip_exit(void) { pr_debug("SELinux: Unregistering netfilter hooks\n"); unregister_pernet_subsys(&selinux_net_ops); } #endif #else /* CONFIG_NETFILTER */ #ifdef CONFIG_SECURITY_SELINUX_DISABLE #define selinux_nf_ip_exit() #endif #endif /* CONFIG_NETFILTER */ #ifdef CONFIG_SECURITY_SELINUX_DISABLE int selinux_disable(struct selinux_state *state) { if (selinux_initialized(state)) { /* Not permitted after initial policy load. */ return -EINVAL; } if (selinux_disabled(state)) { /* Only do this once. */ return -EINVAL; } selinux_mark_disabled(state); pr_info("SELinux: Disabled at runtime.\n"); /* * Unregister netfilter hooks. * Must be done before security_delete_hooks() to avoid breaking * runtime disable. */ selinux_nf_ip_exit(); security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); /* Try to destroy the avc node cache */ avc_disable(); /* Unregister selinuxfs. */ exit_sel_fs(); return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions of the Internet Protocol. * * Version: @(#)in.h 1.0.1 04/21/93 * * Authors: Original taken from the GNU Project <netinet/in.h> file. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_IN_H #define _LINUX_IN_H #include <linux/errno.h> #include <uapi/linux/in.h> static inline int proto_ports_offset(int proto) { switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_DCCP: case IPPROTO_ESP: /* SPI */ case IPPROTO_SCTP: case IPPROTO_UDPLITE: return 0; case IPPROTO_AH: /* SPI */ return 4; default: return -EINVAL; } } static inline bool ipv4_is_loopback(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x7f000000); } static inline bool ipv4_is_multicast(__be32 addr) { return (addr & htonl(0xf0000000)) == htonl(0xe0000000); } static inline bool ipv4_is_local_multicast(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xe0000000); } static inline bool ipv4_is_lbcast(__be32 addr) { /* limited broadcast */ return addr == htonl(INADDR_BROADCAST); } static inline bool ipv4_is_all_snoopers(__be32 addr) { return addr == htonl(INADDR_ALLSNOOPERS_GROUP); } static inline bool ipv4_is_zeronet(__be32 addr) { return (addr == 0); } /* Special-Use IPv4 Addresses (RFC3330) */ static inline bool ipv4_is_private_10(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x0a000000); } static inline bool ipv4_is_private_172(__be32 addr) { return (addr & htonl(0xfff00000)) == htonl(0xac100000); } static inline bool ipv4_is_private_192(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xc0a80000); } static inline bool ipv4_is_linklocal_169(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xa9fe0000); } static inline bool ipv4_is_anycast_6to4(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0586300); } static inline bool ipv4_is_test_192(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0000200); } static inline bool ipv4_is_test_198(__be32 addr) { return (addr & htonl(0xfffe0000)) == htonl(0xc6120000); } #endif /* _LINUX_IN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org> Copyright (C) 2010 Google Inc. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __L2CAP_H #define __L2CAP_H #include <asm/unaligned.h> #include <linux/atomic.h> /* L2CAP defaults */ #define L2CAP_DEFAULT_MTU 672 #define L2CAP_DEFAULT_MIN_MTU 48 #define L2CAP_DEFAULT_FLUSH_TO 0xFFFF #define L2CAP_EFS_DEFAULT_FLUSH_TO 0xFFFFFFFF #define L2CAP_DEFAULT_TX_WINDOW 63 #define L2CAP_DEFAULT_EXT_WINDOW 0x3FFF #define L2CAP_DEFAULT_MAX_TX 3 #define L2CAP_DEFAULT_RETRANS_TO 2000 /* 2 seconds */ #define L2CAP_DEFAULT_MONITOR_TO 12000 /* 12 seconds */ #define L2CAP_DEFAULT_MAX_PDU_SIZE 1492 /* Sized for AMP packet */ #define L2CAP_DEFAULT_ACK_TO 200 #define L2CAP_DEFAULT_MAX_SDU_SIZE 0xFFFF #define L2CAP_DEFAULT_SDU_ITIME 0xFFFFFFFF #define L2CAP_DEFAULT_ACC_LAT 0xFFFFFFFF #define L2CAP_BREDR_MAX_PAYLOAD 1019 /* 3-DH5 packet */ #define L2CAP_LE_MIN_MTU 23 #define L2CAP_ECRED_CONN_SCID_MAX 5 #define L2CAP_DISC_TIMEOUT msecs_to_jiffies(100) #define L2CAP_DISC_REJ_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_ENC_TIMEOUT msecs_to_jiffies(5000) #define L2CAP_CONN_TIMEOUT msecs_to_jiffies(40000) #define L2CAP_INFO_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_TIMEOUT msecs_to_jiffies(4000) #define L2CAP_MOVE_ERTX_TIMEOUT msecs_to_jiffies(60000) #define L2CAP_WAIT_ACK_POLL_PERIOD msecs_to_jiffies(200) #define L2CAP_WAIT_ACK_TIMEOUT msecs_to_jiffies(10000) #define L2CAP_A2MP_DEFAULT_MTU 670 /* L2CAP socket address */ struct sockaddr_l2 { sa_family_t l2_family; __le16 l2_psm; bdaddr_t l2_bdaddr; __le16 l2_cid; __u8 l2_bdaddr_type; }; /* L2CAP socket options */ #define L2CAP_OPTIONS 0x01 struct l2cap_options { __u16 omtu; __u16 imtu; __u16 flush_to; __u8 mode; __u8 fcs; __u8 max_tx; __u16 txwin_size; }; #define L2CAP_CONNINFO 0x02 struct l2cap_conninfo { __u16 hci_handle; __u8 dev_class[3]; }; #define L2CAP_LM 0x03 #define L2CAP_LM_MASTER 0x0001 #define L2CAP_LM_AUTH 0x0002 #define L2CAP_LM_ENCRYPT 0x0004 #define L2CAP_LM_TRUSTED 0x0008 #define L2CAP_LM_RELIABLE 0x0010 #define L2CAP_LM_SECURE 0x0020 #define L2CAP_LM_FIPS 0x0040 /* L2CAP command codes */ #define L2CAP_COMMAND_REJ 0x01 #define L2CAP_CONN_REQ 0x02 #define L2CAP_CONN_RSP 0x03 #define L2CAP_CONF_REQ 0x04 #define L2CAP_CONF_RSP 0x05 #define L2CAP_DISCONN_REQ 0x06 #define L2CAP_DISCONN_RSP 0x07 #define L2CAP_ECHO_REQ 0x08 #define L2CAP_ECHO_RSP 0x09 #define L2CAP_INFO_REQ 0x0a #define L2CAP_INFO_RSP 0x0b #define L2CAP_CREATE_CHAN_REQ 0x0c #define L2CAP_CREATE_CHAN_RSP 0x0d #define L2CAP_MOVE_CHAN_REQ 0x0e #define L2CAP_MOVE_CHAN_RSP 0x0f #define L2CAP_MOVE_CHAN_CFM 0x10 #define L2CAP_MOVE_CHAN_CFM_RSP 0x11 #define L2CAP_CONN_PARAM_UPDATE_REQ 0x12 #define L2CAP_CONN_PARAM_UPDATE_RSP 0x13 #define L2CAP_LE_CONN_REQ 0x14 #define L2CAP_LE_CONN_RSP 0x15 #define L2CAP_LE_CREDITS 0x16 #define L2CAP_ECRED_CONN_REQ 0x17 #define L2CAP_ECRED_CONN_RSP 0x18 #define L2CAP_ECRED_RECONF_REQ 0x19 #define L2CAP_ECRED_RECONF_RSP 0x1a /* L2CAP extended feature mask */ #define L2CAP_FEAT_FLOWCTL 0x00000001 #define L2CAP_FEAT_RETRANS 0x00000002 #define L2CAP_FEAT_BIDIR_QOS 0x00000004 #define L2CAP_FEAT_ERTM 0x00000008 #define L2CAP_FEAT_STREAMING 0x00000010 #define L2CAP_FEAT_FCS 0x00000020 #define L2CAP_FEAT_EXT_FLOW 0x00000040 #define L2CAP_FEAT_FIXED_CHAN 0x00000080 #define L2CAP_FEAT_EXT_WINDOW 0x00000100 #define L2CAP_FEAT_UCD 0x00000200 /* L2CAP checksum option */ #define L2CAP_FCS_NONE 0x00 #define L2CAP_FCS_CRC16 0x01 /* L2CAP fixed channels */ #define L2CAP_FC_SIG_BREDR 0x02 #define L2CAP_FC_CONNLESS 0x04 #define L2CAP_FC_A2MP 0x08 #define L2CAP_FC_ATT 0x10 #define L2CAP_FC_SIG_LE 0x20 #define L2CAP_FC_SMP_LE 0x40 #define L2CAP_FC_SMP_BREDR 0x80 /* L2CAP Control Field bit masks */ #define L2CAP_CTRL_SAR 0xC000 #define L2CAP_CTRL_REQSEQ 0x3F00 #define L2CAP_CTRL_TXSEQ 0x007E #define L2CAP_CTRL_SUPERVISE 0x000C #define L2CAP_CTRL_RETRANS 0x0080 #define L2CAP_CTRL_FINAL 0x0080 #define L2CAP_CTRL_POLL 0x0010 #define L2CAP_CTRL_FRAME_TYPE 0x0001 /* I- or S-Frame */ #define L2CAP_CTRL_TXSEQ_SHIFT 1 #define L2CAP_CTRL_SUPER_SHIFT 2 #define L2CAP_CTRL_POLL_SHIFT 4 #define L2CAP_CTRL_FINAL_SHIFT 7 #define L2CAP_CTRL_REQSEQ_SHIFT 8 #define L2CAP_CTRL_SAR_SHIFT 14 /* L2CAP Extended Control Field bit mask */ #define L2CAP_EXT_CTRL_TXSEQ 0xFFFC0000 #define L2CAP_EXT_CTRL_SAR 0x00030000 #define L2CAP_EXT_CTRL_SUPERVISE 0x00030000 #define L2CAP_EXT_CTRL_REQSEQ 0x0000FFFC #define L2CAP_EXT_CTRL_POLL 0x00040000 #define L2CAP_EXT_CTRL_FINAL 0x00000002 #define L2CAP_EXT_CTRL_FRAME_TYPE 0x00000001 /* I- or S-Frame */ #define L2CAP_EXT_CTRL_FINAL_SHIFT 1 #define L2CAP_EXT_CTRL_REQSEQ_SHIFT 2 #define L2CAP_EXT_CTRL_SAR_SHIFT 16 #define L2CAP_EXT_CTRL_SUPER_SHIFT 16 #define L2CAP_EXT_CTRL_POLL_SHIFT 18 #define L2CAP_EXT_CTRL_TXSEQ_SHIFT 18 /* L2CAP Supervisory Function */ #define L2CAP_SUPER_RR 0x00 #define L2CAP_SUPER_REJ 0x01 #define L2CAP_SUPER_RNR 0x02 #define L2CAP_SUPER_SREJ 0x03 /* L2CAP Segmentation and Reassembly */ #define L2CAP_SAR_UNSEGMENTED 0x00 #define L2CAP_SAR_START 0x01 #define L2CAP_SAR_END 0x02 #define L2CAP_SAR_CONTINUE 0x03 /* L2CAP Command rej. reasons */ #define L2CAP_REJ_NOT_UNDERSTOOD 0x0000 #define L2CAP_REJ_MTU_EXCEEDED 0x0001 #define L2CAP_REJ_INVALID_CID 0x0002 /* L2CAP structures */ struct l2cap_hdr { __le16 len; __le16 cid; } __packed; #define L2CAP_HDR_SIZE 4 #define L2CAP_ENH_HDR_SIZE 6 #define L2CAP_EXT_HDR_SIZE 8 #define L2CAP_FCS_SIZE 2 #define L2CAP_SDULEN_SIZE 2 #define L2CAP_PSMLEN_SIZE 2 #define L2CAP_ENH_CTRL_SIZE 2 #define L2CAP_EXT_CTRL_SIZE 4 struct l2cap_cmd_hdr { __u8 code; __u8 ident; __le16 len; } __packed; #define L2CAP_CMD_HDR_SIZE 4 struct l2cap_cmd_rej_unk { __le16 reason; } __packed; struct l2cap_cmd_rej_mtu { __le16 reason; __le16 max_mtu; } __packed; struct l2cap_cmd_rej_cid { __le16 reason; __le16 scid; __le16 dcid; } __packed; struct l2cap_conn_req { __le16 psm; __le16 scid; } __packed; struct l2cap_conn_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; /* protocol/service multiplexer (PSM) */ #define L2CAP_PSM_SDP 0x0001 #define L2CAP_PSM_RFCOMM 0x0003 #define L2CAP_PSM_3DSP 0x0021 #define L2CAP_PSM_IPSP 0x0023 /* 6LoWPAN */ #define L2CAP_PSM_DYN_START 0x1001 #define L2CAP_PSM_DYN_END 0xffff #define L2CAP_PSM_AUTO_END 0x10ff #define L2CAP_PSM_LE_DYN_START 0x0080 #define L2CAP_PSM_LE_DYN_END 0x00ff /* channel identifier */ #define L2CAP_CID_SIGNALING 0x0001 #define L2CAP_CID_CONN_LESS 0x0002 #define L2CAP_CID_A2MP 0x0003 #define L2CAP_CID_ATT 0x0004 #define L2CAP_CID_LE_SIGNALING 0x0005 #define L2CAP_CID_SMP 0x0006 #define L2CAP_CID_SMP_BREDR 0x0007 #define L2CAP_CID_DYN_START 0x0040 #define L2CAP_CID_DYN_END 0xffff #define L2CAP_CID_LE_DYN_END 0x007f /* connect/create channel results */ #define L2CAP_CR_SUCCESS 0x0000 #define L2CAP_CR_PEND 0x0001 #define L2CAP_CR_BAD_PSM 0x0002 #define L2CAP_CR_SEC_BLOCK 0x0003 #define L2CAP_CR_NO_MEM 0x0004 #define L2CAP_CR_BAD_AMP 0x0005 #define L2CAP_CR_INVALID_SCID 0x0006 #define L2CAP_CR_SCID_IN_USE 0x0007 /* credit based connect results */ #define L2CAP_CR_LE_SUCCESS 0x0000 #define L2CAP_CR_LE_BAD_PSM 0x0002 #define L2CAP_CR_LE_NO_MEM 0x0004 #define L2CAP_CR_LE_AUTHENTICATION 0x0005 #define L2CAP_CR_LE_AUTHORIZATION 0x0006 #define L2CAP_CR_LE_BAD_KEY_SIZE 0x0007 #define L2CAP_CR_LE_ENCRYPTION 0x0008 #define L2CAP_CR_LE_INVALID_SCID 0x0009 #define L2CAP_CR_LE_SCID_IN_USE 0X000A #define L2CAP_CR_LE_UNACCEPT_PARAMS 0X000B #define L2CAP_CR_LE_INVALID_PARAMS 0X000C /* connect/create channel status */ #define L2CAP_CS_NO_INFO 0x0000 #define L2CAP_CS_AUTHEN_PEND 0x0001 #define L2CAP_CS_AUTHOR_PEND 0x0002 struct l2cap_conf_req { __le16 dcid; __le16 flags; __u8 data[]; } __packed; struct l2cap_conf_rsp { __le16 scid; __le16 flags; __le16 result; __u8 data[]; } __packed; #define L2CAP_CONF_SUCCESS 0x0000 #define L2CAP_CONF_UNACCEPT 0x0001 #define L2CAP_CONF_REJECT 0x0002 #define L2CAP_CONF_UNKNOWN 0x0003 #define L2CAP_CONF_PENDING 0x0004 #define L2CAP_CONF_EFS_REJECT 0x0005 /* configuration req/rsp continuation flag */ #define L2CAP_CONF_FLAG_CONTINUATION 0x0001 struct l2cap_conf_opt { __u8 type; __u8 len; __u8 val[]; } __packed; #define L2CAP_CONF_OPT_SIZE 2 #define L2CAP_CONF_HINT 0x80 #define L2CAP_CONF_MASK 0x7f #define L2CAP_CONF_MTU 0x01 #define L2CAP_CONF_FLUSH_TO 0x02 #define L2CAP_CONF_QOS 0x03 #define L2CAP_CONF_RFC 0x04 #define L2CAP_CONF_FCS 0x05 #define L2CAP_CONF_EFS 0x06 #define L2CAP_CONF_EWS 0x07 #define L2CAP_CONF_MAX_SIZE 22 struct l2cap_conf_rfc { __u8 mode; __u8 txwin_size; __u8 max_transmit; __le16 retrans_timeout; __le16 monitor_timeout; __le16 max_pdu_size; } __packed; #define L2CAP_MODE_BASIC 0x00 #define L2CAP_MODE_RETRANS 0x01 #define L2CAP_MODE_FLOWCTL 0x02 #define L2CAP_MODE_ERTM 0x03 #define L2CAP_MODE_STREAMING 0x04 /* Unlike the above this one doesn't actually map to anything that would * ever be sent over the air. Therefore, use a value that's unlikely to * ever be used in the BR/EDR configuration phase. */ #define L2CAP_MODE_LE_FLOWCTL 0x80 #define L2CAP_MODE_EXT_FLOWCTL 0x81 struct l2cap_conf_efs { __u8 id; __u8 stype; __le16 msdu; __le32 sdu_itime; __le32 acc_lat; __le32 flush_to; } __packed; #define L2CAP_SERV_NOTRAFIC 0x00 #define L2CAP_SERV_BESTEFFORT 0x01 #define L2CAP_SERV_GUARANTEED 0x02 #define L2CAP_BESTEFFORT_ID 0x01 struct l2cap_disconn_req { __le16 dcid; __le16 scid; } __packed; struct l2cap_disconn_rsp { __le16 dcid; __le16 scid; } __packed; struct l2cap_info_req { __le16 type; } __packed; struct l2cap_info_rsp { __le16 type; __le16 result; __u8 data[]; } __packed; struct l2cap_create_chan_req { __le16 psm; __le16 scid; __u8 amp_id; } __packed; struct l2cap_create_chan_rsp { __le16 dcid; __le16 scid; __le16 result; __le16 status; } __packed; struct l2cap_move_chan_req { __le16 icid; __u8 dest_amp_id; } __packed; struct l2cap_move_chan_rsp { __le16 icid; __le16 result; } __packed; #define L2CAP_MR_SUCCESS 0x0000 #define L2CAP_MR_PEND 0x0001 #define L2CAP_MR_BAD_ID 0x0002 #define L2CAP_MR_SAME_ID 0x0003 #define L2CAP_MR_NOT_SUPP 0x0004 #define L2CAP_MR_COLLISION 0x0005 #define L2CAP_MR_NOT_ALLOWED 0x0006 struct l2cap_move_chan_cfm { __le16 icid; __le16 result; } __packed; #define L2CAP_MC_CONFIRMED 0x0000 #define L2CAP_MC_UNCONFIRMED 0x0001 struct l2cap_move_chan_cfm_rsp { __le16 icid; } __packed; /* info type */ #define L2CAP_IT_CL_MTU 0x0001 #define L2CAP_IT_FEAT_MASK 0x0002 #define L2CAP_IT_FIXED_CHAN 0x0003 /* info result */ #define L2CAP_IR_SUCCESS 0x0000 #define L2CAP_IR_NOTSUPP 0x0001 struct l2cap_conn_param_update_req { __le16 min; __le16 max; __le16 latency; __le16 to_multiplier; } __packed; struct l2cap_conn_param_update_rsp { __le16 result; } __packed; /* Connection Parameters result */ #define L2CAP_CONN_PARAM_ACCEPTED 0x0000 #define L2CAP_CONN_PARAM_REJECTED 0x0001 struct l2cap_le_conn_req { __le16 psm; __le16 scid; __le16 mtu; __le16 mps; __le16 credits; } __packed; struct l2cap_le_conn_rsp { __le16 dcid; __le16 mtu; __le16 mps; __le16 credits; __le16 result; } __packed; struct l2cap_le_credits { __le16 cid; __le16 credits; } __packed; #define L2CAP_ECRED_MIN_MTU 64 #define L2CAP_ECRED_MIN_MPS 64 #define L2CAP_ECRED_MAX_CID 5 struct l2cap_ecred_conn_req { __le16 psm; __le16 mtu; __le16 mps; __le16 credits; __le16 scid[]; } __packed; struct l2cap_ecred_conn_rsp { __le16 mtu; __le16 mps; __le16 credits; __le16 result; __le16 dcid[]; }; struct l2cap_ecred_reconf_req { __le16 mtu; __le16 mps; __le16 scid[]; } __packed; #define L2CAP_RECONF_SUCCESS 0x0000 #define L2CAP_RECONF_INVALID_MTU 0x0001 #define L2CAP_RECONF_INVALID_MPS 0x0002 struct l2cap_ecred_reconf_rsp { __le16 result; } __packed; /* ----- L2CAP channels and connections ----- */ struct l2cap_seq_list { __u16 head; __u16 tail; __u16 mask; __u16 *list; }; #define L2CAP_SEQ_LIST_CLEAR 0xFFFF #define L2CAP_SEQ_LIST_TAIL 0x8000 struct l2cap_chan { struct l2cap_conn *conn; struct hci_conn *hs_hcon; struct hci_chan *hs_hchan; struct kref kref; atomic_t nesting; __u8 state; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; __le16 psm; __le16 sport; __u16 dcid; __u16 scid; __u16 imtu; __u16 omtu; __u16 flush_to; __u8 mode; __u8 chan_type; __u8 chan_policy; __u8 sec_level; __u8 ident; __u8 conf_req[64]; __u8 conf_len; __u8 num_conf_req; __u8 num_conf_rsp; __u8 fcs; __u16 tx_win; __u16 tx_win_max; __u16 ack_win; __u8 max_tx; __u16 retrans_timeout; __u16 monitor_timeout; __u16 mps; __u16 tx_credits; __u16 rx_credits; __u8 tx_state; __u8 rx_state; unsigned long conf_state; unsigned long conn_state; unsigned long flags; __u8 remote_amp_id; __u8 local_amp_id; __u8 move_id; __u8 move_state; __u8 move_role; __u16 next_tx_seq; __u16 expected_ack_seq; __u16 expected_tx_seq; __u16 buffer_seq; __u16 srej_save_reqseq; __u16 last_acked_seq; __u16 frames_sent; __u16 unacked_frames; __u8 retry_count; __u16 sdu_len; struct sk_buff *sdu; struct sk_buff *sdu_last_frag; __u16 remote_tx_win; __u8 remote_max_tx; __u16 remote_mps; __u8 local_id; __u8 local_stype; __u16 local_msdu; __u32 local_sdu_itime; __u32 local_acc_lat; __u32 local_flush_to; __u8 remote_id; __u8 remote_stype; __u16 remote_msdu; __u32 remote_sdu_itime; __u32 remote_acc_lat; __u32 remote_flush_to; struct delayed_work chan_timer; struct delayed_work retrans_timer; struct delayed_work monitor_timer; struct delayed_work ack_timer; struct sk_buff *tx_send_head; struct sk_buff_head tx_q; struct sk_buff_head srej_q; struct l2cap_seq_list srej_list; struct l2cap_seq_list retrans_list; struct list_head list; struct list_head global_l; void *data; const struct l2cap_ops *ops; struct mutex lock; }; struct l2cap_ops { char *name; struct l2cap_chan *(*new_connection) (struct l2cap_chan *chan); int (*recv) (struct l2cap_chan * chan, struct sk_buff *skb); void (*teardown) (struct l2cap_chan *chan, int err); void (*close) (struct l2cap_chan *chan); void (*state_change) (struct l2cap_chan *chan, int state, int err); void (*ready) (struct l2cap_chan *chan); void (*defer) (struct l2cap_chan *chan); void (*resume) (struct l2cap_chan *chan); void (*suspend) (struct l2cap_chan *chan); void (*set_shutdown) (struct l2cap_chan *chan); long (*get_sndtimeo) (struct l2cap_chan *chan); struct pid *(*get_peer_pid) (struct l2cap_chan *chan); struct sk_buff *(*alloc_skb) (struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb); int (*filter) (struct l2cap_chan * chan, struct sk_buff *skb); }; struct l2cap_conn { struct hci_conn *hcon; struct hci_chan *hchan; unsigned int mtu; __u32 feat_mask; __u8 remote_fixed_chan; __u8 local_fixed_chan; __u8 info_state; __u8 info_ident; struct delayed_work info_timer; struct sk_buff *rx_skb; __u32 rx_len; __u8 tx_ident; struct mutex ident_lock; struct sk_buff_head pending_rx; struct work_struct pending_rx_work; struct work_struct id_addr_update_work; __u8 disc_reason; struct l2cap_chan *smp; struct list_head chan_l; struct mutex chan_lock; struct kref ref; struct list_head users; }; struct l2cap_user { struct list_head list; int (*probe) (struct l2cap_conn *conn, struct l2cap_user *user); void (*remove) (struct l2cap_conn *conn, struct l2cap_user *user); }; #define L2CAP_INFO_CL_MTU_REQ_SENT 0x01 #define L2CAP_INFO_FEAT_MASK_REQ_SENT 0x04 #define L2CAP_INFO_FEAT_MASK_REQ_DONE 0x08 #define L2CAP_CHAN_RAW 1 #define L2CAP_CHAN_CONN_LESS 2 #define L2CAP_CHAN_CONN_ORIENTED 3 #define L2CAP_CHAN_FIXED 4 /* ----- L2CAP socket info ----- */ #define l2cap_pi(sk) ((struct l2cap_pinfo *) sk) struct l2cap_pinfo { struct bt_sock bt; struct l2cap_chan *chan; struct sk_buff *rx_busy_skb; }; enum { CONF_REQ_SENT, CONF_INPUT_DONE, CONF_OUTPUT_DONE, CONF_MTU_DONE, CONF_MODE_DONE, CONF_CONNECT_PEND, CONF_RECV_NO_FCS, CONF_STATE2_DEVICE, CONF_EWS_RECV, CONF_LOC_CONF_PEND, CONF_REM_CONF_PEND, CONF_NOT_COMPLETE, }; #define L2CAP_CONF_MAX_CONF_REQ 2 #define L2CAP_CONF_MAX_CONF_RSP 2 enum { CONN_SREJ_SENT, CONN_WAIT_F, CONN_SREJ_ACT, CONN_SEND_PBIT, CONN_REMOTE_BUSY, CONN_LOCAL_BUSY, CONN_REJ_ACT, CONN_SEND_FBIT, CONN_RNR_SENT, }; /* Definitions for flags in l2cap_chan */ enum { FLAG_ROLE_SWITCH, FLAG_FORCE_ACTIVE, FLAG_FORCE_RELIABLE, FLAG_FLUSHABLE, FLAG_EXT_CTRL, FLAG_EFS_ENABLE, FLAG_DEFER_SETUP, FLAG_LE_CONN_REQ_SENT, FLAG_ECRED_CONN_REQ_SENT, FLAG_PENDING_SECURITY, FLAG_HOLD_HCI_CONN, }; /* Lock nesting levels for L2CAP channels. We need these because lockdep * otherwise considers all channels equal and will e.g. complain about a * connection oriented channel triggering SMP procedures or a listening * channel creating and locking a child channel. */ enum { L2CAP_NESTING_SMP, L2CAP_NESTING_NORMAL, L2CAP_NESTING_PARENT, }; enum { L2CAP_TX_STATE_XMIT, L2CAP_TX_STATE_WAIT_F, }; enum { L2CAP_RX_STATE_RECV, L2CAP_RX_STATE_SREJ_SENT, L2CAP_RX_STATE_MOVE, L2CAP_RX_STATE_WAIT_P, L2CAP_RX_STATE_WAIT_F, }; enum { L2CAP_TXSEQ_EXPECTED, L2CAP_TXSEQ_EXPECTED_SREJ, L2CAP_TXSEQ_UNEXPECTED, L2CAP_TXSEQ_UNEXPECTED_SREJ, L2CAP_TXSEQ_DUPLICATE, L2CAP_TXSEQ_DUPLICATE_SREJ, L2CAP_TXSEQ_INVALID, L2CAP_TXSEQ_INVALID_IGNORE, }; enum { L2CAP_EV_DATA_REQUEST, L2CAP_EV_LOCAL_BUSY_DETECTED, L2CAP_EV_LOCAL_BUSY_CLEAR, L2CAP_EV_RECV_REQSEQ_AND_FBIT, L2CAP_EV_RECV_FBIT, L2CAP_EV_RETRANS_TO, L2CAP_EV_MONITOR_TO, L2CAP_EV_EXPLICIT_POLL, L2CAP_EV_RECV_IFRAME, L2CAP_EV_RECV_RR, L2CAP_EV_RECV_REJ, L2CAP_EV_RECV_RNR, L2CAP_EV_RECV_SREJ, L2CAP_EV_RECV_FRAME, }; enum { L2CAP_MOVE_ROLE_NONE, L2CAP_MOVE_ROLE_INITIATOR, L2CAP_MOVE_ROLE_RESPONDER, }; enum { L2CAP_MOVE_STABLE, L2CAP_MOVE_WAIT_REQ, L2CAP_MOVE_WAIT_RSP, L2CAP_MOVE_WAIT_RSP_SUCCESS, L2CAP_MOVE_WAIT_CONFIRM, L2CAP_MOVE_WAIT_CONFIRM_RSP, L2CAP_MOVE_WAIT_LOGICAL_COMP, L2CAP_MOVE_WAIT_LOGICAL_CFM, L2CAP_MOVE_WAIT_LOCAL_BUSY, L2CAP_MOVE_WAIT_PREPARE, }; void l2cap_chan_hold(struct l2cap_chan *c); struct l2cap_chan *l2cap_chan_hold_unless_zero(struct l2cap_chan *c); void l2cap_chan_put(struct l2cap_chan *c); static inline void l2cap_chan_lock(struct l2cap_chan *chan) { mutex_lock_nested(&chan->lock, atomic_read(&chan->nesting)); } static inline void l2cap_chan_unlock(struct l2cap_chan *chan) { mutex_unlock(&chan->lock); } static inline void l2cap_set_timer(struct l2cap_chan *chan, struct delayed_work *work, long timeout) { BT_DBG("chan %p state %s timeout %ld", chan, state_to_string(chan->state), timeout); /* If delayed work cancelled do not hold(chan) since it is already done with previous set_timer */ if (!cancel_delayed_work(work)) l2cap_chan_hold(chan); schedule_delayed_work(work, timeout); } static inline bool l2cap_clear_timer(struct l2cap_chan *chan, struct delayed_work *work) { bool ret; /* put(chan) if delayed work cancelled otherwise it is done in delayed work function */ ret = cancel_delayed_work(work); if (ret) l2cap_chan_put(chan); return ret; } #define __set_chan_timer(c, t) l2cap_set_timer(c, &c->chan_timer, (t)) #define __clear_chan_timer(c) l2cap_clear_timer(c, &c->chan_timer) #define __clear_retrans_timer(c) l2cap_clear_timer(c, &c->retrans_timer) #define __clear_monitor_timer(c) l2cap_clear_timer(c, &c->monitor_timer) #define __set_ack_timer(c) l2cap_set_timer(c, &chan->ack_timer, \ msecs_to_jiffies(L2CAP_DEFAULT_ACK_TO)); #define __clear_ack_timer(c) l2cap_clear_timer(c, &c->ack_timer) static inline int __seq_offset(struct l2cap_chan *chan, __u16 seq1, __u16 seq2) { if (seq1 >= seq2) return seq1 - seq2; else return chan->tx_win_max + 1 - seq2 + seq1; } static inline __u16 __next_seq(struct l2cap_chan *chan, __u16 seq) { return (seq + 1) % (chan->tx_win_max + 1); } static inline struct l2cap_chan *l2cap_chan_no_new_connection(struct l2cap_chan *chan) { return NULL; } static inline int l2cap_chan_no_recv(struct l2cap_chan *chan, struct sk_buff *skb) { return -ENOSYS; } static inline struct sk_buff *l2cap_chan_no_alloc_skb(struct l2cap_chan *chan, unsigned long hdr_len, unsigned long len, int nb) { return ERR_PTR(-ENOSYS); } static inline void l2cap_chan_no_teardown(struct l2cap_chan *chan, int err) { } static inline void l2cap_chan_no_close(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_ready(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_state_change(struct l2cap_chan *chan, int state, int err) { } static inline void l2cap_chan_no_defer(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_suspend(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_resume(struct l2cap_chan *chan) { } static inline void l2cap_chan_no_set_shutdown(struct l2cap_chan *chan) { } static inline long l2cap_chan_no_get_sndtimeo(struct l2cap_chan *chan) { return 0; } extern bool disable_ertm; extern bool enable_ecred; int l2cap_init_sockets(void); void l2cap_cleanup_sockets(void); bool l2cap_is_socket(struct socket *sock); void __l2cap_le_connect_rsp_defer(struct l2cap_chan *chan); void __l2cap_ecred_conn_rsp_defer(struct l2cap_chan *chan); void __l2cap_connect_rsp_defer(struct l2cap_chan *chan); int l2cap_add_psm(struct l2cap_chan *chan, bdaddr_t *src, __le16 psm); int l2cap_add_scid(struct l2cap_chan *chan, __u16 scid); struct l2cap_chan *l2cap_chan_create(void); void l2cap_chan_close(struct l2cap_chan *chan, int reason); int l2cap_chan_connect(struct l2cap_chan *chan, __le16 psm, u16 cid, bdaddr_t *dst, u8 dst_type); int l2cap_chan_reconfigure(struct l2cap_chan *chan, __u16 mtu); int l2cap_chan_send(struct l2cap_chan *chan, struct msghdr *msg, size_t len); void l2cap_chan_busy(struct l2cap_chan *chan, int busy); int l2cap_chan_check_security(struct l2cap_chan *chan, bool initiator); void l2cap_chan_set_defaults(struct l2cap_chan *chan); int l2cap_ertm_init(struct l2cap_chan *chan); void l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); void __l2cap_chan_add(struct l2cap_conn *conn, struct l2cap_chan *chan); typedef void (*l2cap_chan_func_t)(struct l2cap_chan *chan, void *data); void l2cap_chan_list(struct l2cap_conn *conn, l2cap_chan_func_t func, void *data); void l2cap_chan_del(struct l2cap_chan *chan, int err); void l2cap_send_conn_req(struct l2cap_chan *chan); void l2cap_move_start(struct l2cap_chan *chan); void l2cap_logical_cfm(struct l2cap_chan *chan, struct hci_chan *hchan, u8 status); void __l2cap_physical_cfm(struct l2cap_chan *chan, int result); struct l2cap_conn *l2cap_conn_get(struct l2cap_conn *conn); void l2cap_conn_put(struct l2cap_conn *conn); int l2cap_register_user(struct l2cap_conn *conn, struct l2cap_user *user); void l2cap_unregister_user(struct l2cap_conn *conn, struct l2cap_user *user); #endif /* __L2CAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ /* * Type definitions for the multi-level security (MLS) policy. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ /* * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com> * * Support for enhanced MLS infrastructure. * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. */ #ifndef _SS_MLS_TYPES_H_ #define _SS_MLS_TYPES_H_ #include "security.h" #include "ebitmap.h" struct mls_level { u32 sens; /* sensitivity */ struct ebitmap cat; /* category set */ }; struct mls_range { struct mls_level level[2]; /* low == level[0], high == level[1] */ }; static inline int mls_level_eq(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens == l2->sens) && ebitmap_cmp(&l1->cat, &l2->cat)); } static inline int mls_level_dom(struct mls_level *l1, struct mls_level *l2) { return ((l1->sens >= l2->sens) && ebitmap_contains(&l1->cat, &l2->cat, 0)); } #define mls_level_incomp(l1, l2) \ (!mls_level_dom((l1), (l2)) && !mls_level_dom((l2), (l1))) #define mls_level_between(l1, l2, l3) \ (mls_level_dom((l1), (l2)) && mls_level_dom((l3), (l1))) #define mls_range_contains(r1, r2) \ (mls_level_dom(&(r2).level[0], &(r1).level[0]) && \ mls_level_dom(&(r1).level[1], &(r2).level[1])) #endif /* _SS_MLS_TYPES_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 1999-2002 Vojtech Pavlik */ #ifndef _SERIO_H #define _SERIO_H #include <linux/types.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/mutex.h> #include <linux/device.h> #include <linux/mod_devicetable.h> #include <uapi/linux/serio.h> extern struct bus_type serio_bus; struct serio { void *port_data; char name[32]; char phys[32]; char firmware_id[128]; bool manual_bind; struct serio_device_id id; /* Protects critical sections from port's interrupt handler */ spinlock_t lock; int (*write)(struct serio *, unsigned char); int (*open)(struct serio *); void (*close)(struct serio *); int (*start)(struct serio *); void (*stop)(struct serio *); struct serio *parent; /* Entry in parent->children list */ struct list_head child_node; struct list_head children; /* Level of nesting in serio hierarchy */ unsigned int depth; /* * serio->drv is accessed from interrupt handlers; when modifying * caller should acquire serio->drv_mutex and serio->lock. */ struct serio_driver *drv; /* Protects serio->drv so attributes can pin current driver */ struct mutex drv_mutex; struct device dev; struct list_head node; /* * For use by PS/2 layer when several ports share hardware and * may get indigestion when exposed to concurrent access (i8042). */ struct mutex *ps2_cmd_mutex; }; #define to_serio_port(d) container_of(d, struct serio, dev) struct serio_driver { const char *description; const struct serio_device_id *id_table; bool manual_bind; void (*write_wakeup)(struct serio *); irqreturn_t (*interrupt)(struct serio *, unsigned char, unsigned int); int (*connect)(struct serio *, struct serio_driver *drv); int (*reconnect)(struct serio *); int (*fast_reconnect)(struct serio *); void (*disconnect)(struct serio *); void (*cleanup)(struct serio *); struct device_driver driver; }; #define to_serio_driver(d) container_of(d, struct serio_driver, driver) int serio_open(struct serio *serio, struct serio_driver *drv); void serio_close(struct serio *serio); void serio_rescan(struct serio *serio); void serio_reconnect(struct serio *serio); irqreturn_t serio_interrupt(struct serio *serio, unsigned char data, unsigned int flags); void __serio_register_port(struct serio *serio, struct module *owner); /* use a define to avoid include chaining to get THIS_MODULE */ #define serio_register_port(serio) \ __serio_register_port(serio, THIS_MODULE) void serio_unregister_port(struct serio *serio); void serio_unregister_child_port(struct serio *serio); int __must_check __serio_register_driver(struct serio_driver *drv, struct module *owner, const char *mod_name); /* use a define to avoid include chaining to get THIS_MODULE & friends */ #define serio_register_driver(drv) \ __serio_register_driver(drv, THIS_MODULE, KBUILD_MODNAME) void serio_unregister_driver(struct serio_driver *drv); /** * module_serio_driver() - Helper macro for registering a serio driver * @__serio_driver: serio_driver struct * * Helper macro for serio drivers which do not do anything special in * module init/exit. This eliminates a lot of boilerplate. Each module * may only use this macro once, and calling it replaces module_init() * and module_exit(). */ #define module_serio_driver(__serio_driver) \ module_driver(__serio_driver, serio_register_driver, \ serio_unregister_driver) static inline int serio_write(struct serio *serio, unsigned char data) { if (serio->write) return serio->write(serio, data); else return -1; } static inline void serio_drv_write_wakeup(struct serio *serio) { if (serio->drv && serio->drv->write_wakeup) serio->drv->write_wakeup(serio); } /* * Use the following functions to manipulate serio's per-port * driver-specific data. */ static inline void *serio_get_drvdata(struct serio *serio) { return dev_get_drvdata(&serio->dev); } static inline void serio_set_drvdata(struct serio *serio, void *data) { dev_set_drvdata(&serio->dev, data); } /* * Use the following functions to protect critical sections in * driver code from port's interrupt handler */ static inline void serio_pause_rx(struct serio *serio) { spin_lock_irq(&serio->lock); } static inline void serio_continue_rx(struct serio *serio) { spin_unlock_irq(&serio->lock); } #endif
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion * * Copyright IBM Corporation, 2001 * * Author: Dipankar Sarma <dipankar@in.ibm.com> * * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #ifndef __LINUX_RCUPDATE_H #define __LINUX_RCUPDATE_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/atomic.h> #include <linux/irqflags.h> #include <linux/preempt.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/processor.h> #include <linux/cpumask.h> #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) #define ulong2long(a) (*(long *)(&(a))) #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) /* Exported common interfaces */ void call_rcu(struct rcu_head *head, rcu_callback_t func); void rcu_barrier_tasks(void); void rcu_barrier_tasks_rude(void); void synchronize_rcu(void); #ifdef CONFIG_PREEMPT_RCU void __rcu_read_lock(void); void __rcu_read_unlock(void); /* * Defined as a macro as it is a very low level header included from * areas that don't even know about current. This gives the rcu_read_lock() * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. */ #define rcu_preempt_depth() (current->rcu_read_lock_nesting) #else /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TINY_RCU #define rcu_read_unlock_strict() do { } while (0) #else void rcu_read_unlock_strict(void); #endif static inline void __rcu_read_lock(void) { preempt_disable(); } static inline void __rcu_read_unlock(void) { preempt_enable(); rcu_read_unlock_strict(); } static inline int rcu_preempt_depth(void) { return 0; } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* Internal to kernel */ void rcu_init(void); extern int rcu_scheduler_active __read_mostly; void rcu_sched_clock_irq(int user); void rcu_report_dead(unsigned int cpu); void rcutree_migrate_callbacks(int cpu); #ifdef CONFIG_TASKS_RCU_GENERIC void rcu_init_tasks_generic(void); #else static inline void rcu_init_tasks_generic(void) { } #endif #ifdef CONFIG_RCU_STALL_COMMON void rcu_sysrq_start(void); void rcu_sysrq_end(void); #else /* #ifdef CONFIG_RCU_STALL_COMMON */ static inline void rcu_sysrq_start(void) { } static inline void rcu_sysrq_end(void) { } #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ #ifdef CONFIG_NO_HZ_FULL void rcu_user_enter(void); void rcu_user_exit(void); #else static inline void rcu_user_enter(void) { } static inline void rcu_user_exit(void) { } #endif /* CONFIG_NO_HZ_FULL */ #ifdef CONFIG_RCU_NOCB_CPU void rcu_init_nohz(void); void rcu_nocb_flush_deferred_wakeup(void); #else /* #ifdef CONFIG_RCU_NOCB_CPU */ static inline void rcu_init_nohz(void) { } static inline void rcu_nocb_flush_deferred_wakeup(void) { } #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ /** * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers * @a: Code that RCU needs to pay attention to. * * RCU read-side critical sections are forbidden in the inner idle loop, * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU * will happily ignore any such read-side critical sections. However, * things like powertop need tracepoints in the inner idle loop. * * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) * will tell RCU that it needs to pay attention, invoke its argument * (in this example, calling the do_something_with_RCU() function), * and then tell RCU to go back to ignoring this CPU. It is permissible * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is * on the order of a million or so, even on 32-bit systems). It is * not legal to block within RCU_NONIDLE(), nor is it permissible to * transfer control either into or out of RCU_NONIDLE()'s statement. */ #define RCU_NONIDLE(a) \ do { \ rcu_irq_enter_irqson(); \ do { a; } while (0); \ rcu_irq_exit_irqson(); \ } while (0) /* * Note a quasi-voluntary context switch for RCU-tasks's benefit. * This is a macro rather than an inline function to avoid #include hell. */ #ifdef CONFIG_TASKS_RCU_GENERIC # ifdef CONFIG_TASKS_RCU # define rcu_tasks_classic_qs(t, preempt) \ do { \ if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ WRITE_ONCE((t)->rcu_tasks_holdout, false); \ } while (0) void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks(void); # else # define rcu_tasks_classic_qs(t, preempt) do { } while (0) # define call_rcu_tasks call_rcu # define synchronize_rcu_tasks synchronize_rcu # endif # ifdef CONFIG_TASKS_TRACE_RCU # define rcu_tasks_trace_qs(t) \ do { \ if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ smp_store_release(&(t)->trc_reader_checked, true); \ smp_mb(); /* Readers partitioned by store. */ \ } \ } while (0) # else # define rcu_tasks_trace_qs(t) do { } while (0) # endif #define rcu_tasks_qs(t, preempt) \ do { \ rcu_tasks_classic_qs((t), (preempt)); \ rcu_tasks_trace_qs((t)); \ } while (0) # ifdef CONFIG_TASKS_RUDE_RCU void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks_rude(void); # endif #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) void exit_tasks_rcu_start(void); void exit_tasks_rcu_stop(void); void exit_tasks_rcu_finish(void); #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ #define rcu_tasks_qs(t, preempt) do { } while (0) #define rcu_note_voluntary_context_switch(t) do { } while (0) #define call_rcu_tasks call_rcu #define synchronize_rcu_tasks synchronize_rcu static inline void exit_tasks_rcu_start(void) { } static inline void exit_tasks_rcu_stop(void) { } static inline void exit_tasks_rcu_finish(void) { } #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ /** * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? * * As an accident of implementation, an RCU Tasks Trace grace period also * acts as an RCU grace period. However, this could change at any time. * Code relying on this accident must call this function to verify that * this accident is still happening. * * You have been warned! */ static inline bool rcu_trace_implies_rcu_gp(void) { return true; } /** * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU * * This macro resembles cond_resched(), except that it is defined to * report potential quiescent states to RCU-tasks even if the cond_resched() * machinery were to be shut off, as some advocate for PREEMPTION kernels. */ #define cond_resched_tasks_rcu_qs() \ do { \ rcu_tasks_qs(current, false); \ cond_resched(); \ } while (0) /** * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states * @old_ts: jiffies at start of processing. * * This helper is for long-running softirq handlers, such as NAPI threads in * networking. The caller should initialize the variable passed in as @old_ts * at the beginning of the softirq handler. When invoked frequently, this macro * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will * provide both RCU and RCU-Tasks quiescent states. Note that this macro * modifies its old_ts argument. * * Because regions of code that have disabled softirq act as RCU read-side * critical sections, this macro should be invoked with softirq (and * preemption) enabled. * * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would * have more chance to invoke schedule() calls and provide necessary quiescent * states. As a contrast, calling cond_resched() only won't achieve the same * effect because cond_resched() does not provide RCU-Tasks quiescent states. */ #define rcu_softirq_qs_periodic(old_ts) \ do { \ if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \ time_after(jiffies, (old_ts) + HZ / 10)) { \ preempt_disable(); \ rcu_softirq_qs(); \ preempt_enable(); \ (old_ts) = jiffies; \ } \ } while (0) /* * Infrastructure to implement the synchronize_() primitives in * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. */ #if defined(CONFIG_TREE_RCU) #include <linux/rcutree.h> #elif defined(CONFIG_TINY_RCU) #include <linux/rcutiny.h> #else #error "Unknown RCU implementation specified to kernel configuration" #endif /* * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls * are needed for dynamic initialization and destruction of rcu_head * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for * dynamic initialization and destruction of statically allocated rcu_head * structures. However, rcu_head structures allocated dynamically in the * heap don't need any initialization. */ #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD void init_rcu_head(struct rcu_head *head); void destroy_rcu_head(struct rcu_head *head); void init_rcu_head_on_stack(struct rcu_head *head); void destroy_rcu_head_on_stack(struct rcu_head *head); #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ static inline void init_rcu_head(struct rcu_head *head) { } static inline void destroy_rcu_head(struct rcu_head *head) { } static inline void init_rcu_head_on_stack(struct rcu_head *head) { } static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) bool rcu_lockdep_current_cpu_online(void); #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ static inline bool rcu_lockdep_current_cpu_online(void) { return true; } #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static inline void rcu_lock_acquire(struct lockdep_map *map) { lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); } static inline void rcu_lock_release(struct lockdep_map *map) { lock_release(map, _THIS_IP_); } extern struct lockdep_map rcu_lock_map; extern struct lockdep_map rcu_bh_lock_map; extern struct lockdep_map rcu_sched_lock_map; extern struct lockdep_map rcu_callback_map; int debug_lockdep_rcu_enabled(void); int rcu_read_lock_held(void); int rcu_read_lock_bh_held(void); int rcu_read_lock_sched_held(void); int rcu_read_lock_any_held(void); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ # define rcu_lock_acquire(a) do { } while (0) # define rcu_lock_release(a) do { } while (0) static inline int rcu_read_lock_held(void) { return 1; } static inline int rcu_read_lock_bh_held(void) { return 1; } static inline int rcu_read_lock_sched_held(void) { return !preemptible(); } static inline int rcu_read_lock_any_held(void) { return !preemptible(); } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_PROVE_RCU /** * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met * @c: condition to check * @s: informative message * * This checks debug_lockdep_rcu_enabled() before checking (c) to * prevent early boot splats due to lockdep not yet being initialized, * and rechecks it after checking (c) to prevent false-positive splats * due to races with lockdep being disabled. See commit 3066820034b5dd * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. */ #define RCU_LOCKDEP_WARN(c, s) \ do { \ static bool __section(".data.unlikely") __warned; \ if (debug_lockdep_rcu_enabled() && (c) && \ debug_lockdep_rcu_enabled() && !__warned) { \ __warned = true; \ lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ } \ } while (0) #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) static inline void rcu_preempt_sleep_check(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), "Illegal context switch in RCU read-side critical section"); } #else /* #ifdef CONFIG_PROVE_RCU */ static inline void rcu_preempt_sleep_check(void) { } #endif /* #else #ifdef CONFIG_PROVE_RCU */ #define rcu_sleep_check() \ do { \ rcu_preempt_sleep_check(); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ "Illegal context switch in RCU-bh read-side critical section"); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ "Illegal context switch in RCU-sched read-side critical section"); \ } while (0) #else /* #ifdef CONFIG_PROVE_RCU */ #define RCU_LOCKDEP_WARN(c, s) do { } while (0) #define rcu_sleep_check() do { } while (0) #endif /* #else #ifdef CONFIG_PROVE_RCU */ /* * Helper functions for rcu_dereference_check(), rcu_dereference_protected() * and rcu_assign_pointer(). Some of these could be folded into their * callers, but they are left separate in order to ease introduction of * multiple pointers markings to match different RCU implementations * (e.g., __srcu), should this make sense in the future. */ #ifdef __CHECKER__ #define rcu_check_sparse(p, space) \ ((void)(((typeof(*p) space *)p) == p)) #else /* #ifdef __CHECKER__ */ #define rcu_check_sparse(p, space) #endif /* #else #ifdef __CHECKER__ */ /** * unrcu_pointer - mark a pointer as not being RCU protected * @p: pointer needing to lose its __rcu property * * Converts @p from an __rcu pointer to a __kernel pointer. * This allows an __rcu pointer to be used with xchg() and friends. */ #define unrcu_pointer(p) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)(p); \ rcu_check_sparse(p, __rcu); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_access_pointer(p, space) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_dereference_check(p, c, space) \ ({ \ /* Dependency order vs. p above. */ \ typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) #define __rcu_dereference_protected(p, c, space) \ ({ \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(p)); \ }) #define rcu_dereference_raw(p) \ ({ \ /* Dependency order vs. p above. */ \ typeof(p) ________p1 = READ_ONCE(p); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) /** * RCU_INITIALIZER() - statically initialize an RCU-protected global variable * @v: The value to statically initialize with. */ #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) /** * rcu_assign_pointer() - assign to RCU-protected pointer * @p: pointer to assign to * @v: value to assign (publish) * * Assigns the specified value to the specified RCU-protected * pointer, ensuring that any concurrent RCU readers will see * any prior initialization. * * Inserts memory barriers on architectures that require them * (which is most of them), and also prevents the compiler from * reordering the code that initializes the structure after the pointer * assignment. More importantly, this call documents which pointers * will be dereferenced by RCU read-side code. * * In some special cases, you may use RCU_INIT_POINTER() instead * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due * to the fact that it does not constrain either the CPU or the compiler. * That said, using RCU_INIT_POINTER() when you should have used * rcu_assign_pointer() is a very bad thing that results in * impossible-to-diagnose memory corruption. So please be careful. * See the RCU_INIT_POINTER() comment header for details. * * Note that rcu_assign_pointer() evaluates each of its arguments only * once, appearances notwithstanding. One of the "extra" evaluations * is in typeof() and the other visible only to sparse (__CHECKER__), * neither of which actually execute the argument. As with most cpp * macros, this execute-arguments-only-once property is important, so * please be careful when making changes to rcu_assign_pointer() and the * other macros that it invokes. */ #define rcu_assign_pointer(p, v) \ do { \ uintptr_t _r_a_p__v = (uintptr_t)(v); \ rcu_check_sparse(p, __rcu); \ \ if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ else \ smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ } while (0) /** * rcu_replace_pointer() - replace an RCU pointer, returning its old value * @rcu_ptr: RCU pointer, whose old value is returned * @ptr: regular pointer * @c: the lockdep conditions under which the dereference will take place * * Perform a replacement, where @rcu_ptr is an RCU-annotated * pointer and @c is the lockdep argument that is passed to the * rcu_dereference_protected() call used to read that pointer. The old * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. */ #define rcu_replace_pointer(rcu_ptr, ptr, c) \ ({ \ typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ rcu_assign_pointer((rcu_ptr), (ptr)); \ __tmp; \ }) /** * rcu_access_pointer() - fetch RCU pointer with no dereferencing * @p: The pointer to read * * Return the value of the specified RCU-protected pointer, but omit the * lockdep checks for being in an RCU read-side critical section. This is * useful when the value of this pointer is accessed, but the pointer is * not dereferenced, for example, when testing an RCU-protected pointer * against NULL. Although rcu_access_pointer() may also be used in cases * where update-side locks prevent the value of the pointer from changing, * you should instead use rcu_dereference_protected() for this use case. * * It is also permissible to use rcu_access_pointer() when read-side * access to the pointer was removed at least one grace period ago, as * is the case in the context of the RCU callback that is freeing up * the data, or after a synchronize_rcu() returns. This can be useful * when tearing down multi-linked structures after a grace period * has elapsed. */ #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) /** * rcu_dereference_check() - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Do an rcu_dereference(), but check that the conditions under which the * dereference will take place are correct. Typically the conditions * indicate the various locking conditions that should be held at that * point. The check should return true if the conditions are satisfied. * An implicit check for being in an RCU read-side critical section * (rcu_read_lock()) is included. * * For example: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); * * could be used to indicate to lockdep that foo->bar may only be dereferenced * if either rcu_read_lock() is held, or that the lock required to replace * the bar struct at foo->bar is held. * * Note that the list of conditions may also include indications of when a lock * need not be held, for example during initialisation or destruction of the * target struct: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || * atomic_read(&foo->usage) == 0); * * Inserts memory barriers on architectures that require them * (currently only the Alpha), prevents the compiler from refetching * (and from merging fetches), and, more importantly, documents exactly * which pointers are protected by RCU and checks that the pointer is * annotated as __rcu. */ #define rcu_dereference_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) /** * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-bh counterpart to rcu_dereference_check(). */ #define rcu_dereference_bh_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) /** * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-sched counterpart to rcu_dereference_check(). */ #define rcu_dereference_sched_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ __rcu) /* * The tracing infrastructure traces RCU (we want that), but unfortunately * some of the RCU checks causes tracing to lock up the system. * * The no-tracing version of rcu_dereference_raw() must not call * rcu_read_lock_held(). */ #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) /** * rcu_dereference_protected() - fetch RCU pointer when updates prevented * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(). This is useful in cases where update-side locks * prevent the value of the pointer from changing. Please note that this * primitive does *not* prevent the compiler from repeating this reference * or combining it with other references, so it should not be used without * protection of appropriate locks. * * This function is only for update-side use. Using this function * when protected only by rcu_read_lock() will result in infrequent * but very ugly failures. */ #define rcu_dereference_protected(p, c) \ __rcu_dereference_protected((p), (c), __rcu) /** * rcu_dereference() - fetch RCU-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * This is a simple wrapper around rcu_dereference_check(). */ #define rcu_dereference(p) rcu_dereference_check(p, 0) /** * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) /** * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) /** * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism * @p: The pointer to hand off * * This is simply an identity function, but it documents where a pointer * is handed off from RCU to some other synchronization mechanism, for * example, reference counting or locking. In C11, it would map to * kill_dependency(). It could be used as follows:: * * rcu_read_lock(); * p = rcu_dereference(gp); * long_lived = is_long_lived(p); * if (long_lived) { * if (!atomic_inc_not_zero(p->refcnt)) * long_lived = false; * else * p = rcu_pointer_handoff(p); * } * rcu_read_unlock(); */ #define rcu_pointer_handoff(p) (p) /** * rcu_read_lock() - mark the beginning of an RCU read-side critical section * * When synchronize_rcu() is invoked on one CPU while other CPUs * are within RCU read-side critical sections, then the * synchronize_rcu() is guaranteed to block until after all the other * CPUs exit their critical sections. Similarly, if call_rcu() is invoked * on one CPU while other CPUs are within RCU read-side critical * sections, invocation of the corresponding RCU callback is deferred * until after the all the other CPUs exit their critical sections. * * Note, however, that RCU callbacks are permitted to run concurrently * with new RCU read-side critical sections. One way that this can happen * is via the following sequence of events: (1) CPU 0 enters an RCU * read-side critical section, (2) CPU 1 invokes call_rcu() to register * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU * callback is invoked. This is legal, because the RCU read-side critical * section that was running concurrently with the call_rcu() (and which * therefore might be referencing something that the corresponding RCU * callback would free up) has completed before the corresponding * RCU callback is invoked. * * RCU read-side critical sections may be nested. Any deferred actions * will be deferred until the outermost RCU read-side critical section * completes. * * You can avoid reading and understanding the next paragraph by * following this rule: don't put anything in an rcu_read_lock() RCU * read-side critical section that would block in a !PREEMPTION kernel. * But if you want the full story, read on! * * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), * it is illegal to block while in an RCU read-side critical section. * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION * kernel builds, RCU read-side critical sections may be preempted, * but explicit blocking is illegal. Finally, in preemptible RCU * implementations in real-time (with -rt patchset) kernel builds, RCU * read-side critical sections may be preempted and they may also block, but * only when acquiring spinlocks that are subject to priority inheritance. */ static __always_inline void rcu_read_lock(void) { __rcu_read_lock(); __acquire(RCU); rcu_lock_acquire(&rcu_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock() used illegally while idle"); } /* * So where is rcu_write_lock()? It does not exist, as there is no * way for writers to lock out RCU readers. This is a feature, not * a bug -- this property is what provides RCU's performance benefits. * Of course, writers must coordinate with each other. The normal * spinlock primitives work well for this, but any other technique may be * used as well. RCU does not care how the writers keep out of each * others' way, as long as they do so. */ /** * rcu_read_unlock() - marks the end of an RCU read-side critical section. * * In most situations, rcu_read_unlock() is immune from deadlock. * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() * is responsible for deboosting, which it does via rt_mutex_unlock(). * Unfortunately, this function acquires the scheduler's runqueue and * priority-inheritance spinlocks. This means that deadlock could result * if the caller of rcu_read_unlock() already holds one of these locks or * any lock that is ever acquired while holding them. * * That said, RCU readers are never priority boosted unless they were * preempted. Therefore, one way to avoid deadlock is to make sure * that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with one of * rt_mutex_unlock()'s locks held. Such preemption can be avoided in * a number of ways, for example, by invoking preempt_disable() before * critical section's outermost rcu_read_lock(). * * Given that the set of locks acquired by rt_mutex_unlock() might change * at any time, a somewhat more future-proofed approach is to make sure * that that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with irqs disabled. * This approach relies on the fact that rt_mutex_unlock() currently only * acquires irq-disabled locks. * * The second of these two approaches is best in most situations, * however, the first approach can also be useful, at least to those * developers willing to keep abreast of the set of locks acquired by * rt_mutex_unlock(). * * See rcu_read_lock() for more information. */ static inline void rcu_read_unlock(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock() used illegally while idle"); __release(RCU); __rcu_read_unlock(); rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ } /** * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section * * This is equivalent of rcu_read_lock(), but also disables softirqs. * Note that anything else that disables softirqs can also serve as * an RCU read-side critical section. * * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() * was invoked from some other task. */ static inline void rcu_read_lock_bh(void) { local_bh_disable(); __acquire(RCU_BH); rcu_lock_acquire(&rcu_bh_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_bh() used illegally while idle"); } /** * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section * * See rcu_read_lock_bh() for more information. */ static inline void rcu_read_unlock_bh(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_bh() used illegally while idle"); rcu_lock_release(&rcu_bh_lock_map); __release(RCU_BH); local_bh_enable(); } /** * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section * * This is equivalent of rcu_read_lock(), but disables preemption. * Read-side critical sections can also be introduced by anything else * that disables preemption, including local_irq_disable() and friends. * * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_sched() from process context if the matching * rcu_read_lock_sched() was invoked from an NMI handler. */ static inline void rcu_read_lock_sched(void) { preempt_disable(); __acquire(RCU_SCHED); rcu_lock_acquire(&rcu_sched_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_sched() used illegally while idle"); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_lock_sched_notrace(void) { preempt_disable_notrace(); __acquire(RCU_SCHED); } /** * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section * * See rcu_read_lock_sched() for more information. */ static inline void rcu_read_unlock_sched(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_sched() used illegally while idle"); rcu_lock_release(&rcu_sched_lock_map); __release(RCU_SCHED); preempt_enable(); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_unlock_sched_notrace(void) { __release(RCU_SCHED); preempt_enable_notrace(); } /** * RCU_INIT_POINTER() - initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * Initialize an RCU-protected pointer in special cases where readers * do not need ordering constraints on the CPU or the compiler. These * special cases are: * * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* * 2. The caller has taken whatever steps are required to prevent * RCU readers from concurrently accessing this pointer *or* * 3. The referenced data structure has already been exposed to * readers either at compile time or via rcu_assign_pointer() *and* * * a. You have not made *any* reader-visible changes to * this structure since then *or* * b. It is OK for readers accessing this structure from its * new location to see the old state of the structure. (For * example, the changes were to statistical counters or to * other state where exact synchronization is not required.) * * Failure to follow these rules governing use of RCU_INIT_POINTER() will * result in impossible-to-diagnose memory corruption. As in the structures * will look OK in crash dumps, but any concurrent RCU readers might * see pre-initialized values of the referenced data structure. So * please be very careful how you use RCU_INIT_POINTER()!!! * * If you are creating an RCU-protected linked structure that is accessed * by a single external-to-structure RCU-protected pointer, then you may * use RCU_INIT_POINTER() to initialize the internal RCU-protected * pointers, but you must use rcu_assign_pointer() to initialize the * external-to-structure pointer *after* you have completely initialized * the reader-accessible portions of the linked structure. * * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no * ordering guarantees for either the CPU or the compiler. */ #define RCU_INIT_POINTER(p, v) \ do { \ rcu_check_sparse(p, __rcu); \ WRITE_ONCE(p, RCU_INITIALIZER(v)); \ } while (0) /** * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * GCC-style initialization for an RCU-protected pointer in a structure field. */ #define RCU_POINTER_INITIALIZER(p, v) \ .p = RCU_INITIALIZER(v) /* * Does the specified offset indicate that the corresponding rcu_head * structure can be handled by kvfree_rcu()? */ #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) /* * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. */ #define __kvfree_rcu(head, offset) \ do { \ BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \ kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ } while (0) /** * kfree_rcu() - kfree an object after a grace period. * @ptr: pointer to kfree * @rhf: the name of the struct rcu_head within the type of @ptr. * * Many rcu callbacks functions just call kfree() on the base structure. * These functions are trivial, but their size adds up, and furthermore * when they are used in a kernel module, that module must invoke the * high-latency rcu_barrier() function at module-unload time. * * The kfree_rcu() function handles this issue. Rather than encoding a * function address in the embedded rcu_head structure, kfree_rcu() instead * encodes the offset of the rcu_head structure within the base structure. * Because the functions are not allowed in the low-order 4096 bytes of * kernel virtual memory, offsets up to 4095 bytes can be accommodated. * If the offset is larger than 4095 bytes, a compile-time error will * be generated in __kvfree_rcu(). If this error is triggered, you can * either fall back to use of call_rcu() or rearrange the structure to * position the rcu_head structure into the first 4096 bytes. * * Note that the allowable offset might decrease in the future, for example, * to allow something like kmem_cache_free_rcu(). * * The BUILD_BUG_ON check must not involve any function calls, hence the * checks are done in macros here. */ #define kfree_rcu(ptr, rhf) \ do { \ typeof (ptr) ___p = (ptr); \ \ if (___p) \ __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ } while (0) /** * kvfree_rcu() - kvfree an object after a grace period. * * This macro consists of one or two arguments and it is * based on whether an object is head-less or not. If it * has a head then a semantic stays the same as it used * to be before: * * kvfree_rcu(ptr, rhf); * * where @ptr is a pointer to kvfree(), @rhf is the name * of the rcu_head structure within the type of @ptr. * * When it comes to head-less variant, only one argument * is passed and that is just a pointer which has to be * freed after a grace period. Therefore the semantic is * * kvfree_rcu(ptr); * * where @ptr is a pointer to kvfree(). * * Please note, head-less way of freeing is permitted to * use from a context that has to follow might_sleep() * annotation. Otherwise, please switch and embed the * rcu_head structure within the type of @ptr. */ #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr) #define kfree_rcu_mightsleep(ptr) kvfree_rcu_mightsleep(ptr) #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf) #define kvfree_rcu_arg_1(ptr) \ do { \ typeof(ptr) ___p = (ptr); \ \ if (___p) \ kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ } while (0) /* * Place this after a lock-acquisition primitive to guarantee that * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies * if the UNLOCK and LOCK are executed by the same CPU or if the * UNLOCK and LOCK operate on the same lock variable. */ #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ #define smp_mb__after_unlock_lock() do { } while (0) #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ /* Has the specified rcu_head structure been handed to call_rcu()? */ /** * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() * @rhp: The rcu_head structure to initialize. * * If you intend to invoke rcu_head_after_call_rcu() to test whether a * given rcu_head structure has already been passed to call_rcu(), then * you must also invoke this rcu_head_init() function on it just after * allocating that structure. Calls to this function must not race with * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. */ static inline void rcu_head_init(struct rcu_head *rhp) { rhp->func = (rcu_callback_t)~0L; } /** * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? * @rhp: The rcu_head structure to test. * @f: The function passed to call_rcu() along with @rhp. * * Returns @true if the @rhp has been passed to call_rcu() with @func, * and @false otherwise. Emits a warning in any other case, including * the case where @rhp has already been invoked after a grace period. * Calls to this function must not race with callback invocation. One way * to avoid such races is to enclose the call to rcu_head_after_call_rcu() * in an RCU read-side critical section that includes a read-side fetch * of the pointer to the structure containing @rhp. */ static inline bool rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) { rcu_callback_t func = READ_ONCE(rhp->func); if (func == f) return true; WARN_ON_ONCE(func != (rcu_callback_t)~0L); return false; } /* kernel/ksysfs.c definitions */ extern int rcu_expedited; extern int rcu_normal; #endif /* __LINUX_RCUPDATE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_NOSPEC_BRANCH_H_ #define _ASM_X86_NOSPEC_BRANCH_H_ #include <linux/static_key.h> #include <linux/objtool.h> #include <linux/linkage.h> #include <asm/alternative.h> #include <asm/cpufeatures.h> #include <asm/msr-index.h> #include <asm/unwind_hints.h> #include <asm/percpu.h> #define RETPOLINE_THUNK_SIZE 32 /* * Fill the CPU return stack buffer. * * Each entry in the RSB, if used for a speculative 'ret', contains an * infinite 'pause; lfence; jmp' loop to capture speculative execution. * * This is required in various cases for retpoline and IBRS-based * mitigations for the Spectre variant 2 vulnerability. Sometimes to * eliminate potentially bogus entries from the RSB, and sometimes * purely to ensure that it doesn't get empty, which on some CPUs would * allow predictions from other (unwanted!) sources to be used. * * We define a CPP macro such that it can be used from both .S files and * inline assembly. It's possible to do a .macro and then include that * from C via asm(".include <asm/nospec-branch.h>") but let's not go there. */ #define RSB_CLEAR_LOOPS 32 /* To forcibly overwrite all entries */ /* * Common helper for __FILL_RETURN_BUFFER and __FILL_ONE_RETURN. */ #define __FILL_RETURN_SLOT \ ANNOTATE_INTRA_FUNCTION_CALL; \ call 772f; \ int3; \ 772: /* * Stuff the entire RSB. * * Google experimented with loop-unrolling and this turned out to be * the optimal version — two calls, each with their own speculation * trap should their return address end up getting used, in a loop. */ #ifdef CONFIG_X86_64 #define __FILL_RETURN_BUFFER(reg, nr) \ mov $(nr/2), reg; \ 771: \ __FILL_RETURN_SLOT \ __FILL_RETURN_SLOT \ add $(BITS_PER_LONG/8) * 2, %_ASM_SP; \ dec reg; \ jnz 771b; \ /* barrier for jnz misprediction */ \ lfence; #else /* * i386 doesn't unconditionally have LFENCE, as such it can't * do a loop. */ #define __FILL_RETURN_BUFFER(reg, nr) \ .rept nr; \ __FILL_RETURN_SLOT; \ .endr; \ add $(BITS_PER_LONG/8) * nr, %_ASM_SP; #endif /* * Stuff a single RSB slot. * * To mitigate Post-Barrier RSB speculation, one CALL instruction must be * forced to retire before letting a RET instruction execute. * * On PBRSB-vulnerable CPUs, it is not safe for a RET to be executed * before this point. */ #define __FILL_ONE_RETURN \ __FILL_RETURN_SLOT \ add $(BITS_PER_LONG/8), %_ASM_SP; \ lfence; #ifdef __ASSEMBLY__ /* * This should be used immediately before an indirect jump/call. It tells * objtool the subsequent indirect jump/call is vouched safe for retpoline * builds. */ .macro ANNOTATE_RETPOLINE_SAFE .Lannotate_\@: .pushsection .discard.retpoline_safe _ASM_PTR .Lannotate_\@ .popsection .endm /* * (ab)use RETPOLINE_SAFE on RET to annotate away 'bare' RET instructions * vs RETBleed validation. */ #define ANNOTATE_UNRET_SAFE ANNOTATE_RETPOLINE_SAFE /* * Abuse ANNOTATE_RETPOLINE_SAFE on a NOP to indicate UNRET_END, should * eventually turn into it's own annotation. */ .macro ANNOTATE_UNRET_END #if (defined(CONFIG_CPU_UNRET_ENTRY) || defined(CONFIG_CPU_SRSO)) ANNOTATE_RETPOLINE_SAFE nop #endif .endm /* * JMP_NOSPEC and CALL_NOSPEC macros can be used instead of a simple * indirect jmp/call which may be susceptible to the Spectre variant 2 * attack. */ .macro JMP_NOSPEC reg:req #ifdef CONFIG_RETPOLINE ALTERNATIVE_2 __stringify(ANNOTATE_RETPOLINE_SAFE; jmp *%\reg), \ __stringify(jmp __x86_indirect_thunk_\reg), X86_FEATURE_RETPOLINE, \ __stringify(lfence; ANNOTATE_RETPOLINE_SAFE; jmp *%\reg), X86_FEATURE_RETPOLINE_LFENCE #else jmp *%\reg #endif .endm .macro CALL_NOSPEC reg:req #ifdef CONFIG_RETPOLINE ALTERNATIVE_2 __stringify(ANNOTATE_RETPOLINE_SAFE; call *%\reg), \ __stringify(call __x86_indirect_thunk_\reg), X86_FEATURE_RETPOLINE, \ __stringify(lfence; ANNOTATE_RETPOLINE_SAFE; call *%\reg), X86_FEATURE_RETPOLINE_LFENCE #else call *%\reg #endif .endm /* * A simpler FILL_RETURN_BUFFER macro. Don't make people use the CPP * monstrosity above, manually. */ .macro FILL_RETURN_BUFFER reg:req nr:req ftr:req ftr2=ALT_NOT(X86_FEATURE_ALWAYS) ALTERNATIVE_2 "jmp .Lskip_rsb_\@", \ __stringify(__FILL_RETURN_BUFFER(\reg,\nr)), \ftr, \ __stringify(__FILL_ONE_RETURN), \ftr2 .Lskip_rsb_\@: .endm /* * The CALL to srso_alias_untrain_ret() must be patched in directly at * the spot where untraining must be done, ie., srso_alias_untrain_ret() * must be the target of a CALL instruction instead of indirectly * jumping to a wrapper which then calls it. Therefore, this macro is * called outside of __UNTRAIN_RET below, for the time being, before the * kernel can support nested alternatives with arbitrary nesting. */ .macro CALL_UNTRAIN_RET #ifdef CONFIG_CPU_UNRET_ENTRY ALTERNATIVE_2 "", "call entry_untrain_ret", X86_FEATURE_UNRET, \ "call srso_alias_untrain_ret", X86_FEATURE_SRSO_ALIAS #endif .endm /* * Mitigate RETBleed for AMD/Hygon Zen uarch. Requires KERNEL CR3 because the * return thunk isn't mapped into the userspace tables (then again, AMD * typically has NO_MELTDOWN). * * While retbleed_untrain_ret() doesn't clobber anything but requires stack, * entry_ibpb() will clobber AX, CX, DX. * * As such, this must be placed after every *SWITCH_TO_KERNEL_CR3 at a point * where we have a stack but before any RET instruction. */ .macro UNTRAIN_RET #if defined(CONFIG_CPU_UNRET_ENTRY) || defined(CONFIG_CPU_IBPB_ENTRY) || \ defined(CONFIG_CPU_SRSO) ANNOTATE_UNRET_END CALL_UNTRAIN_RET ALTERNATIVE "", "call entry_ibpb", X86_FEATURE_ENTRY_IBPB #endif .endm /* * Macro to execute VERW instruction that mitigate transient data sampling * attacks such as MDS. On affected systems a microcode update overloaded VERW * instruction to also clear the CPU buffers. VERW clobbers CFLAGS.ZF. * * Note: Only the memory operand variant of VERW clears the CPU buffers. */ .macro CLEAR_CPU_BUFFERS ALTERNATIVE "jmp .Lskip_verw_\@", "", X86_FEATURE_CLEAR_CPU_BUF #ifdef CONFIG_X86_64 verw mds_verw_sel(%rip) #else /* * In 32bit mode, the memory operand must be a %cs reference. The data * segments may not be usable (vm86 mode), and the stack segment may not * be flat (ESPFIX32). */ verw %cs:mds_verw_sel #endif .Lskip_verw_\@: .endm #else /* __ASSEMBLY__ */ #define ANNOTATE_RETPOLINE_SAFE \ "999:\n\t" \ ".pushsection .discard.retpoline_safe\n\t" \ _ASM_PTR " 999b\n\t" \ ".popsection\n\t" #ifdef CONFIG_RETHUNK extern void __x86_return_thunk(void); #else static inline void __x86_return_thunk(void) {} #endif extern void retbleed_return_thunk(void); extern void srso_return_thunk(void); extern void srso_alias_return_thunk(void); extern void retbleed_untrain_ret(void); extern void srso_untrain_ret(void); extern void srso_alias_untrain_ret(void); extern void entry_untrain_ret(void); extern void entry_ibpb(void); extern void (*x86_return_thunk)(void); #ifdef CONFIG_RETPOLINE typedef u8 retpoline_thunk_t[RETPOLINE_THUNK_SIZE]; #define GEN(reg) \ extern retpoline_thunk_t __x86_indirect_thunk_ ## reg; #include <asm/GEN-for-each-reg.h> #undef GEN extern retpoline_thunk_t __x86_indirect_thunk_array[]; #ifdef CONFIG_X86_64 /* * Inline asm uses the %V modifier which is only in newer GCC * which is ensured when CONFIG_RETPOLINE is defined. */ # define CALL_NOSPEC \ ALTERNATIVE_2( \ ANNOTATE_RETPOLINE_SAFE \ "call *%[thunk_target]\n", \ "call __x86_indirect_thunk_%V[thunk_target]\n", \ X86_FEATURE_RETPOLINE, \ "lfence;\n" \ ANNOTATE_RETPOLINE_SAFE \ "call *%[thunk_target]\n", \ X86_FEATURE_RETPOLINE_LFENCE) # define THUNK_TARGET(addr) [thunk_target] "r" (addr) #else /* CONFIG_X86_32 */ /* * For i386 we use the original ret-equivalent retpoline, because * otherwise we'll run out of registers. We don't care about CET * here, anyway. */ # define CALL_NOSPEC \ ALTERNATIVE_2( \ ANNOTATE_RETPOLINE_SAFE \ "call *%[thunk_target]\n", \ " jmp 904f;\n" \ " .align 16\n" \ "901: call 903f;\n" \ "902: pause;\n" \ " lfence;\n" \ " jmp 902b;\n" \ " .align 16\n" \ "903: lea 4(%%esp), %%esp;\n" \ " pushl %[thunk_target];\n" \ " ret;\n" \ " .align 16\n" \ "904: call 901b;\n", \ X86_FEATURE_RETPOLINE, \ "lfence;\n" \ ANNOTATE_RETPOLINE_SAFE \ "call *%[thunk_target]\n", \ X86_FEATURE_RETPOLINE_LFENCE) # define THUNK_TARGET(addr) [thunk_target] "rm" (addr) #endif #else /* No retpoline for C / inline asm */ # define CALL_NOSPEC "call *%[thunk_target]\n" # define THUNK_TARGET(addr) [thunk_target] "rm" (addr) #endif /* The Spectre V2 mitigation variants */ enum spectre_v2_mitigation { SPECTRE_V2_NONE, SPECTRE_V2_RETPOLINE, SPECTRE_V2_LFENCE, SPECTRE_V2_EIBRS, SPECTRE_V2_EIBRS_RETPOLINE, SPECTRE_V2_EIBRS_LFENCE, SPECTRE_V2_IBRS, }; /* The indirect branch speculation control variants */ enum spectre_v2_user_mitigation { SPECTRE_V2_USER_NONE, SPECTRE_V2_USER_STRICT, SPECTRE_V2_USER_STRICT_PREFERRED, SPECTRE_V2_USER_PRCTL, SPECTRE_V2_USER_SECCOMP, }; /* The Speculative Store Bypass disable variants */ enum ssb_mitigation { SPEC_STORE_BYPASS_NONE, SPEC_STORE_BYPASS_DISABLE, SPEC_STORE_BYPASS_PRCTL, SPEC_STORE_BYPASS_SECCOMP, }; extern char __indirect_thunk_start[]; extern char __indirect_thunk_end[]; static __always_inline void alternative_msr_write(unsigned int msr, u64 val, unsigned int feature) { asm volatile(ALTERNATIVE("", "wrmsr", %c[feature]) : : "c" (msr), "a" ((u32)val), "d" ((u32)(val >> 32)), [feature] "i" (feature) : "memory"); } extern u64 x86_pred_cmd; static inline void indirect_branch_prediction_barrier(void) { alternative_msr_write(MSR_IA32_PRED_CMD, x86_pred_cmd, X86_FEATURE_USE_IBPB); } /* The Intel SPEC CTRL MSR base value cache */ extern u64 x86_spec_ctrl_base; DECLARE_PER_CPU(u64, x86_spec_ctrl_current); extern void update_spec_ctrl_cond(u64 val); extern u64 spec_ctrl_current(void); /* * With retpoline, we must use IBRS to restrict branch prediction * before calling into firmware. * * (Implemented as CPP macros due to header hell.) */ #define firmware_restrict_branch_speculation_start() \ do { \ preempt_disable(); \ alternative_msr_write(MSR_IA32_SPEC_CTRL, \ spec_ctrl_current() | SPEC_CTRL_IBRS, \ X86_FEATURE_USE_IBRS_FW); \ alternative_msr_write(MSR_IA32_PRED_CMD, PRED_CMD_IBPB, \ X86_FEATURE_USE_IBPB_FW); \ } while (0) #define firmware_restrict_branch_speculation_end() \ do { \ alternative_msr_write(MSR_IA32_SPEC_CTRL, \ spec_ctrl_current(), \ X86_FEATURE_USE_IBRS_FW); \ preempt_enable(); \ } while (0) DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp); DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb); DECLARE_STATIC_KEY_FALSE(mds_idle_clear); DECLARE_STATIC_KEY_FALSE(mmio_stale_data_clear); extern u16 mds_verw_sel; #include <asm/segment.h> /** * mds_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability * * This uses the otherwise unused and obsolete VERW instruction in * combination with microcode which triggers a CPU buffer flush when the * instruction is executed. */ static __always_inline void mds_clear_cpu_buffers(void) { static const u16 ds = __KERNEL_DS; /* * Has to be the memory-operand variant because only that * guarantees the CPU buffer flush functionality according to * documentation. The register-operand variant does not. * Works with any segment selector, but a valid writable * data segment is the fastest variant. * * "cc" clobber is required because VERW modifies ZF. */ asm volatile("verw %[ds]" : : [ds] "m" (ds) : "cc"); } /** * mds_idle_clear_cpu_buffers - Mitigation for MDS vulnerability * * Clear CPU buffers if the corresponding static key is enabled */ static inline void mds_idle_clear_cpu_buffers(void) { if (static_branch_likely(&mds_idle_clear)) mds_clear_cpu_buffers(); } #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_NOSPEC_BRANCH_H_ */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 // SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/memremap.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/export.h> #include <linux/delayacct.h> #include <linux/init.h> #include <linux/pfn_t.h> #include <linux/writeback.h> #include <linux/memcontrol.h> #include <linux/mmu_notifier.h> #include <linux/swapops.h> #include <linux/elf.h> #include <linux/gfp.h> #include <linux/migrate.h> #include <linux/string.h> #include <linux/debugfs.h> #include <linux/userfaultfd_k.h> #include <linux/dax.h> #include <linux/oom.h> #include <linux/numa.h> #include <linux/perf_event.h> #include <linux/ptrace.h> #include <linux/vmalloc.h> #include <trace/events/kmem.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include "pgalloc-track.h" #include "internal.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NEED_MULTIPLE_NODES /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; EXPORT_SYMBOL(max_mapnr); struct page *mem_map; EXPORT_SYMBOL(mem_map); #endif /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void *high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif #ifndef arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { /* * Those arches which don't have hw access flag feature need to * implement their own helper. By default, "true" means pagefault * will be hit on old pte. */ return true; } #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); unsigned long highest_memmap_pfn __read_mostly; /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } early_initcall(init_zero_pfn); void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) { trace_rss_stat(mm, member, count); } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm) { int i; for (i = 0; i < NR_MM_COUNTERS; i++) { if (current->rss_stat.count[i]) { add_mm_counter(mm, i, current->rss_stat.count[i]); current->rss_stat.count[i] = 0; } } current->rss_stat.events = 0; } static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) { struct task_struct *task = current; if (likely(task->mm == mm)) task->rss_stat.count[member] += val; else add_mm_counter(mm, member, val); } #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) /* sync counter once per 64 page faults */ #define TASK_RSS_EVENTS_THRESH (64) static void check_sync_rss_stat(struct task_struct *task) { if (unlikely(task != current)) return; if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) sync_mm_rss(task->mm); } #else /* SPLIT_RSS_COUNTING */ #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) static void check_sync_rss_stat(struct task_struct *task) { } #endif /* SPLIT_RSS_COUNTING */ /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= P4D_MASK; if (start < floor) return; if (ceiling) { ceiling &= P4D_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { p4d_t *p4d; unsigned long next; unsigned long start; start = addr; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; free_pud_range(tlb, p4d, addr, next, floor, ceiling); } while (p4d++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; p4d = p4d_offset(pgd, start); pgd_clear(pgd); p4d_free_tlb(tlb, p4d, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; /* * We add page table cache pages with PAGE_SIZE, * (see pte_free_tlb()), flush the tlb if we need */ tlb_change_page_size(tlb, PAGE_SIZE); pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_p4d_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl; pgtable_t new = pte_alloc_one(mm); if (!new) return -ENOMEM; /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_rmb() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ mm_inc_nr_ptes(mm); pmd_populate(mm, pmd, new); new = NULL; } spin_unlock(ptl); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd) { pte_t *new = pte_alloc_one_kernel(&init_mm); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->readpage : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; if (pte_devmap(pte)) return NULL; print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (pmd_devmap(pmd)) return NULL; if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static unsigned long copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss) { unsigned long vm_flags = dst_vma->vm_flags; pte_t pte = *src_pte; struct page *page; swp_entry_t entry = pte_to_swp_entry(pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return entry.val; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = migration_entry_to_page(entry); rss[mm_counter(page)]++; if (is_write_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both * parent and child to be set to read. */ make_migration_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(*src_pte)) pte = pte_swp_mksoft_dirty(pte); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = device_private_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; page_dup_rmap(page, false); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_write_device_private_entry(entry) && is_cow_mapping(vm_flags)) { make_device_private_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } if (!userfaultfd_wp(dst_vma)) pte = pte_swp_clear_uffd_wp(pte); set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } /* * Copy a present and normal page if necessary. * * NOTE! The usual case is that this doesn't need to do * anything, and can just return a positive value. That * will let the caller know that it can just increase * the page refcount and re-use the pte the traditional * way. * * But _if_ we need to copy it because it needs to be * pinned in the parent (and the child should get its own * copy rather than just a reference to the same page), * we'll do that here and return zero to let the caller * know we're done. * * And if we need a pre-allocated page but don't yet have * one, return a negative error to let the preallocation * code know so that it can do so outside the page table * lock. */ static inline int copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc, pte_t pte, struct page *page) { struct mm_struct *src_mm = src_vma->vm_mm; struct page *new_page; if (!is_cow_mapping(src_vma->vm_flags)) return 1; /* * What we want to do is to check whether this page may * have been pinned by the parent process. If so, * instead of wrprotect the pte on both sides, we copy * the page immediately so that we'll always guarantee * the pinned page won't be randomly replaced in the * future. * * The page pinning checks are just "has this mm ever * seen pinning", along with the (inexact) check of * the page count. That might give false positives for * for pinning, but it will work correctly. */ if (likely(!atomic_read(&src_mm->has_pinned))) return 1; if (likely(!page_maybe_dma_pinned(page))) return 1; /* * The vma->anon_vma of the child process may be NULL * because the entire vma does not contain anonymous pages. * A BUG will occur when the copy_present_page() passes * a copy of a non-anonymous page of that vma to the * page_add_new_anon_rmap() to set up new anonymous rmap. * Return 1 if the page is not an anonymous page. */ if (!PageAnon(page)) return 1; new_page = *prealloc; if (!new_page) return -EAGAIN; /* * We have a prealloc page, all good! Take it * over and copy the page & arm it. */ *prealloc = NULL; copy_user_highpage(new_page, page, addr, src_vma); __SetPageUptodate(new_page); page_add_new_anon_rmap(new_page, dst_vma, addr, false); lru_cache_add_inactive_or_unevictable(new_page, dst_vma); rss[mm_counter(new_page)]++; /* All done, just insert the new page copy in the child */ pte = mk_pte(new_page, dst_vma->vm_page_prot); pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); if (userfaultfd_pte_wp(dst_vma, *src_pte)) /* Uffd-wp needs to be delivered to dest pte as well */ pte = pte_wrprotect(pte_mkuffd_wp(pte)); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } /* * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page * is required to copy this pte. */ static inline int copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc) { struct mm_struct *src_mm = src_vma->vm_mm; unsigned long vm_flags = src_vma->vm_flags; pte_t pte = *src_pte; struct page *page; page = vm_normal_page(src_vma, addr, pte); if (page) { int retval; retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, addr, rss, prealloc, pte, page); if (retval <= 0) return retval; get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags) && pte_write(pte)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); if (!userfaultfd_wp(dst_vma)) pte = pte_clear_uffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } static inline struct page * page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr) { struct page *new_page; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); if (!new_page) return NULL; if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { put_page(new_page); return NULL; } cgroup_throttle_swaprate(new_page, GFP_KERNEL); return new_page; } static int copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress, ret = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; struct page *prealloc = NULL; again: progress = 0; init_rss_vec(rss); dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) { ret = -ENOMEM; goto out; } src_pte = pte_offset_map(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } if (unlikely(!pte_present(*src_pte))) { entry.val = copy_nonpresent_pte(dst_mm, src_mm, dst_pte, src_pte, dst_vma, src_vma, addr, rss); if (entry.val) break; progress += 8; continue; } /* copy_present_pte() will clear `*prealloc' if consumed */ ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, addr, rss, &prealloc); /* * If we need a pre-allocated page for this pte, drop the * locks, allocate, and try again. */ if (unlikely(ret == -EAGAIN)) break; if (unlikely(prealloc)) { /* * pre-alloc page cannot be reused by next time so as * to strictly follow mempolicy (e.g., alloc_page_vma() * will allocate page according to address). This * could only happen if one pinned pte changed. */ put_page(prealloc); prealloc = NULL; } progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); spin_unlock(src_ptl); pte_unmap(orig_src_pte); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (entry.val) { if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { ret = -ENOMEM; goto out; } entry.val = 0; } else if (ret) { WARN_ON_ONCE(ret != -EAGAIN); prealloc = page_copy_prealloc(src_mm, src_vma, addr); if (!prealloc) return -ENOMEM; /* We've captured and resolved the error. Reset, try again. */ ret = 0; } if (addr != end) goto again; out: if (unlikely(prealloc)) put_page(prealloc); return ret; } static inline int copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, dst_vma, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_p4d, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); err = copy_huge_pud(dst_mm, src_mm, dst_pud, src_pud, addr, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static inline int copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; p4d_t *src_p4d, *dst_p4d; unsigned long next; dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); if (!dst_p4d) return -ENOMEM; src_p4d = p4d_offset(src_pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(src_p4d)) continue; if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, addr, next)) return -ENOMEM; } while (dst_p4d++, src_p4d++, addr = next, addr != end); return 0; } int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = src_vma->vm_start; unsigned long end = src_vma->vm_end; struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; struct mmu_notifier_range range; bool is_cow; int ret; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && !src_vma->anon_vma) return 0; if (is_vm_hugetlb_page(src_vma)) return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(src_vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(src_vma->vm_flags); if (is_cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, src_vma, src_mm, addr, end); mmu_notifier_invalidate_range_start(&range); /* * Disabling preemption is not needed for the write side, as * the read side doesn't spin, but goes to the mmap_lock. * * Use the raw variant of the seqcount_t write API to avoid * lockdep complaining about preemptibility. */ mmap_assert_write_locked(src_mm); raw_write_seqcount_begin(&src_mm->write_protect_seq); } ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, addr, next))) { ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) { raw_write_seqcount_end(&src_mm->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } return ret; } /* Whether we should zap all COWed (private) pages too */ static inline bool should_zap_cows(struct zap_details *details) { /* By default, zap all pages */ if (!details) return true; /* Or, we zap COWed pages only if the caller wants to */ return !details->check_mapping; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; tlb_change_page_size(tlb, PAGE_SIZE); again: init_rss_vec(rss); start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte = start_pte; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = *pte; if (pte_none(ptent)) continue; if (need_resched()) break; if (pte_present(ptent)) { struct page *page; page = vm_normal_page(vma, addr, ptent); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page_rmapping(page)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (!PageAnon(page)) { if (pte_dirty(ptent)) { force_flush = 1; set_page_dirty(page); } if (pte_young(ptent) && likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); } rss[mm_counter(page)]--; page_remove_rmap(page, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); if (unlikely(__tlb_remove_page(tlb, page))) { force_flush = 1; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (is_device_private_entry(entry)) { struct page *page = device_private_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping != page_rmapping(page)) continue; } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); rss[mm_counter(page)]--; page_remove_rmap(page, false); put_page(page); continue; } if (!non_swap_entry(entry)) { /* Genuine swap entry, hence a private anon page */ if (!should_zap_cows(details)) continue; rss[MM_SWAPENTS]--; } else if (is_migration_entry(entry)) { struct page *page; page = migration_entry_to_page(entry); if (details && details->check_mapping && details->check_mapping != page_rmapping(page)) continue; rss[mm_counter(page)]--; } if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Restart if we didn't do everything. */ if (force_flush) { force_flush = 0; tlb_flush_mmu(tlb); } if (addr != end) { cond_resched(); goto again; } return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) __split_huge_pmd(vma, pmd, addr, false, NULL); else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ } else if (details && details->single_page && PageTransCompound(details->single_page) && next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { spinlock_t *ptl = pmd_lock(tlb->mm, pmd); /* * Take and drop THP pmd lock so that we cannot return * prematurely, while zap_huge_pmd() has cleared *pmd, * but not yet decremented compound_mapcount(). */ spin_unlock(ptl); } /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is * none or trans huge it can change under us. This is * because MADV_DONTNEED holds the mmap_lock in read * mode. */ if (pmd_none_or_trans_huge_or_clear_bad(pmd)) goto next; next = zap_pte_range(tlb, vma, pmd, addr, next, details); next: cond_resched(); } while (pmd++, addr = next, addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*pud) || pud_devmap(*pud)) { if (next - addr != HPAGE_PUD_SIZE) { mmap_assert_locked(tlb->mm); split_huge_pud(vma, pud, addr); } else if (zap_huge_pud(tlb, vma, pud, addr)) goto next; /* fall through */ } if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); next: cond_resched(); } while (pud++, addr = next, addr != end); return addr; } static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; next = zap_pud_range(tlb, vma, p4d, addr, next, details); } while (p4d++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_p4d_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { i_mmap_lock_write(vma->vm_file->f_mapping); __unmap_hugepage_range_final(tlb, vma, start, end, NULL); i_mmap_unlock_write(vma->vm_file->f_mapping); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mmu_notifier_range range; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, start_addr, end_addr); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); mmu_notifier_invalidate_range_end(&range); } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @start: starting address of pages to zap * @size: number of bytes to zap * * Caller must protect the VMA list */ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long size) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, start, start + size); tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) unmap_single_vma(&tlb, vma, start, range.end, NULL); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, start, range.end); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, address, address + size); tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); unmap_single_vma(&tlb, vma, address, range.end, details); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, address, range.end); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * */ void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (address < vma->vm_start || address + size > vma->vm_end || !(vma->vm_flags & VM_PFNMAP)) return; zap_page_range_single(vma, address, size, NULL); } EXPORT_SYMBOL_GPL(zap_vma_ptes); static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pmd_t *pmd = walk_to_pmd(mm, addr); if (!pmd) return NULL; return pte_alloc_map_lock(mm, pmd, addr, ptl); } static int validate_page_before_insert(struct page *page) { if (PageAnon(page) || PageSlab(page) || page_has_type(page)) return -EINVAL; flush_dcache_page(page); return 0; } static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { if (!pte_none(*pte)) return -EBUSY; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter_fast(mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(mm, addr, pte, mk_pte(page, prot)); return 0; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte; spinlock_t *ptl; retval = validate_page_before_insert(page); if (retval) goto out; retval = -ENOMEM; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); pte_unmap_unlock(pte, ptl); out: return retval; } #ifdef pte_index static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { int err; if (!page_count(page)) return -EINVAL; err = validate_page_before_insert(page); if (err) return err; return insert_page_into_pte_locked(mm, pte, addr, page, prot); } /* insert_pages() amortizes the cost of spinlock operations * when inserting pages in a loop. Arch *must* define pte_index. */ static int insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot) { pmd_t *pmd = NULL; pte_t *start_pte, *pte; spinlock_t *pte_lock; struct mm_struct *const mm = vma->vm_mm; unsigned long curr_page_idx = 0; unsigned long remaining_pages_total = *num; unsigned long pages_to_write_in_pmd; int ret; more: ret = -EFAULT; pmd = walk_to_pmd(mm, addr); if (!pmd) goto out; pages_to_write_in_pmd = min_t(unsigned long, remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); /* Allocate the PTE if necessary; takes PMD lock once only. */ ret = -ENOMEM; if (pte_alloc(mm, pmd)) goto out; while (pages_to_write_in_pmd) { int pte_idx = 0; const int batch_size = min_t(int, pages_to_write_in_pmd, 8); start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { int err = insert_page_in_batch_locked(mm, pte, addr, pages[curr_page_idx], prot); if (unlikely(err)) { pte_unmap_unlock(start_pte, pte_lock); ret = err; remaining_pages_total -= pte_idx; goto out; } addr += PAGE_SIZE; ++curr_page_idx; } pte_unmap_unlock(start_pte, pte_lock); pages_to_write_in_pmd -= batch_size; remaining_pages_total -= batch_size; } if (remaining_pages_total) goto more; ret = 0; out: *num = remaining_pages_total; return ret; } #endif /* ifdef pte_index */ /** * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. * @vma: user vma to map to * @addr: target start user address of these pages * @pages: source kernel pages * @num: in: number of pages to map. out: number of pages that were *not* * mapped. (0 means all pages were successfully mapped). * * Preferred over vm_insert_page() when inserting multiple pages. * * In case of error, we may have mapped a subset of the provided * pages. It is the caller's responsibility to account for this case. * * The same restrictions apply as in vm_insert_page(). */ int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num) { #ifdef pte_index const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; if (addr < vma->vm_start || end_addr >= vma->vm_end) return -EFAULT; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } /* Defer page refcount checking till we're about to map that page. */ return insert_pages(vma, addr, pages, num, vma->vm_page_prot); #else unsigned long idx = 0, pgcount = *num; int err = -EINVAL; for (; idx < pgcount; ++idx) { err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); if (err) break; } *num = pgcount - idx; return err; #endif /* ifdef pte_index */ } EXPORT_SYMBOL(vm_insert_pages); /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_lock write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. * * Return: %0 on success, negative error code otherwise. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * __vm_map_pages - maps range of kernel pages into user vma * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * @offset: user's requested vm_pgoff * * This allows drivers to map range of kernel pages into a user vma. * * Return: 0 on success and error code otherwise. */ static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset) { unsigned long count = vma_pages(vma); unsigned long uaddr = vma->vm_start; int ret, i; /* Fail if the user requested offset is beyond the end of the object */ if (offset >= num) return -ENXIO; /* Fail if the user requested size exceeds available object size */ if (count > num - offset) return -ENXIO; for (i = 0; i < count; i++) { ret = vm_insert_page(vma, uaddr, pages[offset + i]); if (ret < 0) return ret; uaddr += PAGE_SIZE; } return 0; } /** * vm_map_pages - maps range of kernel pages starts with non zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Maps an object consisting of @num pages, catering for the user's * requested vm_pgoff * * If we fail to insert any page into the vma, the function will return * immediately leaving any previously inserted pages present. Callers * from the mmap handler may immediately return the error as their caller * will destroy the vma, removing any successfully inserted pages. Other * callers should make their own arrangements for calling unmap_region(). * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, vma->vm_pgoff); } EXPORT_SYMBOL(vm_map_pages); /** * vm_map_pages_zero - map range of kernel pages starts with zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Similar to vm_map_pages(), except that it explicitly sets the offset * to 0. This function is intended for the drivers that did not consider * vm_pgoff. * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, 0); } EXPORT_SYMBOL(vm_map_pages_zero); static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite) { struct mm_struct *mm = vma->vm_mm; pte_t *pte, entry; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) return VM_FAULT_OOM; if (!pte_none(*pte)) { if (mkwrite) { /* * For read faults on private mappings the PFN passed * in may not match the PFN we have mapped if the * mapped PFN is a writeable COW page. In the mkwrite * case we are creating a writable PTE for a shared * mapping and we expect the PFNs to match. If they * don't match, we are likely racing with block * allocation and mapping invalidation so just skip the * update. */ if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); goto out_unlock; } entry = pte_mkyoung(*pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, addr, pte, entry, 1)) update_mmu_cache(vma, addr, pte); } goto out_unlock; } /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); if (mkwrite) { entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); } set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ out_unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_NOPAGE; } /** * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_pfn(), except that it allows drivers * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * COW mappings. In general, using multiple vmas is preferable; * vmf_insert_pfn_prot should only be used if using multiple VMAs is * impractical. * * See vmf_insert_mixed_prot() for a discussion of the implication of using * a value of @pgprot different from that of @vma->vm_page_prot. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (!pfn_modify_allowed(pfn, pgprot)) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, false); } EXPORT_SYMBOL(vmf_insert_pfn_prot); /** * vmf_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return the result of this function. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vmf_insert_pfn); static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) { /* these checks mirror the abort conditions in vm_normal_page */ if (vma->vm_flags & VM_MIXEDMAP) return true; if (pfn_t_devmap(pfn)) return true; if (pfn_t_special(pfn)) return true; if (is_zero_pfn(pfn_t_to_pfn(pfn))) return true; return false; } static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot, bool mkwrite) { int err; BUG_ON(!vm_mixed_ok(vma, pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, pfn); if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return VM_FAULT_SIGBUS; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); err = insert_page(vma, addr, page, pgprot); } else { return insert_pfn(vma, addr, pfn, pgprot, mkwrite); } if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } /** * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_mixed(), except that it allows drivers * to override pgprot on a per-page basis. * * Typically this function should be used by drivers to set caching- and * encryption bits different than those of @vma->vm_page_prot, because * the caching- or encryption mode may not be known at mmap() time. * This is ok as long as @vma->vm_page_prot is not used by the core vm * to set caching and encryption bits for those vmas (except for COW pages). * This is ensured by core vm only modifying these page table entries using * functions that don't touch caching- or encryption bits, using pte_modify() * if needed. (See for example mprotect()). * Also when new page-table entries are created, this is only done using the * fault() callback, and never using the value of vma->vm_page_prot, * except for page-table entries that point to anonymous pages as the result * of COW. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot) { return __vm_insert_mixed(vma, addr, pfn, pgprot, false); } EXPORT_SYMBOL(vmf_insert_mixed_prot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); } EXPORT_SYMBOL(vmf_insert_mixed); /* * If the insertion of PTE failed because someone else already added a * different entry in the mean time, we treat that as success as we assume * the same entry was actually inserted. */ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); } EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(*pte)); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(mapped_pte, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, p4d, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); err = remap_pud_range(mm, p4d, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (p4d++, addr = next, addr != end); return 0; } static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; int err; if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) return -EINVAL; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_p4d_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pgd++, addr = next, addr != end); return 0; } /* * Variant of remap_pfn_range that does not call track_pfn_remap. The caller * must have pre-validated the caching bits of the pgprot_t. */ int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); if (!error) return 0; /* * A partial pfn range mapping is dangerous: it does not * maintain page reference counts, and callers may free * pages due to the error. So zap it early. */ zap_page_range_single(vma, addr, size, NULL); return error; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. * * Return: %0 on success, negative error code otherwise. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { int err; err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); if (err) untrack_pfn(vma, pfn, PAGE_ALIGN(size)); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of the physical memory to be mapped * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. * * Return: %0 on success, negative error code otherwise. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pte_t *pte; int err = 0; spinlock_t *ptl; if (create) { pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); } BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); if (fn) { do { if (create || !pte_none(*pte)) { err = fn(pte, addr, data); if (err) break; } } while (pte++, addr += PAGE_SIZE, addr != end); } *mask |= PGTBL_PTE_MODIFIED; arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(pte-1, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int err = 0; BUG_ON(pud_huge(*pud)); if (create) { pmd = pmd_alloc_track(mm, pud, addr, mask); if (!pmd) return -ENOMEM; } else { pmd = pmd_offset(pud, addr); } do { next = pmd_addr_end(addr, end); if (create || !pmd_none_or_clear_bad(pmd)) { err = apply_to_pte_range(mm, pmd, addr, next, fn, data, create, mask); if (err) break; } } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int err = 0; if (create) { pud = pud_alloc_track(mm, p4d, addr, mask); if (!pud) return -ENOMEM; } else { pud = pud_offset(p4d, addr); } do { next = pud_addr_end(addr, end); if (create || !pud_none_or_clear_bad(pud)) { err = apply_to_pmd_range(mm, pud, addr, next, fn, data, create, mask); if (err) break; } } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int err = 0; if (create) { p4d = p4d_alloc_track(mm, pgd, addr, mask); if (!p4d) return -ENOMEM; } else { p4d = p4d_offset(pgd, addr); } do { next = p4d_addr_end(addr, end); if (create || !p4d_none_or_clear_bad(p4d)) { err = apply_to_pud_range(mm, p4d, addr, next, fn, data, create, mask); if (err) break; } } while (p4d++, addr = next, addr != end); return err; } static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create) { pgd_t *pgd; unsigned long start = addr, next; unsigned long end = addr + size; pgtbl_mod_mask mask = 0; int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); if (!create && pgd_none_or_clear_bad(pgd)) continue; err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); if (err) break; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, start + size); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, true); } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * Scan a region of virtual memory, calling a provided function on * each leaf page table where it exists. * * Unlike apply_to_page_range, this does _not_ fill in page tables * where they are absent. */ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, false); } EXPORT_SYMBOL_GPL(apply_to_existing_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } static inline bool cow_user_page(struct page *dst, struct page *src, struct vm_fault *vmf) { bool ret; void *kaddr; void __user *uaddr; bool locked = false; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = vmf->address; if (likely(src)) { copy_user_highpage(dst, src, addr, vma); return true; } /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ kaddr = kmap_atomic(dst); uaddr = (void __user *)(addr & PAGE_MASK); /* * On architectures with software "accessed" bits, we would * take a double page fault, so mark it accessed here. */ if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { pte_t entry; vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* * Other thread has already handled the fault * and update local tlb only */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } entry = pte_mkyoung(vmf->orig_pte); if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) update_mmu_cache(vma, addr, vmf->pte); } /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { if (locked) goto warn; /* Re-validate under PTL if the page is still mapped */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* The PTE changed under us, update local tlb */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } /* * The same page can be mapped back since last copy attempt. * Try to copy again under PTL. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* * Give a warn in case there can be some obscure * use-case */ warn: WARN_ON_ONCE(1); clear_page(kaddr); } } ret = true; pte_unlock: if (locked) pte_unmap_unlock(vmf->pte, vmf->ptl); kunmap_atomic(kaddr); flush_dcache_page(dst); return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) { vm_fault_t ret; struct page *page = vmf->page; unsigned int old_flags = vmf->flags; vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; if (vmf->vma->vm_file && IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) return VM_FAULT_SIGBUS; ret = vmf->vma->vm_ops->page_mkwrite(vmf); /* Restore original flags so that caller is not surprised */ vmf->flags = old_flags; if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { lock_page(page); if (!page->mapping) { unlock_page(page); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_PAGE(!PageLocked(page), page); return ret; } /* * Handle dirtying of a page in shared file mapping on a write fault. * * The function expects the page to be locked and unlocks it. */ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; struct page *page = vmf->page; bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; dirtied = set_page_dirty(page); VM_BUG_ON_PAGE(PageAnon(page), page); /* * Take a local copy of the address_space - page.mapping may be zeroed * by truncate after unlock_page(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on unlock_page()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = page_rmapping(page); unlock_page(page); if (!page_mkwrite) file_update_time(vma->vm_file); /* * Throttle page dirtying rate down to writeback speed. * * mapping may be NULL here because some device drivers do not * set page.mapping but still dirty their pages * * Drop the mmap_lock before waiting on IO, if we can. The file * is pinning the mapping, as per above. */ if ((dirtied || page_mkwrite) && mapping) { struct file *fpin; fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); if (fpin) { fput(fpin); return VM_FAULT_RETRY; } } return 0; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline void wp_page_reuse(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = pte_mkyoung(vmf->orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); count_vm_event(PGREUSE); } /* * Handle the case of a page which we actually need to copy to a new page. * * Called with mmap_lock locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static vm_fault_t wp_page_copy(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct page *old_page = vmf->page; struct page *new_page = NULL; pte_t entry; int page_copied = 0; struct mmu_notifier_range range; if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { new_page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!new_page) goto oom; if (!cow_user_page(new_page, old_page, vmf)) { /* * COW failed, if the fault was solved by other, * it's fine. If not, userspace would re-fault on * the same address and we will handle the fault * from the second attempt. */ put_page(new_page); if (old_page) put_page(old_page); return 0; } } if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) goto oom_free_new; cgroup_throttle_swaprate(new_page, GFP_KERNEL); __SetPageUptodate(new_page); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); /* * Re-check the pte - we dropped the lock */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { if (old_page) { if (!PageAnon(old_page)) { dec_mm_counter_fast(mm, mm_counter_file(old_page)); inc_mm_counter_fast(mm, MM_ANONPAGES); } } else { inc_mm_counter_fast(mm, MM_ANONPAGES); } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* * Clear the pte entry and flush it first, before updating the * pte with the new entry. This will avoid a race condition * seen in the presence of one thread doing SMC and another * thread doing COW. */ ptep_clear_flush_notify(vma, vmf->address, vmf->pte); page_add_new_anon_rmap(new_page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(new_page, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ set_pte_at_notify(mm, vmf->address, vmf->pte, entry); update_mmu_cache(vma, vmf->address, vmf->pte); if (old_page) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(old_page, false); } /* Free the old page.. */ new_page = old_page; page_copied = 1; } else { update_mmu_tlb(vma, vmf->address, vmf->pte); } if (new_page) put_page(new_page); pte_unmap_unlock(vmf->pte, vmf->ptl); /* * No need to double call mmu_notifier->invalidate_range() callback as * the above ptep_clear_flush_notify() did already call it. */ mmu_notifier_invalidate_range_only_end(&range); if (old_page) { /* * Don't let another task, with possibly unlocked vma, * keep the mlocked page. */ if (page_copied && (vma->vm_flags & VM_LOCKED)) { lock_page(old_page); /* LRU manipulation */ if (PageMlocked(old_page)) munlock_vma_page(old_page); unlock_page(old_page); } put_page(old_page); } return page_copied ? VM_FAULT_WRITE : 0; oom_free_new: put_page(new_page); oom: if (old_page) put_page(old_page); return VM_FAULT_OOM; } /** * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE * writeable once the page is prepared * * @vmf: structure describing the fault * * This function handles all that is needed to finish a write page fault in a * shared mapping due to PTE being read-only once the mapped page is prepared. * It handles locking of PTE and modifying it. * * The function expects the page to be locked or other protection against * concurrent faults / writeback (such as DAX radix tree locks). * * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before * we acquired PTE lock. */ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) { WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * We might have raced with another page fault while we released the * pte_offset_map_lock. */ if (!pte_same(*vmf->pte, vmf->orig_pte)) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return VM_FAULT_NOPAGE; } wp_page_reuse(vmf); return 0; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { vm_fault_t ret; pte_unmap_unlock(vmf->pte, vmf->ptl); vmf->flags |= FAULT_FLAG_MKWRITE; ret = vma->vm_ops->pfn_mkwrite(vmf); if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) return ret; return finish_mkwrite_fault(vmf); } wp_page_reuse(vmf); return VM_FAULT_WRITE; } static vm_fault_t wp_page_shared(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = VM_FAULT_WRITE; get_page(vmf->page); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { vm_fault_t tmp; pte_unmap_unlock(vmf->pte, vmf->ptl); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } tmp = finish_mkwrite_fault(vmf); if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { unlock_page(vmf->page); put_page(vmf->page); return tmp; } } else { wp_page_reuse(vmf); lock_page(vmf->page); } ret |= fault_dirty_shared_page(vmf); put_page(vmf->page); return ret; } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_wp_page(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; if (userfaultfd_pte_wp(vma, *vmf->pte)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_WP); } /* * Userfaultfd write-protect can defer flushes. Ensure the TLB * is flushed in this case before copying. */ if (unlikely(userfaultfd_wp(vmf->vma) && mm_tlb_flush_pending(vmf->vma->vm_mm))) flush_tlb_page(vmf->vma, vmf->address); vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (!vmf->page) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) return wp_pfn_shared(vmf); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } /* * Take out anonymous pages first, anonymous shared vmas are * not dirty accountable. */ if (PageAnon(vmf->page)) { struct page *page = vmf->page; /* PageKsm() doesn't necessarily raise the page refcount */ if (PageKsm(page) || page_count(page) != 1) goto copy; if (!trylock_page(page)) goto copy; if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { unlock_page(page); goto copy; } /* * Ok, we've got the only map reference, and the only * page count reference, and the page is locked, * it's dark out, and we're wearing sunglasses. Hit it. */ unlock_page(page); wp_page_reuse(vmf); return VM_FAULT_WRITE; } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED))) { return wp_page_shared(vmf); } copy: /* * Ok, we need to copy. Oh, well.. */ get_page(vmf->page); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root_cached *root, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, details->first_index, details->last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_page() - Unmap single page from processes. * @page: The locked page to be unmapped. * * Unmap this page from any userspace process which still has it mmaped. * Typically, for efficiency, the range of nearby pages has already been * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once * truncation or invalidation holds the lock on a page, it may find that * the page has been remapped again: and then uses unmap_mapping_page() * to unmap it finally. */ void unmap_mapping_page(struct page *page) { struct address_space *mapping = page->mapping; struct zap_details details = { }; VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(PageTail(page)); details.check_mapping = mapping; details.first_index = page->index; details.last_index = page->index + thp_nr_pages(page) - 1; details.single_page = page; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. * @nr: Number of pages to be unmapped. 0 to unmap to end of file. * @even_cows: Whether to unmap even private COWed pages. * * Unmap the pages in this address space from any userspace process which * has them mmaped. Generally, you want to remove COWed pages as well when * a file is being truncated, but not when invalidating pages from the page * cache. */ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { struct zap_details details = { }; details.check_mapping = even_cows ? NULL : mapping; details.first_index = start; details.last_index = start + nr - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified byte range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } unmap_mapping_pages(mapping, hba, hlen, even_cows); } EXPORT_SYMBOL(unmap_mapping_range); /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_lock locked or unlocked in the same cases * as does filemap_fault(). */ vm_fault_t do_swap_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL, *swapcache; swp_entry_t entry; pte_t pte; int locked; int exclusive = 0; vm_fault_t ret = 0; void *shadow = NULL; if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) goto out; entry = pte_to_swp_entry(vmf->orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, vmf->pmd, vmf->address); } else if (is_device_private_entry(entry)) { vmf->page = device_private_entry_to_page(entry); ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else { print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } delayacct_set_flag(DELAYACCT_PF_SWAPIN); page = lookup_swap_cache(entry, vma, vmf->address); swapcache = page; if (!page) { struct swap_info_struct *si = swp_swap_info(entry); if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && __swap_count(entry) == 1) { /* skip swapcache */ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (page) { int err; __SetPageLocked(page); __SetPageSwapBacked(page); set_page_private(page, entry.val); /* Tell memcg to use swap ownership records */ SetPageSwapCache(page); err = mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL); ClearPageSwapCache(page); if (err) { ret = VM_FAULT_OOM; goto out_page; } shadow = get_shadow_from_swap_cache(entry); if (shadow) workingset_refault(page, shadow); lru_cache_add(page); swap_readpage(page, true); } } else { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); swapcache = page; } if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) ret = VM_FAULT_OOM; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto out_release; } locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); delayacct_clear_flag(DELAYACCT_PF_SWAPIN); if (!locked) { ret |= VM_FAULT_RETRY; goto out_release; } /* * Make sure try_to_free_swap or reuse_swap_page or swapoff did not * release the swapcache from under us. The page pin, and pte_same * test below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not changed. */ if (unlikely((!PageSwapCache(page) || page_private(page) != entry.val)) && swapcache) goto out_page; page = ksm_might_need_to_copy(page, vma, vmf->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; page = swapcache; goto out_page; } cgroup_throttle_swaprate(page, GFP_KERNEL); /* * Back out if somebody else already faulted in this pte. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * The page isn't present yet, go ahead with the fault. * * Be careful about the sequence of operations here. * To get its accounting right, reuse_swap_page() must be called * while the page is counted on swap but not yet in mapcount i.e. * before page_add_anon_rmap() and swap_free(); try_to_free_swap() * must be called after the swap_free(), or it will never succeed. */ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; ret |= VM_FAULT_WRITE; exclusive = RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(vmf->orig_pte)) pte = pte_mksoft_dirty(pte); if (pte_swp_uffd_wp(vmf->orig_pte)) { pte = pte_mkuffd_wp(pte); pte = pte_wrprotect(pte); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); vmf->orig_pte = pte; /* ksm created a completely new copy */ if (unlikely(page != swapcache && swapcache)) { page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { do_page_add_anon_rmap(page, vma, vmf->address, exclusive); } swap_free(entry); if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) try_to_free_swap(page); unlock_page(page); if (page != swapcache && swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ unlock_page(swapcache); put_page(swapcache); } if (vmf->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(vmf); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); out: return ret; out_nomap: pte_unmap_unlock(vmf->pte, vmf->ptl); out_page: unlock_page(page); out_release: put_page(page); if (page != swapcache && swapcache) { unlock_page(swapcache); put_page(swapcache); } return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret = 0; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(). We can't run * pte_offset_map() on pmds where a huge pmd might be created * from a different thread. * * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when * parallel threads are excluded by other means. * * Here we only have mmap_read_lock(mm). */ if (pte_alloc(vma->vm_mm, vmf->pmd)) return VM_FAULT_OOM; /* See the comment in pte_alloc_one_map() */ if (unlikely(pmd_trans_unstable(vmf->pmd))) return 0; /* Use the zero-page for reads */ if (!(vmf->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), vma->vm_page_prot)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto unlock; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!page) goto oom; if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) goto oom_free_page; cgroup_throttle_swaprate(page, GFP_KERNEL); /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_cache(vma, vmf->address, vmf->pte); goto release; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); put_page(page); return handle_userfault(vmf, VM_UFFD_MISSING); } inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); setpte: set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; release: put_page(page); goto unlock; oom_free_page: put_page(page); oom: return VM_FAULT_OOM; } /* * The mmap_lock must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static vm_fault_t __do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_one * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } ret = vma->vm_ops->fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | VM_FAULT_DONE_COW))) return ret; if (unlikely(PageHWPoison(vmf->page))) { struct page *page = vmf->page; vm_fault_t poisonret = VM_FAULT_HWPOISON; if (ret & VM_FAULT_LOCKED) { if (page_mapped(page)) unmap_mapping_pages(page_mapping(page), page->index, 1, false); /* Retry if a clean page was removed from the cache. */ if (invalidate_inode_page(page)) poisonret = VM_FAULT_NOPAGE; unlock_page(page); } put_page(page); vmf->page = NULL; return poisonret; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf->page); else VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); return ret; } /* * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. * If we check pmd_trans_unstable() first we will trip the bad_pmd() check * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. */ static int pmd_devmap_trans_unstable(pmd_t *pmd) { return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); } static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (!pmd_none(*vmf->pmd)) goto map_pte; if (vmf->prealloc_pte) { vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) { spin_unlock(vmf->ptl); goto map_pte; } mm_inc_nr_ptes(vma->vm_mm); pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); spin_unlock(vmf->ptl); vmf->prealloc_pte = NULL; } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { return VM_FAULT_OOM; } map_pte: /* * If a huge pmd materialized under us just retry later. Use * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge * under us and then back to pmd_none, as a result of MADV_DONTNEED * running immediately after a huge pmd fault in a different thread of * this mm, in turn leading to a misleading pmd_trans_huge() retval. * All we have to ensure is that it is a regular pmd that we can walk * with pte_offset_map() and we can do that through an atomic read in * C, which is what pmd_trans_unstable() provides. */ if (pmd_devmap_trans_unstable(vmf->pmd)) return VM_FAULT_NOPAGE; /* * At this point we know that our vmf->pmd points to a page of ptes * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() * for the duration of the fault. If a racing MADV_DONTNEED runs and * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still * be valid and we will re-check to make sure the vmf->pte isn't * pte_none() under vmf->ptl protection when we return to * alloc_set_pte(). */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); return 0; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void deposit_prealloc_pte(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); /* * We are going to consume the prealloc table, * count that as nr_ptes. */ mm_inc_nr_ptes(vma->vm_mm); vmf->prealloc_pte = NULL; } static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned long haddr = vmf->address & HPAGE_PMD_MASK; pmd_t entry; int i; vm_fault_t ret = VM_FAULT_FALLBACK; if (!transhuge_vma_suitable(vma, haddr)) return ret; page = compound_head(page); if (compound_order(page) != HPAGE_PMD_ORDER) return ret; /* * Archs like ppc64 need additonal space to store information * related to pte entry. Use the preallocated table for that. */ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); page_add_file_rmap(page, true); /* * deposit and withdraw with pmd lock held */ if (arch_needs_pgtable_deposit()) deposit_prealloc_pte(vmf); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); update_mmu_cache_pmd(vma, haddr, vmf->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(vmf->ptl); return ret; } #else static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { BUILD_BUG(); return 0; } #endif /** * alloc_set_pte - setup new PTE entry for given page and add reverse page * mapping. If needed, the function allocates page table or use pre-allocated. * * @vmf: fault environment * @page: page to map * * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on * return. * * Target users are page handler itself and implementations of * vm_ops->map_pages. * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; pte_t entry; vm_fault_t ret; if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { ret = do_set_pmd(vmf, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (!vmf->pte) { ret = pte_alloc_one_map(vmf); if (ret) return ret; } /* Re-check under ptl */ if (unlikely(!pte_none(*vmf->pte))) { update_mmu_tlb(vma, vmf->address, vmf->pte); return VM_FAULT_NOPAGE; } flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, false); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* no need to invalidate: a not-present page won't be cached */ update_mmu_cache(vma, vmf->address, vmf->pte); return 0; } /** * finish_fault - finish page fault once we have prepared the page to fault * * @vmf: structure describing the fault * * This function handles all that is needed to finish a page fault once the * page to fault in is prepared. It handles locking of PTEs, inserts PTE for * given page, adds reverse page mapping, handles memcg charges and LRU * addition. * * The function expects the page to be locked and on success it consumes a * reference of a page being mapped (for the PTE which maps it). * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t finish_fault(struct vm_fault *vmf) { struct page *page; vm_fault_t ret = 0; /* Did we COW the page? */ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vmf->vma->vm_flags & VM_SHARED)) page = vmf->cow_page; else page = vmf->page; /* * check even for read faults because we might have lost our CoWed * page */ if (!(vmf->vma->vm_flags & VM_SHARED)) ret = check_stable_address_space(vmf->vma->vm_mm); if (!ret) ret = alloc_set_pte(vmf, page); if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; } static unsigned long fault_around_bytes __read_mostly = rounddown_pow_of_two(65536); #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_bytes; return 0; } /* * fault_around_bytes must be rounded down to the nearest page order as it's * what do_fault_around() expects to see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; if (val > PAGE_SIZE) fault_around_bytes = rounddown_pow_of_two(val); else fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function is called with the page table lock taken. In the split ptlock * case the page table lock only protects only those entries which belong to * the page table corresponding to the fault address. * * This function doesn't cross the VMA boundaries, in order to call map_pages() * only once. * * fault_around_bytes defines how many bytes we'll try to map. * do_fault_around() expects it to be set to a power of two less than or equal * to PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to * fault_around_bytes rounded down to the machine page size * (and therefore to page order). This way it's easier to guarantee * that we don't cross page table boundaries. */ static vm_fault_t do_fault_around(struct vm_fault *vmf) { unsigned long address = vmf->address, nr_pages, mask; pgoff_t start_pgoff = vmf->pgoff; pgoff_t end_pgoff; int off; vm_fault_t ret = 0; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; vmf->address = max(address & mask, vmf->vma->vm_start); off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); start_pgoff -= off; /* * end_pgoff is either the end of the page table, the end of * the vma or nr_pages from start_pgoff, depending what is nearest. */ end_pgoff = start_pgoff - ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, start_pgoff + nr_pages - 1); if (pmd_none(*vmf->pmd)) { vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); if (!vmf->prealloc_pte) goto out; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); /* Huge page is mapped? Page fault is solved */ if (pmd_trans_huge(*vmf->pmd)) { ret = VM_FAULT_NOPAGE; goto out; } /* ->map_pages() haven't done anything useful. Cold page cache? */ if (!vmf->pte) goto out; /* check if the page fault is solved */ vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); if (!pte_none(*vmf->pte)) ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); out: vmf->address = address; vmf->pte = NULL; return ret; } static vm_fault_t do_read_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = 0; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { ret = do_fault_around(vmf); if (ret) return ret; } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= finish_fault(vmf); unlock_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) put_page(vmf->page); return ret; } static vm_fault_t do_cow_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!vmf->cow_page) return VM_FAULT_OOM; if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { put_page(vmf->cow_page); return VM_FAULT_OOM; } cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (ret & VM_FAULT_DONE_COW) return ret; copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); __SetPageUptodate(vmf->cow_page); ret |= finish_fault(vmf); unlock_page(vmf->page); put_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: put_page(vmf->cow_page); return ret; } static vm_fault_t do_shared_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret, tmp; ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { unlock_page(vmf->page); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } } ret |= finish_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { unlock_page(vmf->page); put_page(vmf->page); return ret; } ret |= fault_dirty_shared_page(vmf); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults). * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). * If mmap_lock is released, vma may become invalid (for example * by other thread calling munmap()). */ static vm_fault_t do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *vm_mm = vma->vm_mm; vm_fault_t ret; /* * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) { /* * If we find a migration pmd entry or a none pmd entry, which * should never happen, return SIGBUS */ if (unlikely(!pmd_present(*vmf->pmd))) ret = VM_FAULT_SIGBUS; else { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * Make sure this is not a temporary clearing of pte * by holding ptl and checking again. A R/M/W update * of pte involves: take ptl, clearing the pte so that * we don't have concurrent modification by hardware * followed by an update. */ if (unlikely(pte_none(*vmf->pte))) ret = VM_FAULT_SIGBUS; else ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); } } else if (!(vmf->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(vmf); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(vmf); else ret = do_shared_fault(vmf); /* preallocated pagetable is unused: free it */ if (vmf->prealloc_pte) { pte_free(vm_mm, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } return ret; } static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static vm_fault_t do_numa_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL; int page_nid = NUMA_NO_NODE; int last_cpupid; int target_nid; bool migrated = false; pte_t pte, old_pte; bool was_writable = pte_savedwrite(vmf->orig_pte); int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. */ vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } /* * Make it present again, Depending on how arch implementes non * accessible ptes, some can allow access by kernel mode. */ old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (was_writable) pte = pte_mkwrite(pte); ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); update_mmu_cache(vma, vmf->address, vmf->pte); page = vm_normal_page(vma, vmf->address, pte); if (!page) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!pte_write(pte)) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; last_cpupid = page_cpupid_last(page); page_nid = page_to_nid(page); target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, &flags); pte_unmap_unlock(vmf->pte, vmf->ptl); if (target_nid == NUMA_NO_NODE) { put_page(page); goto out; } /* Migrate to the requested node */ migrated = migrate_misplaced_page(page, vma, target_nid); if (migrated) { page_nid = target_nid; flags |= TNF_MIGRATED; } else flags |= TNF_MIGRATE_FAIL; out: if (page_nid != NUMA_NO_NODE) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) return do_huge_pmd_anonymous_page(vmf); if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); return VM_FAULT_FALLBACK; } /* `inline' is required to avoid gcc 4.1.2 build error */ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) { if (vma_is_anonymous(vmf->vma)) { if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) return handle_userfault(vmf, VM_UFFD_WP); return do_huge_pmd_wp_page(vmf, orig_pmd); } if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); return VM_FAULT_FALLBACK; } static vm_fault_t create_huge_pud(struct vm_fault *vmf) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) return VM_FAULT_FALLBACK; if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) goto split; if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } split: /* COW or write-notify not handled on PUD level: split pud.*/ __split_huge_pud(vmf->vma, vmf->pud, vmf->address); #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ return VM_FAULT_FALLBACK; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow * concurrent faults). * * The mmap_lock may have been released depending on flags and our return value. * See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) { pte_t entry; if (unlikely(pmd_none(*vmf->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ vmf->pte = NULL; } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap_trans_unstable(vmf->pmd)) return 0; /* * A regular pmd is established and it can't morph into a huge * pmd from under us anymore at this point because we hold the * mmap_lock read mode and khugepaged takes it in write mode. * So now it's safe to run pte_offset_map(). */ vmf->pte = pte_offset_map(vmf->pmd, vmf->address); vmf->orig_pte = *vmf->pte; /* * some architectures can have larger ptes than wordsize, * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic * accesses. The code below just needs a consistent view * for the ifs and we later double check anyway with the * ptl lock held. So here a barrier will do. */ barrier(); if (pte_none(vmf->orig_pte)) { pte_unmap(vmf->pte); vmf->pte = NULL; } } if (!vmf->pte) { if (vma_is_anonymous(vmf->vma)) return do_anonymous_page(vmf); else return do_fault(vmf); } if (!pte_present(vmf->orig_pte)) return do_swap_page(vmf); if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) return do_numa_page(vmf); vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); entry = vmf->orig_pte; if (unlikely(!pte_same(*vmf->pte, entry))) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); goto unlock; } if (vmf->flags & FAULT_FLAG_WRITE) { if (!pte_write(entry)) return do_wp_page(vmf); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, vmf->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(vmf->vma, vmf->address, vmf->pte); } else { /* Skip spurious TLB flush for retried page fault */ if (vmf->flags & FAULT_FLAG_TRIED) goto unlock; /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (vmf->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); } unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct vm_fault vmf = { .vma = vma, .address = address & PAGE_MASK, .flags = flags, .pgoff = linear_page_index(vma, address), .gfp_mask = __get_fault_gfp_mask(vma), }; unsigned int dirty = flags & FAULT_FLAG_WRITE; struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; p4d_t *p4d; vm_fault_t ret; pgd = pgd_offset(mm, address); p4d = p4d_alloc(mm, pgd, address); if (!p4d) return VM_FAULT_OOM; vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; retry_pud: if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pud_t orig_pud = *vmf.pud; barrier(); if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { /* NUMA case for anonymous PUDs would go here */ if (dirty && !pud_write(orig_pud)) { ret = wp_huge_pud(&vmf, orig_pud); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pud_set_accessed(&vmf, orig_pud); return 0; } } } vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; /* Huge pud page fault raced with pmd_alloc? */ if (pud_trans_unstable(vmf.pud)) goto retry_pud; if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pmd_t orig_pmd = *vmf.pmd; barrier(); if (unlikely(is_swap_pmd(orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(orig_pmd)); if (is_pmd_migration_entry(orig_pmd)) pmd_migration_entry_wait(mm, vmf.pmd); return 0; } if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&vmf, orig_pmd); if (dirty && !pmd_write(orig_pmd)) { ret = wp_huge_pmd(&vmf, orig_pmd); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&vmf, orig_pmd); return 0; } } } return handle_pte_fault(&vmf); } /** * mm_account_fault - Do page fault accountings * * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting * of perf event counters, but we'll still do the per-task accounting to * the task who triggered this page fault. * @address: the faulted address. * @flags: the fault flags. * @ret: the fault retcode. * * This will take care of most of the page fault accountings. Meanwhile, it * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should * still be in per-arch page fault handlers at the entry of page fault. */ static inline void mm_account_fault(struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret) { bool major; /* * We don't do accounting for some specific faults: * * - Unsuccessful faults (e.g. when the address wasn't valid). That * includes arch_vma_access_permitted() failing before reaching here. * So this is not a "this many hardware page faults" counter. We * should use the hw profiling for that. * * - Incomplete faults (VM_FAULT_RETRY). They will only be counted * once they're completed. */ if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) return; /* * We define the fault as a major fault when the final successful fault * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't * handle it immediately previously). */ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); if (major) current->maj_flt++; else current->min_flt++; /* * If the fault is done for GUP, regs will be NULL. We only do the * accounting for the per thread fault counters who triggered the * fault, and we skip the perf event updates. */ if (!regs) return; if (major) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { vm_fault_t ret; __set_current_state(TASK_RUNNING); count_vm_event(PGFAULT); count_memcg_event_mm(vma->vm_mm, PGFAULT); /* do counter updates before entering really critical section. */ check_sync_rss_stat(current); if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) return VM_FAULT_SIGSEGV; /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_enter_user_fault(); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); if (flags & FAULT_FLAG_USER) { mem_cgroup_exit_user_fault(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } mm_account_fault(regs, address, flags, ret); return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifndef __PAGETABLE_P4D_FOLDED /* * Allocate p4d page table. * We've already handled the fast-path in-line. */ int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { p4d_t *new = p4d_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ p4d_free(mm, new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_P4D_FOLDED */ #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (!p4d_present(*p4d)) { mm_inc_nr_puds(mm); p4d_populate(mm, p4d, new); } else /* Another has populated it */ pud_free(mm, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { spinlock_t *ptl; pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ ptl = pud_lock(mm, pud); if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); spin_unlock(ptl); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) goto out; pud = pud_offset(p4d, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); if (pmd_huge(*pmd)) { if (!pmdpp) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PMD_MASK, (address & PMD_MASK) + PMD_SIZE); mmu_notifier_invalidate_range_start(range); } *ptlp = pmd_lock(mm, pmd); if (pmd_huge(*pmd)) { *pmdpp = pmd; return 0; } spin_unlock(*ptlp); if (range) mmu_notifier_invalidate_range_end(range); } if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PAGE_MASK, (address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(range); } ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!pte_present(*ptep)) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); if (range) mmu_notifier_invalidate_range_end(range); out: return -EINVAL; } /** * follow_pte - look up PTE at a user virtual address * @mm: the mm_struct of the target address space * @address: user virtual address * @ptepp: location to store found PTE * @ptlp: location to store the lock for the PTE * * On a successful return, the pointer to the PTE is stored in @ptepp; * the corresponding lock is taken and its location is stored in @ptlp. * The contents of the PTE are only stable until @ptlp is released; * any further use, if any, must be protected against invalidation * with MMU notifiers. * * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore * should be taken for read. * * KVM uses this function. While it is arguably less bad than ``follow_pfn``, * it is not a good general-purpose API. * * Return: zero on success, -ve otherwise. */ int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); } EXPORT_SYMBOL_GPL(follow_pte); /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * This function does not allow the caller to read the permissions * of the PTE. Do not use it. * * Return: zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = *ptep; /* Never return PFNs of anon folios in COW mappings. */ if (vm_normal_page(vma, address, pte)) goto unlock; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; int offset = addr & (PAGE_SIZE-1); if (follow_phys(vma, addr, write, &prot, &phys_addr)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); iounmap(maddr); return len; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. If non-NULL, use the * given task for page fault accounting. */ int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct vm_area_struct *vma; void *old_buf = buf; int write = gup_flags & FOLL_WRITE; if (mmap_read_lock_killable(mm)) return 0; /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, ret, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, &vma, NULL); if (ret <= 0) { #ifndef CONFIG_HAVE_IOREMAP_PROT break; #else /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ vma = find_vma(mm, addr); if (!vma || vma->vm_start > addr) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, len, write); if (ret <= 0) break; bytes = ret; #endif } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } mmap_read_unlock(mm); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. * * Return: number of bytes copied from source to destination. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); mmput(mm); return ret; } EXPORT_SYMBOL_GPL(access_process_vm); /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * we might be running from an atomic context so we cannot sleep */ if (!mmap_read_trylock(mm)) return; vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_NOWAIT); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } mmap_read_unlock(mm); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { /* * Some code (nfs/sunrpc) uses socket ops on kernel memory while * holding the mmap_lock, this is safe because kernel memory doesn't * get paged out, therefore we'll never actually fault, and the * below annotations will generate false positives. */ if (uaccess_kernel()) return; if (pagefault_disabled()) return; __might_sleep(file, line, 0); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(&current->mm->mmap_lock); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) /* * Process all subpages of the specified huge page with the specified * operation. The target subpage will be processed last to keep its * cache lines hot. */ static inline void process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, void (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg) { int i, n, base, l; unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); /* Process target subpage last to keep its cache lines hot */ might_sleep(); n = (addr_hint - addr) / PAGE_SIZE; if (2 * n <= pages_per_huge_page) { /* If target subpage in first half of huge page */ base = 0; l = n; /* Process subpages at the end of huge page */ for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } else { /* If target subpage in second half of huge page */ base = pages_per_huge_page - 2 * (pages_per_huge_page - n); l = pages_per_huge_page - n; /* Process subpages at the begin of huge page */ for (i = 0; i < base; i++) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } /* * Process remaining subpages in left-right-left-right pattern * towards the target subpage */ for (i = 0; i < l; i++) { int left_idx = base + i; int right_idx = base + 2 * l - 1 - i; cond_resched(); process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); cond_resched(); process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); } } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p = page; might_sleep(); for (i = 0; i < pages_per_huge_page; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static void clear_subpage(unsigned long addr, int idx, void *arg) { struct page *page = arg; clear_user_highpage(page + idx, addr); } void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); } static void copy_user_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_base = dst; struct page *src_base = src; for (i = 0; i < pages_per_huge_page; ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } struct copy_subpage_arg { struct page *dst; struct page *src; struct vm_area_struct *vma; }; static void copy_subpage(unsigned long addr, int idx, void *arg) { struct copy_subpage_arg *copy_arg = arg; copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, addr, copy_arg->vma); } void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); struct copy_subpage_arg arg = { .dst = dst, .src = src, .vma = vma, }; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); } long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault) { void *src = (void *)usr_src; void *page_kaddr; unsigned long i, rc = 0; unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; struct page *subpage = dst_page; for (i = 0; i < pages_per_huge_page; i++, subpage = mem_map_next(subpage, dst_page, i)) { if (allow_pagefault) page_kaddr = kmap(subpage); else page_kaddr = kmap_atomic(subpage); rc = copy_from_user(page_kaddr, (const void __user *)(src + i * PAGE_SIZE), PAGE_SIZE); if (allow_pagefault) kunmap(subpage); else kunmap_atomic(page_kaddr); ret_val -= (PAGE_SIZE - rc); if (rc) break; flush_dcache_page(subpage); cond_resched(); } return ret_val; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct page *page) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; return true; } void ptlock_free(struct page *page) { kmem_cache_free(page_ptl_cachep, page->ptl); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/mount.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/ns_common.h> #include <linux/fs_pin.h> struct mnt_namespace { atomic_t count; struct ns_common ns; struct mount * root; /* * Traversal and modification of .list is protected by either * - taking namespace_sem for write, OR * - taking namespace_sem for read AND taking .ns_lock. */ struct list_head list; spinlock_t ns_lock; struct user_namespace *user_ns; struct ucounts *ucounts; u64 seq; /* Sequence number to prevent loops */ wait_queue_head_t poll; u64 event; unsigned int mounts; /* # of mounts in the namespace */ unsigned int pending_mounts; } __randomize_layout; struct mnt_pcp { int mnt_count; int mnt_writers; }; struct mountpoint { struct hlist_node m_hash; struct dentry *m_dentry; struct hlist_head m_list; int m_count; }; struct mount { struct hlist_node mnt_hash; struct mount *mnt_parent; struct dentry *mnt_mountpoint; struct vfsmount mnt; union { struct rcu_head mnt_rcu; struct llist_node mnt_llist; }; #ifdef CONFIG_SMP struct mnt_pcp __percpu *mnt_pcp; #else int mnt_count; int mnt_writers; #endif struct list_head mnt_mounts; /* list of children, anchored here */ struct list_head mnt_child; /* and going through their mnt_child */ struct list_head mnt_instance; /* mount instance on sb->s_mounts */ const char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */ struct list_head mnt_list; struct list_head mnt_expire; /* link in fs-specific expiry list */ struct list_head mnt_share; /* circular list of shared mounts */ struct list_head mnt_slave_list;/* list of slave mounts */ struct list_head mnt_slave; /* slave list entry */ struct mount *mnt_master; /* slave is on master->mnt_slave_list */ struct mnt_namespace *mnt_ns; /* containing namespace */ struct mountpoint *mnt_mp; /* where is it mounted */ union { struct hlist_node mnt_mp_list; /* list mounts with the same mountpoint */ struct hlist_node mnt_umount; }; struct list_head mnt_umounting; /* list entry for umount propagation */ #ifdef CONFIG_FSNOTIFY struct fsnotify_mark_connector __rcu *mnt_fsnotify_marks; __u32 mnt_fsnotify_mask; #endif int mnt_id; /* mount identifier */ int mnt_group_id; /* peer group identifier */ int mnt_expiry_mark; /* true if marked for expiry */ struct hlist_head mnt_pins; struct hlist_head mnt_stuck_children; } __randomize_layout; #define MNT_NS_INTERNAL ERR_PTR(-EINVAL) /* distinct from any mnt_namespace */ static inline struct mount *real_mount(struct vfsmount *mnt) { return container_of(mnt, struct mount, mnt); } static inline int mnt_has_parent(struct mount *mnt) { return mnt != mnt->mnt_parent; } static inline int is_mounted(struct vfsmount *mnt) { /* neither detached nor internal? */ return !IS_ERR_OR_NULL(real_mount(mnt)->mnt_ns); } extern struct mount *__lookup_mnt(struct vfsmount *, struct dentry *); extern int __legitimize_mnt(struct vfsmount *, unsigned); extern bool legitimize_mnt(struct vfsmount *, unsigned); static inline bool __path_is_mountpoint(const struct path *path) { struct mount *m = __lookup_mnt(path->mnt, path->dentry); return m && likely(!(m->mnt.mnt_flags & MNT_SYNC_UMOUNT)); } extern void __detach_mounts(struct dentry *dentry); static inline void detach_mounts(struct dentry *dentry) { if (!d_mountpoint(dentry)) return; __detach_mounts(dentry); } static inline void get_mnt_ns(struct mnt_namespace *ns) { atomic_inc(&ns->count); } extern seqlock_t mount_lock; static inline void lock_mount_hash(void) { write_seqlock(&mount_lock); } static inline void unlock_mount_hash(void) { write_sequnlock(&mount_lock); } struct proc_mounts { struct mnt_namespace *ns; struct path root; int (*show)(struct seq_file *, struct vfsmount *); struct mount cursor; }; extern const struct seq_operations mounts_op; extern bool __is_local_mountpoint(struct dentry *dentry); static inline bool is_local_mountpoint(struct dentry *dentry) { if (!d_mountpoint(dentry)) return false; return __is_local_mountpoint(dentry); } static inline bool is_anon_ns(struct mnt_namespace *ns) { return ns->seq == 0; } extern void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * pm_wakeup.h - Power management wakeup interface * * Copyright (C) 2008 Alan Stern * Copyright (C) 2010 Rafael J. Wysocki, Novell Inc. */ #ifndef _LINUX_PM_WAKEUP_H #define _LINUX_PM_WAKEUP_H #ifndef _DEVICE_H_ # error "please don't include this file directly" #endif #include <linux/types.h> struct wake_irq; /** * struct wakeup_source - Representation of wakeup sources * * @name: Name of the wakeup source * @id: Wakeup source id * @entry: Wakeup source list entry * @lock: Wakeup source lock * @wakeirq: Optional device specific wakeirq * @timer: Wakeup timer list * @timer_expires: Wakeup timer expiration * @total_time: Total time this wakeup source has been active. * @max_time: Maximum time this wakeup source has been continuously active. * @last_time: Monotonic clock when the wakeup source's was touched last time. * @prevent_sleep_time: Total time this source has been preventing autosleep. * @event_count: Number of signaled wakeup events. * @active_count: Number of times the wakeup source was activated. * @relax_count: Number of times the wakeup source was deactivated. * @expire_count: Number of times the wakeup source's timeout has expired. * @wakeup_count: Number of times the wakeup source might abort suspend. * @dev: Struct device for sysfs statistics about the wakeup source. * @active: Status of the wakeup source. * @autosleep_enabled: Autosleep is active, so update @prevent_sleep_time. */ struct wakeup_source { const char *name; int id; struct list_head entry; spinlock_t lock; struct wake_irq *wakeirq; struct timer_list timer; unsigned long timer_expires; ktime_t total_time; ktime_t max_time; ktime_t last_time; ktime_t start_prevent_time; ktime_t prevent_sleep_time; unsigned long event_count; unsigned long active_count; unsigned long relax_count; unsigned long expire_count; unsigned long wakeup_count; struct device *dev; bool active:1; bool autosleep_enabled:1; }; #define for_each_wakeup_source(ws) \ for ((ws) = wakeup_sources_walk_start(); \ (ws); \ (ws) = wakeup_sources_walk_next((ws))) #ifdef CONFIG_PM_SLEEP /* * Changes to device_may_wakeup take effect on the next pm state change. */ static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && !!dev->power.wakeup; } static inline void device_set_wakeup_path(struct device *dev) { dev->power.wakeup_path = true; } /* drivers/base/power/wakeup.c */ extern struct wakeup_source *wakeup_source_create(const char *name); extern void wakeup_source_destroy(struct wakeup_source *ws); extern void wakeup_source_add(struct wakeup_source *ws); extern void wakeup_source_remove(struct wakeup_source *ws); extern struct wakeup_source *wakeup_source_register(struct device *dev, const char *name); extern void wakeup_source_unregister(struct wakeup_source *ws); extern int wakeup_sources_read_lock(void); extern void wakeup_sources_read_unlock(int idx); extern struct wakeup_source *wakeup_sources_walk_start(void); extern struct wakeup_source *wakeup_sources_walk_next(struct wakeup_source *ws); extern int device_wakeup_enable(struct device *dev); extern int device_wakeup_disable(struct device *dev); extern void device_set_wakeup_capable(struct device *dev, bool capable); extern int device_init_wakeup(struct device *dev, bool val); extern int device_set_wakeup_enable(struct device *dev, bool enable); extern void __pm_stay_awake(struct wakeup_source *ws); extern void pm_stay_awake(struct device *dev); extern void __pm_relax(struct wakeup_source *ws); extern void pm_relax(struct device *dev); extern void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard); extern void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard); #else /* !CONFIG_PM_SLEEP */ static inline void device_set_wakeup_capable(struct device *dev, bool capable) { dev->power.can_wakeup = capable; } static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline struct wakeup_source *wakeup_source_create(const char *name) { return NULL; } static inline void wakeup_source_destroy(struct wakeup_source *ws) {} static inline void wakeup_source_add(struct wakeup_source *ws) {} static inline void wakeup_source_remove(struct wakeup_source *ws) {} static inline struct wakeup_source *wakeup_source_register(struct device *dev, const char *name) { return NULL; } static inline void wakeup_source_unregister(struct wakeup_source *ws) {} static inline int device_wakeup_enable(struct device *dev) { dev->power.should_wakeup = true; return 0; } static inline int device_wakeup_disable(struct device *dev) { dev->power.should_wakeup = false; return 0; } static inline int device_set_wakeup_enable(struct device *dev, bool enable) { dev->power.should_wakeup = enable; return 0; } static inline int device_init_wakeup(struct device *dev, bool val) { device_set_wakeup_capable(dev, val); device_set_wakeup_enable(dev, val); return 0; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && dev->power.should_wakeup; } static inline void device_set_wakeup_path(struct device *dev) {} static inline void __pm_stay_awake(struct wakeup_source *ws) {} static inline void pm_stay_awake(struct device *dev) {} static inline void __pm_relax(struct wakeup_source *ws) {} static inline void pm_relax(struct device *dev) {} static inline void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard) {} static inline void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard) {} #endif /* !CONFIG_PM_SLEEP */ static inline void __pm_wakeup_event(struct wakeup_source *ws, unsigned int msec) { return pm_wakeup_ws_event(ws, msec, false); } static inline void pm_wakeup_event(struct device *dev, unsigned int msec) { return pm_wakeup_dev_event(dev, msec, false); } static inline void pm_wakeup_hard_event(struct device *dev) { return pm_wakeup_dev_event(dev, 0, true); } #endif /* _LINUX_PM_WAKEUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/pagevec.h * * In many places it is efficient to batch an operation up against multiple * pages. A pagevec is a multipage container which is used for that. */ #ifndef _LINUX_PAGEVEC_H #define _LINUX_PAGEVEC_H #include <linux/xarray.h> /* 15 pointers + header align the pagevec structure to a power of two */ #define PAGEVEC_SIZE 15 struct page; struct address_space; struct pagevec { unsigned char nr; bool percpu_pvec_drained; struct page *pages[PAGEVEC_SIZE]; }; void __pagevec_release(struct pagevec *pvec); void __pagevec_lru_add(struct pagevec *pvec); unsigned pagevec_lookup_entries(struct pagevec *pvec, struct address_space *mapping, pgoff_t start, unsigned nr_entries, pgoff_t *indices); void pagevec_remove_exceptionals(struct pagevec *pvec); unsigned pagevec_lookup_range(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start, pgoff_t end); static inline unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, pgoff_t *start) { return pagevec_lookup_range(pvec, mapping, start, (pgoff_t)-1); } unsigned pagevec_lookup_range_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag); unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, pgoff_t end, xa_mark_t tag, unsigned max_pages); static inline unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, xa_mark_t tag) { return pagevec_lookup_range_tag(pvec, mapping, index, (pgoff_t)-1, tag); } static inline void pagevec_init(struct pagevec *pvec) { pvec->nr = 0; pvec->percpu_pvec_drained = false; } static inline void pagevec_reinit(struct pagevec *pvec) { pvec->nr = 0; } static inline unsigned pagevec_count(struct pagevec *pvec) { return pvec->nr; } static inline unsigned pagevec_space(struct pagevec *pvec) { return PAGEVEC_SIZE - pvec->nr; } /* * Add a page to a pagevec. Returns the number of slots still available. */ static inline unsigned pagevec_add(struct pagevec *pvec, struct page *page) { pvec->pages[pvec->nr++] = page; return pagevec_space(pvec); } static inline void pagevec_release(struct pagevec *pvec) { if (pagevec_count(pvec)) __pagevec_release(pvec); } #endif /* _LINUX_PAGEVEC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGTABLE_H #define _LINUX_PGTABLE_H #include <linux/pfn.h> #include <asm/pgtable.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_MMU #include <linux/mm_types.h> #include <linux/bug.h> #include <linux/errno.h> #include <asm-generic/pgtable_uffd.h> #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED #endif /* * On almost all architectures and configurations, 0 can be used as the * upper ceiling to free_pgtables(): on many architectures it has the same * effect as using TASK_SIZE. However, there is one configuration which * must impose a more careful limit, to avoid freeing kernel pgtables. */ #ifndef USER_PGTABLES_CEILING #define USER_PGTABLES_CEILING 0UL #endif /* * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] * * The pXx_index() functions return the index of the entry in the page * table page which would control the given virtual address * * As these functions may be used by the same code for different levels of * the page table folding, they are always available, regardless of * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 * because in such cases PTRS_PER_PxD equals 1. */ static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } #define pte_index pte_index #ifndef pmd_index static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } #define pmd_index pmd_index #endif #ifndef pud_index static inline unsigned long pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } #define pud_index pud_index #endif #ifndef pgd_index /* Must be a compile-time constant, so implement it as a macro */ #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #endif #ifndef pte_offset_kernel static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); } #define pte_offset_kernel pte_offset_kernel #endif #if defined(CONFIG_HIGHPTE) #define pte_offset_map(dir, address) \ ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ pte_index((address))) #define pte_unmap(pte) kunmap_atomic((pte)) #else #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) #define pte_unmap(pte) ((void)(pte)) /* NOP */ #endif /* Find an entry in the second-level page table.. */ #ifndef pmd_offset static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return pud_pgtable(*pud) + pmd_index(address); } #define pmd_offset pmd_offset #endif #ifndef pud_offset static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) { return p4d_pgtable(*p4d) + pud_index(address); } #define pud_offset pud_offset #endif static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) { return (pgd + pgd_index(address)); }; /* * a shortcut to get a pgd_t in a given mm */ #ifndef pgd_offset #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) #endif /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #ifndef pgd_offset_k #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) #endif /* * In many cases it is known that a virtual address is mapped at PMD or PTE * level, so instead of traversing all the page table levels, we can get a * pointer to the PMD entry in user or kernel page table or translate a virtual * address to the pointer in the PTE in the kernel page tables with simple * helpers. */ static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); } static inline pmd_t *pmd_off_k(unsigned long va) { return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); } static inline pte_t *virt_to_kpte(unsigned long vaddr) { pmd_t *pmd = pmd_off_k(vaddr); return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); } #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #else static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { BUILD_BUG(); return 0; } static inline int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; int r = 1; if (!pte_young(pte)) r = 0; else set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); return r; } #endif #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; int r = 1; if (!pmd_young(pmd)) r = 0; else set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); return r; } #else static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else /* * Despite relevant to THP only, this API is called from generic rmap code * under PageTransHuge(), hence needs a dummy implementation for !THP */ static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, address, ptep); return pte; } #endif #ifndef __HAVE_ARCH_PTEP_GET static inline pte_t ptep_get(pte_t *ptep) { return READ_ONCE(*ptep); } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmd_clear(pmdp); return pmd; } #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t pud = *pudp; pud_clear(pudp); return pud; } #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, int full) { return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); } #endif #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, unsigned long address, pud_t *pudp, int full) { return pudp_huge_get_and_clear(mm, address, pudp); } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_t pte; pte = ptep_get_and_clear(mm, address, ptep); return pte; } #endif /* * If two threads concurrently fault at the same page, the thread that * won the race updates the PTE and its local TLB/Cache. The other thread * gives up, simply does nothing, and continues; on architectures where * software can update TLB, local TLB can be updated here to avoid next page * fault. This function updates TLB only, do nothing with cache or others. * It is the difference with function update_mmu_cache. */ #ifndef __HAVE_ARCH_UPDATE_MMU_TLB static inline void update_mmu_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { } #define __HAVE_ARCH_UPDATE_MMU_TLB #endif /* * Some architectures may be able to avoid expensive synchronization * primitives when modifications are made to PTE's which are already * not present, or in the process of an address space destruction. */ #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL static inline void pte_clear_not_present_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_clear(mm, address, ptep); } #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH extern pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); #endif #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT struct mm_struct; static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t old_pte = *ptep; set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); } #endif /* * On some architectures hardware does not set page access bit when accessing * memory page, it is responsibilty of software setting this bit. It brings * out extra page fault penalty to track page access bit. For optimization page * access bit can be set during all page fault flow on these arches. * To be differentiate with macro pte_mkyoung, this macro is used on platforms * where software maintains page access bit. */ #ifndef pte_sw_mkyoung static inline pte_t pte_sw_mkyoung(pte_t pte) { return pte; } #define pte_sw_mkyoung pte_sw_mkyoung #endif #ifndef pte_savedwrite #define pte_savedwrite pte_write #endif #ifndef pte_mk_savedwrite #define pte_mk_savedwrite pte_mkwrite #endif #ifndef pte_clear_savedwrite #define pte_clear_savedwrite pte_wrprotect #endif #ifndef pmd_savedwrite #define pmd_savedwrite pmd_write #endif #ifndef pmd_mk_savedwrite #define pmd_mk_savedwrite pmd_mkwrite #endif #ifndef pmd_clear_savedwrite #define pmd_clear_savedwrite pmd_wrprotect #endif #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t old_pmd = *pmdp; set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); } #else static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t old_pud = *pudp; set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); } #else static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { BUILD_BUG(); } #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #endif #ifndef pmdp_collapse_flush #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #else static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUILD_BUG(); return *pmdp; } #define pmdp_collapse_flush pmdp_collapse_flush #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #endif #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is an implementation of pmdp_establish() that is only suitable for an * architecture that doesn't have hardware dirty/accessed bits. In this case we * can't race with CPU which sets these bits and non-atomic aproach is fine. */ static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { pmd_t old_pmd = *pmdp; set_pmd_at(vma->vm_mm, address, pmdp, pmd); return old_pmd; } #endif #ifndef __HAVE_ARCH_PMDP_INVALIDATE extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { return pte_val(pte_a) == pte_val(pte_b); } #endif #ifndef __HAVE_ARCH_PTE_UNUSED /* * Some architectures provide facilities to virtualization guests * so that they can flag allocated pages as unused. This allows the * host to transparently reclaim unused pages. This function returns * whether the pte's page is unused. */ static inline int pte_unused(pte_t pte) { return 0; } #endif #ifndef pte_access_permitted #define pte_access_permitted(pte, write) \ (pte_present(pte) && (!(write) || pte_write(pte))) #endif #ifndef pmd_access_permitted #define pmd_access_permitted(pmd, write) \ (pmd_present(pmd) && (!(write) || pmd_write(pmd))) #endif #ifndef pud_access_permitted #define pud_access_permitted(pud, write) \ (pud_present(pud) && (!(write) || pud_write(pud))) #endif #ifndef p4d_access_permitted #define p4d_access_permitted(p4d, write) \ (p4d_present(p4d) && (!(write) || p4d_write(p4d))) #endif #ifndef pgd_access_permitted #define pgd_access_permitted(pgd, write) \ (pgd_present(pgd) && (!(write) || pgd_write(pgd))) #endif #ifndef __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return pmd_val(pmd_a) == pmd_val(pmd_b); } static inline int pud_same(pud_t pud_a, pud_t pud_b) { return pud_val(pud_a) == pud_val(pud_b); } #endif #ifndef __HAVE_ARCH_P4D_SAME static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) { return p4d_val(p4d_a) == p4d_val(p4d_b); } #endif #ifndef __HAVE_ARCH_PGD_SAME static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) { return pgd_val(pgd_a) == pgd_val(pgd_b); } #endif /* * Use set_p*_safe(), and elide TLB flushing, when confident that *no* * TLB flush will be required as a result of the "set". For example, use * in scenarios where it is known ahead of time that the routine is * setting non-present entries, or re-setting an existing entry to the * same value. Otherwise, use the typical "set" helpers and flush the * TLB. */ #define set_pte_safe(ptep, pte) \ ({ \ WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ set_pte(ptep, pte); \ }) #define set_pmd_safe(pmdp, pmd) \ ({ \ WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ set_pmd(pmdp, pmd); \ }) #define set_pud_safe(pudp, pud) \ ({ \ WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ set_pud(pudp, pud); \ }) #define set_p4d_safe(p4dp, p4d) \ ({ \ WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ set_p4d(p4dp, p4d); \ }) #define set_pgd_safe(pgdp, pgd) \ ({ \ WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ set_pgd(pgdp, pgd); \ }) #ifndef __HAVE_ARCH_DO_SWAP_PAGE /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_do_swap_page() can restore this * metadata when a page is swapped back in. */ static inline void arch_do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte, pte_t oldpte) { } #endif #ifndef __HAVE_ARCH_UNMAP_ONE /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be * restored when the page is swapped back in. SPARC M7 and newer * processors support an ADI (Application Data Integrity) tag for the * page as metadata for the page. arch_unmap_one() can save this * metadata on a swap-out of a page. */ static inline int arch_unmap_one(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t orig_pte) { return 0; } #endif /* * Allow architectures to preserve additional metadata associated with * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function * prototypes must be defined in the arch-specific asm/pgtable.h file. */ #ifndef __HAVE_ARCH_PREPARE_TO_SWAP static inline int arch_prepare_to_swap(struct page *page) { return 0; } #endif #ifndef __HAVE_ARCH_SWAP_INVALIDATE static inline void arch_swap_invalidate_page(int type, pgoff_t offset) { } static inline void arch_swap_invalidate_area(int type) { } #endif #ifndef __HAVE_ARCH_SWAP_RESTORE static inline void arch_swap_restore(swp_entry_t entry, struct page *page) { } #endif #ifndef __HAVE_ARCH_PGD_OFFSET_GATE #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) #endif #ifndef __HAVE_ARCH_MOVE_PTE #define move_pte(pte, prot, old_addr, new_addr) (pte) #endif #ifndef pte_accessible # define pte_accessible(mm, pte) ((void)(pte), 1) #endif #ifndef flush_tlb_fix_spurious_fault #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) #endif /* * When walking page tables, get the address of the next boundary, * or the end address of the range if that comes earlier. Although no * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. */ #define pgd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #ifndef p4d_addr_end #define p4d_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pud_addr_end #define pud_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pmd_addr_end #define pmd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif /* * When walking page tables, we usually want to skip any p?d_none entries; * and any p?d_bad entries - reporting the error before resetting to none. * Do the tests inline, but report and clear the bad entry in mm/memory.c. */ void pgd_clear_bad(pgd_t *); #ifndef __PAGETABLE_P4D_FOLDED void p4d_clear_bad(p4d_t *); #else #define p4d_clear_bad(p4d) do { } while (0) #endif #ifndef __PAGETABLE_PUD_FOLDED void pud_clear_bad(pud_t *); #else #define pud_clear_bad(p4d) do { } while (0) #endif void pmd_clear_bad(pmd_t *); static inline int pgd_none_or_clear_bad(pgd_t *pgd) { if (pgd_none(*pgd)) return 1; if (unlikely(pgd_bad(*pgd))) { pgd_clear_bad(pgd); return 1; } return 0; } static inline int p4d_none_or_clear_bad(p4d_t *p4d) { if (p4d_none(*p4d)) return 1; if (unlikely(p4d_bad(*p4d))) { p4d_clear_bad(p4d); return 1; } return 0; } static inline int pud_none_or_clear_bad(pud_t *pud) { if (pud_none(*pud)) return 1; if (unlikely(pud_bad(*pud))) { pud_clear_bad(pud); return 1; } return 0; } static inline int pmd_none_or_clear_bad(pmd_t *pmd) { if (pmd_none(*pmd)) return 1; if (unlikely(pmd_bad(*pmd))) { pmd_clear_bad(pmd); return 1; } return 0; } static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { /* * Get the current pte state, but zero it out to make it * non-present, preventing the hardware from asynchronously * updating it. */ return ptep_get_and_clear(vma->vm_mm, addr, ptep); } static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t pte) { /* * The pte is non-present, so there's no hardware state to * preserve. */ set_pte_at(vma->vm_mm, addr, ptep, pte); } #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION /* * Start a pte protection read-modify-write transaction, which * protects against asynchronous hardware modifications to the pte. * The intention is not to prevent the hardware from making pte * updates, but to prevent any updates it may make from being lost. * * This does not protect against other software modifications of the * pte; the appropriate pte lock must be held over the transation. * * Note that this interface is intended to be batchable, meaning that * ptep_modify_prot_commit may not actually update the pte, but merely * queue the update to be done at some later time. The update must be * actually committed before the pte lock is released, however. */ static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { return __ptep_modify_prot_start(vma, addr, ptep); } /* * Commit an update to a pte, leaving any hardware-controlled bits in * the PTE unmodified. */ static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { __ptep_modify_prot_commit(vma, addr, ptep, pte); } #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ #endif /* CONFIG_MMU */ /* * No-op macros that just return the current protection value. Defined here * because these macros can be used even if CONFIG_MMU is not defined. */ #ifndef pgprot_nx #define pgprot_nx(prot) (prot) #endif #ifndef pgprot_noncached #define pgprot_noncached(prot) (prot) #endif #ifndef pgprot_writecombine #define pgprot_writecombine pgprot_noncached #endif #ifndef pgprot_writethrough #define pgprot_writethrough pgprot_noncached #endif #ifndef pgprot_device #define pgprot_device pgprot_noncached #endif #ifndef pgprot_mhp #define pgprot_mhp(prot) (prot) #endif #ifdef CONFIG_MMU #ifndef pgprot_modify #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) newprot = pgprot_noncached(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) newprot = pgprot_writecombine(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) newprot = pgprot_device(newprot); return newprot; } #endif #endif /* CONFIG_MMU */ #ifndef pgprot_encrypted #define pgprot_encrypted(prot) (prot) #endif #ifndef pgprot_decrypted #define pgprot_decrypted(prot) (prot) #endif /* * A facility to provide lazy MMU batching. This allows PTE updates and * page invalidations to be delayed until a call to leave lazy MMU mode * is issued. Some architectures may benefit from doing this, and it is * beneficial for both shadow and direct mode hypervisors, which may batch * the PTE updates which happen during this window. Note that using this * interface requires that read hazards be removed from the code. A read * hazard could result in the direct mode hypervisor case, since the actual * write to the page tables may not yet have taken place, so reads though * a raw PTE pointer after it has been modified are not guaranteed to be * up to date. This mode can only be entered and left under the protection of * the page table locks for all page tables which may be modified. In the UP * case, this is required so that preemption is disabled, and in the SMP case, * it must synchronize the delayed page table writes properly on other CPUs. */ #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE #define arch_enter_lazy_mmu_mode() do {} while (0) #define arch_leave_lazy_mmu_mode() do {} while (0) #define arch_flush_lazy_mmu_mode() do {} while (0) #endif /* * A facility to provide batching of the reload of page tables and * other process state with the actual context switch code for * paravirtualized guests. By convention, only one of the batched * update (lazy) modes (CPU, MMU) should be active at any given time, * entry should never be nested, and entry and exits should always be * paired. This is for sanity of maintaining and reasoning about the * kernel code. In this case, the exit (end of the context switch) is * in architecture-specific code, and so doesn't need a generic * definition. */ #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH #define arch_start_context_switch(prev) do {} while (0) #endif #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ static inline int pte_soft_dirty(pte_t pte) { return 0; } static inline int pmd_soft_dirty(pmd_t pmd) { return 0; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte; } static inline int pte_swp_soft_dirty(pte_t pte) { return 0; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) { return pmd; } static inline int pmd_swp_soft_dirty(pmd_t pmd) { return 0; } static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) { return pmd; } #endif #ifndef __HAVE_PFNMAP_TRACKING /* * Interfaces that can be used by architecture code to keep track of * memory type of pfn mappings specified by the remap_pfn_range, * vmf_insert_pfn. */ /* * track_pfn_remap is called when a _new_ pfn mapping is being established * by remap_pfn_range() for physical range indicated by pfn and size. */ static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size) { return 0; } /* * track_pfn_insert is called when a _new_ single pfn is established * by vmf_insert_pfn(). */ static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn) { } /* * track_pfn_copy is called when vma that is covering the pfnmap gets * copied through copy_page_range(). */ static inline int track_pfn_copy(struct vm_area_struct *vma) { return 0; } /* * untrack_pfn is called while unmapping a pfnmap for a region. * untrack can be called for a specific region indicated by pfn and size or * can be for the entire vma (in which case pfn, size are zero). */ static inline void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size) { } /* * untrack_pfn_moved is called while mremapping a pfnmap for a new region. */ static inline void untrack_pfn_moved(struct vm_area_struct *vma) { } #else extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size); extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn); extern int track_pfn_copy(struct vm_area_struct *vma); extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size); extern void untrack_pfn_moved(struct vm_area_struct *vma); #endif #ifdef __HAVE_COLOR_ZERO_PAGE static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; unsigned long offset_from_zero_pfn = pfn - zero_pfn; return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); } #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) #else static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; return pfn == zero_pfn; } static inline unsigned long my_zero_pfn(unsigned long addr) { extern unsigned long zero_pfn; return zero_pfn; } #endif #ifdef CONFIG_MMU #ifndef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return 0; } #ifndef pmd_write static inline int pmd_write(pmd_t pmd) { BUG(); return 0; } #endif /* pmd_write */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef pud_write static inline int pud_write(pud_t pud) { BUG(); return 0; } #endif /* pud_write */ #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) static inline int pmd_devmap(pmd_t pmd) { return 0; } static inline int pud_devmap(pud_t pud) { return 0; } static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) static inline int pud_trans_huge(pud_t pud) { return 0; } #endif /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) { pud_t pudval = READ_ONCE(*pud); if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) return 1; if (unlikely(pud_bad(pudval))) { pud_clear_bad(pud); return 1; } return 0; } /* See pmd_trans_unstable for discussion. */ static inline int pud_trans_unstable(pud_t *pud) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); #else return 0; #endif } #ifndef pmd_read_atomic static inline pmd_t pmd_read_atomic(pmd_t *pmdp) { /* * Depend on compiler for an atomic pmd read. NOTE: this is * only going to work, if the pmdval_t isn't larger than * an unsigned long. */ return *pmdp; } #endif #ifndef arch_needs_pgtable_deposit #define arch_needs_pgtable_deposit() (false) #endif /* * This function is meant to be used by sites walking pagetables with * the mmap_lock held in read mode to protect against MADV_DONTNEED and * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd * into a null pmd and the transhuge page fault can convert a null pmd * into an hugepmd or into a regular pmd (if the hugepage allocation * fails). While holding the mmap_lock in read mode the pmd becomes * stable and stops changing under us only if it's not null and not a * transhuge pmd. When those races occurs and this function makes a * difference vs the standard pmd_none_or_clear_bad, the result is * undefined so behaving like if the pmd was none is safe (because it * can return none anyway). The compiler level barrier() is critically * important to compute the two checks atomically on the same pmdval. * * For 32bit kernels with a 64bit large pmd_t this automatically takes * care of reading the pmd atomically to avoid SMP race conditions * against pmd_populate() when the mmap_lock is hold for reading by the * caller (a special atomic read not done by "gcc" as in the generic * version above, is also needed when THP is disabled because the page * fault can populate the pmd from under us). */ static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) { pmd_t pmdval = pmd_read_atomic(pmd); /* * The barrier will stabilize the pmdval in a register or on * the stack so that it will stop changing under the code. * * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, * pmd_read_atomic is allowed to return a not atomic pmdval * (for example pointing to an hugepage that has never been * mapped in the pmd). The below checks will only care about * the low part of the pmd with 32bit PAE x86 anyway, with the * exception of pmd_none(). So the important thing is that if * the low part of the pmd is found null, the high part will * be also null or the pmd_none() check below would be * confused. */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE barrier(); #endif /* * !pmd_present() checks for pmd migration entries * * The complete check uses is_pmd_migration_entry() in linux/swapops.h * But using that requires moving current function and pmd_trans_unstable() * to linux/swapops.h to resovle dependency, which is too much code move. * * !pmd_present() is equivalent to is_pmd_migration_entry() currently, * because !pmd_present() pages can only be under migration not swapped * out. * * pmd_none() is preseved for future condition checks on pmd migration * entries and not confusing with this function name, although it is * redundant with !pmd_present(). */ if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) return 1; if (unlikely(pmd_bad(pmdval))) { pmd_clear_bad(pmd); return 1; } return 0; } /* * This is a noop if Transparent Hugepage Support is not built into * the kernel. Otherwise it is equivalent to * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in * places that already verified the pmd is not none and they want to * walk ptes while holding the mmap sem in read mode (write mode don't * need this). If THP is not enabled, the pmd can't go away under the * code even if MADV_DONTNEED runs, but if THP is enabled we need to * run a pmd_trans_unstable before walking the ptes after * split_huge_pmd returns (because it may have run when the pmd become * null, but then a page fault can map in a THP and not a regular page). */ static inline int pmd_trans_unstable(pmd_t *pmd) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE return pmd_none_or_trans_huge_or_clear_bad(pmd); #else return 0; #endif } #ifndef CONFIG_NUMA_BALANCING /* * Technically a PTE can be PROTNONE even when not doing NUMA balancing but * the only case the kernel cares is for NUMA balancing and is only ever set * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked * _PAGE_PROTNONE so by default, implement the helper as "always no". It * is the responsibility of the caller to distinguish between PROT_NONE * protections and NUMA hinting fault protections. */ static inline int pte_protnone(pte_t pte) { return 0; } static inline int pmd_protnone(pmd_t pmd) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ #endif /* CONFIG_MMU */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP #ifndef __PAGETABLE_P4D_FOLDED int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); int p4d_clear_huge(p4d_t *p4d); #else static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int p4d_clear_huge(p4d_t *p4d) { return 0; } #endif /* !__PAGETABLE_P4D_FOLDED */ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); int pud_clear_huge(pud_t *pud); int pmd_clear_huge(pmd_t *pmd); int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); int pud_free_pmd_page(pud_t *pud, unsigned long addr); int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int p4d_clear_huge(p4d_t *p4d) { return 0; } static inline int pud_clear_huge(pud_t *pud) { return 0; } static inline int pmd_clear_huge(pmd_t *pmd) { return 0; } static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) { return 0; } static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) { return 0; } static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { return 0; } #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * ARCHes with special requirements for evicting THP backing TLB entries can * implement this. Otherwise also, it can help optimize normal TLB flush in * THP regime. Stock flush_tlb_range() typically has optimization to nuke the * entire TLB if flush span is greater than a threshold, which will * likely be true for a single huge page. Thus a single THP flush will * invalidate the entire TLB which is not desirable. * e.g. see arch/arc: flush_pmd_tlb_range */ #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) #else #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() #endif #endif struct file; int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot); #ifndef CONFIG_X86_ESPFIX64 static inline void init_espfix_bsp(void) { } #endif extern void __init pgtable_cache_init(void); #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) { return true; } static inline bool arch_has_pfn_modify_check(void) { return false; } #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ /* * Architecture PAGE_KERNEL_* fallbacks * * Some architectures don't define certain PAGE_KERNEL_* flags. This is either * because they really don't support them, or the port needs to be updated to * reflect the required functionality. Below are a set of relatively safe * fallbacks, as best effort, which we can count on in lieu of the architectures * not defining them on their own yet. */ #ifndef PAGE_KERNEL_RO # define PAGE_KERNEL_RO PAGE_KERNEL #endif #ifndef PAGE_KERNEL_EXEC # define PAGE_KERNEL_EXEC PAGE_KERNEL #endif /* * Page Table Modification bits for pgtbl_mod_mask. * * These are used by the p?d_alloc_track*() set of functions an in the generic * vmalloc/ioremap code to track at which page-table levels entries have been * modified. Based on that the code can better decide when vmalloc and ioremap * mapping changes need to be synchronized to other page-tables in the system. */ #define __PGTBL_PGD_MODIFIED 0 #define __PGTBL_P4D_MODIFIED 1 #define __PGTBL_PUD_MODIFIED 2 #define __PGTBL_PMD_MODIFIED 3 #define __PGTBL_PTE_MODIFIED 4 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) /* Page-Table Modification Mask */ typedef unsigned int pgtbl_mod_mask; #endif /* !__ASSEMBLY__ */ #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) #ifdef CONFIG_PHYS_ADDR_T_64BIT /* * ZSMALLOC needs to know the highest PFN on 32-bit architectures * with physical address space extension, but falls back to * BITS_PER_LONG otherwise. */ #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition #else #define MAX_POSSIBLE_PHYSMEM_BITS 32 #endif #endif #ifndef has_transparent_hugepage #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define has_transparent_hugepage() 1 #else #define has_transparent_hugepage() 0 #endif #endif /* * On some architectures it depends on the mm if the p4d/pud or pmd * layer of the page table hierarchy is folded or not. */ #ifndef mm_p4d_folded #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) #endif #ifndef mm_pud_folded #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) #endif #ifndef mm_pmd_folded #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) #endif #ifndef p4d_offset_lockless #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) #endif #ifndef pud_offset_lockless #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) #endif #ifndef pmd_offset_lockless #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) #endif /* * p?d_leaf() - true if this entry is a final mapping to a physical address. * This differs from p?d_huge() by the fact that they are always available (if * the architecture supports large pages at the appropriate level) even * if CONFIG_HUGETLB_PAGE is not defined. * Only meaningful when called on a valid entry. */ #ifndef pgd_leaf #define pgd_leaf(x) 0 #endif #ifndef p4d_leaf #define p4d_leaf(x) 0 #endif #ifndef pud_leaf #define pud_leaf(x) 0 #endif #ifndef pmd_leaf #define pmd_leaf(x) 0 #endif #endif /* _LINUX_PGTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_TLB_H #define _ASM_X86_TLB_H #define tlb_start_vma(tlb, vma) do { } while (0) #define tlb_end_vma(tlb, vma) do { } while (0) #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #define tlb_flush tlb_flush static inline void tlb_flush(struct mmu_gather *tlb); #include <asm-generic/tlb.h> static inline void tlb_flush(struct mmu_gather *tlb) { unsigned long start = 0UL, end = TLB_FLUSH_ALL; unsigned int stride_shift = tlb_get_unmap_shift(tlb); if (!tlb->fullmm && !tlb->need_flush_all) { start = tlb->start; end = tlb->end; } flush_tlb_mm_range(tlb->mm, start, end, stride_shift, tlb->freed_tables); } /* * While x86 architecture in general requires an IPI to perform TLB * shootdown, enablement code for several hypervisors overrides * .flush_tlb_others hook in pv_mmu_ops and implements it by issuing * a hypercall. To keep software pagetable walkers safe in this case we * switch to RCU based table free (MMU_GATHER_RCU_TABLE_FREE). See the comment * below 'ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE' in include/asm-generic/tlb.h * for more details. */ static inline void __tlb_remove_table(void *table) { free_page_and_swap_cache(table); } #endif /* _ASM_X86_TLB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_X86_XSAVE_H #define __ASM_X86_XSAVE_H #include <linux/uaccess.h> #include <linux/types.h> #include <asm/processor.h> #include <asm/user.h> /* Bit 63 of XCR0 is reserved for future expansion */ #define XFEATURE_MASK_EXTEND (~(XFEATURE_MASK_FPSSE | (1ULL << 63))) #define XSTATE_CPUID 0x0000000d #define FXSAVE_SIZE 512 #define XSAVE_HDR_SIZE 64 #define XSAVE_HDR_OFFSET FXSAVE_SIZE #define XSAVE_YMM_SIZE 256 #define XSAVE_YMM_OFFSET (XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET) #define XSAVE_ALIGNMENT 64 /* All currently supported user features */ #define XFEATURE_MASK_USER_SUPPORTED (XFEATURE_MASK_FP | \ XFEATURE_MASK_SSE | \ XFEATURE_MASK_YMM | \ XFEATURE_MASK_OPMASK | \ XFEATURE_MASK_ZMM_Hi256 | \ XFEATURE_MASK_Hi16_ZMM | \ XFEATURE_MASK_PKRU | \ XFEATURE_MASK_BNDREGS | \ XFEATURE_MASK_BNDCSR) /* All currently supported supervisor features */ #define XFEATURE_MASK_SUPERVISOR_SUPPORTED (XFEATURE_MASK_PASID) /* * A supervisor state component may not always contain valuable information, * and its size may be huge. Saving/restoring such supervisor state components * at each context switch can cause high CPU and space overhead, which should * be avoided. Such supervisor state components should only be saved/restored * on demand. The on-demand dynamic supervisor features are set in this mask. * * Unlike the existing supported supervisor features, a dynamic supervisor * feature does not allocate a buffer in task->fpu, and the corresponding * supervisor state component cannot be saved/restored at each context switch. * * To support a dynamic supervisor feature, a developer should follow the * dos and don'ts as below: * - Do dynamically allocate a buffer for the supervisor state component. * - Do manually invoke the XSAVES/XRSTORS instruction to save/restore the * state component to/from the buffer. * - Don't set the bit corresponding to the dynamic supervisor feature in * IA32_XSS at run time, since it has been set at boot time. */ #define XFEATURE_MASK_DYNAMIC (XFEATURE_MASK_LBR) /* * Unsupported supervisor features. When a supervisor feature in this mask is * supported in the future, move it to the supported supervisor feature mask. */ #define XFEATURE_MASK_SUPERVISOR_UNSUPPORTED (XFEATURE_MASK_PT) /* All supervisor states including supported and unsupported states. */ #define XFEATURE_MASK_SUPERVISOR_ALL (XFEATURE_MASK_SUPERVISOR_SUPPORTED | \ XFEATURE_MASK_DYNAMIC | \ XFEATURE_MASK_SUPERVISOR_UNSUPPORTED) #ifdef CONFIG_X86_64 #define REX_PREFIX "0x48, " #else #define REX_PREFIX #endif extern u64 xfeatures_mask_all; static inline u64 xfeatures_mask_supervisor(void) { return xfeatures_mask_all & XFEATURE_MASK_SUPERVISOR_SUPPORTED; } static inline u64 xfeatures_mask_user(void) { return xfeatures_mask_all & XFEATURE_MASK_USER_SUPPORTED; } static inline u64 xfeatures_mask_dynamic(void) { if (!boot_cpu_has(X86_FEATURE_ARCH_LBR)) return XFEATURE_MASK_DYNAMIC & ~XFEATURE_MASK_LBR; return XFEATURE_MASK_DYNAMIC; } extern u64 xstate_fx_sw_bytes[USER_XSTATE_FX_SW_WORDS]; extern void __init update_regset_xstate_info(unsigned int size, u64 xstate_mask); void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr); const void *get_xsave_field_ptr(int xfeature_nr); int using_compacted_format(void); int xfeature_size(int xfeature_nr); struct membuf; void copy_xstate_to_kernel(struct membuf to, struct xregs_state *xsave); int copy_kernel_to_xstate(struct xregs_state *xsave, const void *kbuf); int copy_user_to_xstate(struct xregs_state *xsave, const void __user *ubuf); void copy_supervisor_to_kernel(struct xregs_state *xsave); void copy_dynamic_supervisor_to_kernel(struct xregs_state *xstate, u64 mask); void copy_kernel_to_dynamic_supervisor(struct xregs_state *xstate, u64 mask); /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ int validate_user_xstate_header(const struct xstate_header *hdr); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct skb_array' datastructure. * * Author: * Michael S. Tsirkin <mst@redhat.com> * * Copyright (C) 2016 Red Hat, Inc. * * Limited-size FIFO of skbs. Can be used more or less whenever * sk_buff_head can be used, except you need to know the queue size in * advance. * Implemented as a type-safe wrapper around ptr_ring. */ #ifndef _LINUX_SKB_ARRAY_H #define _LINUX_SKB_ARRAY_H 1 #ifdef __KERNEL__ #include <linux/ptr_ring.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #endif struct skb_array { struct ptr_ring ring; }; /* Might be slightly faster than skb_array_full below, but callers invoking * this in a loop must use a compiler barrier, for example cpu_relax(). */ static inline bool __skb_array_full(struct skb_array *a) { return __ptr_ring_full(&a->ring); } static inline bool skb_array_full(struct skb_array *a) { return ptr_ring_full(&a->ring); } static inline int skb_array_produce(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce(&a->ring, skb); } static inline int skb_array_produce_irq(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce_irq(&a->ring, skb); } static inline int skb_array_produce_bh(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce_bh(&a->ring, skb); } static inline int skb_array_produce_any(struct skb_array *a, struct sk_buff *skb) { return ptr_ring_produce_any(&a->ring, skb); } /* Might be slightly faster than skb_array_empty below, but only safe if the * array is never resized. Also, callers invoking this in a loop must take care * to use a compiler barrier, for example cpu_relax(). */ static inline bool __skb_array_empty(struct skb_array *a) { return __ptr_ring_empty(&a->ring); } static inline struct sk_buff *__skb_array_peek(struct skb_array *a) { return __ptr_ring_peek(&a->ring); } static inline bool skb_array_empty(struct skb_array *a) { return ptr_ring_empty(&a->ring); } static inline bool skb_array_empty_bh(struct skb_array *a) { return ptr_ring_empty_bh(&a->ring); } static inline bool skb_array_empty_irq(struct skb_array *a) { return ptr_ring_empty_irq(&a->ring); } static inline bool skb_array_empty_any(struct skb_array *a) { return ptr_ring_empty_any(&a->ring); } static inline struct sk_buff *__skb_array_consume(struct skb_array *a) { return __ptr_ring_consume(&a->ring); } static inline struct sk_buff *skb_array_consume(struct skb_array *a) { return ptr_ring_consume(&a->ring); } static inline int skb_array_consume_batched(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched(&a->ring, (void **)array, n); } static inline struct sk_buff *skb_array_consume_irq(struct skb_array *a) { return ptr_ring_consume_irq(&a->ring); } static inline int skb_array_consume_batched_irq(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched_irq(&a->ring, (void **)array, n); } static inline struct sk_buff *skb_array_consume_any(struct skb_array *a) { return ptr_ring_consume_any(&a->ring); } static inline int skb_array_consume_batched_any(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched_any(&a->ring, (void **)array, n); } static inline struct sk_buff *skb_array_consume_bh(struct skb_array *a) { return ptr_ring_consume_bh(&a->ring); } static inline int skb_array_consume_batched_bh(struct skb_array *a, struct sk_buff **array, int n) { return ptr_ring_consume_batched_bh(&a->ring, (void **)array, n); } static inline int __skb_array_len_with_tag(struct sk_buff *skb) { if (likely(skb)) { int len = skb->len; if (skb_vlan_tag_present(skb)) len += VLAN_HLEN; return len; } else { return 0; } } static inline int skb_array_peek_len(struct skb_array *a) { return PTR_RING_PEEK_CALL(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_peek_len_irq(struct skb_array *a) { return PTR_RING_PEEK_CALL_IRQ(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_peek_len_bh(struct skb_array *a) { return PTR_RING_PEEK_CALL_BH(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_peek_len_any(struct skb_array *a) { return PTR_RING_PEEK_CALL_ANY(&a->ring, __skb_array_len_with_tag); } static inline int skb_array_init(struct skb_array *a, int size, gfp_t gfp) { return ptr_ring_init(&a->ring, size, gfp); } static void __skb_array_destroy_skb(void *ptr) { kfree_skb(ptr); } static inline void skb_array_unconsume(struct skb_array *a, struct sk_buff **skbs, int n) { ptr_ring_unconsume(&a->ring, (void **)skbs, n, __skb_array_destroy_skb); } static inline int skb_array_resize(struct skb_array *a, int size, gfp_t gfp) { return ptr_ring_resize(&a->ring, size, gfp, __skb_array_destroy_skb); } static inline int skb_array_resize_multiple(struct skb_array **rings, int nrings, unsigned int size, gfp_t gfp) { BUILD_BUG_ON(offsetof(struct skb_array, ring)); return ptr_ring_resize_multiple((struct ptr_ring **)rings, nrings, size, gfp, __skb_array_destroy_skb); } static inline void skb_array_cleanup(struct skb_array *a) { ptr_ring_cleanup(&a->ring, __skb_array_destroy_skb); } #endif /* _LINUX_SKB_ARRAY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/ipc/util.h * Copyright (C) 1999 Christoph Rohland * * ipc helper functions (c) 1999 Manfred Spraul <manfred@colorfullife.com> * namespaces support. 2006 OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #ifndef _IPC_UTIL_H #define _IPC_UTIL_H #include <linux/unistd.h> #include <linux/err.h> #include <linux/ipc_namespace.h> /* * The IPC ID contains 2 separate numbers - index and sequence number. * By default, * bits 0-14: index (32k, 15 bits) * bits 15-30: sequence number (64k, 16 bits) * * When IPCMNI extension mode is turned on, the composition changes: * bits 0-23: index (16M, 24 bits) * bits 24-30: sequence number (128, 7 bits) */ #define IPCMNI_SHIFT 15 #define IPCMNI_EXTEND_SHIFT 24 #define IPCMNI_EXTEND_MIN_CYCLE (RADIX_TREE_MAP_SIZE * RADIX_TREE_MAP_SIZE) #define IPCMNI (1 << IPCMNI_SHIFT) #define IPCMNI_EXTEND (1 << IPCMNI_EXTEND_SHIFT) #ifdef CONFIG_SYSVIPC_SYSCTL extern int ipc_mni; extern int ipc_mni_shift; extern int ipc_min_cycle; #define ipcmni_seq_shift() ipc_mni_shift #define IPCMNI_IDX_MASK ((1 << ipc_mni_shift) - 1) #else /* CONFIG_SYSVIPC_SYSCTL */ #define ipc_mni IPCMNI #define ipc_min_cycle ((int)RADIX_TREE_MAP_SIZE) #define ipcmni_seq_shift() IPCMNI_SHIFT #define IPCMNI_IDX_MASK ((1 << IPCMNI_SHIFT) - 1) #endif /* CONFIG_SYSVIPC_SYSCTL */ void sem_init(void); void msg_init(void); void shm_init(void); struct ipc_namespace; struct pid_namespace; #ifdef CONFIG_POSIX_MQUEUE extern void mq_clear_sbinfo(struct ipc_namespace *ns); extern void mq_put_mnt(struct ipc_namespace *ns); #else static inline void mq_clear_sbinfo(struct ipc_namespace *ns) { } static inline void mq_put_mnt(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_SYSVIPC void sem_init_ns(struct ipc_namespace *ns); void msg_init_ns(struct ipc_namespace *ns); void shm_init_ns(struct ipc_namespace *ns); void sem_exit_ns(struct ipc_namespace *ns); void msg_exit_ns(struct ipc_namespace *ns); void shm_exit_ns(struct ipc_namespace *ns); #else static inline void sem_init_ns(struct ipc_namespace *ns) { } static inline void msg_init_ns(struct ipc_namespace *ns) { } static inline void shm_init_ns(struct ipc_namespace *ns) { } static inline void sem_exit_ns(struct ipc_namespace *ns) { } static inline void msg_exit_ns(struct ipc_namespace *ns) { } static inline void shm_exit_ns(struct ipc_namespace *ns) { } #endif /* * Structure that holds the parameters needed by the ipc operations * (see after) */ struct ipc_params { key_t key; int flg; union { size_t size; /* for shared memories */ int nsems; /* for semaphores */ } u; /* holds the getnew() specific param */ }; /* * Structure that holds some ipc operations. This structure is used to unify * the calls to sys_msgget(), sys_semget(), sys_shmget() * . routine to call to create a new ipc object. Can be one of newque, * newary, newseg * . routine to call to check permissions for a new ipc object. * Can be one of security_msg_associate, security_sem_associate, * security_shm_associate * . routine to call for an extra check if needed */ struct ipc_ops { int (*getnew)(struct ipc_namespace *, struct ipc_params *); int (*associate)(struct kern_ipc_perm *, int); int (*more_checks)(struct kern_ipc_perm *, struct ipc_params *); }; struct seq_file; struct ipc_ids; void ipc_init_ids(struct ipc_ids *ids); #ifdef CONFIG_PROC_FS void __init ipc_init_proc_interface(const char *path, const char *header, int ids, int (*show)(struct seq_file *, void *)); struct pid_namespace *ipc_seq_pid_ns(struct seq_file *); #else #define ipc_init_proc_interface(path, header, ids, show) do {} while (0) #endif #define IPC_SEM_IDS 0 #define IPC_MSG_IDS 1 #define IPC_SHM_IDS 2 #define ipcid_to_idx(id) ((id) & IPCMNI_IDX_MASK) #define ipcid_to_seqx(id) ((id) >> ipcmni_seq_shift()) #define ipcid_seq_max() (INT_MAX >> ipcmni_seq_shift()) /* must be called with ids->rwsem acquired for writing */ int ipc_addid(struct ipc_ids *, struct kern_ipc_perm *, int); /* must be called with both locks acquired. */ void ipc_rmid(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with both locks acquired. */ void ipc_set_key_private(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with ipcp locked */ int ipcperms(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp, short flg); /** * ipc_get_maxidx - get the highest assigned index * @ids: ipc identifier set * * Called with ipc_ids.rwsem held for reading. */ static inline int ipc_get_maxidx(struct ipc_ids *ids) { if (ids->in_use == 0) return -1; if (ids->in_use == ipc_mni) return ipc_mni - 1; return ids->max_idx; } /* * For allocation that need to be freed by RCU. * Objects are reference counted, they start with reference count 1. * getref increases the refcount, the putref call that reduces the recount * to 0 schedules the rcu destruction. Caller must guarantee locking. * * refcount is initialized by ipc_addid(), before that point call_rcu() * must be used. */ bool ipc_rcu_getref(struct kern_ipc_perm *ptr); void ipc_rcu_putref(struct kern_ipc_perm *ptr, void (*func)(struct rcu_head *head)); struct kern_ipc_perm *ipc_obtain_object_idr(struct ipc_ids *ids, int id); void kernel_to_ipc64_perm(struct kern_ipc_perm *in, struct ipc64_perm *out); void ipc64_perm_to_ipc_perm(struct ipc64_perm *in, struct ipc_perm *out); int ipc_update_perm(struct ipc64_perm *in, struct kern_ipc_perm *out); struct kern_ipc_perm *ipcctl_obtain_check(struct ipc_namespace *ns, struct ipc_ids *ids, int id, int cmd, struct ipc64_perm *perm, int extra_perm); static inline void ipc_update_pid(struct pid **pos, struct pid *pid) { struct pid *old = *pos; if (old != pid) { *pos = get_pid(pid); put_pid(old); } } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION int ipc_parse_version(int *cmd); #endif extern void free_msg(struct msg_msg *msg); extern struct msg_msg *load_msg(const void __user *src, size_t len); extern struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst); extern int store_msg(void __user *dest, struct msg_msg *msg, size_t len); static inline int ipc_checkid(struct kern_ipc_perm *ipcp, int id) { return ipcid_to_seqx(id) != ipcp->seq; } static inline void ipc_lock_object(struct kern_ipc_perm *perm) { spin_lock(&perm->lock); } static inline void ipc_unlock_object(struct kern_ipc_perm *perm) { spin_unlock(&perm->lock); } static inline void ipc_assert_locked_object(struct kern_ipc_perm *perm) { assert_spin_locked(&perm->lock); } static inline void ipc_unlock(struct kern_ipc_perm *perm) { ipc_unlock_object(perm); rcu_read_unlock(); } /* * ipc_valid_object() - helper to sort out IPC_RMID races for codepaths * where the respective ipc_ids.rwsem is not being held down. * Checks whether the ipc object is still around or if it's gone already, as * ipc_rmid() may have already freed the ID while the ipc lock was spinning. * Needs to be called with kern_ipc_perm.lock held -- exception made for one * checkpoint case at sys_semtimedop() as noted in code commentary. */ static inline bool ipc_valid_object(struct kern_ipc_perm *perm) { return !perm->deleted; } struct kern_ipc_perm *ipc_obtain_object_check(struct ipc_ids *ids, int id); int ipcget(struct ipc_namespace *ns, struct ipc_ids *ids, const struct ipc_ops *ops, struct ipc_params *params); void free_ipcs(struct ipc_namespace *ns, struct ipc_ids *ids, void (*free)(struct ipc_namespace *, struct kern_ipc_perm *)); static inline int sem_check_semmni(struct ipc_namespace *ns) { /* * Check semmni range [0, ipc_mni] * semmni is the last element of sem_ctls[4] array */ return ((ns->sem_ctls[3] < 0) || (ns->sem_ctls[3] > ipc_mni)) ? -ERANGE : 0; } #ifdef CONFIG_COMPAT #include <linux/compat.h> struct compat_ipc_perm { key_t key; __compat_uid_t uid; __compat_gid_t gid; __compat_uid_t cuid; __compat_gid_t cgid; compat_mode_t mode; unsigned short seq; }; void to_compat_ipc_perm(struct compat_ipc_perm *, struct ipc64_perm *); void to_compat_ipc64_perm(struct compat_ipc64_perm *, struct ipc64_perm *); int get_compat_ipc_perm(struct ipc64_perm *, struct compat_ipc_perm __user *); int get_compat_ipc64_perm(struct ipc64_perm *, struct compat_ipc64_perm __user *); static inline int compat_ipc_parse_version(int *cmd) { int version = *cmd & IPC_64; *cmd &= ~IPC_64; return version; } long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg); long compat_ksys_old_msgctl(int msqid, int cmd, void __user *uptr); long compat_ksys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); long compat_ksys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); long compat_ksys_old_shmctl(int shmid, int cmd, void __user *uptr); #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * RNG: Random Number Generator algorithms under the crypto API * * Copyright (c) 2008 Neil Horman <nhorman@tuxdriver.com> * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_RNG_H #define _CRYPTO_RNG_H #include <linux/crypto.h> struct crypto_rng; /** * struct rng_alg - random number generator definition * * @generate: The function defined by this variable obtains a * random number. The random number generator transform * must generate the random number out of the context * provided with this call, plus any additional data * if provided to the call. * @seed: Seed or reseed the random number generator. With the * invocation of this function call, the random number * generator shall become ready for generation. If the * random number generator requires a seed for setting * up a new state, the seed must be provided by the * consumer while invoking this function. The required * size of the seed is defined with @seedsize . * @set_ent: Set entropy that would otherwise be obtained from * entropy source. Internal use only. * @seedsize: The seed size required for a random number generator * initialization defined with this variable. Some * random number generators does not require a seed * as the seeding is implemented internally without * the need of support by the consumer. In this case, * the seed size is set to zero. * @base: Common crypto API algorithm data structure. */ struct rng_alg { int (*generate)(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen); int (*seed)(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); void (*set_ent)(struct crypto_rng *tfm, const u8 *data, unsigned int len); unsigned int seedsize; struct crypto_alg base; }; struct crypto_rng { struct crypto_tfm base; }; extern struct crypto_rng *crypto_default_rng; int crypto_get_default_rng(void); void crypto_put_default_rng(void); /** * DOC: Random number generator API * * The random number generator API is used with the ciphers of type * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto) */ /** * crypto_alloc_rng() -- allocate RNG handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * message digest cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for a random number generator. The returned struct * crypto_rng is the cipher handle that is required for any subsequent * API invocation for that random number generator. * * For all random number generators, this call creates a new private copy of * the random number generator that does not share a state with other * instances. The only exception is the "krng" random number generator which * is a kernel crypto API use case for the get_random_bytes() function of the * /dev/random driver. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm) { return &tfm->base; } /** * crypto_rng_alg - obtain name of RNG * @tfm: cipher handle * * Return the generic name (cra_name) of the initialized random number generator * * Return: generic name string */ static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) { return container_of(crypto_rng_tfm(tfm)->__crt_alg, struct rng_alg, base); } /** * crypto_free_rng() - zeroize and free RNG handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_rng(struct crypto_rng *tfm) { crypto_destroy_tfm(tfm, crypto_rng_tfm(tfm)); } /** * crypto_rng_generate() - get random number * @tfm: cipher handle * @src: Input buffer holding additional data, may be NULL * @slen: Length of additional data * @dst: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random * numbers using the random number generator referenced by the * cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dst, unsigned int dlen) { struct crypto_alg *alg = tfm->base.__crt_alg; int ret; crypto_stats_get(alg); ret = crypto_rng_alg(tfm)->generate(tfm, src, slen, dst, dlen); crypto_stats_rng_generate(alg, dlen, ret); return ret; } /** * crypto_rng_get_bytes() - get random number * @tfm: cipher handle * @rdata: output buffer holding the random numbers * @dlen: length of the output buffer * * This function fills the caller-allocated buffer with random numbers using the * random number generator referenced by the cipher handle. * * Return: 0 function was successful; < 0 if an error occurred */ static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { return crypto_rng_generate(tfm, NULL, 0, rdata, dlen); } /** * crypto_rng_reset() - re-initialize the RNG * @tfm: cipher handle * @seed: seed input data * @slen: length of the seed input data * * The reset function completely re-initializes the random number generator * referenced by the cipher handle by clearing the current state. The new state * is initialized with the caller provided seed or automatically, depending * on the random number generator type (the ANSI X9.31 RNG requires * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding). * The seed is provided as a parameter to this function call. The provided seed * should have the length of the seed size defined for the random number * generator as defined by crypto_rng_seedsize. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen); /** * crypto_rng_seedsize() - obtain seed size of RNG * @tfm: cipher handle * * The function returns the seed size for the random number generator * referenced by the cipher handle. This value may be zero if the random * number generator does not implement or require a reseeding. For example, * the SP800-90A DRBGs implement an automated reseeding after reaching a * pre-defined threshold. * * Return: seed size for the random number generator */ static inline int crypto_rng_seedsize(struct crypto_rng *tfm) { return crypto_rng_alg(tfm)->seedsize; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_INETDEVICE_H #define _LINUX_INETDEVICE_H #ifdef __KERNEL__ #include <linux/bitmap.h> #include <linux/if.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/rcupdate.h> #include <linux/timer.h> #include <linux/sysctl.h> #include <linux/rtnetlink.h> #include <linux/refcount.h> struct ipv4_devconf { void *sysctl; int data[IPV4_DEVCONF_MAX]; DECLARE_BITMAP(state, IPV4_DEVCONF_MAX); }; #define MC_HASH_SZ_LOG 9 struct in_device { struct net_device *dev; refcount_t refcnt; int dead; struct in_ifaddr __rcu *ifa_list;/* IP ifaddr chain */ struct ip_mc_list __rcu *mc_list; /* IP multicast filter chain */ struct ip_mc_list __rcu * __rcu *mc_hash; int mc_count; /* Number of installed mcasts */ spinlock_t mc_tomb_lock; struct ip_mc_list *mc_tomb; unsigned long mr_v1_seen; unsigned long mr_v2_seen; unsigned long mr_maxdelay; unsigned long mr_qi; /* Query Interval */ unsigned long mr_qri; /* Query Response Interval */ unsigned char mr_qrv; /* Query Robustness Variable */ unsigned char mr_gq_running; u32 mr_ifc_count; struct timer_list mr_gq_timer; /* general query timer */ struct timer_list mr_ifc_timer; /* interface change timer */ struct neigh_parms *arp_parms; struct ipv4_devconf cnf; struct rcu_head rcu_head; }; #define IPV4_DEVCONF(cnf, attr) ((cnf).data[IPV4_DEVCONF_ ## attr - 1]) #define IPV4_DEVCONF_ALL(net, attr) \ IPV4_DEVCONF((*(net)->ipv4.devconf_all), attr) static inline int ipv4_devconf_get(struct in_device *in_dev, int index) { index--; return in_dev->cnf.data[index]; } static inline void ipv4_devconf_set(struct in_device *in_dev, int index, int val) { index--; set_bit(index, in_dev->cnf.state); in_dev->cnf.data[index] = val; } static inline void ipv4_devconf_setall(struct in_device *in_dev) { bitmap_fill(in_dev->cnf.state, IPV4_DEVCONF_MAX); } #define IN_DEV_CONF_GET(in_dev, attr) \ ipv4_devconf_get((in_dev), IPV4_DEVCONF_ ## attr) #define IN_DEV_CONF_SET(in_dev, attr, val) \ ipv4_devconf_set((in_dev), IPV4_DEVCONF_ ## attr, (val)) #define IN_DEV_ANDCONF(in_dev, attr) \ (IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr) && \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_NET_ORCONF(in_dev, net, attr) \ (IPV4_DEVCONF_ALL(net, attr) || \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_ORCONF(in_dev, attr) \ IN_DEV_NET_ORCONF(in_dev, dev_net(in_dev->dev), attr) #define IN_DEV_MAXCONF(in_dev, attr) \ (max(IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr), \ IN_DEV_CONF_GET((in_dev), attr))) #define IN_DEV_FORWARD(in_dev) IN_DEV_CONF_GET((in_dev), FORWARDING) #define IN_DEV_MFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), MC_FORWARDING) #define IN_DEV_BFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), BC_FORWARDING) #define IN_DEV_RPFILTER(in_dev) IN_DEV_MAXCONF((in_dev), RP_FILTER) #define IN_DEV_SRC_VMARK(in_dev) IN_DEV_ORCONF((in_dev), SRC_VMARK) #define IN_DEV_SOURCE_ROUTE(in_dev) IN_DEV_ANDCONF((in_dev), \ ACCEPT_SOURCE_ROUTE) #define IN_DEV_ACCEPT_LOCAL(in_dev) IN_DEV_ORCONF((in_dev), ACCEPT_LOCAL) #define IN_DEV_BOOTP_RELAY(in_dev) IN_DEV_ANDCONF((in_dev), BOOTP_RELAY) #define IN_DEV_LOG_MARTIANS(in_dev) IN_DEV_ORCONF((in_dev), LOG_MARTIANS) #define IN_DEV_PROXY_ARP(in_dev) IN_DEV_ORCONF((in_dev), PROXY_ARP) #define IN_DEV_PROXY_ARP_PVLAN(in_dev) IN_DEV_CONF_GET(in_dev, PROXY_ARP_PVLAN) #define IN_DEV_SHARED_MEDIA(in_dev) IN_DEV_ORCONF((in_dev), SHARED_MEDIA) #define IN_DEV_TX_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), SEND_REDIRECTS) #define IN_DEV_SEC_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), \ SECURE_REDIRECTS) #define IN_DEV_IDTAG(in_dev) IN_DEV_CONF_GET(in_dev, TAG) #define IN_DEV_MEDIUM_ID(in_dev) IN_DEV_CONF_GET(in_dev, MEDIUM_ID) #define IN_DEV_PROMOTE_SECONDARIES(in_dev) \ IN_DEV_ORCONF((in_dev), \ PROMOTE_SECONDARIES) #define IN_DEV_ROUTE_LOCALNET(in_dev) IN_DEV_ORCONF(in_dev, ROUTE_LOCALNET) #define IN_DEV_NET_ROUTE_LOCALNET(in_dev, net) \ IN_DEV_NET_ORCONF(in_dev, net, ROUTE_LOCALNET) #define IN_DEV_RX_REDIRECTS(in_dev) \ ((IN_DEV_FORWARD(in_dev) && \ IN_DEV_ANDCONF((in_dev), ACCEPT_REDIRECTS)) \ || (!IN_DEV_FORWARD(in_dev) && \ IN_DEV_ORCONF((in_dev), ACCEPT_REDIRECTS))) #define IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) \ IN_DEV_CONF_GET((in_dev), IGNORE_ROUTES_WITH_LINKDOWN) #define IN_DEV_ARPFILTER(in_dev) IN_DEV_ORCONF((in_dev), ARPFILTER) #define IN_DEV_ARP_ACCEPT(in_dev) IN_DEV_ORCONF((in_dev), ARP_ACCEPT) #define IN_DEV_ARP_ANNOUNCE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_ANNOUNCE) #define IN_DEV_ARP_IGNORE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_IGNORE) #define IN_DEV_ARP_NOTIFY(in_dev) IN_DEV_MAXCONF((in_dev), ARP_NOTIFY) struct in_ifaddr { struct hlist_node hash; struct in_ifaddr __rcu *ifa_next; struct in_device *ifa_dev; struct rcu_head rcu_head; __be32 ifa_local; __be32 ifa_address; __be32 ifa_mask; __u32 ifa_rt_priority; __be32 ifa_broadcast; unsigned char ifa_scope; unsigned char ifa_prefixlen; __u32 ifa_flags; char ifa_label[IFNAMSIZ]; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 ifa_valid_lft; __u32 ifa_preferred_lft; unsigned long ifa_cstamp; /* created timestamp */ unsigned long ifa_tstamp; /* updated timestamp */ }; struct in_validator_info { __be32 ivi_addr; struct in_device *ivi_dev; struct netlink_ext_ack *extack; }; int register_inetaddr_notifier(struct notifier_block *nb); int unregister_inetaddr_notifier(struct notifier_block *nb); int register_inetaddr_validator_notifier(struct notifier_block *nb); int unregister_inetaddr_validator_notifier(struct notifier_block *nb); void inet_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv4_devconf *devconf); struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref); static inline struct net_device *ip_dev_find(struct net *net, __be32 addr) { return __ip_dev_find(net, addr, true); } int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b); int devinet_ioctl(struct net *net, unsigned int cmd, struct ifreq *); #ifdef CONFIG_INET int inet_gifconf(struct net_device *dev, char __user *buf, int len, int size); #else static inline int inet_gifconf(struct net_device *dev, char __user *buf, int len, int size) { return 0; } #endif void devinet_init(void); struct in_device *inetdev_by_index(struct net *, int); __be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope); __be32 inet_confirm_addr(struct net *net, struct in_device *in_dev, __be32 dst, __be32 local, int scope); struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix, __be32 mask); struct in_ifaddr *inet_lookup_ifaddr_rcu(struct net *net, __be32 addr); static inline bool inet_ifa_match(__be32 addr, const struct in_ifaddr *ifa) { return !((addr^ifa->ifa_address)&ifa->ifa_mask); } /* * Check if a mask is acceptable. */ static __inline__ bool bad_mask(__be32 mask, __be32 addr) { __u32 hmask; if (addr & (mask = ~mask)) return true; hmask = ntohl(mask); if (hmask & (hmask+1)) return true; return false; } #define in_dev_for_each_ifa_rtnl(ifa, in_dev) \ for (ifa = rtnl_dereference((in_dev)->ifa_list); ifa; \ ifa = rtnl_dereference(ifa->ifa_next)) #define in_dev_for_each_ifa_rcu(ifa, in_dev) \ for (ifa = rcu_dereference((in_dev)->ifa_list); ifa; \ ifa = rcu_dereference(ifa->ifa_next)) static inline struct in_device *__in_dev_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->ip_ptr); } static inline struct in_device *in_dev_get(const struct net_device *dev) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (in_dev) refcount_inc(&in_dev->refcnt); rcu_read_unlock(); return in_dev; } static inline struct in_device *__in_dev_get_rtnl(const struct net_device *dev) { return rtnl_dereference(dev->ip_ptr); } /* called with rcu_read_lock or rtnl held */ static inline bool ip_ignore_linkdown(const struct net_device *dev) { struct in_device *in_dev; bool rc = false; in_dev = rcu_dereference_rtnl(dev->ip_ptr); if (in_dev && IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev)) rc = true; return rc; } static inline struct neigh_parms *__in_dev_arp_parms_get_rcu(const struct net_device *dev) { struct in_device *in_dev = __in_dev_get_rcu(dev); return in_dev ? in_dev->arp_parms : NULL; } void in_dev_finish_destroy(struct in_device *idev); static inline void in_dev_put(struct in_device *idev) { if (refcount_dec_and_test(&idev->refcnt)) in_dev_finish_destroy(idev); } #define __in_dev_put(idev) refcount_dec(&(idev)->refcnt) #define in_dev_hold(idev) refcount_inc(&(idev)->refcnt) #endif /* __KERNEL__ */ static __inline__ __be32 inet_make_mask(int logmask) { if (logmask) return htonl(~((1U<<(32-logmask))-1)); return 0; } static __inline__ int inet_mask_len(__be32 mask) { __u32 hmask = ntohl(mask); if (!hmask) return 0; return 32 - ffz(~hmask); } #endif /* _LINUX_INETDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 /* * Written by: Matthew Dobson, IBM Corporation * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to <colpatch@us.ibm.com> */ #ifndef _ASM_X86_TOPOLOGY_H #define _ASM_X86_TOPOLOGY_H /* * to preserve the visibility of NUMA_NO_NODE definition, * moved to there from here. May be used independent of * CONFIG_NUMA. */ #include <linux/numa.h> #ifdef CONFIG_NUMA #include <linux/cpumask.h> #include <asm/mpspec.h> #include <asm/percpu.h> /* Mappings between logical cpu number and node number */ DECLARE_EARLY_PER_CPU(int, x86_cpu_to_node_map); #ifdef CONFIG_DEBUG_PER_CPU_MAPS /* * override generic percpu implementation of cpu_to_node */ extern int __cpu_to_node(int cpu); #define cpu_to_node __cpu_to_node extern int early_cpu_to_node(int cpu); #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Same function but used if called before per_cpu areas are setup */ static inline int early_cpu_to_node(int cpu) { return early_per_cpu(x86_cpu_to_node_map, cpu); } #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ /* Mappings between node number and cpus on that node. */ extern cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; #ifdef CONFIG_DEBUG_PER_CPU_MAPS extern const struct cpumask *cpumask_of_node(int node); #else /* Returns a pointer to the cpumask of CPUs on Node 'node'. */ static inline const struct cpumask *cpumask_of_node(int node) { return node_to_cpumask_map[node]; } #endif extern void setup_node_to_cpumask_map(void); #define pcibus_to_node(bus) __pcibus_to_node(bus) extern int __node_distance(int, int); #define node_distance(a, b) __node_distance(a, b) #else /* !CONFIG_NUMA */ static inline int numa_node_id(void) { return 0; } /* * indicate override: */ #define numa_node_id numa_node_id static inline int early_cpu_to_node(int cpu) { return 0; } static inline void setup_node_to_cpumask_map(void) { } #endif #include <asm-generic/topology.h> extern const struct cpumask *cpu_coregroup_mask(int cpu); #define topology_logical_package_id(cpu) (cpu_data(cpu).logical_proc_id) #define topology_physical_package_id(cpu) (cpu_data(cpu).phys_proc_id) #define topology_logical_die_id(cpu) (cpu_data(cpu).logical_die_id) #define topology_die_id(cpu) (cpu_data(cpu).cpu_die_id) #define topology_core_id(cpu) (cpu_data(cpu).cpu_core_id) extern unsigned int __max_die_per_package; #ifdef CONFIG_SMP #define topology_die_cpumask(cpu) (per_cpu(cpu_die_map, cpu)) #define topology_core_cpumask(cpu) (per_cpu(cpu_core_map, cpu)) #define topology_sibling_cpumask(cpu) (per_cpu(cpu_sibling_map, cpu)) extern unsigned int __max_logical_packages; #define topology_max_packages() (__max_logical_packages) static inline int topology_max_die_per_package(void) { return __max_die_per_package; } extern int __max_smt_threads; static inline int topology_max_smt_threads(void) { return __max_smt_threads; } int topology_update_package_map(unsigned int apicid, unsigned int cpu); int topology_update_die_map(unsigned int dieid, unsigned int cpu); int topology_phys_to_logical_pkg(unsigned int pkg); int topology_phys_to_logical_die(unsigned int die, unsigned int cpu); bool topology_is_primary_thread(unsigned int cpu); bool topology_smt_supported(void); #else #define topology_max_packages() (1) static inline int topology_update_package_map(unsigned int apicid, unsigned int cpu) { return 0; } static inline int topology_update_die_map(unsigned int dieid, unsigned int cpu) { return 0; } static inline int topology_phys_to_logical_pkg(unsigned int pkg) { return 0; } static inline int topology_phys_to_logical_die(unsigned int die, unsigned int cpu) { return 0; } static inline int topology_max_die_per_package(void) { return 1; } static inline int topology_max_smt_threads(void) { return 1; } static inline bool topology_is_primary_thread(unsigned int cpu) { return true; } static inline bool topology_smt_supported(void) { return false; } #endif static inline void arch_fix_phys_package_id(int num, u32 slot) { } struct pci_bus; int x86_pci_root_bus_node(int bus); void x86_pci_root_bus_resources(int bus, struct list_head *resources); extern bool x86_topology_update; #ifdef CONFIG_SCHED_MC_PRIO #include <asm/percpu.h> DECLARE_PER_CPU_READ_MOSTLY(int, sched_core_priority); extern unsigned int __read_mostly sysctl_sched_itmt_enabled; /* Interface to set priority of a cpu */ void sched_set_itmt_core_prio(int prio, int core_cpu); /* Interface to notify scheduler that system supports ITMT */ int sched_set_itmt_support(void); /* Interface to notify scheduler that system revokes ITMT support */ void sched_clear_itmt_support(void); #else /* CONFIG_SCHED_MC_PRIO */ #define sysctl_sched_itmt_enabled 0 static inline void sched_set_itmt_core_prio(int prio, int core_cpu) { } static inline int sched_set_itmt_support(void) { return 0; } static inline void sched_clear_itmt_support(void) { } #endif /* CONFIG_SCHED_MC_PRIO */ #if defined(CONFIG_SMP) && defined(CONFIG_X86_64) #include <asm/cpufeature.h> DECLARE_STATIC_KEY_FALSE(arch_scale_freq_key); #define arch_scale_freq_invariant() static_branch_likely(&arch_scale_freq_key) DECLARE_PER_CPU(unsigned long, arch_freq_scale); static inline long arch_scale_freq_capacity(int cpu) { return per_cpu(arch_freq_scale, cpu); } #define arch_scale_freq_capacity arch_scale_freq_capacity extern void arch_scale_freq_tick(void); #define arch_scale_freq_tick arch_scale_freq_tick extern void arch_set_max_freq_ratio(bool turbo_disabled); #else static inline void arch_set_max_freq_ratio(bool turbo_disabled) { } #endif #endif /* _ASM_X86_TOPOLOGY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include <linux/cgroup.h> #include <linux/vm_event_item.h> #include <linux/hardirq.h> #include <linux/jump_label.h> #include <linux/page_counter.h> #include <linux/vmpressure.h> #include <linux/eventfd.h> #include <linux/mm.h> #include <linux/vmstat.h> #include <linux/writeback.h> #include <linux/page-flags.h> struct mem_cgroup; struct obj_cgroup; struct page; struct mm_struct; struct kmem_cache; /* Cgroup-specific page state, on top of universal node page state */ enum memcg_stat_item { MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, MEMCG_SOCK, MEMCG_PERCPU_B, MEMCG_NR_STAT, }; enum memcg_memory_event { MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM, MEMCG_OOM_KILL, MEMCG_SWAP_HIGH, MEMCG_SWAP_MAX, MEMCG_SWAP_FAIL, MEMCG_NR_MEMORY_EVENTS, }; struct mem_cgroup_reclaim_cookie { pg_data_t *pgdat; unsigned int generation; }; #ifdef CONFIG_MEMCG #define MEM_CGROUP_ID_SHIFT 16 #define MEM_CGROUP_ID_MAX USHRT_MAX struct mem_cgroup_id { int id; refcount_t ref; }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremented by the number of pages. This counter is used * to trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_NTARGETS, }; struct memcg_vmstats_percpu { long stat[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct mem_cgroup_reclaim_iter { struct mem_cgroup *position; /* scan generation, increased every round-trip */ unsigned int generation; }; struct lruvec_stat { long count[NR_VM_NODE_STAT_ITEMS]; }; /* * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, * which have elements charged to this memcg. */ struct memcg_shrinker_map { struct rcu_head rcu; unsigned long map[]; }; /* * per-node information in memory controller. */ struct mem_cgroup_per_node { struct lruvec lruvec; /* Legacy local VM stats */ struct lruvec_stat __percpu *lruvec_stat_local; /* Subtree VM stats (batched updates) */ struct lruvec_stat __percpu *lruvec_stat_cpu; atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter iter; struct memcg_shrinker_map __rcu *shrinker_map; struct rb_node tree_node; /* RB tree node */ unsigned long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; unsigned long threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; enum memcg_kmem_state { KMEM_NONE, KMEM_ALLOCATED, KMEM_ONLINE, }; #if defined(CONFIG_SMP) struct memcg_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define MEMCG_PADDING(name) struct memcg_padding name; #else #define MEMCG_PADDING(name) #endif /* * Remember four most recent foreign writebacks with dirty pages in this * cgroup. Inode sharing is expected to be uncommon and, even if we miss * one in a given round, we're likely to catch it later if it keeps * foreign-dirtying, so a fairly low count should be enough. * * See mem_cgroup_track_foreign_dirty_slowpath() for details. */ #define MEMCG_CGWB_FRN_CNT 4 struct memcg_cgwb_frn { u64 bdi_id; /* bdi->id of the foreign inode */ int memcg_id; /* memcg->css.id of foreign inode */ u64 at; /* jiffies_64 at the time of dirtying */ struct wb_completion done; /* tracks in-flight foreign writebacks */ }; /* * Bucket for arbitrarily byte-sized objects charged to a memory * cgroup. The bucket can be reparented in one piece when the cgroup * is destroyed, without having to round up the individual references * of all live memory objects in the wild. */ struct obj_cgroup { struct percpu_ref refcnt; struct mem_cgroup *memcg; atomic_t nr_charged_bytes; union { struct list_head list; /* protected by objcg_lock */ struct rcu_head rcu; }; }; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. */ struct mem_cgroup { struct cgroup_subsys_state css; /* Private memcg ID. Used to ID objects that outlive the cgroup */ struct mem_cgroup_id id; /* Accounted resources */ struct page_counter memory; /* Both v1 & v2 */ union { struct page_counter swap; /* v2 only */ struct page_counter memsw; /* v1 only */ }; /* Legacy consumer-oriented counters */ struct page_counter kmem; /* v1 only */ struct page_counter tcpmem; /* v1 only */ /* Range enforcement for interrupt charges */ struct work_struct high_work; unsigned long soft_limit; /* vmpressure notifications */ struct vmpressure vmpressure; /* * Should the accounting and control be hierarchical, per subtree? */ bool use_hierarchy; /* * Should the OOM killer kill all belonging tasks, had it kill one? */ bool oom_group; /* protected by memcg_oom_lock */ bool oom_lock; int under_oom; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* memory.events and memory.events.local */ struct cgroup_file events_file; struct cgroup_file events_local_file; /* handle for "memory.swap.events" */ struct cgroup_file swap_events_file; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* taken only while moving_account > 0 */ spinlock_t move_lock; unsigned long move_lock_flags; MEMCG_PADDING(_pad1_); atomic_long_t vmstats[MEMCG_NR_STAT]; atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; /* memory.events */ atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; unsigned long socket_pressure; /* Legacy tcp memory accounting */ bool tcpmem_active; int tcpmem_pressure; #ifdef CONFIG_MEMCG_KMEM /* Index in the kmem_cache->memcg_params.memcg_caches array */ int kmemcg_id; enum memcg_kmem_state kmem_state; struct obj_cgroup __rcu *objcg; /* list of inherited objcgs, protected by objcg_lock */ struct list_head objcg_list; #endif MEMCG_PADDING(_pad2_); /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; struct task_struct *move_lock_task; /* Legacy local VM stats and events */ struct memcg_vmstats_percpu __percpu *vmstats_local; /* Subtree VM stats and events (batched updates) */ struct memcg_vmstats_percpu __percpu *vmstats_percpu; #ifdef CONFIG_CGROUP_WRITEBACK struct list_head cgwb_list; struct wb_domain cgwb_domain; struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; #endif /* List of events which userspace want to receive */ struct list_head event_list; spinlock_t event_list_lock; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ }; /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define MEMCG_CHARGE_BATCH 32U extern struct mem_cgroup *root_mem_cgroup; static __always_inline bool memcg_stat_item_in_bytes(int idx) { if (idx == MEMCG_PERCPU_B) return true; return vmstat_item_in_bytes(idx); } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } static inline bool mem_cgroup_disabled(void) { return !cgroup_subsys_enabled(memory_cgrp_subsys); } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; if (mem_cgroup_disabled()) return; /* * There is no reclaim protection applied to a targeted reclaim. * We are special casing this specific case here because * mem_cgroup_protected calculation is not robust enough to keep * the protection invariant for calculated effective values for * parallel reclaimers with different reclaim target. This is * especially a problem for tail memcgs (as they have pages on LRU) * which would want to have effective values 0 for targeted reclaim * but a different value for external reclaim. * * Example * Let's have global and A's reclaim in parallel: * | * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) * |\ * | C (low = 1G, usage = 2.5G) * B (low = 1G, usage = 0.5G) * * For the global reclaim * A.elow = A.low * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow * C.elow = min(C.usage, C.low) * * With the effective values resetting we have A reclaim * A.elow = 0 * B.elow = B.low * C.elow = C.low * * If the global reclaim races with A's reclaim then * B.elow = C.elow = 0 because children_low_usage > A.elow) * is possible and reclaiming B would be violating the protection. * */ if (root == memcg) return; *min = READ_ONCE(memcg->memory.emin); *low = READ_ONCE(memcg->memory.elow); } void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg); static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support * protection. */ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.emin) >= page_counter_read(&memcg->memory); } int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); void mem_cgroup_uncharge(struct page *page); void mem_cgroup_uncharge_list(struct list_head *page_list); void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); static struct mem_cgroup_per_node * mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) { return memcg->nodeinfo[nid]; } /** * mem_cgroup_lruvec - get the lru list vector for a memcg & node * @memcg: memcg of the wanted lruvec * * Returns the lru list vector holding pages for a given @memcg & * @node combination. This can be the node lruvec, if the memory * controller is disabled. */ static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { struct mem_cgroup_per_node *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &pgdat->__lruvec; goto out; } if (!memcg) memcg = root_mem_cgroup; mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->pgdat here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->pgdat != pgdat)) lruvec->pgdat = pgdat; return lruvec; } struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ return css ? container_of(css, struct mem_cgroup, css) : NULL; } static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) { return percpu_ref_tryget(&objcg->refcnt); } static inline void obj_cgroup_get(struct obj_cgroup *objcg) { percpu_ref_get(&objcg->refcnt); } static inline void obj_cgroup_put(struct obj_cgroup *objcg) { percpu_ref_put(&objcg->refcnt); } /* * After the initialization objcg->memcg is always pointing at * a valid memcg, but can be atomically swapped to the parent memcg. * * The caller must ensure that the returned memcg won't be released: * e.g. acquire the rcu_read_lock or css_set_lock. */ static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) { return READ_ONCE(objcg->memcg); } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { if (memcg) css_put(&memcg->css); } #define mem_cgroup_from_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); int mem_cgroup_scan_tasks(struct mem_cgroup *, int (*)(struct task_struct *, void *), void *); static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return 0; return memcg->id.id; } struct mem_cgroup *mem_cgroup_from_id(unsigned short id); static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return mem_cgroup_from_css(seq_css(m)); } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { struct mem_cgroup_per_node *mz; if (mem_cgroup_disabled()) return NULL; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return mz->memcg; } /** * parent_mem_cgroup - find the accounting parent of a memcg * @memcg: memcg whose parent to find * * Returns the parent memcg, or NULL if this is the root or the memory * controller is in legacy no-hierarchy mode. */ static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->memory.parent) return NULL; return mem_cgroup_from_counter(memcg->memory.parent, memory); } static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) { if (root == memcg) return true; if (!root->use_hierarchy) return false; return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match = false; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (task_memcg) match = mem_cgroup_is_descendant(task_memcg, memcg); rcu_read_unlock(); return match; } struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); ino_t page_cgroup_ino(struct page *page); static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return true; return !!(memcg->css.flags & CSS_ONLINE); } /* * For memory reclaim. */ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages); static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { struct mem_cgroup_per_node *mz; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); } void mem_cgroup_handle_over_high(void); unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); unsigned long mem_cgroup_size(struct mem_cgroup *memcg); void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p); void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); static inline void mem_cgroup_enter_user_fault(void) { WARN_ON(current->in_user_fault); current->in_user_fault = 1; } static inline void mem_cgroup_exit_user_fault(void) { WARN_ON(!current->in_user_fault); current->in_user_fault = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_in_oom; } bool mem_cgroup_oom_synchronize(bool wait); struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain); void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); #ifdef CONFIG_MEMCG_SWAP extern bool cgroup_memory_noswap; #endif struct mem_cgroup *lock_page_memcg(struct page *page); void __unlock_page_memcg(struct mem_cgroup *memcg); void unlock_page_memcg(struct page *page); /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { long x = atomic_long_read(&memcg->vmstats[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { long x = 0; int cpu; for_each_possible_cpu(cpu) x += per_cpu(memcg->vmstats_local->stat[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_state(memcg, idx, val); local_irq_restore(flags); } /** * mod_memcg_page_state - update page state statistics * @page: the page * @idx: page state item to account * @val: number of pages (positive or negative) * * The @page must be locked or the caller must use lock_page_memcg() * to prevent double accounting when the page is concurrently being * moved to another memcg: * * lock_page(page) or lock_page_memcg(page) * if (TestClearPageState(page)) * mod_memcg_page_state(page, state, -1); * unlock_page(page) or unlock_page_memcg(page) * * Kernel pages are an exception to this, since they'll never move. */ static inline void __mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) __mod_memcg_state(page->mem_cgroup, idx, val); } static inline void mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) mod_memcg_state(page->mem_cgroup, idx, val); } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); x = atomic_long_read(&pn->lruvec_stat[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x = 0; int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); for_each_possible_cpu(cpu) x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); void mod_memcg_obj_state(void *p, int idx, int val); static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_slab_state(p, idx, val); local_irq_restore(flags); } static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { struct page *head = compound_head(page); /* rmap on tail pages */ pg_data_t *pgdat = page_pgdat(page); struct lruvec *lruvec; /* Untracked pages have no memcg, no lruvec. Update only the node */ if (!head->mem_cgroup) { __mod_node_page_state(pgdat, idx, val); return; } lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); __mod_lruvec_state(lruvec, idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_page_state(page, idx, val); local_irq_restore(flags); } unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned); void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count); static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { unsigned long flags; local_irq_save(flags); __count_memcg_events(memcg, idx, count); local_irq_restore(flags); } static inline void count_memcg_page_event(struct page *page, enum vm_event_item idx) { if (page->mem_cgroup) count_memcg_events(page->mem_cgroup, idx, 1); } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) count_memcg_events(memcg, idx, 1); rcu_read_unlock(); } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || event == MEMCG_SWAP_FAIL; atomic_long_inc(&memcg->memory_events_local[event]); if (!swap_event) cgroup_file_notify(&memcg->events_local_file); do { atomic_long_inc(&memcg->memory_events[event]); if (swap_event) cgroup_file_notify(&memcg->swap_events_file); else cgroup_file_notify(&memcg->events_file); if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) break; if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) break; } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) memcg_memory_event(memcg, event); rcu_read_unlock(); } void split_page_memcg(struct page *head, unsigned int nr); #else /* CONFIG_MEMCG */ #define MEM_CGROUP_ID_SHIFT 0 #define MEM_CGROUP_ID_MAX 0 struct mem_cgroup; static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return true; } static inline bool mem_cgroup_disabled(void) { return true; } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; } static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg) { } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { return false; } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { return false; } static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline void mem_cgroup_uncharge(struct page *page) { } static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { } static inline void mem_cgroup_migrate(struct page *old, struct page *new) { } static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) { return NULL; } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg) { return 0; } static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { return 0; } static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) { WARN_ON_ONCE(id); /* XXX: This should always return root_mem_cgroup */ return NULL; } static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return NULL; } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { return NULL; } static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { return true; } static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { return 0; } static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) { return 0; } static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) { return 0; } static inline void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) { } static inline void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) { } static inline struct mem_cgroup *lock_page_memcg(struct page *page) { return NULL; } static inline void __unlock_page_memcg(struct mem_cgroup *memcg) { } static inline void unlock_page_memcg(struct page *page) { } static inline void mem_cgroup_handle_over_high(void) { } static inline void mem_cgroup_enter_user_fault(void) { } static inline void mem_cgroup_exit_user_fault(void) { } static inline bool task_in_memcg_oom(struct task_struct *p) { return false; } static inline bool mem_cgroup_oom_synchronize(bool wait) { return false; } static inline struct mem_cgroup *mem_cgroup_get_oom_group( struct task_struct *victim, struct mem_cgroup *oom_domain) { return NULL; } static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) { } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { return 0; } static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { return 0; } static inline void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void __mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline void mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { } static inline void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { mod_node_page_state(page_pgdat(page), idx, val); } static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_memcg_obj_state(void *p, int idx, int val) { } static inline unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned) { return 0; } static inline void split_page_memcg(struct page *head, unsigned int nr) { } static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void count_memcg_page_event(struct page *page, int idx) { } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { } #endif /* CONFIG_MEMCG */ /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, -1); } static inline void __inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, 1); } static inline void __dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, -1); } static inline void __inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, 1); } static inline void __dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, -1); } static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, 1); } static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, -1); } static inline void inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, 1); } static inline void dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, -1); } static inline void inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, 1); } static inline void dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, -1); } static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) { struct mem_cgroup *memcg; memcg = lruvec_memcg(lruvec); if (!memcg) return NULL; memcg = parent_mem_cgroup(memcg); if (!memcg) return NULL; return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); } #ifdef CONFIG_CGROUP_WRITEBACK struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback); void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, struct bdi_writeback *wb); static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { if (mem_cgroup_disabled()) return; if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) mem_cgroup_track_foreign_dirty_slowpath(page, wb); } void mem_cgroup_flush_foreign(struct bdi_writeback *wb); #else /* CONFIG_CGROUP_WRITEBACK */ static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) { return NULL; } static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback) { } static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { } static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) { } #endif /* CONFIG_CGROUP_WRITEBACK */ struct sock; bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); #ifdef CONFIG_MEMCG extern struct static_key_false memcg_sockets_enabled_key; #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) void mem_cgroup_sk_alloc(struct sock *sk); void mem_cgroup_sk_free(struct sock *sk); static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) return true; do { if (time_before(jiffies, memcg->socket_pressure)) return true; } while ((memcg = parent_mem_cgroup(memcg))); return false; } extern int memcg_expand_shrinker_maps(int new_id); extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); #else #define mem_cgroup_sockets_enabled 0 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; static inline void mem_cgroup_sk_free(struct sock *sk) { }; static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { return false; } static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { } #endif #ifdef CONFIG_MEMCG_KMEM int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages); void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); void __memcg_kmem_uncharge_page(struct page *page, int order); struct obj_cgroup *get_obj_cgroup_from_current(void); int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); extern struct static_key_false memcg_kmem_enabled_key; extern int memcg_nr_cache_ids; void memcg_get_cache_ids(void); void memcg_put_cache_ids(void); /* * Helper macro to loop through all memcg-specific caches. Callers must still * check if the cache is valid (it is either valid or NULL). * the slab_mutex must be held when looping through those caches */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) static inline bool memcg_kmem_enabled(void) { return static_branch_likely(&memcg_kmem_enabled_key); } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { if (memcg_kmem_enabled()) return __memcg_kmem_charge_page(page, gfp, order); return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge_page(page, order); } static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages) { if (memcg_kmem_enabled()) return __memcg_kmem_charge(memcg, gfp, nr_pages); return 0; } static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge(memcg, nr_pages); } /* * helper for accessing a memcg's index. It will be used as an index in the * child cache array in kmem_cache, and also to derive its name. This function * will return -1 when this is not a kmem-limited memcg. */ static inline int memcg_cache_id(struct mem_cgroup *memcg) { return memcg ? memcg->kmemcg_id : -1; } struct mem_cgroup *mem_cgroup_from_obj(void *p); #else static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { } static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void __memcg_kmem_uncharge_page(struct page *page, int order) { } #define for_each_memcg_cache_index(_idx) \ for (; NULL; ) static inline bool memcg_kmem_enabled(void) { return false; } static inline int memcg_cache_id(struct mem_cgroup *memcg) { return -1; } static inline void memcg_get_cache_ids(void) { } static inline void memcg_put_cache_ids(void) { } static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) { return NULL; } #endif /* CONFIG_MEMCG_KMEM */ #endif /* _LINUX_MEMCONTROL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ #ifndef __LINUX_OVERFLOW_H #define __LINUX_OVERFLOW_H #include <linux/compiler.h> #include <linux/limits.h> /* * In the fallback code below, we need to compute the minimum and * maximum values representable in a given type. These macros may also * be useful elsewhere, so we provide them outside the * COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW block. * * It would seem more obvious to do something like * * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0) * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0) * * Unfortunately, the middle expressions, strictly speaking, have * undefined behaviour, and at least some versions of gcc warn about * the type_max expression (but not if -fsanitize=undefined is in * effect; in that case, the warning is deferred to runtime...). * * The slightly excessive casting in type_min is to make sure the * macros also produce sensible values for the exotic type _Bool. [The * overflow checkers only almost work for _Bool, but that's * a-feature-not-a-bug, since people shouldn't be doing arithmetic on * _Bools. Besides, the gcc builtins don't allow _Bool* as third * argument.] * * Idea stolen from * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html - * credit to Christian Biere. */ #define is_signed_type(type) (((type)(-1)) < (type)1) #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type))) #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T))) #define type_min(T) ((T)((T)-type_max(T)-(T)1)) /* * Avoids triggering -Wtype-limits compilation warning, * while using unsigned data types to check a < 0. */ #define is_non_negative(a) ((a) > 0 || (a) == 0) #define is_negative(a) (!(is_non_negative(a))) /* * Allows for effectively applying __must_check to a macro so we can have * both the type-agnostic benefits of the macros while also being able to * enforce that the return value is, in fact, checked. */ static inline bool __must_check __must_check_overflow(bool overflow) { return unlikely(overflow); } #ifdef COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW /* * For simplicity and code hygiene, the fallback code below insists on * a, b and *d having the same type (similar to the min() and max() * macros), whereas gcc's type-generic overflow checkers accept * different types. Hence we don't just make check_add_overflow an * alias for __builtin_add_overflow, but add type checks similar to * below. */ #define check_add_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_add_overflow(__a, __b, __d); \ })) #define check_sub_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_sub_overflow(__a, __b, __d); \ })) #define check_mul_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_mul_overflow(__a, __b, __d); \ })) #else /* Checking for unsigned overflow is relatively easy without causing UB. */ #define __unsigned_add_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a + __b; \ *__d < __a; \ }) #define __unsigned_sub_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a - __b; \ __a < __b; \ }) /* * If one of a or b is a compile-time constant, this avoids a division. */ #define __unsigned_mul_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a * __b; \ __builtin_constant_p(__b) ? \ __b > 0 && __a > type_max(typeof(__a)) / __b : \ __a > 0 && __b > type_max(typeof(__b)) / __a; \ }) /* * For signed types, detecting overflow is much harder, especially if * we want to avoid UB. But the interface of these macros is such that * we must provide a result in *d, and in fact we must produce the * result promised by gcc's builtins, which is simply the possibly * wrapped-around value. Fortunately, we can just formally do the * operations in the widest relevant unsigned type (u64) and then * truncate the result - gcc is smart enough to generate the same code * with and without the (u64) casts. */ /* * Adding two signed integers can overflow only if they have the same * sign, and overflow has happened iff the result has the opposite * sign. */ #define __signed_add_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a + (u64)__b; \ (((~(__a ^ __b)) & (*__d ^ __a)) \ & type_min(typeof(__a))) != 0; \ }) /* * Subtraction is similar, except that overflow can now happen only * when the signs are opposite. In this case, overflow has happened if * the result has the opposite sign of a. */ #define __signed_sub_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a - (u64)__b; \ ((((__a ^ __b)) & (*__d ^ __a)) \ & type_min(typeof(__a))) != 0; \ }) /* * Signed multiplication is rather hard. gcc always follows C99, so * division is truncated towards 0. This means that we can write the * overflow check like this: * * (a > 0 && (b > MAX/a || b < MIN/a)) || * (a < -1 && (b > MIN/a || b < MAX/a) || * (a == -1 && b == MIN) * * The redundant casts of -1 are to silence an annoying -Wtype-limits * (included in -Wextra) warning: When the type is u8 or u16, the * __b_c_e in check_mul_overflow obviously selects * __unsigned_mul_overflow, but unfortunately gcc still parses this * code and warns about the limited range of __b. */ #define __signed_mul_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ typeof(a) __tmax = type_max(typeof(a)); \ typeof(a) __tmin = type_min(typeof(a)); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a * (u64)__b; \ (__b > 0 && (__a > __tmax/__b || __a < __tmin/__b)) || \ (__b < (typeof(__b))-1 && (__a > __tmin/__b || __a < __tmax/__b)) || \ (__b == (typeof(__b))-1 && __a == __tmin); \ }) #define check_add_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_add_overflow(a, b, d), \ __unsigned_add_overflow(a, b, d))) #define check_sub_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_sub_overflow(a, b, d), \ __unsigned_sub_overflow(a, b, d))) #define check_mul_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_mul_overflow(a, b, d), \ __unsigned_mul_overflow(a, b, d))) #endif /* COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW */ /** check_shl_overflow() - Calculate a left-shifted value and check overflow * * @a: Value to be shifted * @s: How many bits left to shift * @d: Pointer to where to store the result * * Computes *@d = (@a << @s) * * Returns true if '*d' cannot hold the result or when 'a << s' doesn't * make sense. Example conditions: * - 'a << s' causes bits to be lost when stored in *d. * - 's' is garbage (e.g. negative) or so large that the result of * 'a << s' is guaranteed to be 0. * - 'a' is negative. * - 'a << s' sets the sign bit, if any, in '*d'. * * '*d' will hold the results of the attempted shift, but is not * considered "safe for use" if false is returned. */ #define check_shl_overflow(a, s, d) __must_check_overflow(({ \ typeof(a) _a = a; \ typeof(s) _s = s; \ typeof(d) _d = d; \ u64 _a_full = _a; \ unsigned int _to_shift = \ is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \ *_d = (_a_full << _to_shift); \ (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \ (*_d >> _to_shift) != _a); \ })) /** * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX * * @factor1: first factor * @factor2: second factor * * Returns: calculate @factor1 * @factor2, both promoted to size_t, * with any overflow causing the return value to be SIZE_MAX. The * lvalue must be size_t to avoid implicit type conversion. */ static inline size_t __must_check size_mul(size_t factor1, size_t factor2) { size_t bytes; if (check_mul_overflow(factor1, factor2, &bytes)) return SIZE_MAX; return bytes; } /** * size_add() - Calculate size_t addition with saturation at SIZE_MAX * * @addend1: first addend * @addend2: second addend * * Returns: calculate @addend1 + @addend2, both promoted to size_t, * with any overflow causing the return value to be SIZE_MAX. The * lvalue must be size_t to avoid implicit type conversion. */ static inline size_t __must_check size_add(size_t addend1, size_t addend2) { size_t bytes; if (check_add_overflow(addend1, addend2, &bytes)) return SIZE_MAX; return bytes; } /** * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX * * @minuend: value to subtract from * @subtrahend: value to subtract from @minuend * * Returns: calculate @minuend - @subtrahend, both promoted to size_t, * with any overflow causing the return value to be SIZE_MAX. For * composition with the size_add() and size_mul() helpers, neither * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX). * The lvalue must be size_t to avoid implicit type conversion. */ static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend) { size_t bytes; if (minuend == SIZE_MAX || subtrahend == SIZE_MAX || check_sub_overflow(minuend, subtrahend, &bytes)) return SIZE_MAX; return bytes; } /** * array_size() - Calculate size of 2-dimensional array. * * @a: dimension one * @b: dimension two * * Calculates size of 2-dimensional array: @a * @b. * * Returns: number of bytes needed to represent the array or SIZE_MAX on * overflow. */ #define array_size(a, b) size_mul(a, b) /** * array3_size() - Calculate size of 3-dimensional array. * * @a: dimension one * @b: dimension two * @c: dimension three * * Calculates size of 3-dimensional array: @a * @b * @c. * * Returns: number of bytes needed to represent the array or SIZE_MAX on * overflow. */ #define array3_size(a, b, c) size_mul(size_mul(a, b), c) /** * flex_array_size() - Calculate size of a flexible array member * within an enclosing structure. * * @p: Pointer to the structure. * @member: Name of the flexible array member. * @count: Number of elements in the array. * * Calculates size of a flexible array of @count number of @member * elements, at the end of structure @p. * * Return: number of bytes needed or SIZE_MAX on overflow. */ #define flex_array_size(p, member, count) \ size_mul(count, \ sizeof(*(p)->member) + __must_be_array((p)->member)) /** * struct_size() - Calculate size of structure with trailing flexible array. * * @p: Pointer to the structure. * @member: Name of the array member. * @count: Number of elements in the array. * * Calculates size of memory needed for structure @p followed by an * array of @count number of @member elements. * * Return: number of bytes needed or SIZE_MAX on overflow. */ #define struct_size(p, member, count) \ size_add(sizeof(*(p)), flex_array_size(p, member, count)) #endif /* __LINUX_OVERFLOW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[]; /* array of sock pointers */ }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse && reuse->has_conns) ret = true; rcu_read_unlock(); return ret; } void reuseport_has_conns_set(struct sock *sk); #endif /* _SOCK_REUSEPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_BL_H #define _LINUX_RCULIST_BL_H /* * RCU-protected bl list version. See include/linux/list_bl.h. */ #include <linux/list_bl.h> #include <linux/rcupdate.h> static inline void hlist_bl_set_first_rcu(struct hlist_bl_head *h, struct hlist_bl_node *n) { LIST_BL_BUG_ON((unsigned long)n & LIST_BL_LOCKMASK); LIST_BL_BUG_ON(((unsigned long)h->first & LIST_BL_LOCKMASK) != LIST_BL_LOCKMASK); rcu_assign_pointer(h->first, (struct hlist_bl_node *)((unsigned long)n | LIST_BL_LOCKMASK)); } static inline struct hlist_bl_node *hlist_bl_first_rcu(struct hlist_bl_head *h) { return (struct hlist_bl_node *) ((unsigned long)rcu_dereference_check(h->first, hlist_bl_is_locked(h)) & ~LIST_BL_LOCKMASK); } /** * hlist_bl_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: hlist_bl_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry(). */ static inline void hlist_bl_del_rcu(struct hlist_bl_node *n) { __hlist_bl_del(n); n->pprev = LIST_POISON2; } /** * hlist_bl_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist_bl, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_bl_add_head_rcu() * or hlist_bl_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_bl_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_bl_add_head_rcu(struct hlist_bl_node *n, struct hlist_bl_head *h) { struct hlist_bl_node *first; /* don't need hlist_bl_first_rcu because we're under lock */ first = hlist_bl_first(h); n->next = first; if (first) first->pprev = &n->next; n->pprev = &h->first; /* need _rcu because we can have concurrent lock free readers */ hlist_bl_set_first_rcu(h, n); } /** * hlist_bl_for_each_entry_rcu - iterate over rcu list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_bl_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_bl_node within the struct. * */ #define hlist_bl_for_each_entry_rcu(tpos, pos, head, member) \ for (pos = hlist_bl_first_rcu(head); \ pos && \ ({ tpos = hlist_bl_entry(pos, typeof(*tpos), member); 1; }); \ pos = rcu_dereference_raw(pos->next)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DESC_H #define _ASM_X86_DESC_H #include <asm/desc_defs.h> #include <asm/ldt.h> #include <asm/mmu.h> #include <asm/fixmap.h> #include <asm/irq_vectors.h> #include <asm/cpu_entry_area.h> #include <linux/smp.h> #include <linux/percpu.h> static inline void fill_ldt(struct desc_struct *desc, const struct user_desc *info) { desc->limit0 = info->limit & 0x0ffff; desc->base0 = (info->base_addr & 0x0000ffff); desc->base1 = (info->base_addr & 0x00ff0000) >> 16; desc->type = (info->read_exec_only ^ 1) << 1; desc->type |= info->contents << 2; /* Set the ACCESS bit so it can be mapped RO */ desc->type |= 1; desc->s = 1; desc->dpl = 0x3; desc->p = info->seg_not_present ^ 1; desc->limit1 = (info->limit & 0xf0000) >> 16; desc->avl = info->useable; desc->d = info->seg_32bit; desc->g = info->limit_in_pages; desc->base2 = (info->base_addr & 0xff000000) >> 24; /* * Don't allow setting of the lm bit. It would confuse * user_64bit_mode and would get overridden by sysret anyway. */ desc->l = 0; } struct gdt_page { struct desc_struct gdt[GDT_ENTRIES]; } __attribute__((aligned(PAGE_SIZE))); DECLARE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page); /* Provide the original GDT */ static inline struct desc_struct *get_cpu_gdt_rw(unsigned int cpu) { return per_cpu(gdt_page, cpu).gdt; } /* Provide the current original GDT */ static inline struct desc_struct *get_current_gdt_rw(void) { return this_cpu_ptr(&gdt_page)->gdt; } /* Provide the fixmap address of the remapped GDT */ static inline struct desc_struct *get_cpu_gdt_ro(int cpu) { return (struct desc_struct *)&get_cpu_entry_area(cpu)->gdt; } /* Provide the current read-only GDT */ static inline struct desc_struct *get_current_gdt_ro(void) { return get_cpu_gdt_ro(smp_processor_id()); } /* Provide the physical address of the GDT page. */ static inline phys_addr_t get_cpu_gdt_paddr(unsigned int cpu) { return per_cpu_ptr_to_phys(get_cpu_gdt_rw(cpu)); } static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func, unsigned dpl, unsigned ist, unsigned seg) { gate->offset_low = (u16) func; gate->bits.p = 1; gate->bits.dpl = dpl; gate->bits.zero = 0; gate->bits.type = type; gate->offset_middle = (u16) (func >> 16); #ifdef CONFIG_X86_64 gate->segment = __KERNEL_CS; gate->bits.ist = ist; gate->reserved = 0; gate->offset_high = (u32) (func >> 32); #else gate->segment = seg; gate->bits.ist = 0; #endif } static inline int desc_empty(const void *ptr) { const u32 *desc = ptr; return !(desc[0] | desc[1]); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define load_TR_desc() native_load_tr_desc() #define load_gdt(dtr) native_load_gdt(dtr) #define load_idt(dtr) native_load_idt(dtr) #define load_tr(tr) asm volatile("ltr %0"::"m" (tr)) #define load_ldt(ldt) asm volatile("lldt %0"::"m" (ldt)) #define store_gdt(dtr) native_store_gdt(dtr) #define store_tr(tr) (tr = native_store_tr()) #define load_TLS(t, cpu) native_load_tls(t, cpu) #define set_ldt native_set_ldt #define write_ldt_entry(dt, entry, desc) native_write_ldt_entry(dt, entry, desc) #define write_gdt_entry(dt, entry, desc, type) native_write_gdt_entry(dt, entry, desc, type) #define write_idt_entry(dt, entry, g) native_write_idt_entry(dt, entry, g) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { } #endif /* CONFIG_PARAVIRT_XXL */ #define store_ldt(ldt) asm("sldt %0" : "=m"(ldt)) static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate) { memcpy(&idt[entry], gate, sizeof(*gate)); } static inline void native_write_ldt_entry(struct desc_struct *ldt, int entry, const void *desc) { memcpy(&ldt[entry], desc, 8); } static inline void native_write_gdt_entry(struct desc_struct *gdt, int entry, const void *desc, int type) { unsigned int size; switch (type) { case DESC_TSS: size = sizeof(tss_desc); break; case DESC_LDT: size = sizeof(ldt_desc); break; default: size = sizeof(*gdt); break; } memcpy(&gdt[entry], desc, size); } static inline void set_tssldt_descriptor(void *d, unsigned long addr, unsigned type, unsigned size) { struct ldttss_desc *desc = d; memset(desc, 0, sizeof(*desc)); desc->limit0 = (u16) size; desc->base0 = (u16) addr; desc->base1 = (addr >> 16) & 0xFF; desc->type = type; desc->p = 1; desc->limit1 = (size >> 16) & 0xF; desc->base2 = (addr >> 24) & 0xFF; #ifdef CONFIG_X86_64 desc->base3 = (u32) (addr >> 32); #endif } static inline void __set_tss_desc(unsigned cpu, unsigned int entry, struct x86_hw_tss *addr) { struct desc_struct *d = get_cpu_gdt_rw(cpu); tss_desc tss; set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS, __KERNEL_TSS_LIMIT); write_gdt_entry(d, entry, &tss, DESC_TSS); } #define set_tss_desc(cpu, addr) __set_tss_desc(cpu, GDT_ENTRY_TSS, addr) static inline void native_set_ldt(const void *addr, unsigned int entries) { if (likely(entries == 0)) asm volatile("lldt %w0"::"q" (0)); else { unsigned cpu = smp_processor_id(); ldt_desc ldt; set_tssldt_descriptor(&ldt, (unsigned long)addr, DESC_LDT, entries * LDT_ENTRY_SIZE - 1); write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_LDT, &ldt, DESC_LDT); asm volatile("lldt %w0"::"q" (GDT_ENTRY_LDT*8)); } } static inline void native_load_gdt(const struct desc_ptr *dtr) { asm volatile("lgdt %0"::"m" (*dtr)); } static __always_inline void native_load_idt(const struct desc_ptr *dtr) { asm volatile("lidt %0"::"m" (*dtr)); } static inline void native_store_gdt(struct desc_ptr *dtr) { asm volatile("sgdt %0":"=m" (*dtr)); } static inline void store_idt(struct desc_ptr *dtr) { asm volatile("sidt %0":"=m" (*dtr)); } /* * The LTR instruction marks the TSS GDT entry as busy. On 64-bit, the GDT is * a read-only remapping. To prevent a page fault, the GDT is switched to the * original writeable version when needed. */ #ifdef CONFIG_X86_64 static inline void native_load_tr_desc(void) { struct desc_ptr gdt; int cpu = raw_smp_processor_id(); bool restore = 0; struct desc_struct *fixmap_gdt; native_store_gdt(&gdt); fixmap_gdt = get_cpu_gdt_ro(cpu); /* * If the current GDT is the read-only fixmap, swap to the original * writeable version. Swap back at the end. */ if (gdt.address == (unsigned long)fixmap_gdt) { load_direct_gdt(cpu); restore = 1; } asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); if (restore) load_fixmap_gdt(cpu); } #else static inline void native_load_tr_desc(void) { asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); } #endif static inline unsigned long native_store_tr(void) { unsigned long tr; asm volatile("str %0":"=r" (tr)); return tr; } static inline void native_load_tls(struct thread_struct *t, unsigned int cpu) { struct desc_struct *gdt = get_cpu_gdt_rw(cpu); unsigned int i; for (i = 0; i < GDT_ENTRY_TLS_ENTRIES; i++) gdt[GDT_ENTRY_TLS_MIN + i] = t->tls_array[i]; } DECLARE_PER_CPU(bool, __tss_limit_invalid); static inline void force_reload_TR(void) { struct desc_struct *d = get_current_gdt_rw(); tss_desc tss; memcpy(&tss, &d[GDT_ENTRY_TSS], sizeof(tss_desc)); /* * LTR requires an available TSS, and the TSS is currently * busy. Make it be available so that LTR will work. */ tss.type = DESC_TSS; write_gdt_entry(d, GDT_ENTRY_TSS, &tss, DESC_TSS); load_TR_desc(); this_cpu_write(__tss_limit_invalid, false); } /* * Call this if you need the TSS limit to be correct, which should be the case * if and only if you have TIF_IO_BITMAP set or you're switching to a task * with TIF_IO_BITMAP set. */ static inline void refresh_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(this_cpu_read(__tss_limit_invalid))) force_reload_TR(); } /* * If you do something evil that corrupts the cached TSS limit (I'm looking * at you, VMX exits), call this function. * * The optimization here is that the TSS limit only matters for Linux if the * IO bitmap is in use. If the TSS limit gets forced to its minimum value, * everything works except that IO bitmap will be ignored and all CPL 3 IO * instructions will #GP, which is exactly what we want for normal tasks. */ static inline void invalidate_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(test_thread_flag(TIF_IO_BITMAP))) force_reload_TR(); else this_cpu_write(__tss_limit_invalid, true); } /* This intentionally ignores lm, since 32-bit apps don't have that field. */ #define LDT_empty(info) \ ((info)->base_addr == 0 && \ (info)->limit == 0 && \ (info)->contents == 0 && \ (info)->read_exec_only == 1 && \ (info)->seg_32bit == 0 && \ (info)->limit_in_pages == 0 && \ (info)->seg_not_present == 1 && \ (info)->useable == 0) /* Lots of programs expect an all-zero user_desc to mean "no segment at all". */ static inline bool LDT_zero(const struct user_desc *info) { return (info->base_addr == 0 && info->limit == 0 && info->contents == 0 && info->read_exec_only == 0 && info->seg_32bit == 0 && info->limit_in_pages == 0 && info->seg_not_present == 0 && info->useable == 0); } static inline void clear_LDT(void) { set_ldt(NULL, 0); } static inline unsigned long get_desc_base(const struct desc_struct *desc) { return (unsigned)(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); } static inline void set_desc_base(struct desc_struct *desc, unsigned long base) { desc->base0 = base & 0xffff; desc->base1 = (base >> 16) & 0xff; desc->base2 = (base >> 24) & 0xff; } static inline unsigned long get_desc_limit(const struct desc_struct *desc) { return desc->limit0 | (desc->limit1 << 16); } static inline void set_desc_limit(struct desc_struct *desc, unsigned long limit) { desc->limit0 = limit & 0xffff; desc->limit1 = (limit >> 16) & 0xf; } void alloc_intr_gate(unsigned int n, const void *addr); static inline void init_idt_data(struct idt_data *data, unsigned int n, const void *addr) { BUG_ON(n > 0xFF); memset(data, 0, sizeof(*data)); data->vector = n; data->addr = addr; data->segment = __KERNEL_CS; data->bits.type = GATE_INTERRUPT; data->bits.p = 1; } static inline void idt_init_desc(gate_desc *gate, const struct idt_data *d) { unsigned long addr = (unsigned long) d->addr; gate->offset_low = (u16) addr; gate->segment = (u16) d->segment; gate->bits = d->bits; gate->offset_middle = (u16) (addr >> 16); #ifdef CONFIG_X86_64 gate->offset_high = (u32) (addr >> 32); gate->reserved = 0; #endif } extern unsigned long system_vectors[]; extern void load_current_idt(void); extern void idt_setup_early_handler(void); extern void idt_setup_early_traps(void); extern void idt_setup_traps(void); extern void idt_setup_apic_and_irq_gates(void); extern bool idt_is_f00f_address(unsigned long address); #ifdef CONFIG_X86_64 extern void idt_setup_early_pf(void); extern void idt_setup_ist_traps(void); #else static inline void idt_setup_early_pf(void) { } static inline void idt_setup_ist_traps(void) { } #endif extern void idt_invalidate(void *addr); #endif /* _ASM_X86_DESC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2018 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #ifndef _KERNEL_DMA_DIRECT_H #define _KERNEL_DMA_DIRECT_H #include <linux/dma-direct.h> int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_can_mmap(struct device *dev); int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr); int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); size_t dma_direct_max_mapping_size(struct device *dev); #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs); void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir); #else static inline void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { } static inline void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { } #endif static inline void dma_direct_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, size, dir); } static inline void dma_direct_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (!dev_is_dma_coherent(dev)) { arch_sync_dma_for_cpu(paddr, size, dir); arch_sync_dma_for_cpu_all(); } if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); if (dir == DMA_FROM_DEVICE) arch_dma_mark_clean(paddr, size); } static inline dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dma_addr = phys_to_dma(dev, phys); if (unlikely(swiotlb_force == SWIOTLB_FORCE)) return swiotlb_map(dev, phys, size, dir, attrs); if (unlikely(!dma_capable(dev, dma_addr, size, true))) { if (swiotlb_force != SWIOTLB_NO_FORCE) return swiotlb_map(dev, phys, size, dir, attrs); dev_WARN_ONCE(dev, 1, "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); return DMA_MAPPING_ERROR; } if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(phys, size, dir); return dma_addr; } static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = dma_to_phys(dev, addr); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_cpu(dev, addr, size, dir); if (unlikely(is_swiotlb_buffer(phys))) swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); } #endif /* _KERNEL_DMA_DIRECT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright (C) 2018 Intel Corporation */ #ifndef __NET_WIRELESS_NL80211_H #define __NET_WIRELESS_NL80211_H #include "core.h" int nl80211_init(void); void nl80211_exit(void); void *nl80211hdr_put(struct sk_buff *skb, u32 portid, u32 seq, int flags, u8 cmd); bool nl80211_put_sta_rate(struct sk_buff *msg, struct rate_info *info, int attr); static inline u64 wdev_id(struct wireless_dev *wdev) { return (u64)wdev->identifier | ((u64)wiphy_to_rdev(wdev->wiphy)->wiphy_idx << 32); } int nl80211_prepare_wdev_dump(struct netlink_callback *cb, struct cfg80211_registered_device **rdev, struct wireless_dev **wdev); int nl80211_parse_chandef(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_chan_def *chandef); int nl80211_parse_random_mac(struct nlattr **attrs, u8 *mac_addr, u8 *mac_addr_mask); void nl80211_notify_wiphy(struct cfg80211_registered_device *rdev, enum nl80211_commands cmd); void nl80211_notify_iface(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_commands cmd); void nl80211_send_scan_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct sk_buff *nl80211_build_scan_msg(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, bool aborted); void nl80211_send_scan_msg(struct cfg80211_registered_device *rdev, struct sk_buff *msg); void nl80211_send_sched_scan(struct cfg80211_sched_scan_request *req, u32 cmd); void nl80211_common_reg_change_event(enum nl80211_commands cmd_id, struct regulatory_request *request); static inline void nl80211_send_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_REG_CHANGE, request); } static inline void nl80211_send_wiphy_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_WIPHY_REG_CHANGE, request); } void nl80211_send_rx_auth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_rx_assoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp, int uapsd_queues, const u8 *req_ies, size_t req_ies_len); void nl80211_send_deauth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_disassoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_auth_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_assoc_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_connect_result(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_connect_resp_params *params, gfp_t gfp); void nl80211_send_roamed(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_roam_info *info, gfp_t gfp); void nl80211_send_port_authorized(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid); void nl80211_send_disconnected(struct cfg80211_registered_device *rdev, struct net_device *netdev, u16 reason, const u8 *ie, size_t ie_len, bool from_ap); void nl80211_michael_mic_failure(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp); void nl80211_send_beacon_hint_event(struct wiphy *wiphy, struct ieee80211_channel *channel_before, struct ieee80211_channel *channel_after); void nl80211_send_ibss_bssid(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid, gfp_t gfp); int nl80211_send_mgmt(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u32 nlpid, int freq, int sig_dbm, const u8 *buf, size_t len, u32 flags, gfp_t gfp); void nl80211_radar_notify(struct cfg80211_registered_device *rdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event, struct net_device *netdev, gfp_t gfp); void nl80211_send_ap_stopped(struct wireless_dev *wdev); void cfg80211_rdev_free_coalesce(struct cfg80211_registered_device *rdev); /* peer measurement */ int nl80211_pmsr_start(struct sk_buff *skb, struct genl_info *info); int nl80211_pmsr_dump_results(struct sk_buff *skb, struct netlink_callback *cb); #endif /* __NET_WIRELESS_NL80211_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Asymmetric Public-key cryptography key type interface * * See Documentation/crypto/asymmetric-keys.rst * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _KEYS_ASYMMETRIC_TYPE_H #define _KEYS_ASYMMETRIC_TYPE_H #include <linux/key-type.h> #include <linux/verification.h> extern struct key_type key_type_asymmetric; /* * The key payload is four words. The asymmetric-type key uses them as * follows: */ enum asymmetric_payload_bits { asym_crypto, /* The data representing the key */ asym_subtype, /* Pointer to an asymmetric_key_subtype struct */ asym_key_ids, /* Pointer to an asymmetric_key_ids struct */ asym_auth /* The key's authorisation (signature, parent key ID) */ }; /* * Identifiers for an asymmetric key ID. We have three ways of looking up a * key derived from an X.509 certificate: * * (1) Serial Number & Issuer. Non-optional. This is the only valid way to * map a PKCS#7 signature to an X.509 certificate. * * (2) Issuer & Subject Unique IDs. Optional. These were the original way to * match X.509 certificates, but have fallen into disuse in favour of (3). * * (3) Auth & Subject Key Identifiers. Optional. SKIDs are only provided on * CA keys that are intended to sign other keys, so don't appear in end * user certificates unless forced. * * We could also support an PGP key identifier, which is just a SHA1 sum of the * public key and certain parameters, but since we don't support PGP keys at * the moment, we shall ignore those. * * What we actually do is provide a place where binary identifiers can be * stashed and then compare against them when checking for an id match. */ struct asymmetric_key_id { unsigned short len; unsigned char data[]; }; struct asymmetric_key_ids { void *id[2]; }; extern bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1, const struct asymmetric_key_id *kid2); extern bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1, const struct asymmetric_key_id *kid2); extern struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1, size_t len_1, const void *val_2, size_t len_2); static inline const struct asymmetric_key_ids *asymmetric_key_ids(const struct key *key) { return key->payload.data[asym_key_ids]; } extern struct key *find_asymmetric_key(struct key *keyring, const struct asymmetric_key_id *id_0, const struct asymmetric_key_id *id_1, bool partial); /* * The payload is at the discretion of the subtype. */ #endif /* _KEYS_ASYMMETRIC_TYPE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2020 ARM Ltd. */ #ifndef __ASM_VDSO_PROCESSOR_H #define __ASM_VDSO_PROCESSOR_H #ifndef __ASSEMBLY__ /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ static __always_inline void rep_nop(void) { asm volatile("rep; nop" ::: "memory"); } static __always_inline void cpu_relax(void) { rep_nop(); } #endif /* __ASSEMBLY__ */ #endif /* __ASM_VDSO_PROCESSOR_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CURRENT_H #define _ASM_X86_CURRENT_H #include <linux/compiler.h> #include <asm/percpu.h> #ifndef __ASSEMBLY__ struct task_struct; DECLARE_PER_CPU(struct task_struct *, current_task); static __always_inline struct task_struct *get_current(void) { return this_cpu_read_stable(current_task); } #define current get_current() #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_CURRENT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * inet6 interface/address list definitions * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _NET_IF_INET6_H #define _NET_IF_INET6_H #include <net/snmp.h> #include <linux/ipv6.h> #include <linux/refcount.h> /* inet6_dev.if_flags */ #define IF_RA_OTHERCONF 0x80 #define IF_RA_MANAGED 0x40 #define IF_RA_RCVD 0x20 #define IF_RS_SENT 0x10 #define IF_READY 0x80000000 enum { INET6_IFADDR_STATE_PREDAD, INET6_IFADDR_STATE_DAD, INET6_IFADDR_STATE_POSTDAD, INET6_IFADDR_STATE_ERRDAD, INET6_IFADDR_STATE_DEAD, }; struct inet6_ifaddr { struct in6_addr addr; __u32 prefix_len; __u32 rt_priority; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 valid_lft; __u32 prefered_lft; refcount_t refcnt; spinlock_t lock; int state; __u32 flags; __u8 dad_probes; __u8 stable_privacy_retry; __u16 scope; __u64 dad_nonce; unsigned long cstamp; /* created timestamp */ unsigned long tstamp; /* updated timestamp */ struct delayed_work dad_work; struct inet6_dev *idev; struct fib6_info *rt; struct hlist_node addr_lst; struct list_head if_list; /* * Used to safely traverse idev->addr_list in process context * if the idev->lock needed to protect idev->addr_list cannot be held. * In that case, add the items to this list temporarily and iterate * without holding idev->lock. * See addrconf_ifdown and dev_forward_change. */ struct list_head if_list_aux; struct list_head tmp_list; struct inet6_ifaddr *ifpub; int regen_count; bool tokenized; struct rcu_head rcu; struct in6_addr peer_addr; }; struct ip6_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct in6_addr sl_addr[]; }; #define IP6_SFLSIZE(count) (sizeof(struct ip6_sf_socklist) + \ (count) * sizeof(struct in6_addr)) #define IP6_SFBLOCK 10 /* allocate this many at once */ struct ipv6_mc_socklist { struct in6_addr addr; int ifindex; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ipv6_mc_socklist __rcu *next; rwlock_t sflock; struct ip6_sf_socklist *sflist; struct rcu_head rcu; }; struct ip6_sf_list { struct ip6_sf_list *sf_next; struct in6_addr sf_addr; unsigned long sf_count[2]; /* include/exclude counts */ unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; #define MAF_TIMER_RUNNING 0x01 #define MAF_LAST_REPORTER 0x02 #define MAF_LOADED 0x04 #define MAF_NOREPORT 0x08 #define MAF_GSQUERY 0x10 struct ifmcaddr6 { struct in6_addr mca_addr; struct inet6_dev *idev; struct ifmcaddr6 *next; struct ip6_sf_list *mca_sources; struct ip6_sf_list *mca_tomb; unsigned int mca_sfmode; unsigned char mca_crcount; unsigned long mca_sfcount[2]; struct timer_list mca_timer; unsigned int mca_flags; int mca_users; refcount_t mca_refcnt; spinlock_t mca_lock; unsigned long mca_cstamp; unsigned long mca_tstamp; }; /* Anycast stuff */ struct ipv6_ac_socklist { struct in6_addr acl_addr; int acl_ifindex; struct ipv6_ac_socklist *acl_next; }; struct ifacaddr6 { struct in6_addr aca_addr; struct fib6_info *aca_rt; struct ifacaddr6 *aca_next; struct hlist_node aca_addr_lst; int aca_users; refcount_t aca_refcnt; unsigned long aca_cstamp; unsigned long aca_tstamp; struct rcu_head rcu; }; #define IFA_HOST IPV6_ADDR_LOOPBACK #define IFA_LINK IPV6_ADDR_LINKLOCAL #define IFA_SITE IPV6_ADDR_SITELOCAL struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry; DEFINE_SNMP_STAT(struct ipstats_mib, ipv6); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6_mib_device, icmpv6dev); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6msg_mib_device, icmpv6msgdev); }; struct inet6_dev { struct net_device *dev; struct list_head addr_list; struct ifmcaddr6 *mc_list; struct ifmcaddr6 *mc_tomb; spinlock_t mc_lock; unsigned char mc_qrv; /* Query Robustness Variable */ unsigned char mc_gq_running; unsigned char mc_ifc_count; unsigned char mc_dad_count; unsigned long mc_v1_seen; /* Max time we stay in MLDv1 mode */ unsigned long mc_qi; /* Query Interval */ unsigned long mc_qri; /* Query Response Interval */ unsigned long mc_maxdelay; struct timer_list mc_gq_timer; /* general query timer */ struct timer_list mc_ifc_timer; /* interface change timer */ struct timer_list mc_dad_timer; /* dad complete mc timer */ struct ifacaddr6 *ac_list; rwlock_t lock; refcount_t refcnt; __u32 if_flags; int dead; u32 desync_factor; struct list_head tempaddr_list; struct in6_addr token; struct neigh_parms *nd_parms; struct ipv6_devconf cnf; struct ipv6_devstat stats; struct timer_list rs_timer; __s32 rs_interval; /* in jiffies */ __u8 rs_probes; unsigned long tstamp; /* ipv6InterfaceTable update timestamp */ struct rcu_head rcu; }; static inline void ipv6_eth_mc_map(const struct in6_addr *addr, char *buf) { /* * +-------+-------+-------+-------+-------+-------+ * | 33 | 33 | DST13 | DST14 | DST15 | DST16 | * +-------+-------+-------+-------+-------+-------+ */ buf[0]= 0x33; buf[1]= 0x33; memcpy(buf + 2, &addr->s6_addr32[3], sizeof(__u32)); } static inline void ipv6_arcnet_mc_map(const struct in6_addr *addr, char *buf) { buf[0] = 0x00; } static inline void ipv6_ib_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x60; /* IPv6 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; memcpy(buf + 10, addr->s6_addr + 6, 10); } static inline int ipv6_ipgre_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) { memcpy(buf, broadcast, 4); } else { /* v4mapped? */ if ((addr->s6_addr32[0] | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x0000ffff))) != 0) return -EINVAL; memcpy(buf, &addr->s6_addr32[3], 4); } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_MM_H #define _LINUX_SCHED_MM_H #include <linux/kernel.h> #include <linux/atomic.h> #include <linux/sched.h> #include <linux/mm_types.h> #include <linux/gfp.h> #include <linux/sync_core.h> /* * Routines for handling mm_structs */ extern struct mm_struct *mm_alloc(void); /** * mmgrab() - Pin a &struct mm_struct. * @mm: The &struct mm_struct to pin. * * Make sure that @mm will not get freed even after the owning task * exits. This doesn't guarantee that the associated address space * will still exist later on and mmget_not_zero() has to be used before * accessing it. * * This is a preferred way to pin @mm for a longer/unbounded amount * of time. * * Use mmdrop() to release the reference acquired by mmgrab(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmgrab(struct mm_struct *mm) { atomic_inc(&mm->mm_count); } extern void __mmdrop(struct mm_struct *mm); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } /** * mmget() - Pin the address space associated with a &struct mm_struct. * @mm: The address space to pin. * * Make sure that the address space of the given &struct mm_struct doesn't * go away. This does not protect against parts of the address space being * modified or freed, however. * * Never use this function to pin this address space for an * unbounded/indefinite amount of time. * * Use mmput() to release the reference acquired by mmget(). * * See also <Documentation/vm/active_mm.rst> for an in-depth explanation * of &mm_struct.mm_count vs &mm_struct.mm_users. */ static inline void mmget(struct mm_struct *mm) { atomic_inc(&mm->mm_users); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); #ifdef CONFIG_MMU /* same as above but performs the slow path from the async context. Can * be called from the atomic context as well */ void mmput_async(struct mm_struct *); #endif /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct on exit() */ extern void exit_mm_release(struct task_struct *, struct mm_struct *); /* Remove the current tasks stale references to the old mm_struct on exec() */ extern void exec_mm_release(struct task_struct *, struct mm_struct *); #ifdef CONFIG_MEMCG extern void mm_update_next_owner(struct mm_struct *mm); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } #endif /* CONFIG_MEMCG */ #ifdef CONFIG_MMU #ifndef arch_get_mmap_end #define arch_get_mmap_end(addr) (TASK_SIZE) #endif #ifndef arch_get_mmap_base #define arch_get_mmap_base(addr, base) (base) #endif extern void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) {} #endif static inline bool in_vfork(struct task_struct *tsk) { bool ret; /* * need RCU to access ->real_parent if CLONE_VM was used along with * CLONE_PARENT. * * We check real_parent->mm == tsk->mm because CLONE_VFORK does not * imply CLONE_VM * * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus * ->real_parent is not necessarily the task doing vfork(), so in * theory we can't rely on task_lock() if we want to dereference it. * * And in this case we can't trust the real_parent->mm == tsk->mm * check, it can be false negative. But we do not care, if init or * another oom-unkillable task does this it should blame itself. */ rcu_read_lock(); ret = tsk->vfork_done && rcu_dereference(tsk->real_parent)->mm == tsk->mm; rcu_read_unlock(); return ret; } /* * Applies per-task gfp context to the given allocation flags. * PF_MEMALLOC_NOIO implies GFP_NOIO * PF_MEMALLOC_NOFS implies GFP_NOFS */ static inline gfp_t current_gfp_context(gfp_t flags) { unsigned int pflags = READ_ONCE(current->flags); if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS))) { /* * NOIO implies both NOIO and NOFS and it is a weaker context * so always make sure it makes precedence */ if (pflags & PF_MEMALLOC_NOIO) flags &= ~(__GFP_IO | __GFP_FS); else if (pflags & PF_MEMALLOC_NOFS) flags &= ~__GFP_FS; } return flags; } #ifdef CONFIG_LOCKDEP extern void __fs_reclaim_acquire(void); extern void __fs_reclaim_release(void); extern void fs_reclaim_acquire(gfp_t gfp_mask); extern void fs_reclaim_release(gfp_t gfp_mask); #else static inline void __fs_reclaim_acquire(void) { } static inline void __fs_reclaim_release(void) { } static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } static inline void fs_reclaim_release(gfp_t gfp_mask) { } #endif /** * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. * * This functions marks the beginning of the GFP_NOIO allocation scope. * All further allocations will implicitly drop __GFP_IO flag and so * they are safe for the IO critical section from the allocation recursion * point of view. Use memalloc_noio_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } /** * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_noio_save call. */ static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /** * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. * * This functions marks the beginning of the GFP_NOFS allocation scope. * All further allocations will implicitly drop __GFP_FS flag and so * they are safe for the FS critical section from the allocation recursion * point of view. Use memalloc_nofs_restore to end the scope with flags * returned by this function. * * This function is safe to be used from any context. */ static inline unsigned int memalloc_nofs_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOFS; current->flags |= PF_MEMALLOC_NOFS; return flags; } /** * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. * @flags: Flags to restore. * * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. * Always make sure that the given flags is the return value from the * pairing memalloc_nofs_save call. */ static inline void memalloc_nofs_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; } static inline unsigned int memalloc_noreclaim_save(void) { unsigned int flags = current->flags & PF_MEMALLOC; current->flags |= PF_MEMALLOC; return flags; } static inline void memalloc_noreclaim_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC) | flags; } #ifdef CONFIG_CMA static inline unsigned int memalloc_nocma_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOCMA; current->flags |= PF_MEMALLOC_NOCMA; return flags; } static inline void memalloc_nocma_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags; } #else static inline unsigned int memalloc_nocma_save(void) { return 0; } static inline void memalloc_nocma_restore(unsigned int flags) { } #endif #ifdef CONFIG_MEMCG DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); /** * set_active_memcg - Starts the remote memcg charging scope. * @memcg: memcg to charge. * * This function marks the beginning of the remote memcg charging scope. All the * __GFP_ACCOUNT allocations till the end of the scope will be charged to the * given memcg. * * NOTE: This function can nest. Users must save the return value and * reset the previous value after their own charging scope is over. */ static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { struct mem_cgroup *old; if (in_interrupt()) { old = this_cpu_read(int_active_memcg); this_cpu_write(int_active_memcg, memcg); } else { old = current->active_memcg; current->active_memcg = memcg; } return old; } #else static inline struct mem_cgroup * set_active_memcg(struct mem_cgroup *memcg) { return NULL; } #endif #ifdef CONFIG_MEMBARRIER enum { MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), }; enum { MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), MEMBARRIER_FLAG_RSEQ = (1U << 1), }; #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS #include <asm/membarrier.h> #endif static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { if (current->mm != mm) return; if (likely(!(atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) return; sync_core_before_usermode(); } extern void membarrier_exec_mmap(struct mm_struct *mm); #else #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS static inline void membarrier_arch_switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { } #endif static inline void membarrier_exec_mmap(struct mm_struct *mm) { } static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) { } #endif #endif /* _LINUX_SCHED_MM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CHECKSUM_64_H #define _ASM_X86_CHECKSUM_64_H /* * Checksums for x86-64 * Copyright 2002 by Andi Kleen, SuSE Labs * with some code from asm-x86/checksum.h */ #include <linux/compiler.h> #include <linux/uaccess.h> #include <asm/byteorder.h> /** * csum_fold - Fold and invert a 32bit checksum. * sum: 32bit unfolded sum * * Fold a 32bit running checksum to 16bit and invert it. This is usually * the last step before putting a checksum into a packet. * Make sure not to mix with 64bit checksums. */ static inline __sum16 csum_fold(__wsum sum) { asm(" addl %1,%0\n" " adcl $0xffff,%0" : "=r" (sum) : "r" ((__force u32)sum << 16), "0" ((__force u32)sum & 0xffff0000)); return (__force __sum16)(~(__force u32)sum >> 16); } /* * This is a version of ip_compute_csum() optimized for IP headers, * which always checksum on 4 octet boundaries. * * By Jorge Cwik <jorge@laser.satlink.net>, adapted for linux by * Arnt Gulbrandsen. */ /** * ip_fast_csum - Compute the IPv4 header checksum efficiently. * iph: ipv4 header * ihl: length of header / 4 */ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl) { unsigned int sum; asm(" movl (%1), %0\n" " subl $4, %2\n" " jbe 2f\n" " addl 4(%1), %0\n" " adcl 8(%1), %0\n" " adcl 12(%1), %0\n" "1: adcl 16(%1), %0\n" " lea 4(%1), %1\n" " decl %2\n" " jne 1b\n" " adcl $0, %0\n" " movl %0, %2\n" " shrl $16, %0\n" " addw %w2, %w0\n" " adcl $0, %0\n" " notl %0\n" "2:" /* Since the input registers which are loaded with iph and ihl are modified, we must also specify them as outputs, or gcc will assume they contain their original values. */ : "=r" (sum), "=r" (iph), "=r" (ihl) : "1" (iph), "2" (ihl) : "memory"); return (__force __sum16)sum; } /** * csum_tcpup_nofold - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the pseudo header checksum the input data. Result is * 32bit unfolded. */ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { asm(" addl %1, %0\n" " adcl %2, %0\n" " adcl %3, %0\n" " adcl $0, %0\n" : "=r" (sum) : "g" (daddr), "g" (saddr), "g" ((len + proto)<<8), "0" (sum)); return sum; } /** * csum_tcpup_magic - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the 16bit pseudo header checksum the input data already * complemented and ready to be filled in. */ static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum)); } /** * csum_partial - Compute an internet checksum. * @buff: buffer to be checksummed * @len: length of buffer. * @sum: initial sum to be added in (32bit unfolded) * * Returns the 32bit unfolded internet checksum of the buffer. * Before filling it in it needs to be csum_fold()'ed. * buff should be aligned to a 64bit boundary if possible. */ extern __wsum csum_partial(const void *buff, int len, __wsum sum); /* Do not call this directly. Use the wrappers below */ extern __visible __wsum csum_partial_copy_generic(const void *src, void *dst, int len); extern __wsum csum_and_copy_from_user(const void __user *src, void *dst, int len); extern __wsum csum_and_copy_to_user(const void *src, void __user *dst, int len); extern __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len); /** * ip_compute_csum - Compute an 16bit IP checksum. * @buff: buffer address. * @len: length of buffer. * * Returns the 16bit folded/inverted checksum of the passed buffer. * Ready to fill in. */ extern __sum16 ip_compute_csum(const void *buff, int len); /** * csum_ipv6_magic - Compute checksum of an IPv6 pseudo header. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: protocol of packet * @sum: initial sum (32bit unfolded) to be added in * * Computes an IPv6 pseudo header checksum. This sum is added the checksum * into UDP/TCP packets and contains some link layer information. * Returns the unfolded 32bit checksum. */ struct in6_addr; #define _HAVE_ARCH_IPV6_CSUM 1 extern __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum sum); static inline unsigned add32_with_carry(unsigned a, unsigned b) { asm("addl %2,%0\n\t" "adcl $0,%0" : "=r" (a) : "0" (a), "rm" (b)); return a; } #define HAVE_ARCH_CSUM_ADD static inline __wsum csum_add(__wsum csum, __wsum addend) { return (__force __wsum)add32_with_carry((__force unsigned)csum, (__force unsigned)addend); } #endif /* _ASM_X86_CHECKSUM_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SEQ_FILE_NET_H__ #define __SEQ_FILE_NET_H__ #include <linux/seq_file.h> struct net; extern struct net init_net; struct seq_net_private { #ifdef CONFIG_NET_NS struct net *net; #endif }; static inline struct net *seq_file_net(struct seq_file *seq) { #ifdef CONFIG_NET_NS return ((struct seq_net_private *)seq->private)->net; #else return &init_net; #endif } /* * This one is needed for proc_create_net_single since net is stored directly * in private not as a struct i.e. seq_file_net can't be used. */ static inline struct net *seq_file_single_net(struct seq_file *seq) { #ifdef CONFIG_NET_NS return (struct net *)seq->private; #else return &init_net; #endif } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* include/asm-generic/tlb.h * * Generic TLB shootdown code * * Copyright 2001 Red Hat, Inc. * Based on code from mm/memory.c Copyright Linus Torvalds and others. * * Copyright 2011 Red Hat, Inc., Peter Zijlstra */ #ifndef _ASM_GENERIC__TLB_H #define _ASM_GENERIC__TLB_H #include <linux/mmu_notifier.h> #include <linux/swap.h> #include <linux/hugetlb_inline.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> /* * Blindly accessing user memory from NMI context can be dangerous * if we're in the middle of switching the current user task or switching * the loaded mm. */ #ifndef nmi_uaccess_okay # define nmi_uaccess_okay() true #endif #ifdef CONFIG_MMU /* * Generic MMU-gather implementation. * * The mmu_gather data structure is used by the mm code to implement the * correct and efficient ordering of freeing pages and TLB invalidations. * * This correct ordering is: * * 1) unhook page * 2) TLB invalidate page * 3) free page * * That is, we must never free a page before we have ensured there are no live * translations left to it. Otherwise it might be possible to observe (or * worse, change) the page content after it has been reused. * * The mmu_gather API consists of: * * - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather * * Finish in particular will issue a (final) TLB invalidate and free * all (remaining) queued pages. * * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA * * Defaults to flushing at tlb_end_vma() to reset the range; helps when * there's large holes between the VMAs. * * - tlb_remove_table() * * tlb_remove_table() is the basic primitive to free page-table directories * (__p*_free_tlb()). In it's most primitive form it is an alias for * tlb_remove_page() below, for when page directories are pages and have no * additional constraints. * * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE. * * - tlb_remove_page() / __tlb_remove_page() * - tlb_remove_page_size() / __tlb_remove_page_size() * * __tlb_remove_page_size() is the basic primitive that queues a page for * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a * boolean indicating if the queue is (now) full and a call to * tlb_flush_mmu() is required. * * tlb_remove_page() and tlb_remove_page_size() imply the call to * tlb_flush_mmu() when required and has no return value. * * - tlb_change_page_size() * * call before __tlb_remove_page*() to set the current page-size; implies a * possible tlb_flush_mmu() call. * * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly() * * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets * related state, like the range) * * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees * whatever pages are still batched. * * - mmu_gather::fullmm * * A flag set by tlb_gather_mmu() to indicate we're going to free * the entire mm; this allows a number of optimizations. * * - We can ignore tlb_{start,end}_vma(); because we don't * care about ranges. Everything will be shot down. * * - (RISC) architectures that use ASIDs can cycle to a new ASID * and delay the invalidation until ASID space runs out. * * - mmu_gather::need_flush_all * * A flag that can be set by the arch code if it wants to force * flush the entire TLB irrespective of the range. For instance * x86-PAE needs this when changing top-level entries. * * And allows the architecture to provide and implement tlb_flush(): * * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make * use of: * * - mmu_gather::start / mmu_gather::end * * which provides the range that needs to be flushed to cover the pages to * be freed. * * - mmu_gather::freed_tables * * set when we freed page table pages * * - tlb_get_unmap_shift() / tlb_get_unmap_size() * * returns the smallest TLB entry size unmapped in this range. * * If an architecture does not provide tlb_flush() a default implementation * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is * specified, in which case we'll default to flush_tlb_mm(). * * Additionally there are a few opt-in features: * * MMU_GATHER_PAGE_SIZE * * This ensures we call tlb_flush() every time tlb_change_page_size() actually * changes the size and provides mmu_gather::page_size to tlb_flush(). * * This might be useful if your architecture has size specific TLB * invalidation instructions. * * MMU_GATHER_TABLE_FREE * * This provides tlb_remove_table(), to be used instead of tlb_remove_page() * for page directores (__p*_free_tlb()). * * Useful if your architecture has non-page page directories. * * When used, an architecture is expected to provide __tlb_remove_table() * which does the actual freeing of these pages. * * MMU_GATHER_RCU_TABLE_FREE * * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see * comment below). * * Useful if your architecture doesn't use IPIs for remote TLB invalidates * and therefore doesn't naturally serialize with software page-table walkers. * * MMU_GATHER_NO_RANGE * * Use this if your architecture lacks an efficient flush_tlb_range(). * * MMU_GATHER_NO_GATHER * * If the option is set the mmu_gather will not track individual pages for * delayed page free anymore. A platform that enables the option needs to * provide its own implementation of the __tlb_remove_page_size() function to * free pages. * * This is useful if your architecture already flushes TLB entries in the * various ptep_get_and_clear() functions. */ #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch { #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE struct rcu_head rcu; #endif unsigned int nr; void *tables[0]; }; #define MAX_TABLE_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) extern void tlb_remove_table(struct mmu_gather *tlb, void *table); #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */ /* * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based * page directories and we can use the normal page batching to free them. */ #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page)) #endif /* CONFIG_MMU_GATHER_TABLE_FREE */ #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE /* * This allows an architecture that does not use the linux page-tables for * hardware to skip the TLBI when freeing page tables. */ #ifndef tlb_needs_table_invalidate #define tlb_needs_table_invalidate() (true) #endif void tlb_remove_table_sync_one(void); #else #ifdef tlb_needs_table_invalidate #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE #endif static inline void tlb_remove_table_sync_one(void) { } #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */ #ifndef CONFIG_MMU_GATHER_NO_GATHER /* * If we can't allocate a page to make a big batch of page pointers * to work on, then just handle a few from the on-stack structure. */ #define MMU_GATHER_BUNDLE 8 struct mmu_gather_batch { struct mmu_gather_batch *next; unsigned int nr; unsigned int max; struct page *pages[0]; }; #define MAX_GATHER_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) /* * Limit the maximum number of mmu_gather batches to reduce a risk of soft * lockups for non-preemptible kernels on huge machines when a lot of memory * is zapped during unmapping. * 10K pages freed at once should be safe even without a preemption point. */ #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size); #endif /* * struct mmu_gather is an opaque type used by the mm code for passing around * any data needed by arch specific code for tlb_remove_page. */ struct mmu_gather { struct mm_struct *mm; #ifdef CONFIG_MMU_GATHER_TABLE_FREE struct mmu_table_batch *batch; #endif unsigned long start; unsigned long end; /* * we are in the middle of an operation to clear * a full mm and can make some optimizations */ unsigned int fullmm : 1; /* * we have performed an operation which * requires a complete flush of the tlb */ unsigned int need_flush_all : 1; /* * we have removed page directories */ unsigned int freed_tables : 1; /* * at which levels have we cleared entries? */ unsigned int cleared_ptes : 1; unsigned int cleared_pmds : 1; unsigned int cleared_puds : 1; unsigned int cleared_p4ds : 1; /* * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma */ unsigned int vma_exec : 1; unsigned int vma_huge : 1; unsigned int batch_count; #ifndef CONFIG_MMU_GATHER_NO_GATHER struct mmu_gather_batch *active; struct mmu_gather_batch local; struct page *__pages[MMU_GATHER_BUNDLE]; #ifdef CONFIG_MMU_GATHER_PAGE_SIZE unsigned int page_size; #endif #endif }; void tlb_flush_mmu(struct mmu_gather *tlb); static inline void __tlb_adjust_range(struct mmu_gather *tlb, unsigned long address, unsigned int range_size) { tlb->start = min(tlb->start, address); tlb->end = max(tlb->end, address + range_size); } static inline void __tlb_reset_range(struct mmu_gather *tlb) { if (tlb->fullmm) { tlb->start = tlb->end = ~0; } else { tlb->start = TASK_SIZE; tlb->end = 0; } tlb->freed_tables = 0; tlb->cleared_ptes = 0; tlb->cleared_pmds = 0; tlb->cleared_puds = 0; tlb->cleared_p4ds = 0; /* * Do not reset mmu_gather::vma_* fields here, we do not * call into tlb_start_vma() again to set them if there is an * intermediate flush. */ } #ifdef CONFIG_MMU_GATHER_NO_RANGE #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma) #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not have efficient means of range flushing TLBs * there is no point in doing intermediate flushes on tlb_end_vma() to keep the * range small. We equally don't have to worry about page granularity or other * things. * * All we need to do is issue a full flush for any !0 range. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->end) flush_tlb_mm(tlb->mm); } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #define tlb_end_vma tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #else /* CONFIG_MMU_GATHER_NO_RANGE */ #ifndef tlb_flush #if defined(tlb_start_vma) || defined(tlb_end_vma) #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma() #endif /* * When an architecture does not provide its own tlb_flush() implementation * but does have a reasonably efficient flush_vma_range() implementation * use that. */ static inline void tlb_flush(struct mmu_gather *tlb) { if (tlb->fullmm || tlb->need_flush_all) { flush_tlb_mm(tlb->mm); } else if (tlb->end) { struct vm_area_struct vma = { .vm_mm = tlb->mm, .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) | (tlb->vma_huge ? VM_HUGETLB : 0), }; flush_tlb_range(&vma, tlb->start, tlb->end); } } static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { /* * flush_tlb_range() implementations that look at VM_HUGETLB (tile, * mips-4k) flush only large pages. * * flush_tlb_range() implementations that flush I-TLB also flush D-TLB * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing * range. * * We rely on tlb_end_vma() to issue a flush, such that when we reset * these values the batch is empty. */ tlb->vma_huge = is_vm_hugetlb_page(vma); tlb->vma_exec = !!(vma->vm_flags & VM_EXEC); } #else static inline void tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { } #endif #endif /* CONFIG_MMU_GATHER_NO_RANGE */ static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) { /* * Anything calling __tlb_adjust_range() also sets at least one of * these bits. */ if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds || tlb->cleared_puds || tlb->cleared_p4ds)) return; tlb_flush(tlb); mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); __tlb_reset_range(tlb); } static inline void tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { if (__tlb_remove_page_size(tlb, page, page_size)) tlb_flush_mmu(tlb); } static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return __tlb_remove_page_size(tlb, page, PAGE_SIZE); } /* tlb_remove_page * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when * required. */ static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) { return tlb_remove_page_size(tlb, page, PAGE_SIZE); } static inline void tlb_change_page_size(struct mmu_gather *tlb, unsigned int page_size) { #ifdef CONFIG_MMU_GATHER_PAGE_SIZE if (tlb->page_size && tlb->page_size != page_size) { if (!tlb->fullmm && !tlb->need_flush_all) tlb_flush_mmu(tlb); } tlb->page_size = page_size; #endif } static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb) { if (tlb->cleared_ptes) return PAGE_SHIFT; if (tlb->cleared_pmds) return PMD_SHIFT; if (tlb->cleared_puds) return PUD_SHIFT; if (tlb->cleared_p4ds) return P4D_SHIFT; return PAGE_SHIFT; } static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb) { return 1UL << tlb_get_unmap_shift(tlb); } /* * In the case of tlb vma handling, we can optimise these away in the * case where we're doing a full MM flush. When we're doing a munmap, * the vmas are adjusted to only cover the region to be torn down. */ #ifndef tlb_start_vma static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; tlb_update_vma_flags(tlb, vma); flush_cache_range(vma, vma->vm_start, vma->vm_end); } #endif #ifndef tlb_end_vma static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { if (tlb->fullmm) return; /* * Do a TLB flush and reset the range at VMA boundaries; this avoids * the ranges growing with the unused space between consecutive VMAs, * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on * this. */ tlb_flush_mmu_tlbonly(tlb); } #endif /* * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end, * and set corresponding cleared_*. */ static inline void tlb_flush_pte_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_ptes = 1; } static inline void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_pmds = 1; } static inline void tlb_flush_pud_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_puds = 1; } static inline void tlb_flush_p4d_range(struct mmu_gather *tlb, unsigned long address, unsigned long size) { __tlb_adjust_range(tlb, address, size); tlb->cleared_p4ds = 1; } #ifndef __tlb_remove_tlb_entry #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0) #endif /** * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. * * Record the fact that pte's were really unmapped by updating the range, * so we can later optimise away the tlb invalidate. This helps when * userspace is unmapping already-unmapped pages, which happens quite a lot. */ #define tlb_remove_tlb_entry(tlb, ptep, address) \ do { \ tlb_flush_pte_range(tlb, address, PAGE_SIZE); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \ do { \ unsigned long _sz = huge_page_size(h); \ if (_sz >= P4D_SIZE) \ tlb_flush_p4d_range(tlb, address, _sz); \ else if (_sz >= PUD_SIZE) \ tlb_flush_pud_range(tlb, address, _sz); \ else if (_sz >= PMD_SIZE) \ tlb_flush_pmd_range(tlb, address, _sz); \ else \ tlb_flush_pte_range(tlb, address, _sz); \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) /** * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation * This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pmd_tlb_entry #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) #endif #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ do { \ tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \ __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ } while (0) /** * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb * invalidation. This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pud_tlb_entry #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) #endif #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ do { \ tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \ __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ } while (0) /* * For things like page tables caches (ie caching addresses "inside" the * page tables, like x86 does), for legacy reasons, flushing an * individual page had better flush the page table caches behind it. This * is definitely how x86 works, for example. And if you have an * architected non-legacy page table cache (which I'm not aware of * anybody actually doing), you're going to have some architecturally * explicit flushing for that, likely *separate* from a regular TLB entry * flush, and thus you'd need more than just some range expansion.. * * So if we ever find an architecture * that would want something that odd, I think it is up to that * architecture to do its own odd thing, not cause pain for others * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com * * For now w.r.t page table cache, mark the range_size as PAGE_SIZE */ #ifndef pte_free_tlb #define pte_free_tlb(tlb, ptep, address) \ do { \ tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pte_free_tlb(tlb, ptep, address); \ } while (0) #endif #ifndef pmd_free_tlb #define pmd_free_tlb(tlb, pmdp, address) \ do { \ tlb_flush_pud_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pmd_free_tlb(tlb, pmdp, address); \ } while (0) #endif #ifndef pud_free_tlb #define pud_free_tlb(tlb, pudp, address) \ do { \ tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __pud_free_tlb(tlb, pudp, address); \ } while (0) #endif #ifndef p4d_free_tlb #define p4d_free_tlb(tlb, pudp, address) \ do { \ __tlb_adjust_range(tlb, address, PAGE_SIZE); \ tlb->freed_tables = 1; \ __p4d_free_tlb(tlb, pudp, address); \ } while (0) #endif #endif /* CONFIG_MMU */ #endif /* _ASM_GENERIC__TLB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TTY_H #define _LINUX_TTY_H #include <linux/fs.h> #include <linux/major.h> #include <linux/termios.h> #include <linux/workqueue.h> #include <linux/tty_driver.h> #include <linux/tty_ldisc.h> #include <linux/mutex.h> #include <linux/tty_flags.h> #include <linux/seq_file.h> #include <uapi/linux/tty.h> #include <linux/rwsem.h> #include <linux/llist.h> /* * (Note: the *_driver.minor_start values 1, 64, 128, 192 are * hardcoded at present.) */ #define NR_UNIX98_PTY_DEFAULT 4096 /* Default maximum for Unix98 ptys */ #define NR_UNIX98_PTY_RESERVE 1024 /* Default reserve for main devpts */ #define NR_UNIX98_PTY_MAX (1 << MINORBITS) /* Absolute limit */ /* * This character is the same as _POSIX_VDISABLE: it cannot be used as * a c_cc[] character, but indicates that a particular special character * isn't in use (eg VINTR has no character etc) */ #define __DISABLED_CHAR '\0' struct tty_buffer { union { struct tty_buffer *next; struct llist_node free; }; int used; int size; int commit; int read; int flags; /* Data points here */ unsigned long data[]; }; /* Values for .flags field of tty_buffer */ #define TTYB_NORMAL 1 /* buffer has no flags buffer */ static inline unsigned char *char_buf_ptr(struct tty_buffer *b, int ofs) { return ((unsigned char *)b->data) + ofs; } static inline char *flag_buf_ptr(struct tty_buffer *b, int ofs) { return (char *)char_buf_ptr(b, ofs) + b->size; } struct tty_bufhead { struct tty_buffer *head; /* Queue head */ struct work_struct work; struct mutex lock; atomic_t priority; struct tty_buffer sentinel; struct llist_head free; /* Free queue head */ atomic_t mem_used; /* In-use buffers excluding free list */ int mem_limit; struct tty_buffer *tail; /* Active buffer */ }; /* * When a break, frame error, or parity error happens, these codes are * stuffed into the flags buffer. */ #define TTY_NORMAL 0 #define TTY_BREAK 1 #define TTY_FRAME 2 #define TTY_PARITY 3 #define TTY_OVERRUN 4 #define INTR_CHAR(tty) ((tty)->termios.c_cc[VINTR]) #define QUIT_CHAR(tty) ((tty)->termios.c_cc[VQUIT]) #define ERASE_CHAR(tty) ((tty)->termios.c_cc[VERASE]) #define KILL_CHAR(tty) ((tty)->termios.c_cc[VKILL]) #define EOF_CHAR(tty) ((tty)->termios.c_cc[VEOF]) #define TIME_CHAR(tty) ((tty)->termios.c_cc[VTIME]) #define MIN_CHAR(tty) ((tty)->termios.c_cc[VMIN]) #define SWTC_CHAR(tty) ((tty)->termios.c_cc[VSWTC]) #define START_CHAR(tty) ((tty)->termios.c_cc[VSTART]) #define STOP_CHAR(tty) ((tty)->termios.c_cc[VSTOP]) #define SUSP_CHAR(tty) ((tty)->termios.c_cc[VSUSP]) #define EOL_CHAR(tty) ((tty)->termios.c_cc[VEOL]) #define REPRINT_CHAR(tty) ((tty)->termios.c_cc[VREPRINT]) #define DISCARD_CHAR(tty) ((tty)->termios.c_cc[VDISCARD]) #define WERASE_CHAR(tty) ((tty)->termios.c_cc[VWERASE]) #define LNEXT_CHAR(tty) ((tty)->termios.c_cc[VLNEXT]) #define EOL2_CHAR(tty) ((tty)->termios.c_cc[VEOL2]) #define _I_FLAG(tty, f) ((tty)->termios.c_iflag & (f)) #define _O_FLAG(tty, f) ((tty)->termios.c_oflag & (f)) #define _C_FLAG(tty, f) ((tty)->termios.c_cflag & (f)) #define _L_FLAG(tty, f) ((tty)->termios.c_lflag & (f)) #define I_IGNBRK(tty) _I_FLAG((tty), IGNBRK) #define I_BRKINT(tty) _I_FLAG((tty), BRKINT) #define I_IGNPAR(tty) _I_FLAG((tty), IGNPAR) #define I_PARMRK(tty) _I_FLAG((tty), PARMRK) #define I_INPCK(tty) _I_FLAG((tty), INPCK) #define I_ISTRIP(tty) _I_FLAG((tty), ISTRIP) #define I_INLCR(tty) _I_FLAG((tty), INLCR) #define I_IGNCR(tty) _I_FLAG((tty), IGNCR) #define I_ICRNL(tty) _I_FLAG((tty), ICRNL) #define I_IUCLC(tty) _I_FLAG((tty), IUCLC) #define I_IXON(tty) _I_FLAG((tty), IXON) #define I_IXANY(tty) _I_FLAG((tty), IXANY) #define I_IXOFF(tty) _I_FLAG((tty), IXOFF) #define I_IMAXBEL(tty) _I_FLAG((tty), IMAXBEL) #define I_IUTF8(tty) _I_FLAG((tty), IUTF8) #define O_OPOST(tty) _O_FLAG((tty), OPOST) #define O_OLCUC(tty) _O_FLAG((tty), OLCUC) #define O_ONLCR(tty) _O_FLAG((tty), ONLCR) #define O_OCRNL(tty) _O_FLAG((tty), OCRNL) #define O_ONOCR(tty) _O_FLAG((tty), ONOCR) #define O_ONLRET(tty) _O_FLAG((tty), ONLRET) #define O_OFILL(tty) _O_FLAG((tty), OFILL) #define O_OFDEL(tty) _O_FLAG((tty), OFDEL) #define O_NLDLY(tty) _O_FLAG((tty), NLDLY) #define O_CRDLY(tty) _O_FLAG((tty), CRDLY) #define O_TABDLY(tty) _O_FLAG((tty), TABDLY) #define O_BSDLY(tty) _O_FLAG((tty), BSDLY) #define O_VTDLY(tty) _O_FLAG((tty), VTDLY) #define O_FFDLY(tty) _O_FLAG((tty), FFDLY) #define C_BAUD(tty) _C_FLAG((tty), CBAUD) #define C_CSIZE(tty) _C_FLAG((tty), CSIZE) #define C_CSTOPB(tty) _C_FLAG((tty), CSTOPB) #define C_CREAD(tty) _C_FLAG((tty), CREAD) #define C_PARENB(tty) _C_FLAG((tty), PARENB) #define C_PARODD(tty) _C_FLAG((tty), PARODD) #define C_HUPCL(tty) _C_FLAG((tty), HUPCL) #define C_CLOCAL(tty) _C_FLAG((tty), CLOCAL) #define C_CIBAUD(tty) _C_FLAG((tty), CIBAUD) #define C_CRTSCTS(tty) _C_FLAG((tty), CRTSCTS) #define C_CMSPAR(tty) _C_FLAG((tty), CMSPAR) #define L_ISIG(tty) _L_FLAG((tty), ISIG) #define L_ICANON(tty) _L_FLAG((tty), ICANON) #define L_XCASE(tty) _L_FLAG((tty), XCASE) #define L_ECHO(tty) _L_FLAG((tty), ECHO) #define L_ECHOE(tty) _L_FLAG((tty), ECHOE) #define L_ECHOK(tty) _L_FLAG((tty), ECHOK) #define L_ECHONL(tty) _L_FLAG((tty), ECHONL) #define L_NOFLSH(tty) _L_FLAG((tty), NOFLSH) #define L_TOSTOP(tty) _L_FLAG((tty), TOSTOP) #define L_ECHOCTL(tty) _L_FLAG((tty), ECHOCTL) #define L_ECHOPRT(tty) _L_FLAG((tty), ECHOPRT) #define L_ECHOKE(tty) _L_FLAG((tty), ECHOKE) #define L_FLUSHO(tty) _L_FLAG((tty), FLUSHO) #define L_PENDIN(tty) _L_FLAG((tty), PENDIN) #define L_IEXTEN(tty) _L_FLAG((tty), IEXTEN) #define L_EXTPROC(tty) _L_FLAG((tty), EXTPROC) struct device; struct signal_struct; /* * Port level information. Each device keeps its own port level information * so provide a common structure for those ports wanting to use common support * routines. * * The tty port has a different lifetime to the tty so must be kept apart. * In addition be careful as tty -> port mappings are valid for the life * of the tty object but in many cases port -> tty mappings are valid only * until a hangup so don't use the wrong path. */ struct tty_port; struct tty_port_operations { /* Return 1 if the carrier is raised */ int (*carrier_raised)(struct tty_port *port); /* Control the DTR line */ void (*dtr_rts)(struct tty_port *port, int raise); /* Called when the last close completes or a hangup finishes IFF the port was initialized. Do not use to free resources. Called under the port mutex to serialize against activate/shutdowns */ void (*shutdown)(struct tty_port *port); /* Called under the port mutex from tty_port_open, serialized using the port mutex */ /* FIXME: long term getting the tty argument *out* of this would be good for consoles */ int (*activate)(struct tty_port *port, struct tty_struct *tty); /* Called on the final put of a port */ void (*destruct)(struct tty_port *port); }; struct tty_port_client_operations { int (*receive_buf)(struct tty_port *port, const unsigned char *, const unsigned char *, size_t); void (*write_wakeup)(struct tty_port *port); }; extern const struct tty_port_client_operations tty_port_default_client_ops; struct tty_port { struct tty_bufhead buf; /* Locked internally */ struct tty_struct *tty; /* Back pointer */ struct tty_struct *itty; /* internal back ptr */ const struct tty_port_operations *ops; /* Port operations */ const struct tty_port_client_operations *client_ops; /* Port client operations */ spinlock_t lock; /* Lock protecting tty field */ int blocked_open; /* Waiting to open */ int count; /* Usage count */ wait_queue_head_t open_wait; /* Open waiters */ wait_queue_head_t delta_msr_wait; /* Modem status change */ unsigned long flags; /* User TTY flags ASYNC_ */ unsigned long iflags; /* Internal flags TTY_PORT_ */ unsigned char console:1, /* port is a console */ low_latency:1; /* optional: tune for latency */ struct mutex mutex; /* Locking */ struct mutex buf_mutex; /* Buffer alloc lock */ unsigned char *xmit_buf; /* Optional buffer */ unsigned int close_delay; /* Close port delay */ unsigned int closing_wait; /* Delay for output */ int drain_delay; /* Set to zero if no pure time based drain is needed else set to size of fifo */ struct kref kref; /* Ref counter */ void *client_data; }; /* tty_port::iflags bits -- use atomic bit ops */ #define TTY_PORT_INITIALIZED 0 /* device is initialized */ #define TTY_PORT_SUSPENDED 1 /* device is suspended */ #define TTY_PORT_ACTIVE 2 /* device is open */ /* * uart drivers: use the uart_port::status field and the UPSTAT_* defines * for s/w-based flow control steering and carrier detection status */ #define TTY_PORT_CTS_FLOW 3 /* h/w flow control enabled */ #define TTY_PORT_CHECK_CD 4 /* carrier detect enabled */ #define TTY_PORT_KOPENED 5 /* device exclusively opened by kernel */ /* * Where all of the state associated with a tty is kept while the tty * is open. Since the termios state should be kept even if the tty * has been closed --- for things like the baud rate, etc --- it is * not stored here, but rather a pointer to the real state is stored * here. Possible the winsize structure should have the same * treatment, but (1) the default 80x24 is usually right and (2) it's * most often used by a windowing system, which will set the correct * size each time the window is created or resized anyway. * - TYT, 9/14/92 */ struct tty_operations; struct tty_struct { int magic; struct kref kref; struct device *dev; struct tty_driver *driver; const struct tty_operations *ops; int index; /* Protects ldisc changes: Lock tty not pty */ struct ld_semaphore ldisc_sem; struct tty_ldisc *ldisc; struct mutex atomic_write_lock; struct mutex legacy_mutex; struct mutex throttle_mutex; struct rw_semaphore termios_rwsem; struct mutex winsize_mutex; spinlock_t ctrl_lock; spinlock_t flow_lock; /* Termios values are protected by the termios rwsem */ struct ktermios termios, termios_locked; char name[64]; struct pid *pgrp; /* Protected by ctrl lock */ /* * Writes protected by both ctrl lock and legacy mutex, readers must use * at least one of them. */ struct pid *session; unsigned long flags; int count; struct winsize winsize; /* winsize_mutex */ unsigned long stopped:1, /* flow_lock */ flow_stopped:1, unused:BITS_PER_LONG - 2; int hw_stopped; unsigned long ctrl_status:8, /* ctrl_lock */ packet:1, unused_ctrl:BITS_PER_LONG - 9; unsigned int receive_room; /* Bytes free for queue */ int flow_change; struct tty_struct *link; struct fasync_struct *fasync; wait_queue_head_t write_wait; wait_queue_head_t read_wait; struct work_struct hangup_work; void *disc_data; void *driver_data; spinlock_t files_lock; /* protects tty_files list */ struct list_head tty_files; #define N_TTY_BUF_SIZE 4096 int closing; unsigned char *write_buf; int write_cnt; /* If the tty has a pending do_SAK, queue it here - akpm */ struct work_struct SAK_work; struct tty_port *port; } __randomize_layout; /* Each of a tty's open files has private_data pointing to tty_file_private */ struct tty_file_private { struct tty_struct *tty; struct file *file; struct list_head list; }; /* tty magic number */ #define TTY_MAGIC 0x5401 /* * These bits are used in the flags field of the tty structure. * * So that interrupts won't be able to mess up the queues, * copy_to_cooked must be atomic with respect to itself, as must * tty->write. Thus, you must use the inline functions set_bit() and * clear_bit() to make things atomic. */ #define TTY_THROTTLED 0 /* Call unthrottle() at threshold min */ #define TTY_IO_ERROR 1 /* Cause an I/O error (may be no ldisc too) */ #define TTY_OTHER_CLOSED 2 /* Other side (if any) has closed */ #define TTY_EXCLUSIVE 3 /* Exclusive open mode */ #define TTY_DO_WRITE_WAKEUP 5 /* Call write_wakeup after queuing new */ #define TTY_LDISC_OPEN 11 /* Line discipline is open */ #define TTY_PTY_LOCK 16 /* pty private */ #define TTY_NO_WRITE_SPLIT 17 /* Preserve write boundaries to driver */ #define TTY_HUPPED 18 /* Post driver->hangup() */ #define TTY_HUPPING 19 /* Hangup in progress */ #define TTY_LDISC_CHANGING 20 /* Change pending - non-block IO */ #define TTY_LDISC_HALTED 22 /* Line discipline is halted */ static inline bool tty_io_nonblock(struct tty_struct *tty, struct file *file) { return file->f_flags & O_NONBLOCK || test_bit(TTY_LDISC_CHANGING, &tty->flags); } static inline bool tty_io_error(struct tty_struct *tty) { return test_bit(TTY_IO_ERROR, &tty->flags); } static inline bool tty_throttled(struct tty_struct *tty) { return test_bit(TTY_THROTTLED, &tty->flags); } #ifdef CONFIG_TTY extern void tty_kref_put(struct tty_struct *tty); extern struct pid *tty_get_pgrp(struct tty_struct *tty); extern void tty_vhangup_self(void); extern void disassociate_ctty(int priv); extern dev_t tty_devnum(struct tty_struct *tty); extern void proc_clear_tty(struct task_struct *p); extern struct tty_struct *get_current_tty(void); /* tty_io.c */ extern int __init tty_init(void); extern const char *tty_name(const struct tty_struct *tty); extern struct tty_struct *tty_kopen(dev_t device); extern void tty_kclose(struct tty_struct *tty); extern int tty_dev_name_to_number(const char *name, dev_t *number); #else static inline void tty_kref_put(struct tty_struct *tty) { } static inline struct pid *tty_get_pgrp(struct tty_struct *tty) { return NULL; } static inline void tty_vhangup_self(void) { } static inline void disassociate_ctty(int priv) { } static inline dev_t tty_devnum(struct tty_struct *tty) { return 0; } static inline void proc_clear_tty(struct task_struct *p) { } static inline struct tty_struct *get_current_tty(void) { return NULL; } /* tty_io.c */ static inline int __init tty_init(void) { return 0; } static inline const char *tty_name(const struct tty_struct *tty) { return "(none)"; } static inline struct tty_struct *tty_kopen(dev_t device) { return ERR_PTR(-ENODEV); } static inline void tty_kclose(struct tty_struct *tty) { } static inline int tty_dev_name_to_number(const char *name, dev_t *number) { return -ENOTSUPP; } #endif extern struct ktermios tty_std_termios; extern int vcs_init(void); extern struct class *tty_class; /** * tty_kref_get - get a tty reference * @tty: tty device * * Return a new reference to a tty object. The caller must hold * sufficient locks/counts to ensure that their existing reference cannot * go away */ static inline struct tty_struct *tty_kref_get(struct tty_struct *tty) { if (tty) kref_get(&tty->kref); return tty; } extern const char *tty_driver_name(const struct tty_struct *tty); extern void tty_wait_until_sent(struct tty_struct *tty, long timeout); extern void stop_tty(struct tty_struct *tty); extern void start_tty(struct tty_struct *tty); extern int tty_register_driver(struct tty_driver *driver); extern int tty_unregister_driver(struct tty_driver *driver); extern struct device *tty_register_device(struct tty_driver *driver, unsigned index, struct device *dev); extern struct device *tty_register_device_attr(struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern void tty_unregister_device(struct tty_driver *driver, unsigned index); extern void tty_write_message(struct tty_struct *tty, char *msg); extern int tty_send_xchar(struct tty_struct *tty, char ch); extern int tty_put_char(struct tty_struct *tty, unsigned char c); extern int tty_chars_in_buffer(struct tty_struct *tty); extern int tty_write_room(struct tty_struct *tty); extern void tty_driver_flush_buffer(struct tty_struct *tty); extern void tty_throttle(struct tty_struct *tty); extern void tty_unthrottle(struct tty_struct *tty); extern int tty_throttle_safe(struct tty_struct *tty); extern int tty_unthrottle_safe(struct tty_struct *tty); extern int tty_do_resize(struct tty_struct *tty, struct winsize *ws); extern int is_current_pgrp_orphaned(void); extern void tty_hangup(struct tty_struct *tty); extern void tty_vhangup(struct tty_struct *tty); extern int tty_hung_up_p(struct file *filp); extern void do_SAK(struct tty_struct *tty); extern void __do_SAK(struct tty_struct *tty); extern void no_tty(void); extern speed_t tty_termios_baud_rate(struct ktermios *termios); extern void tty_termios_encode_baud_rate(struct ktermios *termios, speed_t ibaud, speed_t obaud); extern void tty_encode_baud_rate(struct tty_struct *tty, speed_t ibaud, speed_t obaud); /** * tty_get_baud_rate - get tty bit rates * @tty: tty to query * * Returns the baud rate as an integer for this terminal. The * termios lock must be held by the caller and the terminal bit * flags may be updated. * * Locking: none */ static inline speed_t tty_get_baud_rate(struct tty_struct *tty) { return tty_termios_baud_rate(&tty->termios); } extern void tty_termios_copy_hw(struct ktermios *new, struct ktermios *old); extern int tty_termios_hw_change(const struct ktermios *a, const struct ktermios *b); extern int tty_set_termios(struct tty_struct *tty, struct ktermios *kt); extern struct tty_ldisc *tty_ldisc_ref(struct tty_struct *); extern void tty_ldisc_deref(struct tty_ldisc *); extern struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *); extern const struct seq_operations tty_ldiscs_seq_ops; extern void tty_wakeup(struct tty_struct *tty); extern void tty_ldisc_flush(struct tty_struct *tty); extern int tty_mode_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); extern int tty_perform_flush(struct tty_struct *tty, unsigned long arg); extern struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx); extern void tty_release_struct(struct tty_struct *tty, int idx); extern void tty_init_termios(struct tty_struct *tty); extern void tty_save_termios(struct tty_struct *tty); extern int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty); extern struct mutex tty_mutex; extern void tty_port_init(struct tty_port *port); extern void tty_port_link_device(struct tty_port *port, struct tty_driver *driver, unsigned index); extern struct device *tty_port_register_device(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); extern struct device *tty_port_register_device_attr(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern struct device *tty_port_register_device_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device); extern struct device *tty_port_register_device_attr_serdev(struct tty_port *port, struct tty_driver *driver, unsigned index, struct device *device, void *drvdata, const struct attribute_group **attr_grp); extern void tty_port_unregister_device(struct tty_port *port, struct tty_driver *driver, unsigned index); extern int tty_port_alloc_xmit_buf(struct tty_port *port); extern void tty_port_free_xmit_buf(struct tty_port *port); extern void tty_port_destroy(struct tty_port *port); extern void tty_port_put(struct tty_port *port); static inline struct tty_port *tty_port_get(struct tty_port *port) { if (port && kref_get_unless_zero(&port->kref)) return port; return NULL; } /* If the cts flow control is enabled, return true. */ static inline bool tty_port_cts_enabled(struct tty_port *port) { return test_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline void tty_port_set_cts_flow(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_CTS_FLOW, &port->iflags); else clear_bit(TTY_PORT_CTS_FLOW, &port->iflags); } static inline bool tty_port_active(struct tty_port *port) { return test_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline void tty_port_set_active(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_ACTIVE, &port->iflags); else clear_bit(TTY_PORT_ACTIVE, &port->iflags); } static inline bool tty_port_check_carrier(struct tty_port *port) { return test_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline void tty_port_set_check_carrier(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_CHECK_CD, &port->iflags); else clear_bit(TTY_PORT_CHECK_CD, &port->iflags); } static inline bool tty_port_suspended(struct tty_port *port) { return test_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline void tty_port_set_suspended(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_SUSPENDED, &port->iflags); else clear_bit(TTY_PORT_SUSPENDED, &port->iflags); } static inline bool tty_port_initialized(struct tty_port *port) { return test_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline void tty_port_set_initialized(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_INITIALIZED, &port->iflags); else clear_bit(TTY_PORT_INITIALIZED, &port->iflags); } static inline bool tty_port_kopened(struct tty_port *port) { return test_bit(TTY_PORT_KOPENED, &port->iflags); } static inline void tty_port_set_kopened(struct tty_port *port, bool val) { if (val) set_bit(TTY_PORT_KOPENED, &port->iflags); else clear_bit(TTY_PORT_KOPENED, &port->iflags); } extern struct tty_struct *tty_port_tty_get(struct tty_port *port); extern void tty_port_tty_set(struct tty_port *port, struct tty_struct *tty); extern int tty_port_carrier_raised(struct tty_port *port); extern void tty_port_raise_dtr_rts(struct tty_port *port); extern void tty_port_lower_dtr_rts(struct tty_port *port); extern void tty_port_hangup(struct tty_port *port); extern void tty_port_tty_hangup(struct tty_port *port, bool check_clocal); extern void tty_port_tty_wakeup(struct tty_port *port); extern int tty_port_block_til_ready(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern int tty_port_close_start(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern void tty_port_close_end(struct tty_port *port, struct tty_struct *tty); extern void tty_port_close(struct tty_port *port, struct tty_struct *tty, struct file *filp); extern int tty_port_install(struct tty_port *port, struct tty_driver *driver, struct tty_struct *tty); extern int tty_port_open(struct tty_port *port, struct tty_struct *tty, struct file *filp); static inline int tty_port_users(struct tty_port *port) { return port->count + port->blocked_open; } extern int tty_register_ldisc(int disc, struct tty_ldisc_ops *new_ldisc); extern int tty_unregister_ldisc(int disc); extern int tty_set_ldisc(struct tty_struct *tty, int disc); extern int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p, char *f, int count); /* n_tty.c */ extern void n_tty_inherit_ops(struct tty_ldisc_ops *ops); #ifdef CONFIG_TTY extern void __init n_tty_init(void); #else static inline void n_tty_init(void) { } #endif /* tty_audit.c */ #ifdef CONFIG_AUDIT extern void tty_audit_exit(void); extern void tty_audit_fork(struct signal_struct *sig); extern int tty_audit_push(void); #else static inline void tty_audit_exit(void) { } static inline void tty_audit_fork(struct signal_struct *sig) { } static inline int tty_audit_push(void) { return 0; } #endif /* tty_ioctl.c */ extern int n_tty_ioctl_helper(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); /* vt.c */ extern int vt_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); extern long vt_compat_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); /* tty_mutex.c */ /* functions for preparation of BKL removal */ extern void tty_lock(struct tty_struct *tty); extern int tty_lock_interruptible(struct tty_struct *tty); extern void tty_unlock(struct tty_struct *tty); extern void tty_lock_slave(struct tty_struct *tty); extern void tty_unlock_slave(struct tty_struct *tty); extern void tty_set_lock_subclass(struct tty_struct *tty); #ifdef CONFIG_PROC_FS extern void proc_tty_register_driver(struct tty_driver *); extern void proc_tty_unregister_driver(struct tty_driver *); #else static inline void proc_tty_register_driver(struct tty_driver *d) {} static inline void proc_tty_unregister_driver(struct tty_driver *d) {} #endif #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1993 Linus Torvalds * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 * Numa awareness, Christoph Lameter, SGI, June 2005 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 */ #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/set_memory.h> #include <linux/debugobjects.h> #include <linux/kallsyms.h> #include <linux/list.h> #include <linux/notifier.h> #include <linux/rbtree.h> #include <linux/xarray.h> #include <linux/rcupdate.h> #include <linux/pfn.h> #include <linux/kmemleak.h> #include <linux/atomic.h> #include <linux/compiler.h> #include <linux/llist.h> #include <linux/bitops.h> #include <linux/rbtree_augmented.h> #include <linux/overflow.h> #include <linux/uaccess.h> #include <asm/tlbflush.h> #include <asm/shmparam.h> #include "internal.h" #include "pgalloc-track.h" bool is_vmalloc_addr(const void *x) { unsigned long addr = (unsigned long)x; return addr >= VMALLOC_START && addr < VMALLOC_END; } EXPORT_SYMBOL(is_vmalloc_addr); struct vfree_deferred { struct llist_head list; struct work_struct wq; }; static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); static void __vunmap(const void *, int); static void free_work(struct work_struct *w) { struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); struct llist_node *t, *llnode; llist_for_each_safe(llnode, t, llist_del_all(&p->list)) __vunmap((void *)llnode, 1); } /*** Page table manipulation functions ***/ static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pte_t *pte; pte = pte_offset_kernel(pmd, addr); do { pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); WARN_ON(!pte_none(ptent) && !pte_present(ptent)); } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; } static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int cleared; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); cleared = pmd_clear_huge(pmd); if (cleared || pmd_bad(*pmd)) *mask |= PGTBL_PMD_MODIFIED; if (cleared) continue; if (pmd_none_or_clear_bad(pmd)) continue; vunmap_pte_range(pmd, addr, next, mask); cond_resched(); } while (pmd++, addr = next, addr != end); } static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int cleared; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); cleared = pud_clear_huge(pud); if (cleared || pud_bad(*pud)) *mask |= PGTBL_PUD_MODIFIED; if (cleared) continue; if (pud_none_or_clear_bad(pud)) continue; vunmap_pmd_range(pud, addr, next, mask); } while (pud++, addr = next, addr != end); } static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int cleared; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); cleared = p4d_clear_huge(p4d); if (cleared || p4d_bad(*p4d)) *mask |= PGTBL_P4D_MODIFIED; if (cleared) continue; if (p4d_none_or_clear_bad(p4d)) continue; vunmap_pud_range(p4d, addr, next, mask); } while (p4d++, addr = next, addr != end); } /** * unmap_kernel_range_noflush - unmap kernel VM area * @start: start of the VM area to unmap * @size: size of the VM area to unmap * * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size specify * should have been allocated using get_vm_area() and its friends. * * NOTE: * This function does NOT do any cache flushing. The caller is responsible * for calling flush_cache_vunmap() on to-be-mapped areas before calling this * function and flush_tlb_kernel_range() after. */ void unmap_kernel_range_noflush(unsigned long start, unsigned long size) { unsigned long end = start + size; unsigned long next; pgd_t *pgd; unsigned long addr = start; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; if (pgd_none_or_clear_bad(pgd)) continue; vunmap_p4d_range(pgd, addr, next, &mask); } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); } static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pte_t *pte; /* * nr is a running index into the array which helps higher level * callers keep track of where we're up to. */ pte = pte_alloc_kernel_track(pmd, addr, mask); if (!pte) return -ENOMEM; do { struct page *page = pages[*nr]; if (WARN_ON(!pte_none(*pte))) return -EBUSY; if (WARN_ON(!page)) return -ENOMEM; set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); (*nr)++; } while (pte++, addr += PAGE_SIZE, addr != end); *mask |= PGTBL_PTE_MODIFIED; return 0; } static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; pmd = pmd_alloc_track(&init_mm, pud, addr, mask); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pmd++, addr = next, addr != end); return 0; } static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; pud = pud_alloc_track(&init_mm, p4d, addr, mask); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (pud++, addr = next, addr != end); return 0; } static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, pgprot_t prot, struct page **pages, int *nr, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask)) return -ENOMEM; } while (p4d++, addr = next, addr != end); return 0; } /** * map_kernel_range_noflush - map kernel VM area with the specified pages * @addr: start of the VM area to map * @size: size of the VM area to map * @prot: page protection flags to use * @pages: pages to map * * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size specify should * have been allocated using get_vm_area() and its friends. * * NOTE: * This function does NOT do any cache flushing. The caller is responsible for * calling flush_cache_vmap() on to-be-mapped areas before calling this * function. * * RETURNS: * 0 on success, -errno on failure. */ int map_kernel_range_noflush(unsigned long addr, unsigned long size, pgprot_t prot, struct page **pages) { unsigned long start = addr; unsigned long end = addr + size; unsigned long next; pgd_t *pgd; int err = 0; int nr = 0; pgtbl_mod_mask mask = 0; BUG_ON(addr >= end); pgd = pgd_offset_k(addr); do { next = pgd_addr_end(addr, end); if (pgd_bad(*pgd)) mask |= PGTBL_PGD_MODIFIED; err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); if (err) return err; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, end); return 0; } int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages) { int ret; ret = map_kernel_range_noflush(start, size, prot, pages); flush_cache_vmap(start, start + size); return ret; } int is_vmalloc_or_module_addr(const void *x) { /* * ARM, x86-64 and sparc64 put modules in a special place, * and fall back on vmalloc() if that fails. Others * just put it in the vmalloc space. */ #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) unsigned long addr = (unsigned long)x; if (addr >= MODULES_VADDR && addr < MODULES_END) return 1; #endif return is_vmalloc_addr(x); } /* * Walk a vmap address to the struct page it maps. */ struct page *vmalloc_to_page(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; struct page *page = NULL; pgd_t *pgd = pgd_offset_k(addr); p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep, pte; /* * XXX we might need to change this if we add VIRTUAL_BUG_ON for * architectures that do not vmalloc module space */ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); if (pgd_none(*pgd)) return NULL; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) return NULL; pud = pud_offset(p4d, addr); /* * Don't dereference bad PUD or PMD (below) entries. This will also * identify huge mappings, which we may encounter on architectures * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be * identified as vmalloc addresses by is_vmalloc_addr(), but are * not [unambiguously] associated with a struct page, so there is * no correct value to return for them. */ WARN_ON_ONCE(pud_bad(*pud)); if (pud_none(*pud) || pud_bad(*pud)) return NULL; pmd = pmd_offset(pud, addr); WARN_ON_ONCE(pmd_bad(*pmd)); if (pmd_none(*pmd) || pmd_bad(*pmd)) return NULL; ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) page = pte_page(pte); pte_unmap(ptep); return page; } EXPORT_SYMBOL(vmalloc_to_page); /* * Map a vmalloc()-space virtual address to the physical page frame number. */ unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { return page_to_pfn(vmalloc_to_page(vmalloc_addr)); } EXPORT_SYMBOL(vmalloc_to_pfn); /*** Global kva allocator ***/ #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 static DEFINE_SPINLOCK(vmap_area_lock); static DEFINE_SPINLOCK(free_vmap_area_lock); /* Export for kexec only */ LIST_HEAD(vmap_area_list); static LLIST_HEAD(vmap_purge_list); static struct rb_root vmap_area_root = RB_ROOT; static bool vmap_initialized __read_mostly; /* * This kmem_cache is used for vmap_area objects. Instead of * allocating from slab we reuse an object from this cache to * make things faster. Especially in "no edge" splitting of * free block. */ static struct kmem_cache *vmap_area_cachep; /* * This linked list is used in pair with free_vmap_area_root. * It gives O(1) access to prev/next to perform fast coalescing. */ static LIST_HEAD(free_vmap_area_list); /* * This augment red-black tree represents the free vmap space. * All vmap_area objects in this tree are sorted by va->va_start * address. It is used for allocation and merging when a vmap * object is released. * * Each vmap_area node contains a maximum available free block * of its sub-tree, right or left. Therefore it is possible to * find a lowest match of free area. */ static struct rb_root free_vmap_area_root = RB_ROOT; /* * Preload a CPU with one object for "no edge" split case. The * aim is to get rid of allocations from the atomic context, thus * to use more permissive allocation masks. */ static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); static __always_inline unsigned long va_size(struct vmap_area *va) { return (va->va_end - va->va_start); } static __always_inline unsigned long get_subtree_max_size(struct rb_node *node) { struct vmap_area *va; va = rb_entry_safe(node, struct vmap_area, rb_node); return va ? va->subtree_max_size : 0; } /* * Gets called when remove the node and rotate. */ static __always_inline unsigned long compute_subtree_max_size(struct vmap_area *va) { return max3(va_size(va), get_subtree_max_size(va->rb_node.rb_left), get_subtree_max_size(va->rb_node.rb_right)); } RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) static void purge_vmap_area_lazy(void); static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); static unsigned long lazy_max_pages(void); static atomic_long_t nr_vmalloc_pages; unsigned long vmalloc_nr_pages(void) { return atomic_long_read(&nr_vmalloc_pages); } static struct vmap_area *__find_vmap_area(unsigned long addr) { struct rb_node *n = vmap_area_root.rb_node; while (n) { struct vmap_area *va; va = rb_entry(n, struct vmap_area, rb_node); if (addr < va->va_start) n = n->rb_left; else if (addr >= va->va_end) n = n->rb_right; else return va; } return NULL; } /* * This function returns back addresses of parent node * and its left or right link for further processing. * * Otherwise NULL is returned. In that case all further * steps regarding inserting of conflicting overlap range * have to be declined and actually considered as a bug. */ static __always_inline struct rb_node ** find_va_links(struct vmap_area *va, struct rb_root *root, struct rb_node *from, struct rb_node **parent) { struct vmap_area *tmp_va; struct rb_node **link; if (root) { link = &root->rb_node; if (unlikely(!*link)) { *parent = NULL; return link; } } else { link = &from; } /* * Go to the bottom of the tree. When we hit the last point * we end up with parent rb_node and correct direction, i name * it link, where the new va->rb_node will be attached to. */ do { tmp_va = rb_entry(*link, struct vmap_area, rb_node); /* * During the traversal we also do some sanity check. * Trigger the BUG() if there are sides(left/right) * or full overlaps. */ if (va->va_start < tmp_va->va_end && va->va_end <= tmp_va->va_start) link = &(*link)->rb_left; else if (va->va_end > tmp_va->va_start && va->va_start >= tmp_va->va_end) link = &(*link)->rb_right; else { WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); return NULL; } } while (*link); *parent = &tmp_va->rb_node; return link; } static __always_inline struct list_head * get_va_next_sibling(struct rb_node *parent, struct rb_node **link) { struct list_head *list; if (unlikely(!parent)) /* * The red-black tree where we try to find VA neighbors * before merging or inserting is empty, i.e. it means * there is no free vmap space. Normally it does not * happen but we handle this case anyway. */ return NULL; list = &rb_entry(parent, struct vmap_area, rb_node)->list; return (&parent->rb_right == link ? list->next : list); } static __always_inline void link_va(struct vmap_area *va, struct rb_root *root, struct rb_node *parent, struct rb_node **link, struct list_head *head) { /* * VA is still not in the list, but we can * identify its future previous list_head node. */ if (likely(parent)) { head = &rb_entry(parent, struct vmap_area, rb_node)->list; if (&parent->rb_right != link) head = head->prev; } /* Insert to the rb-tree */ rb_link_node(&va->rb_node, parent, link); if (root == &free_vmap_area_root) { /* * Some explanation here. Just perform simple insertion * to the tree. We do not set va->subtree_max_size to * its current size before calling rb_insert_augmented(). * It is because of we populate the tree from the bottom * to parent levels when the node _is_ in the tree. * * Therefore we set subtree_max_size to zero after insertion, * to let __augment_tree_propagate_from() puts everything to * the correct order later on. */ rb_insert_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); va->subtree_max_size = 0; } else { rb_insert_color(&va->rb_node, root); } /* Address-sort this list */ list_add(&va->list, head); } static __always_inline void unlink_va(struct vmap_area *va, struct rb_root *root) { if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) return; if (root == &free_vmap_area_root) rb_erase_augmented(&va->rb_node, root, &free_vmap_area_rb_augment_cb); else rb_erase(&va->rb_node, root); list_del(&va->list); RB_CLEAR_NODE(&va->rb_node); } #if DEBUG_AUGMENT_PROPAGATE_CHECK static void augment_tree_propagate_check(void) { struct vmap_area *va; unsigned long computed_size; list_for_each_entry(va, &free_vmap_area_list, list) { computed_size = compute_subtree_max_size(va); if (computed_size != va->subtree_max_size) pr_emerg("tree is corrupted: %lu, %lu\n", va_size(va), va->subtree_max_size); } } #endif /* * This function populates subtree_max_size from bottom to upper * levels starting from VA point. The propagation must be done * when VA size is modified by changing its va_start/va_end. Or * in case of newly inserting of VA to the tree. * * It means that __augment_tree_propagate_from() must be called: * - After VA has been inserted to the tree(free path); * - After VA has been shrunk(allocation path); * - After VA has been increased(merging path). * * Please note that, it does not mean that upper parent nodes * and their subtree_max_size are recalculated all the time up * to the root node. * * 4--8 * /\ * / \ * / \ * 2--2 8--8 * * For example if we modify the node 4, shrinking it to 2, then * no any modification is required. If we shrink the node 2 to 1 * its subtree_max_size is updated only, and set to 1. If we shrink * the node 8 to 6, then its subtree_max_size is set to 6 and parent * node becomes 4--6. */ static __always_inline void augment_tree_propagate_from(struct vmap_area *va) { /* * Populate the tree from bottom towards the root until * the calculated maximum available size of checked node * is equal to its current one. */ free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); #if DEBUG_AUGMENT_PROPAGATE_CHECK augment_tree_propagate_check(); #endif } static void insert_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; link = find_va_links(va, root, NULL, &parent); if (link) link_va(va, root, parent, link, head); } static void insert_vmap_area_augment(struct vmap_area *va, struct rb_node *from, struct rb_root *root, struct list_head *head) { struct rb_node **link; struct rb_node *parent; if (from) link = find_va_links(va, NULL, from, &parent); else link = find_va_links(va, root, NULL, &parent); if (link) { link_va(va, root, parent, link, head); augment_tree_propagate_from(va); } } /* * Merge de-allocated chunk of VA memory with previous * and next free blocks. If coalesce is not done a new * free area is inserted. If VA has been merged, it is * freed. * * Please note, it can return NULL in case of overlap * ranges, followed by WARN() report. Despite it is a * buggy behaviour, a system can be alive and keep * ongoing. */ static __always_inline struct vmap_area * merge_or_add_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { struct vmap_area *sibling; struct list_head *next; struct rb_node **link; struct rb_node *parent; bool merged = false; /* * Find a place in the tree where VA potentially will be * inserted, unless it is merged with its sibling/siblings. */ link = find_va_links(va, root, NULL, &parent); if (!link) return NULL; /* * Get next node of VA to check if merging can be done. */ next = get_va_next_sibling(parent, link); if (unlikely(next == NULL)) goto insert; /* * start end * | | * |<------VA------>|<-----Next----->| * | | * start end */ if (next != head) { sibling = list_entry(next, struct vmap_area, list); if (sibling->va_start == va->va_end) { sibling->va_start = va->va_start; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } /* * start end * | | * |<-----Prev----->|<------VA------>| * | | * start end */ if (next->prev != head) { sibling = list_entry(next->prev, struct vmap_area, list); if (sibling->va_end == va->va_start) { /* * If both neighbors are coalesced, it is important * to unlink the "next" node first, followed by merging * with "previous" one. Otherwise the tree might not be * fully populated if a sibling's augmented value is * "normalized" because of rotation operations. */ if (merged) unlink_va(va, root); sibling->va_end = va->va_end; /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); /* Point to the new merged area. */ va = sibling; merged = true; } } insert: if (!merged) link_va(va, root, parent, link, head); /* * Last step is to check and update the tree. */ augment_tree_propagate_from(va); return va; } static __always_inline bool is_within_this_va(struct vmap_area *va, unsigned long size, unsigned long align, unsigned long vstart) { unsigned long nva_start_addr; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Can be overflowed due to big size or alignment. */ if (nva_start_addr + size < nva_start_addr || nva_start_addr < vstart) return false; return (nva_start_addr + size <= va->va_end); } /* * Find the first free block(lowest start address) in the tree, * that will accomplish the request corresponding to passing * parameters. */ static __always_inline struct vmap_area * find_vmap_lowest_match(unsigned long size, unsigned long align, unsigned long vstart) { struct vmap_area *va; struct rb_node *node; unsigned long length; /* Start from the root. */ node = free_vmap_area_root.rb_node; /* Adjust the search size for alignment overhead. */ length = size + align - 1; while (node) { va = rb_entry(node, struct vmap_area, rb_node); if (get_subtree_max_size(node->rb_left) >= length && vstart < va->va_start) { node = node->rb_left; } else { if (is_within_this_va(va, size, align, vstart)) return va; /* * Does not make sense to go deeper towards the right * sub-tree if it does not have a free block that is * equal or bigger to the requested search length. */ if (get_subtree_max_size(node->rb_right) >= length) { node = node->rb_right; continue; } /* * OK. We roll back and find the first right sub-tree, * that will satisfy the search criteria. It can happen * only once due to "vstart" restriction. */ while ((node = rb_parent(node))) { va = rb_entry(node, struct vmap_area, rb_node); if (is_within_this_va(va, size, align, vstart)) return va; if (get_subtree_max_size(node->rb_right) >= length && vstart <= va->va_start) { node = node->rb_right; break; } } } } return NULL; } #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK #include <linux/random.h> static struct vmap_area * find_vmap_lowest_linear_match(unsigned long size, unsigned long align, unsigned long vstart) { struct vmap_area *va; list_for_each_entry(va, &free_vmap_area_list, list) { if (!is_within_this_va(va, size, align, vstart)) continue; return va; } return NULL; } static void find_vmap_lowest_match_check(unsigned long size) { struct vmap_area *va_1, *va_2; unsigned long vstart; unsigned int rnd; get_random_bytes(&rnd, sizeof(rnd)); vstart = VMALLOC_START + rnd; va_1 = find_vmap_lowest_match(size, 1, vstart); va_2 = find_vmap_lowest_linear_match(size, 1, vstart); if (va_1 != va_2) pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", va_1, va_2, vstart); } #endif enum fit_type { NOTHING_FIT = 0, FL_FIT_TYPE = 1, /* full fit */ LE_FIT_TYPE = 2, /* left edge fit */ RE_FIT_TYPE = 3, /* right edge fit */ NE_FIT_TYPE = 4 /* no edge fit */ }; static __always_inline enum fit_type classify_va_fit_type(struct vmap_area *va, unsigned long nva_start_addr, unsigned long size) { enum fit_type type; /* Check if it is within VA. */ if (nva_start_addr < va->va_start || nva_start_addr + size > va->va_end) return NOTHING_FIT; /* Now classify. */ if (va->va_start == nva_start_addr) { if (va->va_end == nva_start_addr + size) type = FL_FIT_TYPE; else type = LE_FIT_TYPE; } else if (va->va_end == nva_start_addr + size) { type = RE_FIT_TYPE; } else { type = NE_FIT_TYPE; } return type; } static __always_inline int adjust_va_to_fit_type(struct vmap_area *va, unsigned long nva_start_addr, unsigned long size, enum fit_type type) { struct vmap_area *lva = NULL; if (type == FL_FIT_TYPE) { /* * No need to split VA, it fully fits. * * | | * V NVA V * |---------------| */ unlink_va(va, &free_vmap_area_root); kmem_cache_free(vmap_area_cachep, va); } else if (type == LE_FIT_TYPE) { /* * Split left edge of fit VA. * * | | * V NVA V R * |-------|-------| */ va->va_start += size; } else if (type == RE_FIT_TYPE) { /* * Split right edge of fit VA. * * | | * L V NVA V * |-------|-------| */ va->va_end = nva_start_addr; } else if (type == NE_FIT_TYPE) { /* * Split no edge of fit VA. * * | | * L V NVA V R * |---|-------|---| */ lva = __this_cpu_xchg(ne_fit_preload_node, NULL); if (unlikely(!lva)) { /* * For percpu allocator we do not do any pre-allocation * and leave it as it is. The reason is it most likely * never ends up with NE_FIT_TYPE splitting. In case of * percpu allocations offsets and sizes are aligned to * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE * are its main fitting cases. * * There are a few exceptions though, as an example it is * a first allocation (early boot up) when we have "one" * big free space that has to be split. * * Also we can hit this path in case of regular "vmap" * allocations, if "this" current CPU was not preloaded. * See the comment in alloc_vmap_area() why. If so, then * GFP_NOWAIT is used instead to get an extra object for * split purpose. That is rare and most time does not * occur. * * What happens if an allocation gets failed. Basically, * an "overflow" path is triggered to purge lazily freed * areas to free some memory, then, the "retry" path is * triggered to repeat one more time. See more details * in alloc_vmap_area() function. */ lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); if (!lva) return -1; } /* * Build the remainder. */ lva->va_start = va->va_start; lva->va_end = nva_start_addr; /* * Shrink this VA to remaining size. */ va->va_start = nva_start_addr + size; } else { return -1; } if (type != FL_FIT_TYPE) { augment_tree_propagate_from(va); if (lva) /* type == NE_FIT_TYPE */ insert_vmap_area_augment(lva, &va->rb_node, &free_vmap_area_root, &free_vmap_area_list); } return 0; } /* * Returns a start address of the newly allocated area, if success. * Otherwise a vend is returned that indicates failure. */ static __always_inline unsigned long __alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend) { unsigned long nva_start_addr; struct vmap_area *va; enum fit_type type; int ret; va = find_vmap_lowest_match(size, align, vstart); if (unlikely(!va)) return vend; if (va->va_start > vstart) nva_start_addr = ALIGN(va->va_start, align); else nva_start_addr = ALIGN(vstart, align); /* Check the "vend" restriction. */ if (nva_start_addr + size > vend) return vend; /* Classify what we have found. */ type = classify_va_fit_type(va, nva_start_addr, size); if (WARN_ON_ONCE(type == NOTHING_FIT)) return vend; /* Update the free vmap_area. */ ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); if (ret) return vend; #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK find_vmap_lowest_match_check(size); #endif return nva_start_addr; } /* * Free a region of KVA allocated by alloc_vmap_area */ static void free_vmap_area(struct vmap_area *va) { /* * Remove from the busy tree/list. */ spin_lock(&vmap_area_lock); unlink_va(va, &vmap_area_root); spin_unlock(&vmap_area_lock); /* * Insert/Merge it back to the free tree/list. */ spin_lock(&free_vmap_area_lock); merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } /* * Allocate a region of KVA of the specified size and alignment, within the * vstart and vend. */ static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask) { struct vmap_area *va, *pva; unsigned long addr; int purged = 0; int ret; BUG_ON(!size); BUG_ON(offset_in_page(size)); BUG_ON(!is_power_of_2(align)); if (unlikely(!vmap_initialized)) return ERR_PTR(-EBUSY); might_sleep(); gfp_mask = gfp_mask & GFP_RECLAIM_MASK; va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM); /* * Only scan the relevant parts containing pointers to other objects * to avoid false negatives. */ kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); retry: /* * Preload this CPU with one extra vmap_area object. It is used * when fit type of free area is NE_FIT_TYPE. Please note, it * does not guarantee that an allocation occurs on a CPU that * is preloaded, instead we minimize the case when it is not. * It can happen because of cpu migration, because there is a * race until the below spinlock is taken. * * The preload is done in non-atomic context, thus it allows us * to use more permissive allocation masks to be more stable under * low memory condition and high memory pressure. In rare case, * if not preloaded, GFP_NOWAIT is used. * * Set "pva" to NULL here, because of "retry" path. */ pva = NULL; if (!this_cpu_read(ne_fit_preload_node)) /* * Even if it fails we do not really care about that. * Just proceed as it is. If needed "overflow" path * will refill the cache we allocate from. */ pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); spin_lock(&free_vmap_area_lock); if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) kmem_cache_free(vmap_area_cachep, pva); /* * If an allocation fails, the "vend" address is * returned. Therefore trigger the overflow path. */ addr = __alloc_vmap_area(size, align, vstart, vend); spin_unlock(&free_vmap_area_lock); if (unlikely(addr == vend)) goto overflow; va->va_start = addr; va->va_end = addr + size; va->vm = NULL; spin_lock(&vmap_area_lock); insert_vmap_area(va, &vmap_area_root, &vmap_area_list); spin_unlock(&vmap_area_lock); BUG_ON(!IS_ALIGNED(va->va_start, align)); BUG_ON(va->va_start < vstart); BUG_ON(va->va_end > vend); ret = kasan_populate_vmalloc(addr, size); if (ret) { free_vmap_area(va); return ERR_PTR(ret); } return va; overflow: if (!purged) { purge_vmap_area_lazy(); purged = 1; goto retry; } if (gfpflags_allow_blocking(gfp_mask)) { unsigned long freed = 0; blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); if (freed > 0) { purged = 0; goto retry; } } if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", size); kmem_cache_free(vmap_area_cachep, va); return ERR_PTR(-EBUSY); } int register_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); int unregister_vmap_purge_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&vmap_notify_list, nb); } EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); /* * lazy_max_pages is the maximum amount of virtual address space we gather up * before attempting to purge with a TLB flush. * * There is a tradeoff here: a larger number will cover more kernel page tables * and take slightly longer to purge, but it will linearly reduce the number of * global TLB flushes that must be performed. It would seem natural to scale * this number up linearly with the number of CPUs (because vmapping activity * could also scale linearly with the number of CPUs), however it is likely * that in practice, workloads might be constrained in other ways that mean * vmap activity will not scale linearly with CPUs. Also, I want to be * conservative and not introduce a big latency on huge systems, so go with * a less aggressive log scale. It will still be an improvement over the old * code, and it will be simple to change the scale factor if we find that it * becomes a problem on bigger systems. */ static unsigned long lazy_max_pages(void) { unsigned int log; log = fls(num_online_cpus()); return log * (32UL * 1024 * 1024 / PAGE_SIZE); } static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); /* * Serialize vmap purging. There is no actual criticial section protected * by this look, but we want to avoid concurrent calls for performance * reasons and to make the pcpu_get_vm_areas more deterministic. */ static DEFINE_MUTEX(vmap_purge_lock); /* for per-CPU blocks */ static void purge_fragmented_blocks_allcpus(void); /* * called before a call to iounmap() if the caller wants vm_area_struct's * immediately freed. */ void set_iounmap_nonlazy(void) { atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); } /* * Purges all lazily-freed vmap areas. */ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) { unsigned long resched_threshold; struct llist_node *valist; struct vmap_area *va; struct vmap_area *n_va; lockdep_assert_held(&vmap_purge_lock); valist = llist_del_all(&vmap_purge_list); if (unlikely(valist == NULL)) return false; /* * TODO: to calculate a flush range without looping. * The list can be up to lazy_max_pages() elements. */ llist_for_each_entry(va, valist, purge_list) { if (va->va_start < start) start = va->va_start; if (va->va_end > end) end = va->va_end; } flush_tlb_kernel_range(start, end); resched_threshold = lazy_max_pages() << 1; spin_lock(&free_vmap_area_lock); llist_for_each_entry_safe(va, n_va, valist, purge_list) { unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; unsigned long orig_start = va->va_start; unsigned long orig_end = va->va_end; /* * Finally insert or merge lazily-freed area. It is * detached and there is no need to "unlink" it from * anything. */ va = merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); if (!va) continue; if (is_vmalloc_or_module_addr((void *)orig_start)) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); atomic_long_sub(nr, &vmap_lazy_nr); if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) cond_resched_lock(&free_vmap_area_lock); } spin_unlock(&free_vmap_area_lock); return true; } /* * Kick off a purge of the outstanding lazy areas. Don't bother if somebody * is already purging. */ static void try_purge_vmap_area_lazy(void) { if (mutex_trylock(&vmap_purge_lock)) { __purge_vmap_area_lazy(ULONG_MAX, 0); mutex_unlock(&vmap_purge_lock); } } /* * Kick off a purge of the outstanding lazy areas. */ static void purge_vmap_area_lazy(void) { mutex_lock(&vmap_purge_lock); purge_fragmented_blocks_allcpus(); __purge_vmap_area_lazy(ULONG_MAX, 0); mutex_unlock(&vmap_purge_lock); } /* * Free a vmap area, caller ensuring that the area has been unmapped * and flush_cache_vunmap had been called for the correct range * previously. */ static void free_vmap_area_noflush(struct vmap_area *va) { unsigned long nr_lazy; spin_lock(&vmap_area_lock); unlink_va(va, &vmap_area_root); spin_unlock(&vmap_area_lock); nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); /* After this point, we may free va at any time */ llist_add(&va->purge_list, &vmap_purge_list); if (unlikely(nr_lazy > lazy_max_pages())) try_purge_vmap_area_lazy(); } /* * Free and unmap a vmap area */ static void free_unmap_vmap_area(struct vmap_area *va) { flush_cache_vunmap(va->va_start, va->va_end); unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(va->va_start, va->va_end); free_vmap_area_noflush(va); } static struct vmap_area *find_vmap_area(unsigned long addr) { struct vmap_area *va; spin_lock(&vmap_area_lock); va = __find_vmap_area(addr); spin_unlock(&vmap_area_lock); return va; } /*** Per cpu kva allocator ***/ /* * vmap space is limited especially on 32 bit architectures. Ensure there is * room for at least 16 percpu vmap blocks per CPU. */ /* * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess * instead (we just need a rough idea) */ #if BITS_PER_LONG == 32 #define VMALLOC_SPACE (128UL*1024*1024) #else #define VMALLOC_SPACE (128UL*1024*1024*1024) #endif #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ #define VMAP_BBMAP_BITS \ VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) struct vmap_block_queue { spinlock_t lock; struct list_head free; }; struct vmap_block { spinlock_t lock; struct vmap_area *va; unsigned long free, dirty; unsigned long dirty_min, dirty_max; /*< dirty range */ struct list_head free_list; struct rcu_head rcu_head; struct list_head purge; }; /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); /* * XArray of vmap blocks, indexed by address, to quickly find a vmap block * in the free path. Could get rid of this if we change the API to return a * "cookie" from alloc, to be passed to free. But no big deal yet. */ static DEFINE_XARRAY(vmap_blocks); /* * We should probably have a fallback mechanism to allocate virtual memory * out of partially filled vmap blocks. However vmap block sizing should be * fairly reasonable according to the vmalloc size, so it shouldn't be a * big problem. */ static unsigned long addr_to_vb_idx(unsigned long addr) { addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); addr /= VMAP_BLOCK_SIZE; return addr; } static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) { unsigned long addr; addr = va_start + (pages_off << PAGE_SHIFT); BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); return (void *)addr; } /** * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this * block. Of course pages number can't exceed VMAP_BBMAP_BITS * @order: how many 2^order pages should be occupied in newly allocated block * @gfp_mask: flags for the page level allocator * * Return: virtual address in a newly allocated block or ERR_PTR(-errno) */ static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; struct vmap_area *va; unsigned long vb_idx; int node, err; void *vaddr; node = numa_node_id(); vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!vb)) return ERR_PTR(-ENOMEM); va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, VMALLOC_START, VMALLOC_END, node, gfp_mask); if (IS_ERR(va)) { kfree(vb); return ERR_CAST(va); } vaddr = vmap_block_vaddr(va->va_start, 0); spin_lock_init(&vb->lock); vb->va = va; /* At least something should be left free */ BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); vb->free = VMAP_BBMAP_BITS - (1UL << order); vb->dirty = 0; vb->dirty_min = VMAP_BBMAP_BITS; vb->dirty_max = 0; INIT_LIST_HEAD(&vb->free_list); vb_idx = addr_to_vb_idx(va->va_start); err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); if (err) { kfree(vb); free_vmap_area(va); return ERR_PTR(err); } vbq = &get_cpu_var(vmap_block_queue); spin_lock(&vbq->lock); list_add_tail_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); put_cpu_var(vmap_block_queue); return vaddr; } static void free_vmap_block(struct vmap_block *vb) { struct vmap_block *tmp; tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); BUG_ON(tmp != vb); free_vmap_area_noflush(vb->va); kfree_rcu(vb, rcu_head); } static void purge_fragmented_blocks(int cpu) { LIST_HEAD(purge); struct vmap_block *vb; struct vmap_block *n_vb; struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) continue; spin_lock(&vb->lock); if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { vb->free = 0; /* prevent further allocs after releasing lock */ vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ vb->dirty_min = 0; vb->dirty_max = VMAP_BBMAP_BITS; spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); spin_unlock(&vb->lock); list_add_tail(&vb->purge, &purge); } else spin_unlock(&vb->lock); } rcu_read_unlock(); list_for_each_entry_safe(vb, n_vb, &purge, purge) { list_del(&vb->purge); free_vmap_block(vb); } } static void purge_fragmented_blocks_allcpus(void) { int cpu; for_each_possible_cpu(cpu) purge_fragmented_blocks(cpu); } static void *vb_alloc(unsigned long size, gfp_t gfp_mask) { struct vmap_block_queue *vbq; struct vmap_block *vb; void *vaddr = NULL; unsigned int order; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); if (WARN_ON(size == 0)) { /* * Allocating 0 bytes isn't what caller wants since * get_order(0) returns funny result. Just warn and terminate * early. */ return NULL; } order = get_order(size); rcu_read_lock(); vbq = &get_cpu_var(vmap_block_queue); list_for_each_entry_rcu(vb, &vbq->free, free_list) { unsigned long pages_off; spin_lock(&vb->lock); if (vb->free < (1UL << order)) { spin_unlock(&vb->lock); continue; } pages_off = VMAP_BBMAP_BITS - vb->free; vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); vb->free -= 1UL << order; if (vb->free == 0) { spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); spin_unlock(&vbq->lock); } spin_unlock(&vb->lock); break; } put_cpu_var(vmap_block_queue); rcu_read_unlock(); /* Allocate new block if nothing was found */ if (!vaddr) vaddr = new_vmap_block(order, gfp_mask); return vaddr; } static void vb_free(unsigned long addr, unsigned long size) { unsigned long offset; unsigned int order; struct vmap_block *vb; BUG_ON(offset_in_page(size)); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); flush_cache_vunmap(addr, addr + size); order = get_order(size); offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); unmap_kernel_range_noflush(addr, size); if (debug_pagealloc_enabled_static()) flush_tlb_kernel_range(addr, addr + size); spin_lock(&vb->lock); /* Expand dirty range */ vb->dirty_min = min(vb->dirty_min, offset); vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); vb->dirty += 1UL << order; if (vb->dirty == VMAP_BBMAP_BITS) { BUG_ON(vb->free); spin_unlock(&vb->lock); free_vmap_block(vb); } else spin_unlock(&vb->lock); } static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) { int cpu; if (unlikely(!vmap_initialized)) return; might_sleep(); for_each_possible_cpu(cpu) { struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); struct vmap_block *vb; rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { spin_lock(&vb->lock); if (vb->dirty) { unsigned long va_start = vb->va->va_start; unsigned long s, e; s = va_start + (vb->dirty_min << PAGE_SHIFT); e = va_start + (vb->dirty_max << PAGE_SHIFT); start = min(s, start); end = max(e, end); flush = 1; } spin_unlock(&vb->lock); } rcu_read_unlock(); } mutex_lock(&vmap_purge_lock); purge_fragmented_blocks_allcpus(); if (!__purge_vmap_area_lazy(start, end) && flush) flush_tlb_kernel_range(start, end); mutex_unlock(&vmap_purge_lock); } /** * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer * * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily * to amortize TLB flushing overheads. What this means is that any page you * have now, may, in a former life, have been mapped into kernel virtual * address by the vmap layer and so there might be some CPUs with TLB entries * still referencing that page (additional to the regular 1:1 kernel mapping). * * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can * be sure that none of the pages we have control over will have any aliases * from the vmap layer. */ void vm_unmap_aliases(void) { unsigned long start = ULONG_MAX, end = 0; int flush = 0; _vm_unmap_aliases(start, end, flush); } EXPORT_SYMBOL_GPL(vm_unmap_aliases); /** * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram * @mem: the pointer returned by vm_map_ram * @count: the count passed to that vm_map_ram call (cannot unmap partial) */ void vm_unmap_ram(const void *mem, unsigned int count) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr = (unsigned long)mem; struct vmap_area *va; might_sleep(); BUG_ON(!addr); BUG_ON(addr < VMALLOC_START); BUG_ON(addr > VMALLOC_END); BUG_ON(!PAGE_ALIGNED(addr)); kasan_poison_vmalloc(mem, size); if (likely(count <= VMAP_MAX_ALLOC)) { debug_check_no_locks_freed(mem, size); vb_free(addr, size); return; } va = find_vmap_area(addr); BUG_ON(!va); debug_check_no_locks_freed((void *)va->va_start, (va->va_end - va->va_start)); free_unmap_vmap_area(va); } EXPORT_SYMBOL(vm_unmap_ram); /** * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) * @pages: an array of pointers to the pages to be mapped * @count: number of pages * @node: prefer to allocate data structures on this node * * If you use this function for less than VMAP_MAX_ALLOC pages, it could be * faster than vmap so it's good. But if you mix long-life and short-life * objects with vm_map_ram(), it could consume lots of address space through * fragmentation (especially on a 32bit machine). You could see failures in * the end. Please use this function for short-lived objects. * * Returns: a pointer to the address that has been mapped, or %NULL on failure */ void *vm_map_ram(struct page **pages, unsigned int count, int node) { unsigned long size = (unsigned long)count << PAGE_SHIFT; unsigned long addr; void *mem; if (likely(count <= VMAP_MAX_ALLOC)) { mem = vb_alloc(size, GFP_KERNEL); if (IS_ERR(mem)) return NULL; addr = (unsigned long)mem; } else { struct vmap_area *va; va = alloc_vmap_area(size, PAGE_SIZE, VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); if (IS_ERR(va)) return NULL; addr = va->va_start; mem = (void *)addr; } kasan_unpoison_vmalloc(mem, size); if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) { vm_unmap_ram(mem, count); return NULL; } return mem; } EXPORT_SYMBOL(vm_map_ram); static struct vm_struct *vmlist __initdata; /** * vm_area_add_early - add vmap area early during boot * @vm: vm_struct to add * * This function is used to add fixed kernel vm area to vmlist before * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags * should contain proper values and the other fields should be zero. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_add_early(struct vm_struct *vm) { struct vm_struct *tmp, **p; BUG_ON(vmap_initialized); for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { if (tmp->addr >= vm->addr) { BUG_ON(tmp->addr < vm->addr + vm->size); break; } else BUG_ON(tmp->addr + tmp->size > vm->addr); } vm->next = *p; *p = vm; } /** * vm_area_register_early - register vmap area early during boot * @vm: vm_struct to register * @align: requested alignment * * This function is used to register kernel vm area before * vmalloc_init() is called. @vm->size and @vm->flags should contain * proper values on entry and other fields should be zero. On return, * vm->addr contains the allocated address. * * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. */ void __init vm_area_register_early(struct vm_struct *vm, size_t align) { static size_t vm_init_off __initdata; unsigned long addr; addr = ALIGN(VMALLOC_START + vm_init_off, align); vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; vm->addr = (void *)addr; vm_area_add_early(vm); } static void vmap_init_free_space(void) { unsigned long vmap_start = 1; const unsigned long vmap_end = ULONG_MAX; struct vmap_area *busy, *free; /* * B F B B B F * -|-----|.....|-----|-----|-----|.....|- * | The KVA space | * |<--------------------------------->| */ list_for_each_entry(busy, &vmap_area_list, list) { if (busy->va_start - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = busy->va_start; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } vmap_start = busy->va_end; } if (vmap_end - vmap_start > 0) { free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (!WARN_ON_ONCE(!free)) { free->va_start = vmap_start; free->va_end = vmap_end; insert_vmap_area_augment(free, NULL, &free_vmap_area_root, &free_vmap_area_list); } } } void __init vmalloc_init(void) { struct vmap_area *va; struct vm_struct *tmp; int i; /* * Create the cache for vmap_area objects. */ vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); for_each_possible_cpu(i) { struct vmap_block_queue *vbq; struct vfree_deferred *p; vbq = &per_cpu(vmap_block_queue, i); spin_lock_init(&vbq->lock); INIT_LIST_HEAD(&vbq->free); p = &per_cpu(vfree_deferred, i); init_llist_head(&p->list); INIT_WORK(&p->wq, free_work); } /* Import existing vmlist entries. */ for (tmp = vmlist; tmp; tmp = tmp->next) { va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); if (WARN_ON_ONCE(!va)) continue; va->va_start = (unsigned long)tmp->addr; va->va_end = va->va_start + tmp->size; va->vm = tmp; insert_vmap_area(va, &vmap_area_root, &vmap_area_list); } /* * Now we can initialize a free vmap space. */ vmap_init_free_space(); vmap_initialized = true; } /** * unmap_kernel_range - unmap kernel VM area and flush cache and TLB * @addr: start of the VM area to unmap * @size: size of the VM area to unmap * * Similar to unmap_kernel_range_noflush() but flushes vcache before * the unmapping and tlb after. */ void unmap_kernel_range(unsigned long addr, unsigned long size) { unsigned long end = addr + size; flush_cache_vunmap(addr, end); unmap_kernel_range_noflush(addr, size); flush_tlb_kernel_range(addr, end); } static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, const void *caller) { vm->flags = flags; vm->addr = (void *)va->va_start; vm->size = va->va_end - va->va_start; vm->caller = caller; va->vm = vm; } static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, unsigned long flags, const void *caller) { spin_lock(&vmap_area_lock); setup_vmalloc_vm_locked(vm, va, flags, caller); spin_unlock(&vmap_area_lock); } static void clear_vm_uninitialized_flag(struct vm_struct *vm) { /* * Before removing VM_UNINITIALIZED, * we should make sure that vm has proper values. * Pair with smp_rmb() in show_numa_info(). */ smp_wmb(); vm->flags &= ~VM_UNINITIALIZED; } static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long align, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, const void *caller) { struct vmap_area *va; struct vm_struct *area; unsigned long requested_size = size; BUG_ON(in_interrupt()); size = PAGE_ALIGN(size); if (unlikely(!size)) return NULL; if (flags & VM_IOREMAP) align = 1ul << clamp_t(int, get_count_order_long(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; if (!(flags & VM_NO_GUARD)) size += PAGE_SIZE; va = alloc_vmap_area(size, align, start, end, node, gfp_mask); if (IS_ERR(va)) { kfree(area); return NULL; } kasan_unpoison_vmalloc((void *)va->va_start, requested_size); setup_vmalloc_vm(area, va, flags, caller); return area; } struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller) { return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * get_vm_area - reserve a contiguous kernel virtual area * @size: size of the area * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC * * Search an area of @size in the kernel virtual mapping area, * and reserved it for out purposes. Returns the area descriptor * on success or %NULL on failure. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) { return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0)); } struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller) { return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, NUMA_NO_NODE, GFP_KERNEL, caller); } /** * find_vm_area - find a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and return it. * It is up to the caller to do all required locking to keep the returned * pointer valid. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *find_vm_area(const void *addr) { struct vmap_area *va; va = find_vmap_area((unsigned long)addr); if (!va) return NULL; return va->vm; } /** * remove_vm_area - find and remove a continuous kernel virtual area * @addr: base address * * Search for the kernel VM area starting at @addr, and remove it. * This function returns the found VM area, but using it is NOT safe * on SMP machines, except for its size or flags. * * Return: the area descriptor on success or %NULL on failure. */ struct vm_struct *remove_vm_area(const void *addr) { struct vmap_area *va; might_sleep(); spin_lock(&vmap_area_lock); va = __find_vmap_area((unsigned long)addr); if (va && va->vm) { struct vm_struct *vm = va->vm; va->vm = NULL; spin_unlock(&vmap_area_lock); kasan_free_shadow(vm); free_unmap_vmap_area(va); return vm; } spin_unlock(&vmap_area_lock); return NULL; } static inline void set_area_direct_map(const struct vm_struct *area, int (*set_direct_map)(struct page *page)) { int i; for (i = 0; i < area->nr_pages; i++) if (page_address(area->pages[i])) set_direct_map(area->pages[i]); } /* Handle removing and resetting vm mappings related to the vm_struct. */ static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) { unsigned long start = ULONG_MAX, end = 0; int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; int flush_dmap = 0; int i; remove_vm_area(area->addr); /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ if (!flush_reset) return; /* * If not deallocating pages, just do the flush of the VM area and * return. */ if (!deallocate_pages) { vm_unmap_aliases(); return; } /* * If execution gets here, flush the vm mapping and reset the direct * map. Find the start and end range of the direct mappings to make sure * the vm_unmap_aliases() flush includes the direct map. */ for (i = 0; i < area->nr_pages; i++) { unsigned long addr = (unsigned long)page_address(area->pages[i]); if (addr) { start = min(addr, start); end = max(addr + PAGE_SIZE, end); flush_dmap = 1; } } /* * Set direct map to something invalid so that it won't be cached if * there are any accesses after the TLB flush, then flush the TLB and * reset the direct map permissions to the default. */ set_area_direct_map(area, set_direct_map_invalid_noflush); _vm_unmap_aliases(start, end, flush_dmap); set_area_direct_map(area, set_direct_map_default_noflush); } static void __vunmap(const void *addr, int deallocate_pages) { struct vm_struct *area; if (!addr) return; if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", addr)) return; area = find_vm_area(addr); if (unlikely(!area)) { WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); return; } debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); vm_remove_mappings(area, deallocate_pages); if (deallocate_pages) { int i; for (i = 0; i < area->nr_pages; i++) { struct page *page = area->pages[i]; BUG_ON(!page); __free_pages(page, 0); } if (!(area->flags & VM_MAP_PUT_PAGES)) atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); kvfree(area->pages); } kfree(area); return; } static inline void __vfree_deferred(const void *addr) { /* * Use raw_cpu_ptr() because this can be called from preemptible * context. Preemption is absolutely fine here, because the llist_add() * implementation is lockless, so it works even if we are adding to * another cpu's list. schedule_work() should be fine with this too. */ struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); if (llist_add((struct llist_node *)addr, &p->list)) schedule_work(&p->wq); } /** * vfree_atomic - release memory allocated by vmalloc() * @addr: memory base address * * This one is just like vfree() but can be called in any atomic context * except NMIs. */ void vfree_atomic(const void *addr) { BUG_ON(in_nmi()); kmemleak_free(addr); if (!addr) return; __vfree_deferred(addr); } static void __vfree(const void *addr) { if (unlikely(in_interrupt())) __vfree_deferred(addr); else __vunmap(addr, 1); } /** * vfree - Release memory allocated by vmalloc() * @addr: Memory base address * * Free the virtually continuous memory area starting at @addr, as obtained * from one of the vmalloc() family of APIs. This will usually also free the * physical memory underlying the virtual allocation, but that memory is * reference counted, so it will not be freed until the last user goes away. * * If @addr is NULL, no operation is performed. * * Context: * May sleep if called *not* from interrupt context. * Must not be called in NMI context (strictly speaking, it could be * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling * conventions for vfree() arch-depenedent would be a really bad idea). */ void vfree(const void *addr) { BUG_ON(in_nmi()); kmemleak_free(addr); might_sleep_if(!in_interrupt()); if (!addr) return; __vfree(addr); } EXPORT_SYMBOL(vfree); /** * vunmap - release virtual mapping obtained by vmap() * @addr: memory base address * * Free the virtually contiguous memory area starting at @addr, * which was created from the page array passed to vmap(). * * Must not be called in interrupt context. */ void vunmap(const void *addr) { BUG_ON(in_interrupt()); might_sleep(); if (addr) __vunmap(addr, 0); } EXPORT_SYMBOL(vunmap); /** * vmap - map an array of pages into virtually contiguous space * @pages: array of page pointers * @count: number of pages to map * @flags: vm_area->flags * @prot: page protection for the mapping * * Maps @count pages from @pages into contiguous kernel virtual space. * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself * (which must be kmalloc or vmalloc memory) and one reference per pages in it * are transferred from the caller to vmap(), and will be freed / dropped when * vfree() is called on the return value. * * Return: the address of the area or %NULL on failure */ void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) { struct vm_struct *area; unsigned long size; /* In bytes */ might_sleep(); if (count > totalram_pages()) return NULL; size = (unsigned long)count << PAGE_SHIFT; area = get_vm_area_caller(size, flags, __builtin_return_address(0)); if (!area) return NULL; if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot), pages) < 0) { vunmap(area->addr); return NULL; } if (flags & VM_MAP_PUT_PAGES) { area->pages = pages; area->nr_pages = count; } return area->addr; } EXPORT_SYMBOL(vmap); #ifdef CONFIG_VMAP_PFN struct vmap_pfn_data { unsigned long *pfns; pgprot_t prot; unsigned int idx; }; static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) { struct vmap_pfn_data *data = private; if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) return -EINVAL; *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); return 0; } /** * vmap_pfn - map an array of PFNs into virtually contiguous space * @pfns: array of PFNs * @count: number of pages to map * @prot: page protection for the mapping * * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns * the start address of the mapping. */ void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) { struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; struct vm_struct *area; area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, __builtin_return_address(0)); if (!area) return NULL; if (apply_to_page_range(&init_mm, (unsigned long)area->addr, count * PAGE_SIZE, vmap_pfn_apply, &data)) { free_vm_area(area); return NULL; } flush_cache_vmap((unsigned long)area->addr, (unsigned long)area->addr + count * PAGE_SIZE); return area->addr; } EXPORT_SYMBOL_GPL(vmap_pfn); #endif /* CONFIG_VMAP_PFN */ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, int node) { const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; unsigned int array_size = nr_pages * sizeof(struct page *), i; struct page **pages; gfp_mask |= __GFP_NOWARN; if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) gfp_mask |= __GFP_HIGHMEM; /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) { pages = __vmalloc_node(array_size, 1, nested_gfp, node, area->caller); } else { pages = kmalloc_node(array_size, nested_gfp, node); } if (!pages) { remove_vm_area(area->addr); kfree(area); return NULL; } area->pages = pages; area->nr_pages = nr_pages; for (i = 0; i < area->nr_pages; i++) { struct page *page; if (node == NUMA_NO_NODE) page = alloc_page(gfp_mask); else page = alloc_pages_node(node, gfp_mask, 0); if (unlikely(!page)) { /* Successfully allocated i pages, free them in __vfree() */ area->nr_pages = i; atomic_long_add(area->nr_pages, &nr_vmalloc_pages); goto fail; } area->pages[i] = page; if (gfpflags_allow_blocking(gfp_mask)) cond_resched(); } atomic_long_add(area->nr_pages, &nr_vmalloc_pages); if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area), prot, pages) < 0) goto fail; return area->addr; fail: warn_alloc(gfp_mask, NULL, "vmalloc: allocation failure, allocated %ld of %ld bytes", (area->nr_pages*PAGE_SIZE), area->size); __vfree(area->addr); return NULL; } /** * __vmalloc_node_range - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @start: vm area range start * @end: vm area range end * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. * * Return: the address of the area or %NULL on failure */ void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller) { struct vm_struct *area; void *addr; unsigned long real_size = size; size = PAGE_ALIGN(size); if (!size || (size >> PAGE_SHIFT) > totalram_pages()) goto fail; area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED | vm_flags, start, end, node, gfp_mask, caller); if (!area) goto fail; addr = __vmalloc_area_node(area, gfp_mask, prot, node); if (!addr) return NULL; /* * In this function, newly allocated vm_struct has VM_UNINITIALIZED * flag. It means that vm_struct is not fully initialized. * Now, it is fully initialized, so remove this flag here. */ clear_vm_uninitialized_flag(area); kmemleak_vmalloc(area, size, gfp_mask); return addr; fail: warn_alloc(gfp_mask, NULL, "vmalloc: allocation failure: %lu bytes", real_size); return NULL; } /** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @gfp_mask: flags for the page level allocator * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level allocator with * @gfp_mask flags. Map them into contiguous kernel virtual space. * * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL * and __GFP_NOFAIL are not supported * * Any use of gfp flags outside of GFP_KERNEL should be consulted * with mm people. * * Return: pointer to the allocated memory or %NULL on error */ void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller) { return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, gfp_mask, PAGE_KERNEL, 0, node, caller); } /* * This is only for performance analysis of vmalloc and stress purpose. * It is required by vmalloc test module, therefore do not use it other * than that. */ #ifdef CONFIG_TEST_VMALLOC_MODULE EXPORT_SYMBOL_GPL(__vmalloc_node); #endif void *__vmalloc(unsigned long size, gfp_t gfp_mask) { return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(__vmalloc); /** * vmalloc - allocate virtually contiguous memory * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc(unsigned long size) { return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc); /** * vzalloc - allocate virtually contiguous memory with zero fill * @size: allocation size * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc(unsigned long size) { return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc); /** * vmalloc_user - allocate zeroed virtually contiguous memory for userspace * @size: allocation size * * The resulting memory area is zeroed so it can be mapped to userspace * without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_user(unsigned long size) { return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_user); /** * vmalloc_node - allocate memory on a specific node * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_node(unsigned long size, int node) { return __vmalloc_node(size, 1, GFP_KERNEL, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_node); /** * vzalloc_node - allocate memory on a specific node with zero fill * @size: allocation size * @node: numa node * * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * The memory allocated is set to zero. * * Return: pointer to the allocated memory or %NULL on error */ void *vzalloc_node(unsigned long size, int node) { return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, __builtin_return_address(0)); } EXPORT_SYMBOL(vzalloc_node); #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) #else /* * 64b systems should always have either DMA or DMA32 zones. For others * GFP_DMA32 should do the right thing and use the normal zone. */ #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL #endif /** * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) * @size: allocation size * * Allocate enough 32bit PA addressable pages to cover @size from the * page level allocator and map them into contiguous kernel virtual space. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32(unsigned long size) { return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32); /** * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory * @size: allocation size * * The resulting memory area is 32bit addressable and zeroed so it can be * mapped to userspace without leaking data. * * Return: pointer to the allocated memory or %NULL on error */ void *vmalloc_32_user(unsigned long size) { return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, VM_USERMAP, NUMA_NO_NODE, __builtin_return_address(0)); } EXPORT_SYMBOL(vmalloc_32_user); /* * small helper routine , copy contents to buf from addr. * If the page is not present, fill zero. */ static int aligned_vread(char *buf, char *addr, unsigned long count) { struct page *p; int copied = 0; while (count) { unsigned long offset, length; offset = offset_in_page(addr); length = PAGE_SIZE - offset; if (length > count) length = count; p = vmalloc_to_page(addr); /* * To do safe access to this _mapped_ area, we need * lock. But adding lock here means that we need to add * overhead of vmalloc()/vfree() calles for this _debug_ * interface, rarely used. Instead of that, we'll use * kmap() and get small overhead in this access function. */ if (p) { /* * we can expect USER0 is not used (see vread/vwrite's * function description) */ void *map = kmap_atomic(p); memcpy(buf, map + offset, length); kunmap_atomic(map); } else memset(buf, 0, length); addr += length; buf += length; copied += length; count -= length; } return copied; } static int aligned_vwrite(char *buf, char *addr, unsigned long count) { struct page *p; int copied = 0; while (count) { unsigned long offset, length; offset = offset_in_page(addr); length = PAGE_SIZE - offset; if (length > count) length = count; p = vmalloc_to_page(addr); /* * To do safe access to this _mapped_ area, we need * lock. But adding lock here means that we need to add * overhead of vmalloc()/vfree() calles for this _debug_ * interface, rarely used. Instead of that, we'll use * kmap() and get small overhead in this access function. */ if (p) { /* * we can expect USER0 is not used (see vread/vwrite's * function description) */ void *map = kmap_atomic(p); memcpy(map + offset, buf, length); kunmap_atomic(map); } addr += length; buf += length; copied += length; count -= length; } return copied; } /** * vread() - read vmalloc area in a safe way. * @buf: buffer for reading data * @addr: vm address. * @count: number of bytes to be read. * * This function checks that addr is a valid vmalloc'ed area, and * copy data from that area to a given buffer. If the given memory range * of [addr...addr+count) includes some valid address, data is copied to * proper area of @buf. If there are memory holes, they'll be zero-filled. * IOREMAP area is treated as memory hole and no copy is done. * * If [addr...addr+count) doesn't includes any intersects with alive * vm_struct area, returns 0. @buf should be kernel's buffer. * * Note: In usual ops, vread() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any information, as /dev/kmem. * * Return: number of bytes for which addr and buf should be increased * (same number as @count) or %0 if [addr...addr+count) doesn't * include any intersection with valid vmalloc area */ long vread(char *buf, char *addr, unsigned long count) { struct vmap_area *va; struct vm_struct *vm; char *vaddr, *buf_start = buf; unsigned long buflen = count; unsigned long n; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; spin_lock(&vmap_area_lock); list_for_each_entry(va, &vmap_area_list, list) { if (!count) break; if (!va->vm) continue; vm = va->vm; vaddr = (char *) vm->addr; if (addr >= vaddr + get_vm_area_size(vm)) continue; while (addr < vaddr) { if (count == 0) goto finished; *buf = '\0'; buf++; addr++; count--; } n = vaddr + get_vm_area_size(vm) - addr; if (n > count) n = count; if (!(vm->flags & VM_IOREMAP)) aligned_vread(buf, addr, n); else /* IOREMAP area is treated as memory hole */ memset(buf, 0, n); buf += n; addr += n; count -= n; } finished: spin_unlock(&vmap_area_lock); if (buf == buf_start) return 0; /* zero-fill memory holes */ if (buf != buf_start + buflen) memset(buf, 0, buflen - (buf - buf_start)); return buflen; } /** * vwrite() - write vmalloc area in a safe way. * @buf: buffer for source data * @addr: vm address. * @count: number of bytes to be read. * * This function checks that addr is a valid vmalloc'ed area, and * copy data from a buffer to the given addr. If specified range of * [addr...addr+count) includes some valid address, data is copied from * proper area of @buf. If there are memory holes, no copy to hole. * IOREMAP area is treated as memory hole and no copy is done. * * If [addr...addr+count) doesn't includes any intersects with alive * vm_struct area, returns 0. @buf should be kernel's buffer. * * Note: In usual ops, vwrite() is never necessary because the caller * should know vmalloc() area is valid and can use memcpy(). * This is for routines which have to access vmalloc area without * any information, as /dev/kmem. * * Return: number of bytes for which addr and buf should be * increased (same number as @count) or %0 if [addr...addr+count) * doesn't include any intersection with valid vmalloc area */ long vwrite(char *buf, char *addr, unsigned long count) { struct vmap_area *va; struct vm_struct *vm; char *vaddr; unsigned long n, buflen; int copied = 0; /* Don't allow overflow */ if ((unsigned long) addr + count < count) count = -(unsigned long) addr; buflen = count; spin_lock(&vmap_area_lock); list_for_each_entry(va, &vmap_area_list, list) { if (!count) break; if (!va->vm) continue; vm = va->vm; vaddr = (char *) vm->addr; if (addr >= vaddr + get_vm_area_size(vm)) continue; while (addr < vaddr) { if (count == 0) goto finished; buf++; addr++; count--; } n = vaddr + get_vm_area_size(vm) - addr; if (n > count) n = count; if (!(vm->flags & VM_IOREMAP)) { aligned_vwrite(buf, addr, n); copied++; } buf += n; addr += n; count -= n; } finished: spin_unlock(&vmap_area_lock); if (!copied) return 0; return buflen; } /** * remap_vmalloc_range_partial - map vmalloc pages to userspace * @vma: vma to cover * @uaddr: target user address to start at * @kaddr: virtual address of vmalloc kernel memory * @pgoff: offset from @kaddr to start at * @size: size of map area * * Returns: 0 for success, -Exxx on failure * * This function checks that @kaddr is a valid vmalloc'ed area, * and that it is big enough to cover the range starting at * @uaddr in @vma. Will return failure if that criteria isn't * met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size) { struct vm_struct *area; unsigned long off; unsigned long end_index; if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) return -EINVAL; size = PAGE_ALIGN(size); if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) return -EINVAL; area = find_vm_area(kaddr); if (!area) return -EINVAL; if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) return -EINVAL; if (check_add_overflow(size, off, &end_index) || end_index > get_vm_area_size(area)) return -EINVAL; kaddr += off; do { struct page *page = vmalloc_to_page(kaddr); int ret; ret = vm_insert_page(vma, uaddr, page); if (ret) return ret; uaddr += PAGE_SIZE; kaddr += PAGE_SIZE; size -= PAGE_SIZE; } while (size > 0); vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; return 0; } EXPORT_SYMBOL(remap_vmalloc_range_partial); /** * remap_vmalloc_range - map vmalloc pages to userspace * @vma: vma to cover (map full range of vma) * @addr: vmalloc memory * @pgoff: number of pages into addr before first page to map * * Returns: 0 for success, -Exxx on failure * * This function checks that addr is a valid vmalloc'ed area, and * that it is big enough to cover the vma. Will return failure if * that criteria isn't met. * * Similar to remap_pfn_range() (see mm/memory.c) */ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff) { return remap_vmalloc_range_partial(vma, vma->vm_start, addr, pgoff, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(remap_vmalloc_range); void free_vm_area(struct vm_struct *area) { struct vm_struct *ret; ret = remove_vm_area(area->addr); BUG_ON(ret != area); kfree(area); } EXPORT_SYMBOL_GPL(free_vm_area); #ifdef CONFIG_SMP static struct vmap_area *node_to_va(struct rb_node *n) { return rb_entry_safe(n, struct vmap_area, rb_node); } /** * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to * @addr: target address * * Returns: vmap_area if it is found. If there is no such area * the first highest(reverse order) vmap_area is returned * i.e. va->va_start < addr && va->va_end < addr or NULL * if there are no any areas before @addr. */ static struct vmap_area * pvm_find_va_enclose_addr(unsigned long addr) { struct vmap_area *va, *tmp; struct rb_node *n; n = free_vmap_area_root.rb_node; va = NULL; while (n) { tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_start <= addr) { va = tmp; if (tmp->va_end >= addr) break; n = n->rb_right; } else { n = n->rb_left; } } return va; } /** * pvm_determine_end_from_reverse - find the highest aligned address * of free block below VMALLOC_END * @va: * in - the VA we start the search(reverse order); * out - the VA with the highest aligned end address. * * Returns: determined end address within vmap_area */ static unsigned long pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) { unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); unsigned long addr; if (likely(*va)) { list_for_each_entry_from_reverse((*va), &free_vmap_area_list, list) { addr = min((*va)->va_end & ~(align - 1), vmalloc_end); if ((*va)->va_start < addr) return addr; } } return 0; } /** * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator * @offsets: array containing offset of each area * @sizes: array containing size of each area * @nr_vms: the number of areas to allocate * @align: alignment, all entries in @offsets and @sizes must be aligned to this * * Returns: kmalloc'd vm_struct pointer array pointing to allocated * vm_structs on success, %NULL on failure * * Percpu allocator wants to use congruent vm areas so that it can * maintain the offsets among percpu areas. This function allocates * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to * be scattered pretty far, distance between two areas easily going up * to gigabytes. To avoid interacting with regular vmallocs, these * areas are allocated from top. * * Despite its complicated look, this allocator is rather simple. It * does everything top-down and scans free blocks from the end looking * for matching base. While scanning, if any of the areas do not fit the * base address is pulled down to fit the area. Scanning is repeated till * all the areas fit and then all necessary data structures are inserted * and the result is returned. */ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); struct vmap_area **vas, *va; struct vm_struct **vms; int area, area2, last_area, term_area; unsigned long base, start, size, end, last_end, orig_start, orig_end; bool purged = false; enum fit_type type; /* verify parameters and allocate data structures */ BUG_ON(offset_in_page(align) || !is_power_of_2(align)); for (last_area = 0, area = 0; area < nr_vms; area++) { start = offsets[area]; end = start + sizes[area]; /* is everything aligned properly? */ BUG_ON(!IS_ALIGNED(offsets[area], align)); BUG_ON(!IS_ALIGNED(sizes[area], align)); /* detect the area with the highest address */ if (start > offsets[last_area]) last_area = area; for (area2 = area + 1; area2 < nr_vms; area2++) { unsigned long start2 = offsets[area2]; unsigned long end2 = start2 + sizes[area2]; BUG_ON(start2 < end && start < end2); } } last_end = offsets[last_area] + sizes[last_area]; if (vmalloc_end - vmalloc_start < last_end) { WARN_ON(true); return NULL; } vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); if (!vas || !vms) goto err_free2; for (area = 0; area < nr_vms; area++) { vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); if (!vas[area] || !vms[area]) goto err_free; } retry: spin_lock(&free_vmap_area_lock); /* start scanning - we scan from the top, begin with the last area */ area = term_area = last_area; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(vmalloc_end); base = pvm_determine_end_from_reverse(&va, align) - end; while (true) { /* * base might have underflowed, add last_end before * comparing. */ if (base + last_end < vmalloc_start + last_end) goto overflow; /* * Fitting base has not been found. */ if (va == NULL) goto overflow; /* * If required width exceeds current VA block, move * base downwards and then recheck. */ if (base + end > va->va_end) { base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * If this VA does not fit, move base downwards and recheck. */ if (base + start < va->va_start) { va = node_to_va(rb_prev(&va->rb_node)); base = pvm_determine_end_from_reverse(&va, align) - end; term_area = area; continue; } /* * This area fits, move on to the previous one. If * the previous one is the terminal one, we're done. */ area = (area + nr_vms - 1) % nr_vms; if (area == term_area) break; start = offsets[area]; end = start + sizes[area]; va = pvm_find_va_enclose_addr(base + end); } /* we've found a fitting base, insert all va's */ for (area = 0; area < nr_vms; area++) { int ret; start = base + offsets[area]; size = sizes[area]; va = pvm_find_va_enclose_addr(start); if (WARN_ON_ONCE(va == NULL)) /* It is a BUG(), but trigger recovery instead. */ goto recovery; type = classify_va_fit_type(va, start, size); if (WARN_ON_ONCE(type == NOTHING_FIT)) /* It is a BUG(), but trigger recovery instead. */ goto recovery; ret = adjust_va_to_fit_type(va, start, size, type); if (unlikely(ret)) goto recovery; /* Allocated area. */ va = vas[area]; va->va_start = start; va->va_end = start + size; } spin_unlock(&free_vmap_area_lock); /* populate the kasan shadow space */ for (area = 0; area < nr_vms; area++) { if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) goto err_free_shadow; kasan_unpoison_vmalloc((void *)vas[area]->va_start, sizes[area]); } /* insert all vm's */ spin_lock(&vmap_area_lock); for (area = 0; area < nr_vms; area++) { insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, pcpu_get_vm_areas); } spin_unlock(&vmap_area_lock); kfree(vas); return vms; recovery: /* * Remove previously allocated areas. There is no * need in removing these areas from the busy tree, * because they are inserted only on the final step * and when pcpu_get_vm_areas() is success. */ while (area--) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; } overflow: spin_unlock(&free_vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = true; /* Before "retry", check if we recover. */ for (area = 0; area < nr_vms; area++) { if (vas[area]) continue; vas[area] = kmem_cache_zalloc( vmap_area_cachep, GFP_KERNEL); if (!vas[area]) goto err_free; } goto retry; } err_free: for (area = 0; area < nr_vms; area++) { if (vas[area]) kmem_cache_free(vmap_area_cachep, vas[area]); kfree(vms[area]); } err_free2: kfree(vas); kfree(vms); return NULL; err_free_shadow: spin_lock(&free_vmap_area_lock); /* * We release all the vmalloc shadows, even the ones for regions that * hadn't been successfully added. This relies on kasan_release_vmalloc * being able to tolerate this case. */ for (area = 0; area < nr_vms; area++) { orig_start = vas[area]->va_start; orig_end = vas[area]->va_end; va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root, &free_vmap_area_list); if (va) kasan_release_vmalloc(orig_start, orig_end, va->va_start, va->va_end); vas[area] = NULL; kfree(vms[area]); } spin_unlock(&free_vmap_area_lock); kfree(vas); kfree(vms); return NULL; } /** * pcpu_free_vm_areas - free vmalloc areas for percpu allocator * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() * @nr_vms: the number of allocated areas * * Free vm_structs and the array allocated by pcpu_get_vm_areas(). */ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { int i; for (i = 0; i < nr_vms; i++) free_vm_area(vms[i]); kfree(vms); } #endif /* CONFIG_SMP */ #ifdef CONFIG_PROC_FS static void *s_start(struct seq_file *m, loff_t *pos) __acquires(&vmap_purge_lock) __acquires(&vmap_area_lock) { mutex_lock(&vmap_purge_lock); spin_lock(&vmap_area_lock); return seq_list_start(&vmap_area_list, *pos); } static void *s_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &vmap_area_list, pos); } static void s_stop(struct seq_file *m, void *p) __releases(&vmap_area_lock) __releases(&vmap_purge_lock) { spin_unlock(&vmap_area_lock); mutex_unlock(&vmap_purge_lock); } static void show_numa_info(struct seq_file *m, struct vm_struct *v) { if (IS_ENABLED(CONFIG_NUMA)) { unsigned int nr, *counters = m->private; if (!counters) return; if (v->flags & VM_UNINITIALIZED) return; /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ smp_rmb(); memset(counters, 0, nr_node_ids * sizeof(unsigned int)); for (nr = 0; nr < v->nr_pages; nr++) counters[page_to_nid(v->pages[nr])]++; for_each_node_state(nr, N_HIGH_MEMORY) if (counters[nr]) seq_printf(m, " N%u=%u", nr, counters[nr]); } } static void show_purge_info(struct seq_file *m) { struct llist_node *head; struct vmap_area *va; head = READ_ONCE(vmap_purge_list.first); if (head == NULL) return; llist_for_each_entry(va, head, purge_list) { seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); } } static int s_show(struct seq_file *m, void *p) { struct vmap_area *va; struct vm_struct *v; va = list_entry(p, struct vmap_area, list); /* * s_show can encounter race with remove_vm_area, !vm on behalf * of vmap area is being tear down or vm_map_ram allocation. */ if (!va->vm) { seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", (void *)va->va_start, (void *)va->va_end, va->va_end - va->va_start); return 0; } v = va->vm; seq_printf(m, "0x%pK-0x%pK %7ld", v->addr, v->addr + v->size, v->size); if (v->caller) seq_printf(m, " %pS", v->caller); if (v->nr_pages) seq_printf(m, " pages=%d", v->nr_pages); if (v->phys_addr) seq_printf(m, " phys=%pa", &v->phys_addr); if (v->flags & VM_IOREMAP) seq_puts(m, " ioremap"); if (v->flags & VM_ALLOC) seq_puts(m, " vmalloc"); if (v->flags & VM_MAP) seq_puts(m, " vmap"); if (v->flags & VM_USERMAP) seq_puts(m, " user"); if (v->flags & VM_DMA_COHERENT) seq_puts(m, " dma-coherent"); if (is_vmalloc_addr(v->pages)) seq_puts(m, " vpages"); show_numa_info(m, v); seq_putc(m, '\n'); /* * As a final step, dump "unpurged" areas. Note, * that entire "/proc/vmallocinfo" output will not * be address sorted, because the purge list is not * sorted. */ if (list_is_last(&va->list, &vmap_area_list)) show_purge_info(m); return 0; } static const struct seq_operations vmalloc_op = { .start = s_start, .next = s_next, .stop = s_stop, .show = s_show, }; static int __init proc_vmalloc_init(void) { if (IS_ENABLED(CONFIG_NUMA)) proc_create_seq_private("vmallocinfo", 0400, NULL, &vmalloc_op, nr_node_ids * sizeof(unsigned int), NULL); else proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); return 0; } module_init(proc_vmalloc_init); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/mballoc.h * * Written by: Alex Tomas <alex@clusterfs.com> * */ #ifndef _EXT4_MBALLOC_H #define _EXT4_MBALLOC_H #include <linux/time.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/buffer_head.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/proc_fs.h> #include <linux/pagemap.h> #include <linux/seq_file.h> #include <linux/blkdev.h> #include <linux/mutex.h> #include "ext4_jbd2.h" #include "ext4.h" /* * mb_debug() dynamic printk msgs could be used to debug mballoc code. */ #ifdef CONFIG_EXT4_DEBUG #define mb_debug(sb, fmt, ...) \ pr_debug("[%s/%d] EXT4-fs (%s): (%s, %d): %s: " fmt, \ current->comm, task_pid_nr(current), sb->s_id, \ __FILE__, __LINE__, __func__, ##__VA_ARGS__) #else #define mb_debug(sb, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif #define EXT4_MB_HISTORY_ALLOC 1 /* allocation */ #define EXT4_MB_HISTORY_PREALLOC 2 /* preallocated blocks used */ /* * How long mballoc can look for a best extent (in found extents) */ #define MB_DEFAULT_MAX_TO_SCAN 200 /* * How long mballoc must look for a best extent */ #define MB_DEFAULT_MIN_TO_SCAN 10 /* * with 'ext4_mb_stats' allocator will collect stats that will be * shown at umount. The collecting costs though! */ #define MB_DEFAULT_STATS 0 /* * files smaller than MB_DEFAULT_STREAM_THRESHOLD are served * by the stream allocator, which purpose is to pack requests * as close each to other as possible to produce smooth I/O traffic * We use locality group prealloc space for stream request. * We can tune the same via /proc/fs/ext4/<partition>/stream_req */ #define MB_DEFAULT_STREAM_THRESHOLD 16 /* 64K */ /* * for which requests use 2^N search using buddies */ #define MB_DEFAULT_ORDER2_REQS 2 /* * default group prealloc size 512 blocks */ #define MB_DEFAULT_GROUP_PREALLOC 512 /* * maximum length of inode prealloc list */ #define MB_DEFAULT_MAX_INODE_PREALLOC 512 struct ext4_free_data { /* this links the free block information from sb_info */ struct list_head efd_list; /* this links the free block information from group_info */ struct rb_node efd_node; /* group which free block extent belongs */ ext4_group_t efd_group; /* free block extent */ ext4_grpblk_t efd_start_cluster; ext4_grpblk_t efd_count; /* transaction which freed this extent */ tid_t efd_tid; }; struct ext4_prealloc_space { struct list_head pa_inode_list; struct list_head pa_group_list; union { struct list_head pa_tmp_list; struct rcu_head pa_rcu; } u; spinlock_t pa_lock; atomic_t pa_count; unsigned pa_deleted; ext4_fsblk_t pa_pstart; /* phys. block */ ext4_lblk_t pa_lstart; /* log. block */ ext4_grpblk_t pa_len; /* len of preallocated chunk */ ext4_grpblk_t pa_free; /* how many blocks are free */ unsigned short pa_type; /* pa type. inode or group */ spinlock_t *pa_obj_lock; struct inode *pa_inode; /* hack, for history only */ }; enum { MB_INODE_PA = 0, MB_GROUP_PA = 1 }; struct ext4_free_extent { ext4_lblk_t fe_logical; ext4_grpblk_t fe_start; /* In cluster units */ ext4_group_t fe_group; ext4_grpblk_t fe_len; /* In cluster units */ }; /* * Locality group: * we try to group all related changes together * so that writeback can flush/allocate them together as well * Size of lg_prealloc_list hash is determined by MB_DEFAULT_GROUP_PREALLOC * (512). We store prealloc space into the hash based on the pa_free blocks * order value.ie, fls(pa_free)-1; */ #define PREALLOC_TB_SIZE 10 struct ext4_locality_group { /* for allocator */ /* to serialize allocates */ struct mutex lg_mutex; /* list of preallocations */ struct list_head lg_prealloc_list[PREALLOC_TB_SIZE]; spinlock_t lg_prealloc_lock; }; struct ext4_allocation_context { struct inode *ac_inode; struct super_block *ac_sb; /* original request */ struct ext4_free_extent ac_o_ex; /* goal request (normalized ac_o_ex) */ struct ext4_free_extent ac_g_ex; /* the best found extent */ struct ext4_free_extent ac_b_ex; /* copy of the best found extent taken before preallocation efforts */ struct ext4_free_extent ac_f_ex; __u16 ac_groups_scanned; __u16 ac_found; __u16 ac_tail; __u16 ac_buddy; __u16 ac_flags; /* allocation hints */ __u8 ac_status; __u8 ac_criteria; __u8 ac_2order; /* if request is to allocate 2^N blocks and * N > 0, the field stores N, otherwise 0 */ __u8 ac_op; /* operation, for history only */ struct page *ac_bitmap_page; struct page *ac_buddy_page; struct ext4_prealloc_space *ac_pa; struct ext4_locality_group *ac_lg; }; #define AC_STATUS_CONTINUE 1 #define AC_STATUS_FOUND 2 #define AC_STATUS_BREAK 3 struct ext4_buddy { struct page *bd_buddy_page; void *bd_buddy; struct page *bd_bitmap_page; void *bd_bitmap; struct ext4_group_info *bd_info; struct super_block *bd_sb; __u16 bd_blkbits; ext4_group_t bd_group; }; static inline ext4_fsblk_t ext4_grp_offs_to_block(struct super_block *sb, struct ext4_free_extent *fex) { return ext4_group_first_block_no(sb, fex->fe_group) + (fex->fe_start << EXT4_SB(sb)->s_cluster_bits); } static inline loff_t extent_logical_end(struct ext4_sb_info *sbi, struct ext4_free_extent *fex) { /* Use loff_t to avoid end exceeding ext4_lblk_t max. */ return (loff_t)fex->fe_logical + EXT4_C2B(sbi, fex->fe_len); } static inline loff_t pa_logical_end(struct ext4_sb_info *sbi, struct ext4_prealloc_space *pa) { /* Use loff_t to avoid end exceeding ext4_lblk_t max. */ return (loff_t)pa->pa_lstart + EXT4_C2B(sbi, pa->pa_len); } typedef int (*ext4_mballoc_query_range_fn)( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t len, void *priv); int ext4_mballoc_query_range( struct super_block *sb, ext4_group_t agno, ext4_grpblk_t start, ext4_grpblk_t end, ext4_mballoc_query_range_fn meta_formatter, ext4_mballoc_query_range_fn formatter, void *priv); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 /* SPDX-License-Identifier: GPL-2.0-only */ /* * User-mode machine state access * * Copyright (C) 2007 Red Hat, Inc. All rights reserved. * * Red Hat Author: Roland McGrath. */ #ifndef _LINUX_REGSET_H #define _LINUX_REGSET_H 1 #include <linux/compiler.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/uaccess.h> struct task_struct; struct user_regset; struct membuf { void *p; size_t left; }; static inline int membuf_zero(struct membuf *s, size_t size) { if (s->left) { if (size > s->left) size = s->left; memset(s->p, 0, size); s->p += size; s->left -= size; } return s->left; } static inline int membuf_write(struct membuf *s, const void *v, size_t size) { if (s->left) { if (size > s->left) size = s->left; memcpy(s->p, v, size); s->p += size; s->left -= size; } return s->left; } /* current s->p must be aligned for v; v must be a scalar */ #define membuf_store(s, v) \ ({ \ struct membuf *__s = (s); \ if (__s->left) { \ typeof(v) __v = (v); \ size_t __size = sizeof(__v); \ if (unlikely(__size > __s->left)) { \ __size = __s->left; \ memcpy(__s->p, &__v, __size); \ } else { \ *(typeof(__v + 0) *)__s->p = __v; \ } \ __s->p += __size; \ __s->left -= __size; \ } \ __s->left;}) /** * user_regset_active_fn - type of @active function in &struct user_regset * @target: thread being examined * @regset: regset being examined * * Return -%ENODEV if not available on the hardware found. * Return %0 if no interesting state in this thread. * Return >%0 number of @size units of interesting state. * Any get call fetching state beyond that number will * see the default initialization state for this data, * so a caller that knows what the default state is need * not copy it all out. * This call is optional; the pointer is %NULL if there * is no inexpensive check to yield a value < @n. */ typedef int user_regset_active_fn(struct task_struct *target, const struct user_regset *regset); typedef int user_regset_get2_fn(struct task_struct *target, const struct user_regset *regset, struct membuf to); /** * user_regset_set_fn - type of @set function in &struct user_regset * @target: thread being examined * @regset: regset being examined * @pos: offset into the regset data to access, in bytes * @count: amount of data to copy, in bytes * @kbuf: if not %NULL, a kernel-space pointer to copy from * @ubuf: if @kbuf is %NULL, a user-space pointer to copy from * * Store register values. Return %0 on success; -%EIO or -%ENODEV * are usual failure returns. The @pos and @count values are in * bytes, but must be properly aligned. If @kbuf is non-null, that * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then * ubuf gives a userland pointer to access directly, and an -%EFAULT * return value is possible. */ typedef int user_regset_set_fn(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf); /** * user_regset_writeback_fn - type of @writeback function in &struct user_regset * @target: thread being examined * @regset: regset being examined * @immediate: zero if writeback at completion of next context switch is OK * * This call is optional; usually the pointer is %NULL. When * provided, there is some user memory associated with this regset's * hardware, such as memory backing cached register data on register * window machines; the regset's data controls what user memory is * used (e.g. via the stack pointer value). * * Write register data back to user memory. If the @immediate flag * is nonzero, it must be written to the user memory so uaccess or * access_process_vm() can see it when this call returns; if zero, * then it must be written back by the time the task completes a * context switch (as synchronized with wait_task_inactive()). * Return %0 on success or if there was nothing to do, -%EFAULT for * a memory problem (bad stack pointer or whatever), or -%EIO for a * hardware problem. */ typedef int user_regset_writeback_fn(struct task_struct *target, const struct user_regset *regset, int immediate); /** * struct user_regset - accessible thread CPU state * @n: Number of slots (registers). * @size: Size in bytes of a slot (register). * @align: Required alignment, in bytes. * @bias: Bias from natural indexing. * @core_note_type: ELF note @n_type value used in core dumps. * @get: Function to fetch values. * @set: Function to store values. * @active: Function to report if regset is active, or %NULL. * @writeback: Function to write data back to user memory, or %NULL. * * This data structure describes a machine resource we call a register set. * This is part of the state of an individual thread, not necessarily * actual CPU registers per se. A register set consists of a number of * similar slots, given by @n. Each slot is @size bytes, and aligned to * @align bytes (which is at least @size). For dynamically-sized * regsets, @n must contain the maximum possible number of slots for the * regset. * * For backward compatibility, the @get and @set methods must pad to, or * accept, @n * @size bytes, even if the current regset size is smaller. * The precise semantics of these operations depend on the regset being * accessed. * * The functions to which &struct user_regset members point must be * called only on the current thread or on a thread that is in * %TASK_STOPPED or %TASK_TRACED state, that we are guaranteed will not * be woken up and return to user mode, and that we have called * wait_task_inactive() on. (The target thread always might wake up for * SIGKILL while these functions are working, in which case that * thread's user_regset state might be scrambled.) * * The @pos argument must be aligned according to @align; the @count * argument must be a multiple of @size. These functions are not * responsible for checking for invalid arguments. * * When there is a natural value to use as an index, @bias gives the * difference between the natural index and the slot index for the * register set. For example, x86 GDT segment descriptors form a regset; * the segment selector produces a natural index, but only a subset of * that index space is available as a regset (the TLS slots); subtracting * @bias from a segment selector index value computes the regset slot. * * If nonzero, @core_note_type gives the n_type field (NT_* value) * of the core file note in which this regset's data appears. * NT_PRSTATUS is a special case in that the regset data starts at * offsetof(struct elf_prstatus, pr_reg) into the note data; that is * part of the per-machine ELF formats userland knows about. In * other cases, the core file note contains exactly the whole regset * (@n * @size) and nothing else. The core file note is normally * omitted when there is an @active function and it returns zero. */ struct user_regset { user_regset_get2_fn *regset_get; user_regset_set_fn *set; user_regset_active_fn *active; user_regset_writeback_fn *writeback; unsigned int n; unsigned int size; unsigned int align; unsigned int bias; unsigned int core_note_type; }; /** * struct user_regset_view - available regsets * @name: Identifier, e.g. UTS_MACHINE string. * @regsets: Array of @n regsets available in this view. * @n: Number of elements in @regsets. * @e_machine: ELF header @e_machine %EM_* value written in core dumps. * @e_flags: ELF header @e_flags value written in core dumps. * @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps. * * A regset view is a collection of regsets (&struct user_regset, * above). This describes all the state of a thread that can be seen * from a given architecture/ABI environment. More than one view might * refer to the same &struct user_regset, or more than one regset * might refer to the same machine-specific state in the thread. For * example, a 32-bit thread's state could be examined from the 32-bit * view or from the 64-bit view. Either method reaches the same thread * register state, doing appropriate widening or truncation. */ struct user_regset_view { const char *name; const struct user_regset *regsets; unsigned int n; u32 e_flags; u16 e_machine; u8 ei_osabi; }; /* * This is documented here rather than at the definition sites because its * implementation is machine-dependent but its interface is universal. */ /** * task_user_regset_view - Return the process's native regset view. * @tsk: a thread of the process in question * * Return the &struct user_regset_view that is native for the given process. * For example, what it would access when it called ptrace(). * Throughout the life of the process, this only changes at exec. */ const struct user_regset_view *task_user_regset_view(struct task_struct *tsk); static inline int user_regset_copyin(unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf, void *data, const int start_pos, const int end_pos) { if (*count == 0) return 0; BUG_ON(*pos < start_pos); if (end_pos < 0 || *pos < end_pos) { unsigned int copy = (end_pos < 0 ? *count : min(*count, end_pos - *pos)); data += *pos - start_pos; if (*kbuf) { memcpy(data, *kbuf, copy); *kbuf += copy; } else if (__copy_from_user(data, *ubuf, copy)) return -EFAULT; else *ubuf += copy; *pos += copy; *count -= copy; } return 0; } static inline int user_regset_copyin_ignore(unsigned int *pos, unsigned int *count, const void **kbuf, const void __user **ubuf, const int start_pos, const int end_pos) { if (*count == 0) return 0; BUG_ON(*pos < start_pos); if (end_pos < 0 || *pos < end_pos) { unsigned int copy = (end_pos < 0 ? *count : min(*count, end_pos - *pos)); if (*kbuf) *kbuf += copy; else *ubuf += copy; *pos += copy; *count -= copy; } return 0; } extern int regset_get(struct task_struct *target, const struct user_regset *regset, unsigned int size, void *data); extern int regset_get_alloc(struct task_struct *target, const struct user_regset *regset, unsigned int size, void **data); extern int copy_regset_to_user(struct task_struct *target, const struct user_regset_view *view, unsigned int setno, unsigned int offset, unsigned int size, void __user *data); /** * copy_regset_from_user - store into thread's user_regset data from user memory * @target: thread to be examined * @view: &struct user_regset_view describing user thread machine state * @setno: index in @view->regsets * @offset: offset into the regset data, in bytes * @size: amount of data to copy, in bytes * @data: user-mode pointer to copy from */ static inline int copy_regset_from_user(struct task_struct *target, const struct user_regset_view *view, unsigned int setno, unsigned int offset, unsigned int size, const void __user *data) { const struct user_regset *regset = &view->regsets[setno]; if (!regset->set) return -EOPNOTSUPP; if (!access_ok(data, size)) return -EFAULT; return regset->set(target, regset, offset, size, NULL, data); } #endif /* <linux/regset.h> */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMAN_H #define _LINUX_MMAN_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/percpu_counter.h> #include <linux/atomic.h> #include <uapi/linux/mman.h> /* * Arrange for legacy / undefined architecture specific flags to be * ignored by mmap handling code. */ #ifndef MAP_32BIT #define MAP_32BIT 0 #endif #ifndef MAP_HUGE_2MB #define MAP_HUGE_2MB 0 #endif #ifndef MAP_HUGE_1GB #define MAP_HUGE_1GB 0 #endif #ifndef MAP_UNINITIALIZED #define MAP_UNINITIALIZED 0 #endif #ifndef MAP_SYNC #define MAP_SYNC 0 #endif /* * The historical set of flags that all mmap implementations implicitly * support when a ->mmap_validate() op is not provided in file_operations. */ #define LEGACY_MAP_MASK (MAP_SHARED \ | MAP_PRIVATE \ | MAP_FIXED \ | MAP_ANONYMOUS \ | MAP_DENYWRITE \ | MAP_EXECUTABLE \ | MAP_UNINITIALIZED \ | MAP_GROWSDOWN \ | MAP_LOCKED \ | MAP_NORESERVE \ | MAP_POPULATE \ | MAP_NONBLOCK \ | MAP_STACK \ | MAP_HUGETLB \ | MAP_32BIT \ | MAP_HUGE_2MB \ | MAP_HUGE_1GB) extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; extern struct percpu_counter vm_committed_as; #ifdef CONFIG_SMP extern s32 vm_committed_as_batch; extern void mm_compute_batch(int overcommit_policy); #else #define vm_committed_as_batch 0 static inline void mm_compute_batch(int overcommit_policy) { } #endif unsigned long vm_memory_committed(void); static inline void vm_acct_memory(long pages) { percpu_counter_add_batch(&vm_committed_as, pages, vm_committed_as_batch); } static inline void vm_unacct_memory(long pages) { vm_acct_memory(-pages); } /* * Allow architectures to handle additional protection and flag bits. The * overriding macros must be defined in the arch-specific asm/mman.h file. */ #ifndef arch_calc_vm_prot_bits #define arch_calc_vm_prot_bits(prot, pkey) 0 #endif #ifndef arch_calc_vm_flag_bits #define arch_calc_vm_flag_bits(file, flags) 0 #endif #ifndef arch_vm_get_page_prot #define arch_vm_get_page_prot(vm_flags) __pgprot(0) #endif #ifndef arch_validate_prot /* * This is called from mprotect(). PROT_GROWSDOWN and PROT_GROWSUP have * already been masked out. * * Returns true if the prot flags are valid */ static inline bool arch_validate_prot(unsigned long prot, unsigned long addr) { return (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC | PROT_SEM)) == 0; } #define arch_validate_prot arch_validate_prot #endif #ifndef arch_validate_flags /* * This is called from mmap() and mprotect() with the updated vma->vm_flags. * * Returns true if the VM_* flags are valid. */ static inline bool arch_validate_flags(unsigned long flags) { return true; } #define arch_validate_flags arch_validate_flags #endif /* * Optimisation macro. It is equivalent to: * (x & bit1) ? bit2 : 0 * but this version is faster. * ("bit1" and "bit2" must be single bits) */ #define _calc_vm_trans(x, bit1, bit2) \ ((!(bit1) || !(bit2)) ? 0 : \ ((bit1) <= (bit2) ? ((x) & (bit1)) * ((bit2) / (bit1)) \ : ((x) & (bit1)) / ((bit1) / (bit2)))) /* * Combine the mmap "prot" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_prot_bits(unsigned long prot, unsigned long pkey) { return _calc_vm_trans(prot, PROT_READ, VM_READ ) | _calc_vm_trans(prot, PROT_WRITE, VM_WRITE) | _calc_vm_trans(prot, PROT_EXEC, VM_EXEC) | arch_calc_vm_prot_bits(prot, pkey); } /* * Combine the mmap "flags" argument into "vm_flags" used internally. */ static inline unsigned long calc_vm_flag_bits(struct file *file, unsigned long flags) { return _calc_vm_trans(flags, MAP_GROWSDOWN, VM_GROWSDOWN ) | _calc_vm_trans(flags, MAP_DENYWRITE, VM_DENYWRITE ) | _calc_vm_trans(flags, MAP_LOCKED, VM_LOCKED ) | _calc_vm_trans(flags, MAP_SYNC, VM_SYNC ) | arch_calc_vm_flag_bits(file, flags); } unsigned long vm_commit_limit(void); #endif /* _LINUX_MMAN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_POLL_H #define _LINUX_POLL_H #include <linux/compiler.h> #include <linux/ktime.h> #include <linux/wait.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/sysctl.h> #include <linux/uaccess.h> #include <uapi/linux/poll.h> #include <uapi/linux/eventpoll.h> extern struct ctl_table epoll_table[]; /* for sysctl */ /* ~832 bytes of stack space used max in sys_select/sys_poll before allocating additional memory. */ #define MAX_STACK_ALLOC 832 #define FRONTEND_STACK_ALLOC 256 #define SELECT_STACK_ALLOC FRONTEND_STACK_ALLOC #define POLL_STACK_ALLOC FRONTEND_STACK_ALLOC #define WQUEUES_STACK_ALLOC (MAX_STACK_ALLOC - FRONTEND_STACK_ALLOC) #define N_INLINE_POLL_ENTRIES (WQUEUES_STACK_ALLOC / sizeof(struct poll_table_entry)) #define DEFAULT_POLLMASK (EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM) struct poll_table_struct; /* * structures and helpers for f_op->poll implementations */ typedef void (*poll_queue_proc)(struct file *, wait_queue_head_t *, struct poll_table_struct *); /* * Do not touch the structure directly, use the access functions * poll_does_not_wait() and poll_requested_events() instead. */ typedef struct poll_table_struct { poll_queue_proc _qproc; __poll_t _key; } poll_table; static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p) { if (p && p->_qproc && wait_address) { p->_qproc(filp, wait_address, p); /* * This memory barrier is paired in the wq_has_sleeper(). * See the comment above prepare_to_wait(), we need to * ensure that subsequent tests in this thread can't be * reordered with __add_wait_queue() in _qproc() paths. */ smp_mb(); } } /* * Return true if it is guaranteed that poll will not wait. This is the case * if the poll() of another file descriptor in the set got an event, so there * is no need for waiting. */ static inline bool poll_does_not_wait(const poll_table *p) { return p == NULL || p->_qproc == NULL; } /* * Return the set of events that the application wants to poll for. * This is useful for drivers that need to know whether a DMA transfer has * to be started implicitly on poll(). You typically only want to do that * if the application is actually polling for POLLIN and/or POLLOUT. */ static inline __poll_t poll_requested_events(const poll_table *p) { return p ? p->_key : ~(__poll_t)0; } static inline void init_poll_funcptr(poll_table *pt, poll_queue_proc qproc) { pt->_qproc = qproc; pt->_key = ~(__poll_t)0; /* all events enabled */ } static inline bool file_can_poll(struct file *file) { return file->f_op->poll; } static inline __poll_t vfs_poll(struct file *file, struct poll_table_struct *pt) { if (unlikely(!file->f_op->poll)) return DEFAULT_POLLMASK; return file->f_op->poll(file, pt); } struct poll_table_entry { struct file *filp; __poll_t key; wait_queue_entry_t wait; wait_queue_head_t *wait_address; }; /* * Structures and helpers for select/poll syscall */ struct poll_wqueues { poll_table pt; struct poll_table_page *table; struct task_struct *polling_task; int triggered; int error; int inline_index; struct poll_table_entry inline_entries[N_INLINE_POLL_ENTRIES]; }; extern void poll_initwait(struct poll_wqueues *pwq); extern void poll_freewait(struct poll_wqueues *pwq); extern u64 select_estimate_accuracy(struct timespec64 *tv); #define MAX_INT64_SECONDS (((s64)(~((u64)0)>>1)/HZ)-1) extern int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp, struct timespec64 *end_time); extern int poll_select_set_timeout(struct timespec64 *to, time64_t sec, long nsec); #define __MAP(v, from, to) \ (from < to ? (v & from) * (to/from) : (v & from) / (from/to)) static inline __u16 mangle_poll(__poll_t val) { __u16 v = (__force __u16)val; #define M(X) __MAP(v, (__force __u16)EPOLL##X, POLL##X) return M(IN) | M(OUT) | M(PRI) | M(ERR) | M(NVAL) | M(RDNORM) | M(RDBAND) | M(WRNORM) | M(WRBAND) | M(HUP) | M(RDHUP) | M(MSG); #undef M } static inline __poll_t demangle_poll(u16 val) { #define M(X) (__force __poll_t)__MAP(val, POLL##X, (__force __u16)EPOLL##X) return M(IN) | M(OUT) | M(PRI) | M(ERR) | M(NVAL) | M(RDNORM) | M(RDBAND) | M(WRNORM) | M(WRBAND) | M(HUP) | M(RDHUP) | M(MSG); #undef M } #undef __MAP #endif /* _LINUX_POLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl_xattr.h Extended attribute system call representation of Access Control Lists. Copyright (C) 2000 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (C) 2002 SGI - Silicon Graphics, Inc <linux-xfs@oss.sgi.com> */ #ifndef _POSIX_ACL_XATTR_H #define _POSIX_ACL_XATTR_H #include <uapi/linux/xattr.h> #include <uapi/linux/posix_acl_xattr.h> #include <linux/posix_acl.h> static inline size_t posix_acl_xattr_size(int count) { return (sizeof(struct posix_acl_xattr_header) + (count * sizeof(struct posix_acl_xattr_entry))); } static inline int posix_acl_xattr_count(size_t size) { if (size < sizeof(struct posix_acl_xattr_header)) return -1; size -= sizeof(struct posix_acl_xattr_header); if (size % sizeof(struct posix_acl_xattr_entry)) return -1; return size / sizeof(struct posix_acl_xattr_entry); } #ifdef CONFIG_FS_POSIX_ACL void posix_acl_fix_xattr_from_user(void *value, size_t size); void posix_acl_fix_xattr_to_user(void *value, size_t size); #else static inline void posix_acl_fix_xattr_from_user(void *value, size_t size) { } static inline void posix_acl_fix_xattr_to_user(void *value, size_t size) { } #endif struct posix_acl *posix_acl_from_xattr(struct user_namespace *user_ns, const void *value, size_t size); int posix_acl_to_xattr(struct user_namespace *user_ns, const struct posix_acl *acl, void *buffer, size_t size); extern const struct xattr_handler posix_acl_access_xattr_handler; extern const struct xattr_handler posix_acl_default_xattr_handler; #endif /* _POSIX_ACL_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 */ #include <asm/fpu/internal.h> #include <asm/fpu/regset.h> #include <asm/fpu/signal.h> #include <asm/fpu/types.h> #include <asm/traps.h> #include <asm/irq_regs.h> #include <linux/hardirq.h> #include <linux/pkeys.h> #define CREATE_TRACE_POINTS #include <asm/trace/fpu.h> /* * Represents the initial FPU state. It's mostly (but not completely) zeroes, * depending on the FPU hardware format: */ union fpregs_state init_fpstate __read_mostly; /* Track in-kernel FPU usage */ static DEFINE_PER_CPU(bool, in_kernel_fpu); /* * Track which context is using the FPU on the CPU: */ DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * Can we use the FPU in kernel mode with the * whole "kernel_fpu_begin/end()" sequence? */ bool irq_fpu_usable(void) { if (WARN_ON_ONCE(in_nmi())) return false; /* In kernel FPU usage already active? */ if (this_cpu_read(in_kernel_fpu)) return false; /* * When not in NMI or hard interrupt context, FPU can be used in: * * - Task context except from within fpregs_lock()'ed critical * regions. * * - Soft interrupt processing context which cannot happen * while in a fpregs_lock()'ed critical region. */ if (!in_irq()) return true; /* * In hard interrupt context it's safe when soft interrupts * are enabled, which means the interrupt did not hit in * a fpregs_lock()'ed critical region. */ return !softirq_count(); } EXPORT_SYMBOL(irq_fpu_usable); /* * These must be called with preempt disabled. Returns * 'true' if the FPU state is still intact and we can * keep registers active. * * The legacy FNSAVE instruction cleared all FPU state * unconditionally, so registers are essentially destroyed. * Modern FPU state can be kept in registers, if there are * no pending FP exceptions. */ int copy_fpregs_to_fpstate(struct fpu *fpu) { if (likely(use_xsave())) { copy_xregs_to_kernel(&fpu->state.xsave); /* * AVX512 state is tracked here because its use is * known to slow the max clock speed of the core. */ if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) fpu->avx512_timestamp = jiffies; return 1; } if (likely(use_fxsr())) { copy_fxregs_to_kernel(fpu); return 1; } /* * Legacy FPU register saving, FNSAVE always clears FPU registers, * so we have to mark them inactive: */ asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); return 0; } EXPORT_SYMBOL(copy_fpregs_to_fpstate); void kernel_fpu_begin_mask(unsigned int kfpu_mask) { preempt_disable(); WARN_ON_FPU(!irq_fpu_usable()); WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, true); if (!(current->flags & PF_KTHREAD) && !test_thread_flag(TIF_NEED_FPU_LOAD)) { set_thread_flag(TIF_NEED_FPU_LOAD); /* * Ignore return value -- we don't care if reg state * is clobbered. */ copy_fpregs_to_fpstate(&current->thread.fpu); } __cpu_invalidate_fpregs_state(); /* Put sane initial values into the control registers. */ if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM)) ldmxcsr(MXCSR_DEFAULT); if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU)) asm volatile ("fninit"); } EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask); void kernel_fpu_end(void) { WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); this_cpu_write(in_kernel_fpu, false); preempt_enable(); } EXPORT_SYMBOL_GPL(kernel_fpu_end); /* * Save the FPU state (mark it for reload if necessary): * * This only ever gets called for the current task. */ void fpu__save(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); fpregs_lock(); trace_x86_fpu_before_save(fpu); if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { if (!copy_fpregs_to_fpstate(fpu)) { copy_kernel_to_fpregs(&fpu->state); } } trace_x86_fpu_after_save(fpu); fpregs_unlock(); } /* * Legacy x87 fpstate state init: */ static inline void fpstate_init_fstate(struct fregs_state *fp) { fp->cwd = 0xffff037fu; fp->swd = 0xffff0000u; fp->twd = 0xffffffffu; fp->fos = 0xffff0000u; } void fpstate_init(union fpregs_state *state) { if (!static_cpu_has(X86_FEATURE_FPU)) { fpstate_init_soft(&state->soft); return; } memset(state, 0, fpu_kernel_xstate_size); if (static_cpu_has(X86_FEATURE_XSAVES)) fpstate_init_xstate(&state->xsave); if (static_cpu_has(X86_FEATURE_FXSR)) fpstate_init_fxstate(&state->fxsave); else fpstate_init_fstate(&state->fsave); } EXPORT_SYMBOL_GPL(fpstate_init); int fpu__copy(struct task_struct *dst, struct task_struct *src) { struct fpu *dst_fpu = &dst->thread.fpu; struct fpu *src_fpu = &src->thread.fpu; dst_fpu->last_cpu = -1; if (!static_cpu_has(X86_FEATURE_FPU)) return 0; WARN_ON_FPU(src_fpu != &current->thread.fpu); /* * Don't let 'init optimized' areas of the XSAVE area * leak into the child task: */ memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); /* * If the FPU registers are not current just memcpy() the state. * Otherwise save current FPU registers directly into the child's FPU * context, without any memory-to-memory copying. * * ( The function 'fails' in the FNSAVE case, which destroys * register contents so we have to load them back. ) */ fpregs_lock(); if (test_thread_flag(TIF_NEED_FPU_LOAD)) memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); else if (!copy_fpregs_to_fpstate(dst_fpu)) copy_kernel_to_fpregs(&dst_fpu->state); fpregs_unlock(); set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); trace_x86_fpu_copy_src(src_fpu); trace_x86_fpu_copy_dst(dst_fpu); return 0; } /* * Activate the current task's in-memory FPU context, * if it has not been used before: */ static void fpu__initialize(struct fpu *fpu) { WARN_ON_FPU(fpu != &current->thread.fpu); set_thread_flag(TIF_NEED_FPU_LOAD); fpstate_init(&fpu->state); trace_x86_fpu_init_state(fpu); } /* * This function must be called before we read a task's fpstate. * * There's two cases where this gets called: * * - for the current task (when coredumping), in which case we have * to save the latest FPU registers into the fpstate, * * - or it's called for stopped tasks (ptrace), in which case the * registers were already saved by the context-switch code when * the task scheduled out. * * If the task has used the FPU before then save it. */ void fpu__prepare_read(struct fpu *fpu) { if (fpu == &current->thread.fpu) fpu__save(fpu); } /* * This function must be called before we write a task's fpstate. * * Invalidate any cached FPU registers. * * After this function call, after registers in the fpstate are * modified and the child task has woken up, the child task will * restore the modified FPU state from the modified context. If we * didn't clear its cached status here then the cached in-registers * state pending on its former CPU could be restored, corrupting * the modifications. */ void fpu__prepare_write(struct fpu *fpu) { /* * Only stopped child tasks can be used to modify the FPU * state in the fpstate buffer: */ WARN_ON_FPU(fpu == &current->thread.fpu); /* Invalidate any cached state: */ __fpu_invalidate_fpregs_state(fpu); } /* * Drops current FPU state: deactivates the fpregs and * the fpstate. NOTE: it still leaves previous contents * in the fpregs in the eager-FPU case. * * This function can be used in cases where we know that * a state-restore is coming: either an explicit one, * or a reschedule. */ void fpu__drop(struct fpu *fpu) { preempt_disable(); if (fpu == &current->thread.fpu) { /* Ignore delayed exceptions from user space */ asm volatile("1: fwait\n" "2:\n" _ASM_EXTABLE(1b, 2b)); fpregs_deactivate(fpu); } trace_x86_fpu_dropped(fpu); preempt_enable(); } /* * Clear FPU registers by setting them up from the init fpstate. * Caller must do fpregs_[un]lock() around it. */ static inline void copy_init_fpstate_to_fpregs(u64 features_mask) { if (use_xsave()) copy_kernel_to_xregs(&init_fpstate.xsave, features_mask); else if (static_cpu_has(X86_FEATURE_FXSR)) copy_kernel_to_fxregs(&init_fpstate.fxsave); else copy_kernel_to_fregs(&init_fpstate.fsave); if (boot_cpu_has(X86_FEATURE_OSPKE)) copy_init_pkru_to_fpregs(); } /* * Clear the FPU state back to init state. * * Called by sys_execve(), by the signal handler code and by various * error paths. */ static void fpu__clear(struct fpu *fpu, bool user_only) { WARN_ON_FPU(fpu != &current->thread.fpu); if (!static_cpu_has(X86_FEATURE_FPU)) { fpu__drop(fpu); fpu__initialize(fpu); return; } fpregs_lock(); if (user_only) { if (!fpregs_state_valid(fpu, smp_processor_id()) && xfeatures_mask_supervisor()) copy_kernel_to_xregs(&fpu->state.xsave, xfeatures_mask_supervisor()); copy_init_fpstate_to_fpregs(xfeatures_mask_user()); } else { copy_init_fpstate_to_fpregs(xfeatures_mask_all); } fpregs_mark_activate(); fpregs_unlock(); } void fpu__clear_user_states(struct fpu *fpu) { fpu__clear(fpu, true); } void fpu__clear_all(struct fpu *fpu) { fpu__clear(fpu, false); } /* * Load FPU context before returning to userspace. */ void switch_fpu_return(void) { if (!static_cpu_has(X86_FEATURE_FPU)) return; __fpregs_load_activate(); } EXPORT_SYMBOL_GPL(switch_fpu_return); #ifdef CONFIG_X86_DEBUG_FPU /* * If current FPU state according to its tracking (loaded FPU context on this * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is * loaded on return to userland. */ void fpregs_assert_state_consistent(void) { struct fpu *fpu = &current->thread.fpu; if (test_thread_flag(TIF_NEED_FPU_LOAD)) return; WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); } EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); #endif void fpregs_mark_activate(void) { struct fpu *fpu = &current->thread.fpu; fpregs_activate(fpu); fpu->last_cpu = smp_processor_id(); clear_thread_flag(TIF_NEED_FPU_LOAD); } EXPORT_SYMBOL_GPL(fpregs_mark_activate); /* * x87 math exception handling: */ int fpu__exception_code(struct fpu *fpu, int trap_nr) { int err; if (trap_nr == X86_TRAP_MF) { unsigned short cwd, swd; /* * (~cwd & swd) will mask out exceptions that are not set to unmasked * status. 0x3f is the exception bits in these regs, 0x200 is the * C1 reg you need in case of a stack fault, 0x040 is the stack * fault bit. We should only be taking one exception at a time, * so if this combination doesn't produce any single exception, * then we have a bad program that isn't synchronizing its FPU usage * and it will suffer the consequences since we won't be able to * fully reproduce the context of the exception. */ if (boot_cpu_has(X86_FEATURE_FXSR)) { cwd = fpu->state.fxsave.cwd; swd = fpu->state.fxsave.swd; } else { cwd = (unsigned short)fpu->state.fsave.cwd; swd = (unsigned short)fpu->state.fsave.swd; } err = swd & ~cwd; } else { /* * The SIMD FPU exceptions are handled a little differently, as there * is only a single status/control register. Thus, to determine which * unmasked exception was caught we must mask the exception mask bits * at 0x1f80, and then use these to mask the exception bits at 0x3f. */ unsigned short mxcsr = MXCSR_DEFAULT; if (boot_cpu_has(X86_FEATURE_XMM)) mxcsr = fpu->state.fxsave.mxcsr; err = ~(mxcsr >> 7) & mxcsr; } if (err & 0x001) { /* Invalid op */ /* * swd & 0x240 == 0x040: Stack Underflow * swd & 0x240 == 0x240: Stack Overflow * User must clear the SF bit (0x40) if set */ return FPE_FLTINV; } else if (err & 0x004) { /* Divide by Zero */ return FPE_FLTDIV; } else if (err & 0x008) { /* Overflow */ return FPE_FLTOVF; } else if (err & 0x012) { /* Denormal, Underflow */ return FPE_FLTUND; } else if (err & 0x020) { /* Precision */ return FPE_FLTRES; } /* * If we're using IRQ 13, or supposedly even some trap * X86_TRAP_MF implementations, it's possible * we get a spurious trap, which is not an error. */ return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGALLLC_TRACK_H #define _LINUX_PGALLLC_TRACK_H #if defined(CONFIG_MMU) static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(pgd_none(*pgd))) { if (__p4d_alloc(mm, pgd, address)) return NULL; *mod_mask |= PGTBL_PGD_MODIFIED; } return p4d_offset(pgd, address); } static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(p4d_none(*p4d))) { if (__pud_alloc(mm, p4d, address)) return NULL; *mod_mask |= PGTBL_P4D_MODIFIED; } return pud_offset(p4d, address); } static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(pud_none(*pud))) { if (__pmd_alloc(mm, pud, address)) return NULL; *mod_mask |= PGTBL_PUD_MODIFIED; } return pmd_offset(pud, address); } #endif /* CONFIG_MMU */ #define pte_alloc_kernel_track(pmd, address, mask) \ ((unlikely(pmd_none(*(pmd))) && \ (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ NULL: pte_offset_kernel(pmd, address)) #endif /* _LINUX_PGALLLC_TRACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Authentication token and access key management internal defs * * Copyright (C) 2003-5, 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _INTERNAL_H #define _INTERNAL_H #include <linux/sched.h> #include <linux/wait_bit.h> #include <linux/cred.h> #include <linux/key-type.h> #include <linux/task_work.h> #include <linux/keyctl.h> #include <linux/refcount.h> #include <linux/watch_queue.h> #include <linux/compat.h> #include <linux/mm.h> #include <linux/vmalloc.h> struct iovec; #ifdef __KDEBUG #define kenter(FMT, ...) \ printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) #define kleave(FMT, ...) \ printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) #define kdebug(FMT, ...) \ printk(KERN_DEBUG " "FMT"\n", ##__VA_ARGS__) #else #define kenter(FMT, ...) \ no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) #define kleave(FMT, ...) \ no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) #define kdebug(FMT, ...) \ no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) #endif extern struct key_type key_type_dead; extern struct key_type key_type_user; extern struct key_type key_type_logon; /*****************************************************************************/ /* * Keep track of keys for a user. * * This needs to be separate to user_struct to avoid a refcount-loop * (user_struct pins some keyrings which pin this struct). * * We also keep track of keys under request from userspace for this UID here. */ struct key_user { struct rb_node node; struct mutex cons_lock; /* construction initiation lock */ spinlock_t lock; refcount_t usage; /* for accessing qnkeys & qnbytes */ atomic_t nkeys; /* number of keys */ atomic_t nikeys; /* number of instantiated keys */ kuid_t uid; int qnkeys; /* number of keys allocated to this user */ int qnbytes; /* number of bytes allocated to this user */ }; extern struct rb_root key_user_tree; extern spinlock_t key_user_lock; extern struct key_user root_key_user; extern struct key_user *key_user_lookup(kuid_t uid); extern void key_user_put(struct key_user *user); /* * Key quota limits. * - root has its own separate limits to everyone else */ extern unsigned key_quota_root_maxkeys; extern unsigned key_quota_root_maxbytes; extern unsigned key_quota_maxkeys; extern unsigned key_quota_maxbytes; #define KEYQUOTA_LINK_BYTES 4 /* a link in a keyring is worth 4 bytes */ extern struct kmem_cache *key_jar; extern struct rb_root key_serial_tree; extern spinlock_t key_serial_lock; extern struct mutex key_construction_mutex; extern wait_queue_head_t request_key_conswq; extern void key_set_index_key(struct keyring_index_key *index_key); extern struct key_type *key_type_lookup(const char *type); extern void key_type_put(struct key_type *ktype); extern int __key_link_lock(struct key *keyring, const struct keyring_index_key *index_key); extern int __key_move_lock(struct key *l_keyring, struct key *u_keyring, const struct keyring_index_key *index_key); extern int __key_link_begin(struct key *keyring, const struct keyring_index_key *index_key, struct assoc_array_edit **_edit); extern int __key_link_check_live_key(struct key *keyring, struct key *key); extern void __key_link(struct key *keyring, struct key *key, struct assoc_array_edit **_edit); extern void __key_link_end(struct key *keyring, const struct keyring_index_key *index_key, struct assoc_array_edit *edit); extern key_ref_t find_key_to_update(key_ref_t keyring_ref, const struct keyring_index_key *index_key); extern struct key *keyring_search_instkey(struct key *keyring, key_serial_t target_id); extern int iterate_over_keyring(const struct key *keyring, int (*func)(const struct key *key, void *data), void *data); struct keyring_search_context { struct keyring_index_key index_key; const struct cred *cred; struct key_match_data match_data; unsigned flags; #define KEYRING_SEARCH_NO_STATE_CHECK 0x0001 /* Skip state checks */ #define KEYRING_SEARCH_DO_STATE_CHECK 0x0002 /* Override NO_STATE_CHECK */ #define KEYRING_SEARCH_NO_UPDATE_TIME 0x0004 /* Don't update times */ #define KEYRING_SEARCH_NO_CHECK_PERM 0x0008 /* Don't check permissions */ #define KEYRING_SEARCH_DETECT_TOO_DEEP 0x0010 /* Give an error on excessive depth */ #define KEYRING_SEARCH_SKIP_EXPIRED 0x0020 /* Ignore expired keys (intention to replace) */ #define KEYRING_SEARCH_RECURSE 0x0040 /* Search child keyrings also */ int (*iterator)(const void *object, void *iterator_data); /* Internal stuff */ int skipped_ret; bool possessed; key_ref_t result; time64_t now; }; extern bool key_default_cmp(const struct key *key, const struct key_match_data *match_data); extern key_ref_t keyring_search_rcu(key_ref_t keyring_ref, struct keyring_search_context *ctx); extern key_ref_t search_cred_keyrings_rcu(struct keyring_search_context *ctx); extern key_ref_t search_process_keyrings_rcu(struct keyring_search_context *ctx); extern struct key *find_keyring_by_name(const char *name, bool uid_keyring); extern int look_up_user_keyrings(struct key **, struct key **); extern struct key *get_user_session_keyring_rcu(const struct cred *); extern int install_thread_keyring_to_cred(struct cred *); extern int install_process_keyring_to_cred(struct cred *); extern int install_session_keyring_to_cred(struct cred *, struct key *); extern struct key *request_key_and_link(struct key_type *type, const char *description, struct key_tag *domain_tag, const void *callout_info, size_t callout_len, void *aux, struct key *dest_keyring, unsigned long flags); extern bool lookup_user_key_possessed(const struct key *key, const struct key_match_data *match_data); #define KEY_LOOKUP_CREATE 0x01 #define KEY_LOOKUP_PARTIAL 0x02 extern long join_session_keyring(const char *name); extern void key_change_session_keyring(struct callback_head *twork); extern struct work_struct key_gc_work; extern unsigned key_gc_delay; extern void keyring_gc(struct key *keyring, time64_t limit); extern void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type); void key_set_expiry(struct key *key, time64_t expiry); extern void key_schedule_gc(time64_t gc_at); extern void key_schedule_gc_links(void); extern void key_gc_keytype(struct key_type *ktype); extern int key_task_permission(const key_ref_t key_ref, const struct cred *cred, enum key_need_perm need_perm); static inline void notify_key(struct key *key, enum key_notification_subtype subtype, u32 aux) { #ifdef CONFIG_KEY_NOTIFICATIONS struct key_notification n = { .watch.type = WATCH_TYPE_KEY_NOTIFY, .watch.subtype = subtype, .watch.info = watch_sizeof(n), .key_id = key_serial(key), .aux = aux, }; post_watch_notification(key->watchers, &n.watch, current_cred(), n.key_id); #endif } /* * Check to see whether permission is granted to use a key in the desired way. */ static inline int key_permission(const key_ref_t key_ref, enum key_need_perm need_perm) { return key_task_permission(key_ref, current_cred(), need_perm); } extern struct key_type key_type_request_key_auth; extern struct key *request_key_auth_new(struct key *target, const char *op, const void *callout_info, size_t callout_len, struct key *dest_keyring); extern struct key *key_get_instantiation_authkey(key_serial_t target_id); /* * Determine whether a key is dead. */ static inline bool key_is_dead(const struct key *key, time64_t limit) { time64_t expiry = key->expiry; if (expiry != TIME64_MAX) { if (!(key->type->flags & KEY_TYPE_INSTANT_REAP)) expiry += key_gc_delay; if (expiry <= limit) return true; } return key->flags & ((1 << KEY_FLAG_DEAD) | (1 << KEY_FLAG_INVALIDATED)) || key->domain_tag->removed; } /* * keyctl() functions */ extern long keyctl_get_keyring_ID(key_serial_t, int); extern long keyctl_join_session_keyring(const char __user *); extern long keyctl_update_key(key_serial_t, const void __user *, size_t); extern long keyctl_revoke_key(key_serial_t); extern long keyctl_keyring_clear(key_serial_t); extern long keyctl_keyring_link(key_serial_t, key_serial_t); extern long keyctl_keyring_move(key_serial_t, key_serial_t, key_serial_t, unsigned int); extern long keyctl_keyring_unlink(key_serial_t, key_serial_t); extern long keyctl_describe_key(key_serial_t, char __user *, size_t); extern long keyctl_keyring_search(key_serial_t, const char __user *, const char __user *, key_serial_t); extern long keyctl_read_key(key_serial_t, char __user *, size_t); extern long keyctl_chown_key(key_serial_t, uid_t, gid_t); extern long keyctl_setperm_key(key_serial_t, key_perm_t); extern long keyctl_instantiate_key(key_serial_t, const void __user *, size_t, key_serial_t); extern long keyctl_negate_key(key_serial_t, unsigned, key_serial_t); extern long keyctl_set_reqkey_keyring(int); extern long keyctl_set_timeout(key_serial_t, unsigned); extern long keyctl_assume_authority(key_serial_t); extern long keyctl_get_security(key_serial_t keyid, char __user *buffer, size_t buflen); extern long keyctl_session_to_parent(void); extern long keyctl_reject_key(key_serial_t, unsigned, unsigned, key_serial_t); extern long keyctl_instantiate_key_iov(key_serial_t, const struct iovec __user *, unsigned, key_serial_t); extern long keyctl_invalidate_key(key_serial_t); extern long keyctl_restrict_keyring(key_serial_t id, const char __user *_type, const char __user *_restriction); #ifdef CONFIG_PERSISTENT_KEYRINGS extern long keyctl_get_persistent(uid_t, key_serial_t); extern unsigned persistent_keyring_expiry; #else static inline long keyctl_get_persistent(uid_t uid, key_serial_t destring) { return -EOPNOTSUPP; } #endif #ifdef CONFIG_KEY_DH_OPERATIONS extern long keyctl_dh_compute(struct keyctl_dh_params __user *, char __user *, size_t, struct keyctl_kdf_params __user *); extern long __keyctl_dh_compute(struct keyctl_dh_params __user *, char __user *, size_t, struct keyctl_kdf_params *); #ifdef CONFIG_COMPAT extern long compat_keyctl_dh_compute(struct keyctl_dh_params __user *params, char __user *buffer, size_t buflen, struct compat_keyctl_kdf_params __user *kdf); #endif #define KEYCTL_KDF_MAX_OUTPUT_LEN 1024 /* max length of KDF output */ #define KEYCTL_KDF_MAX_OI_LEN 64 /* max length of otherinfo */ #else static inline long keyctl_dh_compute(struct keyctl_dh_params __user *params, char __user *buffer, size_t buflen, struct keyctl_kdf_params __user *kdf) { return -EOPNOTSUPP; } #ifdef CONFIG_COMPAT static inline long compat_keyctl_dh_compute( struct keyctl_dh_params __user *params, char __user *buffer, size_t buflen, struct keyctl_kdf_params __user *kdf) { return -EOPNOTSUPP; } #endif #endif #ifdef CONFIG_ASYMMETRIC_KEY_TYPE extern long keyctl_pkey_query(key_serial_t, const char __user *, struct keyctl_pkey_query __user *); extern long keyctl_pkey_verify(const struct keyctl_pkey_params __user *, const char __user *, const void __user *, const void __user *); extern long keyctl_pkey_e_d_s(int, const struct keyctl_pkey_params __user *, const char __user *, const void __user *, void __user *); #else static inline long keyctl_pkey_query(key_serial_t id, const char __user *_info, struct keyctl_pkey_query __user *_res) { return -EOPNOTSUPP; } static inline long keyctl_pkey_verify(const struct keyctl_pkey_params __user *params, const char __user *_info, const void __user *_in, const void __user *_in2) { return -EOPNOTSUPP; } static inline long keyctl_pkey_e_d_s(int op, const struct keyctl_pkey_params __user *params, const char __user *_info, const void __user *_in, void __user *_out) { return -EOPNOTSUPP; } #endif extern long keyctl_capabilities(unsigned char __user *_buffer, size_t buflen); #ifdef CONFIG_KEY_NOTIFICATIONS extern long keyctl_watch_key(key_serial_t, int, int); #else static inline long keyctl_watch_key(key_serial_t key_id, int watch_fd, int watch_id) { return -EOPNOTSUPP; } #endif /* * Debugging key validation */ #ifdef KEY_DEBUGGING extern void __key_check(const struct key *); static inline void key_check(const struct key *key) { if (key && (IS_ERR(key) || key->magic != KEY_DEBUG_MAGIC)) __key_check(key); } #else #define key_check(key) do {} while(0) #endif #endif /* _INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 /* SPDX-License-Identifier: GPL-2.0 */ /* * Access vector cache interface for object managers. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ #ifndef _SELINUX_AVC_H_ #define _SELINUX_AVC_H_ #include <linux/stddef.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/kdev_t.h> #include <linux/spinlock.h> #include <linux/init.h> #include <linux/audit.h> #include <linux/lsm_audit.h> #include <linux/in6.h> #include "flask.h" #include "av_permissions.h" #include "security.h" /* * An entry in the AVC. */ struct avc_entry; struct task_struct; struct inode; struct sock; struct sk_buff; /* * AVC statistics */ struct avc_cache_stats { unsigned int lookups; unsigned int misses; unsigned int allocations; unsigned int reclaims; unsigned int frees; }; /* * We only need this data after we have decided to send an audit message. */ struct selinux_audit_data { u32 ssid; u32 tsid; u16 tclass; u32 requested; u32 audited; u32 denied; int result; struct selinux_state *state; }; /* * AVC operations */ void __init avc_init(void); static inline u32 avc_audit_required(u32 requested, struct av_decision *avd, int result, u32 auditdeny, u32 *deniedp) { u32 denied, audited; denied = requested & ~avd->allowed; if (unlikely(denied)) { audited = denied & avd->auditdeny; /* * auditdeny is TRICKY! Setting a bit in * this field means that ANY denials should NOT be audited if * the policy contains an explicit dontaudit rule for that * permission. Take notice that this is unrelated to the * actual permissions that were denied. As an example lets * assume: * * denied == READ * avd.auditdeny & ACCESS == 0 (not set means explicit rule) * auditdeny & ACCESS == 1 * * We will NOT audit the denial even though the denied * permission was READ and the auditdeny checks were for * ACCESS */ if (auditdeny && !(auditdeny & avd->auditdeny)) audited = 0; } else if (result) audited = denied = requested; else audited = requested & avd->auditallow; *deniedp = denied; return audited; } int slow_avc_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u32 audited, u32 denied, int result, struct common_audit_data *a); /** * avc_audit - Audit the granting or denial of permissions. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions * @avd: access vector decisions * @result: result from avc_has_perm_noaudit * @a: auxiliary audit data * @flags: VFS walk flags * * Audit the granting or denial of permissions in accordance * with the policy. This function is typically called by * avc_has_perm() after a permission check, but can also be * called directly by callers who use avc_has_perm_noaudit() * in order to separate the permission check from the auditing. * For example, this separation is useful when the permission check must * be performed under a lock, to allow the lock to be released * before calling the auditing code. */ static inline int avc_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, int result, struct common_audit_data *a, int flags) { u32 audited, denied; audited = avc_audit_required(requested, avd, result, 0, &denied); if (likely(!audited)) return 0; /* fall back to ref-walk if we have to generate audit */ if (flags & MAY_NOT_BLOCK) return -ECHILD; return slow_avc_audit(state, ssid, tsid, tclass, requested, audited, denied, result, a); } #define AVC_STRICT 1 /* Ignore permissive mode. */ #define AVC_EXTENDED_PERMS 2 /* update extended permissions */ #define AVC_NONBLOCKING 4 /* non blocking */ int avc_has_perm_noaudit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, unsigned flags, struct av_decision *avd); int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata); int avc_has_perm_flags(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata, int flags); int avc_has_extended_perms(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u8 driver, u8 perm, struct common_audit_data *ad); u32 avc_policy_seqno(struct selinux_state *state); #define AVC_CALLBACK_GRANT 1 #define AVC_CALLBACK_TRY_REVOKE 2 #define AVC_CALLBACK_REVOKE 4 #define AVC_CALLBACK_RESET 8 #define AVC_CALLBACK_AUDITALLOW_ENABLE 16 #define AVC_CALLBACK_AUDITALLOW_DISABLE 32 #define AVC_CALLBACK_AUDITDENY_ENABLE 64 #define AVC_CALLBACK_AUDITDENY_DISABLE 128 #define AVC_CALLBACK_ADD_XPERMS 256 int avc_add_callback(int (*callback)(u32 event), u32 events); /* Exported to selinuxfs */ struct selinux_avc; int avc_get_hash_stats(struct selinux_avc *avc, char *page); unsigned int avc_get_cache_threshold(struct selinux_avc *avc); void avc_set_cache_threshold(struct selinux_avc *avc, unsigned int cache_threshold); /* Attempt to free avc node cache */ void avc_disable(void); #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS DECLARE_PER_CPU(struct avc_cache_stats, avc_cache_stats); #endif #endif /* _SELINUX_AVC_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 /* * linux/include/video/vga.h -- standard VGA chipset interaction * * Copyright 1999 Jeff Garzik <jgarzik@pobox.com> * * Copyright history from vga16fb.c: * Copyright 1999 Ben Pfaff and Petr Vandrovec * Based on VGA info at http://www.osdever.net/FreeVGA/home.htm * Based on VESA framebuffer (c) 1998 Gerd Knorr * * This file is subject to the terms and conditions of the GNU General * Public License. See the file COPYING in the main directory of this * archive for more details. * */ #ifndef __linux_video_vga_h__ #define __linux_video_vga_h__ #include <linux/types.h> #include <linux/io.h> #include <asm/vga.h> #include <asm/byteorder.h> /* Some of the code below is taken from SVGAlib. The original, unmodified copyright notice for that code is below. */ /* VGAlib version 1.2 - (c) 1993 Tommy Frandsen */ /* */ /* This library is free software; you can redistribute it and/or */ /* modify it without any restrictions. This library is distributed */ /* in the hope that it will be useful, but without any warranty. */ /* Multi-chipset support Copyright 1993 Harm Hanemaayer */ /* partially copyrighted (C) 1993 by Hartmut Schirmer */ /* VGA data register ports */ #define VGA_CRT_DC 0x3D5 /* CRT Controller Data Register - color emulation */ #define VGA_CRT_DM 0x3B5 /* CRT Controller Data Register - mono emulation */ #define VGA_ATT_R 0x3C1 /* Attribute Controller Data Read Register */ #define VGA_ATT_W 0x3C0 /* Attribute Controller Data Write Register */ #define VGA_GFX_D 0x3CF /* Graphics Controller Data Register */ #define VGA_SEQ_D 0x3C5 /* Sequencer Data Register */ #define VGA_MIS_R 0x3CC /* Misc Output Read Register */ #define VGA_MIS_W 0x3C2 /* Misc Output Write Register */ #define VGA_FTC_R 0x3CA /* Feature Control Read Register */ #define VGA_IS1_RC 0x3DA /* Input Status Register 1 - color emulation */ #define VGA_IS1_RM 0x3BA /* Input Status Register 1 - mono emulation */ #define VGA_PEL_D 0x3C9 /* PEL Data Register */ #define VGA_PEL_MSK 0x3C6 /* PEL mask register */ /* EGA-specific registers */ #define EGA_GFX_E0 0x3CC /* Graphics enable processor 0 */ #define EGA_GFX_E1 0x3CA /* Graphics enable processor 1 */ /* VGA index register ports */ #define VGA_CRT_IC 0x3D4 /* CRT Controller Index - color emulation */ #define VGA_CRT_IM 0x3B4 /* CRT Controller Index - mono emulation */ #define VGA_ATT_IW 0x3C0 /* Attribute Controller Index & Data Write Register */ #define VGA_GFX_I 0x3CE /* Graphics Controller Index */ #define VGA_SEQ_I 0x3C4 /* Sequencer Index */ #define VGA_PEL_IW 0x3C8 /* PEL Write Index */ #define VGA_PEL_IR 0x3C7 /* PEL Read Index */ /* standard VGA indexes max counts */ #define VGA_CRT_C 0x19 /* Number of CRT Controller Registers */ #define VGA_ATT_C 0x15 /* Number of Attribute Controller Registers */ #define VGA_GFX_C 0x09 /* Number of Graphics Controller Registers */ #define VGA_SEQ_C 0x05 /* Number of Sequencer Registers */ #define VGA_MIS_C 0x01 /* Number of Misc Output Register */ /* VGA misc register bit masks */ #define VGA_MIS_COLOR 0x01 #define VGA_MIS_ENB_MEM_ACCESS 0x02 #define VGA_MIS_DCLK_28322_720 0x04 #define VGA_MIS_ENB_PLL_LOAD (0x04 | 0x08) #define VGA_MIS_SEL_HIGH_PAGE 0x20 /* VGA CRT controller register indices */ #define VGA_CRTC_H_TOTAL 0 #define VGA_CRTC_H_DISP 1 #define VGA_CRTC_H_BLANK_START 2 #define VGA_CRTC_H_BLANK_END 3 #define VGA_CRTC_H_SYNC_START 4 #define VGA_CRTC_H_SYNC_END 5 #define VGA_CRTC_V_TOTAL 6 #define VGA_CRTC_OVERFLOW 7 #define VGA_CRTC_PRESET_ROW 8 #define VGA_CRTC_MAX_SCAN 9 #define VGA_CRTC_CURSOR_START 0x0A #define VGA_CRTC_CURSOR_END 0x0B #define VGA_CRTC_START_HI 0x0C #define VGA_CRTC_START_LO 0x0D #define VGA_CRTC_CURSOR_HI 0x0E #define VGA_CRTC_CURSOR_LO 0x0F #define VGA_CRTC_V_SYNC_START 0x10 #define VGA_CRTC_V_SYNC_END 0x11 #define VGA_CRTC_V_DISP_END 0x12 #define VGA_CRTC_OFFSET 0x13 #define VGA_CRTC_UNDERLINE 0x14 #define VGA_CRTC_V_BLANK_START 0x15 #define VGA_CRTC_V_BLANK_END 0x16 #define VGA_CRTC_MODE 0x17 #define VGA_CRTC_LINE_COMPARE 0x18 #define VGA_CRTC_REGS VGA_CRT_C /* VGA CRT controller bit masks */ #define VGA_CR11_LOCK_CR0_CR7 0x80 /* lock writes to CR0 - CR7 */ #define VGA_CR17_H_V_SIGNALS_ENABLED 0x80 /* VGA attribute controller register indices */ #define VGA_ATC_PALETTE0 0x00 #define VGA_ATC_PALETTE1 0x01 #define VGA_ATC_PALETTE2 0x02 #define VGA_ATC_PALETTE3 0x03 #define VGA_ATC_PALETTE4 0x04 #define VGA_ATC_PALETTE5 0x05 #define VGA_ATC_PALETTE6 0x06 #define VGA_ATC_PALETTE7 0x07 #define VGA_ATC_PALETTE8 0x08 #define VGA_ATC_PALETTE9 0x09 #define VGA_ATC_PALETTEA 0x0A #define VGA_ATC_PALETTEB 0x0B #define VGA_ATC_PALETTEC 0x0C #define VGA_ATC_PALETTED 0x0D #define VGA_ATC_PALETTEE 0x0E #define VGA_ATC_PALETTEF 0x0F #define VGA_ATC_MODE 0x10 #define VGA_ATC_OVERSCAN 0x11 #define VGA_ATC_PLANE_ENABLE 0x12 #define VGA_ATC_PEL 0x13 #define VGA_ATC_COLOR_PAGE 0x14 #define VGA_AR_ENABLE_DISPLAY 0x20 /* VGA sequencer register indices */ #define VGA_SEQ_RESET 0x00 #define VGA_SEQ_CLOCK_MODE 0x01 #define VGA_SEQ_PLANE_WRITE 0x02 #define VGA_SEQ_CHARACTER_MAP 0x03 #define VGA_SEQ_MEMORY_MODE 0x04 /* VGA sequencer register bit masks */ #define VGA_SR01_CHAR_CLK_8DOTS 0x01 /* bit 0: character clocks 8 dots wide are generated */ #define VGA_SR01_SCREEN_OFF 0x20 /* bit 5: Screen is off */ #define VGA_SR02_ALL_PLANES 0x0F /* bits 3-0: enable access to all planes */ #define VGA_SR04_EXT_MEM 0x02 /* bit 1: allows complete mem access to 256K */ #define VGA_SR04_SEQ_MODE 0x04 /* bit 2: directs system to use a sequential addressing mode */ #define VGA_SR04_CHN_4M 0x08 /* bit 3: selects modulo 4 addressing for CPU access to display memory */ /* VGA graphics controller register indices */ #define VGA_GFX_SR_VALUE 0x00 #define VGA_GFX_SR_ENABLE 0x01 #define VGA_GFX_COMPARE_VALUE 0x02 #define VGA_GFX_DATA_ROTATE 0x03 #define VGA_GFX_PLANE_READ 0x04 #define VGA_GFX_MODE 0x05 #define VGA_GFX_MISC 0x06 #define VGA_GFX_COMPARE_MASK 0x07 #define VGA_GFX_BIT_MASK 0x08 /* VGA graphics controller bit masks */ #define VGA_GR06_GRAPHICS_MODE 0x01 /* macro for composing an 8-bit VGA register index and value * into a single 16-bit quantity */ #define VGA_OUT16VAL(v, r) (((v) << 8) | (r)) /* decide whether we should enable the faster 16-bit VGA register writes */ #ifdef __LITTLE_ENDIAN #define VGA_OUTW_WRITE #endif /* VGA State Save and Restore */ #define VGA_SAVE_FONT0 1 /* save/restore plane 2 fonts */ #define VGA_SAVE_FONT1 2 /* save/restore plane 3 fonts */ #define VGA_SAVE_TEXT 4 /* save/restore plane 0/1 fonts */ #define VGA_SAVE_FONTS 7 /* save/restore all fonts */ #define VGA_SAVE_MODE 8 /* save/restore video mode */ #define VGA_SAVE_CMAP 16 /* save/restore color map/DAC */ struct vgastate { void __iomem *vgabase; /* mmio base, if supported */ unsigned long membase; /* VGA window base, 0 for default - 0xA000 */ __u32 memsize; /* VGA window size, 0 for default 64K */ __u32 flags; /* what state[s] to save (see VGA_SAVE_*) */ __u32 depth; /* current fb depth, not important */ __u32 num_attr; /* number of att registers, 0 for default */ __u32 num_crtc; /* number of crt registers, 0 for default */ __u32 num_gfx; /* number of gfx registers, 0 for default */ __u32 num_seq; /* number of seq registers, 0 for default */ void *vidstate; }; extern int save_vga(struct vgastate *state); extern int restore_vga(struct vgastate *state); /* * generic VGA port read/write */ static inline unsigned char vga_io_r (unsigned short port) { return inb_p(port); } static inline void vga_io_w (unsigned short port, unsigned char val) { outb_p(val, port); } static inline void vga_io_w_fast (unsigned short port, unsigned char reg, unsigned char val) { outw(VGA_OUT16VAL (val, reg), port); } static inline unsigned char vga_mm_r (void __iomem *regbase, unsigned short port) { return readb (regbase + port); } static inline void vga_mm_w (void __iomem *regbase, unsigned short port, unsigned char val) { writeb (val, regbase + port); } static inline void vga_mm_w_fast (void __iomem *regbase, unsigned short port, unsigned char reg, unsigned char val) { writew (VGA_OUT16VAL (val, reg), regbase + port); } static inline unsigned char vga_r (void __iomem *regbase, unsigned short port) { if (regbase) return vga_mm_r (regbase, port); else return vga_io_r (port); } static inline void vga_w (void __iomem *regbase, unsigned short port, unsigned char val) { if (regbase) vga_mm_w (regbase, port, val); else vga_io_w (port, val); } static inline void vga_w_fast (void __iomem *regbase, unsigned short port, unsigned char reg, unsigned char val) { if (regbase) vga_mm_w_fast (regbase, port, reg, val); else vga_io_w_fast (port, reg, val); } /* * VGA CRTC register read/write */ static inline unsigned char vga_rcrt (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_CRT_IC, reg); return vga_r (regbase, VGA_CRT_DC); } static inline void vga_wcrt (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_w_fast (regbase, VGA_CRT_IC, reg, val); #else vga_w (regbase, VGA_CRT_IC, reg); vga_w (regbase, VGA_CRT_DC, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_io_rcrt (unsigned char reg) { vga_io_w (VGA_CRT_IC, reg); return vga_io_r (VGA_CRT_DC); } static inline void vga_io_wcrt (unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_io_w_fast (VGA_CRT_IC, reg, val); #else vga_io_w (VGA_CRT_IC, reg); vga_io_w (VGA_CRT_DC, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_mm_rcrt (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_CRT_IC, reg); return vga_mm_r (regbase, VGA_CRT_DC); } static inline void vga_mm_wcrt (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_mm_w_fast (regbase, VGA_CRT_IC, reg, val); #else vga_mm_w (regbase, VGA_CRT_IC, reg); vga_mm_w (regbase, VGA_CRT_DC, val); #endif /* VGA_OUTW_WRITE */ } /* * VGA sequencer register read/write */ static inline unsigned char vga_rseq (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_SEQ_I, reg); return vga_r (regbase, VGA_SEQ_D); } static inline void vga_wseq (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_w_fast (regbase, VGA_SEQ_I, reg, val); #else vga_w (regbase, VGA_SEQ_I, reg); vga_w (regbase, VGA_SEQ_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_io_rseq (unsigned char reg) { vga_io_w (VGA_SEQ_I, reg); return vga_io_r (VGA_SEQ_D); } static inline void vga_io_wseq (unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_io_w_fast (VGA_SEQ_I, reg, val); #else vga_io_w (VGA_SEQ_I, reg); vga_io_w (VGA_SEQ_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_mm_rseq (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_SEQ_I, reg); return vga_mm_r (regbase, VGA_SEQ_D); } static inline void vga_mm_wseq (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_mm_w_fast (regbase, VGA_SEQ_I, reg, val); #else vga_mm_w (regbase, VGA_SEQ_I, reg); vga_mm_w (regbase, VGA_SEQ_D, val); #endif /* VGA_OUTW_WRITE */ } /* * VGA graphics controller register read/write */ static inline unsigned char vga_rgfx (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_GFX_I, reg); return vga_r (regbase, VGA_GFX_D); } static inline void vga_wgfx (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_w_fast (regbase, VGA_GFX_I, reg, val); #else vga_w (regbase, VGA_GFX_I, reg); vga_w (regbase, VGA_GFX_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_io_rgfx (unsigned char reg) { vga_io_w (VGA_GFX_I, reg); return vga_io_r (VGA_GFX_D); } static inline void vga_io_wgfx (unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_io_w_fast (VGA_GFX_I, reg, val); #else vga_io_w (VGA_GFX_I, reg); vga_io_w (VGA_GFX_D, val); #endif /* VGA_OUTW_WRITE */ } static inline unsigned char vga_mm_rgfx (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_GFX_I, reg); return vga_mm_r (regbase, VGA_GFX_D); } static inline void vga_mm_wgfx (void __iomem *regbase, unsigned char reg, unsigned char val) { #ifdef VGA_OUTW_WRITE vga_mm_w_fast (regbase, VGA_GFX_I, reg, val); #else vga_mm_w (regbase, VGA_GFX_I, reg); vga_mm_w (regbase, VGA_GFX_D, val); #endif /* VGA_OUTW_WRITE */ } /* * VGA attribute controller register read/write */ static inline unsigned char vga_rattr (void __iomem *regbase, unsigned char reg) { vga_w (regbase, VGA_ATT_IW, reg); return vga_r (regbase, VGA_ATT_R); } static inline void vga_wattr (void __iomem *regbase, unsigned char reg, unsigned char val) { vga_w (regbase, VGA_ATT_IW, reg); vga_w (regbase, VGA_ATT_W, val); } static inline unsigned char vga_io_rattr (unsigned char reg) { vga_io_w (VGA_ATT_IW, reg); return vga_io_r (VGA_ATT_R); } static inline void vga_io_wattr (unsigned char reg, unsigned char val) { vga_io_w (VGA_ATT_IW, reg); vga_io_w (VGA_ATT_W, val); } static inline unsigned char vga_mm_rattr (void __iomem *regbase, unsigned char reg) { vga_mm_w (regbase, VGA_ATT_IW, reg); return vga_mm_r (regbase, VGA_ATT_R); } static inline void vga_mm_wattr (void __iomem *regbase, unsigned char reg, unsigned char val) { vga_mm_w (regbase, VGA_ATT_IW, reg); vga_mm_w (regbase, VGA_ATT_W, val); } #endif /* __linux_video_vga_h__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef LINUX_KEXEC_H #define LINUX_KEXEC_H #define IND_DESTINATION_BIT 0 #define IND_INDIRECTION_BIT 1 #define IND_DONE_BIT 2 #define IND_SOURCE_BIT 3 #define IND_DESTINATION (1 << IND_DESTINATION_BIT) #define IND_INDIRECTION (1 << IND_INDIRECTION_BIT) #define IND_DONE (1 << IND_DONE_BIT) #define IND_SOURCE (1 << IND_SOURCE_BIT) #define IND_FLAGS (IND_DESTINATION | IND_INDIRECTION | IND_DONE | IND_SOURCE) #if !defined(__ASSEMBLY__) #include <linux/crash_core.h> #include <asm/io.h> #include <uapi/linux/kexec.h> #ifdef CONFIG_KEXEC_CORE #include <linux/list.h> #include <linux/compat.h> #include <linux/ioport.h> #include <linux/module.h> #include <asm/kexec.h> /* Verify architecture specific macros are defined */ #ifndef KEXEC_SOURCE_MEMORY_LIMIT #error KEXEC_SOURCE_MEMORY_LIMIT not defined #endif #ifndef KEXEC_DESTINATION_MEMORY_LIMIT #error KEXEC_DESTINATION_MEMORY_LIMIT not defined #endif #ifndef KEXEC_CONTROL_MEMORY_LIMIT #error KEXEC_CONTROL_MEMORY_LIMIT not defined #endif #ifndef KEXEC_CONTROL_MEMORY_GFP #define KEXEC_CONTROL_MEMORY_GFP (GFP_KERNEL | __GFP_NORETRY) #endif #ifndef KEXEC_CONTROL_PAGE_SIZE #error KEXEC_CONTROL_PAGE_SIZE not defined #endif #ifndef KEXEC_ARCH #error KEXEC_ARCH not defined #endif #ifndef KEXEC_CRASH_CONTROL_MEMORY_LIMIT #define KEXEC_CRASH_CONTROL_MEMORY_LIMIT KEXEC_CONTROL_MEMORY_LIMIT #endif #ifndef KEXEC_CRASH_MEM_ALIGN #define KEXEC_CRASH_MEM_ALIGN PAGE_SIZE #endif #define KEXEC_CORE_NOTE_NAME CRASH_CORE_NOTE_NAME /* * This structure is used to hold the arguments that are used when loading * kernel binaries. */ typedef unsigned long kimage_entry_t; struct kexec_segment { /* * This pointer can point to user memory if kexec_load() system * call is used or will point to kernel memory if * kexec_file_load() system call is used. * * Use ->buf when expecting to deal with user memory and use ->kbuf * when expecting to deal with kernel memory. */ union { void __user *buf; void *kbuf; }; size_t bufsz; unsigned long mem; size_t memsz; }; #ifdef CONFIG_COMPAT struct compat_kexec_segment { compat_uptr_t buf; compat_size_t bufsz; compat_ulong_t mem; /* User space sees this as a (void *) ... */ compat_size_t memsz; }; #endif #ifdef CONFIG_KEXEC_FILE struct purgatory_info { /* * Pointer to elf header at the beginning of kexec_purgatory. * Note: kexec_purgatory is read only */ const Elf_Ehdr *ehdr; /* * Temporary, modifiable buffer for sechdrs used for relocation. * This memory can be freed post image load. */ Elf_Shdr *sechdrs; /* * Temporary, modifiable buffer for stripped purgatory used for * relocation. This memory can be freed post image load. */ void *purgatory_buf; }; struct kimage; typedef int (kexec_probe_t)(const char *kernel_buf, unsigned long kernel_size); typedef void *(kexec_load_t)(struct kimage *image, char *kernel_buf, unsigned long kernel_len, char *initrd, unsigned long initrd_len, char *cmdline, unsigned long cmdline_len); typedef int (kexec_cleanup_t)(void *loader_data); #ifdef CONFIG_KEXEC_SIG typedef int (kexec_verify_sig_t)(const char *kernel_buf, unsigned long kernel_len); #endif struct kexec_file_ops { kexec_probe_t *probe; kexec_load_t *load; kexec_cleanup_t *cleanup; #ifdef CONFIG_KEXEC_SIG kexec_verify_sig_t *verify_sig; #endif }; extern const struct kexec_file_ops * const kexec_file_loaders[]; int kexec_image_probe_default(struct kimage *image, void *buf, unsigned long buf_len); int kexec_image_post_load_cleanup_default(struct kimage *image); /* * If kexec_buf.mem is set to this value, kexec_locate_mem_hole() * will try to allocate free memory. Arch may overwrite it. */ #ifndef KEXEC_BUF_MEM_UNKNOWN #define KEXEC_BUF_MEM_UNKNOWN 0 #endif /** * struct kexec_buf - parameters for finding a place for a buffer in memory * @image: kexec image in which memory to search. * @buffer: Contents which will be copied to the allocated memory. * @bufsz: Size of @buffer. * @mem: On return will have address of the buffer in memory. * @memsz: Size for the buffer in memory. * @buf_align: Minimum alignment needed. * @buf_min: The buffer can't be placed below this address. * @buf_max: The buffer can't be placed above this address. * @top_down: Allocate from top of memory. */ struct kexec_buf { struct kimage *image; void *buffer; unsigned long bufsz; unsigned long mem; unsigned long memsz; unsigned long buf_align; unsigned long buf_min; unsigned long buf_max; bool top_down; }; int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf); int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, void *buf, unsigned int size, bool get_value); void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name); /* Architectures may override the below functions */ int arch_kexec_kernel_image_probe(struct kimage *image, void *buf, unsigned long buf_len); void *arch_kexec_kernel_image_load(struct kimage *image); int arch_kimage_file_post_load_cleanup(struct kimage *image); #ifdef CONFIG_KEXEC_SIG int arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, unsigned long buf_len); #endif int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf); extern int kexec_add_buffer(struct kexec_buf *kbuf); int kexec_locate_mem_hole(struct kexec_buf *kbuf); /* Alignment required for elf header segment */ #define ELF_CORE_HEADER_ALIGN 4096 struct crash_mem_range { u64 start, end; }; struct crash_mem { unsigned int max_nr_ranges; unsigned int nr_ranges; struct crash_mem_range ranges[]; }; extern int crash_exclude_mem_range(struct crash_mem *mem, unsigned long long mstart, unsigned long long mend); extern int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, void **addr, unsigned long *sz); #ifndef arch_kexec_apply_relocations_add /* * arch_kexec_apply_relocations_add - apply relocations of type RELA * @pi: Purgatory to be relocated. * @section: Section relocations applying to. * @relsec: Section containing RELAs. * @symtab: Corresponding symtab. * * Return: 0 on success, negative errno on error. */ static inline int arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, const Elf_Shdr *relsec, const Elf_Shdr *symtab) { pr_err("RELA relocation unsupported.\n"); return -ENOEXEC; } #endif #ifndef arch_kexec_apply_relocations /* * arch_kexec_apply_relocations - apply relocations of type REL * @pi: Purgatory to be relocated. * @section: Section relocations applying to. * @relsec: Section containing RELs. * @symtab: Corresponding symtab. * * Return: 0 on success, negative errno on error. */ static inline int arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, const Elf_Shdr *relsec, const Elf_Shdr *symtab) { pr_err("REL relocation unsupported.\n"); return -ENOEXEC; } #endif #endif /* CONFIG_KEXEC_FILE */ #ifdef CONFIG_KEXEC_ELF struct kexec_elf_info { /* * Where the ELF binary contents are kept. * Memory managed by the user of the struct. */ const char *buffer; const struct elfhdr *ehdr; const struct elf_phdr *proghdrs; }; int kexec_build_elf_info(const char *buf, size_t len, struct elfhdr *ehdr, struct kexec_elf_info *elf_info); int kexec_elf_load(struct kimage *image, struct elfhdr *ehdr, struct kexec_elf_info *elf_info, struct kexec_buf *kbuf, unsigned long *lowest_load_addr); void kexec_free_elf_info(struct kexec_elf_info *elf_info); int kexec_elf_probe(const char *buf, unsigned long len); #endif struct kimage { kimage_entry_t head; kimage_entry_t *entry; kimage_entry_t *last_entry; unsigned long start; struct page *control_code_page; struct page *swap_page; void *vmcoreinfo_data_copy; /* locates in the crash memory */ unsigned long nr_segments; struct kexec_segment segment[KEXEC_SEGMENT_MAX]; struct list_head control_pages; struct list_head dest_pages; struct list_head unusable_pages; /* Address of next control page to allocate for crash kernels. */ unsigned long control_page; /* Flags to indicate special processing */ unsigned int type : 1; #define KEXEC_TYPE_DEFAULT 0 #define KEXEC_TYPE_CRASH 1 unsigned int preserve_context : 1; /* If set, we are using file mode kexec syscall */ unsigned int file_mode:1; #ifdef ARCH_HAS_KIMAGE_ARCH struct kimage_arch arch; #endif #ifdef CONFIG_KEXEC_FILE /* Additional fields for file based kexec syscall */ void *kernel_buf; unsigned long kernel_buf_len; void *initrd_buf; unsigned long initrd_buf_len; char *cmdline_buf; unsigned long cmdline_buf_len; /* File operations provided by image loader */ const struct kexec_file_ops *fops; /* Image loader handling the kernel can store a pointer here */ void *image_loader_data; /* Information for loading purgatory */ struct purgatory_info purgatory_info; #endif #ifdef CONFIG_IMA_KEXEC /* Virtual address of IMA measurement buffer for kexec syscall */ void *ima_buffer; #endif }; /* kexec interface functions */ extern void machine_kexec(struct kimage *image); extern int machine_kexec_prepare(struct kimage *image); extern void machine_kexec_cleanup(struct kimage *image); extern int kernel_kexec(void); extern struct page *kimage_alloc_control_pages(struct kimage *image, unsigned int order); extern void __crash_kexec(struct pt_regs *); extern void crash_kexec(struct pt_regs *); int kexec_should_crash(struct task_struct *); int kexec_crash_loaded(void); void crash_save_cpu(struct pt_regs *regs, int cpu); extern int kimage_crash_copy_vmcoreinfo(struct kimage *image); extern struct kimage *kexec_image; extern struct kimage *kexec_crash_image; extern int kexec_load_disabled; #ifndef kexec_flush_icache_page #define kexec_flush_icache_page(page) #endif /* List of defined/legal kexec flags */ #ifndef CONFIG_KEXEC_JUMP #define KEXEC_FLAGS KEXEC_ON_CRASH #else #define KEXEC_FLAGS (KEXEC_ON_CRASH | KEXEC_PRESERVE_CONTEXT) #endif /* List of defined/legal kexec file flags */ #define KEXEC_FILE_FLAGS (KEXEC_FILE_UNLOAD | KEXEC_FILE_ON_CRASH | \ KEXEC_FILE_NO_INITRAMFS) /* Location of a reserved region to hold the crash kernel. */ extern struct resource crashk_res; extern struct resource crashk_low_res; extern note_buf_t __percpu *crash_notes; /* flag to track if kexec reboot is in progress */ extern bool kexec_in_progress; int crash_shrink_memory(unsigned long new_size); void crash_free_reserved_phys_range(unsigned long begin, unsigned long end); ssize_t crash_get_memory_size(void); void arch_kexec_protect_crashkres(void); void arch_kexec_unprotect_crashkres(void); #ifndef page_to_boot_pfn static inline unsigned long page_to_boot_pfn(struct page *page) { return page_to_pfn(page); } #endif #ifndef boot_pfn_to_page static inline struct page *boot_pfn_to_page(unsigned long boot_pfn) { return pfn_to_page(boot_pfn); } #endif #ifndef phys_to_boot_phys static inline unsigned long phys_to_boot_phys(phys_addr_t phys) { return phys; } #endif #ifndef boot_phys_to_phys static inline phys_addr_t boot_phys_to_phys(unsigned long boot_phys) { return boot_phys; } #endif static inline unsigned long virt_to_boot_phys(void *addr) { return phys_to_boot_phys(__pa((unsigned long)addr)); } static inline void *boot_phys_to_virt(unsigned long entry) { return phys_to_virt(boot_phys_to_phys(entry)); } #ifndef arch_kexec_post_alloc_pages static inline int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) { return 0; } #endif #ifndef arch_kexec_pre_free_pages static inline void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) { } #endif #else /* !CONFIG_KEXEC_CORE */ struct pt_regs; struct task_struct; static inline void __crash_kexec(struct pt_regs *regs) { } static inline void crash_kexec(struct pt_regs *regs) { } static inline int kexec_should_crash(struct task_struct *p) { return 0; } static inline int kexec_crash_loaded(void) { return 0; } #define kexec_in_progress false #endif /* CONFIG_KEXEC_CORE */ #ifdef CONFIG_KEXEC_SIG void set_kexec_sig_enforced(void); #else static inline void set_kexec_sig_enforced(void) {} #endif #endif /* !defined(__ASSEBMLY__) */ #endif /* LINUX_KEXEC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CPUHOTPLUG_H #define __CPUHOTPLUG_H #include <linux/types.h> /* * CPU-up CPU-down * * BP AP BP AP * * OFFLINE OFFLINE * | ^ * v | * BRINGUP_CPU->AP_OFFLINE BRINGUP_CPU <- AP_IDLE_DEAD (idle thread/play_dead) * | AP_OFFLINE * v (IRQ-off) ,---------------^ * AP_ONLNE | (stop_machine) * | TEARDOWN_CPU <- AP_ONLINE_IDLE * | ^ * v | * AP_ACTIVE AP_ACTIVE */ enum cpuhp_state { CPUHP_INVALID = -1, CPUHP_OFFLINE = 0, CPUHP_CREATE_THREADS, CPUHP_PERF_PREPARE, CPUHP_PERF_X86_PREPARE, CPUHP_PERF_X86_AMD_UNCORE_PREP, CPUHP_PERF_POWER, CPUHP_PERF_SUPERH, CPUHP_X86_HPET_DEAD, CPUHP_X86_APB_DEAD, CPUHP_X86_MCE_DEAD, CPUHP_VIRT_NET_DEAD, CPUHP_SLUB_DEAD, CPUHP_DEBUG_OBJ_DEAD, CPUHP_MM_WRITEBACK_DEAD, CPUHP_MM_VMSTAT_DEAD, CPUHP_SOFTIRQ_DEAD, CPUHP_NET_MVNETA_DEAD, CPUHP_CPUIDLE_DEAD, CPUHP_ARM64_FPSIMD_DEAD, CPUHP_ARM_OMAP_WAKE_DEAD, CPUHP_IRQ_POLL_DEAD, CPUHP_BLOCK_SOFTIRQ_DEAD, CPUHP_ACPI_CPUDRV_DEAD, CPUHP_S390_PFAULT_DEAD, CPUHP_BLK_MQ_DEAD, CPUHP_FS_BUFF_DEAD, CPUHP_PRINTK_DEAD, CPUHP_MM_MEMCQ_DEAD, CPUHP_PERCPU_CNT_DEAD, CPUHP_RADIX_DEAD, CPUHP_PAGE_ALLOC_DEAD, CPUHP_NET_DEV_DEAD, CPUHP_PCI_XGENE_DEAD, CPUHP_IOMMU_INTEL_DEAD, CPUHP_LUSTRE_CFS_DEAD, CPUHP_AP_ARM_CACHE_B15_RAC_DEAD, CPUHP_PADATA_DEAD, CPUHP_RANDOM_PREPARE, CPUHP_WORKQUEUE_PREP, CPUHP_POWER_NUMA_PREPARE, CPUHP_HRTIMERS_PREPARE, CPUHP_PROFILE_PREPARE, CPUHP_X2APIC_PREPARE, CPUHP_SMPCFD_PREPARE, CPUHP_RELAY_PREPARE, CPUHP_SLAB_PREPARE, CPUHP_MD_RAID5_PREPARE, CPUHP_RCUTREE_PREP, CPUHP_CPUIDLE_COUPLED_PREPARE, CPUHP_POWERPC_PMAC_PREPARE, CPUHP_POWERPC_MMU_CTX_PREPARE, CPUHP_XEN_PREPARE, CPUHP_XEN_EVTCHN_PREPARE, CPUHP_ARM_SHMOBILE_SCU_PREPARE, CPUHP_SH_SH3X_PREPARE, CPUHP_NET_FLOW_PREPARE, CPUHP_TOPOLOGY_PREPARE, CPUHP_NET_IUCV_PREPARE, CPUHP_ARM_BL_PREPARE, CPUHP_TRACE_RB_PREPARE, CPUHP_MM_ZS_PREPARE, CPUHP_MM_ZSWP_MEM_PREPARE, CPUHP_MM_ZSWP_POOL_PREPARE, CPUHP_KVM_PPC_BOOK3S_PREPARE, CPUHP_ZCOMP_PREPARE, CPUHP_TIMERS_PREPARE, CPUHP_MIPS_SOC_PREPARE, CPUHP_BP_PREPARE_DYN, CPUHP_BP_PREPARE_DYN_END = CPUHP_BP_PREPARE_DYN + 20, CPUHP_BRINGUP_CPU, CPUHP_AP_IDLE_DEAD, CPUHP_AP_OFFLINE, CPUHP_AP_SCHED_STARTING, CPUHP_AP_RCUTREE_DYING, CPUHP_AP_CPU_PM_STARTING, CPUHP_AP_IRQ_GIC_STARTING, CPUHP_AP_IRQ_HIP04_STARTING, CPUHP_AP_IRQ_ARMADA_XP_STARTING, CPUHP_AP_IRQ_BCM2836_STARTING, CPUHP_AP_IRQ_MIPS_GIC_STARTING, CPUHP_AP_IRQ_RISCV_STARTING, CPUHP_AP_IRQ_SIFIVE_PLIC_STARTING, CPUHP_AP_ARM_MVEBU_COHERENCY, CPUHP_AP_MICROCODE_LOADER, CPUHP_AP_PERF_X86_AMD_UNCORE_STARTING, CPUHP_AP_PERF_X86_STARTING, CPUHP_AP_PERF_X86_AMD_IBS_STARTING, CPUHP_AP_PERF_X86_CQM_STARTING, CPUHP_AP_PERF_X86_CSTATE_STARTING, CPUHP_AP_PERF_XTENSA_STARTING, CPUHP_AP_MIPS_OP_LOONGSON3_STARTING, CPUHP_AP_ARM_VFP_STARTING, CPUHP_AP_ARM64_DEBUG_MONITORS_STARTING, CPUHP_AP_PERF_ARM_HW_BREAKPOINT_STARTING, CPUHP_AP_PERF_ARM_ACPI_STARTING, CPUHP_AP_PERF_ARM_STARTING, CPUHP_AP_ARM_L2X0_STARTING, CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING, CPUHP_AP_ARM_ARCH_TIMER_STARTING, CPUHP_AP_ARM_GLOBAL_TIMER_STARTING, CPUHP_AP_JCORE_TIMER_STARTING, CPUHP_AP_ARM_TWD_STARTING, CPUHP_AP_QCOM_TIMER_STARTING, CPUHP_AP_TEGRA_TIMER_STARTING, CPUHP_AP_ARMADA_TIMER_STARTING, CPUHP_AP_MARCO_TIMER_STARTING, CPUHP_AP_MIPS_GIC_TIMER_STARTING, CPUHP_AP_ARC_TIMER_STARTING, CPUHP_AP_RISCV_TIMER_STARTING, CPUHP_AP_CLINT_TIMER_STARTING, CPUHP_AP_CSKY_TIMER_STARTING, CPUHP_AP_TI_GP_TIMER_STARTING, CPUHP_AP_HYPERV_TIMER_STARTING, CPUHP_AP_KVM_STARTING, CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING, CPUHP_AP_KVM_ARM_VGIC_STARTING, CPUHP_AP_KVM_ARM_TIMER_STARTING, /* Must be the last timer callback */ CPUHP_AP_DUMMY_TIMER_STARTING, CPUHP_AP_ARM_XEN_STARTING, CPUHP_AP_ARM_XEN_RUNSTATE_STARTING, CPUHP_AP_ARM_CORESIGHT_STARTING, CPUHP_AP_ARM_CORESIGHT_CTI_STARTING, CPUHP_AP_ARM64_ISNDEP_STARTING, CPUHP_AP_SMPCFD_DYING, CPUHP_AP_HRTIMERS_DYING, CPUHP_AP_X86_TBOOT_DYING, CPUHP_AP_ARM_CACHE_B15_RAC_DYING, CPUHP_AP_ONLINE, CPUHP_TEARDOWN_CPU, CPUHP_AP_ONLINE_IDLE, CPUHP_AP_SMPBOOT_THREADS, CPUHP_AP_X86_VDSO_VMA_ONLINE, CPUHP_AP_IRQ_AFFINITY_ONLINE, CPUHP_AP_BLK_MQ_ONLINE, CPUHP_AP_ARM_MVEBU_SYNC_CLOCKS, CPUHP_AP_X86_INTEL_EPB_ONLINE, CPUHP_AP_PERF_ONLINE, CPUHP_AP_PERF_X86_ONLINE, CPUHP_AP_PERF_X86_UNCORE_ONLINE, CPUHP_AP_PERF_X86_AMD_UNCORE_ONLINE, CPUHP_AP_PERF_X86_AMD_POWER_ONLINE, CPUHP_AP_PERF_X86_RAPL_ONLINE, CPUHP_AP_PERF_X86_CQM_ONLINE, CPUHP_AP_PERF_X86_CSTATE_ONLINE, CPUHP_AP_PERF_S390_CF_ONLINE, CPUHP_AP_PERF_S390_SF_ONLINE, CPUHP_AP_PERF_ARM_CCI_ONLINE, CPUHP_AP_PERF_ARM_CCN_ONLINE, CPUHP_AP_PERF_ARM_HISI_DDRC_ONLINE, CPUHP_AP_PERF_ARM_HISI_HHA_ONLINE, CPUHP_AP_PERF_ARM_HISI_L3_ONLINE, CPUHP_AP_PERF_ARM_L2X0_ONLINE, CPUHP_AP_PERF_ARM_QCOM_L2_ONLINE, CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE, CPUHP_AP_PERF_ARM_APM_XGENE_ONLINE, CPUHP_AP_PERF_ARM_CAVIUM_TX2_UNCORE_ONLINE, CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, CPUHP_AP_PERF_POWERPC_HV_24x7_ONLINE, CPUHP_AP_PERF_POWERPC_HV_GPCI_ONLINE, CPUHP_AP_WATCHDOG_ONLINE, CPUHP_AP_WORKQUEUE_ONLINE, CPUHP_AP_RANDOM_ONLINE, CPUHP_AP_RCUTREE_ONLINE, CPUHP_AP_BASE_CACHEINFO_ONLINE, CPUHP_AP_ONLINE_DYN, CPUHP_AP_ONLINE_DYN_END = CPUHP_AP_ONLINE_DYN + 30, CPUHP_AP_X86_HPET_ONLINE, CPUHP_AP_X86_KVM_CLK_ONLINE, CPUHP_AP_ACTIVE, CPUHP_ONLINE, }; int __cpuhp_setup_state(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance); int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, const char *name, bool invoke, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu), bool multi_instance); /** * cpuhp_setup_state - Setup hotplug state callbacks with calling the callbacks * @state: The state for which the calls are installed * @name: Name of the callback (will be used in debug output) * @startup: startup callback function * @teardown: teardown callback function * * Installs the callback functions and invokes the startup callback on * the present cpus which have already reached the @state. */ static inline int cpuhp_setup_state(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state(state, name, true, startup, teardown, false); } static inline int cpuhp_setup_state_cpuslocked(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state_cpuslocked(state, name, true, startup, teardown, false); } /** * cpuhp_setup_state_nocalls - Setup hotplug state callbacks without calling the * callbacks * @state: The state for which the calls are installed * @name: Name of the callback. * @startup: startup callback function * @teardown: teardown callback function * * Same as @cpuhp_setup_state except that no calls are executed are invoked * during installation of this callback. NOP if SMP=n or HOTPLUG_CPU=n. */ static inline int cpuhp_setup_state_nocalls(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state(state, name, false, startup, teardown, false); } static inline int cpuhp_setup_state_nocalls_cpuslocked(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu), int (*teardown)(unsigned int cpu)) { return __cpuhp_setup_state_cpuslocked(state, name, false, startup, teardown, false); } /** * cpuhp_setup_state_multi - Add callbacks for multi state * @state: The state for which the calls are installed * @name: Name of the callback. * @startup: startup callback function * @teardown: teardown callback function * * Sets the internal multi_instance flag and prepares a state to work as a multi * instance callback. No callbacks are invoked at this point. The callbacks are * invoked once an instance for this state are registered via * @cpuhp_state_add_instance or @cpuhp_state_add_instance_nocalls. */ static inline int cpuhp_setup_state_multi(enum cpuhp_state state, const char *name, int (*startup)(unsigned int cpu, struct hlist_node *node), int (*teardown)(unsigned int cpu, struct hlist_node *node)) { return __cpuhp_setup_state(state, name, false, (void *) startup, (void *) teardown, true); } int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke); int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, struct hlist_node *node, bool invoke); /** * cpuhp_state_add_instance - Add an instance for a state and invoke startup * callback. * @state: The state for which the instance is installed * @node: The node for this individual state. * * Installs the instance for the @state and invokes the startup callback on * the present cpus which have already reached the @state. The @state must have * been earlier marked as multi-instance by @cpuhp_setup_state_multi. */ static inline int cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_add_instance(state, node, true); } /** * cpuhp_state_add_instance_nocalls - Add an instance for a state without * invoking the startup callback. * @state: The state for which the instance is installed * @node: The node for this individual state. * * Installs the instance for the @state The @state must have been earlier * marked as multi-instance by @cpuhp_setup_state_multi. */ static inline int cpuhp_state_add_instance_nocalls(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_add_instance(state, node, false); } static inline int cpuhp_state_add_instance_nocalls_cpuslocked(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_add_instance_cpuslocked(state, node, false); } void __cpuhp_remove_state(enum cpuhp_state state, bool invoke); void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke); /** * cpuhp_remove_state - Remove hotplug state callbacks and invoke the teardown * @state: The state for which the calls are removed * * Removes the callback functions and invokes the teardown callback on * the present cpus which have already reached the @state. */ static inline void cpuhp_remove_state(enum cpuhp_state state) { __cpuhp_remove_state(state, true); } /** * cpuhp_remove_state_nocalls - Remove hotplug state callbacks without invoking * teardown * @state: The state for which the calls are removed */ static inline void cpuhp_remove_state_nocalls(enum cpuhp_state state) { __cpuhp_remove_state(state, false); } static inline void cpuhp_remove_state_nocalls_cpuslocked(enum cpuhp_state state) { __cpuhp_remove_state_cpuslocked(state, false); } /** * cpuhp_remove_multi_state - Remove hotplug multi state callback * @state: The state for which the calls are removed * * Removes the callback functions from a multi state. This is the reverse of * cpuhp_setup_state_multi(). All instances should have been removed before * invoking this function. */ static inline void cpuhp_remove_multi_state(enum cpuhp_state state) { __cpuhp_remove_state(state, false); } int __cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node *node, bool invoke); /** * cpuhp_state_remove_instance - Remove hotplug instance from state and invoke * the teardown callback * @state: The state from which the instance is removed * @node: The node for this individual state. * * Removes the instance and invokes the teardown callback on the present cpus * which have already reached the @state. */ static inline int cpuhp_state_remove_instance(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_remove_instance(state, node, true); } /** * cpuhp_state_remove_instance_nocalls - Remove hotplug instance from state * without invoking the reatdown callback * @state: The state from which the instance is removed * @node: The node for this individual state. * * Removes the instance without invoking the teardown callback. */ static inline int cpuhp_state_remove_instance_nocalls(enum cpuhp_state state, struct hlist_node *node) { return __cpuhp_state_remove_instance(state, node, false); } #ifdef CONFIG_SMP void cpuhp_online_idle(enum cpuhp_state state); #else static inline void cpuhp_online_idle(enum cpuhp_state state) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_COMPAT_H #define _ASM_X86_COMPAT_H /* * Architecture specific compatibility types */ #include <linux/types.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <asm/processor.h> #include <asm/user32.h> #include <asm/unistd.h> #include <asm-generic/compat.h> #define COMPAT_USER_HZ 100 #define COMPAT_UTS_MACHINE "i686\0\0" typedef u16 __compat_uid_t; typedef u16 __compat_gid_t; typedef u32 __compat_uid32_t; typedef u32 __compat_gid32_t; typedef u16 compat_mode_t; typedef u16 compat_dev_t; typedef u16 compat_nlink_t; typedef u16 compat_ipc_pid_t; typedef u32 compat_caddr_t; typedef __kernel_fsid_t compat_fsid_t; struct compat_stat { u32 st_dev; compat_ino_t st_ino; compat_mode_t st_mode; compat_nlink_t st_nlink; __compat_uid_t st_uid; __compat_gid_t st_gid; u32 st_rdev; u32 st_size; u32 st_blksize; u32 st_blocks; u32 st_atime; u32 st_atime_nsec; u32 st_mtime; u32 st_mtime_nsec; u32 st_ctime; u32 st_ctime_nsec; u32 __unused4; u32 __unused5; }; struct compat_flock { short l_type; short l_whence; compat_off_t l_start; compat_off_t l_len; compat_pid_t l_pid; }; #define F_GETLK64 12 /* using 'struct flock64' */ #define F_SETLK64 13 #define F_SETLKW64 14 /* * IA32 uses 4 byte alignment for 64 bit quantities, * so we need to pack this structure. */ struct compat_flock64 { short l_type; short l_whence; compat_loff_t l_start; compat_loff_t l_len; compat_pid_t l_pid; } __attribute__((packed)); struct compat_statfs { int f_type; int f_bsize; int f_blocks; int f_bfree; int f_bavail; int f_files; int f_ffree; compat_fsid_t f_fsid; int f_namelen; /* SunOS ignores this field. */ int f_frsize; int f_flags; int f_spare[4]; }; #define COMPAT_RLIM_INFINITY 0xffffffff typedef u32 compat_old_sigset_t; /* at least 32 bits */ #define _COMPAT_NSIG 64 #define _COMPAT_NSIG_BPW 32 typedef u32 compat_sigset_word; #define COMPAT_OFF_T_MAX 0x7fffffff struct compat_ipc64_perm { compat_key_t key; __compat_uid32_t uid; __compat_gid32_t gid; __compat_uid32_t cuid; __compat_gid32_t cgid; unsigned short mode; unsigned short __pad1; unsigned short seq; unsigned short __pad2; compat_ulong_t unused1; compat_ulong_t unused2; }; struct compat_semid64_ds { struct compat_ipc64_perm sem_perm; compat_ulong_t sem_otime; compat_ulong_t sem_otime_high; compat_ulong_t sem_ctime; compat_ulong_t sem_ctime_high; compat_ulong_t sem_nsems; compat_ulong_t __unused3; compat_ulong_t __unused4; }; struct compat_msqid64_ds { struct compat_ipc64_perm msg_perm; compat_ulong_t msg_stime; compat_ulong_t msg_stime_high; compat_ulong_t msg_rtime; compat_ulong_t msg_rtime_high; compat_ulong_t msg_ctime; compat_ulong_t msg_ctime_high; compat_ulong_t msg_cbytes; compat_ulong_t msg_qnum; compat_ulong_t msg_qbytes; compat_pid_t msg_lspid; compat_pid_t msg_lrpid; compat_ulong_t __unused4; compat_ulong_t __unused5; }; struct compat_shmid64_ds { struct compat_ipc64_perm shm_perm; compat_size_t shm_segsz; compat_ulong_t shm_atime; compat_ulong_t shm_atime_high; compat_ulong_t shm_dtime; compat_ulong_t shm_dtime_high; compat_ulong_t shm_ctime; compat_ulong_t shm_ctime_high; compat_pid_t shm_cpid; compat_pid_t shm_lpid; compat_ulong_t shm_nattch; compat_ulong_t __unused4; compat_ulong_t __unused5; }; /* * The type of struct elf_prstatus.pr_reg in compatible core dumps. */ typedef struct user_regs_struct compat_elf_gregset_t; /* Full regset -- prstatus on x32, otherwise on ia32 */ #define PRSTATUS_SIZE(S, R) (R != sizeof(S.pr_reg) ? 144 : 296) #define SET_PR_FPVALID(S, V, R) \ do { *(int *) (((void *) &((S)->pr_reg)) + R) = (V); } \ while (0) #ifdef CONFIG_X86_X32_ABI #define COMPAT_USE_64BIT_TIME \ (!!(task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)) #endif static inline void __user *arch_compat_alloc_user_space(long len) { compat_uptr_t sp; if (test_thread_flag(TIF_IA32)) { sp = task_pt_regs(current)->sp; } else { /* -128 for the x32 ABI redzone */ sp = task_pt_regs(current)->sp - 128; } return (void __user *)round_down(sp - len, 16); } static inline bool in_x32_syscall(void) { #ifdef CONFIG_X86_X32_ABI if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT) return true; #endif return false; } static inline bool in_32bit_syscall(void) { return in_ia32_syscall() || in_x32_syscall(); } #ifdef CONFIG_COMPAT static inline bool in_compat_syscall(void) { return in_32bit_syscall(); } #define in_compat_syscall in_compat_syscall /* override the generic impl */ #define compat_need_64bit_alignment_fixup in_ia32_syscall #endif struct compat_siginfo; #ifdef CONFIG_X86_X32_ABI int copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #define copy_siginfo_to_user32 copy_siginfo_to_user32 #endif /* CONFIG_X86_X32_ABI */ #endif /* _ASM_X86_COMPAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM sched #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SCHED_H #include <linux/kthread.h> #include <linux/sched/numa_balancing.h> #include <linux/tracepoint.h> #include <linux/binfmts.h> /* * Tracepoint for calling kthread_stop, performed to end a kthread: */ TRACE_EVENT(sched_kthread_stop, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, t->comm, TASK_COMM_LEN); __entry->pid = t->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); /* * Tracepoint for the return value of the kthread stopping: */ TRACE_EVENT(sched_kthread_stop_ret, TP_PROTO(int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( int, ret ) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%d", __entry->ret) ); /** * sched_kthread_work_queue_work - called when a work gets queued * @worker: pointer to the kthread_worker * @work: pointer to struct kthread_work * * This event occurs when a work is queued immediately or once a * delayed work is actually queued (ie: once the delay has been * reached). */ TRACE_EVENT(sched_kthread_work_queue_work, TP_PROTO(struct kthread_worker *worker, struct kthread_work *work), TP_ARGS(worker, work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) __field( void *, worker) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; __entry->worker = worker; ), TP_printk("work struct=%p function=%ps worker=%p", __entry->work, __entry->function, __entry->worker) ); /** * sched_kthread_work_execute_start - called immediately before the work callback * @work: pointer to struct kthread_work * * Allows to track kthread work execution. */ TRACE_EVENT(sched_kthread_work_execute_start, TP_PROTO(struct kthread_work *work), TP_ARGS(work), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = work->func; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); /** * sched_kthread_work_execute_end - called immediately after the work callback * @work: pointer to struct work_struct * @function: pointer to worker function * * Allows to track workqueue execution. */ TRACE_EVENT(sched_kthread_work_execute_end, TP_PROTO(struct kthread_work *work, kthread_work_func_t function), TP_ARGS(work, function), TP_STRUCT__entry( __field( void *, work ) __field( void *, function) ), TP_fast_assign( __entry->work = work; __entry->function = function; ), TP_printk("work struct %p: function %ps", __entry->work, __entry->function) ); /* * Tracepoint for waking up a task: */ DECLARE_EVENT_CLASS(sched_wakeup_template, TP_PROTO(struct task_struct *p), TP_ARGS(__perf_task(p)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, success ) __field( int, target_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->success = 1; /* rudiment, kill when possible */ __entry->target_cpu = task_cpu(p); ), TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d", __entry->comm, __entry->pid, __entry->prio, __entry->target_cpu) ); /* * Tracepoint called when waking a task; this tracepoint is guaranteed to be * called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_waking, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG. * It is not always called from the waking context. */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waking up a new task: */ DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new, TP_PROTO(struct task_struct *p), TP_ARGS(p)); #ifdef CREATE_TRACE_POINTS static inline long __trace_sched_switch_state(bool preempt, struct task_struct *p) { unsigned int state; #ifdef CONFIG_SCHED_DEBUG BUG_ON(p != current); #endif /* CONFIG_SCHED_DEBUG */ /* * Preemption ignores task state, therefore preempted tasks are always * RUNNING (we will not have dequeued if state != RUNNING). */ if (preempt) return TASK_REPORT_MAX; /* * task_state_index() uses fls() and returns a value from 0-8 range. * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using * it for left shift operation to get the correct task->state * mapping. */ state = task_state_index(p); return state ? (1 << (state - 1)) : state; } #endif /* CREATE_TRACE_POINTS */ /* * Tracepoint for task switches, performed by the scheduler: */ TRACE_EVENT(sched_switch, TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next), TP_ARGS(preempt, prev, next), TP_STRUCT__entry( __array( char, prev_comm, TASK_COMM_LEN ) __field( pid_t, prev_pid ) __field( int, prev_prio ) __field( long, prev_state ) __array( char, next_comm, TASK_COMM_LEN ) __field( pid_t, next_pid ) __field( int, next_prio ) ), TP_fast_assign( memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN); __entry->prev_pid = prev->pid; __entry->prev_prio = prev->prio; __entry->prev_state = __trace_sched_switch_state(preempt, prev); memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN); __entry->next_pid = next->pid; __entry->next_prio = next->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d", __entry->prev_comm, __entry->prev_pid, __entry->prev_prio, (__entry->prev_state & (TASK_REPORT_MAX - 1)) ? __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|", { TASK_INTERRUPTIBLE, "S" }, { TASK_UNINTERRUPTIBLE, "D" }, { __TASK_STOPPED, "T" }, { __TASK_TRACED, "t" }, { EXIT_DEAD, "X" }, { EXIT_ZOMBIE, "Z" }, { TASK_PARKED, "P" }, { TASK_DEAD, "I" }) : "R", __entry->prev_state & TASK_REPORT_MAX ? "+" : "", __entry->next_comm, __entry->next_pid, __entry->next_prio) ); /* * Tracepoint for a task being migrated: */ TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu), TP_ARGS(p, dest_cpu), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, orig_cpu ) __field( int, dest_cpu ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; ), TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d", __entry->comm, __entry->pid, __entry->prio, __entry->orig_cpu, __entry->dest_cpu) ); DECLARE_EVENT_CLASS(sched_process_template, TP_PROTO(struct task_struct *p), TP_ARGS(p), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for freeing a task: */ DEFINE_EVENT(sched_process_template, sched_process_free, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a task exiting: */ DEFINE_EVENT(sched_process_template, sched_process_exit, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for waiting on task to unschedule: */ DEFINE_EVENT(sched_process_template, sched_wait_task, TP_PROTO(struct task_struct *p), TP_ARGS(p)); /* * Tracepoint for a waiting task: */ TRACE_EVENT(sched_process_wait, TP_PROTO(struct pid *pid), TP_ARGS(pid), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); __entry->pid = pid_nr(pid); __entry->prio = current->prio; /* XXX SCHED_DEADLINE */ ), TP_printk("comm=%s pid=%d prio=%d", __entry->comm, __entry->pid, __entry->prio) ); /* * Tracepoint for do_fork: */ TRACE_EVENT(sched_process_fork, TP_PROTO(struct task_struct *parent, struct task_struct *child), TP_ARGS(parent, child), TP_STRUCT__entry( __array( char, parent_comm, TASK_COMM_LEN ) __field( pid_t, parent_pid ) __array( char, child_comm, TASK_COMM_LEN ) __field( pid_t, child_pid ) ), TP_fast_assign( memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN); __entry->parent_pid = parent->pid; memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN); __entry->child_pid = child->pid; ), TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d", __entry->parent_comm, __entry->parent_pid, __entry->child_comm, __entry->child_pid) ); /* * Tracepoint for exec: */ TRACE_EVENT(sched_process_exec, TP_PROTO(struct task_struct *p, pid_t old_pid, struct linux_binprm *bprm), TP_ARGS(p, old_pid, bprm), TP_STRUCT__entry( __string( filename, bprm->filename ) __field( pid_t, pid ) __field( pid_t, old_pid ) ), TP_fast_assign( __assign_str(filename, bprm->filename); __entry->pid = p->pid; __entry->old_pid = old_pid; ), TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename), __entry->pid, __entry->old_pid) ); #ifdef CONFIG_SCHEDSTATS #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS #else #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP #endif /* * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE * adding sched_stat support to SCHED_FIFO/RR would be welcome. */ DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(__perf_task(tsk), __perf_count(delay)), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, delay ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->delay = delay; ), TP_printk("comm=%s pid=%d delay=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->delay) ); /* * Tracepoint for accounting wait time (time the task is runnable * but not actually running due to scheduler contention). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting sleep time (time the task is not runnable, * including iowait, see below). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting iowait time (time the task is not runnable * due to waiting on IO to complete). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting blocked time (time the task is in uninterruptible). */ DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked, TP_PROTO(struct task_struct *tsk, u64 delay), TP_ARGS(tsk, delay)); /* * Tracepoint for accounting runtime (time the task is executing * on a CPU). */ DECLARE_EVENT_CLASS(sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, __perf_count(runtime), vruntime), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( u64, runtime ) __field( u64, vruntime ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->runtime = runtime; __entry->vruntime = vruntime; ), TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]", __entry->comm, __entry->pid, (unsigned long long)__entry->runtime, (unsigned long long)__entry->vruntime) ); DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime, TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime), TP_ARGS(tsk, runtime, vruntime)); /* * Tracepoint for showing priority inheritance modifying a tasks * priority. */ TRACE_EVENT(sched_pi_setprio, TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task), TP_ARGS(tsk, pi_task), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, oldprio ) __field( int, newprio ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; __entry->oldprio = tsk->prio; __entry->newprio = pi_task ? min(tsk->normal_prio, pi_task->prio) : tsk->normal_prio; /* XXX SCHED_DEADLINE bits missing */ ), TP_printk("comm=%s pid=%d oldprio=%d newprio=%d", __entry->comm, __entry->pid, __entry->oldprio, __entry->newprio) ); #ifdef CONFIG_DETECT_HUNG_TASK TRACE_EVENT(sched_process_hang, TP_PROTO(struct task_struct *tsk), TP_ARGS(tsk), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) ), TP_fast_assign( memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN); __entry->pid = tsk->pid; ), TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid) ); #endif /* CONFIG_DETECT_HUNG_TASK */ /* * Tracks migration of tasks from one runqueue to another. Can be used to * detect if automatic NUMA balancing is bouncing between nodes. */ TRACE_EVENT(sched_move_numa, TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu), TP_ARGS(tsk, src_cpu, dst_cpu), TP_STRUCT__entry( __field( pid_t, pid ) __field( pid_t, tgid ) __field( pid_t, ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->pid = task_pid_nr(tsk); __entry->tgid = task_tgid_nr(tsk); __entry->ngid = task_numa_group_id(tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_cpu = dst_cpu; __entry->dst_nid = cpu_to_node(dst_cpu); ), TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d", __entry->pid, __entry->tgid, __entry->ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_cpu, __entry->dst_nid) ); DECLARE_EVENT_CLASS(sched_numa_pair_template, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu), TP_STRUCT__entry( __field( pid_t, src_pid ) __field( pid_t, src_tgid ) __field( pid_t, src_ngid ) __field( int, src_cpu ) __field( int, src_nid ) __field( pid_t, dst_pid ) __field( pid_t, dst_tgid ) __field( pid_t, dst_ngid ) __field( int, dst_cpu ) __field( int, dst_nid ) ), TP_fast_assign( __entry->src_pid = task_pid_nr(src_tsk); __entry->src_tgid = task_tgid_nr(src_tsk); __entry->src_ngid = task_numa_group_id(src_tsk); __entry->src_cpu = src_cpu; __entry->src_nid = cpu_to_node(src_cpu); __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0; __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0; __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0; __entry->dst_cpu = dst_cpu; __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1; ), TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d", __entry->src_pid, __entry->src_tgid, __entry->src_ngid, __entry->src_cpu, __entry->src_nid, __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid, __entry->dst_cpu, __entry->dst_nid) ); DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa, TP_PROTO(struct task_struct *src_tsk, int src_cpu, struct task_struct *dst_tsk, int dst_cpu), TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu) ); /* * Tracepoint for waking a polling cpu without an IPI. */ TRACE_EVENT(sched_wake_idle_without_ipi, TP_PROTO(int cpu), TP_ARGS(cpu), TP_STRUCT__entry( __field( int, cpu ) ), TP_fast_assign( __entry->cpu = cpu; ), TP_printk("cpu=%d", __entry->cpu) ); /* * Following tracepoints are not exported in tracefs and provide hooking * mechanisms only for testing and debugging purposes. * * Postfixed with _tp to make them easily identifiable in the code. */ DECLARE_TRACE(pelt_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(pelt_rt_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_dl_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_thermal_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_irq_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(pelt_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_cpu_capacity_tp, TP_PROTO(struct rq *rq), TP_ARGS(rq)); DECLARE_TRACE(sched_overutilized_tp, TP_PROTO(struct root_domain *rd, bool overutilized), TP_ARGS(rd, overutilized)); DECLARE_TRACE(sched_util_est_cfs_tp, TP_PROTO(struct cfs_rq *cfs_rq), TP_ARGS(cfs_rq)); DECLARE_TRACE(sched_util_est_se_tp, TP_PROTO(struct sched_entity *se), TP_ARGS(se)); DECLARE_TRACE(sched_update_nr_running_tp, TP_PROTO(struct rq *rq, int change), TP_ARGS(rq, change)); #endif /* _TRACE_SCHED_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __VDSO_MATH64_H #define __VDSO_MATH64_H static __always_inline u32 __iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) { u32 ret = 0; while (dividend >= divisor) { /* The following asm() prevents the compiler from optimising this loop into a modulo operation. */ asm("" : "+rm"(dividend)); dividend -= divisor; ret++; } *remainder = dividend; return ret; } #endif /* __VDSO_MATH64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PARAVIRT_H #define _ASM_X86_PARAVIRT_H /* Various instructions on x86 need to be replaced for * para-virtualization: those hooks are defined here. */ #ifdef CONFIG_PARAVIRT #include <asm/pgtable_types.h> #include <asm/asm.h> #include <asm/nospec-branch.h> #include <asm/paravirt_types.h> #ifndef __ASSEMBLY__ #include <linux/bug.h> #include <linux/types.h> #include <linux/cpumask.h> #include <asm/frame.h> static inline unsigned long long paravirt_sched_clock(void) { return PVOP_CALL0(unsigned long long, time.sched_clock); } struct static_key; extern struct static_key paravirt_steal_enabled; extern struct static_key paravirt_steal_rq_enabled; __visible void __native_queued_spin_unlock(struct qspinlock *lock); bool pv_is_native_spin_unlock(void); __visible bool __native_vcpu_is_preempted(long cpu); bool pv_is_native_vcpu_is_preempted(void); static inline u64 paravirt_steal_clock(int cpu) { return PVOP_CALL1(u64, time.steal_clock, cpu); } /* The paravirtualized I/O functions */ static inline void slow_down_io(void) { pv_ops.cpu.io_delay(); #ifdef REALLY_SLOW_IO pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); #endif } void native_flush_tlb_local(void); void native_flush_tlb_global(void); void native_flush_tlb_one_user(unsigned long addr); void native_flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info); static inline void __flush_tlb_local(void) { PVOP_VCALL0(mmu.flush_tlb_user); } static inline void __flush_tlb_global(void) { PVOP_VCALL0(mmu.flush_tlb_kernel); } static inline void __flush_tlb_one_user(unsigned long addr) { PVOP_VCALL1(mmu.flush_tlb_one_user, addr); } static inline void __flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info) { PVOP_VCALL2(mmu.flush_tlb_others, cpumask, info); } static inline void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table) { PVOP_VCALL2(mmu.tlb_remove_table, tlb, table); } static inline void paravirt_arch_exit_mmap(struct mm_struct *mm) { PVOP_VCALL1(mmu.exit_mmap, mm); } #ifdef CONFIG_PARAVIRT_XXL static inline void load_sp0(unsigned long sp0) { PVOP_VCALL1(cpu.load_sp0, sp0); } /* The paravirtualized CPUID instruction. */ static inline void __cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { PVOP_VCALL4(cpu.cpuid, eax, ebx, ecx, edx); } /* * These special macros can be used to get or set a debugging register */ static inline unsigned long paravirt_get_debugreg(int reg) { return PVOP_CALL1(unsigned long, cpu.get_debugreg, reg); } #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg) static inline void set_debugreg(unsigned long val, int reg) { PVOP_VCALL2(cpu.set_debugreg, reg, val); } static inline unsigned long read_cr0(void) { return PVOP_CALL0(unsigned long, cpu.read_cr0); } static inline void write_cr0(unsigned long x) { PVOP_VCALL1(cpu.write_cr0, x); } static inline unsigned long read_cr2(void) { return PVOP_CALLEE0(unsigned long, mmu.read_cr2); } static inline void write_cr2(unsigned long x) { PVOP_VCALL1(mmu.write_cr2, x); } static inline unsigned long __read_cr3(void) { return PVOP_CALL0(unsigned long, mmu.read_cr3); } static inline void write_cr3(unsigned long x) { PVOP_VCALL1(mmu.write_cr3, x); } static inline void __write_cr4(unsigned long x) { PVOP_VCALL1(cpu.write_cr4, x); } static inline void arch_safe_halt(void) { PVOP_VCALL0(irq.safe_halt); } static inline void halt(void) { PVOP_VCALL0(irq.halt); } static inline void wbinvd(void) { PVOP_VCALL0(cpu.wbinvd); } static inline u64 paravirt_read_msr(unsigned msr) { return PVOP_CALL1(u64, cpu.read_msr, msr); } static inline void paravirt_write_msr(unsigned msr, unsigned low, unsigned high) { PVOP_VCALL3(cpu.write_msr, msr, low, high); } static inline u64 paravirt_read_msr_safe(unsigned msr, int *err) { return PVOP_CALL2(u64, cpu.read_msr_safe, msr, err); } static inline int paravirt_write_msr_safe(unsigned msr, unsigned low, unsigned high) { return PVOP_CALL3(int, cpu.write_msr_safe, msr, low, high); } #define rdmsr(msr, val1, val2) \ do { \ u64 _l = paravirt_read_msr(msr); \ val1 = (u32)_l; \ val2 = _l >> 32; \ } while (0) #define wrmsr(msr, val1, val2) \ do { \ paravirt_write_msr(msr, val1, val2); \ } while (0) #define rdmsrl(msr, val) \ do { \ val = paravirt_read_msr(msr); \ } while (0) static inline void wrmsrl(unsigned msr, u64 val) { wrmsr(msr, (u32)val, (u32)(val>>32)); } #define wrmsr_safe(msr, a, b) paravirt_write_msr_safe(msr, a, b) /* rdmsr with exception handling */ #define rdmsr_safe(msr, a, b) \ ({ \ int _err; \ u64 _l = paravirt_read_msr_safe(msr, &_err); \ (*a) = (u32)_l; \ (*b) = _l >> 32; \ _err; \ }) static inline int rdmsrl_safe(unsigned msr, unsigned long long *p) { int err; *p = paravirt_read_msr_safe(msr, &err); return err; } static inline unsigned long long paravirt_read_pmc(int counter) { return PVOP_CALL1(u64, cpu.read_pmc, counter); } #define rdpmc(counter, low, high) \ do { \ u64 _l = paravirt_read_pmc(counter); \ low = (u32)_l; \ high = _l >> 32; \ } while (0) #define rdpmcl(counter, val) ((val) = paravirt_read_pmc(counter)) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.alloc_ldt, ldt, entries); } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.free_ldt, ldt, entries); } static inline void load_TR_desc(void) { PVOP_VCALL0(cpu.load_tr_desc); } static inline void load_gdt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_gdt, dtr); } static inline void load_idt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_idt, dtr); } static inline void set_ldt(const void *addr, unsigned entries) { PVOP_VCALL2(cpu.set_ldt, addr, entries); } static inline unsigned long paravirt_store_tr(void) { return PVOP_CALL0(unsigned long, cpu.store_tr); } #define store_tr(tr) ((tr) = paravirt_store_tr()) static inline void load_TLS(struct thread_struct *t, unsigned cpu) { PVOP_VCALL2(cpu.load_tls, t, cpu); } static inline void load_gs_index(unsigned int gs) { PVOP_VCALL1(cpu.load_gs_index, gs); } static inline void write_ldt_entry(struct desc_struct *dt, int entry, const void *desc) { PVOP_VCALL3(cpu.write_ldt_entry, dt, entry, desc); } static inline void write_gdt_entry(struct desc_struct *dt, int entry, void *desc, int type) { PVOP_VCALL4(cpu.write_gdt_entry, dt, entry, desc, type); } static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g) { PVOP_VCALL3(cpu.write_idt_entry, dt, entry, g); } #ifdef CONFIG_X86_IOPL_IOPERM static inline void tss_invalidate_io_bitmap(void) { PVOP_VCALL0(cpu.invalidate_io_bitmap); } static inline void tss_update_io_bitmap(void) { PVOP_VCALL0(cpu.update_io_bitmap); } #endif static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { PVOP_VCALL2(mmu.activate_mm, prev, next); } static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { PVOP_VCALL2(mmu.dup_mmap, oldmm, mm); } static inline int paravirt_pgd_alloc(struct mm_struct *mm) { return PVOP_CALL1(int, mmu.pgd_alloc, mm); } static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) { PVOP_VCALL2(mmu.pgd_free, mm, pgd); } static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pte, mm, pfn); } static inline void paravirt_release_pte(unsigned long pfn) { PVOP_VCALL1(mmu.release_pte, pfn); } static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pmd, mm, pfn); } static inline void paravirt_release_pmd(unsigned long pfn) { PVOP_VCALL1(mmu.release_pmd, pfn); } static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pud, mm, pfn); } static inline void paravirt_release_pud(unsigned long pfn) { PVOP_VCALL1(mmu.release_pud, pfn); } static inline void paravirt_alloc_p4d(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_p4d, mm, pfn); } static inline void paravirt_release_p4d(unsigned long pfn) { PVOP_VCALL1(mmu.release_p4d, pfn); } static inline pte_t __pte(pteval_t val) { return (pte_t) { PVOP_CALLEE1(pteval_t, mmu.make_pte, val) }; } static inline pteval_t pte_val(pte_t pte) { return PVOP_CALLEE1(pteval_t, mmu.pte_val, pte.pte); } static inline pgd_t __pgd(pgdval_t val) { return (pgd_t) { PVOP_CALLEE1(pgdval_t, mmu.make_pgd, val) }; } static inline pgdval_t pgd_val(pgd_t pgd) { return PVOP_CALLEE1(pgdval_t, mmu.pgd_val, pgd.pgd); } #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pteval_t ret; ret = PVOP_CALL3(pteval_t, mmu.ptep_modify_prot_start, vma, addr, ptep); return (pte_t) { .pte = ret }; } static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { PVOP_VCALL4(mmu.ptep_modify_prot_commit, vma, addr, ptep, pte.pte); } static inline void set_pte(pte_t *ptep, pte_t pte) { PVOP_VCALL2(mmu.set_pte, ptep, pte.pte); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { PVOP_VCALL2(mmu.set_pmd, pmdp, native_pmd_val(pmd)); } static inline pmd_t __pmd(pmdval_t val) { return (pmd_t) { PVOP_CALLEE1(pmdval_t, mmu.make_pmd, val) }; } static inline pmdval_t pmd_val(pmd_t pmd) { return PVOP_CALLEE1(pmdval_t, mmu.pmd_val, pmd.pmd); } static inline void set_pud(pud_t *pudp, pud_t pud) { PVOP_VCALL2(mmu.set_pud, pudp, native_pud_val(pud)); } static inline pud_t __pud(pudval_t val) { pudval_t ret; ret = PVOP_CALLEE1(pudval_t, mmu.make_pud, val); return (pud_t) { ret }; } static inline pudval_t pud_val(pud_t pud) { return PVOP_CALLEE1(pudval_t, mmu.pud_val, pud.pud); } static inline void pud_clear(pud_t *pudp) { set_pud(pudp, native_make_pud(0)); } static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) { p4dval_t val = native_p4d_val(p4d); PVOP_VCALL2(mmu.set_p4d, p4dp, val); } #if CONFIG_PGTABLE_LEVELS >= 5 static inline p4d_t __p4d(p4dval_t val) { p4dval_t ret = PVOP_CALLEE1(p4dval_t, mmu.make_p4d, val); return (p4d_t) { ret }; } static inline p4dval_t p4d_val(p4d_t p4d) { return PVOP_CALLEE1(p4dval_t, mmu.p4d_val, p4d.p4d); } static inline void __set_pgd(pgd_t *pgdp, pgd_t pgd) { PVOP_VCALL2(mmu.set_pgd, pgdp, native_pgd_val(pgd)); } #define set_pgd(pgdp, pgdval) do { \ if (pgtable_l5_enabled()) \ __set_pgd(pgdp, pgdval); \ else \ set_p4d((p4d_t *)(pgdp), (p4d_t) { (pgdval).pgd }); \ } while (0) #define pgd_clear(pgdp) do { \ if (pgtable_l5_enabled()) \ set_pgd(pgdp, native_make_pgd(0)); \ } while (0) #endif /* CONFIG_PGTABLE_LEVELS == 5 */ static inline void p4d_clear(p4d_t *p4dp) { set_p4d(p4dp, native_make_p4d(0)); } static inline void set_pte_atomic(pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { set_pte(ptep, native_make_pte(0)); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, native_make_pmd(0)); } #define __HAVE_ARCH_START_CONTEXT_SWITCH static inline void arch_start_context_switch(struct task_struct *prev) { PVOP_VCALL1(cpu.start_context_switch, prev); } static inline void arch_end_context_switch(struct task_struct *next) { PVOP_VCALL1(cpu.end_context_switch, next); } #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE static inline void arch_enter_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.enter); } static inline void arch_leave_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.leave); } static inline void arch_flush_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.flush); } static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx, phys_addr_t phys, pgprot_t flags) { pv_ops.mmu.set_fixmap(idx, phys, flags); } #endif #if defined(CONFIG_SMP) && defined(CONFIG_PARAVIRT_SPINLOCKS) static __always_inline void pv_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) { PVOP_VCALL2(lock.queued_spin_lock_slowpath, lock, val); } static __always_inline void pv_queued_spin_unlock(struct qspinlock *lock) { PVOP_VCALLEE1(lock.queued_spin_unlock, lock); } static __always_inline void pv_wait(u8 *ptr, u8 val) { PVOP_VCALL2(lock.wait, ptr, val); } static __always_inline void pv_kick(int cpu) { PVOP_VCALL1(lock.kick, cpu); } static __always_inline bool pv_vcpu_is_preempted(long cpu) { return PVOP_CALLEE1(bool, lock.vcpu_is_preempted, cpu); } void __raw_callee_save___native_queued_spin_unlock(struct qspinlock *lock); bool __raw_callee_save___native_vcpu_is_preempted(long cpu); #endif /* SMP && PARAVIRT_SPINLOCKS */ #ifdef CONFIG_X86_32 /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS "pushl %ecx;" #define PV_RESTORE_ALL_CALLER_REGS "popl %ecx;" #else /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS \ "push %rcx;" \ "push %rdx;" \ "push %rsi;" \ "push %rdi;" \ "push %r8;" \ "push %r9;" \ "push %r10;" \ "push %r11;" #define PV_RESTORE_ALL_CALLER_REGS \ "pop %r11;" \ "pop %r10;" \ "pop %r9;" \ "pop %r8;" \ "pop %rdi;" \ "pop %rsi;" \ "pop %rdx;" \ "pop %rcx;" #endif /* * Generate a thunk around a function which saves all caller-save * registers except for the return value. This allows C functions to * be called from assembler code where fewer than normal registers are * available. It may also help code generation around calls from C * code if the common case doesn't use many registers. * * When a callee is wrapped in a thunk, the caller can assume that all * arg regs and all scratch registers are preserved across the * call. The return value in rax/eax will not be saved, even for void * functions. */ #define PV_THUNK_NAME(func) "__raw_callee_save_" #func #define PV_CALLEE_SAVE_REGS_THUNK(func) \ extern typeof(func) __raw_callee_save_##func; \ \ asm(".pushsection .text;" \ ".globl " PV_THUNK_NAME(func) ";" \ ".type " PV_THUNK_NAME(func) ", @function;" \ PV_THUNK_NAME(func) ":" \ FRAME_BEGIN \ PV_SAVE_ALL_CALLER_REGS \ "call " #func ";" \ PV_RESTORE_ALL_CALLER_REGS \ FRAME_END \ ASM_RET \ ".size " PV_THUNK_NAME(func) ", .-" PV_THUNK_NAME(func) ";" \ ".popsection") /* Get a reference to a callee-save function */ #define PV_CALLEE_SAVE(func) \ ((struct paravirt_callee_save) { __raw_callee_save_##func }) /* Promise that "func" already uses the right calling convention */ #define __PV_IS_CALLEE_SAVE(func) \ ((struct paravirt_callee_save) { func }) #ifdef CONFIG_PARAVIRT_XXL static inline notrace unsigned long arch_local_save_flags(void) { return PVOP_CALLEE0(unsigned long, irq.save_fl); } static inline notrace void arch_local_irq_restore(unsigned long f) { PVOP_VCALLEE1(irq.restore_fl, f); } static inline notrace void arch_local_irq_disable(void) { PVOP_VCALLEE0(irq.irq_disable); } static inline notrace void arch_local_irq_enable(void) { PVOP_VCALLEE0(irq.irq_enable); } static inline notrace unsigned long arch_local_irq_save(void) { unsigned long f; f = arch_local_save_flags(); arch_local_irq_disable(); return f; } #endif /* Make sure as little as possible of this mess escapes. */ #undef PARAVIRT_CALL #undef __PVOP_CALL #undef __PVOP_VCALL #undef PVOP_VCALL0 #undef PVOP_CALL0 #undef PVOP_VCALL1 #undef PVOP_CALL1 #undef PVOP_VCALL2 #undef PVOP_CALL2 #undef PVOP_VCALL3 #undef PVOP_CALL3 #undef PVOP_VCALL4 #undef PVOP_CALL4 extern void default_banner(void); #else /* __ASSEMBLY__ */ #define _PVSITE(ptype, ops, word, algn) \ 771:; \ ops; \ 772:; \ .pushsection .parainstructions,"a"; \ .align algn; \ word 771b; \ .byte ptype; \ .byte 772b-771b; \ .popsection #define COND_PUSH(set, mask, reg) \ .if ((~(set)) & mask); push %reg; .endif #define COND_POP(set, mask, reg) \ .if ((~(set)) & mask); pop %reg; .endif #ifdef CONFIG_X86_64 #define PV_SAVE_REGS(set) \ COND_PUSH(set, CLBR_RAX, rax); \ COND_PUSH(set, CLBR_RCX, rcx); \ COND_PUSH(set, CLBR_RDX, rdx); \ COND_PUSH(set, CLBR_RSI, rsi); \ COND_PUSH(set, CLBR_RDI, rdi); \ COND_PUSH(set, CLBR_R8, r8); \ COND_PUSH(set, CLBR_R9, r9); \ COND_PUSH(set, CLBR_R10, r10); \ COND_PUSH(set, CLBR_R11, r11) #define PV_RESTORE_REGS(set) \ COND_POP(set, CLBR_R11, r11); \ COND_POP(set, CLBR_R10, r10); \ COND_POP(set, CLBR_R9, r9); \ COND_POP(set, CLBR_R8, r8); \ COND_POP(set, CLBR_RDI, rdi); \ COND_POP(set, CLBR_RSI, rsi); \ COND_POP(set, CLBR_RDX, rdx); \ COND_POP(set, CLBR_RCX, rcx); \ COND_POP(set, CLBR_RAX, rax) #define PARA_PATCH(off) ((off) / 8) #define PARA_SITE(ptype, ops) _PVSITE(ptype, ops, .quad, 8) #define PARA_INDIRECT(addr) *addr(%rip) #else #define PV_SAVE_REGS(set) \ COND_PUSH(set, CLBR_EAX, eax); \ COND_PUSH(set, CLBR_EDI, edi); \ COND_PUSH(set, CLBR_ECX, ecx); \ COND_PUSH(set, CLBR_EDX, edx) #define PV_RESTORE_REGS(set) \ COND_POP(set, CLBR_EDX, edx); \ COND_POP(set, CLBR_ECX, ecx); \ COND_POP(set, CLBR_EDI, edi); \ COND_POP(set, CLBR_EAX, eax) #define PARA_PATCH(off) ((off) / 4) #define PARA_SITE(ptype, ops) _PVSITE(ptype, ops, .long, 4) #define PARA_INDIRECT(addr) *%cs:addr #endif #ifdef CONFIG_PARAVIRT_XXL #define INTERRUPT_RETURN \ PARA_SITE(PARA_PATCH(PV_CPU_iret), \ ANNOTATE_RETPOLINE_SAFE; \ jmp PARA_INDIRECT(pv_ops+PV_CPU_iret);) #define DISABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_irq_disable), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_irq_disable); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #define ENABLE_INTERRUPTS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_irq_enable), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_irq_enable); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #endif #ifdef CONFIG_X86_64 #ifdef CONFIG_PARAVIRT_XXL #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS(clobbers) \ PARA_SITE(PARA_PATCH(PV_IRQ_save_fl), \ PV_SAVE_REGS(clobbers | CLBR_CALLEE_SAVE); \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_IRQ_save_fl); \ PV_RESTORE_REGS(clobbers | CLBR_CALLEE_SAVE);) #endif #endif /* CONFIG_PARAVIRT_XXL */ #endif /* CONFIG_X86_64 */ #ifdef CONFIG_PARAVIRT_XXL #define GET_CR2_INTO_AX \ PARA_SITE(PARA_PATCH(PV_MMU_read_cr2), \ ANNOTATE_RETPOLINE_SAFE; \ call PARA_INDIRECT(pv_ops+PV_MMU_read_cr2); \ ) #endif /* CONFIG_PARAVIRT_XXL */ #endif /* __ASSEMBLY__ */ #else /* CONFIG_PARAVIRT */ # define default_banner x86_init_noop #endif /* !CONFIG_PARAVIRT */ #ifndef __ASSEMBLY__ #ifndef CONFIG_PARAVIRT_XXL static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { } #endif #ifndef CONFIG_PARAVIRT static inline void paravirt_arch_exit_mmap(struct mm_struct *mm) { } #endif #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PARAVIRT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COMPLETION_H #define __LINUX_COMPLETION_H /* * (C) Copyright 2001 Linus Torvalds * * Atomic wait-for-completion handler data structures. * See kernel/sched/completion.c for details. */ #include <linux/swait.h> /* * struct completion - structure used to maintain state for a "completion" * * This is the opaque structure used to maintain the state for a "completion". * Completions currently use a FIFO to queue threads that have to wait for * the "completion" event. * * See also: complete(), wait_for_completion() (and friends _timeout, * _interruptible, _interruptible_timeout, and _killable), init_completion(), * reinit_completion(), and macros DECLARE_COMPLETION(), * DECLARE_COMPLETION_ONSTACK(). */ struct completion { unsigned int done; struct swait_queue_head wait; }; #define init_completion_map(x, m) __init_completion(x) #define init_completion(x) __init_completion(x) static inline void complete_acquire(struct completion *x) {} static inline void complete_release(struct completion *x) {} #define COMPLETION_INITIALIZER(work) \ { 0, __SWAIT_QUEUE_HEAD_INITIALIZER((work).wait) } #define COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) \ (*({ init_completion_map(&(work), &(map)); &(work); })) #define COMPLETION_INITIALIZER_ONSTACK(work) \ (*({ init_completion(&work); &work; })) /** * DECLARE_COMPLETION - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure. Generally used * for static declarations. You should use the _ONSTACK variant for automatic * variables. */ #define DECLARE_COMPLETION(work) \ struct completion work = COMPLETION_INITIALIZER(work) /* * Lockdep needs to run a non-constant initializer for on-stack * completions - so we use the _ONSTACK() variant for those that * are on the kernel stack: */ /** * DECLARE_COMPLETION_ONSTACK - declare and initialize a completion structure * @work: identifier for the completion structure * * This macro declares and initializes a completion structure on the kernel * stack. */ #ifdef CONFIG_LOCKDEP # define DECLARE_COMPLETION_ONSTACK(work) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK_MAP(work, map) #else # define DECLARE_COMPLETION_ONSTACK(work) DECLARE_COMPLETION(work) # define DECLARE_COMPLETION_ONSTACK_MAP(work, map) DECLARE_COMPLETION(work) #endif /** * init_completion - Initialize a dynamically allocated completion * @x: pointer to completion structure that is to be initialized * * This inline function will initialize a dynamically created completion * structure. */ static inline void __init_completion(struct completion *x) { x->done = 0; init_swait_queue_head(&x->wait); } /** * reinit_completion - reinitialize a completion structure * @x: pointer to completion structure that is to be reinitialized * * This inline function should be used to reinitialize a completion structure so it can * be reused. This is especially important after complete_all() is used. */ static inline void reinit_completion(struct completion *x) { x->done = 0; } extern void wait_for_completion(struct completion *); extern void wait_for_completion_io(struct completion *); extern int wait_for_completion_interruptible(struct completion *x); extern int wait_for_completion_killable(struct completion *x); extern unsigned long wait_for_completion_timeout(struct completion *x, unsigned long timeout); extern unsigned long wait_for_completion_io_timeout(struct completion *x, unsigned long timeout); extern long wait_for_completion_interruptible_timeout( struct completion *x, unsigned long timeout); extern long wait_for_completion_killable_timeout( struct completion *x, unsigned long timeout); extern bool try_wait_for_completion(struct completion *x); extern bool completion_done(struct completion *x); extern void complete(struct completion *); extern void complete_all(struct completion *); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _INPUT_MT_H #define _INPUT_MT_H /* * Input Multitouch Library * * Copyright (c) 2010 Henrik Rydberg */ #include <linux/input.h> #define TRKID_MAX 0xffff #define INPUT_MT_POINTER 0x0001 /* pointer device, e.g. trackpad */ #define INPUT_MT_DIRECT 0x0002 /* direct device, e.g. touchscreen */ #define INPUT_MT_DROP_UNUSED 0x0004 /* drop contacts not seen in frame */ #define INPUT_MT_TRACK 0x0008 /* use in-kernel tracking */ #define INPUT_MT_SEMI_MT 0x0010 /* semi-mt device, finger count handled manually */ /** * struct input_mt_slot - represents the state of an input MT slot * @abs: holds current values of ABS_MT axes for this slot * @frame: last frame at which input_mt_report_slot_state() was called * @key: optional driver designation of this slot */ struct input_mt_slot { int abs[ABS_MT_LAST - ABS_MT_FIRST + 1]; unsigned int frame; unsigned int key; }; /** * struct input_mt - state of tracked contacts * @trkid: stores MT tracking ID for the next contact * @num_slots: number of MT slots the device uses * @slot: MT slot currently being transmitted * @flags: input_mt operation flags * @frame: increases every time input_mt_sync_frame() is called * @red: reduced cost matrix for in-kernel tracking * @slots: array of slots holding current values of tracked contacts */ struct input_mt { int trkid; int num_slots; int slot; unsigned int flags; unsigned int frame; int *red; struct input_mt_slot slots[]; }; static inline void input_mt_set_value(struct input_mt_slot *slot, unsigned code, int value) { slot->abs[code - ABS_MT_FIRST] = value; } static inline int input_mt_get_value(const struct input_mt_slot *slot, unsigned code) { return slot->abs[code - ABS_MT_FIRST]; } static inline bool input_mt_is_active(const struct input_mt_slot *slot) { return input_mt_get_value(slot, ABS_MT_TRACKING_ID) >= 0; } static inline bool input_mt_is_used(const struct input_mt *mt, const struct input_mt_slot *slot) { return slot->frame == mt->frame; } int input_mt_init_slots(struct input_dev *dev, unsigned int num_slots, unsigned int flags); void input_mt_destroy_slots(struct input_dev *dev); static inline int input_mt_new_trkid(struct input_mt *mt) { return mt->trkid++ & TRKID_MAX; } static inline void input_mt_slot(struct input_dev *dev, int slot) { input_event(dev, EV_ABS, ABS_MT_SLOT, slot); } static inline bool input_is_mt_value(int axis) { return axis >= ABS_MT_FIRST && axis <= ABS_MT_LAST; } static inline bool input_is_mt_axis(int axis) { return axis == ABS_MT_SLOT || input_is_mt_value(axis); } bool input_mt_report_slot_state(struct input_dev *dev, unsigned int tool_type, bool active); static inline void input_mt_report_slot_inactive(struct input_dev *dev) { input_mt_report_slot_state(dev, 0, false); } void input_mt_report_finger_count(struct input_dev *dev, int count); void input_mt_report_pointer_emulation(struct input_dev *dev, bool use_count); void input_mt_drop_unused(struct input_dev *dev); void input_mt_sync_frame(struct input_dev *dev); /** * struct input_mt_pos - contact position * @x: horizontal coordinate * @y: vertical coordinate */ struct input_mt_pos { s16 x, y; }; int input_mt_assign_slots(struct input_dev *dev, int *slots, const struct input_mt_pos *pos, int num_pos, int dmax); int input_mt_get_slot_by_key(struct input_dev *dev, int key); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * AEAD: Authenticated Encryption with Associated Data * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_AEAD_H #define _CRYPTO_AEAD_H #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/slab.h> /** * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API * * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD * (listed as type "aead" in /proc/crypto) * * The most prominent examples for this type of encryption is GCM and CCM. * However, the kernel supports other types of AEAD ciphers which are defined * with the following cipher string: * * authenc(keyed message digest, block cipher) * * For example: authenc(hmac(sha256), cbc(aes)) * * The example code provided for the symmetric key cipher operation * applies here as well. Naturally all *skcipher* symbols must be exchanged * the *aead* pendants discussed in the following. In addition, for the AEAD * operation, the aead_request_set_ad function must be used to set the * pointer to the associated data memory location before performing the * encryption or decryption operation. In case of an encryption, the associated * data memory is filled during the encryption operation. For decryption, the * associated data memory must contain data that is used to verify the integrity * of the decrypted data. Another deviation from the asynchronous block cipher * operation is that the caller should explicitly check for -EBADMSG of the * crypto_aead_decrypt. That error indicates an authentication error, i.e. * a breach in the integrity of the message. In essence, that -EBADMSG error * code is the key bonus an AEAD cipher has over "standard" block chaining * modes. * * Memory Structure: * * The source scatterlist must contain the concatenation of * associated data || plaintext or ciphertext. * * The destination scatterlist has the same layout, except that the plaintext * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size * during encryption (resp. decryption). * * In-place encryption/decryption is enabled by using the same scatterlist * pointer for both the source and destination. * * Even in the out-of-place case, space must be reserved in the destination for * the associated data, even though it won't be written to. This makes the * in-place and out-of-place cases more consistent. It is permissible for the * "destination" associated data to alias the "source" associated data. * * As with the other scatterlist crypto APIs, zero-length scatterlist elements * are not allowed in the used part of the scatterlist. Thus, if there is no * associated data, the first element must point to the plaintext/ciphertext. * * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309, * rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes * of the associated data buffer must contain a second copy of the IV. This is * in addition to the copy passed to aead_request_set_crypt(). These two IV * copies must not differ; different implementations of the same algorithm may * behave differently in that case. Note that the algorithm might not actually * treat the IV as associated data; nevertheless the length passed to * aead_request_set_ad() must include it. */ struct crypto_aead; /** * struct aead_request - AEAD request * @base: Common attributes for async crypto requests * @assoclen: Length in bytes of associated data for authentication * @cryptlen: Length of data to be encrypted or decrypted * @iv: Initialisation vector * @src: Source data * @dst: Destination data * @__ctx: Start of private context data */ struct aead_request { struct crypto_async_request base; unsigned int assoclen; unsigned int cryptlen; u8 *iv; struct scatterlist *src; struct scatterlist *dst; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; /** * struct aead_alg - AEAD cipher definition * @maxauthsize: Set the maximum authentication tag size supported by the * transformation. A transformation may support smaller tag sizes. * As the authentication tag is a message digest to ensure the * integrity of the encrypted data, a consumer typically wants the * largest authentication tag possible as defined by this * variable. * @setauthsize: Set authentication size for the AEAD transformation. This * function is used to specify the consumer requested size of the * authentication tag to be either generated by the transformation * during encryption or the size of the authentication tag to be * supplied during the decryption operation. This function is also * responsible for checking the authentication tag size for * validity. * @setkey: see struct skcipher_alg * @encrypt: see struct skcipher_alg * @decrypt: see struct skcipher_alg * @ivsize: see struct skcipher_alg * @chunksize: see struct skcipher_alg * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @base: Definition of a generic crypto cipher algorithm. * * All fields except @ivsize is mandatory and must be filled. */ struct aead_alg { int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize); int (*encrypt)(struct aead_request *req); int (*decrypt)(struct aead_request *req); int (*init)(struct crypto_aead *tfm); void (*exit)(struct crypto_aead *tfm); unsigned int ivsize; unsigned int maxauthsize; unsigned int chunksize; struct crypto_alg base; }; struct crypto_aead { unsigned int authsize; unsigned int reqsize; struct crypto_tfm base; }; static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_aead, base); } /** * crypto_alloc_aead() - allocate AEAD cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * AEAD cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an AEAD. The returned struct * crypto_aead is the cipher handle that is required for any subsequent * API invocation for that AEAD. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) { return &tfm->base; } /** * crypto_free_aead() - zeroize and free aead handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_aead(struct crypto_aead *tfm) { crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm)); } static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm) { return container_of(crypto_aead_tfm(tfm)->__crt_alg, struct aead_alg, base); } static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg) { return alg->ivsize; } /** * crypto_aead_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the aead referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) { return crypto_aead_alg_ivsize(crypto_aead_alg(tfm)); } /** * crypto_aead_authsize() - obtain maximum authentication data size * @tfm: cipher handle * * The maximum size of the authentication data for the AEAD cipher referenced * by the AEAD cipher handle is returned. The authentication data size may be * zero if the cipher implements a hard-coded maximum. * * The authentication data may also be known as "tag value". * * Return: authentication data size / tag size in bytes */ static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) { return tfm->authsize; } static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg) { return alg->maxauthsize; } static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead) { return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead)); } /** * crypto_aead_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the AEAD referenced with the cipher handle is returned. * The caller may use that information to allocate appropriate memory for the * data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) { return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); } static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm) { return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm)); } static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm) { return crypto_tfm_get_flags(crypto_aead_tfm(tfm)); } static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags); } static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); } /** * crypto_aead_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the AEAD referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); /** * crypto_aead_setauthsize() - set authentication data size * @tfm: cipher handle * @authsize: size of the authentication data / tag in bytes * * Set the authentication data size / tag size. AEAD requires an authentication * tag (or MAC) in addition to the associated data. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) { return __crypto_aead_cast(req->base.tfm); } /** * crypto_aead_encrypt() - encrypt plaintext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The encryption operation creates the authentication data / * tag. That data is concatenated with the created ciphertext. * The ciphertext memory size is therefore the given number of * block cipher blocks + the size defined by the * crypto_aead_setauthsize invocation. The caller must ensure * that sufficient memory is available for the ciphertext and * the authentication tag. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_aead_encrypt(struct aead_request *req); /** * crypto_aead_decrypt() - decrypt ciphertext * @req: reference to the aead_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the aead_request handle. That data structure * and how it is filled with data is discussed with the aead_request_* * functions. * * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the * authentication data / tag. That authentication data / tag * must have the size defined by the crypto_aead_setauthsize * invocation. * * * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD * cipher operation performs the authentication of the data during the * decryption operation. Therefore, the function returns this error if * the authentication of the ciphertext was unsuccessful (i.e. the * integrity of the ciphertext or the associated data was violated); * < 0 if an error occurred. */ int crypto_aead_decrypt(struct aead_request *req); /** * DOC: Asynchronous AEAD Request Handle * * The aead_request data structure contains all pointers to data required for * the AEAD cipher operation. This includes the cipher handle (which can be * used by multiple aead_request instances), pointer to plaintext and * ciphertext, asynchronous callback function, etc. It acts as a handle to the * aead_request_* API calls in a similar way as AEAD handle to the * crypto_aead_* API calls. */ /** * crypto_aead_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) { return tfm->reqsize; } /** * aead_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing aead handle in the request * data structure with a different one. */ static inline void aead_request_set_tfm(struct aead_request *req, struct crypto_aead *tfm) { req->base.tfm = crypto_aead_tfm(tfm); } /** * aead_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the AEAD * encrypt and decrypt API calls. During the allocation, the provided aead * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, gfp_t gfp) { struct aead_request *req; req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp); if (likely(req)) aead_request_set_tfm(req, tfm); return req; } /** * aead_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void aead_request_free(struct aead_request *req) { kfree_sensitive(req); } /** * aead_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * Setting the callback function that is triggered once the cipher operation * completes * * The callback function is registered with the aead_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void aead_request_set_callback(struct aead_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * aead_request_set_crypt - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_aead_ivsize() * * Setting the source data and destination data scatter / gather lists which * hold the associated data concatenated with the plaintext or ciphertext. See * below for the authentication tag. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. * * The memory structure for cipher operation has the following structure: * * - AEAD encryption input: assoc data || plaintext * - AEAD encryption output: assoc data || cipherntext || auth tag * - AEAD decryption input: assoc data || ciphertext || auth tag * - AEAD decryption output: assoc data || plaintext * * Albeit the kernel requires the presence of the AAD buffer, however, * the kernel does not fill the AAD buffer in the output case. If the * caller wants to have that data buffer filled, the caller must either * use an in-place cipher operation (i.e. same memory location for * input/output memory location). */ static inline void aead_request_set_crypt(struct aead_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, u8 *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } /** * aead_request_set_ad - set associated data information * @req: request handle * @assoclen: number of bytes in associated data * * Setting the AD information. This function sets the length of * the associated data. */ static inline void aead_request_set_ad(struct aead_request *req, unsigned int assoclen) { req->assoclen = assoclen; } #endif /* _CRYPTO_AEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __BLUETOOTH_H #define __BLUETOOTH_H #include <linux/poll.h> #include <net/sock.h> #include <linux/seq_file.h> #define BT_SUBSYS_VERSION 2 #define BT_SUBSYS_REVISION 22 #ifndef AF_BLUETOOTH #define AF_BLUETOOTH 31 #define PF_BLUETOOTH AF_BLUETOOTH #endif /* Bluetooth versions */ #define BLUETOOTH_VER_1_1 1 #define BLUETOOTH_VER_1_2 2 #define BLUETOOTH_VER_2_0 3 #define BLUETOOTH_VER_2_1 4 #define BLUETOOTH_VER_4_0 6 /* Reserv for core and drivers use */ #define BT_SKB_RESERVE 8 #define BTPROTO_L2CAP 0 #define BTPROTO_HCI 1 #define BTPROTO_SCO 2 #define BTPROTO_RFCOMM 3 #define BTPROTO_BNEP 4 #define BTPROTO_CMTP 5 #define BTPROTO_HIDP 6 #define BTPROTO_AVDTP 7 #define SOL_HCI 0 #define SOL_L2CAP 6 #define SOL_SCO 17 #define SOL_RFCOMM 18 #define BT_SECURITY 4 struct bt_security { __u8 level; __u8 key_size; }; #define BT_SECURITY_SDP 0 #define BT_SECURITY_LOW 1 #define BT_SECURITY_MEDIUM 2 #define BT_SECURITY_HIGH 3 #define BT_SECURITY_FIPS 4 #define BT_DEFER_SETUP 7 #define BT_FLUSHABLE 8 #define BT_FLUSHABLE_OFF 0 #define BT_FLUSHABLE_ON 1 #define BT_POWER 9 struct bt_power { __u8 force_active; }; #define BT_POWER_FORCE_ACTIVE_OFF 0 #define BT_POWER_FORCE_ACTIVE_ON 1 #define BT_CHANNEL_POLICY 10 /* BR/EDR only (default policy) * AMP controllers cannot be used. * Channel move requests from the remote device are denied. * If the L2CAP channel is currently using AMP, move the channel to BR/EDR. */ #define BT_CHANNEL_POLICY_BREDR_ONLY 0 /* BR/EDR Preferred * Allow use of AMP controllers. * If the L2CAP channel is currently on AMP, move it to BR/EDR. * Channel move requests from the remote device are allowed. */ #define BT_CHANNEL_POLICY_BREDR_PREFERRED 1 /* AMP Preferred * Allow use of AMP controllers * If the L2CAP channel is currently on BR/EDR and AMP controller * resources are available, initiate a channel move to AMP. * Channel move requests from the remote device are allowed. * If the L2CAP socket has not been connected yet, try to create * and configure the channel directly on an AMP controller rather * than BR/EDR. */ #define BT_CHANNEL_POLICY_AMP_PREFERRED 2 #define BT_VOICE 11 struct bt_voice { __u16 setting; }; #define BT_VOICE_TRANSPARENT 0x0003 #define BT_VOICE_CVSD_16BIT 0x0060 #define BT_SNDMTU 12 #define BT_RCVMTU 13 #define BT_PHY 14 #define BT_PHY_BR_1M_1SLOT 0x00000001 #define BT_PHY_BR_1M_3SLOT 0x00000002 #define BT_PHY_BR_1M_5SLOT 0x00000004 #define BT_PHY_EDR_2M_1SLOT 0x00000008 #define BT_PHY_EDR_2M_3SLOT 0x00000010 #define BT_PHY_EDR_2M_5SLOT 0x00000020 #define BT_PHY_EDR_3M_1SLOT 0x00000040 #define BT_PHY_EDR_3M_3SLOT 0x00000080 #define BT_PHY_EDR_3M_5SLOT 0x00000100 #define BT_PHY_LE_1M_TX 0x00000200 #define BT_PHY_LE_1M_RX 0x00000400 #define BT_PHY_LE_2M_TX 0x00000800 #define BT_PHY_LE_2M_RX 0x00001000 #define BT_PHY_LE_CODED_TX 0x00002000 #define BT_PHY_LE_CODED_RX 0x00004000 #define BT_MODE 15 #define BT_MODE_BASIC 0x00 #define BT_MODE_ERTM 0x01 #define BT_MODE_STREAMING 0x02 #define BT_MODE_LE_FLOWCTL 0x03 #define BT_MODE_EXT_FLOWCTL 0x04 #define BT_PKT_STATUS 16 #define BT_SCM_PKT_STATUS 0x03 __printf(1, 2) void bt_info(const char *fmt, ...); __printf(1, 2) void bt_warn(const char *fmt, ...); __printf(1, 2) void bt_err(const char *fmt, ...); #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) void bt_dbg_set(bool enable); bool bt_dbg_get(void); __printf(1, 2) void bt_dbg(const char *fmt, ...); #endif __printf(1, 2) void bt_warn_ratelimited(const char *fmt, ...); __printf(1, 2) void bt_err_ratelimited(const char *fmt, ...); #define BT_INFO(fmt, ...) bt_info(fmt "\n", ##__VA_ARGS__) #define BT_WARN(fmt, ...) bt_warn(fmt "\n", ##__VA_ARGS__) #define BT_ERR(fmt, ...) bt_err(fmt "\n", ##__VA_ARGS__) #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) #define BT_DBG(fmt, ...) bt_dbg(fmt "\n", ##__VA_ARGS__) #else #define BT_DBG(fmt, ...) pr_debug(fmt "\n", ##__VA_ARGS__) #endif #define bt_dev_name(hdev) ((hdev) ? (hdev)->name : "null") #define bt_dev_info(hdev, fmt, ...) \ BT_INFO("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_warn(hdev, fmt, ...) \ BT_WARN("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_err(hdev, fmt, ...) \ BT_ERR("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_dbg(hdev, fmt, ...) \ BT_DBG("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_warn_ratelimited(hdev, fmt, ...) \ bt_warn_ratelimited("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_err_ratelimited(hdev, fmt, ...) \ bt_err_ratelimited("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) /* Connection and socket states */ enum { BT_CONNECTED = 1, /* Equal to TCP_ESTABLISHED to make net code happy */ BT_OPEN, BT_BOUND, BT_LISTEN, BT_CONNECT, BT_CONNECT2, BT_CONFIG, BT_DISCONN, BT_CLOSED }; /* If unused will be removed by compiler */ static inline const char *state_to_string(int state) { switch (state) { case BT_CONNECTED: return "BT_CONNECTED"; case BT_OPEN: return "BT_OPEN"; case BT_BOUND: return "BT_BOUND"; case BT_LISTEN: return "BT_LISTEN"; case BT_CONNECT: return "BT_CONNECT"; case BT_CONNECT2: return "BT_CONNECT2"; case BT_CONFIG: return "BT_CONFIG"; case BT_DISCONN: return "BT_DISCONN"; case BT_CLOSED: return "BT_CLOSED"; } return "invalid state"; } /* BD Address */ typedef struct { __u8 b[6]; } __packed bdaddr_t; /* BD Address type */ #define BDADDR_BREDR 0x00 #define BDADDR_LE_PUBLIC 0x01 #define BDADDR_LE_RANDOM 0x02 static inline bool bdaddr_type_is_valid(u8 type) { switch (type) { case BDADDR_BREDR: case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } static inline bool bdaddr_type_is_le(u8 type) { switch (type) { case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } #define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}}) #define BDADDR_NONE (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}) /* Copy, swap, convert BD Address */ static inline int bacmp(const bdaddr_t *ba1, const bdaddr_t *ba2) { return memcmp(ba1, ba2, sizeof(bdaddr_t)); } static inline void bacpy(bdaddr_t *dst, const bdaddr_t *src) { memcpy(dst, src, sizeof(bdaddr_t)); } void baswap(bdaddr_t *dst, const bdaddr_t *src); /* Common socket structures and functions */ #define bt_sk(__sk) ((struct bt_sock *) __sk) struct bt_sock { struct sock sk; struct list_head accept_q; struct sock *parent; unsigned long flags; void (*skb_msg_name)(struct sk_buff *, void *, int *); void (*skb_put_cmsg)(struct sk_buff *, struct msghdr *, struct sock *); }; enum { BT_SK_DEFER_SETUP, BT_SK_SUSPEND, }; struct bt_sock_list { struct hlist_head head; rwlock_t lock; #ifdef CONFIG_PROC_FS int (* custom_seq_show)(struct seq_file *, void *); #endif }; int bt_sock_register(int proto, const struct net_proto_family *ops); void bt_sock_unregister(int proto); void bt_sock_link(struct bt_sock_list *l, struct sock *s); void bt_sock_unlink(struct bt_sock_list *l, struct sock *s); int bt_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); int bt_sock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); __poll_t bt_sock_poll(struct file *file, struct socket *sock, poll_table *wait); int bt_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int bt_sock_wait_state(struct sock *sk, int state, unsigned long timeo); int bt_sock_wait_ready(struct sock *sk, unsigned long flags); void bt_accept_enqueue(struct sock *parent, struct sock *sk, bool bh); void bt_accept_unlink(struct sock *sk); struct sock *bt_accept_dequeue(struct sock *parent, struct socket *newsock); /* Skb helpers */ struct l2cap_ctrl { u8 sframe:1, poll:1, final:1, fcs:1, sar:2, super:2; u16 reqseq; u16 txseq; u8 retries; __le16 psm; bdaddr_t bdaddr; struct l2cap_chan *chan; }; struct sco_ctrl { u8 pkt_status; }; struct hci_dev; typedef void (*hci_req_complete_t)(struct hci_dev *hdev, u8 status, u16 opcode); typedef void (*hci_req_complete_skb_t)(struct hci_dev *hdev, u8 status, u16 opcode, struct sk_buff *skb); #define HCI_REQ_START BIT(0) #define HCI_REQ_SKB BIT(1) struct hci_ctrl { u16 opcode; u8 req_flags; u8 req_event; union { hci_req_complete_t req_complete; hci_req_complete_skb_t req_complete_skb; }; }; struct bt_skb_cb { u8 pkt_type; u8 force_active; u16 expect; u8 incoming:1; union { struct l2cap_ctrl l2cap; struct sco_ctrl sco; struct hci_ctrl hci; }; }; #define bt_cb(skb) ((struct bt_skb_cb *)((skb)->cb)) #define hci_skb_pkt_type(skb) bt_cb((skb))->pkt_type #define hci_skb_expect(skb) bt_cb((skb))->expect #define hci_skb_opcode(skb) bt_cb((skb))->hci.opcode static inline struct sk_buff *bt_skb_alloc(unsigned int len, gfp_t how) { struct sk_buff *skb; skb = alloc_skb(len + BT_SKB_RESERVE, how); if (skb) skb_reserve(skb, BT_SKB_RESERVE); return skb; } static inline struct sk_buff *bt_skb_send_alloc(struct sock *sk, unsigned long len, int nb, int *err) { struct sk_buff *skb; skb = sock_alloc_send_skb(sk, len + BT_SKB_RESERVE, nb, err); if (skb) skb_reserve(skb, BT_SKB_RESERVE); if (!skb && *err) return NULL; *err = sock_error(sk); if (*err) goto out; if (sk->sk_shutdown) { *err = -ECONNRESET; goto out; } return skb; out: kfree_skb(skb); return NULL; } /* Shall not be called with lock_sock held */ static inline struct sk_buff *bt_skb_sendmsg(struct sock *sk, struct msghdr *msg, size_t len, size_t mtu, size_t headroom, size_t tailroom) { struct sk_buff *skb; size_t size = min_t(size_t, len, mtu); int err; skb = bt_skb_send_alloc(sk, size + headroom + tailroom, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) return ERR_PTR(err); skb_reserve(skb, headroom); skb_tailroom_reserve(skb, mtu, tailroom); if (!copy_from_iter_full(skb_put(skb, size), size, &msg->msg_iter)) { kfree_skb(skb); return ERR_PTR(-EFAULT); } skb->priority = sk->sk_priority; return skb; } /* Similar to bt_skb_sendmsg but can split the msg into multiple fragments * accourding to the MTU. */ static inline struct sk_buff *bt_skb_sendmmsg(struct sock *sk, struct msghdr *msg, size_t len, size_t mtu, size_t headroom, size_t tailroom) { struct sk_buff *skb, **frag; skb = bt_skb_sendmsg(sk, msg, len, mtu, headroom, tailroom); if (IS_ERR_OR_NULL(skb)) return skb; len -= skb->len; if (!len) return skb; /* Add remaining data over MTU as continuation fragments */ frag = &skb_shinfo(skb)->frag_list; while (len) { struct sk_buff *tmp; tmp = bt_skb_sendmsg(sk, msg, len, mtu, headroom, tailroom); if (IS_ERR(tmp)) { return skb; } len -= tmp->len; *frag = tmp; frag = &(*frag)->next; } return skb; } static inline int bt_copy_from_sockptr(void *dst, size_t dst_size, sockptr_t src, size_t src_size) { if (dst_size > src_size) return -EINVAL; return copy_from_sockptr(dst, src, dst_size); } int bt_to_errno(u16 code); void hci_sock_set_flag(struct sock *sk, int nr); void hci_sock_clear_flag(struct sock *sk, int nr); int hci_sock_test_flag(struct sock *sk, int nr); unsigned short hci_sock_get_channel(struct sock *sk); u32 hci_sock_get_cookie(struct sock *sk); int hci_sock_init(void); void hci_sock_cleanup(void); int bt_sysfs_init(void); void bt_sysfs_cleanup(void); int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)); void bt_procfs_cleanup(struct net *net, const char *name); extern struct dentry *bt_debugfs; int l2cap_init(void); void l2cap_exit(void); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_init(void); void sco_exit(void); #else static inline int sco_init(void) { return 0; } static inline void sco_exit(void) { } #endif int mgmt_init(void); void mgmt_exit(void); void bt_sock_reclassify_lock(struct sock *sk, int proto); #endif /* __BLUETOOTH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 /* SPDX-License-Identifier: GPL-2.0-only */ /* * kref.h - library routines for handling generic reference counted objects * * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com> * Copyright (C) 2004 IBM Corp. * * based on kobject.h which was: * Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org> * Copyright (C) 2002-2003 Open Source Development Labs */ #ifndef _KREF_H_ #define _KREF_H_ #include <linux/spinlock.h> #include <linux/refcount.h> struct kref { refcount_t refcount; }; #define KREF_INIT(n) { .refcount = REFCOUNT_INIT(n), } /** * kref_init - initialize object. * @kref: object in question. */ static inline void kref_init(struct kref *kref) { refcount_set(&kref->refcount, 1); } static inline unsigned int kref_read(const struct kref *kref) { return refcount_read(&kref->refcount); } /** * kref_get - increment refcount for object. * @kref: object. */ static inline void kref_get(struct kref *kref) { refcount_inc(&kref->refcount); } /** * kref_put - decrement refcount for object. * @kref: object. * @release: pointer to the function that will clean up the object when the * last reference to the object is released. * This pointer is required, and it is not acceptable to pass kfree * in as this function. * * Decrement the refcount, and if 0, call release(). * Return 1 if the object was removed, otherwise return 0. Beware, if this * function returns 0, you still can not count on the kref from remaining in * memory. Only use the return value if you want to see if the kref is now * gone, not present. */ static inline int kref_put(struct kref *kref, void (*release)(struct kref *kref)) { if (refcount_dec_and_test(&kref->refcount)) { release(kref); return 1; } return 0; } static inline int kref_put_mutex(struct kref *kref, void (*release)(struct kref *kref), struct mutex *lock) { if (refcount_dec_and_mutex_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } static inline int kref_put_lock(struct kref *kref, void (*release)(struct kref *kref), spinlock_t *lock) { if (refcount_dec_and_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } /** * kref_get_unless_zero - Increment refcount for object unless it is zero. * @kref: object. * * Return non-zero if the increment succeeded. Otherwise return 0. * * This function is intended to simplify locking around refcounting for * objects that can be looked up from a lookup structure, and which are * removed from that lookup structure in the object destructor. * Operations on such objects require at least a read lock around * lookup + kref_get, and a write lock around kref_put + remove from lookup * structure. Furthermore, RCU implementations become extremely tricky. * With a lookup followed by a kref_get_unless_zero *with return value check* * locking in the kref_put path can be deferred to the actual removal from * the lookup structure and RCU lookups become trivial. */ static inline int __must_check kref_get_unless_zero(struct kref *kref) { return refcount_inc_not_zero(&kref->refcount); } #endif /* _KREF_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wireless configuration interface internals. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2018-2020 Intel Corporation */ #ifndef __NET_WIRELESS_CORE_H #define __NET_WIRELESS_CORE_H #include <linux/list.h> #include <linux/netdevice.h> #include <linux/rbtree.h> #include <linux/debugfs.h> #include <linux/rfkill.h> #include <linux/workqueue.h> #include <linux/rtnetlink.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include "reg.h" #define WIPHY_IDX_INVALID -1 struct cfg80211_registered_device { const struct cfg80211_ops *ops; struct list_head list; /* rfkill support */ struct rfkill_ops rfkill_ops; struct rfkill *rfkill; struct work_struct rfkill_block; /* ISO / IEC 3166 alpha2 for which this device is receiving * country IEs on, this can help disregard country IEs from APs * on the same alpha2 quickly. The alpha2 may differ from * cfg80211_regdomain's alpha2 when an intersection has occurred. * If the AP is reconfigured this can also be used to tell us if * the country on the country IE changed. */ char country_ie_alpha2[2]; /* * the driver requests the regulatory core to set this regulatory * domain as the wiphy's. Only used for %REGULATORY_WIPHY_SELF_MANAGED * devices using the regulatory_set_wiphy_regd() API */ const struct ieee80211_regdomain *requested_regd; /* If a Country IE has been received this tells us the environment * which its telling us its in. This defaults to ENVIRON_ANY */ enum environment_cap env; /* wiphy index, internal only */ int wiphy_idx; /* protected by RTNL */ int devlist_generation, wdev_id; int opencount; wait_queue_head_t dev_wait; struct list_head beacon_registrations; spinlock_t beacon_registrations_lock; /* protected by RTNL only */ int num_running_ifaces; int num_running_monitor_ifaces; u64 cookie_counter; /* BSSes/scanning */ spinlock_t bss_lock; struct list_head bss_list; struct rb_root bss_tree; u32 bss_generation; u32 bss_entries; struct cfg80211_scan_request *scan_req; /* protected by RTNL */ struct cfg80211_scan_request *int_scan_req; struct sk_buff *scan_msg; struct list_head sched_scan_req_list; time64_t suspend_at; struct work_struct scan_done_wk; struct genl_info *cur_cmd_info; struct work_struct conn_work; struct work_struct event_work; struct delayed_work dfs_update_channels_wk; /* netlink port which started critical protocol (0 means not started) */ u32 crit_proto_nlportid; struct cfg80211_coalesce *coalesce; struct work_struct destroy_work; struct work_struct sched_scan_stop_wk; struct work_struct sched_scan_res_wk; struct cfg80211_chan_def radar_chandef; struct work_struct propagate_radar_detect_wk; struct cfg80211_chan_def cac_done_chandef; struct work_struct propagate_cac_done_wk; struct work_struct mgmt_registrations_update_wk; /* lock for all wdev lists */ spinlock_t mgmt_registrations_lock; /* must be last because of the way we do wiphy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wiphy wiphy __aligned(NETDEV_ALIGN); }; static inline struct cfg80211_registered_device *wiphy_to_rdev(struct wiphy *wiphy) { BUG_ON(!wiphy); return container_of(wiphy, struct cfg80211_registered_device, wiphy); } static inline void cfg80211_rdev_free_wowlan(struct cfg80211_registered_device *rdev) { #ifdef CONFIG_PM int i; if (!rdev->wiphy.wowlan_config) return; for (i = 0; i < rdev->wiphy.wowlan_config->n_patterns; i++) kfree(rdev->wiphy.wowlan_config->patterns[i].mask); kfree(rdev->wiphy.wowlan_config->patterns); if (rdev->wiphy.wowlan_config->tcp && rdev->wiphy.wowlan_config->tcp->sock) sock_release(rdev->wiphy.wowlan_config->tcp->sock); kfree(rdev->wiphy.wowlan_config->tcp); kfree(rdev->wiphy.wowlan_config->nd_config); kfree(rdev->wiphy.wowlan_config); #endif } static inline u64 cfg80211_assign_cookie(struct cfg80211_registered_device *rdev) { u64 r = ++rdev->cookie_counter; if (WARN_ON(r == 0)) r = ++rdev->cookie_counter; return r; } extern struct workqueue_struct *cfg80211_wq; extern struct list_head cfg80211_rdev_list; extern int cfg80211_rdev_list_generation; struct cfg80211_internal_bss { struct list_head list; struct list_head hidden_list; struct rb_node rbn; u64 ts_boottime; unsigned long ts; unsigned long refcount; atomic_t hold; /* time at the start of the reception of the first octet of the * timestamp field of the last beacon/probe received for this BSS. * The time is the TSF of the BSS specified by %parent_bssid. */ u64 parent_tsf; /* the BSS according to which %parent_tsf is set. This is set to * the BSS that the interface that requested the scan was connected to * when the beacon/probe was received. */ u8 parent_bssid[ETH_ALEN] __aligned(2); /* must be last because of priv member */ struct cfg80211_bss pub; }; static inline struct cfg80211_internal_bss *bss_from_pub(struct cfg80211_bss *pub) { return container_of(pub, struct cfg80211_internal_bss, pub); } static inline void cfg80211_hold_bss(struct cfg80211_internal_bss *bss) { atomic_inc(&bss->hold); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); atomic_inc(&bss->hold); } } static inline void cfg80211_unhold_bss(struct cfg80211_internal_bss *bss) { int r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); } } struct cfg80211_registered_device *cfg80211_rdev_by_wiphy_idx(int wiphy_idx); int get_wiphy_idx(struct wiphy *wiphy); struct wiphy *wiphy_idx_to_wiphy(int wiphy_idx); int cfg80211_switch_netns(struct cfg80211_registered_device *rdev, struct net *net); void cfg80211_init_wdev(struct wireless_dev *wdev); void cfg80211_register_wdev(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); static inline void wdev_lock(struct wireless_dev *wdev) __acquires(wdev) { mutex_lock(&wdev->mtx); __acquire(wdev->mtx); } static inline void wdev_unlock(struct wireless_dev *wdev) __releases(wdev) { __release(wdev->mtx); mutex_unlock(&wdev->mtx); } #define ASSERT_WDEV_LOCK(wdev) lockdep_assert_held(&(wdev)->mtx) static inline bool cfg80211_has_monitors_only(struct cfg80211_registered_device *rdev) { ASSERT_RTNL(); return rdev->num_running_ifaces == rdev->num_running_monitor_ifaces && rdev->num_running_ifaces > 0; } enum cfg80211_event_type { EVENT_CONNECT_RESULT, EVENT_ROAMED, EVENT_DISCONNECTED, EVENT_IBSS_JOINED, EVENT_STOPPED, EVENT_PORT_AUTHORIZED, }; struct cfg80211_event { struct list_head list; enum cfg80211_event_type type; union { struct cfg80211_connect_resp_params cr; struct cfg80211_roam_info rm; struct { const u8 *ie; size_t ie_len; u16 reason; bool locally_generated; } dc; struct { u8 bssid[ETH_ALEN]; struct ieee80211_channel *channel; } ij; struct { u8 bssid[ETH_ALEN]; } pa; }; }; struct cfg80211_cached_keys { struct key_params params[CFG80211_MAX_WEP_KEYS]; u8 data[CFG80211_MAX_WEP_KEYS][WLAN_KEY_LEN_WEP104]; int def; }; enum cfg80211_chan_mode { CHAN_MODE_UNDEFINED, CHAN_MODE_SHARED, CHAN_MODE_EXCLUSIVE, }; struct cfg80211_beacon_registration { struct list_head list; u32 nlportid; }; struct cfg80211_cqm_config { u32 rssi_hyst; s32 last_rssi_event_value; int n_rssi_thresholds; s32 rssi_thresholds[]; }; void cfg80211_destroy_ifaces(struct cfg80211_registered_device *rdev); /* free object */ void cfg80211_dev_free(struct cfg80211_registered_device *rdev); int cfg80211_dev_rename(struct cfg80211_registered_device *rdev, char *newname); void ieee80211_set_bitrate_flags(struct wiphy *wiphy); void cfg80211_bss_expire(struct cfg80211_registered_device *rdev); void cfg80211_bss_age(struct cfg80211_registered_device *rdev, unsigned long age_secs); void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, struct ieee80211_channel *channel); /* IBSS */ int __cfg80211_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params, struct cfg80211_cached_keys *connkeys); void cfg80211_clear_ibss(struct net_device *dev, bool nowext); int __cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); int cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); void __cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, struct ieee80211_channel *channel); int cfg80211_ibss_wext_join(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); /* mesh */ extern const struct mesh_config default_mesh_config; extern const struct mesh_setup default_mesh_setup; int __cfg80211_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_setup *setup, const struct mesh_config *conf); int __cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_set_mesh_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); /* OCB */ int __cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int __cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); /* AP */ int __cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); int cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); /* MLME */ int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_auth_type auth_type, const u8 *bssid, const u8 *ssid, int ssid_len, const u8 *ie, int ie_len, const u8 *key, int key_len, int key_idx, const u8 *auth_data, int auth_data_len); int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, const u8 *bssid, const u8 *ssid, int ssid_len, struct cfg80211_assoc_request *req); int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); void cfg80211_mlme_down(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_pid, u16 frame_type, const u8 *match_data, int match_len, bool multicast_rx, struct netlink_ext_ack *extack); void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk); void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlpid); void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev); int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa, const struct ieee80211_ht_cap *ht_capa_mask); void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa, const struct ieee80211_vht_cap *vht_capa_mask); /* SME events */ int cfg80211_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *connect, struct cfg80211_cached_keys *connkeys, const u8 *prev_bssid); void __cfg80211_connect_result(struct net_device *dev, struct cfg80211_connect_resp_params *params, bool wextev); void __cfg80211_disconnected(struct net_device *dev, const u8 *ie, size_t ie_len, u16 reason, bool from_ap); int cfg80211_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason, bool wextev); void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_roam_info *info); void __cfg80211_port_authorized(struct wireless_dev *wdev, const u8 *bssid); int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_autodisconnect_wk(struct work_struct *work); /* SME implementation */ void cfg80211_conn_work(struct work_struct *work); void cfg80211_sme_scan_done(struct net_device *dev); bool cfg80211_sme_rx_assoc_resp(struct wireless_dev *wdev, u16 status); void cfg80211_sme_rx_auth(struct wireless_dev *wdev, const u8 *buf, size_t len); void cfg80211_sme_disassoc(struct wireless_dev *wdev); void cfg80211_sme_deauth(struct wireless_dev *wdev); void cfg80211_sme_auth_timeout(struct wireless_dev *wdev); void cfg80211_sme_assoc_timeout(struct wireless_dev *wdev); void cfg80211_sme_abandon_assoc(struct wireless_dev *wdev); /* internal helpers */ bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher); bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise); int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr); void __cfg80211_scan_done(struct work_struct *wk); void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool send_message); void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req); int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, bool want_multi); void cfg80211_sched_scan_results_wk(struct work_struct *work); int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req, bool driver_initiated); int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, u64 reqid, bool driver_initiated); void cfg80211_upload_connect_keys(struct wireless_dev *wdev); int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params); void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev); void cfg80211_process_wdev_events(struct wireless_dev *wdev); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz); int cfg80211_scan(struct cfg80211_registered_device *rdev); extern struct work_struct cfg80211_disconnect_work; /** * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable * @wiphy: the wiphy to validate against * @chandef: the channel definition to check * * Checks if chandef is usable and we can/need start CAC on such channel. * * Return: true if all channels available and at least * one channel requires CAC (NL80211_DFS_USABLE) */ bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state); void cfg80211_dfs_channels_update_work(struct work_struct *work); unsigned int cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev); bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan); bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev); bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan); static inline unsigned int elapsed_jiffies_msecs(unsigned long start) { unsigned long end = jiffies; if (end >= start) return jiffies_to_msecs(end - start); return jiffies_to_msecs(end + (ULONG_MAX - start) + 1); } void cfg80211_get_chan_state(struct wireless_dev *wdev, struct ieee80211_channel **chan, enum cfg80211_chan_mode *chanmode, u8 *radar_detect); int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask); int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int); void cfg80211_update_iface_num(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, int num); void __cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct cfg80211_internal_bss * cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts); #ifdef CONFIG_CFG80211_DEVELOPER_WARNINGS #define CFG80211_DEV_WARN_ON(cond) WARN_ON(cond) #else /* * Trick to enable using it as a condition, * and also not give a warning when it's * not used that way. */ #define CFG80211_DEV_WARN_ON(cond) ({bool __r = (cond); __r; }) #endif void cfg80211_cqm_config_free(struct wireless_dev *wdev); void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid); void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev); void cfg80211_pmsr_free_wk(struct work_struct *work); #endif /* __NET_WIRELESS_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMALLOC_H #define _LINUX_VMALLOC_H #include <linux/spinlock.h> #include <linux/init.h> #include <linux/list.h> #include <linux/llist.h> #include <asm/page.h> /* pgprot_t */ #include <linux/rbtree.h> #include <linux/overflow.h> #include <asm/vmalloc.h> struct vm_area_struct; /* vma defining user mapping in mm_types.h */ struct notifier_block; /* in notifier.h */ /* bits in flags of vmalloc's vm_struct below */ #define VM_IOREMAP 0x00000001 /* ioremap() and friends */ #define VM_ALLOC 0x00000002 /* vmalloc() */ #define VM_MAP 0x00000004 /* vmap()ed pages */ #define VM_USERMAP 0x00000008 /* suitable for remap_vmalloc_range */ #define VM_DMA_COHERENT 0x00000010 /* dma_alloc_coherent */ #define VM_UNINITIALIZED 0x00000020 /* vm_struct is not fully initialized */ #define VM_NO_GUARD 0x00000040 /* don't add guard page */ #define VM_KASAN 0x00000080 /* has allocated kasan shadow memory */ #define VM_FLUSH_RESET_PERMS 0x00000100 /* reset direct map and flush TLB on unmap, can't be freed in atomic context */ #define VM_MAP_PUT_PAGES 0x00000200 /* put pages and free array in vfree */ /* * VM_KASAN is used slighly differently depending on CONFIG_KASAN_VMALLOC. * * If IS_ENABLED(CONFIG_KASAN_VMALLOC), VM_KASAN is set on a vm_struct after * shadow memory has been mapped. It's used to handle allocation errors so that * we don't try to poision shadow on free if it was never allocated. * * Otherwise, VM_KASAN is set for kasan_module_alloc() allocations and used to * determine which allocations need the module shadow freed. */ /* bits [20..32] reserved for arch specific ioremap internals */ /* * Maximum alignment for ioremap() regions. * Can be overriden by arch-specific value. */ #ifndef IOREMAP_MAX_ORDER #define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */ #endif struct vm_struct { struct vm_struct *next; void *addr; unsigned long size; unsigned long flags; struct page **pages; unsigned int nr_pages; phys_addr_t phys_addr; const void *caller; }; struct vmap_area { unsigned long va_start; unsigned long va_end; struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ /* * The following three variables can be packed, because * a vmap_area object is always one of the three states: * 1) in "free" tree (root is vmap_area_root) * 2) in "busy" tree (root is free_vmap_area_root) * 3) in purge list (head is vmap_purge_list) */ union { unsigned long subtree_max_size; /* in "free" tree */ struct vm_struct *vm; /* in "busy" tree */ struct llist_node purge_list; /* in purge list */ }; }; /* * Highlevel APIs for driver use */ extern void vm_unmap_ram(const void *mem, unsigned int count); extern void *vm_map_ram(struct page **pages, unsigned int count, int node); extern void vm_unmap_aliases(void); #ifdef CONFIG_MMU extern void __init vmalloc_init(void); extern unsigned long vmalloc_nr_pages(void); #else static inline void vmalloc_init(void) { } static inline unsigned long vmalloc_nr_pages(void) { return 0; } #endif extern void *vmalloc(unsigned long size); extern void *vzalloc(unsigned long size); extern void *vmalloc_user(unsigned long size); extern void *vmalloc_node(unsigned long size, int node); extern void *vzalloc_node(unsigned long size, int node); extern void *vmalloc_32(unsigned long size); extern void *vmalloc_32_user(unsigned long size); extern void *__vmalloc(unsigned long size, gfp_t gfp_mask); extern void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, unsigned long vm_flags, int node, const void *caller); void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, int node, const void *caller); extern void *__vmalloc_array(size_t n, size_t size, gfp_t flags); extern void *vmalloc_array(size_t n, size_t size); extern void *__vcalloc(size_t n, size_t size, gfp_t flags); extern void *vcalloc(size_t n, size_t size); extern void vfree(const void *addr); extern void vfree_atomic(const void *addr); extern void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot); void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot); extern void vunmap(const void *addr); extern int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, void *kaddr, unsigned long pgoff, unsigned long size); extern int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, unsigned long pgoff); /* * Architectures can set this mask to a combination of PGTBL_P?D_MODIFIED values * and let generic vmalloc and ioremap code know when arch_sync_kernel_mappings() * needs to be called. */ #ifndef ARCH_PAGE_TABLE_SYNC_MASK #define ARCH_PAGE_TABLE_SYNC_MASK 0 #endif /* * There is no default implementation for arch_sync_kernel_mappings(). It is * relied upon the compiler to optimize calls out if ARCH_PAGE_TABLE_SYNC_MASK * is 0. */ void arch_sync_kernel_mappings(unsigned long start, unsigned long end); /* * Lowlevel-APIs (not for driver use!) */ static inline size_t get_vm_area_size(const struct vm_struct *area) { if (!(area->flags & VM_NO_GUARD)) /* return actual size without guard page */ return area->size - PAGE_SIZE; else return area->size; } extern struct vm_struct *get_vm_area(unsigned long size, unsigned long flags); extern struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, const void *caller); extern struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, unsigned long start, unsigned long end, const void *caller); void free_vm_area(struct vm_struct *area); extern struct vm_struct *remove_vm_area(const void *addr); extern struct vm_struct *find_vm_area(const void *addr); #ifdef CONFIG_MMU extern int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages); extern void unmap_kernel_range_noflush(unsigned long addr, unsigned long size); extern void unmap_kernel_range(unsigned long addr, unsigned long size); static inline void set_vm_flush_reset_perms(void *addr) { struct vm_struct *vm = find_vm_area(addr); if (vm) vm->flags |= VM_FLUSH_RESET_PERMS; } #else static inline int map_kernel_range_noflush(unsigned long start, unsigned long size, pgprot_t prot, struct page **pages) { return size >> PAGE_SHIFT; } #define map_kernel_range map_kernel_range_noflush static inline void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) { } #define unmap_kernel_range unmap_kernel_range_noflush static inline void set_vm_flush_reset_perms(void *addr) { } #endif /* for /dev/kmem */ extern long vread(char *buf, char *addr, unsigned long count); extern long vwrite(char *buf, char *addr, unsigned long count); /* * Internals. Dont't use.. */ extern struct list_head vmap_area_list; extern __init void vm_area_add_early(struct vm_struct *vm); extern __init void vm_area_register_early(struct vm_struct *vm, size_t align); #ifdef CONFIG_SMP # ifdef CONFIG_MMU struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align); void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms); # else static inline struct vm_struct ** pcpu_get_vm_areas(const unsigned long *offsets, const size_t *sizes, int nr_vms, size_t align) { return NULL; } static inline void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) { } # endif #endif #ifdef CONFIG_MMU #define VMALLOC_TOTAL (VMALLOC_END - VMALLOC_START) #else #define VMALLOC_TOTAL 0UL #endif int register_vmap_purge_notifier(struct notifier_block *nb); int unregister_vmap_purge_notifier(struct notifier_block *nb); #endif /* _LINUX_VMALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_DST_OPS_H #define _NET_DST_OPS_H #include <linux/types.h> #include <linux/percpu_counter.h> #include <linux/cache.h> struct dst_entry; struct kmem_cachep; struct net_device; struct sk_buff; struct sock; struct net; struct dst_ops { unsigned short family; unsigned int gc_thresh; void (*gc)(struct dst_ops *ops); struct dst_entry * (*check)(struct dst_entry *, __u32 cookie); unsigned int (*default_advmss)(const struct dst_entry *); unsigned int (*mtu)(const struct dst_entry *); u32 * (*cow_metrics)(struct dst_entry *, unsigned long); void (*destroy)(struct dst_entry *); void (*ifdown)(struct dst_entry *, struct net_device *dev, int how); void (*negative_advice)(struct sock *sk, struct dst_entry *); void (*link_failure)(struct sk_buff *); void (*update_pmtu)(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh); void (*redirect)(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb); int (*local_out)(struct net *net, struct sock *sk, struct sk_buff *skb); struct neighbour * (*neigh_lookup)(const struct dst_entry *dst, struct sk_buff *skb, const void *daddr); void (*confirm_neigh)(const struct dst_entry *dst, const void *daddr); struct kmem_cache *kmem_cachep; struct percpu_counter pcpuc_entries ____cacheline_aligned_in_smp; }; static inline int dst_entries_get_fast(struct dst_ops *dst) { return percpu_counter_read_positive(&dst->pcpuc_entries); } static inline int dst_entries_get_slow(struct dst_ops *dst) { return percpu_counter_sum_positive(&dst->pcpuc_entries); } #define DST_PERCPU_COUNTER_BATCH 32 static inline void dst_entries_add(struct dst_ops *dst, int val) { percpu_counter_add_batch(&dst->pcpuc_entries, val, DST_PERCPU_COUNTER_BATCH); } static inline int dst_entries_init(struct dst_ops *dst) { return percpu_counter_init(&dst->pcpuc_entries, 0, GFP_KERNEL); } static inline void dst_entries_destroy(struct dst_ops *dst) { percpu_counter_destroy(&dst->pcpuc_entries); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * This file holds USB constants and structures that are needed for * USB device APIs. These are used by the USB device model, which is * defined in chapter 9 of the USB 2.0 specification and in the * Wireless USB 1.0 (spread around). Linux has several APIs in C that * need these: * * - the master/host side Linux-USB kernel driver API; * - the "usbfs" user space API; and * - the Linux "gadget" slave/device/peripheral side driver API. * * USB 2.0 adds an additional "On The Go" (OTG) mode, which lets systems * act either as a USB master/host or as a USB slave/device. That means * the master and slave side APIs benefit from working well together. * * There's also "Wireless USB", using low power short range radios for * peripheral interconnection but otherwise building on the USB framework. * * Note all descriptors are declared '__attribute__((packed))' so that: * * [a] they never get padded, either internally (USB spec writers * probably handled that) or externally; * * [b] so that accessing bigger-than-a-bytes fields will never * generate bus errors on any platform, even when the location of * its descriptor inside a bundle isn't "naturally aligned", and * * [c] for consistency, removing all doubt even when it appears to * someone that the two other points are non-issues for that * particular descriptor type. */ #ifndef _UAPI__LINUX_USB_CH9_H #define _UAPI__LINUX_USB_CH9_H #include <linux/types.h> /* __u8 etc */ #include <asm/byteorder.h> /* le16_to_cpu */ /*-------------------------------------------------------------------------*/ /* CONTROL REQUEST SUPPORT */ /* * USB directions * * This bit flag is used in endpoint descriptors' bEndpointAddress field. * It's also one of three fields in control requests bRequestType. */ #define USB_DIR_OUT 0 /* to device */ #define USB_DIR_IN 0x80 /* to host */ /* * USB types, the second of three bRequestType fields */ #define USB_TYPE_MASK (0x03 << 5) #define USB_TYPE_STANDARD (0x00 << 5) #define USB_TYPE_CLASS (0x01 << 5) #define USB_TYPE_VENDOR (0x02 << 5) #define USB_TYPE_RESERVED (0x03 << 5) /* * USB recipients, the third of three bRequestType fields */ #define USB_RECIP_MASK 0x1f #define USB_RECIP_DEVICE 0x00 #define USB_RECIP_INTERFACE 0x01 #define USB_RECIP_ENDPOINT 0x02 #define USB_RECIP_OTHER 0x03 /* From Wireless USB 1.0 */ #define USB_RECIP_PORT 0x04 #define USB_RECIP_RPIPE 0x05 /* * Standard requests, for the bRequest field of a SETUP packet. * * These are qualified by the bRequestType field, so that for example * TYPE_CLASS or TYPE_VENDOR specific feature flags could be retrieved * by a GET_STATUS request. */ #define USB_REQ_GET_STATUS 0x00 #define USB_REQ_CLEAR_FEATURE 0x01 #define USB_REQ_SET_FEATURE 0x03 #define USB_REQ_SET_ADDRESS 0x05 #define USB_REQ_GET_DESCRIPTOR 0x06 #define USB_REQ_SET_DESCRIPTOR 0x07 #define USB_REQ_GET_CONFIGURATION 0x08 #define USB_REQ_SET_CONFIGURATION 0x09 #define USB_REQ_GET_INTERFACE 0x0A #define USB_REQ_SET_INTERFACE 0x0B #define USB_REQ_SYNCH_FRAME 0x0C #define USB_REQ_SET_SEL 0x30 #define USB_REQ_SET_ISOCH_DELAY 0x31 #define USB_REQ_SET_ENCRYPTION 0x0D /* Wireless USB */ #define USB_REQ_GET_ENCRYPTION 0x0E #define USB_REQ_RPIPE_ABORT 0x0E #define USB_REQ_SET_HANDSHAKE 0x0F #define USB_REQ_RPIPE_RESET 0x0F #define USB_REQ_GET_HANDSHAKE 0x10 #define USB_REQ_SET_CONNECTION 0x11 #define USB_REQ_SET_SECURITY_DATA 0x12 #define USB_REQ_GET_SECURITY_DATA 0x13 #define USB_REQ_SET_WUSB_DATA 0x14 #define USB_REQ_LOOPBACK_DATA_WRITE 0x15 #define USB_REQ_LOOPBACK_DATA_READ 0x16 #define USB_REQ_SET_INTERFACE_DS 0x17 /* specific requests for USB Power Delivery */ #define USB_REQ_GET_PARTNER_PDO 20 #define USB_REQ_GET_BATTERY_STATUS 21 #define USB_REQ_SET_PDO 22 #define USB_REQ_GET_VDM 23 #define USB_REQ_SEND_VDM 24 /* The Link Power Management (LPM) ECN defines USB_REQ_TEST_AND_SET command, * used by hubs to put ports into a new L1 suspend state, except that it * forgot to define its number ... */ /* * USB feature flags are written using USB_REQ_{CLEAR,SET}_FEATURE, and * are read as a bit array returned by USB_REQ_GET_STATUS. (So there * are at most sixteen features of each type.) Hubs may also support a * new USB_REQ_TEST_AND_SET_FEATURE to put ports into L1 suspend. */ #define USB_DEVICE_SELF_POWERED 0 /* (read only) */ #define USB_DEVICE_REMOTE_WAKEUP 1 /* dev may initiate wakeup */ #define USB_DEVICE_TEST_MODE 2 /* (wired high speed only) */ #define USB_DEVICE_BATTERY 2 /* (wireless) */ #define USB_DEVICE_B_HNP_ENABLE 3 /* (otg) dev may initiate HNP */ #define USB_DEVICE_WUSB_DEVICE 3 /* (wireless)*/ #define USB_DEVICE_A_HNP_SUPPORT 4 /* (otg) RH port supports HNP */ #define USB_DEVICE_A_ALT_HNP_SUPPORT 5 /* (otg) other RH port does */ #define USB_DEVICE_DEBUG_MODE 6 /* (special devices only) */ /* * Test Mode Selectors * See USB 2.0 spec Table 9-7 */ #define USB_TEST_J 1 #define USB_TEST_K 2 #define USB_TEST_SE0_NAK 3 #define USB_TEST_PACKET 4 #define USB_TEST_FORCE_ENABLE 5 /* Status Type */ #define USB_STATUS_TYPE_STANDARD 0 #define USB_STATUS_TYPE_PTM 1 /* * New Feature Selectors as added by USB 3.0 * See USB 3.0 spec Table 9-7 */ #define USB_DEVICE_U1_ENABLE 48 /* dev may initiate U1 transition */ #define USB_DEVICE_U2_ENABLE 49 /* dev may initiate U2 transition */ #define USB_DEVICE_LTM_ENABLE 50 /* dev may send LTM */ #define USB_INTRF_FUNC_SUSPEND 0 /* function suspend */ #define USB_INTR_FUNC_SUSPEND_OPT_MASK 0xFF00 /* * Suspend Options, Table 9-8 USB 3.0 spec */ #define USB_INTRF_FUNC_SUSPEND_LP (1 << (8 + 0)) #define USB_INTRF_FUNC_SUSPEND_RW (1 << (8 + 1)) /* * Interface status, Figure 9-5 USB 3.0 spec */ #define USB_INTRF_STAT_FUNC_RW_CAP 1 #define USB_INTRF_STAT_FUNC_RW 2 #define USB_ENDPOINT_HALT 0 /* IN/OUT will STALL */ /* Bit array elements as returned by the USB_REQ_GET_STATUS request. */ #define USB_DEV_STAT_U1_ENABLED 2 /* transition into U1 state */ #define USB_DEV_STAT_U2_ENABLED 3 /* transition into U2 state */ #define USB_DEV_STAT_LTM_ENABLED 4 /* Latency tolerance messages */ /* * Feature selectors from Table 9-8 USB Power Delivery spec */ #define USB_DEVICE_BATTERY_WAKE_MASK 40 #define USB_DEVICE_OS_IS_PD_AWARE 41 #define USB_DEVICE_POLICY_MODE 42 #define USB_PORT_PR_SWAP 43 #define USB_PORT_GOTO_MIN 44 #define USB_PORT_RETURN_POWER 45 #define USB_PORT_ACCEPT_PD_REQUEST 46 #define USB_PORT_REJECT_PD_REQUEST 47 #define USB_PORT_PORT_PD_RESET 48 #define USB_PORT_C_PORT_PD_CHANGE 49 #define USB_PORT_CABLE_PD_RESET 50 #define USB_DEVICE_CHARGING_POLICY 54 /** * struct usb_ctrlrequest - SETUP data for a USB device control request * @bRequestType: matches the USB bmRequestType field * @bRequest: matches the USB bRequest field * @wValue: matches the USB wValue field (le16 byte order) * @wIndex: matches the USB wIndex field (le16 byte order) * @wLength: matches the USB wLength field (le16 byte order) * * This structure is used to send control requests to a USB device. It matches * the different fields of the USB 2.0 Spec section 9.3, table 9-2. See the * USB spec for a fuller description of the different fields, and what they are * used for. * * Note that the driver for any interface can issue control requests. * For most devices, interfaces don't coordinate with each other, so * such requests may be made at any time. */ struct usb_ctrlrequest { __u8 bRequestType; __u8 bRequest; __le16 wValue; __le16 wIndex; __le16 wLength; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* * STANDARD DESCRIPTORS ... as returned by GET_DESCRIPTOR, or * (rarely) accepted by SET_DESCRIPTOR. * * Note that all multi-byte values here are encoded in little endian * byte order "on the wire". Within the kernel and when exposed * through the Linux-USB APIs, they are not converted to cpu byte * order; it is the responsibility of the client code to do this. * The single exception is when device and configuration descriptors (but * not other descriptors) are read from character devices * (i.e. /dev/bus/usb/BBB/DDD); * in this case the fields are converted to host endianness by the kernel. */ /* * Descriptor types ... USB 2.0 spec table 9.5 */ #define USB_DT_DEVICE 0x01 #define USB_DT_CONFIG 0x02 #define USB_DT_STRING 0x03 #define USB_DT_INTERFACE 0x04 #define USB_DT_ENDPOINT 0x05 #define USB_DT_DEVICE_QUALIFIER 0x06 #define USB_DT_OTHER_SPEED_CONFIG 0x07 #define USB_DT_INTERFACE_POWER 0x08 /* these are from a minor usb 2.0 revision (ECN) */ #define USB_DT_OTG 0x09 #define USB_DT_DEBUG 0x0a #define USB_DT_INTERFACE_ASSOCIATION 0x0b /* these are from the Wireless USB spec */ #define USB_DT_SECURITY 0x0c #define USB_DT_KEY 0x0d #define USB_DT_ENCRYPTION_TYPE 0x0e #define USB_DT_BOS 0x0f #define USB_DT_DEVICE_CAPABILITY 0x10 #define USB_DT_WIRELESS_ENDPOINT_COMP 0x11 #define USB_DT_WIRE_ADAPTER 0x21 #define USB_DT_RPIPE 0x22 #define USB_DT_CS_RADIO_CONTROL 0x23 /* From the T10 UAS specification */ #define USB_DT_PIPE_USAGE 0x24 /* From the USB 3.0 spec */ #define USB_DT_SS_ENDPOINT_COMP 0x30 /* From the USB 3.1 spec */ #define USB_DT_SSP_ISOC_ENDPOINT_COMP 0x31 /* Conventional codes for class-specific descriptors. The convention is * defined in the USB "Common Class" Spec (3.11). Individual class specs * are authoritative for their usage, not the "common class" writeup. */ #define USB_DT_CS_DEVICE (USB_TYPE_CLASS | USB_DT_DEVICE) #define USB_DT_CS_CONFIG (USB_TYPE_CLASS | USB_DT_CONFIG) #define USB_DT_CS_STRING (USB_TYPE_CLASS | USB_DT_STRING) #define USB_DT_CS_INTERFACE (USB_TYPE_CLASS | USB_DT_INTERFACE) #define USB_DT_CS_ENDPOINT (USB_TYPE_CLASS | USB_DT_ENDPOINT) /* All standard descriptors have these 2 fields at the beginning */ struct usb_descriptor_header { __u8 bLength; __u8 bDescriptorType; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE: Device descriptor */ struct usb_device_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __le16 idVendor; __le16 idProduct; __le16 bcdDevice; __u8 iManufacturer; __u8 iProduct; __u8 iSerialNumber; __u8 bNumConfigurations; } __attribute__ ((packed)); #define USB_DT_DEVICE_SIZE 18 /* * Device and/or Interface Class codes * as found in bDeviceClass or bInterfaceClass * and defined by www.usb.org documents */ #define USB_CLASS_PER_INTERFACE 0 /* for DeviceClass */ #define USB_CLASS_AUDIO 1 #define USB_CLASS_COMM 2 #define USB_CLASS_HID 3 #define USB_CLASS_PHYSICAL 5 #define USB_CLASS_STILL_IMAGE 6 #define USB_CLASS_PRINTER 7 #define USB_CLASS_MASS_STORAGE 8 #define USB_CLASS_HUB 9 #define USB_CLASS_CDC_DATA 0x0a #define USB_CLASS_CSCID 0x0b /* chip+ smart card */ #define USB_CLASS_CONTENT_SEC 0x0d /* content security */ #define USB_CLASS_VIDEO 0x0e #define USB_CLASS_WIRELESS_CONTROLLER 0xe0 #define USB_CLASS_PERSONAL_HEALTHCARE 0x0f #define USB_CLASS_AUDIO_VIDEO 0x10 #define USB_CLASS_BILLBOARD 0x11 #define USB_CLASS_USB_TYPE_C_BRIDGE 0x12 #define USB_CLASS_MISC 0xef #define USB_CLASS_APP_SPEC 0xfe #define USB_CLASS_VENDOR_SPEC 0xff #define USB_SUBCLASS_VENDOR_SPEC 0xff /*-------------------------------------------------------------------------*/ /* USB_DT_CONFIG: Configuration descriptor information. * * USB_DT_OTHER_SPEED_CONFIG is the same descriptor, except that the * descriptor type is different. Highspeed-capable devices can look * different depending on what speed they're currently running. Only * devices with a USB_DT_DEVICE_QUALIFIER have any OTHER_SPEED_CONFIG * descriptors. */ struct usb_config_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumInterfaces; __u8 bConfigurationValue; __u8 iConfiguration; __u8 bmAttributes; __u8 bMaxPower; } __attribute__ ((packed)); #define USB_DT_CONFIG_SIZE 9 /* from config descriptor bmAttributes */ #define USB_CONFIG_ATT_ONE (1 << 7) /* must be set */ #define USB_CONFIG_ATT_SELFPOWER (1 << 6) /* self powered */ #define USB_CONFIG_ATT_WAKEUP (1 << 5) /* can wakeup */ #define USB_CONFIG_ATT_BATTERY (1 << 4) /* battery powered */ /*-------------------------------------------------------------------------*/ /* USB String descriptors can contain at most 126 characters. */ #define USB_MAX_STRING_LEN 126 /* USB_DT_STRING: String descriptor */ struct usb_string_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wData[1]; /* UTF-16LE encoded */ } __attribute__ ((packed)); /* note that "string" zero is special, it holds language codes that * the device supports, not Unicode characters. */ /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE: Interface descriptor */ struct usb_interface_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bInterfaceNumber; __u8 bAlternateSetting; __u8 bNumEndpoints; __u8 bInterfaceClass; __u8 bInterfaceSubClass; __u8 bInterfaceProtocol; __u8 iInterface; } __attribute__ ((packed)); #define USB_DT_INTERFACE_SIZE 9 /*-------------------------------------------------------------------------*/ /* USB_DT_ENDPOINT: Endpoint descriptor */ struct usb_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEndpointAddress; __u8 bmAttributes; __le16 wMaxPacketSize; __u8 bInterval; /* NOTE: these two are _only_ in audio endpoints. */ /* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */ __u8 bRefresh; __u8 bSynchAddress; } __attribute__ ((packed)); #define USB_DT_ENDPOINT_SIZE 7 #define USB_DT_ENDPOINT_AUDIO_SIZE 9 /* Audio extension */ /* * Endpoints */ #define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress */ #define USB_ENDPOINT_DIR_MASK 0x80 #define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* in bmAttributes */ #define USB_ENDPOINT_XFER_CONTROL 0 #define USB_ENDPOINT_XFER_ISOC 1 #define USB_ENDPOINT_XFER_BULK 2 #define USB_ENDPOINT_XFER_INT 3 #define USB_ENDPOINT_MAX_ADJUSTABLE 0x80 #define USB_ENDPOINT_MAXP_MASK 0x07ff #define USB_EP_MAXP_MULT_SHIFT 11 #define USB_EP_MAXP_MULT_MASK (3 << USB_EP_MAXP_MULT_SHIFT) #define USB_EP_MAXP_MULT(m) \ (((m) & USB_EP_MAXP_MULT_MASK) >> USB_EP_MAXP_MULT_SHIFT) /* The USB 3.0 spec redefines bits 5:4 of bmAttributes as interrupt ep type. */ #define USB_ENDPOINT_INTRTYPE 0x30 #define USB_ENDPOINT_INTR_PERIODIC (0 << 4) #define USB_ENDPOINT_INTR_NOTIFICATION (1 << 4) #define USB_ENDPOINT_SYNCTYPE 0x0c #define USB_ENDPOINT_SYNC_NONE (0 << 2) #define USB_ENDPOINT_SYNC_ASYNC (1 << 2) #define USB_ENDPOINT_SYNC_ADAPTIVE (2 << 2) #define USB_ENDPOINT_SYNC_SYNC (3 << 2) #define USB_ENDPOINT_USAGE_MASK 0x30 #define USB_ENDPOINT_USAGE_DATA 0x00 #define USB_ENDPOINT_USAGE_FEEDBACK 0x10 #define USB_ENDPOINT_USAGE_IMPLICIT_FB 0x20 /* Implicit feedback Data endpoint */ /*-------------------------------------------------------------------------*/ /** * usb_endpoint_num - get the endpoint's number * @epd: endpoint to be checked * * Returns @epd's number: 0 to 15. */ static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd) { return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; } /** * usb_endpoint_type - get the endpoint's transfer type * @epd: endpoint to be checked * * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according * to @epd's transfer type. */ static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; } /** * usb_endpoint_dir_in - check if the endpoint has IN direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type IN, otherwise it returns false. */ static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN); } /** * usb_endpoint_dir_out - check if the endpoint has OUT direction * @epd: endpoint to be checked * * Returns true if the endpoint is of type OUT, otherwise it returns false. */ static inline int usb_endpoint_dir_out( const struct usb_endpoint_descriptor *epd) { return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT); } /** * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type bulk, otherwise it returns false. */ static inline int usb_endpoint_xfer_bulk( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK); } /** * usb_endpoint_xfer_control - check if the endpoint has control transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type control, otherwise it returns false. */ static inline int usb_endpoint_xfer_control( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_CONTROL); } /** * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type interrupt, otherwise it returns * false. */ static inline int usb_endpoint_xfer_int( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT); } /** * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type * @epd: endpoint to be checked * * Returns true if the endpoint is of type isochronous, otherwise it returns * false. */ static inline int usb_endpoint_xfer_isoc( const struct usb_endpoint_descriptor *epd) { return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_ISOC); } /** * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT * @epd: endpoint to be checked * * Returns true if the endpoint has bulk transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_bulk_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_int_in - check if the endpoint is interrupt IN * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT * @epd: endpoint to be checked * * Returns true if the endpoint has interrupt transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_int_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and IN direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_in( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd); } /** * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT * @epd: endpoint to be checked * * Returns true if the endpoint has isochronous transfer type and OUT direction, * otherwise it returns false. */ static inline int usb_endpoint_is_isoc_out( const struct usb_endpoint_descriptor *epd) { return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd); } /** * usb_endpoint_maxp - get endpoint's max packet size * @epd: endpoint to be checked * * Returns @epd's max packet bits [10:0] */ static inline int usb_endpoint_maxp(const struct usb_endpoint_descriptor *epd) { return __le16_to_cpu(epd->wMaxPacketSize) & USB_ENDPOINT_MAXP_MASK; } /** * usb_endpoint_maxp_mult - get endpoint's transactional opportunities * @epd: endpoint to be checked * * Return @epd's wMaxPacketSize[12:11] + 1 */ static inline int usb_endpoint_maxp_mult(const struct usb_endpoint_descriptor *epd) { int maxp = __le16_to_cpu(epd->wMaxPacketSize); return USB_EP_MAXP_MULT(maxp) + 1; } static inline int usb_endpoint_interrupt_type( const struct usb_endpoint_descriptor *epd) { return epd->bmAttributes & USB_ENDPOINT_INTRTYPE; } /*-------------------------------------------------------------------------*/ /* USB_DT_SSP_ISOC_ENDPOINT_COMP: SuperSpeedPlus Isochronous Endpoint Companion * descriptor */ struct usb_ssp_isoc_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wReseved; __le32 dwBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SSP_ISOC_EP_COMP_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SS_ENDPOINT_COMP: SuperSpeed Endpoint Companion descriptor */ struct usb_ss_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bmAttributes; __le16 wBytesPerInterval; } __attribute__ ((packed)); #define USB_DT_SS_EP_COMP_SIZE 6 /* Bits 4:0 of bmAttributes if this is a bulk endpoint */ static inline int usb_ss_max_streams(const struct usb_ss_ep_comp_descriptor *comp) { int max_streams; if (!comp) return 0; max_streams = comp->bmAttributes & 0x1f; if (!max_streams) return 0; max_streams = 1 << max_streams; return max_streams; } /* Bits 1:0 of bmAttributes if this is an isoc endpoint */ #define USB_SS_MULT(p) (1 + ((p) & 0x3)) /* Bit 7 of bmAttributes if a SSP isoc endpoint companion descriptor exists */ #define USB_SS_SSP_ISOC_COMP(p) ((p) & (1 << 7)) /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_QUALIFIER: Device Qualifier descriptor */ struct usb_qualifier_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __u8 bNumConfigurations; __u8 bRESERVED; } __attribute__ ((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_OTG (from OTG 1.0a supplement) */ struct usb_otg_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP, etc */ } __attribute__ ((packed)); /* USB_DT_OTG (from OTG 2.0 supplement) */ struct usb_otg20_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bmAttributes; /* support for HNP, SRP and ADP, etc */ __le16 bcdOTG; /* OTG and EH supplement release number * in binary-coded decimal(i.e. 2.0 is 0200H) */ } __attribute__ ((packed)); /* from usb_otg_descriptor.bmAttributes */ #define USB_OTG_SRP (1 << 0) #define USB_OTG_HNP (1 << 1) /* swap host/device roles */ #define USB_OTG_ADP (1 << 2) /* support ADP */ #define OTG_STS_SELECTOR 0xF000 /* OTG status selector */ /*-------------------------------------------------------------------------*/ /* USB_DT_DEBUG: for special highspeed devices, replacing serial console */ struct usb_debug_descriptor { __u8 bLength; __u8 bDescriptorType; /* bulk endpoints with 8 byte maxpacket */ __u8 bDebugInEndpoint; __u8 bDebugOutEndpoint; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_INTERFACE_ASSOCIATION: groups interfaces */ struct usb_interface_assoc_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bFirstInterface; __u8 bInterfaceCount; __u8 bFunctionClass; __u8 bFunctionSubClass; __u8 bFunctionProtocol; __u8 iFunction; } __attribute__ ((packed)); #define USB_DT_INTERFACE_ASSOCIATION_SIZE 8 /*-------------------------------------------------------------------------*/ /* USB_DT_SECURITY: group of wireless security descriptors, including * encryption types available for setting up a CC/association. */ struct usb_security_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumEncryptionTypes; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_KEY: used with {GET,SET}_SECURITY_DATA; only public keys * may be retrieved. */ struct usb_key_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 tTKID[3]; __u8 bReserved; __u8 bKeyData[0]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_ENCRYPTION_TYPE: bundled in DT_SECURITY groups */ struct usb_encryption_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEncryptionType; #define USB_ENC_TYPE_UNSECURE 0 #define USB_ENC_TYPE_WIRED 1 /* non-wireless mode */ #define USB_ENC_TYPE_CCM_1 2 /* aes128/cbc session */ #define USB_ENC_TYPE_RSA_1 3 /* rsa3072/sha1 auth */ __u8 bEncryptionValue; /* use in SET_ENCRYPTION */ __u8 bAuthKeyIndex; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_DT_BOS: group of device-level capabilities */ struct usb_bos_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumDeviceCaps; } __attribute__((packed)); #define USB_DT_BOS_SIZE 5 /*-------------------------------------------------------------------------*/ /* USB_DT_DEVICE_CAPABILITY: grouped with BOS */ struct usb_dev_cap_header { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_CAP_TYPE_WIRELESS_USB 1 struct usb_wireless_cap_descriptor { /* Ultra Wide Band */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_WIRELESS_P2P_DRD (1 << 1) #define USB_WIRELESS_BEACON_MASK (3 << 2) #define USB_WIRELESS_BEACON_SELF (1 << 2) #define USB_WIRELESS_BEACON_DIRECTED (2 << 2) #define USB_WIRELESS_BEACON_NONE (3 << 2) __le16 wPHYRates; /* bit rates, Mbps */ #define USB_WIRELESS_PHY_53 (1 << 0) /* always set */ #define USB_WIRELESS_PHY_80 (1 << 1) #define USB_WIRELESS_PHY_107 (1 << 2) /* always set */ #define USB_WIRELESS_PHY_160 (1 << 3) #define USB_WIRELESS_PHY_200 (1 << 4) /* always set */ #define USB_WIRELESS_PHY_320 (1 << 5) #define USB_WIRELESS_PHY_400 (1 << 6) #define USB_WIRELESS_PHY_480 (1 << 7) __u8 bmTFITXPowerInfo; /* TFI power levels */ __u8 bmFFITXPowerInfo; /* FFI power levels */ __le16 bmBandGroup; __u8 bReserved; } __attribute__((packed)); #define USB_DT_USB_WIRELESS_CAP_SIZE 11 /* USB 2.0 Extension descriptor */ #define USB_CAP_TYPE_EXT 2 struct usb_ext_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __le32 bmAttributes; #define USB_LPM_SUPPORT (1 << 1) /* supports LPM */ #define USB_BESL_SUPPORT (1 << 2) /* supports BESL */ #define USB_BESL_BASELINE_VALID (1 << 3) /* Baseline BESL valid*/ #define USB_BESL_DEEP_VALID (1 << 4) /* Deep BESL valid */ #define USB_SET_BESL_BASELINE(p) (((p) & 0xf) << 8) #define USB_SET_BESL_DEEP(p) (((p) & 0xf) << 12) #define USB_GET_BESL_BASELINE(p) (((p) & (0xf << 8)) >> 8) #define USB_GET_BESL_DEEP(p) (((p) & (0xf << 12)) >> 12) } __attribute__((packed)); #define USB_DT_USB_EXT_CAP_SIZE 7 /* * SuperSpeed USB Capability descriptor: Defines the set of SuperSpeed USB * specific device level capabilities */ #define USB_SS_CAP_TYPE 3 struct usb_ss_cap_descriptor { /* Link Power Management */ __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; #define USB_LTM_SUPPORT (1 << 1) /* supports LTM */ __le16 wSpeedSupported; #define USB_LOW_SPEED_OPERATION (1) /* Low speed operation */ #define USB_FULL_SPEED_OPERATION (1 << 1) /* Full speed operation */ #define USB_HIGH_SPEED_OPERATION (1 << 2) /* High speed operation */ #define USB_5GBPS_OPERATION (1 << 3) /* Operation at 5Gbps */ __u8 bFunctionalitySupport; __u8 bU1devExitLat; __le16 bU2DevExitLat; } __attribute__((packed)); #define USB_DT_USB_SS_CAP_SIZE 10 /* * Container ID Capability descriptor: Defines the instance unique ID used to * identify the instance across all operating modes */ #define CONTAINER_ID_TYPE 4 struct usb_ss_container_id_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 ContainerID[16]; /* 128-bit number */ } __attribute__((packed)); #define USB_DT_USB_SS_CONTN_ID_SIZE 20 /* * SuperSpeed Plus USB Capability descriptor: Defines the set of * SuperSpeed Plus USB specific device level capabilities */ #define USB_SSP_CAP_TYPE 0xa struct usb_ssp_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __le32 bmAttributes; #define USB_SSP_SUBLINK_SPEED_ATTRIBS (0x1f << 0) /* sublink speed entries */ #define USB_SSP_SUBLINK_SPEED_IDS (0xf << 5) /* speed ID entries */ __le16 wFunctionalitySupport; #define USB_SSP_MIN_SUBLINK_SPEED_ATTRIBUTE_ID (0xf) #define USB_SSP_MIN_RX_LANE_COUNT (0xf << 8) #define USB_SSP_MIN_TX_LANE_COUNT (0xf << 12) __le16 wReserved; __le32 bmSublinkSpeedAttr[1]; /* list of sublink speed attrib entries */ #define USB_SSP_SUBLINK_SPEED_SSID (0xf) /* sublink speed ID */ #define USB_SSP_SUBLINK_SPEED_LSE (0x3 << 4) /* Lanespeed exponent */ #define USB_SSP_SUBLINK_SPEED_LSE_BPS 0 #define USB_SSP_SUBLINK_SPEED_LSE_KBPS 1 #define USB_SSP_SUBLINK_SPEED_LSE_MBPS 2 #define USB_SSP_SUBLINK_SPEED_LSE_GBPS 3 #define USB_SSP_SUBLINK_SPEED_ST (0x3 << 6) /* Sublink type */ #define USB_SSP_SUBLINK_SPEED_ST_SYM_RX 0 #define USB_SSP_SUBLINK_SPEED_ST_ASYM_RX 1 #define USB_SSP_SUBLINK_SPEED_ST_SYM_TX 2 #define USB_SSP_SUBLINK_SPEED_ST_ASYM_TX 3 #define USB_SSP_SUBLINK_SPEED_RSVD (0x3f << 8) /* Reserved */ #define USB_SSP_SUBLINK_SPEED_LP (0x3 << 14) /* Link protocol */ #define USB_SSP_SUBLINK_SPEED_LP_SS 0 #define USB_SSP_SUBLINK_SPEED_LP_SSP 1 #define USB_SSP_SUBLINK_SPEED_LSM (0xff << 16) /* Lanespeed mantissa */ } __attribute__((packed)); /* * USB Power Delivery Capability Descriptor: * Defines capabilities for PD */ /* Defines the various PD Capabilities of this device */ #define USB_PD_POWER_DELIVERY_CAPABILITY 0x06 /* Provides information on each battery supported by the device */ #define USB_PD_BATTERY_INFO_CAPABILITY 0x07 /* The Consumer characteristics of a Port on the device */ #define USB_PD_PD_CONSUMER_PORT_CAPABILITY 0x08 /* The provider characteristics of a Port on the device */ #define USB_PD_PD_PROVIDER_PORT_CAPABILITY 0x09 struct usb_pd_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* set to USB_PD_POWER_DELIVERY_CAPABILITY */ __u8 bReserved; __le32 bmAttributes; #define USB_PD_CAP_BATTERY_CHARGING (1 << 1) /* supports Battery Charging specification */ #define USB_PD_CAP_USB_PD (1 << 2) /* supports USB Power Delivery specification */ #define USB_PD_CAP_PROVIDER (1 << 3) /* can provide power */ #define USB_PD_CAP_CONSUMER (1 << 4) /* can consume power */ #define USB_PD_CAP_CHARGING_POLICY (1 << 5) /* supports CHARGING_POLICY feature */ #define USB_PD_CAP_TYPE_C_CURRENT (1 << 6) /* supports power capabilities defined in the USB Type-C Specification */ #define USB_PD_CAP_PWR_AC (1 << 8) #define USB_PD_CAP_PWR_BAT (1 << 9) #define USB_PD_CAP_PWR_USE_V_BUS (1 << 14) __le16 bmProviderPorts; /* Bit zero refers to the UFP of the device */ __le16 bmConsumerPorts; __le16 bcdBCVersion; __le16 bcdPDVersion; __le16 bcdUSBTypeCVersion; } __attribute__((packed)); struct usb_pd_cap_battery_info_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; /* Index of string descriptor shall contain the user friendly name for this battery */ __u8 iBattery; /* Index of string descriptor shall contain the Serial Number String for this battery */ __u8 iSerial; __u8 iManufacturer; __u8 bBatteryId; /* uniquely identifies this battery in status Messages */ __u8 bReserved; /* * Shall contain the Battery Charge value above which this * battery is considered to be fully charged but not necessarily * “topped off.” */ __le32 dwChargedThreshold; /* in mWh */ /* * Shall contain the minimum charge level of this battery such * that above this threshold, a device can be assured of being * able to power up successfully (see Battery Charging 1.2). */ __le32 dwWeakThreshold; /* in mWh */ __le32 dwBatteryDesignCapacity; /* in mWh */ __le32 dwBatteryLastFullchargeCapacity; /* in mWh */ } __attribute__((packed)); struct usb_pd_cap_consumer_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_CONSUMER_BC (1 << 0) /* BC */ #define USB_PD_CAP_CONSUMER_PD (1 << 1) /* PD */ #define USB_PD_CAP_CONSUMER_TYPE_C (1 << 2) /* USB Type-C Current */ __le16 wMinVoltage; /* in 50mV units */ __le16 wMaxVoltage; /* in 50mV units */ __u16 wReserved; __le32 dwMaxOperatingPower; /* in 10 mW - operating at steady state */ __le32 dwMaxPeakPower; /* in 10mW units - operating at peak power */ __le32 dwMaxPeakPowerTime; /* in 100ms units - duration of peak */ #define USB_PD_CAP_CONSUMER_UNKNOWN_PEAK_POWER_TIME 0xffff } __attribute__((packed)); struct usb_pd_cap_provider_port_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved1; __u8 bmCapabilities; /* port will oerate under: */ #define USB_PD_CAP_PROVIDER_BC (1 << 0) /* BC */ #define USB_PD_CAP_PROVIDER_PD (1 << 1) /* PD */ #define USB_PD_CAP_PROVIDER_TYPE_C (1 << 2) /* USB Type-C Current */ __u8 bNumOfPDObjects; __u8 bReserved2; __le32 wPowerDataObject[]; } __attribute__((packed)); /* * Precision time measurement capability descriptor: advertised by devices and * hubs that support PTM */ #define USB_PTM_CAP_TYPE 0xb struct usb_ptm_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; } __attribute__((packed)); #define USB_DT_USB_PTM_ID_SIZE 3 /* * The size of the descriptor for the Sublink Speed Attribute Count * (SSAC) specified in bmAttributes[4:0]. SSAC is zero-based */ #define USB_DT_USB_SSP_CAP_SIZE(ssac) (12 + (ssac + 1) * 4) /*-------------------------------------------------------------------------*/ /* USB_DT_WIRELESS_ENDPOINT_COMP: companion descriptor associated with * each endpoint descriptor for a wireless device */ struct usb_wireless_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bMaxSequence; __le16 wMaxStreamDelay; __le16 wOverTheAirPacketSize; __u8 bOverTheAirInterval; __u8 bmCompAttributes; #define USB_ENDPOINT_SWITCH_MASK 0x03 /* in bmCompAttributes */ #define USB_ENDPOINT_SWITCH_NO 0 #define USB_ENDPOINT_SWITCH_SWITCH 1 #define USB_ENDPOINT_SWITCH_SCALE 2 } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_HANDSHAKE is a four-way handshake used between a wireless * host and a device for connection set up, mutual authentication, and * exchanging short lived session keys. The handshake depends on a CC. */ struct usb_handshake { __u8 bMessageNumber; __u8 bStatus; __u8 tTKID[3]; __u8 bReserved; __u8 CDID[16]; __u8 nonce[16]; __u8 MIC[8]; } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB_REQ_SET_CONNECTION modifies or revokes a connection context (CC). * A CC may also be set up using non-wireless secure channels (including * wired USB!), and some devices may support CCs with multiple hosts. */ struct usb_connection_context { __u8 CHID[16]; /* persistent host id */ __u8 CDID[16]; /* device id (unique w/in host context) */ __u8 CK[16]; /* connection key */ } __attribute__((packed)); /*-------------------------------------------------------------------------*/ /* USB 2.0 defines three speeds, here's how Linux identifies them */ enum usb_device_speed { USB_SPEED_UNKNOWN = 0, /* enumerating */ USB_SPEED_LOW, USB_SPEED_FULL, /* usb 1.1 */ USB_SPEED_HIGH, /* usb 2.0 */ USB_SPEED_WIRELESS, /* wireless (usb 2.5) */ USB_SPEED_SUPER, /* usb 3.0 */ USB_SPEED_SUPER_PLUS, /* usb 3.1 */ }; enum usb_device_state { /* NOTATTACHED isn't in the USB spec, and this state acts * the same as ATTACHED ... but it's clearer this way. */ USB_STATE_NOTATTACHED = 0, /* chapter 9 and authentication (wireless) device states */ USB_STATE_ATTACHED, USB_STATE_POWERED, /* wired */ USB_STATE_RECONNECTING, /* auth */ USB_STATE_UNAUTHENTICATED, /* auth */ USB_STATE_DEFAULT, /* limited function */ USB_STATE_ADDRESS, USB_STATE_CONFIGURED, /* most functions */ USB_STATE_SUSPENDED /* NOTE: there are actually four different SUSPENDED * states, returning to POWERED, DEFAULT, ADDRESS, or * CONFIGURED respectively when SOF tokens flow again. * At this level there's no difference between L1 and L2 * suspend states. (L2 being original USB 1.1 suspend.) */ }; enum usb3_link_state { USB3_LPM_U0 = 0, USB3_LPM_U1, USB3_LPM_U2, USB3_LPM_U3 }; /* * A U1 timeout of 0x0 means the parent hub will reject any transitions to U1. * 0xff means the parent hub will accept transitions to U1, but will not * initiate a transition. * * A U1 timeout of 0x1 to 0x7F also causes the hub to initiate a transition to * U1 after that many microseconds. Timeouts of 0x80 to 0xFE are reserved * values. * * A U2 timeout of 0x0 means the parent hub will reject any transitions to U2. * 0xff means the parent hub will accept transitions to U2, but will not * initiate a transition. * * A U2 timeout of 0x1 to 0xFE also causes the hub to initiate a transition to * U2 after N*256 microseconds. Therefore a U2 timeout value of 0x1 means a U2 * idle timer of 256 microseconds, 0x2 means 512 microseconds, 0xFE means * 65.024ms. */ #define USB3_LPM_DISABLED 0x0 #define USB3_LPM_U1_MAX_TIMEOUT 0x7F #define USB3_LPM_U2_MAX_TIMEOUT 0xFE #define USB3_LPM_DEVICE_INITIATED 0xFF struct usb_set_sel_req { __u8 u1_sel; __u8 u1_pel; __le16 u2_sel; __le16 u2_pel; } __attribute__ ((packed)); /* * The Set System Exit Latency control transfer provides one byte each for * U1 SEL and U1 PEL, so the max exit latency is 0xFF. U2 SEL and U2 PEL each * are two bytes long. */ #define USB3_LPM_MAX_U1_SEL_PEL 0xFF #define USB3_LPM_MAX_U2_SEL_PEL 0xFFFF /*-------------------------------------------------------------------------*/ /* * As per USB compliance update, a device that is actively drawing * more than 100mA from USB must report itself as bus-powered in * the GetStatus(DEVICE) call. * https://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#34 */ #define USB_SELF_POWER_VBUS_MAX_DRAW 100 #endif /* _UAPI__LINUX_USB_CH9_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 // SPDX-License-Identifier: GPL-2.0 /* * This is a maximally equidistributed combined Tausworthe generator * based on code from GNU Scientific Library 1.5 (30 Jun 2004) * * lfsr113 version: * * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n) * * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13)) * s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27)) * s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21)) * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12)) * * The period of this generator is about 2^113 (see erratum paper). * * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe * Generators", Mathematics of Computation, 65, 213 (1996), 203--213: * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps * * There is an erratum in the paper "Tables of Maximally Equidistributed * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps * * ... the k_j most significant bits of z_j must be non-zero, * for each j. (Note: this restriction also applies to the * computer code given in [4], but was mistakenly not mentioned * in that paper.) * * This affects the seeding procedure by imposing the requirement * s1 > 1, s2 > 7, s3 > 15, s4 > 127. */ #include <linux/types.h> #include <linux/percpu.h> #include <linux/export.h> #include <linux/jiffies.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/bitops.h> #include <linux/slab.h> #include <linux/notifier.h> #include <asm/unaligned.h> /** * prandom_u32_state - seeded pseudo-random number generator. * @state: pointer to state structure holding seeded state. * * This is used for pseudo-randomness with no outside seeding. * For more random results, use prandom_u32(). */ u32 prandom_u32_state(struct rnd_state *state) { #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b) state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U); state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U); state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U); state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U); return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4); } EXPORT_SYMBOL(prandom_u32_state); /** * prandom_bytes_state - get the requested number of pseudo-random bytes * * @state: pointer to state structure holding seeded state. * @buf: where to copy the pseudo-random bytes to * @bytes: the requested number of bytes * * This is used for pseudo-randomness with no outside seeding. * For more random results, use prandom_bytes(). */ void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes) { u8 *ptr = buf; while (bytes >= sizeof(u32)) { put_unaligned(prandom_u32_state(state), (u32 *) ptr); ptr += sizeof(u32); bytes -= sizeof(u32); } if (bytes > 0) { u32 rem = prandom_u32_state(state); do { *ptr++ = (u8) rem; bytes--; rem >>= BITS_PER_BYTE; } while (bytes > 0); } } EXPORT_SYMBOL(prandom_bytes_state); static void prandom_warmup(struct rnd_state *state) { /* Calling RNG ten times to satisfy recurrence condition */ prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); prandom_u32_state(state); } void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state) { int i; for_each_possible_cpu(i) { struct rnd_state *state = per_cpu_ptr(pcpu_state, i); u32 seeds[4]; get_random_bytes(&seeds, sizeof(seeds)); state->s1 = __seed(seeds[0], 2U); state->s2 = __seed(seeds[1], 8U); state->s3 = __seed(seeds[2], 16U); state->s4 = __seed(seeds[3], 128U); prandom_warmup(state); } } EXPORT_SYMBOL(prandom_seed_full_state); #ifdef CONFIG_RANDOM32_SELFTEST static struct prandom_test1 { u32 seed; u32 result; } test1[] = { { 1U, 3484351685U }, { 2U, 2623130059U }, { 3U, 3125133893U }, { 4U, 984847254U }, }; static struct prandom_test2 { u32 seed; u32 iteration; u32 result; } test2[] = { /* Test cases against taus113 from GSL library. */ { 931557656U, 959U, 2975593782U }, { 1339693295U, 876U, 3887776532U }, { 1545556285U, 961U, 1615538833U }, { 601730776U, 723U, 1776162651U }, { 1027516047U, 687U, 511983079U }, { 416526298U, 700U, 916156552U }, { 1395522032U, 652U, 2222063676U }, { 366221443U, 617U, 2992857763U }, { 1539836965U, 714U, 3783265725U }, { 556206671U, 994U, 799626459U }, { 684907218U, 799U, 367789491U }, { 2121230701U, 931U, 2115467001U }, { 1668516451U, 644U, 3620590685U }, { 768046066U, 883U, 2034077390U }, { 1989159136U, 833U, 1195767305U }, { 536585145U, 996U, 3577259204U }, { 1008129373U, 642U, 1478080776U }, { 1740775604U, 939U, 1264980372U }, { 1967883163U, 508U, 10734624U }, { 1923019697U, 730U, 3821419629U }, { 442079932U, 560U, 3440032343U }, { 1961302714U, 845U, 841962572U }, { 2030205964U, 962U, 1325144227U }, { 1160407529U, 507U, 240940858U }, { 635482502U, 779U, 4200489746U }, { 1252788931U, 699U, 867195434U }, { 1961817131U, 719U, 668237657U }, { 1071468216U, 983U, 917876630U }, { 1281848367U, 932U, 1003100039U }, { 582537119U, 780U, 1127273778U }, { 1973672777U, 853U, 1071368872U }, { 1896756996U, 762U, 1127851055U }, { 847917054U, 500U, 1717499075U }, { 1240520510U, 951U, 2849576657U }, { 1685071682U, 567U, 1961810396U }, { 1516232129U, 557U, 3173877U }, { 1208118903U, 612U, 1613145022U }, { 1817269927U, 693U, 4279122573U }, { 1510091701U, 717U, 638191229U }, { 365916850U, 807U, 600424314U }, { 399324359U, 702U, 1803598116U }, { 1318480274U, 779U, 2074237022U }, { 697758115U, 840U, 1483639402U }, { 1696507773U, 840U, 577415447U }, { 2081979121U, 981U, 3041486449U }, { 955646687U, 742U, 3846494357U }, { 1250683506U, 749U, 836419859U }, { 595003102U, 534U, 366794109U }, { 47485338U, 558U, 3521120834U }, { 619433479U, 610U, 3991783875U }, { 704096520U, 518U, 4139493852U }, { 1712224984U, 606U, 2393312003U }, { 1318233152U, 922U, 3880361134U }, { 855572992U, 761U, 1472974787U }, { 64721421U, 703U, 683860550U }, { 678931758U, 840U, 380616043U }, { 692711973U, 778U, 1382361947U }, { 677703619U, 530U, 2826914161U }, { 92393223U, 586U, 1522128471U }, { 1222592920U, 743U, 3466726667U }, { 358288986U, 695U, 1091956998U }, { 1935056945U, 958U, 514864477U }, { 735675993U, 990U, 1294239989U }, { 1560089402U, 897U, 2238551287U }, { 70616361U, 829U, 22483098U }, { 368234700U, 731U, 2913875084U }, { 20221190U, 879U, 1564152970U }, { 539444654U, 682U, 1835141259U }, { 1314987297U, 840U, 1801114136U }, { 2019295544U, 645U, 3286438930U }, { 469023838U, 716U, 1637918202U }, { 1843754496U, 653U, 2562092152U }, { 400672036U, 809U, 4264212785U }, { 404722249U, 965U, 2704116999U }, { 600702209U, 758U, 584979986U }, { 519953954U, 667U, 2574436237U }, { 1658071126U, 694U, 2214569490U }, { 420480037U, 749U, 3430010866U }, { 690103647U, 969U, 3700758083U }, { 1029424799U, 937U, 3787746841U }, { 2012608669U, 506U, 3362628973U }, { 1535432887U, 998U, 42610943U }, { 1330635533U, 857U, 3040806504U }, { 1223800550U, 539U, 3954229517U }, { 1322411537U, 680U, 3223250324U }, { 1877847898U, 945U, 2915147143U }, { 1646356099U, 874U, 965988280U }, { 805687536U, 744U, 4032277920U }, { 1948093210U, 633U, 1346597684U }, { 392609744U, 783U, 1636083295U }, { 690241304U, 770U, 1201031298U }, { 1360302965U, 696U, 1665394461U }, { 1220090946U, 780U, 1316922812U }, { 447092251U, 500U, 3438743375U }, { 1613868791U, 592U, 828546883U }, { 523430951U, 548U, 2552392304U }, { 726692899U, 810U, 1656872867U }, { 1364340021U, 836U, 3710513486U }, { 1986257729U, 931U, 935013962U }, { 407983964U, 921U, 728767059U }, }; static u32 __extract_hwseed(void) { unsigned int val = 0; (void)(arch_get_random_seed_int(&val) || arch_get_random_int(&val)); return val; } static void prandom_seed_early(struct rnd_state *state, u32 seed, bool mix_with_hwseed) { #define LCG(x) ((x) * 69069U) /* super-duper LCG */ #define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0) state->s1 = __seed(HWSEED() ^ LCG(seed), 2U); state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U); state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U); state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U); } static int __init prandom_state_selftest(void) { int i, j, errors = 0, runs = 0; bool error = false; for (i = 0; i < ARRAY_SIZE(test1); i++) { struct rnd_state state; prandom_seed_early(&state, test1[i].seed, false); prandom_warmup(&state); if (test1[i].result != prandom_u32_state(&state)) error = true; } if (error) pr_warn("prandom: seed boundary self test failed\n"); else pr_info("prandom: seed boundary self test passed\n"); for (i = 0; i < ARRAY_SIZE(test2); i++) { struct rnd_state state; prandom_seed_early(&state, test2[i].seed, false); prandom_warmup(&state); for (j = 0; j < test2[i].iteration - 1; j++) prandom_u32_state(&state); if (test2[i].result != prandom_u32_state(&state)) errors++; runs++; cond_resched(); } if (errors) pr_warn("prandom: %d/%d self tests failed\n", errors, runs); else pr_info("prandom: %d self tests passed\n", runs); return 0; } core_initcall(prandom_state_selftest); #endif /* * The prandom_u32() implementation is now completely separate from the * prandom_state() functions, which are retained (for now) for compatibility. * * Because of (ab)use in the networking code for choosing random TCP/UDP port * numbers, which open DoS possibilities if guessable, we want something * stronger than a standard PRNG. But the performance requirements of * the network code do not allow robust crypto for this application. * * So this is a homebrew Junior Spaceman implementation, based on the * lowest-latency trustworthy crypto primitive available, SipHash. * (The authors of SipHash have not been consulted about this abuse of * their work.) * * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to * one word of output. This abbreviated version uses 2 rounds per word * of output. */ struct siprand_state { unsigned long v0; unsigned long v1; unsigned long v2; unsigned long v3; }; static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy; DEFINE_PER_CPU(unsigned long, net_rand_noise); EXPORT_PER_CPU_SYMBOL(net_rand_noise); /* * This is the core CPRNG function. As "pseudorandom", this is not used * for truly valuable things, just intended to be a PITA to guess. * For maximum speed, we do just two SipHash rounds per word. This is * the same rate as 4 rounds per 64 bits that SipHash normally uses, * so hopefully it's reasonably secure. * * There are two changes from the official SipHash finalization: * - We omit some constants XORed with v2 in the SipHash spec as irrelevant; * they are there only to make the output rounds distinct from the input * rounds, and this application has no input rounds. * - Rather than returning v0^v1^v2^v3, return v1+v3. * If you look at the SipHash round, the last operation on v3 is * "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time. * Likewise "v1 ^= v2". (The rotate of v2 makes a difference, but * it still cancels out half of the bits in v2 for no benefit.) * Second, since the last combining operation was xor, continue the * pattern of alternating xor/add for a tiny bit of extra non-linearity. */ static inline u32 siprand_u32(struct siprand_state *s) { unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3; unsigned long n = raw_cpu_read(net_rand_noise); v3 ^= n; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= n; s->v0 = v0; s->v1 = v1; s->v2 = v2; s->v3 = v3; return v1 + v3; } /** * prandom_u32 - pseudo random number generator * * A 32 bit pseudo-random number is generated using a fast * algorithm suitable for simulation. This algorithm is NOT * considered safe for cryptographic use. */ u32 prandom_u32(void) { struct siprand_state *state = get_cpu_ptr(&net_rand_state); u32 res = siprand_u32(state); put_cpu_ptr(&net_rand_state); return res; } EXPORT_SYMBOL(prandom_u32); /** * prandom_bytes - get the requested number of pseudo-random bytes * @buf: where to copy the pseudo-random bytes to * @bytes: the requested number of bytes */ void prandom_bytes(void *buf, size_t bytes) { struct siprand_state *state = get_cpu_ptr(&net_rand_state); u8 *ptr = buf; while (bytes >= sizeof(u32)) { put_unaligned(siprand_u32(state), (u32 *)ptr); ptr += sizeof(u32); bytes -= sizeof(u32); } if (bytes > 0) { u32 rem = siprand_u32(state); do { *ptr++ = (u8)rem; rem >>= BITS_PER_BYTE; } while (--bytes > 0); } put_cpu_ptr(&net_rand_state); } EXPORT_SYMBOL(prandom_bytes); /** * prandom_seed - add entropy to pseudo random number generator * @entropy: entropy value * * Add some additional seed material to the prandom pool. * The "entropy" is actually our IP address (the only caller is * the network code), not for unpredictability, but to ensure that * different machines are initialized differently. */ void prandom_seed(u32 entropy) { int i; add_device_randomness(&entropy, sizeof(entropy)); for_each_possible_cpu(i) { struct siprand_state *state = per_cpu_ptr(&net_rand_state, i); unsigned long v0 = state->v0, v1 = state->v1; unsigned long v2 = state->v2, v3 = state->v3; do { v3 ^= entropy; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= entropy; } while (unlikely(!v0 || !v1 || !v2 || !v3)); WRITE_ONCE(state->v0, v0); WRITE_ONCE(state->v1, v1); WRITE_ONCE(state->v2, v2); WRITE_ONCE(state->v3, v3); } } EXPORT_SYMBOL(prandom_seed); /* * Generate some initially weak seeding values to allow * the prandom_u32() engine to be started. */ static int __init prandom_init_early(void) { int i; unsigned long v0, v1, v2, v3; if (!arch_get_random_long(&v0)) v0 = jiffies; if (!arch_get_random_long(&v1)) v1 = random_get_entropy(); v2 = v0 ^ PRND_K0; v3 = v1 ^ PRND_K1; for_each_possible_cpu(i) { struct siprand_state *state; v3 ^= i; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= i; state = per_cpu_ptr(&net_rand_state, i); state->v0 = v0; state->v1 = v1; state->v2 = v2; state->v3 = v3; } return 0; } core_initcall(prandom_init_early); /* Stronger reseeding when available, and periodically thereafter. */ static void prandom_reseed(struct timer_list *unused); static DEFINE_TIMER(seed_timer, prandom_reseed); static void prandom_reseed(struct timer_list *unused) { unsigned long expires; int i; /* * Reinitialize each CPU's PRNG with 128 bits of key. * No locking on the CPUs, but then somewhat random results are, * well, expected. */ for_each_possible_cpu(i) { struct siprand_state *state; unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0; unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1; #if BITS_PER_LONG == 32 int j; /* * On 32-bit machines, hash in two extra words to * approximate 128-bit key length. Not that the hash * has that much security, but this prevents a trivial * 64-bit brute force. */ for (j = 0; j < 2; j++) { unsigned long m = get_random_long(); v3 ^= m; PRND_SIPROUND(v0, v1, v2, v3); PRND_SIPROUND(v0, v1, v2, v3); v0 ^= m; } #endif /* * Probably impossible in practice, but there is a * theoretical risk that a race between this reseeding * and the target CPU writing its state back could * create the all-zero SipHash fixed point. * * To ensure that never happens, ensure the state * we write contains no zero words. */ state = per_cpu_ptr(&net_rand_state, i); WRITE_ONCE(state->v0, v0 ? v0 : -1ul); WRITE_ONCE(state->v1, v1 ? v1 : -1ul); WRITE_ONCE(state->v2, v2 ? v2 : -1ul); WRITE_ONCE(state->v3, v3 ? v3 : -1ul); } /* reseed every ~60 seconds, in [40 .. 80) interval with slack */ expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ)); mod_timer(&seed_timer, expires); } /* * The random ready callback can be called from almost any interrupt. * To avoid worrying about whether it's safe to delay that interrupt * long enough to seed all CPUs, just schedule an immediate timer event. */ static int prandom_timer_start(struct notifier_block *nb, unsigned long action, void *data) { mod_timer(&seed_timer, jiffies); return 0; } #ifdef CONFIG_RANDOM32_SELFTEST /* Principle: True 32-bit random numbers will all have 16 differing bits on * average. For each 32-bit number, there are 601M numbers differing by 16 * bits, and 89% of the numbers differ by at least 12 bits. Note that more * than 16 differing bits also implies a correlation with inverted bits. Thus * we take 1024 random numbers and compare each of them to the other ones, * counting the deviation of correlated bits to 16. Constants report 32, * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the * u32 total, TEST_SIZE may be as large as 4096 samples. */ #define TEST_SIZE 1024 static int __init prandom32_state_selftest(void) { unsigned int x, y, bits, samples; u32 xor, flip; u32 total; u32 *data; data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL); if (!data) return 0; for (samples = 0; samples < TEST_SIZE; samples++) data[samples] = prandom_u32(); flip = total = 0; for (x = 0; x < samples; x++) { for (y = 0; y < samples; y++) { if (x == y) continue; xor = data[x] ^ data[y]; flip |= xor; bits = hweight32(xor); total += (bits - 16) * (bits - 16); } } /* We'll return the average deviation as 2*sqrt(corr/samples), which * is also sqrt(4*corr/samples) which provides a better resolution. */ bits = int_sqrt(total / (samples * (samples - 1)) * 4); if (bits > 6) pr_warn("prandom32: self test failed (at least %u bits" " correlated, fixed_mask=%#x fixed_value=%#x\n", bits, ~flip, data[0] & ~flip); else pr_info("prandom32: self test passed (less than %u bits" " correlated)\n", bits+1); kfree(data); return 0; } core_initcall(prandom32_state_selftest); #endif /* CONFIG_RANDOM32_SELFTEST */ /* * Start periodic full reseeding as soon as strong * random numbers are available. */ static int __init prandom_init_late(void) { static struct notifier_block random_ready = { .notifier_call = prandom_timer_start }; int ret = register_random_ready_notifier(&random_ready); if (ret == -EALREADY) { prandom_timer_start(&random_ready, 0, NULL); ret = 0; } return ret; } late_initcall(prandom_init_late);
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 // SPDX-License-Identifier: GPL-2.0-or-later /* * Routines having to do with the 'struct sk_buff' memory handlers. * * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> * Florian La Roche <rzsfl@rz.uni-sb.de> * * Fixes: * Alan Cox : Fixed the worst of the load * balancer bugs. * Dave Platt : Interrupt stacking fix. * Richard Kooijman : Timestamp fixes. * Alan Cox : Changed buffer format. * Alan Cox : destructor hook for AF_UNIX etc. * Linus Torvalds : Better skb_clone. * Alan Cox : Added skb_copy. * Alan Cox : Added all the changed routines Linus * only put in the headers * Ray VanTassle : Fixed --skb->lock in free * Alan Cox : skb_copy copy arp field * Andi Kleen : slabified it. * Robert Olsson : Removed skb_head_pool * * NOTE: * The __skb_ routines should be called with interrupts * disabled, or you better be *real* sure that the operation is atomic * with respect to whatever list is being frobbed (e.g. via lock_sock() * or via disabling bottom half handlers, etc). */ /* * The functions in this file will not compile correctly with gcc 2.4.x */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/slab.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/sctp.h> #include <linux/netdevice.h> #ifdef CONFIG_NET_CLS_ACT #include <net/pkt_sched.h> #endif #include <linux/string.h> #include <linux/skbuff.h> #include <linux/splice.h> #include <linux/cache.h> #include <linux/rtnetlink.h> #include <linux/init.h> #include <linux/scatterlist.h> #include <linux/errqueue.h> #include <linux/prefetch.h> #include <linux/if_vlan.h> #include <linux/mpls.h> #include <linux/kcov.h> #include <net/protocol.h> #include <net/dst.h> #include <net/sock.h> #include <net/checksum.h> #include <net/ip6_checksum.h> #include <net/xfrm.h> #include <net/mpls.h> #include <net/mptcp.h> #include <linux/uaccess.h> #include <trace/events/skb.h> #include <linux/highmem.h> #include <linux/capability.h> #include <linux/user_namespace.h> #include <linux/indirect_call_wrapper.h> #include "datagram.h" #include "sock_destructor.h" struct kmem_cache *skbuff_head_cache __ro_after_init; static struct kmem_cache *skbuff_fclone_cache __ro_after_init; #ifdef CONFIG_SKB_EXTENSIONS static struct kmem_cache *skbuff_ext_cache __ro_after_init; #endif int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; EXPORT_SYMBOL(sysctl_max_skb_frags); /** * skb_panic - private function for out-of-line support * @skb: buffer * @sz: size * @addr: address * @msg: skb_over_panic or skb_under_panic * * Out-of-line support for skb_put() and skb_push(). * Called via the wrapper skb_over_panic() or skb_under_panic(). * Keep out of line to prevent kernel bloat. * __builtin_return_address is not used because it is not always reliable. */ static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, const char msg[]) { pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", msg, addr, skb->len, sz, skb->head, skb->data, (unsigned long)skb->tail, (unsigned long)skb->end, skb->dev ? skb->dev->name : "<NULL>"); BUG(); } static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) { skb_panic(skb, sz, addr, __func__); } static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) { skb_panic(skb, sz, addr, __func__); } /* * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells * the caller if emergency pfmemalloc reserves are being used. If it is and * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves * may be used. Otherwise, the packet data may be discarded until enough * memory is free */ #define kmalloc_reserve(size, gfp, node, pfmemalloc) \ __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip, bool *pfmemalloc) { void *obj; bool ret_pfmemalloc = false; /* * Try a regular allocation, when that fails and we're not entitled * to the reserves, fail. */ obj = kmalloc_node_track_caller(size, flags | __GFP_NOMEMALLOC | __GFP_NOWARN, node); if (obj || !(gfp_pfmemalloc_allowed(flags))) goto out; /* Try again but now we are using pfmemalloc reserves */ ret_pfmemalloc = true; obj = kmalloc_node_track_caller(size, flags, node); out: if (pfmemalloc) *pfmemalloc = ret_pfmemalloc; return obj; } /* Allocate a new skbuff. We do this ourselves so we can fill in a few * 'private' fields and also do memory statistics to find all the * [BEEP] leaks. * */ /** * __alloc_skb - allocate a network buffer * @size: size to allocate * @gfp_mask: allocation mask * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache * instead of head cache and allocate a cloned (child) skb. * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for * allocations in case the data is required for writeback * @node: numa node to allocate memory on * * Allocate a new &sk_buff. The returned buffer has no headroom and a * tail room of at least size bytes. The object has a reference count * of one. The return is the buffer. On a failure the return is %NULL. * * Buffers may only be allocated from interrupts using a @gfp_mask of * %GFP_ATOMIC. */ struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, int flags, int node) { struct kmem_cache *cache; struct skb_shared_info *shinfo; struct sk_buff *skb; u8 *data; bool pfmemalloc; cache = (flags & SKB_ALLOC_FCLONE) ? skbuff_fclone_cache : skbuff_head_cache; if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) gfp_mask |= __GFP_MEMALLOC; /* Get the HEAD */ skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); if (!skb) goto out; prefetchw(skb); /* We do our best to align skb_shared_info on a separate cache * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives * aligned memory blocks, unless SLUB/SLAB debug is enabled. * Both skb->head and skb_shared_info are cache line aligned. */ size = SKB_DATA_ALIGN(size); size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); if (!data) goto nodata; /* kmalloc(size) might give us more room than requested. * Put skb_shared_info exactly at the end of allocated zone, * to allow max possible filling before reallocation. */ size = SKB_WITH_OVERHEAD(ksize(data)); prefetchw(data + size); /* * Only clear those fields we need to clear, not those that we will * actually initialise below. Hence, don't put any more fields after * the tail pointer in struct sk_buff! */ memset(skb, 0, offsetof(struct sk_buff, tail)); /* Account for allocated memory : skb + skb->head */ skb->truesize = SKB_TRUESIZE(size); skb->pfmemalloc = pfmemalloc; refcount_set(&skb->users, 1); skb->head = data; skb->data = data; skb_reset_tail_pointer(skb); skb->end = skb->tail + size; skb->mac_header = (typeof(skb->mac_header))~0U; skb->transport_header = (typeof(skb->transport_header))~0U; /* make sure we initialize shinfo sequentially */ shinfo = skb_shinfo(skb); memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); atomic_set(&shinfo->dataref, 1); if (flags & SKB_ALLOC_FCLONE) { struct sk_buff_fclones *fclones; fclones = container_of(skb, struct sk_buff_fclones, skb1); skb->fclone = SKB_FCLONE_ORIG; refcount_set(&fclones->fclone_ref, 1); fclones->skb2.fclone = SKB_FCLONE_CLONE; } skb_set_kcov_handle(skb, kcov_common_handle()); out: return skb; nodata: kmem_cache_free(cache, skb); skb = NULL; goto out; } EXPORT_SYMBOL(__alloc_skb); /* Caller must provide SKB that is memset cleared */ static struct sk_buff *__build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size) { struct skb_shared_info *shinfo; unsigned int size = frag_size ? : ksize(data); size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); /* Assumes caller memset cleared SKB */ skb->truesize = SKB_TRUESIZE(size); refcount_set(&skb->users, 1); skb->head = data; skb->data = data; skb_reset_tail_pointer(skb); skb->end = skb->tail + size; skb->mac_header = (typeof(skb->mac_header))~0U; skb->transport_header = (typeof(skb->transport_header))~0U; /* make sure we initialize shinfo sequentially */ shinfo = skb_shinfo(skb); memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); atomic_set(&shinfo->dataref, 1); skb_set_kcov_handle(skb, kcov_common_handle()); return skb; } /** * __build_skb - build a network buffer * @data: data buffer provided by caller * @frag_size: size of data, or 0 if head was kmalloced * * Allocate a new &sk_buff. Caller provides space holding head and * skb_shared_info. @data must have been allocated by kmalloc() only if * @frag_size is 0, otherwise data should come from the page allocator * or vmalloc() * The return is the new skb buffer. * On a failure the return is %NULL, and @data is not freed. * Notes : * Before IO, driver allocates only data buffer where NIC put incoming frame * Driver should add room at head (NET_SKB_PAD) and * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) * After IO, driver calls build_skb(), to allocate sk_buff and populate it * before giving packet to stack. * RX rings only contains data buffers, not full skbs. */ struct sk_buff *__build_skb(void *data, unsigned int frag_size) { struct sk_buff *skb; skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); if (unlikely(!skb)) return NULL; memset(skb, 0, offsetof(struct sk_buff, tail)); return __build_skb_around(skb, data, frag_size); } /* build_skb() is wrapper over __build_skb(), that specifically * takes care of skb->head and skb->pfmemalloc * This means that if @frag_size is not zero, then @data must be backed * by a page fragment, not kmalloc() or vmalloc() */ struct sk_buff *build_skb(void *data, unsigned int frag_size) { struct sk_buff *skb = __build_skb(data, frag_size); if (skb && frag_size) { skb->head_frag = 1; if (page_is_pfmemalloc(virt_to_head_page(data))) skb->pfmemalloc = 1; } return skb; } EXPORT_SYMBOL(build_skb); /** * build_skb_around - build a network buffer around provided skb * @skb: sk_buff provide by caller, must be memset cleared * @data: data buffer provided by caller * @frag_size: size of data, or 0 if head was kmalloced */ struct sk_buff *build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size) { if (unlikely(!skb)) return NULL; skb = __build_skb_around(skb, data, frag_size); if (skb && frag_size) { skb->head_frag = 1; if (page_is_pfmemalloc(virt_to_head_page(data))) skb->pfmemalloc = 1; } return skb; } EXPORT_SYMBOL(build_skb_around); #define NAPI_SKB_CACHE_SIZE 64 struct napi_alloc_cache { struct page_frag_cache page; unsigned int skb_count; void *skb_cache[NAPI_SKB_CACHE_SIZE]; }; static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); return page_frag_alloc(&nc->page, fragsz, gfp_mask); } void *napi_alloc_frag(unsigned int fragsz) { fragsz = SKB_DATA_ALIGN(fragsz); return __napi_alloc_frag(fragsz, GFP_ATOMIC); } EXPORT_SYMBOL(napi_alloc_frag); /** * netdev_alloc_frag - allocate a page fragment * @fragsz: fragment size * * Allocates a frag from a page for receive buffer. * Uses GFP_ATOMIC allocations. */ void *netdev_alloc_frag(unsigned int fragsz) { struct page_frag_cache *nc; void *data; fragsz = SKB_DATA_ALIGN(fragsz); if (in_irq() || irqs_disabled()) { nc = this_cpu_ptr(&netdev_alloc_cache); data = page_frag_alloc(nc, fragsz, GFP_ATOMIC); } else { local_bh_disable(); data = __napi_alloc_frag(fragsz, GFP_ATOMIC); local_bh_enable(); } return data; } EXPORT_SYMBOL(netdev_alloc_frag); /** * __netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @len: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has NET_SKB_PAD headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. */ struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, gfp_t gfp_mask) { struct page_frag_cache *nc; struct sk_buff *skb; bool pfmemalloc; void *data; len += NET_SKB_PAD; /* If requested length is either too small or too big, * we use kmalloc() for skb->head allocation. */ if (len <= SKB_WITH_OVERHEAD(1024) || len > SKB_WITH_OVERHEAD(PAGE_SIZE) || (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); if (!skb) goto skb_fail; goto skb_success; } len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); len = SKB_DATA_ALIGN(len); if (sk_memalloc_socks()) gfp_mask |= __GFP_MEMALLOC; if (in_irq() || irqs_disabled()) { nc = this_cpu_ptr(&netdev_alloc_cache); data = page_frag_alloc(nc, len, gfp_mask); pfmemalloc = nc->pfmemalloc; } else { local_bh_disable(); nc = this_cpu_ptr(&napi_alloc_cache.page); data = page_frag_alloc(nc, len, gfp_mask); pfmemalloc = nc->pfmemalloc; local_bh_enable(); } if (unlikely(!data)) return NULL; skb = __build_skb(data, len); if (unlikely(!skb)) { skb_free_frag(data); return NULL; } if (pfmemalloc) skb->pfmemalloc = 1; skb->head_frag = 1; skb_success: skb_reserve(skb, NET_SKB_PAD); skb->dev = dev; skb_fail: return skb; } EXPORT_SYMBOL(__netdev_alloc_skb); /** * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance * @napi: napi instance this buffer was allocated for * @len: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages * * Allocate a new sk_buff for use in NAPI receive. This buffer will * attempt to allocate the head from a special reserved region used * only for NAPI Rx allocation. By doing this we can save several * CPU cycles by avoiding having to disable and re-enable IRQs. * * %NULL is returned if there is no free memory. */ struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, gfp_t gfp_mask) { struct napi_alloc_cache *nc; struct sk_buff *skb; void *data; len += NET_SKB_PAD + NET_IP_ALIGN; /* If requested length is either too small or too big, * we use kmalloc() for skb->head allocation. */ if (len <= SKB_WITH_OVERHEAD(1024) || len > SKB_WITH_OVERHEAD(PAGE_SIZE) || (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); if (!skb) goto skb_fail; goto skb_success; } nc = this_cpu_ptr(&napi_alloc_cache); len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); len = SKB_DATA_ALIGN(len); if (sk_memalloc_socks()) gfp_mask |= __GFP_MEMALLOC; data = page_frag_alloc(&nc->page, len, gfp_mask); if (unlikely(!data)) return NULL; skb = __build_skb(data, len); if (unlikely(!skb)) { skb_free_frag(data); return NULL; } if (nc->page.pfmemalloc) skb->pfmemalloc = 1; skb->head_frag = 1; skb_success: skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); skb->dev = napi->dev; skb_fail: return skb; } EXPORT_SYMBOL(__napi_alloc_skb); void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize) { skb_fill_page_desc(skb, i, page, off, size); skb->len += size; skb->data_len += size; skb->truesize += truesize; } EXPORT_SYMBOL(skb_add_rx_frag); void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, unsigned int truesize) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; skb_frag_size_add(frag, size); skb->len += size; skb->data_len += size; skb->truesize += truesize; } EXPORT_SYMBOL(skb_coalesce_rx_frag); static void skb_drop_list(struct sk_buff **listp) { kfree_skb_list(*listp); *listp = NULL; } static inline void skb_drop_fraglist(struct sk_buff *skb) { skb_drop_list(&skb_shinfo(skb)->frag_list); } static void skb_clone_fraglist(struct sk_buff *skb) { struct sk_buff *list; skb_walk_frags(skb, list) skb_get(list); } static void skb_free_head(struct sk_buff *skb) { unsigned char *head = skb->head; if (skb->head_frag) skb_free_frag(head); else kfree(head); } static void skb_release_data(struct sk_buff *skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); int i; if (skb->cloned && atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, &shinfo->dataref)) return; for (i = 0; i < shinfo->nr_frags; i++) __skb_frag_unref(&shinfo->frags[i]); if (shinfo->frag_list) kfree_skb_list(shinfo->frag_list); skb_zcopy_clear(skb, true); skb_free_head(skb); } /* * Free an skbuff by memory without cleaning the state. */ static void kfree_skbmem(struct sk_buff *skb) { struct sk_buff_fclones *fclones; switch (skb->fclone) { case SKB_FCLONE_UNAVAILABLE: kmem_cache_free(skbuff_head_cache, skb); return; case SKB_FCLONE_ORIG: fclones = container_of(skb, struct sk_buff_fclones, skb1); /* We usually free the clone (TX completion) before original skb * This test would have no chance to be true for the clone, * while here, branch prediction will be good. */ if (refcount_read(&fclones->fclone_ref) == 1) goto fastpath; break; default: /* SKB_FCLONE_CLONE */ fclones = container_of(skb, struct sk_buff_fclones, skb2); break; } if (!refcount_dec_and_test(&fclones->fclone_ref)) return; fastpath: kmem_cache_free(skbuff_fclone_cache, fclones); } void skb_release_head_state(struct sk_buff *skb) { skb_dst_drop(skb); if (skb->destructor) { WARN_ON(in_irq()); skb->destructor(skb); } #if IS_ENABLED(CONFIG_NF_CONNTRACK) nf_conntrack_put(skb_nfct(skb)); #endif skb_ext_put(skb); } /* Free everything but the sk_buff shell. */ static void skb_release_all(struct sk_buff *skb) { skb_release_head_state(skb); if (likely(skb->head)) skb_release_data(skb); } /** * __kfree_skb - private function * @skb: buffer * * Free an sk_buff. Release anything attached to the buffer. * Clean the state. This is an internal helper function. Users should * always call kfree_skb */ void __kfree_skb(struct sk_buff *skb) { skb_release_all(skb); kfree_skbmem(skb); } EXPORT_SYMBOL(__kfree_skb); /** * kfree_skb - free an sk_buff * @skb: buffer to free * * Drop a reference to the buffer and free it if the usage count has * hit zero. */ void kfree_skb(struct sk_buff *skb) { if (!skb_unref(skb)) return; trace_kfree_skb(skb, __builtin_return_address(0)); __kfree_skb(skb); } EXPORT_SYMBOL(kfree_skb); void kfree_skb_list(struct sk_buff *segs) { while (segs) { struct sk_buff *next = segs->next; kfree_skb(segs); segs = next; } } EXPORT_SYMBOL(kfree_skb_list); /* Dump skb information and contents. * * Must only be called from net_ratelimit()-ed paths. * * Dumps whole packets if full_pkt, only headers otherwise. */ void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) { struct skb_shared_info *sh = skb_shinfo(skb); struct net_device *dev = skb->dev; struct sock *sk = skb->sk; struct sk_buff *list_skb; bool has_mac, has_trans; int headroom, tailroom; int i, len, seg_len; if (full_pkt) len = skb->len; else len = min_t(int, skb->len, MAX_HEADER + 128); headroom = skb_headroom(skb); tailroom = skb_tailroom(skb); has_mac = skb_mac_header_was_set(skb); has_trans = skb_transport_header_was_set(skb); printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" "mac=(%d,%d) net=(%d,%d) trans=%d\n" "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", level, skb->len, headroom, skb_headlen(skb), tailroom, has_mac ? skb->mac_header : -1, has_mac ? skb_mac_header_len(skb) : -1, skb->network_header, has_trans ? skb_network_header_len(skb) : -1, has_trans ? skb->transport_header : -1, sh->tx_flags, sh->nr_frags, sh->gso_size, sh->gso_type, sh->gso_segs, skb->csum, skb->ip_summed, skb->csum_complete_sw, skb->csum_valid, skb->csum_level, skb->hash, skb->sw_hash, skb->l4_hash, ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); if (dev) printk("%sdev name=%s feat=%pNF\n", level, dev->name, &dev->features); if (sk) printk("%ssk family=%hu type=%u proto=%u\n", level, sk->sk_family, sk->sk_type, sk->sk_protocol); if (full_pkt && headroom) print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 16, 1, skb->head, headroom, false); seg_len = min_t(int, skb_headlen(skb), len); if (seg_len) print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, seg_len, false); len -= seg_len; if (full_pkt && tailroom) print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 16, 1, skb_tail_pointer(skb), tailroom, false); for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 p_off, p_len, copied; struct page *p; u8 *vaddr; skb_frag_foreach_page(frag, skb_frag_off(frag), skb_frag_size(frag), p, p_off, p_len, copied) { seg_len = min_t(int, p_len, len); vaddr = kmap_atomic(p); print_hex_dump(level, "skb frag: ", DUMP_PREFIX_OFFSET, 16, 1, vaddr + p_off, seg_len, false); kunmap_atomic(vaddr); len -= seg_len; if (!len) break; } } if (full_pkt && skb_has_frag_list(skb)) { printk("skb fraglist:\n"); skb_walk_frags(skb, list_skb) skb_dump(level, list_skb, true); } } EXPORT_SYMBOL(skb_dump); /** * skb_tx_error - report an sk_buff xmit error * @skb: buffer that triggered an error * * Report xmit error if a device callback is tracking this skb. * skb must be freed afterwards. */ void skb_tx_error(struct sk_buff *skb) { skb_zcopy_clear(skb, true); } EXPORT_SYMBOL(skb_tx_error); #ifdef CONFIG_TRACEPOINTS /** * consume_skb - free an skbuff * @skb: buffer to free * * Drop a ref to the buffer and free it if the usage count has hit zero * Functions identically to kfree_skb, but kfree_skb assumes that the frame * is being dropped after a failure and notes that */ void consume_skb(struct sk_buff *skb) { if (!skb_unref(skb)) return; trace_consume_skb(skb); __kfree_skb(skb); } EXPORT_SYMBOL(consume_skb); #endif /** * consume_stateless_skb - free an skbuff, assuming it is stateless * @skb: buffer to free * * Alike consume_skb(), but this variant assumes that this is the last * skb reference and all the head states have been already dropped */ void __consume_stateless_skb(struct sk_buff *skb) { trace_consume_skb(skb); skb_release_data(skb); kfree_skbmem(skb); } void __kfree_skb_flush(void) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); /* flush skb_cache if containing objects */ if (nc->skb_count) { kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, nc->skb_cache); nc->skb_count = 0; } } static inline void _kfree_skb_defer(struct sk_buff *skb) { struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); /* drop skb->head and call any destructors for packet */ skb_release_all(skb); /* record skb to CPU local list */ nc->skb_cache[nc->skb_count++] = skb; #ifdef CONFIG_SLUB /* SLUB writes into objects when freeing */ prefetchw(skb); #endif /* flush skb_cache if it is filled */ if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, nc->skb_cache); nc->skb_count = 0; } } void __kfree_skb_defer(struct sk_buff *skb) { _kfree_skb_defer(skb); } void napi_consume_skb(struct sk_buff *skb, int budget) { /* Zero budget indicate non-NAPI context called us, like netpoll */ if (unlikely(!budget)) { dev_consume_skb_any(skb); return; } if (!skb_unref(skb)) return; /* if reaching here SKB is ready to free */ trace_consume_skb(skb); /* if SKB is a clone, don't handle this case */ if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { __kfree_skb(skb); return; } _kfree_skb_defer(skb); } EXPORT_SYMBOL(napi_consume_skb); /* Make sure a field is enclosed inside headers_start/headers_end section */ #define CHECK_SKB_FIELD(field) \ BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ offsetof(struct sk_buff, headers_start)); \ BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ offsetof(struct sk_buff, headers_end)); \ static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) { new->tstamp = old->tstamp; /* We do not copy old->sk */ new->dev = old->dev; memcpy(new->cb, old->cb, sizeof(old->cb)); skb_dst_copy(new, old); __skb_ext_copy(new, old); __nf_copy(new, old, false); /* Note : this field could be in headers_start/headers_end section * It is not yet because we do not want to have a 16 bit hole */ new->queue_mapping = old->queue_mapping; memcpy(&new->headers_start, &old->headers_start, offsetof(struct sk_buff, headers_end) - offsetof(struct sk_buff, headers_start)); CHECK_SKB_FIELD(protocol); CHECK_SKB_FIELD(csum); CHECK_SKB_FIELD(hash); CHECK_SKB_FIELD(priority); CHECK_SKB_FIELD(skb_iif); CHECK_SKB_FIELD(vlan_proto); CHECK_SKB_FIELD(vlan_tci); CHECK_SKB_FIELD(transport_header); CHECK_SKB_FIELD(network_header); CHECK_SKB_FIELD(mac_header); CHECK_SKB_FIELD(inner_protocol); CHECK_SKB_FIELD(inner_transport_header); CHECK_SKB_FIELD(inner_network_header); CHECK_SKB_FIELD(inner_mac_header); CHECK_SKB_FIELD(mark); #ifdef CONFIG_NETWORK_SECMARK CHECK_SKB_FIELD(secmark); #endif #ifdef CONFIG_NET_RX_BUSY_POLL CHECK_SKB_FIELD(napi_id); #endif #ifdef CONFIG_XPS CHECK_SKB_FIELD(sender_cpu); #endif #ifdef CONFIG_NET_SCHED CHECK_SKB_FIELD(tc_index); #endif } /* * You should not add any new code to this function. Add it to * __copy_skb_header above instead. */ static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) { #define C(x) n->x = skb->x n->next = n->prev = NULL; n->sk = NULL; __copy_skb_header(n, skb); C(len); C(data_len); C(mac_len); n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; n->cloned = 1; n->nohdr = 0; n->peeked = 0; C(pfmemalloc); n->destructor = NULL; C(tail); C(end); C(head); C(head_frag); C(data); C(truesize); refcount_set(&n->users, 1); atomic_inc(&(skb_shinfo(skb)->dataref)); skb->cloned = 1; return n; #undef C } /** * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg * @first: first sk_buff of the msg */ struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) { struct sk_buff *n; n = alloc_skb(0, GFP_ATOMIC); if (!n) return NULL; n->len = first->len; n->data_len = first->len; n->truesize = first->truesize; skb_shinfo(n)->frag_list = first; __copy_skb_header(n, first); n->destructor = NULL; return n; } EXPORT_SYMBOL_GPL(alloc_skb_for_msg); /** * skb_morph - morph one skb into another * @dst: the skb to receive the contents * @src: the skb to supply the contents * * This is identical to skb_clone except that the target skb is * supplied by the user. * * The target skb is returned upon exit. */ struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) { skb_release_all(dst); return __skb_clone(dst, src); } EXPORT_SYMBOL_GPL(skb_morph); int mm_account_pinned_pages(struct mmpin *mmp, size_t size) { unsigned long max_pg, num_pg, new_pg, old_pg; struct user_struct *user; if (capable(CAP_IPC_LOCK) || !size) return 0; num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; user = mmp->user ? : current_user(); do { old_pg = atomic_long_read(&user->locked_vm); new_pg = old_pg + num_pg; if (new_pg > max_pg) return -ENOBUFS; } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) != old_pg); if (!mmp->user) { mmp->user = get_uid(user); mmp->num_pg = num_pg; } else { mmp->num_pg += num_pg; } return 0; } EXPORT_SYMBOL_GPL(mm_account_pinned_pages); void mm_unaccount_pinned_pages(struct mmpin *mmp) { if (mmp->user) { atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); free_uid(mmp->user); } } EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size) { struct ubuf_info *uarg; struct sk_buff *skb; WARN_ON_ONCE(!in_task()); skb = sock_omalloc(sk, 0, GFP_KERNEL); if (!skb) return NULL; BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); uarg = (void *)skb->cb; uarg->mmp.user = NULL; if (mm_account_pinned_pages(&uarg->mmp, size)) { kfree_skb(skb); return NULL; } uarg->callback = sock_zerocopy_callback; uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; uarg->len = 1; uarg->bytelen = size; uarg->zerocopy = 1; refcount_set(&uarg->refcnt, 1); sock_hold(sk); return uarg; } EXPORT_SYMBOL_GPL(sock_zerocopy_alloc); static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg) { return container_of((void *)uarg, struct sk_buff, cb); } struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, struct ubuf_info *uarg) { if (uarg) { const u32 byte_limit = 1 << 19; /* limit to a few TSO */ u32 bytelen, next; /* realloc only when socket is locked (TCP, UDP cork), * so uarg->len and sk_zckey access is serialized */ if (!sock_owned_by_user(sk)) { WARN_ON_ONCE(1); return NULL; } bytelen = uarg->bytelen + size; if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) { /* TCP can create new skb to attach new uarg */ if (sk->sk_type == SOCK_STREAM) goto new_alloc; return NULL; } next = (u32)atomic_read(&sk->sk_zckey); if ((u32)(uarg->id + uarg->len) == next) { if (mm_account_pinned_pages(&uarg->mmp, size)) return NULL; uarg->len++; uarg->bytelen = bytelen; atomic_set(&sk->sk_zckey, ++next); /* no extra ref when appending to datagram (MSG_MORE) */ if (sk->sk_type == SOCK_STREAM) sock_zerocopy_get(uarg); return uarg; } } new_alloc: return sock_zerocopy_alloc(sk, size); } EXPORT_SYMBOL_GPL(sock_zerocopy_realloc); static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) { struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); u32 old_lo, old_hi; u64 sum_len; old_lo = serr->ee.ee_info; old_hi = serr->ee.ee_data; sum_len = old_hi - old_lo + 1ULL + len; if (sum_len >= (1ULL << 32)) return false; if (lo != old_hi + 1) return false; serr->ee.ee_data += len; return true; } void sock_zerocopy_callback(struct ubuf_info *uarg, bool success) { struct sk_buff *tail, *skb = skb_from_uarg(uarg); struct sock_exterr_skb *serr; struct sock *sk = skb->sk; struct sk_buff_head *q; unsigned long flags; u32 lo, hi; u16 len; mm_unaccount_pinned_pages(&uarg->mmp); /* if !len, there was only 1 call, and it was aborted * so do not queue a completion notification */ if (!uarg->len || sock_flag(sk, SOCK_DEAD)) goto release; len = uarg->len; lo = uarg->id; hi = uarg->id + len - 1; serr = SKB_EXT_ERR(skb); memset(serr, 0, sizeof(*serr)); serr->ee.ee_errno = 0; serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; serr->ee.ee_data = hi; serr->ee.ee_info = lo; if (!success) serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; q = &sk->sk_error_queue; spin_lock_irqsave(&q->lock, flags); tail = skb_peek_tail(q); if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || !skb_zerocopy_notify_extend(tail, lo, len)) { __skb_queue_tail(q, skb); skb = NULL; } spin_unlock_irqrestore(&q->lock, flags); sk->sk_error_report(sk); release: consume_skb(skb); sock_put(sk); } EXPORT_SYMBOL_GPL(sock_zerocopy_callback); void sock_zerocopy_put(struct ubuf_info *uarg) { if (uarg && refcount_dec_and_test(&uarg->refcnt)) { if (uarg->callback) uarg->callback(uarg, uarg->zerocopy); else consume_skb(skb_from_uarg(uarg)); } } EXPORT_SYMBOL_GPL(sock_zerocopy_put); void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) { if (uarg) { struct sock *sk = skb_from_uarg(uarg)->sk; atomic_dec(&sk->sk_zckey); uarg->len--; if (have_uref) sock_zerocopy_put(uarg); } } EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort); int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) { return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len); } EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram); int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, struct msghdr *msg, int len, struct ubuf_info *uarg) { struct ubuf_info *orig_uarg = skb_zcopy(skb); struct iov_iter orig_iter = msg->msg_iter; int err, orig_len = skb->len; /* An skb can only point to one uarg. This edge case happens when * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. */ if (orig_uarg && uarg != orig_uarg) return -EEXIST; err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len); if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { struct sock *save_sk = skb->sk; /* Streams do not free skb on error. Reset to prev state. */ msg->msg_iter = orig_iter; skb->sk = sk; ___pskb_trim(skb, orig_len); skb->sk = save_sk; return err; } skb_zcopy_set(skb, uarg, NULL); return skb->len - orig_len; } EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, gfp_t gfp_mask) { if (skb_zcopy(orig)) { if (skb_zcopy(nskb)) { /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ if (!gfp_mask) { WARN_ON_ONCE(1); return -ENOMEM; } if (skb_uarg(nskb) == skb_uarg(orig)) return 0; if (skb_copy_ubufs(nskb, GFP_ATOMIC)) return -EIO; } skb_zcopy_set(nskb, skb_uarg(orig), NULL); } return 0; } /** * skb_copy_ubufs - copy userspace skb frags buffers to kernel * @skb: the skb to modify * @gfp_mask: allocation priority * * This must be called on SKBTX_DEV_ZEROCOPY skb. * It will copy all frags into kernel and drop the reference * to userspace pages. * * If this function is called from an interrupt gfp_mask() must be * %GFP_ATOMIC. * * Returns 0 on success or a negative error code on failure * to allocate kernel memory to copy to. */ int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) { int num_frags = skb_shinfo(skb)->nr_frags; struct page *page, *head = NULL; int i, new_frags; u32 d_off; if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) return -EINVAL; if (!num_frags) goto release; new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT; for (i = 0; i < new_frags; i++) { page = alloc_page(gfp_mask); if (!page) { while (head) { struct page *next = (struct page *)page_private(head); put_page(head); head = next; } return -ENOMEM; } set_page_private(page, (unsigned long)head); head = page; } page = head; d_off = 0; for (i = 0; i < num_frags; i++) { skb_frag_t *f = &skb_shinfo(skb)->frags[i]; u32 p_off, p_len, copied; struct page *p; u8 *vaddr; skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), p, p_off, p_len, copied) { u32 copy, done = 0; vaddr = kmap_atomic(p); while (done < p_len) { if (d_off == PAGE_SIZE) { d_off = 0; page = (struct page *)page_private(page); } copy = min_t(u32, PAGE_SIZE - d_off, p_len - done); memcpy(page_address(page) + d_off, vaddr + p_off + done, copy); done += copy; d_off += copy; } kunmap_atomic(vaddr); } } /* skb frags release userspace buffers */ for (i = 0; i < num_frags; i++) skb_frag_unref(skb, i); /* skb frags point to kernel buffers */ for (i = 0; i < new_frags - 1; i++) { __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE); head = (struct page *)page_private(head); } __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); skb_shinfo(skb)->nr_frags = new_frags; release: skb_zcopy_clear(skb, false); return 0; } EXPORT_SYMBOL_GPL(skb_copy_ubufs); /** * skb_clone - duplicate an sk_buff * @skb: buffer to clone * @gfp_mask: allocation priority * * Duplicate an &sk_buff. The new one is not owned by a socket. Both * copies share the same packet data but not structure. The new * buffer has a reference count of 1. If the allocation fails the * function returns %NULL otherwise the new buffer is returned. * * If this function is called from an interrupt gfp_mask() must be * %GFP_ATOMIC. */ struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff_fclones *fclones = container_of(skb, struct sk_buff_fclones, skb1); struct sk_buff *n; if (skb_orphan_frags(skb, gfp_mask)) return NULL; if (skb->fclone == SKB_FCLONE_ORIG && refcount_read(&fclones->fclone_ref) == 1) { n = &fclones->skb2; refcount_set(&fclones->fclone_ref, 2); } else { if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); if (!n) return NULL; n->fclone = SKB_FCLONE_UNAVAILABLE; } return __skb_clone(n, skb); } EXPORT_SYMBOL(skb_clone); void skb_headers_offset_update(struct sk_buff *skb, int off) { /* Only adjust this if it actually is csum_start rather than csum */ if (skb->ip_summed == CHECKSUM_PARTIAL) skb->csum_start += off; /* {transport,network,mac}_header and tail are relative to skb->head */ skb->transport_header += off; skb->network_header += off; if (skb_mac_header_was_set(skb)) skb->mac_header += off; skb->inner_transport_header += off; skb->inner_network_header += off; skb->inner_mac_header += off; } EXPORT_SYMBOL(skb_headers_offset_update); void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) { __copy_skb_header(new, old); skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; } EXPORT_SYMBOL(skb_copy_header); static inline int skb_alloc_rx_flag(const struct sk_buff *skb) { if (skb_pfmemalloc(skb)) return SKB_ALLOC_RX; return 0; } /** * skb_copy - create private copy of an sk_buff * @skb: buffer to copy * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data. This is used when the * caller wishes to modify the data and needs a private copy of the * data to alter. Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * As by-product this function converts non-linear &sk_buff to linear * one, so that &sk_buff becomes completely private and caller is allowed * to modify all the data of returned buffer. This means that this * function is not recommended for use in circumstances when only * header is going to be modified. Use pskb_copy() instead. */ struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff *n; unsigned int size; int headerlen; if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) return NULL; headerlen = skb_headroom(skb); size = skb_end_offset(skb) + skb->data_len; n = __alloc_skb(size, gfp_mask, skb_alloc_rx_flag(skb), NUMA_NO_NODE); if (!n) return NULL; /* Set the data pointer */ skb_reserve(n, headerlen); /* Set the tail pointer and length */ skb_put(n, skb->len); BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); skb_copy_header(n, skb); return n; } EXPORT_SYMBOL(skb_copy); /** * __pskb_copy_fclone - create copy of an sk_buff with private head. * @skb: buffer to copy * @headroom: headroom of new skb * @gfp_mask: allocation priority * @fclone: if true allocate the copy of the skb from the fclone * cache instead of the head cache; it is recommended to set this * to true for the cases where the copy will likely be cloned * * Make a copy of both an &sk_buff and part of its data, located * in header. Fragmented data remain shared. This is used when * the caller wishes to modify only header of &sk_buff and needs * private copy of the header to alter. Returns %NULL on failure * or the pointer to the buffer on success. * The returned buffer has a reference count of 1. */ struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, gfp_t gfp_mask, bool fclone) { unsigned int size = skb_headlen(skb) + headroom; int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); if (!n) goto out; /* Set the data pointer */ skb_reserve(n, headroom); /* Set the tail pointer and length */ skb_put(n, skb_headlen(skb)); /* Copy the bytes */ skb_copy_from_linear_data(skb, n->data, n->len); n->truesize += skb->data_len; n->data_len = skb->data_len; n->len = skb->len; if (skb_shinfo(skb)->nr_frags) { int i; if (skb_orphan_frags(skb, gfp_mask) || skb_zerocopy_clone(n, skb, gfp_mask)) { kfree_skb(n); n = NULL; goto out; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; skb_frag_ref(skb, i); } skb_shinfo(n)->nr_frags = i; } if (skb_has_frag_list(skb)) { skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; skb_clone_fraglist(n); } skb_copy_header(n, skb); out: return n; } EXPORT_SYMBOL(__pskb_copy_fclone); /** * pskb_expand_head - reallocate header of &sk_buff * @skb: buffer to reallocate * @nhead: room to add at head * @ntail: room to add at tail * @gfp_mask: allocation priority * * Expands (or creates identical copy, if @nhead and @ntail are zero) * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have * reference count of 1. Returns zero in the case of success or error, * if expansion failed. In the last case, &sk_buff is not changed. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask) { int i, osize = skb_end_offset(skb); int size = osize + nhead + ntail; long off; u8 *data; BUG_ON(nhead < 0); BUG_ON(skb_shared(skb)); size = SKB_DATA_ALIGN(size); if (skb_pfmemalloc(skb)) gfp_mask |= __GFP_MEMALLOC; data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), gfp_mask, NUMA_NO_NODE, NULL); if (!data) goto nodata; size = SKB_WITH_OVERHEAD(ksize(data)); /* Copy only real data... and, alas, header. This should be * optimized for the cases when header is void. */ memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); memcpy((struct skb_shared_info *)(data + size), skb_shinfo(skb), offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); /* * if shinfo is shared we must drop the old head gracefully, but if it * is not we can just drop the old head and let the existing refcount * be since all we did is relocate the values */ if (skb_cloned(skb)) { if (skb_orphan_frags(skb, gfp_mask)) goto nofrags; if (skb_zcopy(skb)) refcount_inc(&skb_uarg(skb)->refcnt); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_frag_ref(skb, i); if (skb_has_frag_list(skb)) skb_clone_fraglist(skb); skb_release_data(skb); } else { skb_free_head(skb); } off = (data + nhead) - skb->head; skb->head = data; skb->head_frag = 0; skb->data += off; #ifdef NET_SKBUFF_DATA_USES_OFFSET skb->end = size; off = nhead; #else skb->end = skb->head + size; #endif skb->tail += off; skb_headers_offset_update(skb, nhead); skb->cloned = 0; skb->hdr_len = 0; skb->nohdr = 0; atomic_set(&skb_shinfo(skb)->dataref, 1); skb_metadata_clear(skb); /* It is not generally safe to change skb->truesize. * For the moment, we really care of rx path, or * when skb is orphaned (not attached to a socket). */ if (!skb->sk || skb->destructor == sock_edemux) skb->truesize += size - osize; return 0; nofrags: kfree(data); nodata: return -ENOMEM; } EXPORT_SYMBOL(pskb_expand_head); /* Make private copy of skb with writable head and some headroom */ struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) { struct sk_buff *skb2; int delta = headroom - skb_headroom(skb); if (delta <= 0) skb2 = pskb_copy(skb, GFP_ATOMIC); else { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, GFP_ATOMIC)) { kfree_skb(skb2); skb2 = NULL; } } return skb2; } EXPORT_SYMBOL(skb_realloc_headroom); /** * skb_expand_head - reallocate header of &sk_buff * @skb: buffer to reallocate * @headroom: needed headroom * * Unlike skb_realloc_headroom, this one does not allocate a new skb * if possible; copies skb->sk to new skb as needed * and frees original skb in case of failures. * * It expect increased headroom and generates warning otherwise. */ struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) { int delta = headroom - skb_headroom(skb); int osize = skb_end_offset(skb); struct sock *sk = skb->sk; if (WARN_ONCE(delta <= 0, "%s is expecting an increase in the headroom", __func__)) return skb; delta = SKB_DATA_ALIGN(delta); /* pskb_expand_head() might crash, if skb is shared. */ if (skb_shared(skb) || !is_skb_wmem(skb)) { struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!nskb)) goto fail; if (sk) skb_set_owner_w(nskb, sk); consume_skb(skb); skb = nskb; } if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) goto fail; if (sk && is_skb_wmem(skb)) { delta = skb_end_offset(skb) - osize; refcount_add(delta, &sk->sk_wmem_alloc); skb->truesize += delta; } return skb; fail: kfree_skb(skb); return NULL; } EXPORT_SYMBOL(skb_expand_head); /** * skb_copy_expand - copy and expand sk_buff * @skb: buffer to copy * @newheadroom: new free bytes at head * @newtailroom: new free bytes at tail * @gfp_mask: allocation priority * * Make a copy of both an &sk_buff and its data and while doing so * allocate additional space. * * This is used when the caller wishes to modify the data and needs a * private copy of the data to alter as well as more space for new fields. * Returns %NULL on failure or the pointer to the buffer * on success. The returned buffer has a reference count of 1. * * You must pass %GFP_ATOMIC as the allocation priority if this function * is called from an interrupt. */ struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t gfp_mask) { /* * Allocate the copy buffer */ int head_copy_len, head_copy_off; struct sk_buff *n; int oldheadroom; if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) return NULL; oldheadroom = skb_headroom(skb); n = __alloc_skb(newheadroom + skb->len + newtailroom, gfp_mask, skb_alloc_rx_flag(skb), NUMA_NO_NODE); if (!n) return NULL; skb_reserve(n, newheadroom); /* Set the tail pointer and length */ skb_put(n, skb->len); head_copy_len = oldheadroom; head_copy_off = 0; if (newheadroom <= head_copy_len) head_copy_len = newheadroom; else head_copy_off = newheadroom - head_copy_len; /* Copy the linear header and data. */ BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, skb->len + head_copy_len)); skb_copy_header(n, skb); skb_headers_offset_update(n, newheadroom - oldheadroom); return n; } EXPORT_SYMBOL(skb_copy_expand); /** * __skb_pad - zero pad the tail of an skb * @skb: buffer to pad * @pad: space to pad * @free_on_error: free buffer on error * * Ensure that a buffer is followed by a padding area that is zero * filled. Used by network drivers which may DMA or transfer data * beyond the buffer end onto the wire. * * May return error in out of memory cases. The skb is freed on error * if @free_on_error is true. */ int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) { int err; int ntail; /* If the skbuff is non linear tailroom is always zero.. */ if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { memset(skb->data+skb->len, 0, pad); return 0; } ntail = skb->data_len + pad - (skb->end - skb->tail); if (likely(skb_cloned(skb) || ntail > 0)) { err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); if (unlikely(err)) goto free_skb; } /* FIXME: The use of this function with non-linear skb's really needs * to be audited. */ err = skb_linearize(skb); if (unlikely(err)) goto free_skb; memset(skb->data + skb->len, 0, pad); return 0; free_skb: if (free_on_error) kfree_skb(skb); return err; } EXPORT_SYMBOL(__skb_pad); /** * pskb_put - add data to the tail of a potentially fragmented buffer * @skb: start of the buffer to use * @tail: tail fragment of the buffer to use * @len: amount of data to add * * This function extends the used data area of the potentially * fragmented buffer. @tail must be the last fragment of @skb -- or * @skb itself. If this would exceed the total buffer size the kernel * will panic. A pointer to the first byte of the extra data is * returned. */ void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) { if (tail != skb) { skb->data_len += len; skb->len += len; } return skb_put(tail, len); } EXPORT_SYMBOL_GPL(pskb_put); /** * skb_put - add data to a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer. If this would * exceed the total buffer size the kernel will panic. A pointer to the * first byte of the extra data is returned. */ void *skb_put(struct sk_buff *skb, unsigned int len) { void *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; if (unlikely(skb->tail > skb->end)) skb_over_panic(skb, len, __builtin_return_address(0)); return tmp; } EXPORT_SYMBOL(skb_put); /** * skb_push - add data to the start of a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer at the buffer * start. If this would exceed the total buffer headroom the kernel will * panic. A pointer to the first byte of the extra data is returned. */ void *skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; if (unlikely(skb->data < skb->head)) skb_under_panic(skb, len, __builtin_return_address(0)); return skb->data; } EXPORT_SYMBOL(skb_push); /** * skb_pull - remove data from the start of a buffer * @skb: buffer to use * @len: amount of data to remove * * This function removes data from the start of a buffer, returning * the memory to the headroom. A pointer to the next data in the buffer * is returned. Once the data has been pulled future pushes will overwrite * the old data. */ void *skb_pull(struct sk_buff *skb, unsigned int len) { return skb_pull_inline(skb, len); } EXPORT_SYMBOL(skb_pull); /** * skb_trim - remove end from a buffer * @skb: buffer to alter * @len: new length * * Cut the length of a buffer down by removing data from the tail. If * the buffer is already under the length specified it is not modified. * The skb must be linear. */ void skb_trim(struct sk_buff *skb, unsigned int len) { if (skb->len > len) __skb_trim(skb, len); } EXPORT_SYMBOL(skb_trim); /* Trims skb to length len. It can change skb pointers. */ int ___pskb_trim(struct sk_buff *skb, unsigned int len) { struct sk_buff **fragp; struct sk_buff *frag; int offset = skb_headlen(skb); int nfrags = skb_shinfo(skb)->nr_frags; int i; int err; if (skb_cloned(skb) && unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) return err; i = 0; if (offset >= len) goto drop_pages; for (; i < nfrags; i++) { int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); if (end < len) { offset = end; continue; } skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); drop_pages: skb_shinfo(skb)->nr_frags = i; for (; i < nfrags; i++) skb_frag_unref(skb, i); if (skb_has_frag_list(skb)) skb_drop_fraglist(skb); goto done; } for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); fragp = &frag->next) { int end = offset + frag->len; if (skb_shared(frag)) { struct sk_buff *nfrag; nfrag = skb_clone(frag, GFP_ATOMIC); if (unlikely(!nfrag)) return -ENOMEM; nfrag->next = frag->next; consume_skb(frag); frag = nfrag; *fragp = frag; } if (end < len) { offset = end; continue; } if (end > len && unlikely((err = pskb_trim(frag, len - offset)))) return err; if (frag->next) skb_drop_list(&frag->next); break; } done: if (len > skb_headlen(skb)) { skb->data_len -= skb->len - len; skb->len = len; } else { skb->len = len; skb->data_len = 0; skb_set_tail_pointer(skb, len); } if (!skb->sk || skb->destructor == sock_edemux) skb_condense(skb); return 0; } EXPORT_SYMBOL(___pskb_trim); /* Note : use pskb_trim_rcsum() instead of calling this directly */ int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) { int delta = skb->len - len; skb->csum = csum_block_sub(skb->csum, skb_checksum(skb, len, delta, 0), len); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; int offset = skb_checksum_start_offset(skb) + skb->csum_offset; if (offset + sizeof(__sum16) > hdlen) return -EINVAL; } return __pskb_trim(skb, len); } EXPORT_SYMBOL(pskb_trim_rcsum_slow); /** * __pskb_pull_tail - advance tail of skb header * @skb: buffer to reallocate * @delta: number of bytes to advance tail * * The function makes a sense only on a fragmented &sk_buff, * it expands header moving its tail forward and copying necessary * data from fragmented part. * * &sk_buff MUST have reference count of 1. * * Returns %NULL (and &sk_buff does not change) if pull failed * or value of new tail of skb in the case of success. * * All the pointers pointing into skb header may change and must be * reloaded after call to this function. */ /* Moves tail of skb head forward, copying data from fragmented part, * when it is necessary. * 1. It may fail due to malloc failure. * 2. It may change skb pointers. * * It is pretty complicated. Luckily, it is called only in exceptional cases. */ void *__pskb_pull_tail(struct sk_buff *skb, int delta) { /* If skb has not enough free space at tail, get new one * plus 128 bytes for future expansions. If we have enough * room at tail, reallocate without expansion only if skb is cloned. */ int i, k, eat = (skb->tail + delta) - skb->end; if (eat > 0 || skb_cloned(skb)) { if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, GFP_ATOMIC)) return NULL; } BUG_ON(skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)); /* Optimization: no fragments, no reasons to preestimate * size of pulled pages. Superb. */ if (!skb_has_frag_list(skb)) goto pull_pages; /* Estimate size of pulled pages. */ eat = delta; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (size >= eat) goto pull_pages; eat -= size; } /* If we need update frag list, we are in troubles. * Certainly, it is possible to add an offset to skb data, * but taking into account that pulling is expected to * be very rare operation, it is worth to fight against * further bloating skb head and crucify ourselves here instead. * Pure masohism, indeed. 8)8) */ if (eat) { struct sk_buff *list = skb_shinfo(skb)->frag_list; struct sk_buff *clone = NULL; struct sk_buff *insp = NULL; do { if (list->len <= eat) { /* Eaten as whole. */ eat -= list->len; list = list->next; insp = list; } else { /* Eaten partially. */ if (skb_is_gso(skb) && !list->head_frag && skb_headlen(list)) skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; if (skb_shared(list)) { /* Sucks! We need to fork list. :-( */ clone = skb_clone(list, GFP_ATOMIC); if (!clone) return NULL; insp = list->next; list = clone; } else { /* This may be pulled without * problems. */ insp = list; } if (!pskb_pull(list, eat)) { kfree_skb(clone); return NULL; } break; } } while (eat); /* Free pulled out fragments. */ while ((list = skb_shinfo(skb)->frag_list) != insp) { skb_shinfo(skb)->frag_list = list->next; consume_skb(list); } /* And insert new clone at head. */ if (clone) { clone->next = list; skb_shinfo(skb)->frag_list = clone; } } /* Success! Now we may commit changes to skb data. */ pull_pages: eat = delta; k = 0; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (size <= eat) { skb_frag_unref(skb, i); eat -= size; } else { skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; *frag = skb_shinfo(skb)->frags[i]; if (eat) { skb_frag_off_add(frag, eat); skb_frag_size_sub(frag, eat); if (!i) goto end; eat = 0; } k++; } } skb_shinfo(skb)->nr_frags = k; end: skb->tail += delta; skb->data_len -= delta; if (!skb->data_len) skb_zcopy_clear(skb, false); return skb_tail_pointer(skb); } EXPORT_SYMBOL(__pskb_pull_tail); /** * skb_copy_bits - copy bits from skb to kernel buffer * @skb: source skb * @offset: offset in source * @to: destination buffer * @len: number of bytes to copy * * Copy the specified number of bytes from the source skb to the * destination buffer. * * CAUTION ! : * If its prototype is ever changed, * check arch/{*}/net/{*}.S files, * since it is called from BPF assembly code. */ int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) { int start = skb_headlen(skb); struct sk_buff *frag_iter; int i, copy; if (offset > (int)skb->len - len) goto fault; /* Copy header. */ if ((copy = start - offset) > 0) { if (copy > len) copy = len; skb_copy_from_linear_data_offset(skb, offset, to, copy); if ((len -= copy) == 0) return 0; offset += copy; to += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; skb_frag_t *f = &skb_shinfo(skb)->frags[i]; WARN_ON(start > offset + len); end = start + skb_frag_size(f); if ((copy = end - offset) > 0) { u32 p_off, p_len, copied; struct page *p; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(f, skb_frag_off(f) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); memcpy(to + copied, vaddr + p_off, p_len); kunmap_atomic(vaddr); } if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; if (skb_copy_bits(frag_iter, offset - start, to, copy)) goto fault; if ((len -= copy) == 0) return 0; offset += copy; to += copy; } start = end; } if (!len) return 0; fault: return -EFAULT; } EXPORT_SYMBOL(skb_copy_bits); /* * Callback from splice_to_pipe(), if we need to release some pages * at the end of the spd in case we error'ed out in filling the pipe. */ static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) { put_page(spd->pages[i]); } static struct page *linear_to_page(struct page *page, unsigned int *len, unsigned int *offset, struct sock *sk) { struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) return NULL; *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); memcpy(page_address(pfrag->page) + pfrag->offset, page_address(page) + *offset, *len); *offset = pfrag->offset; pfrag->offset += *len; return pfrag->page; } static bool spd_can_coalesce(const struct splice_pipe_desc *spd, struct page *page, unsigned int offset) { return spd->nr_pages && spd->pages[spd->nr_pages - 1] == page && (spd->partial[spd->nr_pages - 1].offset + spd->partial[spd->nr_pages - 1].len == offset); } /* * Fill page/offset/length into spd, if it can hold more pages. */ static bool spd_fill_page(struct splice_pipe_desc *spd, struct pipe_inode_info *pipe, struct page *page, unsigned int *len, unsigned int offset, bool linear, struct sock *sk) { if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) return true; if (linear) { page = linear_to_page(page, len, &offset, sk); if (!page) return true; } if (spd_can_coalesce(spd, page, offset)) { spd->partial[spd->nr_pages - 1].len += *len; return false; } get_page(page); spd->pages[spd->nr_pages] = page; spd->partial[spd->nr_pages].len = *len; spd->partial[spd->nr_pages].offset = offset; spd->nr_pages++; return false; } static bool __splice_segment(struct page *page, unsigned int poff, unsigned int plen, unsigned int *off, unsigned int *len, struct splice_pipe_desc *spd, bool linear, struct sock *sk, struct pipe_inode_info *pipe) { if (!*len) return true; /* skip this segment if already processed */ if (*off >= plen) { *off -= plen; return false; } /* ignore any bits we already processed */ poff += *off; plen -= *off; *off = 0; do { unsigned int flen = min(*len, plen); if (spd_fill_page(spd, pipe, page, &flen, poff, linear, sk)) return true; poff += flen; plen -= flen; *len -= flen; } while (*len && plen); return false; } /* * Map linear and fragment data from the skb to spd. It reports true if the * pipe is full or if we already spliced the requested length. */ static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, unsigned int *offset, unsigned int *len, struct splice_pipe_desc *spd, struct sock *sk) { int seg; struct sk_buff *iter; /* map the linear part : * If skb->head_frag is set, this 'linear' part is backed by a * fragment, and if the head is not shared with any clones then * we can avoid a copy since we own the head portion of this page. */ if (__splice_segment(virt_to_page(skb->data), (unsigned long) skb->data & (PAGE_SIZE - 1), skb_headlen(skb), offset, len, spd, skb_head_is_locked(skb), sk, pipe)) return true; /* * then map the fragments */ for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; if (__splice_segment(skb_frag_page(f), skb_frag_off(f), skb_frag_size(f), offset, len, spd, false, sk, pipe)) return true; } skb_walk_frags(skb, iter) { if (*offset >= iter->len) { *offset -= iter->len; continue; } /* __skb_splice_bits() only fails if the output has no room * left, so no point in going over the frag_list for the error * case. */ if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) return true; } return false; } /* * Map data from the skb to a pipe. Should handle both the linear part, * the fragments, and the frag list. */ int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, struct pipe_inode_info *pipe, unsigned int tlen, unsigned int flags) { struct partial_page partial[MAX_SKB_FRAGS]; struct page *pages[MAX_SKB_FRAGS]; struct splice_pipe_desc spd = { .pages = pages, .partial = partial, .nr_pages_max = MAX_SKB_FRAGS, .ops = &nosteal_pipe_buf_ops, .spd_release = sock_spd_release, }; int ret = 0; __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); if (spd.nr_pages) ret = splice_to_pipe(pipe, &spd); return ret; } EXPORT_SYMBOL_GPL(skb_splice_bits); /* Send skb data on a socket. Socket must be locked. */ int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, int len) { unsigned int orig_len = len; struct sk_buff *head = skb; unsigned short fragidx; int slen, ret; do_frag_list: /* Deal with head data */ while (offset < skb_headlen(skb) && len) { struct kvec kv; struct msghdr msg; slen = min_t(int, len, skb_headlen(skb) - offset); kv.iov_base = skb->data + offset; kv.iov_len = slen; memset(&msg, 0, sizeof(msg)); msg.msg_flags = MSG_DONTWAIT; ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen); if (ret <= 0) goto error; offset += ret; len -= ret; } /* All the data was skb head? */ if (!len) goto out; /* Make offset relative to start of frags */ offset -= skb_headlen(skb); /* Find where we are in frag list */ for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; if (offset < skb_frag_size(frag)) break; offset -= skb_frag_size(frag); } for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; slen = min_t(size_t, len, skb_frag_size(frag) - offset); while (slen) { ret = kernel_sendpage_locked(sk, skb_frag_page(frag), skb_frag_off(frag) + offset, slen, MSG_DONTWAIT); if (ret <= 0) goto error; len -= ret; offset += ret; slen -= ret; } offset = 0; } if (len) { /* Process any frag lists */ if (skb == head) { if (skb_has_frag_list(skb)) { skb = skb_shinfo(skb)->frag_list; goto do_frag_list; } } else if (skb->next) { skb = skb->next; goto do_frag_list; } } out: return orig_len - len; error: return orig_len == len ? ret : orig_len - len; } EXPORT_SYMBOL_GPL(skb_send_sock_locked); /** * skb_store_bits - store bits from kernel buffer to skb * @skb: destination buffer * @offset: offset in destination * @from: source buffer * @len: number of bytes to copy * * Copy the specified number of bytes from the source buffer to the * destination skb. This function handles all the messy bits of * traversing fragment lists and such. */ int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) { int start = skb_headlen(skb); struct sk_buff *frag_iter; int i, copy; if (offset > (int)skb->len - len) goto fault; if ((copy = start - offset) > 0) { if (copy > len) copy = len; skb_copy_to_linear_data_offset(skb, offset, from, copy); if ((len -= copy) == 0) return 0; offset += copy; from += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; int end; WARN_ON(start > offset + len); end = start + skb_frag_size(frag); if ((copy = end - offset) > 0) { u32 p_off, p_len, copied; struct page *p; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(frag, skb_frag_off(frag) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); memcpy(vaddr + p_off, from + copied, p_len); kunmap_atomic(vaddr); } if ((len -= copy) == 0) return 0; offset += copy; from += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; if (skb_store_bits(frag_iter, offset - start, from, copy)) goto fault; if ((len -= copy) == 0) return 0; offset += copy; from += copy; } start = end; } if (!len) return 0; fault: return -EFAULT; } EXPORT_SYMBOL(skb_store_bits); /* Checksum skb data. */ __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum, const struct skb_checksum_ops *ops) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int pos = 0; /* Checksum header. */ if (copy > 0) { if (copy > len) copy = len; csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, skb->data + offset, copy, csum); if ((len -= copy) == 0) return csum; offset += copy; pos = copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; WARN_ON(start > offset + len); end = start + skb_frag_size(frag); if ((copy = end - offset) > 0) { u32 p_off, p_len, copied; struct page *p; __wsum csum2; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(frag, skb_frag_off(frag) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); csum2 = INDIRECT_CALL_1(ops->update, csum_partial_ext, vaddr + p_off, p_len, 0); kunmap_atomic(vaddr); csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, csum, csum2, pos, p_len); pos += p_len; } if (!(len -= copy)) return csum; offset += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { __wsum csum2; if (copy > len) copy = len; csum2 = __skb_checksum(frag_iter, offset - start, copy, 0, ops); csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, csum, csum2, pos, copy); if ((len -= copy) == 0) return csum; offset += copy; pos += copy; } start = end; } BUG_ON(len); return csum; } EXPORT_SYMBOL(__skb_checksum); __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) { const struct skb_checksum_ops ops = { .update = csum_partial_ext, .combine = csum_block_add_ext, }; return __skb_checksum(skb, offset, len, csum, &ops); } EXPORT_SYMBOL(skb_checksum); /* Both of above in one bottle. */ __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int pos = 0; __wsum csum = 0; /* Copy header. */ if (copy > 0) { if (copy > len) copy = len; csum = csum_partial_copy_nocheck(skb->data + offset, to, copy); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos = copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); if ((copy = end - offset) > 0) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 p_off, p_len, copied; struct page *p; __wsum csum2; u8 *vaddr; if (copy > len) copy = len; skb_frag_foreach_page(frag, skb_frag_off(frag) + offset - start, copy, p, p_off, p_len, copied) { vaddr = kmap_atomic(p); csum2 = csum_partial_copy_nocheck(vaddr + p_off, to + copied, p_len); kunmap_atomic(vaddr); csum = csum_block_add(csum, csum2, pos); pos += p_len; } if (!(len -= copy)) return csum; offset += copy; to += copy; } start = end; } skb_walk_frags(skb, frag_iter) { __wsum csum2; int end; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (copy > len) copy = len; csum2 = skb_copy_and_csum_bits(frag_iter, offset - start, to, copy); csum = csum_block_add(csum, csum2, pos); if ((len -= copy) == 0) return csum; offset += copy; to += copy; pos += copy; } start = end; } BUG_ON(len); return csum; } EXPORT_SYMBOL(skb_copy_and_csum_bits); __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) { __sum16 sum; sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); /* See comments in __skb_checksum_complete(). */ if (likely(!sum)) { if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && !skb->csum_complete_sw) netdev_rx_csum_fault(skb->dev, skb); } if (!skb_shared(skb)) skb->csum_valid = !sum; return sum; } EXPORT_SYMBOL(__skb_checksum_complete_head); /* This function assumes skb->csum already holds pseudo header's checksum, * which has been changed from the hardware checksum, for example, by * __skb_checksum_validate_complete(). And, the original skb->csum must * have been validated unsuccessfully for CHECKSUM_COMPLETE case. * * It returns non-zero if the recomputed checksum is still invalid, otherwise * zero. The new checksum is stored back into skb->csum unless the skb is * shared. */ __sum16 __skb_checksum_complete(struct sk_buff *skb) { __wsum csum; __sum16 sum; csum = skb_checksum(skb, 0, skb->len, 0); sum = csum_fold(csum_add(skb->csum, csum)); /* This check is inverted, because we already knew the hardware * checksum is invalid before calling this function. So, if the * re-computed checksum is valid instead, then we have a mismatch * between the original skb->csum and skb_checksum(). This means either * the original hardware checksum is incorrect or we screw up skb->csum * when moving skb->data around. */ if (likely(!sum)) { if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && !skb->csum_complete_sw) netdev_rx_csum_fault(skb->dev, skb); } if (!skb_shared(skb)) { /* Save full packet checksum */ skb->csum = csum; skb->ip_summed = CHECKSUM_COMPLETE; skb->csum_complete_sw = 1; skb->csum_valid = !sum; } return sum; } EXPORT_SYMBOL(__skb_checksum_complete); static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) { net_warn_ratelimited( "%s: attempt to compute crc32c without libcrc32c.ko\n", __func__); return 0; } static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, int offset, int len) { net_warn_ratelimited( "%s: attempt to compute crc32c without libcrc32c.ko\n", __func__); return 0; } static const struct skb_checksum_ops default_crc32c_ops = { .update = warn_crc32c_csum_update, .combine = warn_crc32c_csum_combine, }; const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = &default_crc32c_ops; EXPORT_SYMBOL(crc32c_csum_stub); /** * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() * @from: source buffer * * Calculates the amount of linear headroom needed in the 'to' skb passed * into skb_zerocopy(). */ unsigned int skb_zerocopy_headlen(const struct sk_buff *from) { unsigned int hlen = 0; if (!from->head_frag || skb_headlen(from) < L1_CACHE_BYTES || skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { hlen = skb_headlen(from); if (!hlen) hlen = from->len; } if (skb_has_frag_list(from)) hlen = from->len; return hlen; } EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); /** * skb_zerocopy - Zero copy skb to skb * @to: destination buffer * @from: source buffer * @len: number of bytes to copy from source buffer * @hlen: size of linear headroom in destination buffer * * Copies up to `len` bytes from `from` to `to` by creating references * to the frags in the source buffer. * * The `hlen` as calculated by skb_zerocopy_headlen() specifies the * headroom in the `to` buffer. * * Return value: * 0: everything is OK * -ENOMEM: couldn't orphan frags of @from due to lack of memory * -EFAULT: skb_copy_bits() found some problem with skb geometry */ int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) { int i, j = 0; int plen = 0; /* length of skb->head fragment */ int ret; struct page *page; unsigned int offset; BUG_ON(!from->head_frag && !hlen); /* dont bother with small payloads */ if (len <= skb_tailroom(to)) return skb_copy_bits(from, 0, skb_put(to, len), len); if (hlen) { ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); if (unlikely(ret)) return ret; len -= hlen; } else { plen = min_t(int, skb_headlen(from), len); if (plen) { page = virt_to_head_page(from->head); offset = from->data - (unsigned char *)page_address(page); __skb_fill_page_desc(to, 0, page, offset, plen); get_page(page); j = 1; len -= plen; } } to->truesize += len + plen; to->len += len + plen; to->data_len += len + plen; if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { skb_tx_error(from); return -ENOMEM; } skb_zerocopy_clone(to, from, GFP_ATOMIC); for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { int size; if (!len) break; skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), len); skb_frag_size_set(&skb_shinfo(to)->frags[j], size); len -= size; skb_frag_ref(to, j); j++; } skb_shinfo(to)->nr_frags = j; return 0; } EXPORT_SYMBOL_GPL(skb_zerocopy); void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) { __wsum csum; long csstart; if (skb->ip_summed == CHECKSUM_PARTIAL) csstart = skb_checksum_start_offset(skb); else csstart = skb_headlen(skb); BUG_ON(csstart > skb_headlen(skb)); skb_copy_from_linear_data(skb, to, csstart); csum = 0; if (csstart != skb->len) csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, skb->len - csstart); if (skb->ip_summed == CHECKSUM_PARTIAL) { long csstuff = csstart + skb->csum_offset; *((__sum16 *)(to + csstuff)) = csum_fold(csum); } } EXPORT_SYMBOL(skb_copy_and_csum_dev); /** * skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. The list lock is taken so the function * may be used safely with other locking list functions. The head item is * returned or %NULL if the list is empty. */ struct sk_buff *skb_dequeue(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result; spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue(list); spin_unlock_irqrestore(&list->lock, flags); return result; } EXPORT_SYMBOL(skb_dequeue); /** * skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. The list lock is taken so the function * may be used safely with other locking list functions. The tail item is * returned or %NULL if the list is empty. */ struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result; spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue_tail(list); spin_unlock_irqrestore(&list->lock, flags); return result; } EXPORT_SYMBOL(skb_dequeue_tail); /** * skb_queue_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function takes the list * lock and is atomic with respect to other list locking functions. */ void skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = skb_dequeue(list)) != NULL) kfree_skb(skb); } EXPORT_SYMBOL(skb_queue_purge); /** * skb_rbtree_purge - empty a skb rbtree * @root: root of the rbtree to empty * Return value: the sum of truesizes of all purged skbs. * * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from * the list and one reference dropped. This function does not take * any lock. Synchronization should be handled by the caller (e.g., TCP * out-of-order queue is protected by the socket lock). */ unsigned int skb_rbtree_purge(struct rb_root *root) { struct rb_node *p = rb_first(root); unsigned int sum = 0; while (p) { struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); p = rb_next(p); rb_erase(&skb->rbnode, root); sum += skb->truesize; kfree_skb(skb); } return sum; } /** * skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */ void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_head(list, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_queue_head); /** * skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the tail of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */ void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_tail(list, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_queue_tail); /** * skb_unlink - remove a buffer from a list * @skb: buffer to remove * @list: list to use * * Remove a packet from a list. The list locks are taken and this * function is atomic with respect to other list locked calls * * You must know what list the SKB is on. */ void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_unlink(skb, list); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_unlink); /** * skb_append - append a buffer * @old: buffer to insert after * @newsk: buffer to insert * @list: list to use * * Place a packet after a given packet in a list. The list locks are taken * and this function is atomic with respect to other list locked calls. * A buffer cannot be placed on two lists at the same time. */ void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) { unsigned long flags; spin_lock_irqsave(&list->lock, flags); __skb_queue_after(list, old, newsk); spin_unlock_irqrestore(&list->lock, flags); } EXPORT_SYMBOL(skb_append); static inline void skb_split_inside_header(struct sk_buff *skb, struct sk_buff* skb1, const u32 len, const int pos) { int i; skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), pos - len); /* And move data appendix as is. */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; skb_shinfo(skb)->nr_frags = 0; skb1->data_len = skb->data_len; skb1->len += skb1->data_len; skb->data_len = 0; skb->len = len; skb_set_tail_pointer(skb, len); } static inline void skb_split_no_header(struct sk_buff *skb, struct sk_buff* skb1, const u32 len, int pos) { int i, k = 0; const int nfrags = skb_shinfo(skb)->nr_frags; skb_shinfo(skb)->nr_frags = 0; skb1->len = skb1->data_len = skb->len - len; skb->len = len; skb->data_len = len - pos; for (i = 0; i < nfrags; i++) { int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); if (pos + size > len) { skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; if (pos < len) { /* Split frag. * We have two variants in this case: * 1. Move all the frag to the second * part, if it is possible. F.e. * this approach is mandatory for TUX, * where splitting is expensive. * 2. Split is accurately. We make this. */ skb_frag_ref(skb, i); skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); skb_shinfo(skb)->nr_frags++; } k++; } else skb_shinfo(skb)->nr_frags++; pos += size; } skb_shinfo(skb1)->nr_frags = k; } /** * skb_split - Split fragmented skb to two parts at length len. * @skb: the buffer to split * @skb1: the buffer to receive the second part * @len: new length for skb */ void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) { int pos = skb_headlen(skb); skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; skb_zerocopy_clone(skb1, skb, 0); if (len < pos) /* Split line is inside header. */ skb_split_inside_header(skb, skb1, len, pos); else /* Second chunk has no header, nothing to copy. */ skb_split_no_header(skb, skb1, len, pos); } EXPORT_SYMBOL(skb_split); /* Shifting from/to a cloned skb is a no-go. * * Caller cannot keep skb_shinfo related pointers past calling here! */ static int skb_prepare_for_shift(struct sk_buff *skb) { int ret = 0; if (skb_cloned(skb)) { /* Save and restore truesize: pskb_expand_head() may reallocate * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we * cannot change truesize at this point. */ unsigned int save_truesize = skb->truesize; ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); skb->truesize = save_truesize; } return ret; } /** * skb_shift - Shifts paged data partially from skb to another * @tgt: buffer into which tail data gets added * @skb: buffer from which the paged data comes from * @shiftlen: shift up to this many bytes * * Attempts to shift up to shiftlen worth of bytes, which may be less than * the length of the skb, from skb to tgt. Returns number bytes shifted. * It's up to caller to free skb if everything was shifted. * * If @tgt runs out of frags, the whole operation is aborted. * * Skb cannot include anything else but paged data while tgt is allowed * to have non-paged data as well. * * TODO: full sized shift could be optimized but that would need * specialized skb free'er to handle frags without up-to-date nr_frags. */ int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) { int from, to, merge, todo; skb_frag_t *fragfrom, *fragto; BUG_ON(shiftlen > skb->len); if (skb_headlen(skb)) return 0; if (skb_zcopy(tgt) || skb_zcopy(skb)) return 0; todo = shiftlen; from = 0; to = skb_shinfo(tgt)->nr_frags; fragfrom = &skb_shinfo(skb)->frags[from]; /* Actual merge is delayed until the point when we know we can * commit all, so that we don't have to undo partial changes */ if (!to || !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), skb_frag_off(fragfrom))) { merge = -1; } else { merge = to - 1; todo -= skb_frag_size(fragfrom); if (todo < 0) { if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) return 0; /* All previous frag pointers might be stale! */ fragfrom = &skb_shinfo(skb)->frags[from]; fragto = &skb_shinfo(tgt)->frags[merge]; skb_frag_size_add(fragto, shiftlen); skb_frag_size_sub(fragfrom, shiftlen); skb_frag_off_add(fragfrom, shiftlen); goto onlymerged; } from++; } /* Skip full, not-fitting skb to avoid expensive operations */ if ((shiftlen == skb->len) && (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) return 0; if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) return 0; while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { if (to == MAX_SKB_FRAGS) return 0; fragfrom = &skb_shinfo(skb)->frags[from]; fragto = &skb_shinfo(tgt)->frags[to]; if (todo >= skb_frag_size(fragfrom)) { *fragto = *fragfrom; todo -= skb_frag_size(fragfrom); from++; to++; } else { __skb_frag_ref(fragfrom); skb_frag_page_copy(fragto, fragfrom); skb_frag_off_copy(fragto, fragfrom); skb_frag_size_set(fragto, todo); skb_frag_off_add(fragfrom, todo); skb_frag_size_sub(fragfrom, todo); todo = 0; to++; break; } } /* Ready to "commit" this state change to tgt */ skb_shinfo(tgt)->nr_frags = to; if (merge >= 0) { fragfrom = &skb_shinfo(skb)->frags[0]; fragto = &skb_shinfo(tgt)->frags[merge]; skb_frag_size_add(fragto, skb_frag_size(fragfrom)); __skb_frag_unref(fragfrom); } /* Reposition in the original skb */ to = 0; while (from < skb_shinfo(skb)->nr_frags) skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; skb_shinfo(skb)->nr_frags = to; BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); onlymerged: /* Most likely the tgt won't ever need its checksum anymore, skb on * the other hand might need it if it needs to be resent */ tgt->ip_summed = CHECKSUM_PARTIAL; skb->ip_summed = CHECKSUM_PARTIAL; /* Yak, is it really working this way? Some helper please? */ skb->len -= shiftlen; skb->data_len -= shiftlen; skb->truesize -= shiftlen; tgt->len += shiftlen; tgt->data_len += shiftlen; tgt->truesize += shiftlen; return shiftlen; } /** * skb_prepare_seq_read - Prepare a sequential read of skb data * @skb: the buffer to read * @from: lower offset of data to be read * @to: upper offset of data to be read * @st: state variable * * Initializes the specified state variable. Must be called before * invoking skb_seq_read() for the first time. */ void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st) { st->lower_offset = from; st->upper_offset = to; st->root_skb = st->cur_skb = skb; st->frag_idx = st->stepped_offset = 0; st->frag_data = NULL; } EXPORT_SYMBOL(skb_prepare_seq_read); /** * skb_seq_read - Sequentially read skb data * @consumed: number of bytes consumed by the caller so far * @data: destination pointer for data to be returned * @st: state variable * * Reads a block of skb data at @consumed relative to the * lower offset specified to skb_prepare_seq_read(). Assigns * the head of the data block to @data and returns the length * of the block or 0 if the end of the skb data or the upper * offset has been reached. * * The caller is not required to consume all of the data * returned, i.e. @consumed is typically set to the number * of bytes already consumed and the next call to * skb_seq_read() will return the remaining part of the block. * * Note 1: The size of each block of data returned can be arbitrary, * this limitation is the cost for zerocopy sequential * reads of potentially non linear data. * * Note 2: Fragment lists within fragments are not implemented * at the moment, state->root_skb could be replaced with * a stack for this purpose. */ unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st) { unsigned int block_limit, abs_offset = consumed + st->lower_offset; skb_frag_t *frag; if (unlikely(abs_offset >= st->upper_offset)) { if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } return 0; } next_skb: block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; if (abs_offset < block_limit && !st->frag_data) { *data = st->cur_skb->data + (abs_offset - st->stepped_offset); return block_limit - abs_offset; } if (st->frag_idx == 0 && !st->frag_data) st->stepped_offset += skb_headlen(st->cur_skb); while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; block_limit = skb_frag_size(frag) + st->stepped_offset; if (abs_offset < block_limit) { if (!st->frag_data) st->frag_data = kmap_atomic(skb_frag_page(frag)); *data = (u8 *) st->frag_data + skb_frag_off(frag) + (abs_offset - st->stepped_offset); return block_limit - abs_offset; } if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } st->frag_idx++; st->stepped_offset += skb_frag_size(frag); } if (st->frag_data) { kunmap_atomic(st->frag_data); st->frag_data = NULL; } if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { st->cur_skb = skb_shinfo(st->root_skb)->frag_list; st->frag_idx = 0; goto next_skb; } else if (st->cur_skb->next) { st->cur_skb = st->cur_skb->next; st->frag_idx = 0; goto next_skb; } return 0; } EXPORT_SYMBOL(skb_seq_read); /** * skb_abort_seq_read - Abort a sequential read of skb data * @st: state variable * * Must be called if skb_seq_read() was not called until it * returned 0. */ void skb_abort_seq_read(struct skb_seq_state *st) { if (st->frag_data) kunmap_atomic(st->frag_data); } EXPORT_SYMBOL(skb_abort_seq_read); #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, struct ts_config *conf, struct ts_state *state) { return skb_seq_read(offset, text, TS_SKB_CB(state)); } static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) { skb_abort_seq_read(TS_SKB_CB(state)); } /** * skb_find_text - Find a text pattern in skb data * @skb: the buffer to look in * @from: search offset * @to: search limit * @config: textsearch configuration * * Finds a pattern in the skb data according to the specified * textsearch configuration. Use textsearch_next() to retrieve * subsequent occurrences of the pattern. Returns the offset * to the first occurrence or UINT_MAX if no match was found. */ unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config) { struct ts_state state; unsigned int ret; config->get_next_block = skb_ts_get_next_block; config->finish = skb_ts_finish; skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); ret = textsearch_find(config, &state); return (ret <= to - from ? ret : UINT_MAX); } EXPORT_SYMBOL(skb_find_text); int skb_append_pagefrags(struct sk_buff *skb, struct page *page, int offset, size_t size) { int i = skb_shinfo(skb)->nr_frags; if (skb_can_coalesce(skb, i, page, offset)) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); } else if (i < MAX_SKB_FRAGS) { get_page(page); skb_fill_page_desc(skb, i, page, offset, size); } else { return -EMSGSIZE; } return 0; } EXPORT_SYMBOL_GPL(skb_append_pagefrags); /** * skb_pull_rcsum - pull skb and update receive checksum * @skb: buffer to update * @len: length of data pulled * * This function performs an skb_pull on the packet and updates * the CHECKSUM_COMPLETE checksum. It should be used on * receive path processing instead of skb_pull unless you know * that the checksum difference is zero (e.g., a valid IP header) * or you are setting ip_summed to CHECKSUM_NONE. */ void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) { unsigned char *data = skb->data; BUG_ON(len > skb->len); __skb_pull(skb, len); skb_postpull_rcsum(skb, data, len); return skb->data; } EXPORT_SYMBOL_GPL(skb_pull_rcsum); static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) { skb_frag_t head_frag; struct page *page; page = virt_to_head_page(frag_skb->head); __skb_frag_set_page(&head_frag, page); skb_frag_off_set(&head_frag, frag_skb->data - (unsigned char *)page_address(page)); skb_frag_size_set(&head_frag, skb_headlen(frag_skb)); return head_frag; } struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, unsigned int offset) { struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; unsigned int tnl_hlen = skb_tnl_header_len(skb); unsigned int delta_truesize = 0; unsigned int delta_len = 0; struct sk_buff *tail = NULL; struct sk_buff *nskb, *tmp; int err; skb_push(skb, -skb_network_offset(skb) + offset); /* Ensure the head is writeable before touching the shared info */ err = skb_unclone(skb, GFP_ATOMIC); if (err) goto err_linearize; skb_shinfo(skb)->frag_list = NULL; while (list_skb) { nskb = list_skb; list_skb = list_skb->next; err = 0; delta_truesize += nskb->truesize; if (skb_shared(nskb)) { tmp = skb_clone(nskb, GFP_ATOMIC); if (tmp) { consume_skb(nskb); nskb = tmp; err = skb_unclone(nskb, GFP_ATOMIC); } else { err = -ENOMEM; } } if (!tail) skb->next = nskb; else tail->next = nskb; if (unlikely(err)) { nskb->next = list_skb; goto err_linearize; } tail = nskb; delta_len += nskb->len; skb_push(nskb, -skb_network_offset(nskb) + offset); skb_release_head_state(nskb); __copy_skb_header(nskb, skb); skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); skb_copy_from_linear_data_offset(skb, -tnl_hlen, nskb->data - tnl_hlen, offset + tnl_hlen); if (skb_needs_linearize(nskb, features) && __skb_linearize(nskb)) goto err_linearize; } skb->truesize = skb->truesize - delta_truesize; skb->data_len = skb->data_len - delta_len; skb->len = skb->len - delta_len; skb_gso_reset(skb); skb->prev = tail; if (skb_needs_linearize(skb, features) && __skb_linearize(skb)) goto err_linearize; skb_get(skb); return skb; err_linearize: kfree_skb_list(skb->next); skb->next = NULL; return ERR_PTR(-ENOMEM); } EXPORT_SYMBOL_GPL(skb_segment_list); int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb) { if (unlikely(p->len + skb->len >= 65536)) return -E2BIG; if (NAPI_GRO_CB(p)->last == p) skb_shinfo(p)->frag_list = skb; else NAPI_GRO_CB(p)->last->next = skb; skb_pull(skb, skb_gro_offset(skb)); NAPI_GRO_CB(p)->last = skb; NAPI_GRO_CB(p)->count++; p->data_len += skb->len; p->truesize += skb->truesize; p->len += skb->len; NAPI_GRO_CB(skb)->same_flow = 1; return 0; } /** * skb_segment - Perform protocol segmentation on skb. * @head_skb: buffer to segment * @features: features for the output path (see dev->features) * * This function performs segmentation on the given skb. It returns * a pointer to the first in a list of new skbs for the segments. * In case of error it returns ERR_PTR(err). */ struct sk_buff *skb_segment(struct sk_buff *head_skb, netdev_features_t features) { struct sk_buff *segs = NULL; struct sk_buff *tail = NULL; struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; unsigned int mss = skb_shinfo(head_skb)->gso_size; unsigned int doffset = head_skb->data - skb_mac_header(head_skb); unsigned int offset = doffset; unsigned int tnl_hlen = skb_tnl_header_len(head_skb); unsigned int partial_segs = 0; unsigned int headroom; unsigned int len = head_skb->len; struct sk_buff *frag_skb; skb_frag_t *frag; __be16 proto; bool csum, sg; int err = -ENOMEM; int i = 0; int nfrags, pos; if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { struct sk_buff *check_skb; for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { if (skb_headlen(check_skb) && !check_skb->head_frag) { /* gso_size is untrusted, and we have a frag_list with * a linear non head_frag item. * * If head_skb's headlen does not fit requested gso_size, * it means that the frag_list members do NOT terminate * on exact gso_size boundaries. Hence we cannot perform * skb_frag_t page sharing. Therefore we must fallback to * copying the frag_list skbs; we do so by disabling SG. */ features &= ~NETIF_F_SG; break; } } } __skb_push(head_skb, doffset); proto = skb_network_protocol(head_skb, NULL); if (unlikely(!proto)) return ERR_PTR(-EINVAL); sg = !!(features & NETIF_F_SG); csum = !!can_checksum_protocol(features, proto); if (sg && csum && (mss != GSO_BY_FRAGS)) { if (!(features & NETIF_F_GSO_PARTIAL)) { struct sk_buff *iter; unsigned int frag_len; if (!list_skb || !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) goto normal; /* If we get here then all the required * GSO features except frag_list are supported. * Try to split the SKB to multiple GSO SKBs * with no frag_list. * Currently we can do that only when the buffers don't * have a linear part and all the buffers except * the last are of the same length. */ frag_len = list_skb->len; skb_walk_frags(head_skb, iter) { if (frag_len != iter->len && iter->next) goto normal; if (skb_headlen(iter) && !iter->head_frag) goto normal; len -= iter->len; } if (len != frag_len) goto normal; } /* GSO partial only requires that we trim off any excess that * doesn't fit into an MSS sized block, so take care of that * now. * Cap len to not accidentally hit GSO_BY_FRAGS. */ partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss; if (partial_segs > 1) mss *= partial_segs; else partial_segs = 0; } normal: headroom = skb_headroom(head_skb); pos = skb_headlen(head_skb); if (skb_orphan_frags(head_skb, GFP_ATOMIC)) return ERR_PTR(-ENOMEM); nfrags = skb_shinfo(head_skb)->nr_frags; frag = skb_shinfo(head_skb)->frags; frag_skb = head_skb; do { struct sk_buff *nskb; skb_frag_t *nskb_frag; int hsize; int size; if (unlikely(mss == GSO_BY_FRAGS)) { len = list_skb->len; } else { len = head_skb->len - offset; if (len > mss) len = mss; } hsize = skb_headlen(head_skb) - offset; if (hsize < 0) hsize = 0; if (hsize > len || !sg) hsize = len; if (!hsize && i >= nfrags && skb_headlen(list_skb) && (skb_headlen(list_skb) == len || sg)) { BUG_ON(skb_headlen(list_skb) > len); nskb = skb_clone(list_skb, GFP_ATOMIC); if (unlikely(!nskb)) goto err; i = 0; nfrags = skb_shinfo(list_skb)->nr_frags; frag = skb_shinfo(list_skb)->frags; frag_skb = list_skb; pos += skb_headlen(list_skb); while (pos < offset + len) { BUG_ON(i >= nfrags); size = skb_frag_size(frag); if (pos + size > offset + len) break; i++; pos += size; frag++; } list_skb = list_skb->next; if (unlikely(pskb_trim(nskb, len))) { kfree_skb(nskb); goto err; } hsize = skb_end_offset(nskb); if (skb_cow_head(nskb, doffset + headroom)) { kfree_skb(nskb); goto err; } nskb->truesize += skb_end_offset(nskb) - hsize; skb_release_head_state(nskb); __skb_push(nskb, doffset); } else { nskb = __alloc_skb(hsize + doffset + headroom, GFP_ATOMIC, skb_alloc_rx_flag(head_skb), NUMA_NO_NODE); if (unlikely(!nskb)) goto err; skb_reserve(nskb, headroom); __skb_put(nskb, doffset); } if (segs) tail->next = nskb; else segs = nskb; tail = nskb; __copy_skb_header(nskb, head_skb); skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); skb_reset_mac_len(nskb); skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, nskb->data - tnl_hlen, doffset + tnl_hlen); if (nskb->len == len + doffset) goto perform_csum_check; if (!sg) { if (!csum) { if (!nskb->remcsum_offload) nskb->ip_summed = CHECKSUM_NONE; SKB_GSO_CB(nskb)->csum = skb_copy_and_csum_bits(head_skb, offset, skb_put(nskb, len), len); SKB_GSO_CB(nskb)->csum_start = skb_headroom(nskb) + doffset; } else { if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) goto err; } continue; } nskb_frag = skb_shinfo(nskb)->frags; skb_copy_from_linear_data_offset(head_skb, offset, skb_put(nskb, hsize), hsize); skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags & SKBTX_SHARED_FRAG; if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) goto err; while (pos < offset + len) { if (i >= nfrags) { if (skb_orphan_frags(list_skb, GFP_ATOMIC) || skb_zerocopy_clone(nskb, list_skb, GFP_ATOMIC)) goto err; i = 0; nfrags = skb_shinfo(list_skb)->nr_frags; frag = skb_shinfo(list_skb)->frags; frag_skb = list_skb; if (!skb_headlen(list_skb)) { BUG_ON(!nfrags); } else { BUG_ON(!list_skb->head_frag); /* to make room for head_frag. */ i--; frag--; } list_skb = list_skb->next; } if (unlikely(skb_shinfo(nskb)->nr_frags >= MAX_SKB_FRAGS)) { net_warn_ratelimited( "skb_segment: too many frags: %u %u\n", pos, mss); err = -EINVAL; goto err; } *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; __skb_frag_ref(nskb_frag); size = skb_frag_size(nskb_frag); if (pos < offset) { skb_frag_off_add(nskb_frag, offset - pos); skb_frag_size_sub(nskb_frag, offset - pos); } skb_shinfo(nskb)->nr_frags++; if (pos + size <= offset + len) { i++; frag++; pos += size; } else { skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); goto skip_fraglist; } nskb_frag++; } skip_fraglist: nskb->data_len = len - hsize; nskb->len += nskb->data_len; nskb->truesize += nskb->data_len; perform_csum_check: if (!csum) { if (skb_has_shared_frag(nskb) && __skb_linearize(nskb)) goto err; if (!nskb->remcsum_offload) nskb->ip_summed = CHECKSUM_NONE; SKB_GSO_CB(nskb)->csum = skb_checksum(nskb, doffset, nskb->len - doffset, 0); SKB_GSO_CB(nskb)->csum_start = skb_headroom(nskb) + doffset; } } while ((offset += len) < head_skb->len); /* Some callers want to get the end of the list. * Put it in segs->prev to avoid walking the list. * (see validate_xmit_skb_list() for example) */ segs->prev = tail; if (partial_segs) { struct sk_buff *iter; int type = skb_shinfo(head_skb)->gso_type; unsigned short gso_size = skb_shinfo(head_skb)->gso_size; /* Update type to add partial and then remove dodgy if set */ type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; type &= ~SKB_GSO_DODGY; /* Update GSO info and prepare to start updating headers on * our way back down the stack of protocols. */ for (iter = segs; iter; iter = iter->next) { skb_shinfo(iter)->gso_size = gso_size; skb_shinfo(iter)->gso_segs = partial_segs; skb_shinfo(iter)->gso_type = type; SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; } if (tail->len - doffset <= gso_size) skb_shinfo(tail)->gso_size = 0; else if (tail != segs) skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); } /* Following permits correct backpressure, for protocols * using skb_set_owner_w(). * Idea is to tranfert ownership from head_skb to last segment. */ if (head_skb->destructor == sock_wfree) { swap(tail->truesize, head_skb->truesize); swap(tail->destructor, head_skb->destructor); swap(tail->sk, head_skb->sk); } return segs; err: kfree_skb_list(segs); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(skb_segment); int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb) { struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); unsigned int offset = skb_gro_offset(skb); unsigned int headlen = skb_headlen(skb); unsigned int len = skb_gro_len(skb); unsigned int delta_truesize; struct sk_buff *lp; if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush)) return -E2BIG; lp = NAPI_GRO_CB(p)->last; pinfo = skb_shinfo(lp); if (headlen <= offset) { skb_frag_t *frag; skb_frag_t *frag2; int i = skbinfo->nr_frags; int nr_frags = pinfo->nr_frags + i; if (nr_frags > MAX_SKB_FRAGS) goto merge; offset -= headlen; pinfo->nr_frags = nr_frags; skbinfo->nr_frags = 0; frag = pinfo->frags + nr_frags; frag2 = skbinfo->frags + i; do { *--frag = *--frag2; } while (--i); skb_frag_off_add(frag, offset); skb_frag_size_sub(frag, offset); /* all fragments truesize : remove (head size + sk_buff) */ delta_truesize = skb->truesize - SKB_TRUESIZE(skb_end_offset(skb)); skb->truesize -= skb->data_len; skb->len -= skb->data_len; skb->data_len = 0; NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; goto done; } else if (skb->head_frag) { int nr_frags = pinfo->nr_frags; skb_frag_t *frag = pinfo->frags + nr_frags; struct page *page = virt_to_head_page(skb->head); unsigned int first_size = headlen - offset; unsigned int first_offset; if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) goto merge; first_offset = skb->data - (unsigned char *)page_address(page) + offset; pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; __skb_frag_set_page(frag, page); skb_frag_off_set(frag, first_offset); skb_frag_size_set(frag, first_size); memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); /* We dont need to clear skbinfo->nr_frags here */ delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; goto done; } merge: delta_truesize = skb->truesize; if (offset > headlen) { unsigned int eat = offset - headlen; skb_frag_off_add(&skbinfo->frags[0], eat); skb_frag_size_sub(&skbinfo->frags[0], eat); skb->data_len -= eat; skb->len -= eat; offset = headlen; } __skb_pull(skb, offset); if (NAPI_GRO_CB(p)->last == p) skb_shinfo(p)->frag_list = skb; else NAPI_GRO_CB(p)->last->next = skb; NAPI_GRO_CB(p)->last = skb; __skb_header_release(skb); lp = p; done: NAPI_GRO_CB(p)->count++; p->data_len += len; p->truesize += delta_truesize; p->len += len; if (lp != p) { lp->data_len += len; lp->truesize += delta_truesize; lp->len += len; } NAPI_GRO_CB(skb)->same_flow = 1; return 0; } #ifdef CONFIG_SKB_EXTENSIONS #define SKB_EXT_ALIGN_VALUE 8 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) static const u8 skb_ext_type_len[] = { #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), #endif #ifdef CONFIG_XFRM [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), #endif #if IS_ENABLED(CONFIG_MPTCP) [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), #endif }; static __always_inline unsigned int skb_ext_total_length(void) { return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) skb_ext_type_len[SKB_EXT_BRIDGE_NF] + #endif #ifdef CONFIG_XFRM skb_ext_type_len[SKB_EXT_SEC_PATH] + #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) skb_ext_type_len[TC_SKB_EXT] + #endif #if IS_ENABLED(CONFIG_MPTCP) skb_ext_type_len[SKB_EXT_MPTCP] + #endif 0; } static void skb_extensions_init(void) { BUILD_BUG_ON(SKB_EXT_NUM >= 8); BUILD_BUG_ON(skb_ext_total_length() > 255); skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); } #else static void skb_extensions_init(void) {} #endif void __init skb_init(void) { skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache", sizeof(struct sk_buff), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, offsetof(struct sk_buff, cb), sizeof_field(struct sk_buff, cb), NULL); skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", sizeof(struct sk_buff_fclones), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); skb_extensions_init(); } static int __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, unsigned int recursion_level) { int start = skb_headlen(skb); int i, copy = start - offset; struct sk_buff *frag_iter; int elt = 0; if (unlikely(recursion_level >= 24)) return -EMSGSIZE; if (copy > 0) { if (copy > len) copy = len; sg_set_buf(sg, skb->data + offset, copy); elt++; if ((len -= copy) == 0) return elt; offset += copy; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); if ((copy = end - offset) > 0) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (unlikely(elt && sg_is_last(&sg[elt - 1]))) return -EMSGSIZE; if (copy > len) copy = len; sg_set_page(&sg[elt], skb_frag_page(frag), copy, skb_frag_off(frag) + offset - start); elt++; if (!(len -= copy)) return elt; offset += copy; } start = end; } skb_walk_frags(skb, frag_iter) { int end, ret; WARN_ON(start > offset + len); end = start + frag_iter->len; if ((copy = end - offset) > 0) { if (unlikely(elt && sg_is_last(&sg[elt - 1]))) return -EMSGSIZE; if (copy > len) copy = len; ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, copy, recursion_level + 1); if (unlikely(ret < 0)) return ret; elt += ret; if ((len -= copy) == 0) return elt; offset += copy; } start = end; } BUG_ON(len); return elt; } /** * skb_to_sgvec - Fill a scatter-gather list from a socket buffer * @skb: Socket buffer containing the buffers to be mapped * @sg: The scatter-gather list to map into * @offset: The offset into the buffer's contents to start mapping * @len: Length of buffer space to be mapped * * Fill the specified scatter-gather list with mappings/pointers into a * region of the buffer space attached to a socket buffer. Returns either * the number of scatterlist items used, or -EMSGSIZE if the contents * could not fit. */ int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) { int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); if (nsg <= 0) return nsg; sg_mark_end(&sg[nsg - 1]); return nsg; } EXPORT_SYMBOL_GPL(skb_to_sgvec); /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given * sglist without mark the sg which contain last skb data as the end. * So the caller can mannipulate sg list as will when padding new data after * the first call without calling sg_unmark_end to expend sg list. * * Scenario to use skb_to_sgvec_nomark: * 1. sg_init_table * 2. skb_to_sgvec_nomark(payload1) * 3. skb_to_sgvec_nomark(payload2) * * This is equivalent to: * 1. sg_init_table * 2. skb_to_sgvec(payload1) * 3. sg_unmark_end * 4. skb_to_sgvec(payload2) * * When mapping mutilple payload conditionally, skb_to_sgvec_nomark * is more preferable. */ int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) { return __skb_to_sgvec(skb, sg, offset, len, 0); } EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); /** * skb_cow_data - Check that a socket buffer's data buffers are writable * @skb: The socket buffer to check. * @tailbits: Amount of trailing space to be added * @trailer: Returned pointer to the skb where the @tailbits space begins * * Make sure that the data buffers attached to a socket buffer are * writable. If they are not, private copies are made of the data buffers * and the socket buffer is set to use these instead. * * If @tailbits is given, make sure that there is space to write @tailbits * bytes of data beyond current end of socket buffer. @trailer will be * set to point to the skb in which this space begins. * * The number of scatterlist elements required to completely map the * COW'd and extended socket buffer will be returned. */ int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) { int copyflag; int elt; struct sk_buff *skb1, **skb_p; /* If skb is cloned or its head is paged, reallocate * head pulling out all the pages (pages are considered not writable * at the moment even if they are anonymous). */ if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && !__pskb_pull_tail(skb, __skb_pagelen(skb))) return -ENOMEM; /* Easy case. Most of packets will go this way. */ if (!skb_has_frag_list(skb)) { /* A little of trouble, not enough of space for trailer. * This should not happen, when stack is tuned to generate * good frames. OK, on miss we reallocate and reserve even more * space, 128 bytes is fair. */ if (skb_tailroom(skb) < tailbits && pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) return -ENOMEM; /* Voila! */ *trailer = skb; return 1; } /* Misery. We are in troubles, going to mincer fragments... */ elt = 1; skb_p = &skb_shinfo(skb)->frag_list; copyflag = 0; while ((skb1 = *skb_p) != NULL) { int ntail = 0; /* The fragment is partially pulled by someone, * this can happen on input. Copy it and everything * after it. */ if (skb_shared(skb1)) copyflag = 1; /* If the skb is the last, worry about trailer. */ if (skb1->next == NULL && tailbits) { if (skb_shinfo(skb1)->nr_frags || skb_has_frag_list(skb1) || skb_tailroom(skb1) < tailbits) ntail = tailbits + 128; } if (copyflag || skb_cloned(skb1) || ntail || skb_shinfo(skb1)->nr_frags || skb_has_frag_list(skb1)) { struct sk_buff *skb2; /* Fuck, we are miserable poor guys... */ if (ntail == 0) skb2 = skb_copy(skb1, GFP_ATOMIC); else skb2 = skb_copy_expand(skb1, skb_headroom(skb1), ntail, GFP_ATOMIC); if (unlikely(skb2 == NULL)) return -ENOMEM; if (skb1->sk) skb_set_owner_w(skb2, skb1->sk); /* Looking around. Are we still alive? * OK, link new skb, drop old one */ skb2->next = skb1->next; *skb_p = skb2; kfree_skb(skb1); skb1 = skb2; } elt++; *trailer = skb1; skb_p = &skb1->next; } return elt; } EXPORT_SYMBOL_GPL(skb_cow_data); static void sock_rmem_free(struct sk_buff *skb) { struct sock *sk = skb->sk; atomic_sub(skb->truesize, &sk->sk_rmem_alloc); } static void skb_set_err_queue(struct sk_buff *skb) { /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. * So, it is safe to (mis)use it to mark skbs on the error queue. */ skb->pkt_type = PACKET_OUTGOING; BUILD_BUG_ON(PACKET_OUTGOING == 0); } /* * Note: We dont mem charge error packets (no sk_forward_alloc changes) */ int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) { if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= (unsigned int)READ_ONCE(sk->sk_rcvbuf)) return -ENOMEM; skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rmem_free; atomic_add(skb->truesize, &sk->sk_rmem_alloc); skb_set_err_queue(skb); /* before exiting rcu section, make sure dst is refcounted */ skb_dst_force(skb); skb_queue_tail(&sk->sk_error_queue, skb); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_error_report(sk); return 0; } EXPORT_SYMBOL(sock_queue_err_skb); static bool is_icmp_err_skb(const struct sk_buff *skb) { return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); } struct sk_buff *sock_dequeue_err_skb(struct sock *sk) { struct sk_buff_head *q = &sk->sk_error_queue; struct sk_buff *skb, *skb_next = NULL; bool icmp_next = false; unsigned long flags; spin_lock_irqsave(&q->lock, flags); skb = __skb_dequeue(q); if (skb && (skb_next = skb_peek(q))) { icmp_next = is_icmp_err_skb(skb_next); if (icmp_next) sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; } spin_unlock_irqrestore(&q->lock, flags); if (is_icmp_err_skb(skb) && !icmp_next) sk->sk_err = 0; if (skb_next) sk->sk_error_report(sk); return skb; } EXPORT_SYMBOL(sock_dequeue_err_skb); /** * skb_clone_sk - create clone of skb, and take reference to socket * @skb: the skb to clone * * This function creates a clone of a buffer that holds a reference on * sk_refcnt. Buffers created via this function are meant to be * returned using sock_queue_err_skb, or free via kfree_skb. * * When passing buffers allocated with this function to sock_queue_err_skb * it is necessary to wrap the call with sock_hold/sock_put in order to * prevent the socket from being released prior to being enqueued on * the sk_error_queue. */ struct sk_buff *skb_clone_sk(struct sk_buff *skb) { struct sock *sk = skb->sk; struct sk_buff *clone; if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) return NULL; clone = skb_clone(skb, GFP_ATOMIC); if (!clone) { sock_put(sk); return NULL; } clone->sk = sk; clone->destructor = sock_efree; return clone; } EXPORT_SYMBOL(skb_clone_sk); static void __skb_complete_tx_timestamp(struct sk_buff *skb, struct sock *sk, int tstype, bool opt_stats) { struct sock_exterr_skb *serr; int err; BUILD_BUG_ON(sizeof(s