1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BIT_SPINLOCK_H #define __LINUX_BIT_SPINLOCK_H #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/atomic.h> #include <linux/bug.h> /* * bit-based spin_lock() * * Don't use this unless you really need to: spin_lock() and spin_unlock() * are significantly faster. */ static inline void bit_spin_lock(int bitnum, unsigned long *addr) { /* * Assuming the lock is uncontended, this never enters * the body of the outer loop. If it is contended, then * within the inner loop a non-atomic test is used to * busywait with less bus contention for a good time to * attempt to acquire the lock bit. */ preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) while (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); do { cpu_relax(); } while (test_bit(bitnum, addr)); preempt_disable(); } #endif __acquire(bitlock); } /* * Return true if it was acquired */ static inline int bit_spin_trylock(int bitnum, unsigned long *addr) { preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) if (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); return 0; } #endif __acquire(bitlock); return 1; } /* * bit-based spin_unlock() */ static inline void bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * bit-based spin_unlock() * non-atomic version, which can be used eg. if the bit lock itself is * protecting the rest of the flags in the word. */ static inline void __bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) __clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * Return true if the lock is held. */ static inline int bit_spin_is_locked(int bitnum, unsigned long *addr) { #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) return test_bit(bitnum, addr); #elif defined CONFIG_PREEMPT_COUNT return preempt_count(); #else return 1; #endif } #endif /* __LINUX_BIT_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_INTERNAL_H #define BLK_INTERNAL_H #include <linux/idr.h> #include <linux/blk-mq.h> #include <linux/part_stat.h> #include <linux/blk-crypto.h> #include <xen/xen.h> #include "blk-crypto-internal.h" #include "blk-mq.h" #include "blk-mq-sched.h" /* Max future timer expiry for timeouts */ #define BLK_MAX_TIMEOUT (5 * HZ) extern struct dentry *blk_debugfs_root; struct blk_flush_queue { unsigned int flush_pending_idx:1; unsigned int flush_running_idx:1; blk_status_t rq_status; unsigned long flush_pending_since; struct list_head flush_queue[2]; struct list_head flush_data_in_flight; struct request *flush_rq; struct lock_class_key key; spinlock_t mq_flush_lock; }; extern struct kmem_cache *blk_requestq_cachep; extern struct kobj_type blk_queue_ktype; extern struct ida blk_queue_ida; static inline struct blk_flush_queue * blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) { return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; } static inline void __blk_get_queue(struct request_queue *q) { kobject_get(&q->kobj); } bool is_flush_rq(struct request *req); struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, gfp_t flags); void blk_free_flush_queue(struct blk_flush_queue *q); void blk_freeze_queue(struct request_queue *q); static inline bool biovec_phys_mergeable(struct request_queue *q, struct bio_vec *vec1, struct bio_vec *vec2) { unsigned long mask = queue_segment_boundary(q); phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; if (addr1 + vec1->bv_len != addr2) return false; if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) return false; if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) return false; return true; } static inline bool __bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { return (offset & queue_virt_boundary(q)) || ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); } /* * Check if adding a bio_vec after bprv with offset would create a gap in * the SG list. Most drivers don't care about this, but some do. */ static inline bool bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { if (!queue_virt_boundary(q)) return false; return __bvec_gap_to_prev(q, bprv, offset); } static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, unsigned int nr_segs) { rq->nr_phys_segments = nr_segs; rq->__data_len = bio->bi_iter.bi_size; rq->bio = rq->biotail = bio; rq->ioprio = bio_prio(bio); if (bio->bi_disk) rq->rq_disk = bio->bi_disk; } #ifdef CONFIG_BLK_DEV_INTEGRITY void blk_flush_integrity(void); bool __bio_integrity_endio(struct bio *); void bio_integrity_free(struct bio *bio); static inline bool bio_integrity_endio(struct bio *bio) { if (bio_integrity(bio)) return __bio_integrity_endio(bio); return true; } bool blk_integrity_merge_rq(struct request_queue *, struct request *, struct request *); bool blk_integrity_merge_bio(struct request_queue *, struct request *, struct bio *); static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { struct bio_integrity_payload *bip = bio_integrity(req->bio); struct bio_integrity_payload *bip_next = bio_integrity(next); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct bio_integrity_payload *bip_next = bio_integrity(req->bio); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } void blk_integrity_add(struct gendisk *); void blk_integrity_del(struct gendisk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline bool blk_integrity_merge_rq(struct request_queue *rq, struct request *r1, struct request *r2) { return true; } static inline bool blk_integrity_merge_bio(struct request_queue *rq, struct request *r, struct bio *b) { return true; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { return false; } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { return false; } static inline void blk_flush_integrity(void) { } static inline bool bio_integrity_endio(struct bio *bio) { return true; } static inline void bio_integrity_free(struct bio *bio) { } static inline void blk_integrity_add(struct gendisk *disk) { } static inline void blk_integrity_del(struct gendisk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ unsigned long blk_rq_timeout(unsigned long timeout); void blk_add_timer(struct request *req); bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **same_queue_rq); bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs); void blk_account_io_start(struct request *req); void blk_account_io_done(struct request *req, u64 now); /* * Plug flush limits */ #define BLK_MAX_REQUEST_COUNT 32 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) /* * Internal elevator interface */ #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) void blk_insert_flush(struct request *rq); void elevator_init_mq(struct request_queue *q); int elevator_switch_mq(struct request_queue *q, struct elevator_type *new_e); void __elevator_exit(struct request_queue *, struct elevator_queue *); int elv_register_queue(struct request_queue *q, bool uevent); void elv_unregister_queue(struct request_queue *q); static inline void elevator_exit(struct request_queue *q, struct elevator_queue *e) { lockdep_assert_held(&q->sysfs_lock); blk_mq_sched_free_requests(q); __elevator_exit(q, e); } struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); ssize_t part_timeout_store(struct device *, struct device_attribute *, const char *, size_t); void __blk_queue_split(struct bio **bio, unsigned int *nr_segs); int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs); int blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next); unsigned int blk_recalc_rq_segments(struct request *rq); void blk_rq_set_mixed_merge(struct request *rq); bool blk_rq_merge_ok(struct request *rq, struct bio *bio); enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); int blk_dev_init(void); /* * Contribute to IO statistics IFF: * * a) it's attached to a gendisk, and * b) the queue had IO stats enabled when this request was started */ static inline bool blk_do_io_stat(struct request *rq) { return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT); } static inline void req_set_nomerge(struct request_queue *q, struct request *req) { req->cmd_flags |= REQ_NOMERGE; if (req == q->last_merge) q->last_merge = NULL; } /* * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size * is defined as 'unsigned int', meantime it has to aligned to with logical * block size which is the minimum accepted unit by hardware. */ static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) { return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; } /* * The max bio size which is aligned to q->limits.discard_granularity. This * is a hint to split large discard bio in generic block layer, then if device * driver needs to split the discard bio into smaller ones, their bi_size can * be very probably and easily aligned to discard_granularity of the device's * queue. */ static inline unsigned int bio_aligned_discard_max_sectors( struct request_queue *q) { return round_down(UINT_MAX, q->limits.discard_granularity) >> SECTOR_SHIFT; } /* * Internal io_context interface */ void get_io_context(struct io_context *ioc); struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, gfp_t gfp_mask); void ioc_clear_queue(struct request_queue *q); int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); /* * Internal throttling interface */ #ifdef CONFIG_BLK_DEV_THROTTLING extern int blk_throtl_init(struct request_queue *q); extern void blk_throtl_exit(struct request_queue *q); extern void blk_throtl_register_queue(struct request_queue *q); extern void blk_throtl_charge_bio_split(struct bio *bio); bool blk_throtl_bio(struct bio *bio); #else /* CONFIG_BLK_DEV_THROTTLING */ static inline int blk_throtl_init(struct request_queue *q) { return 0; } static inline void blk_throtl_exit(struct request_queue *q) { } static inline void blk_throtl_register_queue(struct request_queue *q) { } static inline void blk_throtl_charge_bio_split(struct bio *bio) { } static inline bool blk_throtl_bio(struct bio *bio) { return false; } #endif /* CONFIG_BLK_DEV_THROTTLING */ #ifdef CONFIG_BLK_DEV_THROTTLING_LOW extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, const char *page, size_t count); extern void blk_throtl_bio_endio(struct bio *bio); extern void blk_throtl_stat_add(struct request *rq, u64 time); #else static inline void blk_throtl_bio_endio(struct bio *bio) { } static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } #endif #ifdef CONFIG_BOUNCE extern int init_emergency_isa_pool(void); extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); #else static inline int init_emergency_isa_pool(void) { return 0; } static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) { } #endif /* CONFIG_BOUNCE */ #ifdef CONFIG_BLK_CGROUP_IOLATENCY extern int blk_iolatency_init(struct request_queue *q); #else static inline int blk_iolatency_init(struct request_queue *q) { return 0; } #endif struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp); #ifdef CONFIG_BLK_DEV_ZONED void blk_queue_free_zone_bitmaps(struct request_queue *q); #else static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} #endif struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector); int blk_alloc_devt(struct hd_struct *part, dev_t *devt); void blk_free_devt(dev_t devt); void blk_invalidate_devt(dev_t devt); char *disk_name(struct gendisk *hd, int partno, char *buf); #define ADDPART_FLAG_NONE 0 #define ADDPART_FLAG_RAID 1 #define ADDPART_FLAG_WHOLEDISK 2 void delete_partition(struct hd_struct *part); int bdev_add_partition(struct block_device *bdev, int partno, sector_t start, sector_t length); int bdev_del_partition(struct block_device *bdev, int partno); int bdev_resize_partition(struct block_device *bdev, int partno, sector_t start, sector_t length); int disk_expand_part_tbl(struct gendisk *disk, int target); int hd_ref_init(struct hd_struct *part); /* no need to get/put refcount of part0 */ static inline int hd_struct_try_get(struct hd_struct *part) { if (part->partno) return percpu_ref_tryget_live(&part->ref); return 1; } static inline void hd_struct_put(struct hd_struct *part) { if (part->partno) percpu_ref_put(&part->ref); } static inline void hd_free_part(struct hd_struct *part) { free_percpu(part->dkstats); kfree(part->info); percpu_ref_exit(&part->ref); } /* * Any access of part->nr_sects which is not protected by partition * bd_mutex or gendisk bdev bd_mutex, should be done using this * accessor function. * * Code written along the lines of i_size_read() and i_size_write(). * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption * on. */ static inline sector_t part_nr_sects_read(struct hd_struct *part) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) sector_t nr_sects; unsigned seq; do { seq = read_seqcount_begin(&part->nr_sects_seq); nr_sects = part->nr_sects; } while (read_seqcount_retry(&part->nr_sects_seq, seq)); return nr_sects; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) sector_t nr_sects; preempt_disable(); nr_sects = part->nr_sects; preempt_enable(); return nr_sects; #else return part->nr_sects; #endif } /* * Should be called with mutex lock held (typically bd_mutex) of partition * to provide mutual exlusion among writers otherwise seqcount might be * left in wrong state leaving the readers spinning infinitely. */ static inline void part_nr_sects_write(struct hd_struct *part, sector_t size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&part->nr_sects_seq); part->nr_sects = size; write_seqcount_end(&part->nr_sects_seq); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); part->nr_sects = size; preempt_enable(); #else part->nr_sects = size; #endif } int bio_add_hw_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset, unsigned int max_sectors, bool *same_page); #endif /* BLK_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KBD_KERN_H #define _KBD_KERN_H #include <linux/tty.h> #include <linux/interrupt.h> #include <linux/keyboard.h> extern struct tasklet_struct keyboard_tasklet; extern char *func_table[MAX_NR_FUNC]; extern char func_buf[]; extern char *funcbufptr; extern int funcbufsize, funcbufleft; /* * kbd->xxx contains the VC-local things (flag settings etc..) * * Note: externally visible are LED_SCR, LED_NUM, LED_CAP defined in kd.h * The code in KDGETLED / KDSETLED depends on the internal and * external order being the same. * * Note: lockstate is used as index in the array key_map. */ struct kbd_struct { unsigned char lockstate; /* 8 modifiers - the names do not have any meaning at all; they can be associated to arbitrarily chosen keys */ #define VC_SHIFTLOCK KG_SHIFT /* shift lock mode */ #define VC_ALTGRLOCK KG_ALTGR /* altgr lock mode */ #define VC_CTRLLOCK KG_CTRL /* control lock mode */ #define VC_ALTLOCK KG_ALT /* alt lock mode */ #define VC_SHIFTLLOCK KG_SHIFTL /* shiftl lock mode */ #define VC_SHIFTRLOCK KG_SHIFTR /* shiftr lock mode */ #define VC_CTRLLLOCK KG_CTRLL /* ctrll lock mode */ #define VC_CTRLRLOCK KG_CTRLR /* ctrlr lock mode */ unsigned char slockstate; /* for `sticky' Shift, Ctrl, etc. */ unsigned char ledmode:1; #define LED_SHOW_FLAGS 0 /* traditional state */ #define LED_SHOW_IOCTL 1 /* only change leds upon ioctl */ unsigned char ledflagstate:4; /* flags, not lights */ unsigned char default_ledflagstate:4; #define VC_SCROLLOCK 0 /* scroll-lock mode */ #define VC_NUMLOCK 1 /* numeric lock mode */ #define VC_CAPSLOCK 2 /* capslock mode */ #define VC_KANALOCK 3 /* kanalock mode */ unsigned char kbdmode:3; /* one 3-bit value */ #define VC_XLATE 0 /* translate keycodes using keymap */ #define VC_MEDIUMRAW 1 /* medium raw (keycode) mode */ #define VC_RAW 2 /* raw (scancode) mode */ #define VC_UNICODE 3 /* Unicode mode */ #define VC_OFF 4 /* disabled mode */ unsigned char modeflags:5; #define VC_APPLIC 0 /* application key mode */ #define VC_CKMODE 1 /* cursor key mode */ #define VC_REPEAT 2 /* keyboard repeat */ #define VC_CRLF 3 /* 0 - enter sends CR, 1 - enter sends CRLF */ #define VC_META 4 /* 0 - meta, 1 - meta=prefix with ESC */ }; extern int kbd_init(void); extern void setledstate(struct kbd_struct *kbd, unsigned int led); extern int do_poke_blanked_console; extern void (*kbd_ledfunc)(unsigned int led); extern int set_console(int nr); extern void schedule_console_callback(void); /* FIXME: review locking for vt.c callers */ static inline void set_leds(void) { tasklet_schedule(&keyboard_tasklet); } static inline int vc_kbd_mode(struct kbd_struct * kbd, int flag) { return ((kbd->modeflags >> flag) & 1); } static inline int vc_kbd_led(struct kbd_struct * kbd, int flag) { return ((kbd->ledflagstate >> flag) & 1); } static inline void set_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags |= 1 << flag; } static inline void set_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate |= 1 << flag; } static inline void clr_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags &= ~(1 << flag); } static inline void clr_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate &= ~(1 << flag); } static inline void chg_vc_kbd_lock(struct kbd_struct * kbd, int flag) { kbd->lockstate ^= 1 << flag; } static inline void chg_vc_kbd_slock(struct kbd_struct * kbd, int flag) { kbd->slockstate ^= 1 << flag; } static inline void chg_vc_kbd_mode(struct kbd_struct * kbd, int flag) { kbd->modeflags ^= 1 << flag; } static inline void chg_vc_kbd_led(struct kbd_struct * kbd, int flag) { kbd->ledflagstate ^= 1 << flag; } #define U(x) ((x) ^ 0xf000) #define BRL_UC_ROW 0x2800 /* keyboard.c */ struct console; void compute_shiftstate(void); /* defkeymap.c */ extern unsigned int keymap_count; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 /* BlueZ - Bluetooth protocol stack for Linux Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __HCI_CORE_H #define __HCI_CORE_H #include <linux/idr.h> #include <linux/leds.h> #include <linux/rculist.h> #include <net/bluetooth/hci.h> #include <net/bluetooth/hci_sock.h> /* HCI priority */ #define HCI_PRIO_MAX 7 /* HCI Core structures */ struct inquiry_data { bdaddr_t bdaddr; __u8 pscan_rep_mode; __u8 pscan_period_mode; __u8 pscan_mode; __u8 dev_class[3]; __le16 clock_offset; __s8 rssi; __u8 ssp_mode; }; struct inquiry_entry { struct list_head all; /* inq_cache.all */ struct list_head list; /* unknown or resolve */ enum { NAME_NOT_KNOWN, NAME_NEEDED, NAME_PENDING, NAME_KNOWN, } name_state; __u32 timestamp; struct inquiry_data data; }; struct discovery_state { int type; enum { DISCOVERY_STOPPED, DISCOVERY_STARTING, DISCOVERY_FINDING, DISCOVERY_RESOLVING, DISCOVERY_STOPPING, } state; struct list_head all; /* All devices found during inquiry */ struct list_head unknown; /* Name state not known */ struct list_head resolve; /* Name needs to be resolved */ __u32 timestamp; bdaddr_t last_adv_addr; u8 last_adv_addr_type; s8 last_adv_rssi; u32 last_adv_flags; u8 last_adv_data[HCI_MAX_AD_LENGTH]; u8 last_adv_data_len; bool report_invalid_rssi; bool result_filtering; bool limited; s8 rssi; u16 uuid_count; u8 (*uuids)[16]; unsigned long scan_start; unsigned long scan_duration; }; #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ enum suspend_tasks { SUSPEND_PAUSE_DISCOVERY, SUSPEND_UNPAUSE_DISCOVERY, SUSPEND_PAUSE_ADVERTISING, SUSPEND_UNPAUSE_ADVERTISING, SUSPEND_SCAN_DISABLE, SUSPEND_SCAN_ENABLE, SUSPEND_DISCONNECTING, SUSPEND_POWERING_DOWN, SUSPEND_PREPARE_NOTIFIER, __SUSPEND_NUM_TASKS }; enum suspended_state { BT_RUNNING = 0, BT_SUSPEND_DISCONNECT, BT_SUSPEND_CONFIGURE_WAKE, }; struct hci_conn_hash { struct list_head list; unsigned int acl_num; unsigned int amp_num; unsigned int sco_num; unsigned int le_num; unsigned int le_num_slave; }; struct bdaddr_list { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; }; struct bdaddr_list_with_irk { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 peer_irk[16]; u8 local_irk[16]; }; struct bdaddr_list_with_flags { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u32 current_flags; }; enum hci_conn_flags { HCI_CONN_FLAG_REMOTE_WAKEUP, HCI_CONN_FLAG_MAX }; #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr)) /* Make sure number of flags doesn't exceed sizeof(current_flags) */ static_assert(HCI_CONN_FLAG_MAX < 32); struct bt_uuid { struct list_head list; u8 uuid[16]; u8 size; u8 svc_hint; }; struct blocked_key { struct list_head list; struct rcu_head rcu; u8 type; u8 val[16]; }; struct smp_csrk { bdaddr_t bdaddr; u8 bdaddr_type; u8 type; u8 val[16]; }; struct smp_ltk { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 bdaddr_type; u8 authenticated; u8 type; u8 enc_size; __le16 ediv; __le64 rand; u8 val[16]; }; struct smp_irk { struct list_head list; struct rcu_head rcu; bdaddr_t rpa; bdaddr_t bdaddr; u8 addr_type; u8 val[16]; }; struct link_key { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 type; u8 val[HCI_LINK_KEY_SIZE]; u8 pin_len; }; struct oob_data { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 present; u8 hash192[16]; u8 rand192[16]; u8 hash256[16]; u8 rand256[16]; }; struct adv_info { struct list_head list; bool pending; __u8 instance; __u32 flags; __u16 timeout; __u16 remaining_time; __u16 duration; __u16 adv_data_len; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u16 scan_rsp_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __s8 tx_power; bdaddr_t random_addr; bool rpa_expired; struct delayed_work rpa_expired_cb; }; #define HCI_MAX_ADV_INSTANCES 5 #define HCI_DEFAULT_ADV_DURATION 2 struct adv_pattern { struct list_head list; __u8 ad_type; __u8 offset; __u8 length; __u8 value[HCI_MAX_AD_LENGTH]; }; struct adv_monitor { struct list_head patterns; bool active; __u16 handle; }; #define HCI_MIN_ADV_MONITOR_HANDLE 1 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 #define HCI_MAX_SHORT_NAME_LENGTH 10 /* Min encryption key size to match with SMP */ #define HCI_MIN_ENC_KEY_SIZE 7 /* Default LE RPA expiry time, 15 minutes */ #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) /* Default min/max age of connection information (1s/3s) */ #define DEFAULT_CONN_INFO_MIN_AGE 1000 #define DEFAULT_CONN_INFO_MAX_AGE 3000 /* Default authenticated payload timeout 30s */ #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 struct amp_assoc { __u16 len; __u16 offset; __u16 rem_len; __u16 len_so_far; __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; }; #define HCI_MAX_PAGES 3 struct hci_dev { struct list_head list; struct mutex lock; char name[8]; unsigned long flags; __u16 id; __u8 bus; __u8 dev_type; bdaddr_t bdaddr; bdaddr_t setup_addr; bdaddr_t public_addr; bdaddr_t random_addr; bdaddr_t static_addr; __u8 adv_addr_type; __u8 dev_name[HCI_MAX_NAME_LENGTH]; __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; __u8 eir[HCI_MAX_EIR_LENGTH]; __u16 appearance; __u8 dev_class[3]; __u8 major_class; __u8 minor_class; __u8 max_page; __u8 features[HCI_MAX_PAGES][8]; __u8 le_features[8]; __u8 le_white_list_size; __u8 le_resolv_list_size; __u8 le_num_of_adv_sets; __u8 le_states[8]; __u8 commands[64]; __u8 hci_ver; __u16 hci_rev; __u8 lmp_ver; __u16 manufacturer; __u16 lmp_subver; __u16 voice_setting; __u8 num_iac; __u8 stored_max_keys; __u8 stored_num_keys; __u8 io_capability; __s8 inq_tx_power; __u8 err_data_reporting; __u16 page_scan_interval; __u16 page_scan_window; __u8 page_scan_type; __u8 le_adv_channel_map; __u16 le_adv_min_interval; __u16 le_adv_max_interval; __u8 le_scan_type; __u16 le_scan_interval; __u16 le_scan_window; __u16 le_scan_int_suspend; __u16 le_scan_window_suspend; __u16 le_scan_int_discovery; __u16 le_scan_window_discovery; __u16 le_scan_int_adv_monitor; __u16 le_scan_window_adv_monitor; __u16 le_scan_int_connect; __u16 le_scan_window_connect; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u16 le_def_tx_len; __u16 le_def_tx_time; __u16 le_max_tx_len; __u16 le_max_tx_time; __u16 le_max_rx_len; __u16 le_max_rx_time; __u8 le_max_key_size; __u8 le_min_key_size; __u16 discov_interleaved_timeout; __u16 conn_info_min_age; __u16 conn_info_max_age; __u16 auth_payload_timeout; __u8 min_enc_key_size; __u8 max_enc_key_size; __u8 pairing_opts; __u8 ssp_debug_mode; __u8 hw_error_code; __u32 clock; __u16 devid_source; __u16 devid_vendor; __u16 devid_product; __u16 devid_version; __u8 def_page_scan_type; __u16 def_page_scan_int; __u16 def_page_scan_window; __u8 def_inq_scan_type; __u16 def_inq_scan_int; __u16 def_inq_scan_window; __u16 def_br_lsto; __u16 def_page_timeout; __u16 def_multi_adv_rotation_duration; __u16 def_le_autoconnect_timeout; __u16 pkt_type; __u16 esco_type; __u16 link_policy; __u16 link_mode; __u32 idle_timeout; __u16 sniff_min_interval; __u16 sniff_max_interval; __u8 amp_status; __u32 amp_total_bw; __u32 amp_max_bw; __u32 amp_min_latency; __u32 amp_max_pdu; __u8 amp_type; __u16 amp_pal_cap; __u16 amp_assoc_size; __u32 amp_max_flush_to; __u32 amp_be_flush_to; struct amp_assoc loc_assoc; __u8 flow_ctl_mode; unsigned int auto_accept_delay; unsigned long quirks; atomic_t cmd_cnt; unsigned int acl_cnt; unsigned int sco_cnt; unsigned int le_cnt; unsigned int acl_mtu; unsigned int sco_mtu; unsigned int le_mtu; unsigned int acl_pkts; unsigned int sco_pkts; unsigned int le_pkts; __u16 block_len; __u16 block_mtu; __u16 num_blocks; __u16 block_cnt; unsigned long acl_last_tx; unsigned long sco_last_tx; unsigned long le_last_tx; __u8 le_tx_def_phys; __u8 le_rx_def_phys; struct workqueue_struct *workqueue; struct workqueue_struct *req_workqueue; struct work_struct power_on; struct delayed_work power_off; struct work_struct error_reset; __u16 discov_timeout; struct delayed_work discov_off; struct delayed_work service_cache; struct delayed_work cmd_timer; struct work_struct rx_work; struct work_struct cmd_work; struct work_struct tx_work; struct work_struct discov_update; struct work_struct bg_scan_update; struct work_struct scan_update; struct work_struct connectable_update; struct work_struct discoverable_update; struct delayed_work le_scan_disable; struct delayed_work le_scan_restart; struct sk_buff_head rx_q; struct sk_buff_head raw_q; struct sk_buff_head cmd_q; struct sk_buff *sent_cmd; struct mutex req_lock; wait_queue_head_t req_wait_q; __u32 req_status; __u32 req_result; struct sk_buff *req_skb; void *smp_data; void *smp_bredr_data; struct discovery_state discovery; int discovery_old_state; bool discovery_paused; int advertising_old_state; bool advertising_paused; struct notifier_block suspend_notifier; struct work_struct suspend_prepare; enum suspended_state suspend_state_next; enum suspended_state suspend_state; bool scanning_paused; bool suspended; u8 wake_reason; bdaddr_t wake_addr; u8 wake_addr_type; wait_queue_head_t suspend_wait_q; DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); struct hci_conn_hash conn_hash; struct list_head mgmt_pending; struct list_head blacklist; struct list_head whitelist; struct list_head uuids; struct list_head link_keys; struct list_head long_term_keys; struct list_head identity_resolving_keys; struct list_head remote_oob_data; struct list_head le_white_list; struct list_head le_resolv_list; struct list_head le_conn_params; struct list_head pend_le_conns; struct list_head pend_le_reports; struct list_head blocked_keys; struct hci_dev_stats stat; atomic_t promisc; const char *hw_info; const char *fw_info; struct dentry *debugfs; struct device dev; struct rfkill *rfkill; DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); __s8 adv_tx_power; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u8 adv_data_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __u8 scan_rsp_data_len; struct list_head adv_instances; unsigned int adv_instance_cnt; __u8 cur_adv_instance; __u16 adv_instance_timeout; struct delayed_work adv_instance_expire; struct idr adv_monitors_idr; unsigned int adv_monitors_cnt; __u8 irk[16]; __u32 rpa_timeout; struct delayed_work rpa_expired; bdaddr_t rpa; #if IS_ENABLED(CONFIG_BT_LEDS) struct led_trigger *power_led; #endif #if IS_ENABLED(CONFIG_BT_MSFTEXT) __u16 msft_opcode; void *msft_data; #endif int (*open)(struct hci_dev *hdev); int (*close)(struct hci_dev *hdev); int (*flush)(struct hci_dev *hdev); int (*setup)(struct hci_dev *hdev); int (*shutdown)(struct hci_dev *hdev); int (*send)(struct hci_dev *hdev, struct sk_buff *skb); void (*notify)(struct hci_dev *hdev, unsigned int evt); void (*hw_error)(struct hci_dev *hdev, u8 code); int (*post_init)(struct hci_dev *hdev); int (*set_diag)(struct hci_dev *hdev, bool enable); int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); void (*cmd_timeout)(struct hci_dev *hdev); bool (*prevent_wake)(struct hci_dev *hdev); }; #define HCI_PHY_HANDLE(handle) (handle & 0xff) enum conn_reasons { CONN_REASON_PAIR_DEVICE, CONN_REASON_L2CAP_CHAN, CONN_REASON_SCO_CONNECT, }; struct hci_conn { struct list_head list; atomic_t refcnt; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; bdaddr_t init_addr; __u8 init_addr_type; bdaddr_t resp_addr; __u8 resp_addr_type; __u16 handle; __u16 state; __u8 mode; __u8 type; __u8 role; bool out; __u8 attempt; __u8 dev_class[3]; __u8 features[HCI_MAX_PAGES][8]; __u16 pkt_type; __u16 link_policy; __u8 key_type; __u8 auth_type; __u8 sec_level; __u8 pending_sec_level; __u8 pin_length; __u8 enc_key_size; __u8 io_capability; __u32 passkey_notify; __u8 passkey_entered; __u16 disc_timeout; __u16 conn_timeout; __u16 setting; __u16 auth_payload_timeout; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u8 le_adv_data[HCI_MAX_AD_LENGTH]; __u8 le_adv_data_len; __u8 le_tx_phy; __u8 le_rx_phy; __s8 rssi; __s8 tx_power; __s8 max_tx_power; unsigned long flags; enum conn_reasons conn_reason; __u32 clock; __u16 clock_accuracy; unsigned long conn_info_timestamp; __u8 remote_cap; __u8 remote_auth; __u8 remote_id; unsigned int sent; struct sk_buff_head data_q; struct list_head chan_list; struct delayed_work disc_work; struct delayed_work auto_accept_work; struct delayed_work idle_work; struct delayed_work le_conn_timeout; struct work_struct le_scan_cleanup; struct device dev; struct dentry *debugfs; struct hci_dev *hdev; void *l2cap_data; void *sco_data; struct amp_mgr *amp_mgr; struct hci_conn *link; void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); void (*security_cfm_cb) (struct hci_conn *conn, u8 status); void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); }; struct hci_chan { struct list_head list; __u16 handle; struct hci_conn *conn; struct sk_buff_head data_q; unsigned int sent; __u8 state; bool amp; }; struct hci_conn_params { struct list_head list; struct list_head action; bdaddr_t addr; u8 addr_type; u16 conn_min_interval; u16 conn_max_interval; u16 conn_latency; u16 supervision_timeout; enum { HCI_AUTO_CONN_DISABLED, HCI_AUTO_CONN_REPORT, HCI_AUTO_CONN_DIRECT, HCI_AUTO_CONN_ALWAYS, HCI_AUTO_CONN_LINK_LOSS, HCI_AUTO_CONN_EXPLICIT, } auto_connect; struct hci_conn *conn; bool explicit_connect; u32 current_flags; }; extern struct list_head hci_dev_list; extern struct list_head hci_cb_list; extern rwlock_t hci_dev_list_lock; extern struct mutex hci_cb_list_lock; #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_volatile_flags(hdev) \ do { \ hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ hci_dev_clear_flag(hdev, HCI_LE_ADV); \ hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ } while (0) /* ----- HCI interface to upper protocols ----- */ int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); int l2cap_disconn_ind(struct hci_conn *hcon); void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); #else static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags) { return 0; } static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) { } #endif /* ----- Inquiry cache ----- */ #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ static inline void discovery_init(struct hci_dev *hdev) { hdev->discovery.state = DISCOVERY_STOPPED; INIT_LIST_HEAD(&hdev->discovery.all); INIT_LIST_HEAD(&hdev->discovery.unknown); INIT_LIST_HEAD(&hdev->discovery.resolve); hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; } static inline void hci_discovery_filter_clear(struct hci_dev *hdev) { hdev->discovery.result_filtering = false; hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; hdev->discovery.uuid_count = 0; kfree(hdev->discovery.uuids); hdev->discovery.uuids = NULL; hdev->discovery.scan_start = 0; hdev->discovery.scan_duration = 0; } bool hci_discovery_active(struct hci_dev *hdev); void hci_discovery_set_state(struct hci_dev *hdev, int state); static inline int inquiry_cache_empty(struct hci_dev *hdev) { return list_empty(&hdev->discovery.all); } static inline long inquiry_cache_age(struct hci_dev *hdev) { struct discovery_state *c = &hdev->discovery; return jiffies - c->timestamp; } static inline long inquiry_entry_age(struct inquiry_entry *e) { return jiffies - e->timestamp; } struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, bdaddr_t *bdaddr, int state); void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, struct inquiry_entry *ie); u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, bool name_known); void hci_inquiry_cache_flush(struct hci_dev *hdev); /* ----- HCI Connections ----- */ enum { HCI_CONN_AUTH_PEND, HCI_CONN_REAUTH_PEND, HCI_CONN_ENCRYPT_PEND, HCI_CONN_RSWITCH_PEND, HCI_CONN_MODE_CHANGE_PEND, HCI_CONN_SCO_SETUP_PEND, HCI_CONN_MGMT_CONNECTED, HCI_CONN_SSP_ENABLED, HCI_CONN_SC_ENABLED, HCI_CONN_AES_CCM, HCI_CONN_POWER_SAVE, HCI_CONN_FLUSH_KEY, HCI_CONN_ENCRYPT, HCI_CONN_AUTH, HCI_CONN_SECURE, HCI_CONN_FIPS, HCI_CONN_STK_ENCRYPT, HCI_CONN_AUTH_INITIATOR, HCI_CONN_DROP, HCI_CONN_PARAM_REMOVAL_PEND, HCI_CONN_NEW_LINK_KEY, HCI_CONN_SCANNING, HCI_CONN_AUTH_FAILURE, }; static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); } static inline bool hci_conn_sc_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && test_bit(HCI_CONN_SC_ENABLED, &conn->flags); } static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_add_rcu(&c->list, &h->list); switch (c->type) { case ACL_LINK: h->acl_num++; break; case AMP_LINK: h->amp_num++; break; case LE_LINK: h->le_num++; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave++; break; case SCO_LINK: case ESCO_LINK: h->sco_num++; break; } } static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_del_rcu(&c->list); synchronize_rcu(); switch (c->type) { case ACL_LINK: h->acl_num--; break; case AMP_LINK: h->amp_num--; break; case LE_LINK: h->le_num--; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave--; break; case SCO_LINK: case ESCO_LINK: h->sco_num--; break; } } static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) { struct hci_conn_hash *h = &hdev->conn_hash; switch (type) { case ACL_LINK: return h->acl_num; case AMP_LINK: return h->amp_num; case LE_LINK: return h->le_num; case SCO_LINK: case ESCO_LINK: return h->sco_num; default: return 0; } } static inline unsigned int hci_conn_count(struct hci_dev *hdev) { struct hci_conn_hash *c = &hdev->conn_hash; return c->acl_num + c->amp_num + c->sco_num + c->le_num; } static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; __u8 type = INVALID_LINK; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { type = c->type; break; } } rcu_read_unlock(); return type; } static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, __u8 type, bdaddr_t *ba) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, bdaddr_t *ba, __u8 ba_type) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type != LE_LINK) continue; if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, __u8 type, __u16 state) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && c->state == state) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == LE_LINK && c->state == BT_CONNECT && !test_bit(HCI_CONN_SCANNING, &c->flags)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } int hci_disconnect(struct hci_conn *conn, __u8 reason); bool hci_setup_sync(struct hci_conn *conn, __u16 handle); void hci_sco_setup(struct hci_conn *conn, __u8 status); struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, u8 role); int hci_conn_del(struct hci_conn *conn); void hci_conn_hash_flush(struct hci_dev *hdev); void hci_conn_check_pending(struct hci_dev *hdev); struct hci_chan *hci_chan_create(struct hci_conn *conn); void hci_chan_del(struct hci_chan *chan); void hci_chan_list_flush(struct hci_conn *conn); struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, enum conn_reasons conn_reason); struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, u8 role, bdaddr_t *direct_rpa); struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, u8 sec_level, u8 auth_type, enum conn_reasons conn_reason); struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, __u16 setting); int hci_conn_check_link_mode(struct hci_conn *conn); int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, bool initiator); int hci_conn_switch_role(struct hci_conn *conn, __u8 role); void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); void hci_le_conn_failed(struct hci_conn *conn, u8 status); /* * hci_conn_get() and hci_conn_put() are used to control the life-time of an * "hci_conn" object. They do not guarantee that the hci_conn object is running, * working or anything else. They just guarantee that the object is available * and can be dereferenced. So you can use its locks, local variables and any * other constant data. * Before accessing runtime data, you _must_ lock the object and then check that * it is still running. As soon as you release the locks, the connection might * get dropped, though. * * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control * how long the underlying connection is held. So every channel that runs on the * hci_conn object calls this to prevent the connection from disappearing. As * long as you hold a device, you must also guarantee that you have a valid * reference to the device via hci_conn_get() (or the initial reference from * hci_conn_add()). * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't * break because nobody cares for that. But this means, we cannot use * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). */ static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) { get_device(&conn->dev); return conn; } static inline void hci_conn_put(struct hci_conn *conn) { put_device(&conn->dev); } static inline void hci_conn_hold(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); atomic_inc(&conn->refcnt); cancel_delayed_work(&conn->disc_work); } static inline void hci_conn_drop(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); if (atomic_dec_and_test(&conn->refcnt)) { unsigned long timeo; switch (conn->type) { case ACL_LINK: case LE_LINK: cancel_delayed_work(&conn->idle_work); if (conn->state == BT_CONNECTED) { timeo = conn->disc_timeout; if (!conn->out) timeo *= 2; } else { timeo = 0; } break; case AMP_LINK: timeo = conn->disc_timeout; break; default: timeo = 0; break; } cancel_delayed_work(&conn->disc_work); queue_delayed_work(conn->hdev->workqueue, &conn->disc_work, timeo); } } /* ----- HCI Devices ----- */ static inline void hci_dev_put(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); put_device(&d->dev); } static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); get_device(&d->dev); return d; } #define hci_dev_lock(d) mutex_lock(&d->lock) #define hci_dev_unlock(d) mutex_unlock(&d->lock) #define to_hci_dev(d) container_of(d, struct hci_dev, dev) #define to_hci_conn(c) container_of(c, struct hci_conn, dev) static inline void *hci_get_drvdata(struct hci_dev *hdev) { return dev_get_drvdata(&hdev->dev); } static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) { dev_set_drvdata(&hdev->dev, data); } struct hci_dev *hci_dev_get(int index); struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); struct hci_dev *hci_alloc_dev(void); void hci_free_dev(struct hci_dev *hdev); int hci_register_dev(struct hci_dev *hdev); void hci_unregister_dev(struct hci_dev *hdev); void hci_cleanup_dev(struct hci_dev *hdev); int hci_suspend_dev(struct hci_dev *hdev); int hci_resume_dev(struct hci_dev *hdev); int hci_reset_dev(struct hci_dev *hdev); int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) { #if IS_ENABLED(CONFIG_BT_MSFTEXT) hdev->msft_opcode = opcode; #endif } int hci_dev_open(__u16 dev); int hci_dev_close(__u16 dev); int hci_dev_do_close(struct hci_dev *hdev); int hci_dev_reset(__u16 dev); int hci_dev_reset_stat(__u16 dev); int hci_dev_cmd(unsigned int cmd, void __user *arg); int hci_get_dev_list(void __user *arg); int hci_get_dev_info(void __user *arg); int hci_get_conn_list(void __user *arg); int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); int hci_inquiry(void __user *arg); struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_flags * hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type, u8 *peer_irk, u8 *local_irk); int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type, u32 flags); int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); void hci_bdaddr_list_clear(struct list_head *list); struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_clear_disabled(struct hci_dev *hdev); struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, bdaddr_t *addr, u8 addr_type); void hci_uuids_clear(struct hci_dev *hdev); void hci_link_keys_clear(struct hci_dev *hdev); struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len, bool *persistent); struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, u8 authenticated, u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 role); int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_smp_ltks_clear(struct hci_dev *hdev); int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 val[16], bdaddr_t *rpa); void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); void hci_blocked_keys_clear(struct hci_dev *hdev); void hci_smp_irks_clear(struct hci_dev *hdev); bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); void hci_remote_oob_data_clear(struct hci_dev *hdev); struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 *hash192, u8 *rand192, u8 *hash256, u8 *rand256); int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_adv_instances_clear(struct hci_dev *hdev); struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, u16 adv_data_len, u8 *adv_data, u16 scan_rsp_len, u8 *scan_rsp_data, u16 timeout, u16 duration); int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); void hci_adv_monitors_clear(struct hci_dev *hdev); void hci_free_adv_monitor(struct adv_monitor *monitor); int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle); bool hci_is_adv_monitoring(struct hci_dev *hdev); void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); void hci_init_sysfs(struct hci_dev *hdev); void hci_conn_init_sysfs(struct hci_conn *conn); void hci_conn_add_sysfs(struct hci_conn *conn); void hci_conn_del_sysfs(struct hci_conn *conn); #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) /* ----- LMP capabilities ----- */ #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) /* ----- Extended LMP capabilities ----- */ #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) /* ----- Host capabilities ----- */ #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ !hci_dev_test_flag(dev, HCI_AUTO_OFF)) #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ hci_dev_test_flag(dev, HCI_SC_ENABLED)) #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) /* Use LL Privacy based address resolution if supported */ #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) /* Use ext scanning if set ext scan param and ext scan enable is supported */ #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ ((dev)->commands[37] & 0x40)) /* Use ext create connection if command is supported */ #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) /* Extended advertising support */ #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) /* ----- HCI protocols ----- */ #define HCI_PROTO_DEFER 0x01 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 type, __u8 *flags) { switch (type) { case ACL_LINK: return l2cap_connect_ind(hdev, bdaddr); case SCO_LINK: case ESCO_LINK: return sco_connect_ind(hdev, bdaddr, flags); default: BT_ERR("unknown link type %d", type); return -EINVAL; } } static inline int hci_proto_disconn_ind(struct hci_conn *conn) { if (conn->type != ACL_LINK && conn->type != LE_LINK) return HCI_ERROR_REMOTE_USER_TERM; return l2cap_disconn_ind(conn); } /* ----- HCI callbacks ----- */ struct hci_cb { struct list_head list; char *name; void (*connect_cfm) (struct hci_conn *conn, __u8 status); void (*disconn_cfm) (struct hci_conn *conn, __u8 status); void (*security_cfm) (struct hci_conn *conn, __u8 status, __u8 encrypt); void (*key_change_cfm) (struct hci_conn *conn, __u8 status); void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); }; static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->connect_cfm) cb->connect_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); if (conn->connect_cfm_cb) conn->connect_cfm_cb(conn, status); } static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->disconn_cfm) cb->disconn_cfm(conn, reason); } mutex_unlock(&hci_cb_list_lock); if (conn->disconn_cfm_cb) conn->disconn_cfm_cb(conn, reason); } static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) return; encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (conn->state == BT_CONFIG) { if (!status) conn->state = BT_CONNECTED; hci_connect_cfm(conn, status); hci_conn_drop(conn); return; } if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) encrypt = 0x00; else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) encrypt = 0x02; else encrypt = 0x01; if (!status) { if (conn->sec_level == BT_SECURITY_SDP) conn->sec_level = BT_SECURITY_LOW; if (conn->pending_sec_level > conn->sec_level) conn->sec_level = conn->pending_sec_level; } mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->key_change_cfm) cb->key_change_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); } static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, __u8 role) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->role_switch_cfm) cb->role_switch_cfm(conn, status, role); } mutex_unlock(&hci_cb_list_lock); } static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, size_t *data_len) { size_t parsed = 0; if (eir_len < 2) return NULL; while (parsed < eir_len - 1) { u8 field_len = eir[0]; if (field_len == 0) break; parsed += field_len + 1; if (parsed > eir_len) break; if (eir[1] != type) { eir += field_len + 1; continue; } /* Zero length data */ if (field_len == 1) return NULL; if (data_len) *data_len = field_len - 1; return &eir[2]; } return NULL; } static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) { if (addr_type != ADDR_LE_DEV_RANDOM) return false; if ((bdaddr->b[5] & 0xc0) == 0x40) return true; return false; } static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) { if (addr_type == ADDR_LE_DEV_PUBLIC) return true; /* Check for Random Static address type */ if ((addr->b[5] & 0xc0) == 0xc0) return true; return false; } static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) { if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) return NULL; return hci_find_irk_by_rpa(hdev, bdaddr); } static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, u16 to_multiplier) { u16 max_latency; if (min > max || min < 6 || max > 3200) return -EINVAL; if (to_multiplier < 10 || to_multiplier > 3200) return -EINVAL; if (max >= to_multiplier * 8) return -EINVAL; max_latency = (to_multiplier * 4 / max) - 1; if (latency > 499 || latency > max_latency) return -EINVAL; return 0; } int hci_register_cb(struct hci_cb *hcb); int hci_unregister_cb(struct hci_cb *hcb); struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u8 event, u32 timeout); int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param); int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, const void *param); void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); u32 hci_conn_get_phy(struct hci_conn *conn); /* ----- HCI Sockets ----- */ void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, int flag, struct sock *skip_sk); void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, void *data, u16 data_len, ktime_t tstamp, int flag, struct sock *skip_sk); void hci_sock_dev_event(struct hci_dev *hdev, int event); #define HCI_MGMT_VAR_LEN BIT(0) #define HCI_MGMT_NO_HDEV BIT(1) #define HCI_MGMT_UNTRUSTED BIT(2) #define HCI_MGMT_UNCONFIGURED BIT(3) #define HCI_MGMT_HDEV_OPTIONAL BIT(4) struct hci_mgmt_handler { int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len); size_t data_len; unsigned long flags; }; struct hci_mgmt_chan { struct list_head list; unsigned short channel; size_t handler_count; const struct hci_mgmt_handler *handlers; void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); }; int hci_mgmt_chan_register(struct hci_mgmt_chan *c); void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); /* Management interface */ #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) /* These LE scan and inquiry parameters were chosen according to LE General * Discovery Procedure specification. */ #define DISCOV_LE_SCAN_WIN 0x12 #define DISCOV_LE_SCAN_INT 0x12 #define DISCOV_LE_TIMEOUT 10240 /* msec */ #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 #define DISCOV_BREDR_INQUIRY_LEN 0x08 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ void mgmt_fill_version_info(void *ver); int mgmt_new_settings(struct hci_dev *hdev); void mgmt_index_added(struct hci_dev *hdev); void mgmt_index_removed(struct hci_dev *hdev); void mgmt_set_powered_failed(struct hci_dev *hdev, int err); void mgmt_power_on(struct hci_dev *hdev, int err); void __mgmt_power_off(struct hci_dev *hdev); void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, bool persistent); void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, u32 flags, u8 *name, u8 name_len); void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 reason, bool mgmt_connected); void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 value, u8 confirm_hint); int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type); int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 passkey, u8 entered); void mgmt_auth_failed(struct hci_conn *conn, u8 status); void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, u8 status); void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, s8 rssi, u8 *name, u8 name_len); void mgmt_discovering(struct hci_dev *hdev, u8 discovering); void mgmt_suspending(struct hci_dev *hdev, u8 state); void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, u8 addr_type); bool mgmt_powering_down(struct hci_dev *hdev); void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, bool persistent); void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 store_hint, u16 min_interval, u16 max_interval, u16 latency, u16 timeout); void mgmt_smp_complete(struct hci_conn *conn, bool complete); bool mgmt_get_connectable(struct hci_dev *hdev); void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, u8 instance); void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, u8 instance); int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, u16 to_multiplier); void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, __u8 ltk[16], __u8 key_size); void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *bdaddr_type); #define SCO_AIRMODE_MASK 0x0003 #define SCO_AIRMODE_CVSD 0x0000 #define SCO_AIRMODE_TRANSP 0x0003 #endif /* __HCI_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 /* SPDX-License-Identifier: GPL-2.0 */ /* * RT Mutexes: blocking mutual exclusion locks with PI support * * started by Ingo Molnar and Thomas Gleixner: * * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com> * * This file contains the private data structure and API definitions. */ #ifndef __KERNEL_RTMUTEX_COMMON_H #define __KERNEL_RTMUTEX_COMMON_H #include <linux/rtmutex.h> #include <linux/sched/wake_q.h> /* * This is the control structure for tasks blocked on a rt_mutex, * which is allocated on the kernel stack on of the blocked task. * * @tree_entry: pi node to enqueue into the mutex waiters tree * @pi_tree_entry: pi node to enqueue into the mutex owner waiters tree * @task: task reference to the blocked task */ struct rt_mutex_waiter { struct rb_node tree_entry; struct rb_node pi_tree_entry; struct task_struct *task; struct rt_mutex *lock; #ifdef CONFIG_DEBUG_RT_MUTEXES unsigned long ip; struct pid *deadlock_task_pid; struct rt_mutex *deadlock_lock; #endif int prio; u64 deadline; }; /* * Various helpers to access the waiters-tree: */ #ifdef CONFIG_RT_MUTEXES static inline int rt_mutex_has_waiters(struct rt_mutex *lock) { return !RB_EMPTY_ROOT(&lock->waiters.rb_root); } static inline struct rt_mutex_waiter * rt_mutex_top_waiter(struct rt_mutex *lock) { struct rb_node *leftmost = rb_first_cached(&lock->waiters); struct rt_mutex_waiter *w = NULL; if (leftmost) { w = rb_entry(leftmost, struct rt_mutex_waiter, tree_entry); BUG_ON(w->lock != lock); } return w; } static inline int task_has_pi_waiters(struct task_struct *p) { return !RB_EMPTY_ROOT(&p->pi_waiters.rb_root); } static inline struct rt_mutex_waiter * task_top_pi_waiter(struct task_struct *p) { return rb_entry(p->pi_waiters.rb_leftmost, struct rt_mutex_waiter, pi_tree_entry); } #else static inline int rt_mutex_has_waiters(struct rt_mutex *lock) { return false; } static inline struct rt_mutex_waiter * rt_mutex_top_waiter(struct rt_mutex *lock) { return NULL; } static inline int task_has_pi_waiters(struct task_struct *p) { return false; } static inline struct rt_mutex_waiter * task_top_pi_waiter(struct task_struct *p) { return NULL; } #endif /* * lock->owner state tracking: */ #define RT_MUTEX_HAS_WAITERS 1UL static inline struct task_struct *rt_mutex_owner(struct rt_mutex *lock) { unsigned long owner = (unsigned long) READ_ONCE(lock->owner); return (struct task_struct *) (owner & ~RT_MUTEX_HAS_WAITERS); } /* * Constants for rt mutex functions which have a selectable deadlock * detection. * * RT_MUTEX_MIN_CHAINWALK: Stops the lock chain walk when there are * no further PI adjustments to be made. * * RT_MUTEX_FULL_CHAINWALK: Invoke deadlock detection with a full * walk of the lock chain. */ enum rtmutex_chainwalk { RT_MUTEX_MIN_CHAINWALK, RT_MUTEX_FULL_CHAINWALK, }; /* * PI-futex support (proxy locking functions, etc.): */ extern struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock); extern void rt_mutex_init_proxy_locked(struct rt_mutex *lock, struct task_struct *proxy_owner); extern void rt_mutex_proxy_unlock(struct rt_mutex *lock); extern void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter); extern int __rt_mutex_start_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct task_struct *task); extern int rt_mutex_start_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct task_struct *task); extern int rt_mutex_wait_proxy_lock(struct rt_mutex *lock, struct hrtimer_sleeper *to, struct rt_mutex_waiter *waiter); extern bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter); extern int rt_mutex_futex_trylock(struct rt_mutex *l); extern int __rt_mutex_futex_trylock(struct rt_mutex *l); extern void rt_mutex_futex_unlock(struct rt_mutex *lock); extern bool __rt_mutex_futex_unlock(struct rt_mutex *lock, struct wake_q_head *wqh); extern void rt_mutex_postunlock(struct wake_q_head *wake_q); #ifdef CONFIG_DEBUG_RT_MUTEXES # include "rtmutex-debug.h" #else # include "rtmutex.h" #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP module. * * Version: @(#)ip.h 1.0.2 05/07/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Alan Cox, <gw4pts@gw4pts.ampr.org> * * Changes: * Mike McLagan : Routing by source */ #ifndef _IP_H #define _IP_H #include <linux/types.h> #include <linux/ip.h> #include <linux/in.h> #include <linux/skbuff.h> #include <linux/jhash.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/route.h> #include <net/snmp.h> #include <net/flow.h> #include <net/flow_dissector.h> #include <net/netns/hash.h> #include <net/lwtunnel.h> #define IPV4_MAX_PMTU 65535U /* RFC 2675, Section 5.1 */ #define IPV4_MIN_MTU 68 /* RFC 791 */ extern unsigned int sysctl_fib_sync_mem; extern unsigned int sysctl_fib_sync_mem_min; extern unsigned int sysctl_fib_sync_mem_max; struct sock; struct inet_skb_parm { int iif; struct ip_options opt; /* Compiled IP options */ u16 flags; #define IPSKB_FORWARDED BIT(0) #define IPSKB_XFRM_TUNNEL_SIZE BIT(1) #define IPSKB_XFRM_TRANSFORMED BIT(2) #define IPSKB_FRAG_COMPLETE BIT(3) #define IPSKB_REROUTED BIT(4) #define IPSKB_DOREDIRECT BIT(5) #define IPSKB_FRAG_PMTU BIT(6) #define IPSKB_L3SLAVE BIT(7) u16 frag_max_size; }; static inline bool ipv4_l3mdev_skb(u16 flags) { return !!(flags & IPSKB_L3SLAVE); } static inline unsigned int ip_hdrlen(const struct sk_buff *skb) { return ip_hdr(skb)->ihl * 4; } struct ipcm_cookie { struct sockcm_cookie sockc; __be32 addr; int oif; struct ip_options_rcu *opt; __u8 ttl; __s16 tos; char priority; __u16 gso_size; }; static inline void ipcm_init(struct ipcm_cookie *ipcm) { *ipcm = (struct ipcm_cookie) { .tos = -1 }; } static inline void ipcm_init_sk(struct ipcm_cookie *ipcm, const struct inet_sock *inet) { ipcm_init(ipcm); ipcm->sockc.mark = inet->sk.sk_mark; ipcm->sockc.tsflags = inet->sk.sk_tsflags; ipcm->oif = inet->sk.sk_bound_dev_if; ipcm->addr = inet->inet_saddr; } #define IPCB(skb) ((struct inet_skb_parm*)((skb)->cb)) #define PKTINFO_SKB_CB(skb) ((struct in_pktinfo *)((skb)->cb)) /* return enslaved device index if relevant */ static inline int inet_sdif(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) return IPCB(skb)->iif; #endif return 0; } /* Special input handler for packets caught by router alert option. They are selected only by protocol field, and then processed likely local ones; but only if someone wants them! Otherwise, router not running rsvpd will kill RSVP. It is user level problem, what it will make with them. I have no idea, how it will masquearde or NAT them (it is joke, joke :-)), but receiver should be enough clever f.e. to forward mtrace requests, sent to multicast group to reach destination designated router. */ struct ip_ra_chain { struct ip_ra_chain __rcu *next; struct sock *sk; union { void (*destructor)(struct sock *); struct sock *saved_sk; }; struct rcu_head rcu; }; /* IP flags. */ #define IP_CE 0x8000 /* Flag: "Congestion" */ #define IP_DF 0x4000 /* Flag: "Don't Fragment" */ #define IP_MF 0x2000 /* Flag: "More Fragments" */ #define IP_OFFSET 0x1FFF /* "Fragment Offset" part */ #define IP_FRAG_TIME (30 * HZ) /* fragment lifetime */ struct msghdr; struct net_device; struct packet_type; struct rtable; struct sockaddr; int igmp_mc_init(void); /* * Functions provided by ip.c */ int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, u8 tos); int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); void ip_list_rcv(struct list_head *head, struct packet_type *pt, struct net_device *orig_dev); int ip_local_deliver(struct sk_buff *skb); void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int proto); int ip_mr_input(struct sk_buff *skb); int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, int (*output)(struct net *, struct sock *, struct sk_buff *)); struct ip_fraglist_iter { struct sk_buff *frag; struct iphdr *iph; int offset; unsigned int hlen; }; void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, unsigned int hlen, struct ip_fraglist_iter *iter); void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter); static inline struct sk_buff *ip_fraglist_next(struct ip_fraglist_iter *iter) { struct sk_buff *skb = iter->frag; iter->frag = skb->next; skb_mark_not_on_list(skb); return skb; } struct ip_frag_state { bool DF; unsigned int hlen; unsigned int ll_rs; unsigned int mtu; unsigned int left; int offset; int ptr; __be16 not_last_frag; }; void ip_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int ll_rs, unsigned int mtu, bool DF, struct ip_frag_state *state); struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state); void ip_send_check(struct iphdr *ip); int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb); int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, __u8 tos); void ip_init(void); int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int len, int protolen, struct ipcm_cookie *ipc, struct rtable **rt, unsigned int flags); int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb); ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, int offset, size_t size, int flags); struct sk_buff *__ip_make_skb(struct sock *sk, struct flowi4 *fl4, struct sk_buff_head *queue, struct inet_cork *cork); int ip_send_skb(struct net *net, struct sk_buff *skb); int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4); void ip_flush_pending_frames(struct sock *sk); struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, struct inet_cork *cork, unsigned int flags); int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl); static inline struct sk_buff *ip_finish_skb(struct sock *sk, struct flowi4 *fl4) { return __ip_make_skb(sk, fl4, &sk->sk_write_queue, &inet_sk(sk)->cork.base); } static inline __u8 get_rttos(struct ipcm_cookie* ipc, struct inet_sock *inet) { return (ipc->tos != -1) ? RT_TOS(ipc->tos) : RT_TOS(inet->tos); } static inline __u8 get_rtconn_flags(struct ipcm_cookie* ipc, struct sock* sk) { return (ipc->tos != -1) ? RT_CONN_FLAGS_TOS(sk, ipc->tos) : RT_CONN_FLAGS(sk); } /* datagram.c */ int __ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int ip4_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); void ip4_datagram_release_cb(struct sock *sk); struct ip_reply_arg { struct kvec iov[1]; int flags; __wsum csum; int csumoffset; /* u16 offset of csum in iov[0].iov_base */ /* -1 if not needed */ int bound_dev_if; u8 tos; kuid_t uid; }; #define IP_REPLY_ARG_NOSRCCHECK 1 static inline __u8 ip_reply_arg_flowi_flags(const struct ip_reply_arg *arg) { return (arg->flags & IP_REPLY_ARG_NOSRCCHECK) ? FLOWI_FLAG_ANYSRC : 0; } void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, const struct ip_options *sopt, __be32 daddr, __be32 saddr, const struct ip_reply_arg *arg, unsigned int len, u64 transmit_time); #define IP_INC_STATS(net, field) SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define __IP_INC_STATS(net, field) __SNMP_INC_STATS64((net)->mib.ip_statistics, field) #define IP_ADD_STATS(net, field, val) SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define __IP_ADD_STATS(net, field, val) __SNMP_ADD_STATS64((net)->mib.ip_statistics, field, val) #define IP_UPD_PO_STATS(net, field, val) SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define __IP_UPD_PO_STATS(net, field, val) __SNMP_UPD_PO_STATS64((net)->mib.ip_statistics, field, val) #define NET_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.net_statistics, field) #define __NET_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.net_statistics, field) #define NET_ADD_STATS(net, field, adnd) SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) #define __NET_ADD_STATS(net, field, adnd) __SNMP_ADD_STATS((net)->mib.net_statistics, field, adnd) u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offct); unsigned long snmp_fold_field(void __percpu *mib, int offt); #if BITS_PER_LONG==32 u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset); u64 snmp_fold_field64(void __percpu *mib, int offt, size_t sync_off); #else static inline u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offct, size_t syncp_offset) { return snmp_get_cpu_field(mib, cpu, offct); } static inline u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_off) { return snmp_fold_field(mib, offt); } #endif #define snmp_get_cpu_field64_batch(buff64, stats_list, mib_statistic, offset) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff64[i] += snmp_get_cpu_field64( \ mib_statistic, \ c, stats_list[i].entry, \ offset); \ } \ } #define snmp_get_cpu_field_batch(buff, stats_list, mib_statistic) \ { \ int i, c; \ for_each_possible_cpu(c) { \ for (i = 0; stats_list[i].name; i++) \ buff[i] += snmp_get_cpu_field( \ mib_statistic, \ c, stats_list[i].entry); \ } \ } void inet_get_local_port_range(struct net *net, int *low, int *high); #ifdef CONFIG_SYSCTL static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { if (!net->ipv4.sysctl_local_reserved_ports) return false; return test_bit(port, net->ipv4.sysctl_local_reserved_ports); } static inline bool sysctl_dev_name_is_allowed(const char *name) { return strcmp(name, "default") != 0 && strcmp(name, "all") != 0; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < net->ipv4.sysctl_ip_prot_sock; } #else static inline bool inet_is_local_reserved_port(struct net *net, unsigned short port) { return false; } static inline bool inet_port_requires_bind_service(struct net *net, unsigned short port) { return port < PROT_SOCK; } #endif __be32 inet_current_timestamp(void); /* From inetpeer.c */ extern int inet_peer_threshold; extern int inet_peer_minttl; extern int inet_peer_maxttl; void ipfrag_init(void); void ip_static_sysctl_init(void); #define IP4_REPLY_MARK(net, mark) \ ((net)->ipv4.sysctl_fwmark_reflect ? (mark) : 0) static inline bool ip_is_fragment(const struct iphdr *iph) { return (iph->frag_off & htons(IP_MF | IP_OFFSET)) != 0; } #ifdef CONFIG_INET #include <net/dst.h> /* The function in 2.2 was invalid, producing wrong result for * check=0xFEFF. It was noticed by Arthur Skawina _year_ ago. --ANK(000625) */ static inline int ip_decrease_ttl(struct iphdr *iph) { u32 check = (__force u32)iph->check; check += (__force u32)htons(0x0100); iph->check = (__force __sum16)(check + (check>=0xFFFF)); return --iph->ttl; } static inline int ip_mtu_locked(const struct dst_entry *dst) { const struct rtable *rt = (const struct rtable *)dst; return rt->rt_mtu_locked || dst_metric_locked(dst, RTAX_MTU); } static inline int ip_dont_fragment(const struct sock *sk, const struct dst_entry *dst) { u8 pmtudisc = READ_ONCE(inet_sk(sk)->pmtudisc); return pmtudisc == IP_PMTUDISC_DO || (pmtudisc == IP_PMTUDISC_WANT && !ip_mtu_locked(dst)); } static inline bool ip_sk_accept_pmtu(const struct sock *sk) { return inet_sk(sk)->pmtudisc != IP_PMTUDISC_INTERFACE && inet_sk(sk)->pmtudisc != IP_PMTUDISC_OMIT; } static inline bool ip_sk_use_pmtu(const struct sock *sk) { return inet_sk(sk)->pmtudisc < IP_PMTUDISC_PROBE; } static inline bool ip_sk_ignore_df(const struct sock *sk) { return inet_sk(sk)->pmtudisc < IP_PMTUDISC_DO || inet_sk(sk)->pmtudisc == IP_PMTUDISC_OMIT; } static inline unsigned int ip_dst_mtu_maybe_forward(const struct dst_entry *dst, bool forwarding) { struct net *net = dev_net(dst->dev); unsigned int mtu; if (net->ipv4.sysctl_ip_fwd_use_pmtu || ip_mtu_locked(dst) || !forwarding) return dst_mtu(dst); /* 'forwarding = true' case should always honour route mtu */ mtu = dst_metric_raw(dst, RTAX_MTU); if (!mtu) mtu = min(READ_ONCE(dst->dev->mtu), IP_MAX_MTU); return mtu - lwtunnel_headroom(dst->lwtstate, mtu); } static inline unsigned int ip_skb_dst_mtu(struct sock *sk, const struct sk_buff *skb) { unsigned int mtu; if (!sk || !sk_fullsock(sk) || ip_sk_use_pmtu(sk)) { bool forwarding = IPCB(skb)->flags & IPSKB_FORWARDED; return ip_dst_mtu_maybe_forward(skb_dst(skb), forwarding); } mtu = min(READ_ONCE(skb_dst(skb)->dev->mtu), IP_MAX_MTU); return mtu - lwtunnel_headroom(skb_dst(skb)->lwtstate, mtu); } struct dst_metrics *ip_fib_metrics_init(struct net *net, struct nlattr *fc_mx, int fc_mx_len, struct netlink_ext_ack *extack); static inline void ip_fib_metrics_put(struct dst_metrics *fib_metrics) { if (fib_metrics != &dst_default_metrics && refcount_dec_and_test(&fib_metrics->refcnt)) kfree(fib_metrics); } /* ipv4 and ipv6 both use refcounted metrics if it is not the default */ static inline void ip_dst_init_metrics(struct dst_entry *dst, struct dst_metrics *fib_metrics) { dst_init_metrics(dst, fib_metrics->metrics, true); if (fib_metrics != &dst_default_metrics) { dst->_metrics |= DST_METRICS_REFCOUNTED; refcount_inc(&fib_metrics->refcnt); } } static inline void ip_dst_metrics_put(struct dst_entry *dst) { struct dst_metrics *p = (struct dst_metrics *)DST_METRICS_PTR(dst); if (p != &dst_default_metrics && refcount_dec_and_test(&p->refcnt)) kfree(p); } u32 ip_idents_reserve(u32 hash, int segs); void __ip_select_ident(struct net *net, struct iphdr *iph, int segs); static inline void ip_select_ident_segs(struct net *net, struct sk_buff *skb, struct sock *sk, int segs) { struct iphdr *iph = ip_hdr(skb); if ((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) { /* This is only to work around buggy Windows95/2000 * VJ compression implementations. If the ID field * does not change, they drop every other packet in * a TCP stream using header compression. */ if (sk && inet_sk(sk)->inet_daddr) { iph->id = htons(inet_sk(sk)->inet_id); inet_sk(sk)->inet_id += segs; } else { iph->id = 0; } } else { __ip_select_ident(net, iph, segs); } } static inline void ip_select_ident(struct net *net, struct sk_buff *skb, struct sock *sk) { ip_select_ident_segs(net, skb, sk, 1); } static inline __wsum inet_compute_pseudo(struct sk_buff *skb, int proto) { return csum_tcpudp_nofold(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, skb->len, proto, 0); } /* copy IPv4 saddr & daddr to flow_keys, possibly using 64bit load/store * Equivalent to : flow->v4addrs.src = iph->saddr; * flow->v4addrs.dst = iph->daddr; */ static inline void iph_to_flow_copy_v4addrs(struct flow_keys *flow, const struct iphdr *iph) { BUILD_BUG_ON(offsetof(typeof(flow->addrs), v4addrs.dst) != offsetof(typeof(flow->addrs), v4addrs.src) + sizeof(flow->addrs.v4addrs.src)); memcpy(&flow->addrs.v4addrs, &iph->saddr, sizeof(flow->addrs.v4addrs)); flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; } static inline __wsum inet_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct iphdr *iph = skb_gro_network_header(skb); return csum_tcpudp_nofold(iph->saddr, iph->daddr, skb_gro_len(skb), proto, 0); } /* * Map a multicast IP onto multicast MAC for type ethernet. */ static inline void ip_eth_mc_map(__be32 naddr, char *buf) { __u32 addr=ntohl(naddr); buf[0]=0x01; buf[1]=0x00; buf[2]=0x5e; buf[5]=addr&0xFF; addr>>=8; buf[4]=addr&0xFF; addr>>=8; buf[3]=addr&0x7F; } /* * Map a multicast IP onto multicast MAC for type IP-over-InfiniBand. * Leave P_Key as 0 to be filled in by driver. */ static inline void ip_ib_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { __u32 addr; unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; addr = ntohl(naddr); buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x40; /* IPv4 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; buf[10] = 0; buf[11] = 0; buf[12] = 0; buf[13] = 0; buf[14] = 0; buf[15] = 0; buf[19] = addr & 0xff; addr >>= 8; buf[18] = addr & 0xff; addr >>= 8; buf[17] = addr & 0xff; addr >>= 8; buf[16] = addr & 0x0f; } static inline void ip_ipgre_mc_map(__be32 naddr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) memcpy(buf, broadcast, 4); else memcpy(buf, &naddr, sizeof(naddr)); } #if IS_ENABLED(CONFIG_IPV6) #include <linux/ipv6.h> #endif static __inline__ void inet_reset_saddr(struct sock *sk) { inet_sk(sk)->inet_rcv_saddr = inet_sk(sk)->inet_saddr = 0; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == PF_INET6) { struct ipv6_pinfo *np = inet6_sk(sk); memset(&np->saddr, 0, sizeof(np->saddr)); memset(&sk->sk_v6_rcv_saddr, 0, sizeof(sk->sk_v6_rcv_saddr)); } #endif } #endif static inline unsigned int ipv4_addr_hash(__be32 ip) { return (__force unsigned int) ip; } static inline u32 ipv4_portaddr_hash(const struct net *net, __be32 saddr, unsigned int port) { return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; } bool ip_call_ra_chain(struct sk_buff *skb); /* * Functions provided by ip_fragment.c */ enum ip_defrag_users { IP_DEFRAG_LOCAL_DELIVER, IP_DEFRAG_CALL_RA_CHAIN, IP_DEFRAG_CONNTRACK_IN, __IP_DEFRAG_CONNTRACK_IN_END = IP_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP_DEFRAG_CONNTRACK_OUT, __IP_DEFRAG_CONNTRACK_OUT_END = IP_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP_DEFRAG_CONNTRACK_BRIDGE_IN, __IP_DEFRAG_CONNTRACK_BRIDGE_IN = IP_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, IP_DEFRAG_VS_IN, IP_DEFRAG_VS_OUT, IP_DEFRAG_VS_FWD, IP_DEFRAG_AF_PACKET, IP_DEFRAG_MACVLAN, }; /* Return true if the value of 'user' is between 'lower_bond' * and 'upper_bond' inclusively. */ static inline bool ip_defrag_user_in_between(u32 user, enum ip_defrag_users lower_bond, enum ip_defrag_users upper_bond) { return user >= lower_bond && user <= upper_bond; } int ip_defrag(struct net *net, struct sk_buff *skb, u32 user); #ifdef CONFIG_INET struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user); #else static inline struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) { return skb; } #endif /* * Functions provided by ip_forward.c */ int ip_forward(struct sk_buff *skb); /* * Functions provided by ip_options.c */ void ip_options_build(struct sk_buff *skb, struct ip_options *opt, __be32 daddr, struct rtable *rt, int is_frag); int __ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb, const struct ip_options *sopt); static inline int ip_options_echo(struct net *net, struct ip_options *dopt, struct sk_buff *skb) { return __ip_options_echo(net, dopt, skb, &IPCB(skb)->opt); } void ip_options_fragment(struct sk_buff *skb); int __ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb, __be32 *info); int ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb); int ip_options_get(struct net *net, struct ip_options_rcu **optp, sockptr_t data, int optlen); void ip_options_undo(struct ip_options *opt); void ip_forward_options(struct sk_buff *skb); int ip_options_rcv_srr(struct sk_buff *skb, struct net_device *dev); /* * Functions provided by ip_sockglue.c */ void ipv4_pktinfo_prepare(const struct sock *sk, struct sk_buff *skb); void ip_cmsg_recv_offset(struct msghdr *msg, struct sock *sk, struct sk_buff *skb, int tlen, int offset); int ip_cmsg_send(struct sock *sk, struct msghdr *msg, struct ipcm_cookie *ipc, bool allow_ipv6); int ip_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int ip_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int ip_ra_control(struct sock *sk, unsigned char on, void (*destructor)(struct sock *)); int ip_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len); void ip_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload); void ip_local_error(struct sock *sk, int err, __be32 daddr, __be16 dport, u32 info); static inline void ip_cmsg_recv(struct msghdr *msg, struct sk_buff *skb) { ip_cmsg_recv_offset(msg, skb->sk, skb, 0, 0); } bool icmp_global_allow(void); extern int sysctl_icmp_msgs_per_sec; extern int sysctl_icmp_msgs_burst; #ifdef CONFIG_PROC_FS int ip_misc_proc_init(void); #endif int rtm_getroute_parse_ip_proto(struct nlattr *attr, u8 *ip_proto, u8 family, struct netlink_ext_ack *extack); static inline bool inetdev_valid_mtu(unsigned int mtu) { return likely(mtu >= IPV4_MIN_MTU); } void ip_sock_set_freebind(struct sock *sk); int ip_sock_set_mtu_discover(struct sock *sk, int val); void ip_sock_set_pktinfo(struct sock *sk); void ip_sock_set_recverr(struct sock *sk); void ip_sock_set_tos(struct sock *sk, int val); #endif /* _IP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM block #if !defined(_TRACE_BLOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_BLOCK_H #include <linux/blktrace_api.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/tracepoint.h> #define RWBS_LEN 8 DECLARE_EVENT_CLASS(block_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh), TP_STRUCT__entry ( __field( dev_t, dev ) __field( sector_t, sector ) __field( size_t, size ) ), TP_fast_assign( __entry->dev = bh->b_bdev->bd_dev; __entry->sector = bh->b_blocknr; __entry->size = bh->b_size; ), TP_printk("%d,%d sector=%llu size=%zu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long long)__entry->sector, __entry->size ) ); /** * block_touch_buffer - mark a buffer accessed * @bh: buffer_head being touched * * Called from touch_buffer(). */ DEFINE_EVENT(block_buffer, block_touch_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_dirty_buffer - mark a buffer dirty * @bh: buffer_head being dirtied * * Called from mark_buffer_dirty(). */ DEFINE_EVENT(block_buffer, block_dirty_buffer, TP_PROTO(struct buffer_head *bh), TP_ARGS(bh) ); /** * block_rq_requeue - place block IO request back on a queue * @q: queue holding operation * @rq: block IO operation request * * The block operation request @rq is being placed back into queue * @q. For some reason the request was not completed and needs to be * put back in the queue. */ TRACE_EVENT(block_rq_requeue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, 0) ); /** * block_rq_complete - block IO operation completed by device driver * @rq: block operations request * @error: status code * @nr_bytes: number of completed bytes * * The block_rq_complete tracepoint event indicates that some portion * of operation request has been completed by the device driver. If * the @rq->bio is %NULL, then there is absolutely no additional work to * do for the request. If @rq->bio is non-NULL then there is * additional work required to complete the request. */ TRACE_EVENT(block_rq_complete, TP_PROTO(struct request *rq, int error, unsigned int nr_bytes), TP_ARGS(rq, error, nr_bytes), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_pos(rq); __entry->nr_sector = nr_bytes >> 9; __entry->error = error; blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, nr_bytes); __get_str(cmd)[0] = '\0'; ), TP_printk("%d,%d %s (%s) %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_rq, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( unsigned int, bytes ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) __dynamic_array( char, cmd, 1 ) ), TP_fast_assign( __entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0; __entry->sector = blk_rq_trace_sector(rq); __entry->nr_sector = blk_rq_trace_nr_sectors(rq); __entry->bytes = blk_rq_bytes(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); __get_str(cmd)[0] = '\0'; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %u (%s) %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, __entry->bytes, __get_str(cmd), (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_rq_insert - insert block operation request into queue * @q: target queue * @rq: block IO operation request * * Called immediately before block operation request @rq is inserted * into queue @q. The fields in the operation request @rq struct can * be examined to determine which device and sectors the pending * operation would access. */ DEFINE_EVENT(block_rq, block_rq_insert, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_issue - issue pending block IO request operation to device driver * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is sent to a * device driver for processing. */ DEFINE_EVENT(block_rq, block_rq_issue, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_rq_merge - merge request with another one in the elevator * @q: queue holding operation * @rq: block IO operation operation request * * Called when block operation request @rq from queue @q is merged to another * request queued in the elevator. */ DEFINE_EVENT(block_rq, block_rq_merge, TP_PROTO(struct request_queue *q, struct request *rq), TP_ARGS(q, rq) ); /** * block_bio_bounce - used bounce buffer when processing block operation * @q: queue holding the block operation * @bio: block operation * * A bounce buffer was used to handle the block operation @bio in @q. * This occurs when hardware limitations prevent a direct transfer of * data between the @bio data memory area and the IO device. Use of a * bounce buffer requires extra copying of data and decreases * performance. */ TRACE_EVENT(block_bio_bounce, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_complete - completed all work on the block operation * @q: queue holding the block operation * @bio: block operation completed * * This tracepoint indicates there is no further work to do on this * block IO operation @bio. */ TRACE_EVENT(block_bio_complete, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned, nr_sector ) __field( int, error ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->error = blk_status_to_errno(bio->bi_status); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u [%d]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->error) ); DECLARE_EVENT_CLASS(block_bio_merge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_bio_backmerge - merging block operation to the end of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block request @bio to the end of an existing block request * in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_backmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_frontmerge - merging block operation to the beginning of an existing operation * @q: queue holding operation * @rq: request bio is being merged into * @bio: new block operation to merge * * Merging block IO operation @bio to the beginning of an existing block * operation in queue @q. */ DEFINE_EVENT(block_bio_merge, block_bio_frontmerge, TP_PROTO(struct request_queue *q, struct request *rq, struct bio *bio), TP_ARGS(q, rq, bio) ); /** * block_bio_queue - putting new block IO operation in queue * @q: queue holding operation * @bio: new block operation * * About to place the block IO operation @bio into queue @q. */ TRACE_EVENT(block_bio_queue, TP_PROTO(struct request_queue *q, struct bio *bio), TP_ARGS(q, bio), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); DECLARE_EVENT_CLASS(block_get_rq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio ? bio_dev(bio) : 0; __entry->sector = bio ? bio->bi_iter.bi_sector : 0; __entry->nr_sector = bio ? bio_sectors(bio) : 0; blk_fill_rwbs(__entry->rwbs, bio ? bio->bi_opf : 0, __entry->nr_sector); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu + %u [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, __entry->comm) ); /** * block_getrq - get a free request entry in queue for block IO operations * @q: queue for operations * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * A request struct for queue @q has been allocated to handle the * block IO operation @bio. */ DEFINE_EVENT(block_get_rq, block_getrq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_sleeprq - waiting to get a free request entry in queue for block IO operation * @q: queue for operation * @bio: pending block IO operation (can be %NULL) * @rw: low bit indicates a read (%0) or a write (%1) * * In the case where a request struct cannot be provided for queue @q * the process needs to wait for an request struct to become * available. This tracepoint event is generated each time the * process goes to sleep waiting for request struct become available. */ DEFINE_EVENT(block_get_rq, block_sleeprq, TP_PROTO(struct request_queue *q, struct bio *bio, int rw), TP_ARGS(q, bio, rw) ); /** * block_plug - keep operations requests in request queue * @q: request queue to plug * * Plug the request queue @q. Do not allow block operation requests * to be sent to the device driver. Instead, accumulate requests in * the queue to improve throughput performance of the block device. */ TRACE_EVENT(block_plug, TP_PROTO(struct request_queue *q), TP_ARGS(q), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s]", __entry->comm) ); DECLARE_EVENT_CLASS(block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit), TP_STRUCT__entry( __field( int, nr_rq ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->nr_rq = depth; memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("[%s] %d", __entry->comm, __entry->nr_rq) ); /** * block_unplug - release of operations requests in request queue * @q: request queue to unplug * @depth: number of requests just added to the queue * @explicit: whether this was an explicit unplug, or one from schedule() * * Unplug request queue @q because device driver is scheduled to work * on elements in the request queue. */ DEFINE_EVENT(block_unplug, block_unplug, TP_PROTO(struct request_queue *q, unsigned int depth, bool explicit), TP_ARGS(q, depth, explicit) ); /** * block_split - split a single bio struct into two bio structs * @q: queue containing the bio * @bio: block operation being split * @new_sector: The starting sector for the new bio * * The bio request @bio in request queue @q needs to be split into two * bio requests. The newly created @bio request starts at * @new_sector. This split may be required due to hardware limitation * such as operation crossing device boundaries in a RAID system. */ TRACE_EVENT(block_split, TP_PROTO(struct request_queue *q, struct bio *bio, unsigned int new_sector), TP_ARGS(q, bio, new_sector), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( sector_t, new_sector ) __array( char, rwbs, RWBS_LEN ) __array( char, comm, TASK_COMM_LEN ) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->new_sector = new_sector; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); memcpy(__entry->comm, current->comm, TASK_COMM_LEN); ), TP_printk("%d,%d %s %llu / %llu [%s]", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, (unsigned long long)__entry->new_sector, __entry->comm) ); /** * block_bio_remap - map request for a logical device to the raw device * @q: queue holding the operation * @bio: revised operation * @dev: device for the operation * @from: original sector for the operation * * An operation for a logical device has been mapped to the * raw block device. */ TRACE_EVENT(block_bio_remap, TP_PROTO(struct request_queue *q, struct bio *bio, dev_t dev, sector_t from), TP_ARGS(q, bio, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = bio_dev(bio); __entry->sector = bio->bi_iter.bi_sector; __entry->nr_sector = bio_sectors(bio); __entry->old_dev = dev; __entry->old_sector = from; blk_fill_rwbs(__entry->rwbs, bio->bi_opf, bio->bi_iter.bi_size); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector) ); /** * block_rq_remap - map request for a block operation request * @q: queue holding the operation * @rq: block IO operation request * @dev: device for the operation * @from: original sector for the operation * * The block operation request @rq in @q has been remapped. The block * operation request @rq holds the current information and @from hold * the original sector. */ TRACE_EVENT(block_rq_remap, TP_PROTO(struct request_queue *q, struct request *rq, dev_t dev, sector_t from), TP_ARGS(q, rq, dev, from), TP_STRUCT__entry( __field( dev_t, dev ) __field( sector_t, sector ) __field( unsigned int, nr_sector ) __field( dev_t, old_dev ) __field( sector_t, old_sector ) __field( unsigned int, nr_bios ) __array( char, rwbs, RWBS_LEN) ), TP_fast_assign( __entry->dev = disk_devt(rq->rq_disk); __entry->sector = blk_rq_pos(rq); __entry->nr_sector = blk_rq_sectors(rq); __entry->old_dev = dev; __entry->old_sector = from; __entry->nr_bios = blk_rq_count_bios(rq); blk_fill_rwbs(__entry->rwbs, rq->cmd_flags, blk_rq_bytes(rq)); ), TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, (unsigned long long)__entry->sector, __entry->nr_sector, MAJOR(__entry->old_dev), MINOR(__entry->old_dev), (unsigned long long)__entry->old_sector, __entry->nr_bios) ); #endif /* _TRACE_BLOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_ICMPV6_H #define _LINUX_ICMPV6_H #include <linux/skbuff.h> #include <linux/ipv6.h> #include <uapi/linux/icmpv6.h> static inline struct icmp6hdr *icmp6_hdr(const struct sk_buff *skb) { return (struct icmp6hdr *)skb_transport_header(skb); } #include <linux/netdevice.h> #if IS_ENABLED(CONFIG_IPV6) typedef void ip6_icmp_send_t(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); void icmp6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct in6_addr *force_saddr, const struct inet6_skb_parm *parm); #if IS_BUILTIN(CONFIG_IPV6) static inline void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm) { icmp6_send(skb, type, code, info, NULL, parm); } static inline int inet6_register_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } static inline int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn) { BUILD_BUG_ON(fn != icmp6_send); return 0; } #else extern void __icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info, const struct inet6_skb_parm *parm); extern int inet6_register_icmp_sender(ip6_icmp_send_t *fn); extern int inet6_unregister_icmp_sender(ip6_icmp_send_t *fn); #endif static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { __icmpv6_send(skb, type, code, info, IP6CB(skb)); } int ip6_err_gen_icmpv6_unreach(struct sk_buff *skb, int nhs, int type, unsigned int data_len); #if IS_ENABLED(CONFIG_NF_NAT) void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info); #else static inline void icmpv6_ndo_send(struct sk_buff *skb_in, u8 type, u8 code, __u32 info) { struct inet6_skb_parm parm = { 0 }; __icmpv6_send(skb_in, type, code, info, &parm); } #endif #else static inline void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } static inline void icmpv6_ndo_send(struct sk_buff *skb, u8 type, u8 code, __u32 info) { } #endif extern int icmpv6_init(void); extern int icmpv6_err_convert(u8 type, u8 code, int *err); extern void icmpv6_cleanup(void); extern void icmpv6_param_prob(struct sk_buff *skb, u8 code, int pos); struct flowi6; struct in6_addr; extern void icmpv6_flow_init(struct sock *sk, struct flowi6 *fl6, u8 type, const struct in6_addr *saddr, const struct in6_addr *daddr, int oif); static inline bool icmpv6_is_err(int type) { switch (type) { case ICMPV6_DEST_UNREACH: case ICMPV6_PKT_TOOBIG: case ICMPV6_TIME_EXCEED: case ICMPV6_PARAMPROB: return true; } return false; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* memcontrol.h - Memory Controller * * Copyright IBM Corporation, 2007 * Author Balbir Singh <balbir@linux.vnet.ibm.com> * * Copyright 2007 OpenVZ SWsoft Inc * Author: Pavel Emelianov <xemul@openvz.org> */ #ifndef _LINUX_MEMCONTROL_H #define _LINUX_MEMCONTROL_H #include <linux/cgroup.h> #include <linux/vm_event_item.h> #include <linux/hardirq.h> #include <linux/jump_label.h> #include <linux/page_counter.h> #include <linux/vmpressure.h> #include <linux/eventfd.h> #include <linux/mm.h> #include <linux/vmstat.h> #include <linux/writeback.h> #include <linux/page-flags.h> struct mem_cgroup; struct obj_cgroup; struct page; struct mm_struct; struct kmem_cache; /* Cgroup-specific page state, on top of universal node page state */ enum memcg_stat_item { MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, MEMCG_SOCK, MEMCG_PERCPU_B, MEMCG_NR_STAT, }; enum memcg_memory_event { MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX, MEMCG_OOM, MEMCG_OOM_KILL, MEMCG_SWAP_HIGH, MEMCG_SWAP_MAX, MEMCG_SWAP_FAIL, MEMCG_NR_MEMORY_EVENTS, }; struct mem_cgroup_reclaim_cookie { pg_data_t *pgdat; unsigned int generation; }; #ifdef CONFIG_MEMCG #define MEM_CGROUP_ID_SHIFT 16 #define MEM_CGROUP_ID_MAX USHRT_MAX struct mem_cgroup_id { int id; refcount_t ref; }; /* * Per memcg event counter is incremented at every pagein/pageout. With THP, * it will be incremented by the number of pages. This counter is used * to trigger some periodic events. This is straightforward and better * than using jiffies etc. to handle periodic memcg event. */ enum mem_cgroup_events_target { MEM_CGROUP_TARGET_THRESH, MEM_CGROUP_TARGET_SOFTLIMIT, MEM_CGROUP_NTARGETS, }; struct memcg_vmstats_percpu { long stat[MEMCG_NR_STAT]; unsigned long events[NR_VM_EVENT_ITEMS]; unsigned long nr_page_events; unsigned long targets[MEM_CGROUP_NTARGETS]; }; struct mem_cgroup_reclaim_iter { struct mem_cgroup *position; /* scan generation, increased every round-trip */ unsigned int generation; }; struct lruvec_stat { long count[NR_VM_NODE_STAT_ITEMS]; }; /* * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, * which have elements charged to this memcg. */ struct memcg_shrinker_map { struct rcu_head rcu; unsigned long map[]; }; /* * per-node information in memory controller. */ struct mem_cgroup_per_node { struct lruvec lruvec; /* Legacy local VM stats */ struct lruvec_stat __percpu *lruvec_stat_local; /* Subtree VM stats (batched updates) */ struct lruvec_stat __percpu *lruvec_stat_cpu; atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; struct mem_cgroup_reclaim_iter iter; struct memcg_shrinker_map __rcu *shrinker_map; struct rb_node tree_node; /* RB tree node */ unsigned long usage_in_excess;/* Set to the value by which */ /* the soft limit is exceeded*/ bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; unsigned long threshold; }; /* For threshold */ struct mem_cgroup_threshold_ary { /* An array index points to threshold just below or equal to usage. */ int current_threshold; /* Size of entries[] */ unsigned int size; /* Array of thresholds */ struct mem_cgroup_threshold entries[]; }; struct mem_cgroup_thresholds { /* Primary thresholds array */ struct mem_cgroup_threshold_ary *primary; /* * Spare threshold array. * This is needed to make mem_cgroup_unregister_event() "never fail". * It must be able to store at least primary->size - 1 entries. */ struct mem_cgroup_threshold_ary *spare; }; enum memcg_kmem_state { KMEM_NONE, KMEM_ALLOCATED, KMEM_ONLINE, }; #if defined(CONFIG_SMP) struct memcg_padding { char x[0]; } ____cacheline_internodealigned_in_smp; #define MEMCG_PADDING(name) struct memcg_padding name; #else #define MEMCG_PADDING(name) #endif /* * Remember four most recent foreign writebacks with dirty pages in this * cgroup. Inode sharing is expected to be uncommon and, even if we miss * one in a given round, we're likely to catch it later if it keeps * foreign-dirtying, so a fairly low count should be enough. * * See mem_cgroup_track_foreign_dirty_slowpath() for details. */ #define MEMCG_CGWB_FRN_CNT 4 struct memcg_cgwb_frn { u64 bdi_id; /* bdi->id of the foreign inode */ int memcg_id; /* memcg->css.id of foreign inode */ u64 at; /* jiffies_64 at the time of dirtying */ struct wb_completion done; /* tracks in-flight foreign writebacks */ }; /* * Bucket for arbitrarily byte-sized objects charged to a memory * cgroup. The bucket can be reparented in one piece when the cgroup * is destroyed, without having to round up the individual references * of all live memory objects in the wild. */ struct obj_cgroup { struct percpu_ref refcnt; struct mem_cgroup *memcg; atomic_t nr_charged_bytes; union { struct list_head list; struct rcu_head rcu; }; }; /* * The memory controller data structure. The memory controller controls both * page cache and RSS per cgroup. We would eventually like to provide * statistics based on the statistics developed by Rik Van Riel for clock-pro, * to help the administrator determine what knobs to tune. */ struct mem_cgroup { struct cgroup_subsys_state css; /* Private memcg ID. Used to ID objects that outlive the cgroup */ struct mem_cgroup_id id; /* Accounted resources */ struct page_counter memory; /* Both v1 & v2 */ union { struct page_counter swap; /* v2 only */ struct page_counter memsw; /* v1 only */ }; /* Legacy consumer-oriented counters */ struct page_counter kmem; /* v1 only */ struct page_counter tcpmem; /* v1 only */ /* Range enforcement for interrupt charges */ struct work_struct high_work; unsigned long soft_limit; /* vmpressure notifications */ struct vmpressure vmpressure; /* * Should the accounting and control be hierarchical, per subtree? */ bool use_hierarchy; /* * Should the OOM killer kill all belonging tasks, had it kill one? */ bool oom_group; /* protected by memcg_oom_lock */ bool oom_lock; int under_oom; int swappiness; /* OOM-Killer disable */ int oom_kill_disable; /* memory.events and memory.events.local */ struct cgroup_file events_file; struct cgroup_file events_local_file; /* handle for "memory.swap.events" */ struct cgroup_file swap_events_file; /* protect arrays of thresholds */ struct mutex thresholds_lock; /* thresholds for memory usage. RCU-protected */ struct mem_cgroup_thresholds thresholds; /* thresholds for mem+swap usage. RCU-protected */ struct mem_cgroup_thresholds memsw_thresholds; /* For oom notifier event fd */ struct list_head oom_notify; /* * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ unsigned long move_charge_at_immigrate; /* taken only while moving_account > 0 */ spinlock_t move_lock; unsigned long move_lock_flags; MEMCG_PADDING(_pad1_); atomic_long_t vmstats[MEMCG_NR_STAT]; atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; /* memory.events */ atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; unsigned long socket_pressure; /* Legacy tcp memory accounting */ bool tcpmem_active; int tcpmem_pressure; #ifdef CONFIG_MEMCG_KMEM /* Index in the kmem_cache->memcg_params.memcg_caches array */ int kmemcg_id; enum memcg_kmem_state kmem_state; struct obj_cgroup __rcu *objcg; struct list_head objcg_list; /* list of inherited objcgs */ #endif MEMCG_PADDING(_pad2_); /* * set > 0 if pages under this cgroup are moving to other cgroup. */ atomic_t moving_account; struct task_struct *move_lock_task; /* Legacy local VM stats and events */ struct memcg_vmstats_percpu __percpu *vmstats_local; /* Subtree VM stats and events (batched updates) */ struct memcg_vmstats_percpu __percpu *vmstats_percpu; #ifdef CONFIG_CGROUP_WRITEBACK struct list_head cgwb_list; struct wb_domain cgwb_domain; struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; #endif /* List of events which userspace want to receive */ struct list_head event_list; spinlock_t event_list_lock; #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split deferred_split_queue; #endif struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ }; /* * size of first charge trial. "32" comes from vmscan.c's magic value. * TODO: maybe necessary to use big numbers in big irons. */ #define MEMCG_CHARGE_BATCH 32U extern struct mem_cgroup *root_mem_cgroup; static __always_inline bool memcg_stat_item_in_bytes(int idx) { if (idx == MEMCG_PERCPU_B) return true; return vmstat_item_in_bytes(idx); } static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); } static inline bool mem_cgroup_disabled(void) { return !cgroup_subsys_enabled(memory_cgrp_subsys); } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; if (mem_cgroup_disabled()) return; /* * There is no reclaim protection applied to a targeted reclaim. * We are special casing this specific case here because * mem_cgroup_protected calculation is not robust enough to keep * the protection invariant for calculated effective values for * parallel reclaimers with different reclaim target. This is * especially a problem for tail memcgs (as they have pages on LRU) * which would want to have effective values 0 for targeted reclaim * but a different value for external reclaim. * * Example * Let's have global and A's reclaim in parallel: * | * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) * |\ * | C (low = 1G, usage = 2.5G) * B (low = 1G, usage = 0.5G) * * For the global reclaim * A.elow = A.low * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow * C.elow = min(C.usage, C.low) * * With the effective values resetting we have A reclaim * A.elow = 0 * B.elow = B.low * C.elow = C.low * * If the global reclaim races with A's reclaim then * B.elow = C.elow = 0 because children_low_usage > A.elow) * is possible and reclaiming B would be violating the protection. * */ if (root == memcg) return; *min = READ_ONCE(memcg->memory.emin); *low = READ_ONCE(memcg->memory.elow); } void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg); static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) { /* * The root memcg doesn't account charges, and doesn't support * protection. */ return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.elow) >= page_counter_read(&memcg->memory); } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { if (!mem_cgroup_supports_protection(memcg)) return false; return READ_ONCE(memcg->memory.emin) >= page_counter_read(&memcg->memory); } int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); void mem_cgroup_uncharge(struct page *page); void mem_cgroup_uncharge_list(struct list_head *page_list); void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); static struct mem_cgroup_per_node * mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) { return memcg->nodeinfo[nid]; } /** * mem_cgroup_lruvec - get the lru list vector for a memcg & node * @memcg: memcg of the wanted lruvec * * Returns the lru list vector holding pages for a given @memcg & * @node combination. This can be the node lruvec, if the memory * controller is disabled. */ static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { struct mem_cgroup_per_node *mz; struct lruvec *lruvec; if (mem_cgroup_disabled()) { lruvec = &pgdat->__lruvec; goto out; } if (!memcg) memcg = root_mem_cgroup; mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); lruvec = &mz->lruvec; out: /* * Since a node can be onlined after the mem_cgroup was created, * we have to be prepared to initialize lruvec->pgdat here; * and if offlined then reonlined, we need to reinitialize it. */ if (unlikely(lruvec->pgdat != pgdat)) lruvec->pgdat = pgdat; return lruvec; } struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ return css ? container_of(css, struct mem_cgroup, css) : NULL; } static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) { return percpu_ref_tryget(&objcg->refcnt); } static inline void obj_cgroup_get(struct obj_cgroup *objcg) { percpu_ref_get(&objcg->refcnt); } static inline void obj_cgroup_put(struct obj_cgroup *objcg) { percpu_ref_put(&objcg->refcnt); } /* * After the initialization objcg->memcg is always pointing at * a valid memcg, but can be atomically swapped to the parent memcg. * * The caller must ensure that the returned memcg won't be released: * e.g. acquire the rcu_read_lock or css_set_lock. */ static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) { return READ_ONCE(objcg->memcg); } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { if (memcg) css_put(&memcg->css); } #define mem_cgroup_from_counter(counter, member) \ container_of(counter, struct mem_cgroup, member) struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, struct mem_cgroup *, struct mem_cgroup_reclaim_cookie *); void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); int mem_cgroup_scan_tasks(struct mem_cgroup *, int (*)(struct task_struct *, void *), void *); static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return 0; return memcg->id.id; } struct mem_cgroup *mem_cgroup_from_id(unsigned short id); static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return mem_cgroup_from_css(seq_css(m)); } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { struct mem_cgroup_per_node *mz; if (mem_cgroup_disabled()) return NULL; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return mz->memcg; } /** * parent_mem_cgroup - find the accounting parent of a memcg * @memcg: memcg whose parent to find * * Returns the parent memcg, or NULL if this is the root or the memory * controller is in legacy no-hierarchy mode. */ static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { if (!memcg->memory.parent) return NULL; return mem_cgroup_from_counter(memcg->memory.parent, memory); } static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) { if (root == memcg) return true; if (!root->use_hierarchy) return false; return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { struct mem_cgroup *task_memcg; bool match = false; rcu_read_lock(); task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (task_memcg) match = mem_cgroup_is_descendant(task_memcg, memcg); rcu_read_unlock(); return match; } struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); ino_t page_cgroup_ino(struct page *page); static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { if (mem_cgroup_disabled()) return true; return !!(memcg->css.flags & CSS_ONLINE); } /* * For memory reclaim. */ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, int zid, int nr_pages); static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { struct mem_cgroup_per_node *mz; mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); } void mem_cgroup_handle_over_high(void); unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); unsigned long mem_cgroup_size(struct mem_cgroup *memcg); void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p); void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); static inline void mem_cgroup_enter_user_fault(void) { WARN_ON(current->in_user_fault); current->in_user_fault = 1; } static inline void mem_cgroup_exit_user_fault(void) { WARN_ON(!current->in_user_fault); current->in_user_fault = 0; } static inline bool task_in_memcg_oom(struct task_struct *p) { return p->memcg_in_oom; } bool mem_cgroup_oom_synchronize(bool wait); struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, struct mem_cgroup *oom_domain); void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); #ifdef CONFIG_MEMCG_SWAP extern bool cgroup_memory_noswap; #endif struct mem_cgroup *lock_page_memcg(struct page *page); void __unlock_page_memcg(struct mem_cgroup *memcg); void unlock_page_memcg(struct page *page); /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { long x = atomic_long_read(&memcg->vmstats[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * idx can be of type enum memcg_stat_item or node_stat_item. * Keep in sync with memcg_exact_page_state(). */ static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { long x = 0; int cpu; for_each_possible_cpu(cpu) x += per_cpu(memcg->vmstats_local->stat[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_state(memcg, idx, val); local_irq_restore(flags); } /** * mod_memcg_page_state - update page state statistics * @page: the page * @idx: page state item to account * @val: number of pages (positive or negative) * * The @page must be locked or the caller must use lock_page_memcg() * to prevent double accounting when the page is concurrently being * moved to another memcg: * * lock_page(page) or lock_page_memcg(page) * if (TestClearPageState(page)) * mod_memcg_page_state(page, state, -1); * unlock_page(page) or unlock_page_memcg(page) * * Kernel pages are an exception to this, since they'll never move. */ static inline void __mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) __mod_memcg_state(page->mem_cgroup, idx, val); } static inline void mod_memcg_page_state(struct page *page, int idx, int val) { if (page->mem_cgroup) mod_memcg_state(page->mem_cgroup, idx, val); } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); x = atomic_long_read(&pn->lruvec_stat[idx]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { struct mem_cgroup_per_node *pn; long x = 0; int cpu; if (mem_cgroup_disabled()) return node_page_state(lruvec_pgdat(lruvec), idx); pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); for_each_possible_cpu(cpu) x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); void mod_memcg_obj_state(void *p, int idx, int val); static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_slab_state(p, idx, val); local_irq_restore(flags); } static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_memcg_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { struct page *head = compound_head(page); /* rmap on tail pages */ pg_data_t *pgdat = page_pgdat(page); struct lruvec *lruvec; /* Untracked pages have no memcg, no lruvec. Update only the node */ if (!head->mem_cgroup) { __mod_node_page_state(pgdat, idx, val); return; } lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); __mod_lruvec_state(lruvec, idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_page_state(page, idx, val); local_irq_restore(flags); } unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned); void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count); static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { unsigned long flags; local_irq_save(flags); __count_memcg_events(memcg, idx, count); local_irq_restore(flags); } static inline void count_memcg_page_event(struct page *page, enum vm_event_item idx) { if (page->mem_cgroup) count_memcg_events(page->mem_cgroup, idx, 1); } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) count_memcg_events(memcg, idx, 1); rcu_read_unlock(); } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || event == MEMCG_SWAP_FAIL; atomic_long_inc(&memcg->memory_events_local[event]); if (!swap_event) cgroup_file_notify(&memcg->events_local_file); do { atomic_long_inc(&memcg->memory_events[event]); if (swap_event) cgroup_file_notify(&memcg->swap_events_file); else cgroup_file_notify(&memcg->events_file); if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) break; if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) break; } while ((memcg = parent_mem_cgroup(memcg)) && !mem_cgroup_is_root(memcg)); } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { struct mem_cgroup *memcg; if (mem_cgroup_disabled()) return; rcu_read_lock(); memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); if (likely(memcg)) memcg_memory_event(memcg, event); rcu_read_unlock(); } void split_page_memcg(struct page *head, unsigned int nr); #else /* CONFIG_MEMCG */ #define MEM_CGROUP_ID_SHIFT 0 #define MEM_CGROUP_ID_MAX 0 struct mem_cgroup; static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return true; } static inline bool mem_cgroup_disabled(void) { return true; } static inline void memcg_memory_event(struct mem_cgroup *memcg, enum memcg_memory_event event) { } static inline void memcg_memory_event_mm(struct mm_struct *mm, enum memcg_memory_event event) { } static inline void mem_cgroup_protection(struct mem_cgroup *root, struct mem_cgroup *memcg, unsigned long *min, unsigned long *low) { *min = *low = 0; } static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, struct mem_cgroup *memcg) { } static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) { return false; } static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) { return false; } static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) { return 0; } static inline void mem_cgroup_uncharge(struct page *page) { } static inline void mem_cgroup_uncharge_list(struct list_head *page_list) { } static inline void mem_cgroup_migrate(struct page *old, struct page *new) { } static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) { return &pgdat->__lruvec; } static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) { return NULL; } static inline bool mm_match_cgroup(struct mm_struct *mm, struct mem_cgroup *memcg) { return true; } static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) { return NULL; } static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) { return NULL; } static inline void mem_cgroup_put(struct mem_cgroup *memcg) { } static inline struct mem_cgroup * mem_cgroup_iter(struct mem_cgroup *root, struct mem_cgroup *prev, struct mem_cgroup_reclaim_cookie *reclaim) { return NULL; } static inline void mem_cgroup_iter_break(struct mem_cgroup *root, struct mem_cgroup *prev) { } static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, int (*fn)(struct task_struct *, void *), void *arg) { return 0; } static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) { return 0; } static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) { WARN_ON_ONCE(id); /* XXX: This should always return root_mem_cgroup */ return NULL; } static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) { return NULL; } static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) { return NULL; } static inline bool mem_cgroup_online(struct mem_cgroup *memcg) { return true; } static inline unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) { return 0; } static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) { return 0; } static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) { return 0; } static inline void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) { } static inline void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) { } static inline struct mem_cgroup *lock_page_memcg(struct page *page) { return NULL; } static inline void __unlock_page_memcg(struct mem_cgroup *memcg) { } static inline void unlock_page_memcg(struct page *page) { } static inline void mem_cgroup_handle_over_high(void) { } static inline void mem_cgroup_enter_user_fault(void) { } static inline void mem_cgroup_exit_user_fault(void) { } static inline bool task_in_memcg_oom(struct task_struct *p) { return false; } static inline bool mem_cgroup_oom_synchronize(bool wait) { return false; } static inline struct mem_cgroup *mem_cgroup_get_oom_group( struct task_struct *victim, struct mem_cgroup *oom_domain) { return NULL; } static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) { } static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) { return 0; } static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) { return 0; } static inline void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void mod_memcg_state(struct mem_cgroup *memcg, int idx, int nr) { } static inline void __mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline void mod_memcg_page_state(struct page *page, int idx, int nr) { } static inline unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, enum node_stat_item idx) { return node_page_state(lruvec_pgdat(lruvec), idx); } static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { } static inline void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { mod_node_page_state(page_pgdat(page), idx, val); } static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) { struct page *page = virt_to_head_page(p); mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_memcg_obj_state(void *p, int idx, int val) { } static inline unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, gfp_t gfp_mask, unsigned long *total_scanned) { return 0; } static inline void split_page_memcg(struct page *head, unsigned int nr) { } static inline void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, unsigned long count) { } static inline void count_memcg_page_event(struct page *page, int idx) { } static inline void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) { } #endif /* CONFIG_MEMCG */ /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_state(struct mem_cgroup *memcg, int idx) { __mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __inc_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void __dec_memcg_page_state(struct page *page, int idx) { __mod_memcg_page_state(page, idx, -1); } static inline void __inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, 1); } static inline void __dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { __mod_lruvec_state(lruvec, idx, -1); } static inline void __inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, 1); } static inline void __dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, -1); } static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, 1); } static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) { __mod_lruvec_slab_state(p, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_state(struct mem_cgroup *memcg, int idx) { mod_memcg_state(memcg, idx, -1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void inc_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, 1); } /* idx can be of type enum memcg_stat_item or node_stat_item */ static inline void dec_memcg_page_state(struct page *page, int idx) { mod_memcg_page_state(page, idx, -1); } static inline void inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, 1); } static inline void dec_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, -1); } static inline void inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, 1); } static inline void dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, -1); } static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) { struct mem_cgroup *memcg; memcg = lruvec_memcg(lruvec); if (!memcg) return NULL; memcg = parent_mem_cgroup(memcg); if (!memcg) return NULL; return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); } #ifdef CONFIG_CGROUP_WRITEBACK struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback); void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, struct bdi_writeback *wb); static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { if (mem_cgroup_disabled()) return; if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) mem_cgroup_track_foreign_dirty_slowpath(page, wb); } void mem_cgroup_flush_foreign(struct bdi_writeback *wb); #else /* CONFIG_CGROUP_WRITEBACK */ static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) { return NULL; } static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, unsigned long *pheadroom, unsigned long *pdirty, unsigned long *pwriteback) { } static inline void mem_cgroup_track_foreign_dirty(struct page *page, struct bdi_writeback *wb) { } static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) { } #endif /* CONFIG_CGROUP_WRITEBACK */ struct sock; bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); #ifdef CONFIG_MEMCG extern struct static_key_false memcg_sockets_enabled_key; #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) void mem_cgroup_sk_alloc(struct sock *sk); void mem_cgroup_sk_free(struct sock *sk); static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) return true; do { if (time_before(jiffies, memcg->socket_pressure)) return true; } while ((memcg = parent_mem_cgroup(memcg))); return false; } extern int memcg_expand_shrinker_maps(int new_id); extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); #else #define mem_cgroup_sockets_enabled 0 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; static inline void mem_cgroup_sk_free(struct sock *sk) { }; static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) { return false; } static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) { } #endif #ifdef CONFIG_MEMCG_KMEM int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages); void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); void __memcg_kmem_uncharge_page(struct page *page, int order); struct obj_cgroup *get_obj_cgroup_from_current(void); int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); extern struct static_key_false memcg_kmem_enabled_key; extern int memcg_nr_cache_ids; void memcg_get_cache_ids(void); void memcg_put_cache_ids(void); /* * Helper macro to loop through all memcg-specific caches. Callers must still * check if the cache is valid (it is either valid or NULL). * the slab_mutex must be held when looping through those caches */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) static inline bool memcg_kmem_enabled(void) { return static_branch_likely(&memcg_kmem_enabled_key); } static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { if (memcg_kmem_enabled()) return __memcg_kmem_charge_page(page, gfp, order); return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge_page(page, order); } static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned int nr_pages) { if (memcg_kmem_enabled()) return __memcg_kmem_charge(memcg, gfp, nr_pages); return 0; } static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) { if (memcg_kmem_enabled()) __memcg_kmem_uncharge(memcg, nr_pages); } /* * helper for accessing a memcg's index. It will be used as an index in the * child cache array in kmem_cache, and also to derive its name. This function * will return -1 when this is not a kmem-limited memcg. */ static inline int memcg_cache_id(struct mem_cgroup *memcg) { return memcg ? memcg->kmemcg_id : -1; } struct mem_cgroup *mem_cgroup_from_obj(void *p); #else static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void memcg_kmem_uncharge_page(struct page *page, int order) { } static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) { return 0; } static inline void __memcg_kmem_uncharge_page(struct page *page, int order) { } #define for_each_memcg_cache_index(_idx) \ for (; NULL; ) static inline bool memcg_kmem_enabled(void) { return false; } static inline int memcg_cache_id(struct mem_cgroup *memcg) { return -1; } static inline void memcg_get_cache_ids(void) { } static inline void memcg_put_cache_ids(void) { } static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) { return NULL; } #endif /* CONFIG_MEMCG_KMEM */ #endif /* _LINUX_MEMCONTROL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* user-type.h: User-defined key type * * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _KEYS_USER_TYPE_H #define _KEYS_USER_TYPE_H #include <linux/key.h> #include <linux/rcupdate.h> #ifdef CONFIG_KEYS /*****************************************************************************/ /* * the payload for a key of type "user" or "logon" * - once filled in and attached to a key: * - the payload struct is invariant may not be changed, only replaced * - the payload must be read with RCU procedures or with the key semaphore * held * - the payload may only be replaced with the key semaphore write-locked * - the key's data length is the size of the actual data, not including the * payload wrapper */ struct user_key_payload { struct rcu_head rcu; /* RCU destructor */ unsigned short datalen; /* length of this data */ char data[] __aligned(__alignof__(u64)); /* actual data */ }; extern struct key_type key_type_user; extern struct key_type key_type_logon; struct key_preparsed_payload; extern int user_preparse(struct key_preparsed_payload *prep); extern void user_free_preparse(struct key_preparsed_payload *prep); extern int user_update(struct key *key, struct key_preparsed_payload *prep); extern void user_revoke(struct key *key); extern void user_destroy(struct key *key); extern void user_describe(const struct key *user, struct seq_file *m); extern long user_read(const struct key *key, char *buffer, size_t buflen); static inline const struct user_key_payload *user_key_payload_rcu(const struct key *key) { return (struct user_key_payload *)dereference_key_rcu(key); } static inline struct user_key_payload *user_key_payload_locked(const struct key *key) { return (struct user_key_payload *)dereference_key_locked((struct key *)key); } #endif /* CONFIG_KEYS */ #endif /* _KEYS_USER_TYPE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 #ifndef _LINUX_MMAP_LOCK_H #define _LINUX_MMAP_LOCK_H #include <linux/mmdebug.h> #define MMAP_LOCK_INITIALIZER(name) \ .mmap_lock = __RWSEM_INITIALIZER((name).mmap_lock), static inline void mmap_init_lock(struct mm_struct *mm) { init_rwsem(&mm->mmap_lock); } static inline void mmap_write_lock(struct mm_struct *mm) { down_write(&mm->mmap_lock); } static inline void mmap_write_lock_nested(struct mm_struct *mm, int subclass) { down_write_nested(&mm->mmap_lock, subclass); } static inline int mmap_write_lock_killable(struct mm_struct *mm) { return down_write_killable(&mm->mmap_lock); } static inline bool mmap_write_trylock(struct mm_struct *mm) { return down_write_trylock(&mm->mmap_lock) != 0; } static inline void mmap_write_unlock(struct mm_struct *mm) { up_write(&mm->mmap_lock); } static inline void mmap_write_downgrade(struct mm_struct *mm) { downgrade_write(&mm->mmap_lock); } static inline void mmap_read_lock(struct mm_struct *mm) { down_read(&mm->mmap_lock); } static inline int mmap_read_lock_killable(struct mm_struct *mm) { return down_read_killable(&mm->mmap_lock); } static inline bool mmap_read_trylock(struct mm_struct *mm) { return down_read_trylock(&mm->mmap_lock) != 0; } static inline void mmap_read_unlock(struct mm_struct *mm) { up_read(&mm->mmap_lock); } static inline bool mmap_read_trylock_non_owner(struct mm_struct *mm) { if (down_read_trylock(&mm->mmap_lock)) { rwsem_release(&mm->mmap_lock.dep_map, _RET_IP_); return true; } return false; } static inline void mmap_read_unlock_non_owner(struct mm_struct *mm) { up_read_non_owner(&mm->mmap_lock); } static inline void mmap_assert_locked(struct mm_struct *mm) { lockdep_assert_held(&mm->mmap_lock); VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_lock), mm); } static inline void mmap_assert_write_locked(struct mm_struct *mm) { lockdep_assert_held_write(&mm->mmap_lock); VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_lock), mm); } static inline int mmap_lock_is_contended(struct mm_struct *mm) { return rwsem_is_contended(&mm->mmap_lock); } #endif /* _LINUX_MMAP_LOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 /* SPDX-License-Identifier: GPL-2.0 */ /* Based on net/wireless/trace.h */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cfg802154 #if !defined(__RDEV_CFG802154_OPS_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __RDEV_CFG802154_OPS_TRACE #include <linux/tracepoint.h> #include <net/cfg802154.h> #define MAXNAME 32 #define WPAN_PHY_ENTRY __array(char, wpan_phy_name, MAXNAME) #define WPAN_PHY_ASSIGN strlcpy(__entry->wpan_phy_name, \ wpan_phy_name(wpan_phy), \ MAXNAME) #define WPAN_PHY_PR_FMT "%s" #define WPAN_PHY_PR_ARG __entry->wpan_phy_name #define WPAN_DEV_ENTRY __field(u32, identifier) #define WPAN_DEV_ASSIGN (__entry->identifier) = (!IS_ERR_OR_NULL(wpan_dev) \ ? wpan_dev->identifier : 0) #define WPAN_DEV_PR_FMT "wpan_dev(%u)" #define WPAN_DEV_PR_ARG (__entry->identifier) #define WPAN_CCA_ENTRY __field(enum nl802154_cca_modes, cca_mode) \ __field(enum nl802154_cca_opts, cca_opt) #define WPAN_CCA_ASSIGN \ do { \ (__entry->cca_mode) = cca->mode; \ (__entry->cca_opt) = cca->opt; \ } while (0) #define WPAN_CCA_PR_FMT "cca_mode: %d, cca_opt: %d" #define WPAN_CCA_PR_ARG __entry->cca_mode, __entry->cca_opt #define BOOL_TO_STR(bo) (bo) ? "true" : "false" /************************************************************* * rdev->ops traces * *************************************************************/ DECLARE_EVENT_CLASS(wpan_phy_only_evt, TP_PROTO(struct wpan_phy *wpan_phy), TP_ARGS(wpan_phy), TP_STRUCT__entry( WPAN_PHY_ENTRY ), TP_fast_assign( WPAN_PHY_ASSIGN; ), TP_printk(WPAN_PHY_PR_FMT, WPAN_PHY_PR_ARG) ); DEFINE_EVENT(wpan_phy_only_evt, 802154_rdev_suspend, TP_PROTO(struct wpan_phy *wpan_phy), TP_ARGS(wpan_phy) ); DEFINE_EVENT(wpan_phy_only_evt, 802154_rdev_resume, TP_PROTO(struct wpan_phy *wpan_phy), TP_ARGS(wpan_phy) ); TRACE_EVENT(802154_rdev_add_virtual_intf, TP_PROTO(struct wpan_phy *wpan_phy, char *name, enum nl802154_iftype type, __le64 extended_addr), TP_ARGS(wpan_phy, name, type, extended_addr), TP_STRUCT__entry( WPAN_PHY_ENTRY __string(vir_intf_name, name ? name : "<noname>") __field(enum nl802154_iftype, type) __field(__le64, extended_addr) ), TP_fast_assign( WPAN_PHY_ASSIGN; __assign_str(vir_intf_name, name ? name : "<noname>"); __entry->type = type; __entry->extended_addr = extended_addr; ), TP_printk(WPAN_PHY_PR_FMT ", virtual intf name: %s, type: %d, extended addr: 0x%llx", WPAN_PHY_PR_ARG, __get_str(vir_intf_name), __entry->type, __le64_to_cpu(__entry->extended_addr)) ); TRACE_EVENT(802154_rdev_del_virtual_intf, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev), TP_ARGS(wpan_phy, wpan_dev), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT, WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG) ); TRACE_EVENT(802154_rdev_set_channel, TP_PROTO(struct wpan_phy *wpan_phy, u8 page, u8 channel), TP_ARGS(wpan_phy, page, channel), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(u8, page) __field(u8, channel) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->page = page; __entry->channel = channel; ), TP_printk(WPAN_PHY_PR_FMT ", page: %d, channel: %d", WPAN_PHY_PR_ARG, __entry->page, __entry->channel) ); TRACE_EVENT(802154_rdev_set_tx_power, TP_PROTO(struct wpan_phy *wpan_phy, s32 power), TP_ARGS(wpan_phy, power), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(s32, power) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->power = power; ), TP_printk(WPAN_PHY_PR_FMT ", mbm: %d", WPAN_PHY_PR_ARG, __entry->power) ); TRACE_EVENT(802154_rdev_set_cca_mode, TP_PROTO(struct wpan_phy *wpan_phy, const struct wpan_phy_cca *cca), TP_ARGS(wpan_phy, cca), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_CCA_ENTRY ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_CCA_ASSIGN; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_CCA_PR_FMT, WPAN_PHY_PR_ARG, WPAN_CCA_PR_ARG) ); TRACE_EVENT(802154_rdev_set_cca_ed_level, TP_PROTO(struct wpan_phy *wpan_phy, s32 ed_level), TP_ARGS(wpan_phy, ed_level), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(s32, ed_level) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->ed_level = ed_level; ), TP_printk(WPAN_PHY_PR_FMT ", ed level: %d", WPAN_PHY_PR_ARG, __entry->ed_level) ); DECLARE_EVENT_CLASS(802154_le16_template, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 le16arg), TP_ARGS(wpan_phy, wpan_dev, le16arg), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(__le16, le16arg) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->le16arg = le16arg; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", pan id: 0x%04x", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __le16_to_cpu(__entry->le16arg)) ); DEFINE_EVENT(802154_le16_template, 802154_rdev_set_pan_id, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 le16arg), TP_ARGS(wpan_phy, wpan_dev, le16arg) ); DEFINE_EVENT_PRINT(802154_le16_template, 802154_rdev_set_short_addr, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, __le16 le16arg), TP_ARGS(wpan_phy, wpan_dev, le16arg), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", short addr: 0x%04x", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __le16_to_cpu(__entry->le16arg)) ); TRACE_EVENT(802154_rdev_set_backoff_exponent, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 min_be, u8 max_be), TP_ARGS(wpan_phy, wpan_dev, min_be, max_be), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(u8, min_be) __field(u8, max_be) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->min_be = min_be; __entry->max_be = max_be; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", min be: %d, max be: %d", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __entry->min_be, __entry->max_be) ); TRACE_EVENT(802154_rdev_set_csma_backoffs, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, u8 max_csma_backoffs), TP_ARGS(wpan_phy, wpan_dev, max_csma_backoffs), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(u8, max_csma_backoffs) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->max_csma_backoffs = max_csma_backoffs; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", max csma backoffs: %d", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __entry->max_csma_backoffs) ); TRACE_EVENT(802154_rdev_set_max_frame_retries, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, s8 max_frame_retries), TP_ARGS(wpan_phy, wpan_dev, max_frame_retries), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(s8, max_frame_retries) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->max_frame_retries = max_frame_retries; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", max frame retries: %d", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, __entry->max_frame_retries) ); TRACE_EVENT(802154_rdev_set_lbt_mode, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool mode), TP_ARGS(wpan_phy, wpan_dev, mode), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(bool, mode) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->mode = mode; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", lbt mode: %s", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, BOOL_TO_STR(__entry->mode)) ); TRACE_EVENT(802154_rdev_set_ackreq_default, TP_PROTO(struct wpan_phy *wpan_phy, struct wpan_dev *wpan_dev, bool ackreq), TP_ARGS(wpan_phy, wpan_dev, ackreq), TP_STRUCT__entry( WPAN_PHY_ENTRY WPAN_DEV_ENTRY __field(bool, ackreq) ), TP_fast_assign( WPAN_PHY_ASSIGN; WPAN_DEV_ASSIGN; __entry->ackreq = ackreq; ), TP_printk(WPAN_PHY_PR_FMT ", " WPAN_DEV_PR_FMT ", ackreq default: %s", WPAN_PHY_PR_ARG, WPAN_DEV_PR_ARG, BOOL_TO_STR(__entry->ackreq)) ); TRACE_EVENT(802154_rdev_return_int, TP_PROTO(struct wpan_phy *wpan_phy, int ret), TP_ARGS(wpan_phy, ret), TP_STRUCT__entry( WPAN_PHY_ENTRY __field(int, ret) ), TP_fast_assign( WPAN_PHY_ASSIGN; __entry->ret = ret; ), TP_printk(WPAN_PHY_PR_FMT ", returned: %d", WPAN_PHY_PR_ARG, __entry->ret) ); #endif /* !__RDEV_CFG802154_OPS_TRACE || TRACE_HEADER_MULTI_READ */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 /* SPDX-License-Identifier: GPL-2.0 */ /* interrupt.h */ #ifndef _LINUX_INTERRUPT_H #define _LINUX_INTERRUPT_H #include <linux/kernel.h> #include <linux/bitops.h> #include <linux/cpumask.h> #include <linux/irqreturn.h> #include <linux/irqnr.h> #include <linux/hardirq.h> #include <linux/irqflags.h> #include <linux/hrtimer.h> #include <linux/kref.h> #include <linux/workqueue.h> #include <linux/atomic.h> #include <asm/ptrace.h> #include <asm/irq.h> #include <asm/sections.h> /* * These correspond to the IORESOURCE_IRQ_* defines in * linux/ioport.h to select the interrupt line behaviour. When * requesting an interrupt without specifying a IRQF_TRIGGER, the * setting should be assumed to be "as already configured", which * may be as per machine or firmware initialisation. */ #define IRQF_TRIGGER_NONE 0x00000000 #define IRQF_TRIGGER_RISING 0x00000001 #define IRQF_TRIGGER_FALLING 0x00000002 #define IRQF_TRIGGER_HIGH 0x00000004 #define IRQF_TRIGGER_LOW 0x00000008 #define IRQF_TRIGGER_MASK (IRQF_TRIGGER_HIGH | IRQF_TRIGGER_LOW | \ IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING) #define IRQF_TRIGGER_PROBE 0x00000010 /* * These flags used only by the kernel as part of the * irq handling routines. * * IRQF_SHARED - allow sharing the irq among several devices * IRQF_PROBE_SHARED - set by callers when they expect sharing mismatches to occur * IRQF_TIMER - Flag to mark this interrupt as timer interrupt * IRQF_PERCPU - Interrupt is per cpu * IRQF_NOBALANCING - Flag to exclude this interrupt from irq balancing * IRQF_IRQPOLL - Interrupt is used for polling (only the interrupt that is * registered first in a shared interrupt is considered for * performance reasons) * IRQF_ONESHOT - Interrupt is not reenabled after the hardirq handler finished. * Used by threaded interrupts which need to keep the * irq line disabled until the threaded handler has been run. * IRQF_NO_SUSPEND - Do not disable this IRQ during suspend. Does not guarantee * that this interrupt will wake the system from a suspended * state. See Documentation/power/suspend-and-interrupts.rst * IRQF_FORCE_RESUME - Force enable it on resume even if IRQF_NO_SUSPEND is set * IRQF_NO_THREAD - Interrupt cannot be threaded * IRQF_EARLY_RESUME - Resume IRQ early during syscore instead of at device * resume time. * IRQF_COND_SUSPEND - If the IRQ is shared with a NO_SUSPEND user, execute this * interrupt handler after suspending interrupts. For system * wakeup devices users need to implement wakeup detection in * their interrupt handlers. */ #define IRQF_SHARED 0x00000080 #define IRQF_PROBE_SHARED 0x00000100 #define __IRQF_TIMER 0x00000200 #define IRQF_PERCPU 0x00000400 #define IRQF_NOBALANCING 0x00000800 #define IRQF_IRQPOLL 0x00001000 #define IRQF_ONESHOT 0x00002000 #define IRQF_NO_SUSPEND 0x00004000 #define IRQF_FORCE_RESUME 0x00008000 #define IRQF_NO_THREAD 0x00010000 #define IRQF_EARLY_RESUME 0x00020000 #define IRQF_COND_SUSPEND 0x00040000 #define IRQF_TIMER (__IRQF_TIMER | IRQF_NO_SUSPEND | IRQF_NO_THREAD) /* * These values can be returned by request_any_context_irq() and * describe the context the interrupt will be run in. * * IRQC_IS_HARDIRQ - interrupt runs in hardirq context * IRQC_IS_NESTED - interrupt runs in a nested threaded context */ enum { IRQC_IS_HARDIRQ = 0, IRQC_IS_NESTED, }; typedef irqreturn_t (*irq_handler_t)(int, void *); /** * struct irqaction - per interrupt action descriptor * @handler: interrupt handler function * @name: name of the device * @dev_id: cookie to identify the device * @percpu_dev_id: cookie to identify the device * @next: pointer to the next irqaction for shared interrupts * @irq: interrupt number * @flags: flags (see IRQF_* above) * @thread_fn: interrupt handler function for threaded interrupts * @thread: thread pointer for threaded interrupts * @secondary: pointer to secondary irqaction (force threading) * @thread_flags: flags related to @thread * @thread_mask: bitmask for keeping track of @thread activity * @dir: pointer to the proc/irq/NN/name entry */ struct irqaction { irq_handler_t handler; void *dev_id; void __percpu *percpu_dev_id; struct irqaction *next; irq_handler_t thread_fn; struct task_struct *thread; struct irqaction *secondary; unsigned int irq; unsigned int flags; unsigned long thread_flags; unsigned long thread_mask; const char *name; struct proc_dir_entry *dir; } ____cacheline_internodealigned_in_smp; extern irqreturn_t no_action(int cpl, void *dev_id); /* * If a (PCI) device interrupt is not connected we set dev->irq to * IRQ_NOTCONNECTED. This causes request_irq() to fail with -ENOTCONN, so we * can distingiush that case from other error returns. * * 0x80000000 is guaranteed to be outside the available range of interrupts * and easy to distinguish from other possible incorrect values. */ #define IRQ_NOTCONNECTED (1U << 31) extern int __must_check request_threaded_irq(unsigned int irq, irq_handler_t handler, irq_handler_t thread_fn, unsigned long flags, const char *name, void *dev); /** * request_irq - Add a handler for an interrupt line * @irq: The interrupt line to allocate * @handler: Function to be called when the IRQ occurs. * Primary handler for threaded interrupts * If NULL, the default primary handler is installed * @flags: Handling flags * @name: Name of the device generating this interrupt * @dev: A cookie passed to the handler function * * This call allocates an interrupt and establishes a handler; see * the documentation for request_threaded_irq() for details. */ static inline int __must_check request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev) { return request_threaded_irq(irq, handler, NULL, flags, name, dev); } extern int __must_check request_any_context_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev_id); extern int __must_check __request_percpu_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *devname, void __percpu *percpu_dev_id); extern int __must_check request_nmi(unsigned int irq, irq_handler_t handler, unsigned long flags, const char *name, void *dev); static inline int __must_check request_percpu_irq(unsigned int irq, irq_handler_t handler, const char *devname, void __percpu *percpu_dev_id) { return __request_percpu_irq(irq, handler, 0, devname, percpu_dev_id); } extern int __must_check request_percpu_nmi(unsigned int irq, irq_handler_t handler, const char *devname, void __percpu *dev); extern const void *free_irq(unsigned int, void *); extern void free_percpu_irq(unsigned int, void __percpu *); extern const void *free_nmi(unsigned int irq, void *dev_id); extern void free_percpu_nmi(unsigned int irq, void __percpu *percpu_dev_id); struct device; extern int __must_check devm_request_threaded_irq(struct device *dev, unsigned int irq, irq_handler_t handler, irq_handler_t thread_fn, unsigned long irqflags, const char *devname, void *dev_id); static inline int __must_check devm_request_irq(struct device *dev, unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { return devm_request_threaded_irq(dev, irq, handler, NULL, irqflags, devname, dev_id); } extern int __must_check devm_request_any_context_irq(struct device *dev, unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id); extern void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id); /* * On lockdep we dont want to enable hardirqs in hardirq * context. Use local_irq_enable_in_hardirq() to annotate * kernel code that has to do this nevertheless (pretty much * the only valid case is for old/broken hardware that is * insanely slow). * * NOTE: in theory this might break fragile code that relies * on hardirq delivery - in practice we dont seem to have such * places left. So the only effect should be slightly increased * irqs-off latencies. */ #ifdef CONFIG_LOCKDEP # define local_irq_enable_in_hardirq() do { } while (0) #else # define local_irq_enable_in_hardirq() local_irq_enable() #endif extern void disable_irq_nosync(unsigned int irq); extern bool disable_hardirq(unsigned int irq); extern void disable_irq(unsigned int irq); extern void disable_percpu_irq(unsigned int irq); extern void enable_irq(unsigned int irq); extern void enable_percpu_irq(unsigned int irq, unsigned int type); extern bool irq_percpu_is_enabled(unsigned int irq); extern void irq_wake_thread(unsigned int irq, void *dev_id); extern void disable_nmi_nosync(unsigned int irq); extern void disable_percpu_nmi(unsigned int irq); extern void enable_nmi(unsigned int irq); extern void enable_percpu_nmi(unsigned int irq, unsigned int type); extern int prepare_percpu_nmi(unsigned int irq); extern void teardown_percpu_nmi(unsigned int irq); extern int irq_inject_interrupt(unsigned int irq); /* The following three functions are for the core kernel use only. */ extern void suspend_device_irqs(void); extern void resume_device_irqs(void); extern void rearm_wake_irq(unsigned int irq); /** * struct irq_affinity_notify - context for notification of IRQ affinity changes * @irq: Interrupt to which notification applies * @kref: Reference count, for internal use * @work: Work item, for internal use * @notify: Function to be called on change. This will be * called in process context. * @release: Function to be called on release. This will be * called in process context. Once registered, the * structure must only be freed when this function is * called or later. */ struct irq_affinity_notify { unsigned int irq; struct kref kref; struct work_struct work; void (*notify)(struct irq_affinity_notify *, const cpumask_t *mask); void (*release)(struct kref *ref); }; #define IRQ_AFFINITY_MAX_SETS 4 /** * struct irq_affinity - Description for automatic irq affinity assignements * @pre_vectors: Don't apply affinity to @pre_vectors at beginning of * the MSI(-X) vector space * @post_vectors: Don't apply affinity to @post_vectors at end of * the MSI(-X) vector space * @nr_sets: The number of interrupt sets for which affinity * spreading is required * @set_size: Array holding the size of each interrupt set * @calc_sets: Callback for calculating the number and size * of interrupt sets * @priv: Private data for usage by @calc_sets, usually a * pointer to driver/device specific data. */ struct irq_affinity { unsigned int pre_vectors; unsigned int post_vectors; unsigned int nr_sets; unsigned int set_size[IRQ_AFFINITY_MAX_SETS]; void (*calc_sets)(struct irq_affinity *, unsigned int nvecs); void *priv; }; /** * struct irq_affinity_desc - Interrupt affinity descriptor * @mask: cpumask to hold the affinity assignment * @is_managed: 1 if the interrupt is managed internally */ struct irq_affinity_desc { struct cpumask mask; unsigned int is_managed : 1; }; #if defined(CONFIG_SMP) extern cpumask_var_t irq_default_affinity; /* Internal implementation. Use the helpers below */ extern int __irq_set_affinity(unsigned int irq, const struct cpumask *cpumask, bool force); /** * irq_set_affinity - Set the irq affinity of a given irq * @irq: Interrupt to set affinity * @cpumask: cpumask * * Fails if cpumask does not contain an online CPU */ static inline int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask) { return __irq_set_affinity(irq, cpumask, false); } /** * irq_force_affinity - Force the irq affinity of a given irq * @irq: Interrupt to set affinity * @cpumask: cpumask * * Same as irq_set_affinity, but without checking the mask against * online cpus. * * Solely for low level cpu hotplug code, where we need to make per * cpu interrupts affine before the cpu becomes online. */ static inline int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) { return __irq_set_affinity(irq, cpumask, true); } extern int irq_can_set_affinity(unsigned int irq); extern int irq_select_affinity(unsigned int irq); extern int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m); extern int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify); struct irq_affinity_desc * irq_create_affinity_masks(unsigned int nvec, struct irq_affinity *affd); unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, const struct irq_affinity *affd); #else /* CONFIG_SMP */ static inline int irq_set_affinity(unsigned int irq, const struct cpumask *m) { return -EINVAL; } static inline int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask) { return 0; } static inline int irq_can_set_affinity(unsigned int irq) { return 0; } static inline int irq_select_affinity(unsigned int irq) { return 0; } static inline int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m) { return -EINVAL; } static inline int irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify) { return 0; } static inline struct irq_affinity_desc * irq_create_affinity_masks(unsigned int nvec, struct irq_affinity *affd) { return NULL; } static inline unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, const struct irq_affinity *affd) { return maxvec; } #endif /* CONFIG_SMP */ /* * Special lockdep variants of irq disabling/enabling. * These should be used for locking constructs that * know that a particular irq context which is disabled, * and which is the only irq-context user of a lock, * that it's safe to take the lock in the irq-disabled * section without disabling hardirqs. * * On !CONFIG_LOCKDEP they are equivalent to the normal * irq disable/enable methods. */ static inline void disable_irq_nosync_lockdep(unsigned int irq) { disable_irq_nosync(irq); #ifdef CONFIG_LOCKDEP local_irq_disable(); #endif } static inline void disable_irq_nosync_lockdep_irqsave(unsigned int irq, unsigned long *flags) { disable_irq_nosync(irq); #ifdef CONFIG_LOCKDEP local_irq_save(*flags); #endif } static inline void disable_irq_lockdep(unsigned int irq) { disable_irq(irq); #ifdef CONFIG_LOCKDEP local_irq_disable(); #endif } static inline void enable_irq_lockdep(unsigned int irq) { #ifdef CONFIG_LOCKDEP local_irq_enable(); #endif enable_irq(irq); } static inline void enable_irq_lockdep_irqrestore(unsigned int irq, unsigned long *flags) { #ifdef CONFIG_LOCKDEP local_irq_restore(*flags); #endif enable_irq(irq); } /* IRQ wakeup (PM) control: */ extern int irq_set_irq_wake(unsigned int irq, unsigned int on); static inline int enable_irq_wake(unsigned int irq) { return irq_set_irq_wake(irq, 1); } static inline int disable_irq_wake(unsigned int irq) { return irq_set_irq_wake(irq, 0); } /* * irq_get_irqchip_state/irq_set_irqchip_state specific flags */ enum irqchip_irq_state { IRQCHIP_STATE_PENDING, /* Is interrupt pending? */ IRQCHIP_STATE_ACTIVE, /* Is interrupt in progress? */ IRQCHIP_STATE_MASKED, /* Is interrupt masked? */ IRQCHIP_STATE_LINE_LEVEL, /* Is IRQ line high? */ }; extern int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool *state); extern int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which, bool state); #ifdef CONFIG_IRQ_FORCED_THREADING # ifdef CONFIG_PREEMPT_RT # define force_irqthreads (true) # else extern bool force_irqthreads; # endif #else #define force_irqthreads (0) #endif #ifndef local_softirq_pending #ifndef local_softirq_pending_ref #define local_softirq_pending_ref irq_stat.__softirq_pending #endif #define local_softirq_pending() (__this_cpu_read(local_softirq_pending_ref)) #define set_softirq_pending(x) (__this_cpu_write(local_softirq_pending_ref, (x))) #define or_softirq_pending(x) (__this_cpu_or(local_softirq_pending_ref, (x))) #endif /* local_softirq_pending */ /* Some architectures might implement lazy enabling/disabling of * interrupts. In some cases, such as stop_machine, we might want * to ensure that after a local_irq_disable(), interrupts have * really been disabled in hardware. Such architectures need to * implement the following hook. */ #ifndef hard_irq_disable #define hard_irq_disable() do { } while(0) #endif /* PLEASE, avoid to allocate new softirqs, if you need not _really_ high frequency threaded job scheduling. For almost all the purposes tasklets are more than enough. F.e. all serial device BHs et al. should be converted to tasklets, not to softirqs. */ enum { HI_SOFTIRQ=0, TIMER_SOFTIRQ, NET_TX_SOFTIRQ, NET_RX_SOFTIRQ, BLOCK_SOFTIRQ, IRQ_POLL_SOFTIRQ, TASKLET_SOFTIRQ, SCHED_SOFTIRQ, HRTIMER_SOFTIRQ, RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */ NR_SOFTIRQS }; #define SOFTIRQ_STOP_IDLE_MASK (~(1 << RCU_SOFTIRQ)) /* map softirq index to softirq name. update 'softirq_to_name' in * kernel/softirq.c when adding a new softirq. */ extern const char * const softirq_to_name[NR_SOFTIRQS]; /* softirq mask and active fields moved to irq_cpustat_t in * asm/hardirq.h to get better cache usage. KAO */ struct softirq_action { void (*action)(struct softirq_action *); }; asmlinkage void do_softirq(void); asmlinkage void __do_softirq(void); #ifdef __ARCH_HAS_DO_SOFTIRQ void do_softirq_own_stack(void); #else static inline void do_softirq_own_stack(void) { __do_softirq(); } #endif extern void open_softirq(int nr, void (*action)(struct softirq_action *)); extern void softirq_init(void); extern void __raise_softirq_irqoff(unsigned int nr); extern void raise_softirq_irqoff(unsigned int nr); extern void raise_softirq(unsigned int nr); DECLARE_PER_CPU(struct task_struct *, ksoftirqd); static inline struct task_struct *this_cpu_ksoftirqd(void) { return this_cpu_read(ksoftirqd); } /* Tasklets --- multithreaded analogue of BHs. This API is deprecated. Please consider using threaded IRQs instead: https://lore.kernel.org/lkml/20200716081538.2sivhkj4hcyrusem@linutronix.de Main feature differing them of generic softirqs: tasklet is running only on one CPU simultaneously. Main feature differing them of BHs: different tasklets may be run simultaneously on different CPUs. Properties: * If tasklet_schedule() is called, then tasklet is guaranteed to be executed on some cpu at least once after this. * If the tasklet is already scheduled, but its execution is still not started, it will be executed only once. * If this tasklet is already running on another CPU (or schedule is called from tasklet itself), it is rescheduled for later. * Tasklet is strictly serialized wrt itself, but not wrt another tasklets. If client needs some intertask synchronization, he makes it with spinlocks. */ struct tasklet_struct { struct tasklet_struct *next; unsigned long state; atomic_t count; bool use_callback; union { void (*func)(unsigned long data); void (*callback)(struct tasklet_struct *t); }; unsigned long data; }; #define DECLARE_TASKLET(name, _callback) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(0), \ .callback = _callback, \ .use_callback = true, \ } #define DECLARE_TASKLET_DISABLED(name, _callback) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(1), \ .callback = _callback, \ .use_callback = true, \ } #define from_tasklet(var, callback_tasklet, tasklet_fieldname) \ container_of(callback_tasklet, typeof(*var), tasklet_fieldname) #define DECLARE_TASKLET_OLD(name, _func) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(0), \ .func = _func, \ } #define DECLARE_TASKLET_DISABLED_OLD(name, _func) \ struct tasklet_struct name = { \ .count = ATOMIC_INIT(1), \ .func = _func, \ } enum { TASKLET_STATE_SCHED, /* Tasklet is scheduled for execution */ TASKLET_STATE_RUN /* Tasklet is running (SMP only) */ }; #ifdef CONFIG_SMP static inline int tasklet_trylock(struct tasklet_struct *t) { return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state); } static inline void tasklet_unlock(struct tasklet_struct *t) { smp_mb__before_atomic(); clear_bit(TASKLET_STATE_RUN, &(t)->state); } static inline void tasklet_unlock_wait(struct tasklet_struct *t) { while (test_bit(TASKLET_STATE_RUN, &(t)->state)) { barrier(); } } #else #define tasklet_trylock(t) 1 #define tasklet_unlock_wait(t) do { } while (0) #define tasklet_unlock(t) do { } while (0) #endif extern void __tasklet_schedule(struct tasklet_struct *t); static inline void tasklet_schedule(struct tasklet_struct *t) { if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) __tasklet_schedule(t); } extern void __tasklet_hi_schedule(struct tasklet_struct *t); static inline void tasklet_hi_schedule(struct tasklet_struct *t) { if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) __tasklet_hi_schedule(t); } static inline void tasklet_disable_nosync(struct tasklet_struct *t) { atomic_inc(&t->count); smp_mb__after_atomic(); } static inline void tasklet_disable(struct tasklet_struct *t) { tasklet_disable_nosync(t); tasklet_unlock_wait(t); smp_mb(); } static inline void tasklet_enable(struct tasklet_struct *t) { smp_mb__before_atomic(); atomic_dec(&t->count); } extern void tasklet_kill(struct tasklet_struct *t); extern void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu); extern void tasklet_init(struct tasklet_struct *t, void (*func)(unsigned long), unsigned long data); extern void tasklet_setup(struct tasklet_struct *t, void (*callback)(struct tasklet_struct *)); /* * Autoprobing for irqs: * * probe_irq_on() and probe_irq_off() provide robust primitives * for accurate IRQ probing during kernel initialization. They are * reasonably simple to use, are not "fooled" by spurious interrupts, * and, unlike other attempts at IRQ probing, they do not get hung on * stuck interrupts (such as unused PS2 mouse interfaces on ASUS boards). * * For reasonably foolproof probing, use them as follows: * * 1. clear and/or mask the device's internal interrupt. * 2. sti(); * 3. irqs = probe_irq_on(); // "take over" all unassigned idle IRQs * 4. enable the device and cause it to trigger an interrupt. * 5. wait for the device to interrupt, using non-intrusive polling or a delay. * 6. irq = probe_irq_off(irqs); // get IRQ number, 0=none, negative=multiple * 7. service the device to clear its pending interrupt. * 8. loop again if paranoia is required. * * probe_irq_on() returns a mask of allocated irq's. * * probe_irq_off() takes the mask as a parameter, * and returns the irq number which occurred, * or zero if none occurred, or a negative irq number * if more than one irq occurred. */ #if !defined(CONFIG_GENERIC_IRQ_PROBE) static inline unsigned long probe_irq_on(void) { return 0; } static inline int probe_irq_off(unsigned long val) { return 0; } static inline unsigned int probe_irq_mask(unsigned long val) { return 0; } #else extern unsigned long probe_irq_on(void); /* returns 0 on failure */ extern int probe_irq_off(unsigned long); /* returns 0 or negative on failure */ extern unsigned int probe_irq_mask(unsigned long); /* returns mask of ISA interrupts */ #endif #ifdef CONFIG_PROC_FS /* Initialize /proc/irq/ */ extern void init_irq_proc(void); #else static inline void init_irq_proc(void) { } #endif #ifdef CONFIG_IRQ_TIMINGS void irq_timings_enable(void); void irq_timings_disable(void); u64 irq_timings_next_event(u64 now); #endif struct seq_file; int show_interrupts(struct seq_file *p, void *v); int arch_show_interrupts(struct seq_file *p, int prec); extern int early_irq_init(void); extern int arch_probe_nr_irqs(void); extern int arch_early_irq_init(void); /* * We want to know which function is an entrypoint of a hardirq or a softirq. */ #ifndef __irq_entry # define __irq_entry __section(".irqentry.text") #endif #define __softirq_entry __section(".softirqentry.text") #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Symmetric key ciphers. * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SKCIPHER_H #define _CRYPTO_SKCIPHER_H #include <linux/crypto.h> #include <linux/kernel.h> #include <linux/slab.h> /** * struct skcipher_request - Symmetric key cipher request * @cryptlen: Number of bytes to encrypt or decrypt * @iv: Initialisation Vector * @src: Source SG list * @dst: Destination SG list * @base: Underlying async request * @__ctx: Start of private context data */ struct skcipher_request { unsigned int cryptlen; u8 *iv; struct scatterlist *src; struct scatterlist *dst; struct crypto_async_request base; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_skcipher { unsigned int reqsize; struct crypto_tfm base; }; struct crypto_sync_skcipher { struct crypto_skcipher base; }; /** * struct skcipher_alg - symmetric key cipher definition * @min_keysize: Minimum key size supported by the transformation. This is the * smallest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MIN_KEY_SIZE" include/crypto/ * @max_keysize: Maximum key size supported by the transformation. This is the * largest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MAX_KEY_SIZE" include/crypto/ * @setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function can * be called multiple times during the existence of the transformation * object, so one must make sure the key is properly reprogrammed into * the hardware. This function is also responsible for checking the key * length for validity. In case a software fallback was put in place in * the @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt * the supplied scatterlist containing the blocks of data. The crypto * API consumer is responsible for aligning the entries of the * scatterlist properly and making sure the chunks are correctly * sized. In case a software fallback was put in place in the * @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. In case the * key was stored in transformation context, the key might need to be * re-programmed into the hardware in this function. This function * shall not modify the transformation context, as this function may * be called in parallel with the same transformation object. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt * and the conditions are exactly the same. * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @ivsize: IV size applicable for transformation. The consumer must provide an * IV of exactly that size to perform the encrypt or decrypt operation. * @chunksize: Equal to the block size except for stream ciphers such as * CTR where it is set to the underlying block size. * @walksize: Equal to the chunk size except in cases where the algorithm is * considerably more efficient if it can operate on multiple chunks * in parallel. Should be a multiple of chunksize. * @base: Definition of a generic crypto algorithm. * * All fields except @ivsize are mandatory and must be filled. */ struct skcipher_alg { int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct skcipher_request *req); int (*decrypt)(struct skcipher_request *req); int (*init)(struct crypto_skcipher *tfm); void (*exit)(struct crypto_skcipher *tfm); unsigned int min_keysize; unsigned int max_keysize; unsigned int ivsize; unsigned int chunksize; unsigned int walksize; struct crypto_alg base; }; #define MAX_SYNC_SKCIPHER_REQSIZE 384 /* * This performs a type-check against the "tfm" argument to make sure * all users have the correct skcipher tfm for doing on-stack requests. */ #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \ char __##name##_desc[sizeof(struct skcipher_request) + \ MAX_SYNC_SKCIPHER_REQSIZE + \ (!(sizeof((struct crypto_sync_skcipher *)1 == \ (typeof(tfm))1))) \ ] CRYPTO_MINALIGN_ATTR; \ struct skcipher_request *name = (void *)__##name##_desc /** * DOC: Symmetric Key Cipher API * * Symmetric key cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). * * Asynchronous cipher operations imply that the function invocation for a * cipher request returns immediately before the completion of the operation. * The cipher request is scheduled as a separate kernel thread and therefore * load-balanced on the different CPUs via the process scheduler. To allow * the kernel crypto API to inform the caller about the completion of a cipher * request, the caller must provide a callback function. That function is * invoked with the cipher handle when the request completes. * * To support the asynchronous operation, additional information than just the * cipher handle must be supplied to the kernel crypto API. That additional * information is given by filling in the skcipher_request data structure. * * For the symmetric key cipher API, the state is maintained with the tfm * cipher handle. A single tfm can be used across multiple calls and in * parallel. For asynchronous block cipher calls, context data supplied and * only used by the caller can be referenced the request data structure in * addition to the IV used for the cipher request. The maintenance of such * state information would be important for a crypto driver implementer to * have, because when calling the callback function upon completion of the * cipher operation, that callback function may need some information about * which operation just finished if it invoked multiple in parallel. This * state information is unused by the kernel crypto API. */ static inline struct crypto_skcipher *__crypto_skcipher_cast( struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_skcipher, base); } /** * crypto_alloc_skcipher() - allocate symmetric key cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * skcipher cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an skcipher. The returned struct * crypto_skcipher is the cipher handle that is required for any subsequent * API invocation for that skcipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u32 type, u32 mask); struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_skcipher_tfm( struct crypto_skcipher *tfm) { return &tfm->base; } /** * crypto_free_skcipher() - zeroize and free cipher handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) { crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); } static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm) { crypto_free_skcipher(&tfm->base); } /** * crypto_has_skcipher() - Search for the availability of an skcipher. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * skcipher * @type: specifies the type of the skcipher * @mask: specifies the mask for the skcipher * * Return: true when the skcipher is known to the kernel crypto API; false * otherwise */ int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask); static inline const char *crypto_skcipher_driver_name( struct crypto_skcipher *tfm) { return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); } static inline struct skcipher_alg *crypto_skcipher_alg( struct crypto_skcipher *tfm) { return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, struct skcipher_alg, base); } static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg) { return alg->ivsize; } /** * crypto_skcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the skcipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) { return crypto_skcipher_alg(tfm)->ivsize; } static inline unsigned int crypto_sync_skcipher_ivsize( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_ivsize(&tfm->base); } /** * crypto_skcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the skcipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_skcipher_blocksize( struct crypto_skcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); } static inline unsigned int crypto_skcipher_alg_chunksize( struct skcipher_alg *alg) { return alg->chunksize; } /** * crypto_skcipher_chunksize() - obtain chunk size * @tfm: cipher handle * * The block size is set to one for ciphers such as CTR. However, * you still need to provide incremental updates in multiples of * the underlying block size as the IV does not have sub-block * granularity. This is known in this API as the chunk size. * * Return: chunk size in bytes */ static inline unsigned int crypto_skcipher_chunksize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm)); } static inline unsigned int crypto_sync_skcipher_blocksize( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_blocksize(&tfm->base); } static inline unsigned int crypto_skcipher_alignmask( struct crypto_skcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); } static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) { return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); } static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); } static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); } static inline u32 crypto_sync_skcipher_get_flags( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_get_flags(&tfm->base); } static inline void crypto_sync_skcipher_set_flags( struct crypto_sync_skcipher *tfm, u32 flags) { crypto_skcipher_set_flags(&tfm->base, flags); } static inline void crypto_sync_skcipher_clear_flags( struct crypto_sync_skcipher *tfm, u32 flags) { crypto_skcipher_clear_flags(&tfm->base, flags); } /** * crypto_skcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the skcipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen); static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm, const u8 *key, unsigned int keylen) { return crypto_skcipher_setkey(&tfm->base, key, keylen); } static inline unsigned int crypto_skcipher_min_keysize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg(tfm)->min_keysize; } static inline unsigned int crypto_skcipher_max_keysize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg(tfm)->max_keysize; } /** * crypto_skcipher_reqtfm() - obtain cipher handle from request * @req: skcipher_request out of which the cipher handle is to be obtained * * Return the crypto_skcipher handle when furnishing an skcipher_request * data structure. * * Return: crypto_skcipher handle */ static inline struct crypto_skcipher *crypto_skcipher_reqtfm( struct skcipher_request *req) { return __crypto_skcipher_cast(req->base.tfm); } static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm( struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); return container_of(tfm, struct crypto_sync_skcipher, base); } /** * crypto_skcipher_encrypt() - encrypt plaintext * @req: reference to the skcipher_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the skcipher_request handle. That data * structure and how it is filled with data is discussed with the * skcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_encrypt(struct skcipher_request *req); /** * crypto_skcipher_decrypt() - decrypt ciphertext * @req: reference to the skcipher_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the skcipher_request handle. That data * structure and how it is filled with data is discussed with the * skcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_decrypt(struct skcipher_request *req); /** * DOC: Symmetric Key Cipher Request Handle * * The skcipher_request data structure contains all pointers to data * required for the symmetric key cipher operation. This includes the cipher * handle (which can be used by multiple skcipher_request instances), pointer * to plaintext and ciphertext, asynchronous callback function, etc. It acts * as a handle to the skcipher_request_* API calls in a similar way as * skcipher handle to the crypto_skcipher_* API calls. */ /** * crypto_skcipher_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) { return tfm->reqsize; } /** * skcipher_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing skcipher handle in the request * data structure with a different one. */ static inline void skcipher_request_set_tfm(struct skcipher_request *req, struct crypto_skcipher *tfm) { req->base.tfm = crypto_skcipher_tfm(tfm); } static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req, struct crypto_sync_skcipher *tfm) { skcipher_request_set_tfm(req, &tfm->base); } static inline struct skcipher_request *skcipher_request_cast( struct crypto_async_request *req) { return container_of(req, struct skcipher_request, base); } /** * skcipher_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the skcipher * encrypt and decrypt API calls. During the allocation, the provided skcipher * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct skcipher_request *skcipher_request_alloc( struct crypto_skcipher *tfm, gfp_t gfp) { struct skcipher_request *req; req = kmalloc(sizeof(struct skcipher_request) + crypto_skcipher_reqsize(tfm), gfp); if (likely(req)) skcipher_request_set_tfm(req, tfm); return req; } /** * skcipher_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void skcipher_request_free(struct skcipher_request *req) { kfree_sensitive(req); } static inline void skcipher_request_zero(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm)); } /** * skcipher_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once the * cipher operation completes. * * The callback function is registered with the skcipher_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void skcipher_request_set_callback(struct skcipher_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * skcipher_request_set_crypt() - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_skcipher_ivsize * * This function allows setting of the source data and destination data * scatter / gather lists. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. */ static inline void skcipher_request_set_crypt( struct skcipher_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, void *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } #endif /* _CRYPTO_SKCIPHER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 /* SPDX-License-Identifier: GPL-2.0 */ /* * Percpu refcounts: * (C) 2012 Google, Inc. * Author: Kent Overstreet <koverstreet@google.com> * * This implements a refcount with similar semantics to atomic_t - atomic_inc(), * atomic_dec_and_test() - but percpu. * * There's one important difference between percpu refs and normal atomic_t * refcounts; you have to keep track of your initial refcount, and then when you * start shutting down you call percpu_ref_kill() _before_ dropping the initial * refcount. * * The refcount will have a range of 0 to ((1U << 31) - 1), i.e. one bit less * than an atomic_t - this is because of the way shutdown works, see * percpu_ref_kill()/PERCPU_COUNT_BIAS. * * Before you call percpu_ref_kill(), percpu_ref_put() does not check for the * refcount hitting 0 - it can't, if it was in percpu mode. percpu_ref_kill() * puts the ref back in single atomic_t mode, collecting the per cpu refs and * issuing the appropriate barriers, and then marks the ref as shutting down so * that percpu_ref_put() will check for the ref hitting 0. After it returns, * it's safe to drop the initial ref. * * USAGE: * * See fs/aio.c for some example usage; it's used there for struct kioctx, which * is created when userspaces calls io_setup(), and destroyed when userspace * calls io_destroy() or the process exits. * * In the aio code, kill_ioctx() is called when we wish to destroy a kioctx; it * removes the kioctx from the proccess's table of kioctxs and kills percpu_ref. * After that, there can't be any new users of the kioctx (from lookup_ioctx()) * and it's then safe to drop the initial ref with percpu_ref_put(). * * Note that the free path, free_ioctx(), needs to go through explicit call_rcu() * to synchronize with RCU protected lookup_ioctx(). percpu_ref operations don't * imply RCU grace periods of any kind and if a user wants to combine percpu_ref * with RCU protection, it must be done explicitly. * * Code that does a two stage shutdown like this often needs some kind of * explicit synchronization to ensure the initial refcount can only be dropped * once - percpu_ref_kill() does this for you, it returns true once and false if * someone else already called it. The aio code uses it this way, but it's not * necessary if the code has some other mechanism to synchronize teardown. * around. */ #ifndef _LINUX_PERCPU_REFCOUNT_H #define _LINUX_PERCPU_REFCOUNT_H #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/percpu.h> #include <linux/rcupdate.h> #include <linux/gfp.h> struct percpu_ref; typedef void (percpu_ref_func_t)(struct percpu_ref *); /* flags set in the lower bits of percpu_ref->percpu_count_ptr */ enum { __PERCPU_REF_ATOMIC = 1LU << 0, /* operating in atomic mode */ __PERCPU_REF_DEAD = 1LU << 1, /* (being) killed */ __PERCPU_REF_ATOMIC_DEAD = __PERCPU_REF_ATOMIC | __PERCPU_REF_DEAD, __PERCPU_REF_FLAG_BITS = 2, }; /* @flags for percpu_ref_init() */ enum { /* * Start w/ ref == 1 in atomic mode. Can be switched to percpu * operation using percpu_ref_switch_to_percpu(). If initialized * with this flag, the ref will stay in atomic mode until * percpu_ref_switch_to_percpu() is invoked on it. * Implies ALLOW_REINIT. */ PERCPU_REF_INIT_ATOMIC = 1 << 0, /* * Start dead w/ ref == 0 in atomic mode. Must be revived with * percpu_ref_reinit() before used. Implies INIT_ATOMIC and * ALLOW_REINIT. */ PERCPU_REF_INIT_DEAD = 1 << 1, /* * Allow switching from atomic mode to percpu mode. */ PERCPU_REF_ALLOW_REINIT = 1 << 2, }; struct percpu_ref_data { atomic_long_t count; percpu_ref_func_t *release; percpu_ref_func_t *confirm_switch; bool force_atomic:1; bool allow_reinit:1; struct rcu_head rcu; struct percpu_ref *ref; }; struct percpu_ref { /* * The low bit of the pointer indicates whether the ref is in percpu * mode; if set, then get/put will manipulate the atomic_t. */ unsigned long percpu_count_ptr; /* * 'percpu_ref' is often embedded into user structure, and only * 'percpu_count_ptr' is required in fast path, move other fields * into 'percpu_ref_data', so we can reduce memory footprint in * fast path. */ struct percpu_ref_data *data; }; int __must_check percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release, unsigned int flags, gfp_t gfp); void percpu_ref_exit(struct percpu_ref *ref); void percpu_ref_switch_to_atomic(struct percpu_ref *ref, percpu_ref_func_t *confirm_switch); void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref); void percpu_ref_switch_to_percpu(struct percpu_ref *ref); void percpu_ref_kill_and_confirm(struct percpu_ref *ref, percpu_ref_func_t *confirm_kill); void percpu_ref_resurrect(struct percpu_ref *ref); void percpu_ref_reinit(struct percpu_ref *ref); bool percpu_ref_is_zero(struct percpu_ref *ref); /** * percpu_ref_kill - drop the initial ref * @ref: percpu_ref to kill * * Must be used to drop the initial ref on a percpu refcount; must be called * precisely once before shutdown. * * Switches @ref into atomic mode before gathering up the percpu counters * and dropping the initial ref. * * There are no implied RCU grace periods between kill and release. */ static inline void percpu_ref_kill(struct percpu_ref *ref) { percpu_ref_kill_and_confirm(ref, NULL); } /* * Internal helper. Don't use outside percpu-refcount proper. The * function doesn't return the pointer and let the caller test it for NULL * because doing so forces the compiler to generate two conditional * branches as it can't assume that @ref->percpu_count is not NULL. */ static inline bool __ref_is_percpu(struct percpu_ref *ref, unsigned long __percpu **percpu_countp) { unsigned long percpu_ptr; /* * The value of @ref->percpu_count_ptr is tested for * !__PERCPU_REF_ATOMIC, which may be set asynchronously, and then * used as a pointer. If the compiler generates a separate fetch * when using it as a pointer, __PERCPU_REF_ATOMIC may be set in * between contaminating the pointer value, meaning that * READ_ONCE() is required when fetching it. * * The dependency ordering from the READ_ONCE() pairs * with smp_store_release() in __percpu_ref_switch_to_percpu(). */ percpu_ptr = READ_ONCE(ref->percpu_count_ptr); /* * Theoretically, the following could test just ATOMIC; however, * then we'd have to mask off DEAD separately as DEAD may be * visible without ATOMIC if we race with percpu_ref_kill(). DEAD * implies ATOMIC anyway. Test them together. */ if (unlikely(percpu_ptr & __PERCPU_REF_ATOMIC_DEAD)) return false; *percpu_countp = (unsigned long __percpu *)percpu_ptr; return true; } /** * percpu_ref_get_many - increment a percpu refcount * @ref: percpu_ref to get * @nr: number of references to get * * Analogous to atomic_long_add(). * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_get_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) this_cpu_add(*percpu_count, nr); else atomic_long_add(nr, &ref->data->count); rcu_read_unlock(); } /** * percpu_ref_get - increment a percpu refcount * @ref: percpu_ref to get * * Analagous to atomic_long_inc(). * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_get(struct percpu_ref *ref) { percpu_ref_get_many(ref, 1); } /** * percpu_ref_tryget_many - try to increment a percpu refcount * @ref: percpu_ref to try-get * @nr: number of references to get * * Increment a percpu refcount by @nr unless its count already reached zero. * Returns %true on success; %false on failure. * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; bool ret; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) { this_cpu_add(*percpu_count, nr); ret = true; } else { ret = atomic_long_add_unless(&ref->data->count, nr, 0); } rcu_read_unlock(); return ret; } /** * percpu_ref_tryget - try to increment a percpu refcount * @ref: percpu_ref to try-get * * Increment a percpu refcount unless its count already reached zero. * Returns %true on success; %false on failure. * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget(struct percpu_ref *ref) { return percpu_ref_tryget_many(ref, 1); } /** * percpu_ref_tryget_live - try to increment a live percpu refcount * @ref: percpu_ref to try-get * * Increment a percpu refcount unless it has already been killed. Returns * %true on success; %false on failure. * * Completion of percpu_ref_kill() in itself doesn't guarantee that this * function will fail. For such guarantee, percpu_ref_kill_and_confirm() * should be used. After the confirm_kill callback is invoked, it's * guaranteed that no new reference will be given out by * percpu_ref_tryget_live(). * * This function is safe to call as long as @ref is between init and exit. */ static inline bool percpu_ref_tryget_live(struct percpu_ref *ref) { unsigned long __percpu *percpu_count; bool ret = false; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) { this_cpu_inc(*percpu_count); ret = true; } else if (!(ref->percpu_count_ptr & __PERCPU_REF_DEAD)) { ret = atomic_long_inc_not_zero(&ref->data->count); } rcu_read_unlock(); return ret; } /** * percpu_ref_put_many - decrement a percpu refcount * @ref: percpu_ref to put * @nr: number of references to put * * Decrement the refcount, and if 0, call the release function (which was passed * to percpu_ref_init()) * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_put_many(struct percpu_ref *ref, unsigned long nr) { unsigned long __percpu *percpu_count; rcu_read_lock(); if (__ref_is_percpu(ref, &percpu_count)) this_cpu_sub(*percpu_count, nr); else if (unlikely(atomic_long_sub_and_test(nr, &ref->data->count))) ref->data->release(ref); rcu_read_unlock(); } /** * percpu_ref_put - decrement a percpu refcount * @ref: percpu_ref to put * * Decrement the refcount, and if 0, call the release function (which was passed * to percpu_ref_init()) * * This function is safe to call as long as @ref is between init and exit. */ static inline void percpu_ref_put(struct percpu_ref *ref) { percpu_ref_put_many(ref, 1); } /** * percpu_ref_is_dying - test whether a percpu refcount is dying or dead * @ref: percpu_ref to test * * Returns %true if @ref is dying or dead. * * This function is safe to call as long as @ref is between init and exit * and the caller is responsible for synchronizing against state changes. */ static inline bool percpu_ref_is_dying(struct percpu_ref *ref) { return ref->percpu_count_ptr & __PERCPU_REF_DEAD; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BSEARCH_H #define _LINUX_BSEARCH_H #include <linux/types.h> static __always_inline void *__inline_bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp) { const char *pivot; int result; while (num > 0) { pivot = base + (num >> 1) * size; result = cmp(key, pivot); if (result == 0) return (void *)pivot; if (result > 0) { base = pivot + size; num--; } num >>= 1; } return NULL; } extern void *bsearch(const void *key, const void *base, size_t num, size_t size, cmp_func_t cmp); #endif /* _LINUX_BSEARCH_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/read_write.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/slab.h> #include <linux/stat.h> #include <linux/sched/xacct.h> #include <linux/fcntl.h> #include <linux/file.h> #include <linux/uio.h> #include <linux/fsnotify.h> #include <linux/security.h> #include <linux/export.h> #include <linux/syscalls.h> #include <linux/pagemap.h> #include <linux/splice.h> #include <linux/compat.h> #include <linux/mount.h> #include <linux/fs.h> #include "internal.h" #include <linux/uaccess.h> #include <asm/unistd.h> const struct file_operations generic_ro_fops = { .llseek = generic_file_llseek, .read_iter = generic_file_read_iter, .mmap = generic_file_readonly_mmap, .splice_read = generic_file_splice_read, }; EXPORT_SYMBOL(generic_ro_fops); static inline bool unsigned_offsets(struct file *file) { return file->f_mode & FMODE_UNSIGNED_OFFSET; } /** * vfs_setpos - update the file offset for lseek * @file: file structure in question * @offset: file offset to seek to * @maxsize: maximum file size * * This is a low-level filesystem helper for updating the file offset to * the value specified by @offset if the given offset is valid and it is * not equal to the current file offset. * * Return the specified offset on success and -EINVAL on invalid offset. */ loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize) { if (offset < 0 && !unsigned_offsets(file)) return -EINVAL; if (offset > maxsize) return -EINVAL; if (offset != file->f_pos) { file->f_pos = offset; file->f_version = 0; } return offset; } EXPORT_SYMBOL(vfs_setpos); /** * generic_file_llseek_size - generic llseek implementation for regular files * @file: file structure to seek on * @offset: file offset to seek to * @whence: type of seek * @size: max size of this file in file system * @eof: offset used for SEEK_END position * * This is a variant of generic_file_llseek that allows passing in a custom * maximum file size and a custom EOF position, for e.g. hashed directories * * Synchronization: * SEEK_SET and SEEK_END are unsynchronized (but atomic on 64bit platforms) * SEEK_CUR is synchronized against other SEEK_CURs, but not read/writes. * read/writes behave like SEEK_SET against seeks. */ loff_t generic_file_llseek_size(struct file *file, loff_t offset, int whence, loff_t maxsize, loff_t eof) { switch (whence) { case SEEK_END: offset += eof; break; case SEEK_CUR: /* * Here we special-case the lseek(fd, 0, SEEK_CUR) * position-querying operation. Avoid rewriting the "same" * f_pos value back to the file because a concurrent read(), * write() or lseek() might have altered it */ if (offset == 0) return file->f_pos; /* * f_lock protects against read/modify/write race with other * SEEK_CURs. Note that parallel writes and reads behave * like SEEK_SET. */ spin_lock(&file->f_lock); offset = vfs_setpos(file, file->f_pos + offset, maxsize); spin_unlock(&file->f_lock); return offset; case SEEK_DATA: /* * In the generic case the entire file is data, so as long as * offset isn't at the end of the file then the offset is data. */ if ((unsigned long long)offset >= eof) return -ENXIO; break; case SEEK_HOLE: /* * There is a virtual hole at the end of the file, so as long as * offset isn't i_size or larger, return i_size. */ if ((unsigned long long)offset >= eof) return -ENXIO; offset = eof; break; } return vfs_setpos(file, offset, maxsize); } EXPORT_SYMBOL(generic_file_llseek_size); /** * generic_file_llseek - generic llseek implementation for regular files * @file: file structure to seek on * @offset: file offset to seek to * @whence: type of seek * * This is a generic implemenation of ->llseek useable for all normal local * filesystems. It just updates the file offset to the value specified by * @offset and @whence. */ loff_t generic_file_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; return generic_file_llseek_size(file, offset, whence, inode->i_sb->s_maxbytes, i_size_read(inode)); } EXPORT_SYMBOL(generic_file_llseek); /** * fixed_size_llseek - llseek implementation for fixed-sized devices * @file: file structure to seek on * @offset: file offset to seek to * @whence: type of seek * @size: size of the file * */ loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size) { switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek_size(file, offset, whence, size, size); default: return -EINVAL; } } EXPORT_SYMBOL(fixed_size_llseek); /** * no_seek_end_llseek - llseek implementation for fixed-sized devices * @file: file structure to seek on * @offset: file offset to seek to * @whence: type of seek * */ loff_t no_seek_end_llseek(struct file *file, loff_t offset, int whence) { switch (whence) { case SEEK_SET: case SEEK_CUR: return generic_file_llseek_size(file, offset, whence, OFFSET_MAX, 0); default: return -EINVAL; } } EXPORT_SYMBOL(no_seek_end_llseek); /** * no_seek_end_llseek_size - llseek implementation for fixed-sized devices * @file: file structure to seek on * @offset: file offset to seek to * @whence: type of seek * @size: maximal offset allowed * */ loff_t no_seek_end_llseek_size(struct file *file, loff_t offset, int whence, loff_t size) { switch (whence) { case SEEK_SET: case SEEK_CUR: return generic_file_llseek_size(file, offset, whence, size, 0); default: return -EINVAL; } } EXPORT_SYMBOL(no_seek_end_llseek_size); /** * noop_llseek - No Operation Performed llseek implementation * @file: file structure to seek on * @offset: file offset to seek to * @whence: type of seek * * This is an implementation of ->llseek useable for the rare special case when * userspace expects the seek to succeed but the (device) file is actually not * able to perform the seek. In this case you use noop_llseek() instead of * falling back to the default implementation of ->llseek. */ loff_t noop_llseek(struct file *file, loff_t offset, int whence) { return file->f_pos; } EXPORT_SYMBOL(noop_llseek); loff_t no_llseek(struct file *file, loff_t offset, int whence) { return -ESPIPE; } EXPORT_SYMBOL(no_llseek); loff_t default_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file_inode(file); loff_t retval; inode_lock(inode); switch (whence) { case SEEK_END: offset += i_size_read(inode); break; case SEEK_CUR: if (offset == 0) { retval = file->f_pos; goto out; } offset += file->f_pos; break; case SEEK_DATA: /* * In the generic case the entire file is data, so as * long as offset isn't at the end of the file then the * offset is data. */ if (offset >= inode->i_size) { retval = -ENXIO; goto out; } break; case SEEK_HOLE: /* * There is a virtual hole at the end of the file, so * as long as offset isn't i_size or larger, return * i_size. */ if (offset >= inode->i_size) { retval = -ENXIO; goto out; } offset = inode->i_size; break; } retval = -EINVAL; if (offset >= 0 || unsigned_offsets(file)) { if (offset != file->f_pos) { file->f_pos = offset; file->f_version = 0; } retval = offset; } out: inode_unlock(inode); return retval; } EXPORT_SYMBOL(default_llseek); loff_t vfs_llseek(struct file *file, loff_t offset, int whence) { loff_t (*fn)(struct file *, loff_t, int); fn = no_llseek; if (file->f_mode & FMODE_LSEEK) { if (file->f_op->llseek) fn = file->f_op->llseek; } return fn(file, offset, whence); } EXPORT_SYMBOL(vfs_llseek); static off_t ksys_lseek(unsigned int fd, off_t offset, unsigned int whence) { off_t retval; struct fd f = fdget_pos(fd); if (!f.file) return -EBADF; retval = -EINVAL; if (whence <= SEEK_MAX) { loff_t res = vfs_llseek(f.file, offset, whence); retval = res; if (res != (loff_t)retval) retval = -EOVERFLOW; /* LFS: should only happen on 32 bit platforms */ } fdput_pos(f); return retval; } SYSCALL_DEFINE3(lseek, unsigned int, fd, off_t, offset, unsigned int, whence) { return ksys_lseek(fd, offset, whence); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE3(lseek, unsigned int, fd, compat_off_t, offset, unsigned int, whence) { return ksys_lseek(fd, offset, whence); } #endif #if !defined(CONFIG_64BIT) || defined(CONFIG_COMPAT) || \ defined(__ARCH_WANT_SYS_LLSEEK) SYSCALL_DEFINE5(llseek, unsigned int, fd, unsigned long, offset_high, unsigned long, offset_low, loff_t __user *, result, unsigned int, whence) { int retval; struct fd f = fdget_pos(fd); loff_t offset; if (!f.file) return -EBADF; retval = -EINVAL; if (whence > SEEK_MAX) goto out_putf; offset = vfs_llseek(f.file, ((loff_t) offset_high << 32) | offset_low, whence); retval = (int)offset; if (offset >= 0) { retval = -EFAULT; if (!copy_to_user(result, &offset, sizeof(offset))) retval = 0; } out_putf: fdput_pos(f); return retval; } #endif int rw_verify_area(int read_write, struct file *file, const loff_t *ppos, size_t count) { struct inode *inode; int retval = -EINVAL; inode = file_inode(file); if (unlikely((ssize_t) count < 0)) return retval; /* * ranged mandatory locking does not apply to streams - it makes sense * only for files where position has a meaning. */ if (ppos) { loff_t pos = *ppos; if (unlikely(pos < 0)) { if (!unsigned_offsets(file)) return retval; if (count >= -pos) /* both values are in 0..LLONG_MAX */ return -EOVERFLOW; } else if (unlikely((loff_t) (pos + count) < 0)) { if (!unsigned_offsets(file)) return retval; } if (unlikely(inode->i_flctx && mandatory_lock(inode))) { retval = locks_mandatory_area(inode, file, pos, pos + count - 1, read_write == READ ? F_RDLCK : F_WRLCK); if (retval < 0) return retval; } } return security_file_permission(file, read_write == READ ? MAY_READ : MAY_WRITE); } static ssize_t new_sync_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos) { struct iovec iov = { .iov_base = buf, .iov_len = len }; struct kiocb kiocb; struct iov_iter iter; ssize_t ret; init_sync_kiocb(&kiocb, filp); kiocb.ki_pos = (ppos ? *ppos : 0); iov_iter_init(&iter, READ, &iov, 1, len); ret = call_read_iter(filp, &kiocb, &iter); BUG_ON(ret == -EIOCBQUEUED); if (ppos) *ppos = kiocb.ki_pos; return ret; } static int warn_unsupported(struct file *file, const char *op) { pr_warn_ratelimited( "kernel %s not supported for file %pD4 (pid: %d comm: %.20s)\n", op, file, current->pid, current->comm); return -EINVAL; } ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) { struct kvec iov = { .iov_base = buf, .iov_len = min_t(size_t, count, MAX_RW_COUNT), }; struct kiocb kiocb; struct iov_iter iter; ssize_t ret; if (WARN_ON_ONCE(!(file->f_mode & FMODE_READ))) return -EINVAL; if (!(file->f_mode & FMODE_CAN_READ)) return -EINVAL; /* * Also fail if ->read_iter and ->read are both wired up as that * implies very convoluted semantics. */ if (unlikely(!file->f_op->read_iter || file->f_op->read)) return warn_unsupported(file, "read"); init_sync_kiocb(&kiocb, file); kiocb.ki_pos = pos ? *pos : 0; iov_iter_kvec(&iter, READ, &iov, 1, iov.iov_len); ret = file->f_op->read_iter(&kiocb, &iter); if (ret > 0) { if (pos) *pos = kiocb.ki_pos; fsnotify_access(file); add_rchar(current, ret); } inc_syscr(current); return ret; } ssize_t kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) { ssize_t ret; ret = rw_verify_area(READ, file, pos, count); if (ret) return ret; return __kernel_read(file, buf, count, pos); } EXPORT_SYMBOL(kernel_read); ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { ssize_t ret; if (!(file->f_mode & FMODE_READ)) return -EBADF; if (!(file->f_mode & FMODE_CAN_READ)) return -EINVAL; if (unlikely(!access_ok(buf, count))) return -EFAULT; ret = rw_verify_area(READ, file, pos, count); if (ret) return ret; if (count > MAX_RW_COUNT) count = MAX_RW_COUNT; if (file->f_op->read) ret = file->f_op->read(file, buf, count, pos); else if (file->f_op->read_iter) ret = new_sync_read(file, buf, count, pos); else ret = -EINVAL; if (ret > 0) { fsnotify_access(file); add_rchar(current, ret); } inc_syscr(current); return ret; } static ssize_t new_sync_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos) { struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = len }; struct kiocb kiocb; struct iov_iter iter; ssize_t ret; init_sync_kiocb(&kiocb, filp); kiocb.ki_pos = (ppos ? *ppos : 0); iov_iter_init(&iter, WRITE, &iov, 1, len); ret = call_write_iter(filp, &kiocb, &iter); BUG_ON(ret == -EIOCBQUEUED); if (ret > 0 && ppos) *ppos = kiocb.ki_pos; return ret; } /* caller is responsible for file_start_write/file_end_write */ ssize_t __kernel_write(struct file *file, const void *buf, size_t count, loff_t *pos) { struct kvec iov = { .iov_base = (void *)buf, .iov_len = min_t(size_t, count, MAX_RW_COUNT), }; struct kiocb kiocb; struct iov_iter iter; ssize_t ret; if (WARN_ON_ONCE(!(file->f_mode & FMODE_WRITE))) return -EBADF; if (!(file->f_mode & FMODE_CAN_WRITE)) return -EINVAL; /* * Also fail if ->write_iter and ->write are both wired up as that * implies very convoluted semantics. */ if (unlikely(!file->f_op->write_iter || file->f_op->write)) return warn_unsupported(file, "write"); init_sync_kiocb(&kiocb, file); kiocb.ki_pos = pos ? *pos : 0; iov_iter_kvec(&iter, WRITE, &iov, 1, iov.iov_len); ret = file->f_op->write_iter(&kiocb, &iter); if (ret > 0) { if (pos) *pos = kiocb.ki_pos; fsnotify_modify(file); add_wchar(current, ret); } inc_syscw(current); return ret; } /* * This "EXPORT_SYMBOL_GPL()" is more of a "EXPORT_SYMBOL_DONTUSE()", * but autofs is one of the few internal kernel users that actually * wants this _and_ can be built as a module. So we need to export * this symbol for autofs, even though it really isn't appropriate * for any other kernel modules. */ EXPORT_SYMBOL_GPL(__kernel_write); ssize_t kernel_write(struct file *file, const void *buf, size_t count, loff_t *pos) { ssize_t ret; ret = rw_verify_area(WRITE, file, pos, count); if (ret) return ret; file_start_write(file); ret = __kernel_write(file, buf, count, pos); file_end_write(file); return ret; } EXPORT_SYMBOL(kernel_write); ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { ssize_t ret; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; if (!(file->f_mode & FMODE_CAN_WRITE)) return -EINVAL; if (unlikely(!access_ok(buf, count))) return -EFAULT; ret = rw_verify_area(WRITE, file, pos, count); if (ret) return ret; if (count > MAX_RW_COUNT) count = MAX_RW_COUNT; file_start_write(file); if (file->f_op->write) ret = file->f_op->write(file, buf, count, pos); else if (file->f_op->write_iter) ret = new_sync_write(file, buf, count, pos); else ret = -EINVAL; if (ret > 0) { fsnotify_modify(file); add_wchar(current, ret); } inc_syscw(current); file_end_write(file); return ret; } /* file_ppos returns &file->f_pos or NULL if file is stream */ static inline loff_t *file_ppos(struct file *file) { return file->f_mode & FMODE_STREAM ? NULL : &file->f_pos; } ssize_t ksys_read(unsigned int fd, char __user *buf, size_t count) { struct fd f = fdget_pos(fd); ssize_t ret = -EBADF; if (f.file) { loff_t pos, *ppos = file_ppos(f.file); if (ppos) { pos = *ppos; ppos = &pos; } ret = vfs_read(f.file, buf, count, ppos); if (ret >= 0 && ppos) f.file->f_pos = pos; fdput_pos(f); } return ret; } SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count) { return ksys_read(fd, buf, count); } ssize_t ksys_write(unsigned int fd, const char __user *buf, size_t count) { struct fd f = fdget_pos(fd); ssize_t ret = -EBADF; if (f.file) { loff_t pos, *ppos = file_ppos(f.file); if (ppos) { pos = *ppos; ppos = &pos; } ret = vfs_write(f.file, buf, count, ppos); if (ret >= 0 && ppos) f.file->f_pos = pos; fdput_pos(f); } return ret; } SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf, size_t, count) { return ksys_write(fd, buf, count); } ssize_t ksys_pread64(unsigned int fd, char __user *buf, size_t count, loff_t pos) { struct fd f; ssize_t ret = -EBADF; if (pos < 0) return -EINVAL; f = fdget(fd); if (f.file) { ret = -ESPIPE; if (f.file->f_mode & FMODE_PREAD) ret = vfs_read(f.file, buf, count, &pos); fdput(f); } return ret; } SYSCALL_DEFINE4(pread64, unsigned int, fd, char __user *, buf, size_t, count, loff_t, pos) { return ksys_pread64(fd, buf, count, pos); } ssize_t ksys_pwrite64(unsigned int fd, const char __user *buf, size_t count, loff_t pos) { struct fd f; ssize_t ret = -EBADF; if (pos < 0) return -EINVAL; f = fdget(fd); if (f.file) { ret = -ESPIPE; if (f.file->f_mode & FMODE_PWRITE) ret = vfs_write(f.file, buf, count, &pos); fdput(f); } return ret; } SYSCALL_DEFINE4(pwrite64, unsigned int, fd, const char __user *, buf, size_t, count, loff_t, pos) { return ksys_pwrite64(fd, buf, count, pos); } static ssize_t do_iter_readv_writev(struct file *filp, struct iov_iter *iter, loff_t *ppos, int type, rwf_t flags) { struct kiocb kiocb; ssize_t ret; init_sync_kiocb(&kiocb, filp); ret = kiocb_set_rw_flags(&kiocb, flags); if (ret) return ret; kiocb.ki_pos = (ppos ? *ppos : 0); if (type == READ) ret = call_read_iter(filp, &kiocb, iter); else ret = call_write_iter(filp, &kiocb, iter); BUG_ON(ret == -EIOCBQUEUED); if (ppos) *ppos = kiocb.ki_pos; return ret; } /* Do it by hand, with file-ops */ static ssize_t do_loop_readv_writev(struct file *filp, struct iov_iter *iter, loff_t *ppos, int type, rwf_t flags) { ssize_t ret = 0; if (flags & ~RWF_HIPRI) return -EOPNOTSUPP; while (iov_iter_count(iter)) { struct iovec iovec = iov_iter_iovec(iter); ssize_t nr; if (type == READ) { nr = filp->f_op->read(filp, iovec.iov_base, iovec.iov_len, ppos); } else { nr = filp->f_op->write(filp, iovec.iov_base, iovec.iov_len, ppos); } if (nr < 0) { if (!ret) ret = nr; break; } ret += nr; if (nr != iovec.iov_len) break; iov_iter_advance(iter, nr); } return ret; } static ssize_t do_iter_read(struct file *file, struct iov_iter *iter, loff_t *pos, rwf_t flags) { size_t tot_len; ssize_t ret = 0; if (!(file->f_mode & FMODE_READ)) return -EBADF; if (!(file->f_mode & FMODE_CAN_READ)) return -EINVAL; tot_len = iov_iter_count(iter); if (!tot_len) goto out; ret = rw_verify_area(READ, file, pos, tot_len); if (ret < 0) return ret; if (file->f_op->read_iter) ret = do_iter_readv_writev(file, iter, pos, READ, flags); else ret = do_loop_readv_writev(file, iter, pos, READ, flags); out: if (ret >= 0) fsnotify_access(file); return ret; } ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, struct iov_iter *iter) { size_t tot_len; ssize_t ret = 0; if (!file->f_op->read_iter) return -EINVAL; if (!(file->f_mode & FMODE_READ)) return -EBADF; if (!(file->f_mode & FMODE_CAN_READ)) return -EINVAL; tot_len = iov_iter_count(iter); if (!tot_len) goto out; ret = rw_verify_area(READ, file, &iocb->ki_pos, tot_len); if (ret < 0) return ret; ret = call_read_iter(file, iocb, iter); out: if (ret >= 0) fsnotify_access(file); return ret; } EXPORT_SYMBOL(vfs_iocb_iter_read); ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags) { if (!file->f_op->read_iter) return -EINVAL; return do_iter_read(file, iter, ppos, flags); } EXPORT_SYMBOL(vfs_iter_read); static ssize_t do_iter_write(struct file *file, struct iov_iter *iter, loff_t *pos, rwf_t flags) { size_t tot_len; ssize_t ret = 0; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; if (!(file->f_mode & FMODE_CAN_WRITE)) return -EINVAL; tot_len = iov_iter_count(iter); if (!tot_len) return 0; ret = rw_verify_area(WRITE, file, pos, tot_len); if (ret < 0) return ret; if (file->f_op->write_iter) ret = do_iter_readv_writev(file, iter, pos, WRITE, flags); else ret = do_loop_readv_writev(file, iter, pos, WRITE, flags); if (ret > 0) fsnotify_modify(file); return ret; } ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, struct iov_iter *iter) { size_t tot_len; ssize_t ret = 0; if (!file->f_op->write_iter) return -EINVAL; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; if (!(file->f_mode & FMODE_CAN_WRITE)) return -EINVAL; tot_len = iov_iter_count(iter); if (!tot_len) return 0; ret = rw_verify_area(WRITE, file, &iocb->ki_pos, tot_len); if (ret < 0) return ret; ret = call_write_iter(file, iocb, iter); if (ret > 0) fsnotify_modify(file); return ret; } EXPORT_SYMBOL(vfs_iocb_iter_write); ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags) { if (!file->f_op->write_iter) return -EINVAL; return do_iter_write(file, iter, ppos, flags); } EXPORT_SYMBOL(vfs_iter_write); static ssize_t vfs_readv(struct file *file, const struct iovec __user *vec, unsigned long vlen, loff_t *pos, rwf_t flags) { struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov = iovstack; struct iov_iter iter; ssize_t ret; ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); if (ret >= 0) { ret = do_iter_read(file, &iter, pos, flags); kfree(iov); } return ret; } static ssize_t vfs_writev(struct file *file, const struct iovec __user *vec, unsigned long vlen, loff_t *pos, rwf_t flags) { struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov = iovstack; struct iov_iter iter; ssize_t ret; ret = import_iovec(WRITE, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter); if (ret >= 0) { file_start_write(file); ret = do_iter_write(file, &iter, pos, flags); file_end_write(file); kfree(iov); } return ret; } static ssize_t do_readv(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, rwf_t flags) { struct fd f = fdget_pos(fd); ssize_t ret = -EBADF; if (f.file) { loff_t pos, *ppos = file_ppos(f.file); if (ppos) { pos = *ppos; ppos = &pos; } ret = vfs_readv(f.file, vec, vlen, ppos, flags); if (ret >= 0 && ppos) f.file->f_pos = pos; fdput_pos(f); } if (ret > 0) add_rchar(current, ret); inc_syscr(current); return ret; } static ssize_t do_writev(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, rwf_t flags) { struct fd f = fdget_pos(fd); ssize_t ret = -EBADF; if (f.file) { loff_t pos, *ppos = file_ppos(f.file); if (ppos) { pos = *ppos; ppos = &pos; } ret = vfs_writev(f.file, vec, vlen, ppos, flags); if (ret >= 0 && ppos) f.file->f_pos = pos; fdput_pos(f); } if (ret > 0) add_wchar(current, ret); inc_syscw(current); return ret; } static inline loff_t pos_from_hilo(unsigned long high, unsigned long low) { #define HALF_LONG_BITS (BITS_PER_LONG / 2) return (((loff_t)high << HALF_LONG_BITS) << HALF_LONG_BITS) | low; } static ssize_t do_preadv(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags) { struct fd f; ssize_t ret = -EBADF; if (pos < 0) return -EINVAL; f = fdget(fd); if (f.file) { ret = -ESPIPE; if (f.file->f_mode & FMODE_PREAD) ret = vfs_readv(f.file, vec, vlen, &pos, flags); fdput(f); } if (ret > 0) add_rchar(current, ret); inc_syscr(current); return ret; } static ssize_t do_pwritev(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags) { struct fd f; ssize_t ret = -EBADF; if (pos < 0) return -EINVAL; f = fdget(fd); if (f.file) { ret = -ESPIPE; if (f.file->f_mode & FMODE_PWRITE) ret = vfs_writev(f.file, vec, vlen, &pos, flags); fdput(f); } if (ret > 0) add_wchar(current, ret); inc_syscw(current); return ret; } SYSCALL_DEFINE3(readv, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen) { return do_readv(fd, vec, vlen, 0); } SYSCALL_DEFINE3(writev, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen) { return do_writev(fd, vec, vlen, 0); } SYSCALL_DEFINE5(preadv, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h) { loff_t pos = pos_from_hilo(pos_h, pos_l); return do_preadv(fd, vec, vlen, pos, 0); } SYSCALL_DEFINE6(preadv2, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h, rwf_t, flags) { loff_t pos = pos_from_hilo(pos_h, pos_l); if (pos == -1) return do_readv(fd, vec, vlen, flags); return do_preadv(fd, vec, vlen, pos, flags); } SYSCALL_DEFINE5(pwritev, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h) { loff_t pos = pos_from_hilo(pos_h, pos_l); return do_pwritev(fd, vec, vlen, pos, 0); } SYSCALL_DEFINE6(pwritev2, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, unsigned long, pos_l, unsigned long, pos_h, rwf_t, flags) { loff_t pos = pos_from_hilo(pos_h, pos_l); if (pos == -1) return do_writev(fd, vec, vlen, flags); return do_pwritev(fd, vec, vlen, pos, flags); } /* * Various compat syscalls. Note that they all pretend to take a native * iovec - import_iovec will properly treat those as compat_iovecs based on * in_compat_syscall(). */ #ifdef CONFIG_COMPAT #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64 COMPAT_SYSCALL_DEFINE4(preadv64, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, loff_t, pos) { return do_preadv(fd, vec, vlen, pos, 0); } #endif COMPAT_SYSCALL_DEFINE5(preadv, compat_ulong_t, fd, const struct iovec __user *, vec, compat_ulong_t, vlen, u32, pos_low, u32, pos_high) { loff_t pos = ((loff_t)pos_high << 32) | pos_low; return do_preadv(fd, vec, vlen, pos, 0); } #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64V2 COMPAT_SYSCALL_DEFINE5(preadv64v2, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, loff_t, pos, rwf_t, flags) { if (pos == -1) return do_readv(fd, vec, vlen, flags); return do_preadv(fd, vec, vlen, pos, flags); } #endif COMPAT_SYSCALL_DEFINE6(preadv2, compat_ulong_t, fd, const struct iovec __user *, vec, compat_ulong_t, vlen, u32, pos_low, u32, pos_high, rwf_t, flags) { loff_t pos = ((loff_t)pos_high << 32) | pos_low; if (pos == -1) return do_readv(fd, vec, vlen, flags); return do_preadv(fd, vec, vlen, pos, flags); } #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64 COMPAT_SYSCALL_DEFINE4(pwritev64, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, loff_t, pos) { return do_pwritev(fd, vec, vlen, pos, 0); } #endif COMPAT_SYSCALL_DEFINE5(pwritev, compat_ulong_t, fd, const struct iovec __user *,vec, compat_ulong_t, vlen, u32, pos_low, u32, pos_high) { loff_t pos = ((loff_t)pos_high << 32) | pos_low; return do_pwritev(fd, vec, vlen, pos, 0); } #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64V2 COMPAT_SYSCALL_DEFINE5(pwritev64v2, unsigned long, fd, const struct iovec __user *, vec, unsigned long, vlen, loff_t, pos, rwf_t, flags) { if (pos == -1) return do_writev(fd, vec, vlen, flags); return do_pwritev(fd, vec, vlen, pos, flags); } #endif COMPAT_SYSCALL_DEFINE6(pwritev2, compat_ulong_t, fd, const struct iovec __user *,vec, compat_ulong_t, vlen, u32, pos_low, u32, pos_high, rwf_t, flags) { loff_t pos = ((loff_t)pos_high << 32) | pos_low; if (pos == -1) return do_writev(fd, vec, vlen, flags); return do_pwritev(fd, vec, vlen, pos, flags); } #endif /* CONFIG_COMPAT */ static ssize_t do_sendfile(int out_fd, int in_fd, loff_t *ppos, size_t count, loff_t max) { struct fd in, out; struct inode *in_inode, *out_inode; loff_t pos; loff_t out_pos; ssize_t retval; int fl; /* * Get input file, and verify that it is ok.. */ retval = -EBADF; in = fdget(in_fd); if (!in.file) goto out; if (!(in.file->f_mode & FMODE_READ)) goto fput_in; retval = -ESPIPE; if (!ppos) { pos = in.file->f_pos; } else { pos = *ppos; if (!(in.file->f_mode & FMODE_PREAD)) goto fput_in; } retval = rw_verify_area(READ, in.file, &pos, count); if (retval < 0) goto fput_in; if (count > MAX_RW_COUNT) count = MAX_RW_COUNT; /* * Get output file, and verify that it is ok.. */ retval = -EBADF; out = fdget(out_fd); if (!out.file) goto fput_in; if (!(out.file->f_mode & FMODE_WRITE)) goto fput_out; in_inode = file_inode(in.file); out_inode = file_inode(out.file); out_pos = out.file->f_pos; retval = rw_verify_area(WRITE, out.file, &out_pos, count); if (retval < 0) goto fput_out; if (!max) max = min(in_inode->i_sb->s_maxbytes, out_inode->i_sb->s_maxbytes); if (unlikely(pos + count > max)) { retval = -EOVERFLOW; if (pos >= max) goto fput_out; count = max - pos; } fl = 0; #if 0 /* * We need to debate whether we can enable this or not. The * man page documents EAGAIN return for the output at least, * and the application is arguably buggy if it doesn't expect * EAGAIN on a non-blocking file descriptor. */ if (in.file->f_flags & O_NONBLOCK) fl = SPLICE_F_NONBLOCK; #endif file_start_write(out.file); retval = do_splice_direct(in.file, &pos, out.file, &out_pos, count, fl); file_end_write(out.file); if (retval > 0) { add_rchar(current, retval); add_wchar(current, retval); fsnotify_access(in.file); fsnotify_modify(out.file); out.file->f_pos = out_pos; if (ppos) *ppos = pos; else in.file->f_pos = pos; } inc_syscr(current); inc_syscw(current); if (pos > max) retval = -EOVERFLOW; fput_out: fdput(out); fput_in: fdput(in); out: return retval; } SYSCALL_DEFINE4(sendfile, int, out_fd, int, in_fd, off_t __user *, offset, size_t, count) { loff_t pos; off_t off; ssize_t ret; if (offset) { if (unlikely(get_user(off, offset))) return -EFAULT; pos = off; ret = do_sendfile(out_fd, in_fd, &pos, count, MAX_NON_LFS); if (unlikely(put_user(pos, offset))) return -EFAULT; return ret; } return do_sendfile(out_fd, in_fd, NULL, count, 0); } SYSCALL_DEFINE4(sendfile64, int, out_fd, int, in_fd, loff_t __user *, offset, size_t, count) { loff_t pos; ssize_t ret; if (offset) { if (unlikely(copy_from_user(&pos, offset, sizeof(loff_t)))) return -EFAULT; ret = do_sendfile(out_fd, in_fd, &pos, count, 0); if (unlikely(put_user(pos, offset))) return -EFAULT; return ret; } return do_sendfile(out_fd, in_fd, NULL, count, 0); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(sendfile, int, out_fd, int, in_fd, compat_off_t __user *, offset, compat_size_t, count) { loff_t pos; off_t off; ssize_t ret; if (offset) { if (unlikely(get_user(off, offset))) return -EFAULT; pos = off; ret = do_sendfile(out_fd, in_fd, &pos, count, MAX_NON_LFS); if (unlikely(put_user(pos, offset))) return -EFAULT; return ret; } return do_sendfile(out_fd, in_fd, NULL, count, 0); } COMPAT_SYSCALL_DEFINE4(sendfile64, int, out_fd, int, in_fd, compat_loff_t __user *, offset, compat_size_t, count) { loff_t pos; ssize_t ret; if (offset) { if (unlikely(copy_from_user(&pos, offset, sizeof(loff_t)))) return -EFAULT; ret = do_sendfile(out_fd, in_fd, &pos, count, 0); if (unlikely(put_user(pos, offset))) return -EFAULT; return ret; } return do_sendfile(out_fd, in_fd, NULL, count, 0); } #endif /** * generic_copy_file_range - copy data between two files * @file_in: file structure to read from * @pos_in: file offset to read from * @file_out: file structure to write data to * @pos_out: file offset to write data to * @len: amount of data to copy * @flags: copy flags * * This is a generic filesystem helper to copy data from one file to another. * It has no constraints on the source or destination file owners - the files * can belong to different superblocks and different filesystem types. Short * copies are allowed. * * This should be called from the @file_out filesystem, as per the * ->copy_file_range() method. * * Returns the number of bytes copied or a negative error indicating the * failure. */ ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len, unsigned int flags) { return do_splice_direct(file_in, &pos_in, file_out, &pos_out, len > MAX_RW_COUNT ? MAX_RW_COUNT : len, 0); } EXPORT_SYMBOL(generic_copy_file_range); static ssize_t do_copy_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len, unsigned int flags) { /* * Although we now allow filesystems to handle cross sb copy, passing * a file of the wrong filesystem type to filesystem driver can result * in an attempt to dereference the wrong type of ->private_data, so * avoid doing that until we really have a good reason. NFS defines * several different file_system_type structures, but they all end up * using the same ->copy_file_range() function pointer. */ if (file_out->f_op->copy_file_range && file_out->f_op->copy_file_range == file_in->f_op->copy_file_range) return file_out->f_op->copy_file_range(file_in, pos_in, file_out, pos_out, len, flags); return generic_copy_file_range(file_in, pos_in, file_out, pos_out, len, flags); } /* * Performs necessary checks before doing a file copy * * Can adjust amount of bytes to copy via @req_count argument. * Returns appropriate error code that caller should return or * zero in case the copy should be allowed. */ static int generic_copy_file_checks(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t *req_count, unsigned int flags) { struct inode *inode_in = file_inode(file_in); struct inode *inode_out = file_inode(file_out); uint64_t count = *req_count; loff_t size_in; int ret; ret = generic_file_rw_checks(file_in, file_out); if (ret) return ret; /* Don't touch certain kinds of inodes */ if (IS_IMMUTABLE(inode_out)) return -EPERM; if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) return -ETXTBSY; /* Ensure offsets don't wrap. */ if (pos_in + count < pos_in || pos_out + count < pos_out) return -EOVERFLOW; /* Shorten the copy to EOF */ size_in = i_size_read(inode_in); if (pos_in >= size_in) count = 0; else count = min(count, size_in - (uint64_t)pos_in); ret = generic_write_check_limits(file_out, pos_out, &count); if (ret) return ret; /* Don't allow overlapped copying within the same file. */ if (inode_in == inode_out && pos_out + count > pos_in && pos_out < pos_in + count) return -EINVAL; *req_count = count; return 0; } /* * copy_file_range() differs from regular file read and write in that it * specifically allows return partial success. When it does so is up to * the copy_file_range method. */ ssize_t vfs_copy_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len, unsigned int flags) { ssize_t ret; if (flags != 0) return -EINVAL; ret = generic_copy_file_checks(file_in, pos_in, file_out, pos_out, &len, flags); if (unlikely(ret)) return ret; ret = rw_verify_area(READ, file_in, &pos_in, len); if (unlikely(ret)) return ret; ret = rw_verify_area(WRITE, file_out, &pos_out, len); if (unlikely(ret)) return ret; if (len == 0) return 0; file_start_write(file_out); /* * Try cloning first, this is supported by more file systems, and * more efficient if both clone and copy are supported (e.g. NFS). */ if (file_in->f_op->remap_file_range && file_inode(file_in)->i_sb == file_inode(file_out)->i_sb) { loff_t cloned; cloned = file_in->f_op->remap_file_range(file_in, pos_in, file_out, pos_out, min_t(loff_t, MAX_RW_COUNT, len), REMAP_FILE_CAN_SHORTEN); if (cloned > 0) { ret = cloned; goto done; } } ret = do_copy_file_range(file_in, pos_in, file_out, pos_out, len, flags); WARN_ON_ONCE(ret == -EOPNOTSUPP); done: if (ret > 0) { fsnotify_access(file_in); add_rchar(current, ret); fsnotify_modify(file_out); add_wchar(current, ret); } inc_syscr(current); inc_syscw(current); file_end_write(file_out); return ret; } EXPORT_SYMBOL(vfs_copy_file_range); SYSCALL_DEFINE6(copy_file_range, int, fd_in, loff_t __user *, off_in, int, fd_out, loff_t __user *, off_out, size_t, len, unsigned int, flags) { loff_t pos_in; loff_t pos_out; struct fd f_in; struct fd f_out; ssize_t ret = -EBADF; f_in = fdget(fd_in); if (!f_in.file) goto out2; f_out = fdget(fd_out); if (!f_out.file) goto out1; ret = -EFAULT; if (off_in) { if (copy_from_user(&pos_in, off_in, sizeof(loff_t))) goto out; } else { pos_in = f_in.file->f_pos; } if (off_out) { if (copy_from_user(&pos_out, off_out, sizeof(loff_t))) goto out; } else { pos_out = f_out.file->f_pos; } ret = vfs_copy_file_range(f_in.file, pos_in, f_out.file, pos_out, len, flags); if (ret > 0) { pos_in += ret; pos_out += ret; if (off_in) { if (copy_to_user(off_in, &pos_in, sizeof(loff_t))) ret = -EFAULT; } else { f_in.file->f_pos = pos_in; } if (off_out) { if (copy_to_user(off_out, &pos_out, sizeof(loff_t))) ret = -EFAULT; } else { f_out.file->f_pos = pos_out; } } out: fdput(f_out); out1: fdput(f_in); out2: return ret; } /* * Don't operate on ranges the page cache doesn't support, and don't exceed the * LFS limits. If pos is under the limit it becomes a short access. If it * exceeds the limit we return -EFBIG. */ int generic_write_check_limits(struct file *file, loff_t pos, loff_t *count) { struct inode *inode = file->f_mapping->host; loff_t max_size = inode->i_sb->s_maxbytes; loff_t limit = rlimit(RLIMIT_FSIZE); if (limit != RLIM_INFINITY) { if (pos >= limit) { send_sig(SIGXFSZ, current, 0); return -EFBIG; } *count = min(*count, limit - pos); } if (!(file->f_flags & O_LARGEFILE)) max_size = MAX_NON_LFS; if (unlikely(pos >= max_size)) return -EFBIG; *count = min(*count, max_size - pos); return 0; } /* * Performs necessary checks before doing a write * * Can adjust writing position or amount of bytes to write. * Returns appropriate error code that caller should return or * zero in case that write should be allowed. */ ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; loff_t count; int ret; if (IS_SWAPFILE(inode)) return -ETXTBSY; if (!iov_iter_count(from)) return 0; /* FIXME: this is for backwards compatibility with 2.4 */ if (iocb->ki_flags & IOCB_APPEND) iocb->ki_pos = i_size_read(inode); if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) return -EINVAL; count = iov_iter_count(from); ret = generic_write_check_limits(file, iocb->ki_pos, &count); if (ret) return ret; iov_iter_truncate(from, count); return iov_iter_count(from); } EXPORT_SYMBOL(generic_write_checks); /* * Performs common checks before doing a file copy/clone * from @file_in to @file_out. */ int generic_file_rw_checks(struct file *file_in, struct file *file_out) { struct inode *inode_in = file_inode(file_in); struct inode *inode_out = file_inode(file_out); /* Don't copy dirs, pipes, sockets... */ if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) return -EISDIR; if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) return -EINVAL; if (!(file_in->f_mode & FMODE_READ) || !(file_out->f_mode & FMODE_WRITE) || (file_out->f_flags & O_APPEND)) return -EBADF; return 0; }
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CTYPE_H #define _LINUX_CTYPE_H /* * NOTE! This ctype does not handle EOF like the standard C * library is required to. */ #define _U 0x01 /* upper */ #define _L 0x02 /* lower */ #define _D 0x04 /* digit */ #define _C 0x08 /* cntrl */ #define _P 0x10 /* punct */ #define _S 0x20 /* white space (space/lf/tab) */ #define _X 0x40 /* hex digit */ #define _SP 0x80 /* hard space (0x20) */ extern const unsigned char _ctype[]; #define __ismask(x) (_ctype[(int)(unsigned char)(x)]) #define isalnum(c) ((__ismask(c)&(_U|_L|_D)) != 0) #define isalpha(c) ((__ismask(c)&(_U|_L)) != 0) #define iscntrl(c) ((__ismask(c)&(_C)) != 0) static inline int isdigit(int c) { return '0' <= c && c <= '9'; } #define isgraph(c) ((__ismask(c)&(_P|_U|_L|_D)) != 0) #define islower(c) ((__ismask(c)&(_L)) != 0) #define isprint(c) ((__ismask(c)&(_P|_U|_L|_D|_SP)) != 0) #define ispunct(c) ((__ismask(c)&(_P)) != 0) /* Note: isspace() must return false for %NUL-terminator */ #define isspace(c) ((__ismask(c)&(_S)) != 0) #define isupper(c) ((__ismask(c)&(_U)) != 0) #define isxdigit(c) ((__ismask(c)&(_D|_X)) != 0) #define isascii(c) (((unsigned char)(c))<=0x7f) #define toascii(c) (((unsigned char)(c))&0x7f) static inline unsigned char __tolower(unsigned char c) { if (isupper(c)) c -= 'A'-'a'; return c; } static inline unsigned char __toupper(unsigned char c) { if (islower(c)) c -= 'a'-'A'; return c; } #define tolower(c) __tolower(c) #define toupper(c) __toupper(c) /* * Fast implementation of tolower() for internal usage. Do not use in your * code. */ static inline char _tolower(const char c) { return c | 0x20; } /* Fast check for octal digit */ static inline int isodigit(const char c) { return c >= '0' && c <= '7'; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _linux_POSIX_TIMERS_H #define _linux_POSIX_TIMERS_H #include <linux/spinlock.h> #include <linux/list.h> #include <linux/alarmtimer.h> #include <linux/timerqueue.h> #include <linux/task_work.h> struct kernel_siginfo; struct task_struct; /* * Bit fields within a clockid: * * The most significant 29 bits hold either a pid or a file descriptor. * * Bit 2 indicates whether a cpu clock refers to a thread or a process. * * Bits 1 and 0 give the type: PROF=0, VIRT=1, SCHED=2, or FD=3. * * A clockid is invalid if bits 2, 1, and 0 are all set. */ #define CPUCLOCK_PID(clock) ((pid_t) ~((clock) >> 3)) #define CPUCLOCK_PERTHREAD(clock) \ (((clock) & (clockid_t) CPUCLOCK_PERTHREAD_MASK) != 0) #define CPUCLOCK_PERTHREAD_MASK 4 #define CPUCLOCK_WHICH(clock) ((clock) & (clockid_t) CPUCLOCK_CLOCK_MASK) #define CPUCLOCK_CLOCK_MASK 3 #define CPUCLOCK_PROF 0 #define CPUCLOCK_VIRT 1 #define CPUCLOCK_SCHED 2 #define CPUCLOCK_MAX 3 #define CLOCKFD CPUCLOCK_MAX #define CLOCKFD_MASK (CPUCLOCK_PERTHREAD_MASK|CPUCLOCK_CLOCK_MASK) static inline clockid_t make_process_cpuclock(const unsigned int pid, const clockid_t clock) { return ((~pid) << 3) | clock; } static inline clockid_t make_thread_cpuclock(const unsigned int tid, const clockid_t clock) { return make_process_cpuclock(tid, clock | CPUCLOCK_PERTHREAD_MASK); } static inline clockid_t fd_to_clockid(const int fd) { return make_process_cpuclock((unsigned int) fd, CLOCKFD); } static inline int clockid_to_fd(const clockid_t clk) { return ~(clk >> 3); } #ifdef CONFIG_POSIX_TIMERS /** * cpu_timer - Posix CPU timer representation for k_itimer * @node: timerqueue node to queue in the task/sig * @head: timerqueue head on which this timer is queued * @task: Pointer to target task * @elist: List head for the expiry list * @firing: Timer is currently firing */ struct cpu_timer { struct timerqueue_node node; struct timerqueue_head *head; struct pid *pid; struct list_head elist; int firing; }; static inline bool cpu_timer_enqueue(struct timerqueue_head *head, struct cpu_timer *ctmr) { ctmr->head = head; return timerqueue_add(head, &ctmr->node); } static inline void cpu_timer_dequeue(struct cpu_timer *ctmr) { if (ctmr->head) { timerqueue_del(ctmr->head, &ctmr->node); ctmr->head = NULL; } } static inline u64 cpu_timer_getexpires(struct cpu_timer *ctmr) { return ctmr->node.expires; } static inline void cpu_timer_setexpires(struct cpu_timer *ctmr, u64 exp) { ctmr->node.expires = exp; } /** * posix_cputimer_base - Container per posix CPU clock * @nextevt: Earliest-expiration cache * @tqhead: timerqueue head for cpu_timers */ struct posix_cputimer_base { u64 nextevt; struct timerqueue_head tqhead; }; /** * posix_cputimers - Container for posix CPU timer related data * @bases: Base container for posix CPU clocks * @timers_active: Timers are queued. * @expiry_active: Timer expiry is active. Used for * process wide timers to avoid multiple * task trying to handle expiry concurrently * * Used in task_struct and signal_struct */ struct posix_cputimers { struct posix_cputimer_base bases[CPUCLOCK_MAX]; unsigned int timers_active; unsigned int expiry_active; }; /** * posix_cputimers_work - Container for task work based posix CPU timer expiry * @work: The task work to be scheduled * @scheduled: @work has been scheduled already, no further processing */ struct posix_cputimers_work { struct callback_head work; unsigned int scheduled; }; static inline void posix_cputimers_init(struct posix_cputimers *pct) { memset(pct, 0, sizeof(*pct)); pct->bases[0].nextevt = U64_MAX; pct->bases[1].nextevt = U64_MAX; pct->bases[2].nextevt = U64_MAX; } void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit); static inline void posix_cputimers_rt_watchdog(struct posix_cputimers *pct, u64 runtime) { pct->bases[CPUCLOCK_SCHED].nextevt = runtime; } /* Init task static initializer */ #define INIT_CPU_TIMERBASE(b) { \ .nextevt = U64_MAX, \ } #define INIT_CPU_TIMERBASES(b) { \ INIT_CPU_TIMERBASE(b[0]), \ INIT_CPU_TIMERBASE(b[1]), \ INIT_CPU_TIMERBASE(b[2]), \ } #define INIT_CPU_TIMERS(s) \ .posix_cputimers = { \ .bases = INIT_CPU_TIMERBASES(s.posix_cputimers.bases), \ }, #else struct posix_cputimers { }; struct cpu_timer { }; #define INIT_CPU_TIMERS(s) static inline void posix_cputimers_init(struct posix_cputimers *pct) { } static inline void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) { } #endif #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK void clear_posix_cputimers_work(struct task_struct *p); void posix_cputimers_init_work(void); #else static inline void clear_posix_cputimers_work(struct task_struct *p) { } static inline void posix_cputimers_init_work(void) { } #endif #define REQUEUE_PENDING 1 /** * struct k_itimer - POSIX.1b interval timer structure. * @list: List head for binding the timer to signals->posix_timers * @t_hash: Entry in the posix timer hash table * @it_lock: Lock protecting the timer * @kclock: Pointer to the k_clock struct handling this timer * @it_clock: The posix timer clock id * @it_id: The posix timer id for identifying the timer * @it_active: Marker that timer is active * @it_overrun: The overrun counter for pending signals * @it_overrun_last: The overrun at the time of the last delivered signal * @it_requeue_pending: Indicator that timer waits for being requeued on * signal delivery * @it_sigev_notify: The notify word of sigevent struct for signal delivery * @it_interval: The interval for periodic timers * @it_signal: Pointer to the creators signal struct * @it_pid: The pid of the process/task targeted by the signal * @it_process: The task to wakeup on clock_nanosleep (CPU timers) * @sigq: Pointer to preallocated sigqueue * @it: Union representing the various posix timer type * internals. * @rcu: RCU head for freeing the timer. */ struct k_itimer { struct list_head list; struct hlist_node t_hash; spinlock_t it_lock; const struct k_clock *kclock; clockid_t it_clock; timer_t it_id; int it_active; s64 it_overrun; s64 it_overrun_last; int it_requeue_pending; int it_sigev_notify; ktime_t it_interval; struct signal_struct *it_signal; union { struct pid *it_pid; struct task_struct *it_process; }; struct sigqueue *sigq; union { struct { struct hrtimer timer; } real; struct cpu_timer cpu; struct { struct alarm alarmtimer; } alarm; } it; struct rcu_head rcu; }; void run_posix_cpu_timers(void); void posix_cpu_timers_exit(struct task_struct *task); void posix_cpu_timers_exit_group(struct task_struct *task); void set_process_cpu_timer(struct task_struct *task, unsigned int clock_idx, u64 *newval, u64 *oldval); void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new); void posixtimer_rearm(struct kernel_siginfo *info); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPAT_H #define _LINUX_COMPAT_H /* * These are the type definitions for the architecture specific * syscall compatibility layer. */ #include <linux/types.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/param.h> /* for HZ */ #include <linux/sem.h> #include <linux/socket.h> #include <linux/if.h> #include <linux/fs.h> #include <linux/aio_abi.h> /* for aio_context_t */ #include <linux/uaccess.h> #include <linux/unistd.h> #include <asm/compat.h> #ifdef CONFIG_COMPAT #include <asm/siginfo.h> #include <asm/signal.h> #endif #ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER /* * It may be useful for an architecture to override the definitions of the * COMPAT_SYSCALL_DEFINE0 and COMPAT_SYSCALL_DEFINEx() macros, in particular * to use a different calling convention for syscalls. To allow for that, + the prototypes for the compat_sys_*() functions below will *not* be included * if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #include <asm/syscall_wrapper.h> #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ #ifndef COMPAT_USE_64BIT_TIME #define COMPAT_USE_64BIT_TIME 0 #endif #ifndef __SC_DELOUSE #define __SC_DELOUSE(t,v) ((__force t)(unsigned long)(v)) #endif #ifndef COMPAT_SYSCALL_DEFINE0 #define COMPAT_SYSCALL_DEFINE0(name) \ asmlinkage long compat_sys_##name(void); \ ALLOW_ERROR_INJECTION(compat_sys_##name, ERRNO); \ asmlinkage long compat_sys_##name(void) #endif /* COMPAT_SYSCALL_DEFINE0 */ #define COMPAT_SYSCALL_DEFINE1(name, ...) \ COMPAT_SYSCALL_DEFINEx(1, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE2(name, ...) \ COMPAT_SYSCALL_DEFINEx(2, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE3(name, ...) \ COMPAT_SYSCALL_DEFINEx(3, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE4(name, ...) \ COMPAT_SYSCALL_DEFINEx(4, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE5(name, ...) \ COMPAT_SYSCALL_DEFINEx(5, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE6(name, ...) \ COMPAT_SYSCALL_DEFINEx(6, _##name, __VA_ARGS__) /* * The asmlinkage stub is aliased to a function named __se_compat_sys_*() which * sign-extends 32-bit ints to longs whenever needed. The actual work is * done within __do_compat_sys_*(). */ #ifndef COMPAT_SYSCALL_DEFINEx #define COMPAT_SYSCALL_DEFINEx(x, name, ...) \ __diag_push(); \ __diag_ignore(GCC, 8, "-Wattribute-alias", \ "Type aliasing is used to sanitize syscall arguments");\ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) \ __attribute__((alias(__stringify(__se_compat_sys##name)))); \ ALLOW_ERROR_INJECTION(compat_sys##name, ERRNO); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__));\ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \ { \ long ret = __do_compat_sys##name(__MAP(x,__SC_DELOUSE,__VA_ARGS__));\ __MAP(x,__SC_TEST,__VA_ARGS__); \ return ret; \ } \ __diag_pop(); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) #endif /* COMPAT_SYSCALL_DEFINEx */ struct compat_iovec { compat_uptr_t iov_base; compat_size_t iov_len; }; #ifdef CONFIG_COMPAT #ifndef compat_user_stack_pointer #define compat_user_stack_pointer() current_user_stack_pointer() #endif #ifndef compat_sigaltstack /* we'll need that for MIPS */ typedef struct compat_sigaltstack { compat_uptr_t ss_sp; int ss_flags; compat_size_t ss_size; } compat_stack_t; #endif #ifndef COMPAT_MINSIGSTKSZ #define COMPAT_MINSIGSTKSZ MINSIGSTKSZ #endif #define compat_jiffies_to_clock_t(x) \ (((unsigned long)(x) * COMPAT_USER_HZ) / HZ) typedef __compat_uid32_t compat_uid_t; typedef __compat_gid32_t compat_gid_t; struct compat_sel_arg_struct; struct rusage; struct old_itimerval32; struct compat_tms { compat_clock_t tms_utime; compat_clock_t tms_stime; compat_clock_t tms_cutime; compat_clock_t tms_cstime; }; #define _COMPAT_NSIG_WORDS (_COMPAT_NSIG / _COMPAT_NSIG_BPW) typedef struct { compat_sigset_word sig[_COMPAT_NSIG_WORDS]; } compat_sigset_t; int set_compat_user_sigmask(const compat_sigset_t __user *umask, size_t sigsetsize); struct compat_sigaction { #ifndef __ARCH_HAS_IRIX_SIGACTION compat_uptr_t sa_handler; compat_ulong_t sa_flags; #else compat_uint_t sa_flags; compat_uptr_t sa_handler; #endif #ifdef __ARCH_HAS_SA_RESTORER compat_uptr_t sa_restorer; #endif compat_sigset_t sa_mask __packed; }; typedef union compat_sigval { compat_int_t sival_int; compat_uptr_t sival_ptr; } compat_sigval_t; typedef struct compat_siginfo { int si_signo; #ifndef __ARCH_HAS_SWAPPED_SIGINFO int si_errno; int si_code; #else int si_code; int si_errno; #endif union { int _pad[128/sizeof(int) - 3]; /* kill() */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ } _kill; /* POSIX.1b timers */ struct { compat_timer_t _tid; /* timer id */ int _overrun; /* overrun count */ compat_sigval_t _sigval; /* same as below */ } _timer; /* POSIX.1b signals */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ compat_sigval_t _sigval; } _rt; /* SIGCHLD */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_clock_t _utime; compat_clock_t _stime; } _sigchld; #ifdef CONFIG_X86_X32_ABI /* SIGCHLD (x32 version) */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_s64 _utime; compat_s64 _stime; } _sigchld_x32; #endif /* SIGILL, SIGFPE, SIGSEGV, SIGBUS, SIGTRAP, SIGEMT */ struct { compat_uptr_t _addr; /* faulting insn/memory ref. */ #ifdef __ARCH_SI_TRAPNO int _trapno; /* TRAP # which caused the signal */ #endif #define __COMPAT_ADDR_BND_PKEY_PAD (__alignof__(compat_uptr_t) < sizeof(short) ? \ sizeof(short) : __alignof__(compat_uptr_t)) union { /* * used when si_code=BUS_MCEERR_AR or * used when si_code=BUS_MCEERR_AO */ short int _addr_lsb; /* Valid LSB of the reported address. */ /* used when si_code=SEGV_BNDERR */ struct { char _dummy_bnd[__COMPAT_ADDR_BND_PKEY_PAD]; compat_uptr_t _lower; compat_uptr_t _upper; } _addr_bnd; /* used when si_code=SEGV_PKUERR */ struct { char _dummy_pkey[__COMPAT_ADDR_BND_PKEY_PAD]; u32 _pkey; } _addr_pkey; }; } _sigfault; /* SIGPOLL */ struct { compat_long_t _band; /* POLL_IN, POLL_OUT, POLL_MSG */ int _fd; } _sigpoll; struct { compat_uptr_t _call_addr; /* calling user insn */ int _syscall; /* triggering system call number */ unsigned int _arch; /* AUDIT_ARCH_* of syscall */ } _sigsys; } _sifields; } compat_siginfo_t; struct compat_rlimit { compat_ulong_t rlim_cur; compat_ulong_t rlim_max; }; struct compat_rusage { struct old_timeval32 ru_utime; struct old_timeval32 ru_stime; compat_long_t ru_maxrss; compat_long_t ru_ixrss; compat_long_t ru_idrss; compat_long_t ru_isrss; compat_long_t ru_minflt; compat_long_t ru_majflt; compat_long_t ru_nswap; compat_long_t ru_inblock; compat_long_t ru_oublock; compat_long_t ru_msgsnd; compat_long_t ru_msgrcv; compat_long_t ru_nsignals; compat_long_t ru_nvcsw; compat_long_t ru_nivcsw; }; extern int put_compat_rusage(const struct rusage *, struct compat_rusage __user *); struct compat_siginfo; struct __compat_aio_sigset; struct compat_dirent { u32 d_ino; compat_off_t d_off; u16 d_reclen; char d_name[256]; }; struct compat_ustat { compat_daddr_t f_tfree; compat_ino_t f_tinode; char f_fname[6]; char f_fpack[6]; }; #define COMPAT_SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int)) - 3) typedef struct compat_sigevent { compat_sigval_t sigev_value; compat_int_t sigev_signo; compat_int_t sigev_notify; union { compat_int_t _pad[COMPAT_SIGEV_PAD_SIZE]; compat_int_t _tid; struct { compat_uptr_t _function; compat_uptr_t _attribute; } _sigev_thread; } _sigev_un; } compat_sigevent_t; struct compat_ifmap { compat_ulong_t mem_start; compat_ulong_t mem_end; unsigned short base_addr; unsigned char irq; unsigned char dma; unsigned char port; }; struct compat_if_settings { unsigned int type; /* Type of physical device or protocol */ unsigned int size; /* Size of the data allocated by the caller */ compat_uptr_t ifs_ifsu; /* union of pointers */ }; struct compat_ifreq { union { char ifrn_name[IFNAMSIZ]; /* if name, e.g. "en0" */ } ifr_ifrn; union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct sockaddr ifru_netmask; struct sockaddr ifru_hwaddr; short ifru_flags; compat_int_t ifru_ivalue; compat_int_t ifru_mtu; struct compat_ifmap ifru_map; char ifru_slave[IFNAMSIZ]; /* Just fits the size */ char ifru_newname[IFNAMSIZ]; compat_caddr_t ifru_data; struct compat_if_settings ifru_settings; } ifr_ifru; }; struct compat_ifconf { compat_int_t ifc_len; /* size of buffer */ compat_caddr_t ifcbuf; }; struct compat_robust_list { compat_uptr_t next; }; struct compat_robust_list_head { struct compat_robust_list list; compat_long_t futex_offset; compat_uptr_t list_op_pending; }; #ifdef CONFIG_COMPAT_OLD_SIGACTION struct compat_old_sigaction { compat_uptr_t sa_handler; compat_old_sigset_t sa_mask; compat_ulong_t sa_flags; compat_uptr_t sa_restorer; }; #endif struct compat_keyctl_kdf_params { compat_uptr_t hashname; compat_uptr_t otherinfo; __u32 otherinfolen; __u32 __spare[8]; }; struct compat_statfs; struct compat_statfs64; struct compat_old_linux_dirent; struct compat_linux_dirent; struct linux_dirent64; struct compat_msghdr; struct compat_mmsghdr; struct compat_sysinfo; struct compat_sysctl_args; struct compat_kexec_segment; struct compat_mq_attr; struct compat_msgbuf; #define BITS_PER_COMPAT_LONG (8*sizeof(compat_long_t)) #define BITS_TO_COMPAT_LONGS(bits) DIV_ROUND_UP(bits, BITS_PER_COMPAT_LONG) long compat_get_bitmap(unsigned long *mask, const compat_ulong_t __user *umask, unsigned long bitmap_size); long compat_put_bitmap(compat_ulong_t __user *umask, unsigned long *mask, unsigned long bitmap_size); void copy_siginfo_to_external32(struct compat_siginfo *to, const struct kernel_siginfo *from); int copy_siginfo_from_user32(kernel_siginfo_t *to, const struct compat_siginfo __user *from); int __copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #ifndef copy_siginfo_to_user32 #define copy_siginfo_to_user32 __copy_siginfo_to_user32 #endif int get_compat_sigevent(struct sigevent *event, const struct compat_sigevent __user *u_event); extern int get_compat_sigset(sigset_t *set, const compat_sigset_t __user *compat); /* * Defined inline such that size can be compile time constant, which avoids * CONFIG_HARDENED_USERCOPY complaining about copies from task_struct */ static inline int put_compat_sigset(compat_sigset_t __user *compat, const sigset_t *set, unsigned int size) { /* size <= sizeof(compat_sigset_t) <= sizeof(sigset_t) */ #ifdef __BIG_ENDIAN compat_sigset_t v; switch (_NSIG_WORDS) { case 4: v.sig[7] = (set->sig[3] >> 32); v.sig[6] = set->sig[3]; fallthrough; case 3: v.sig[5] = (set->sig[2] >> 32); v.sig[4] = set->sig[2]; fallthrough; case 2: v.sig[3] = (set->sig[1] >> 32); v.sig[2] = set->sig[1]; fallthrough; case 1: v.sig[1] = (set->sig[0] >> 32); v.sig[0] = set->sig[0]; } return copy_to_user(compat, &v, size) ? -EFAULT : 0; #else return copy_to_user(compat, set, size) ? -EFAULT : 0; #endif } extern int compat_ptrace_request(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); extern long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); struct epoll_event; /* fortunately, this one is fixed-layout */ extern void __user *compat_alloc_user_space(unsigned long len); int compat_restore_altstack(const compat_stack_t __user *uss); int __compat_save_altstack(compat_stack_t __user *, unsigned long); #define unsafe_compat_save_altstack(uss, sp, label) do { \ compat_stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user(ptr_to_compat((void __user *)t->sas_ss_sp), \ &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); /* * These syscall function prototypes are kept in the same order as * include/uapi/asm-generic/unistd.h. Deprecated or obsolete system calls * go below. * * Please note that these prototypes here are only provided for information * purposes, for static analysis, and for linking from the syscall table. * These functions should not be called elsewhere from kernel code. * * As the syscall calling convention may be different from the default * for architectures overriding the syscall calling convention, do not * include the prototypes if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #ifndef CONFIG_ARCH_HAS_SYSCALL_WRAPPER asmlinkage long compat_sys_io_setup(unsigned nr_reqs, u32 __user *ctx32p); asmlinkage long compat_sys_io_submit(compat_aio_context_t ctx_id, int nr, u32 __user *iocb); asmlinkage long compat_sys_io_pgetevents(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct old_timespec32 __user *timeout, const struct __compat_aio_sigset __user *usig); asmlinkage long compat_sys_io_pgetevents_time64(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct __kernel_timespec __user *timeout, const struct __compat_aio_sigset __user *usig); /* fs/cookies.c */ asmlinkage long compat_sys_lookup_dcookie(u32, u32, char __user *, compat_size_t); /* fs/eventpoll.c */ asmlinkage long compat_sys_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, int timeout, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/fcntl.c */ asmlinkage long compat_sys_fcntl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); asmlinkage long compat_sys_fcntl64(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/ioctl.c */ asmlinkage long compat_sys_ioctl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/open.c */ asmlinkage long compat_sys_statfs(const char __user *pathname, struct compat_statfs __user *buf); asmlinkage long compat_sys_statfs64(const char __user *pathname, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_fstatfs(unsigned int fd, struct compat_statfs __user *buf); asmlinkage long compat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_truncate(const char __user *, compat_off_t); asmlinkage long compat_sys_ftruncate(unsigned int, compat_ulong_t); /* No generic prototype for truncate64, ftruncate64, fallocate */ asmlinkage long compat_sys_openat(int dfd, const char __user *filename, int flags, umode_t mode); /* fs/readdir.c */ asmlinkage long compat_sys_getdents(unsigned int fd, struct compat_linux_dirent __user *dirent, unsigned int count); /* fs/read_write.c */ asmlinkage long compat_sys_lseek(unsigned int, compat_off_t, unsigned int); /* No generic prototype for pread64 and pwrite64 */ asmlinkage ssize_t compat_sys_preadv(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); asmlinkage ssize_t compat_sys_pwritev(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64 asmlinkage long compat_sys_preadv64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64 asmlinkage long compat_sys_pwritev64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif /* fs/sendfile.c */ asmlinkage long compat_sys_sendfile(int out_fd, int in_fd, compat_off_t __user *offset, compat_size_t count); asmlinkage long compat_sys_sendfile64(int out_fd, int in_fd, compat_loff_t __user *offset, compat_size_t count); /* fs/select.c */ asmlinkage long compat_sys_pselect6_time32(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timespec32 __user *tsp, void __user *sig); asmlinkage long compat_sys_pselect6_time64(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct __kernel_timespec __user *tsp, void __user *sig); asmlinkage long compat_sys_ppoll_time32(struct pollfd __user *ufds, unsigned int nfds, struct old_timespec32 __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); asmlinkage long compat_sys_ppoll_time64(struct pollfd __user *ufds, unsigned int nfds, struct __kernel_timespec __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/signalfd.c */ asmlinkage long compat_sys_signalfd4(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize, int flags); /* fs/stat.c */ asmlinkage long compat_sys_newfstatat(unsigned int dfd, const char __user *filename, struct compat_stat __user *statbuf, int flag); asmlinkage long compat_sys_newfstat(unsigned int fd, struct compat_stat __user *statbuf); /* fs/sync.c: No generic prototype for sync_file_range and sync_file_range2 */ /* kernel/exit.c */ asmlinkage long compat_sys_waitid(int, compat_pid_t, struct compat_siginfo __user *, int, struct compat_rusage __user *); /* kernel/futex.c */ asmlinkage long compat_sys_set_robust_list(struct compat_robust_list_head __user *head, compat_size_t len); asmlinkage long compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, compat_size_t __user *len_ptr); /* kernel/itimer.c */ asmlinkage long compat_sys_getitimer(int which, struct old_itimerval32 __user *it); asmlinkage long compat_sys_setitimer(int which, struct old_itimerval32 __user *in, struct old_itimerval32 __user *out); /* kernel/kexec.c */ asmlinkage long compat_sys_kexec_load(compat_ulong_t entry, compat_ulong_t nr_segments, struct compat_kexec_segment __user *, compat_ulong_t flags); /* kernel/posix-timers.c */ asmlinkage long compat_sys_timer_create(clockid_t which_clock, struct compat_sigevent __user *timer_event_spec, timer_t __user *created_timer_id); /* kernel/ptrace.c */ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, compat_long_t addr, compat_long_t data); /* kernel/sched/core.c */ asmlinkage long compat_sys_sched_setaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); /* kernel/signal.c */ asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr, compat_stack_t __user *uoss_ptr); asmlinkage long compat_sys_rt_sigsuspend(compat_sigset_t __user *unewset, compat_size_t sigsetsize); #ifndef CONFIG_ODD_RT_SIGACTION asmlinkage long compat_sys_rt_sigaction(int, const struct compat_sigaction __user *, struct compat_sigaction __user *, compat_size_t); #endif asmlinkage long compat_sys_rt_sigprocmask(int how, compat_sigset_t __user *set, compat_sigset_t __user *oset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigpending(compat_sigset_t __user *uset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time32(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct old_timespec32 __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time64(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct __kernel_timespec __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigqueueinfo(compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); /* No generic prototype for rt_sigreturn */ /* kernel/sys.c */ asmlinkage long compat_sys_times(struct compat_tms __user *tbuf); asmlinkage long compat_sys_getrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_setrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_getrusage(int who, struct compat_rusage __user *ru); /* kernel/time.c */ asmlinkage long compat_sys_gettimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); asmlinkage long compat_sys_settimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); /* kernel/timer.c */ asmlinkage long compat_sys_sysinfo(struct compat_sysinfo __user *info); /* ipc/mqueue.c */ asmlinkage long compat_sys_mq_open(const char __user *u_name, int oflag, compat_mode_t mode, struct compat_mq_attr __user *u_attr); asmlinkage long compat_sys_mq_notify(mqd_t mqdes, const struct compat_sigevent __user *u_notification); asmlinkage long compat_sys_mq_getsetattr(mqd_t mqdes, const struct compat_mq_attr __user *u_mqstat, struct compat_mq_attr __user *u_omqstat); /* ipc/msg.c */ asmlinkage long compat_sys_msgctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); asmlinkage long compat_sys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); /* ipc/sem.c */ asmlinkage long compat_sys_semctl(int semid, int semnum, int cmd, int arg); /* ipc/shm.c */ asmlinkage long compat_sys_shmctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_shmat(int shmid, compat_uptr_t shmaddr, int shmflg); /* net/socket.c */ asmlinkage long compat_sys_recvfrom(int fd, void __user *buf, compat_size_t len, unsigned flags, struct sockaddr __user *addr, int __user *addrlen); asmlinkage long compat_sys_sendmsg(int fd, struct compat_msghdr __user *msg, unsigned flags); asmlinkage long compat_sys_recvmsg(int fd, struct compat_msghdr __user *msg, unsigned int flags); /* mm/filemap.c: No generic prototype for readahead */ /* security/keys/keyctl.c */ asmlinkage long compat_sys_keyctl(u32 option, u32 arg2, u32 arg3, u32 arg4, u32 arg5); /* arch/example/kernel/sys_example.c */ asmlinkage long compat_sys_execve(const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp); /* mm/fadvise.c: No generic prototype for fadvise64_64 */ /* mm/, CONFIG_MMU only */ asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, compat_ulong_t mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t flags); asmlinkage long compat_sys_get_mempolicy(int __user *policy, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t addr, compat_ulong_t flags); asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode); asmlinkage long compat_sys_migrate_pages(compat_pid_t pid, compat_ulong_t maxnode, const compat_ulong_t __user *old_nodes, const compat_ulong_t __user *new_nodes); asmlinkage long compat_sys_move_pages(pid_t pid, compat_ulong_t nr_pages, __u32 __user *pages, const int __user *nodes, int __user *status, int flags); asmlinkage long compat_sys_rt_tgsigqueueinfo(compat_pid_t tgid, compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); asmlinkage long compat_sys_recvmmsg_time64(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct __kernel_timespec __user *timeout); asmlinkage long compat_sys_recvmmsg_time32(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct old_timespec32 __user *timeout); asmlinkage long compat_sys_wait4(compat_pid_t pid, compat_uint_t __user *stat_addr, int options, struct compat_rusage __user *ru); asmlinkage long compat_sys_fanotify_mark(int, unsigned int, __u32, __u32, int, const char __user *); asmlinkage long compat_sys_open_by_handle_at(int mountdirfd, struct file_handle __user *handle, int flags); asmlinkage long compat_sys_sendmmsg(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags); asmlinkage long compat_sys_execveat(int dfd, const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp, int flags); asmlinkage ssize_t compat_sys_preadv2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); asmlinkage ssize_t compat_sys_pwritev2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64V2 asmlinkage long compat_sys_preadv64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64V2 asmlinkage long compat_sys_pwritev64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif /* * Deprecated system calls which are still defined in * include/uapi/asm-generic/unistd.h and wanted by >= 1 arch */ /* __ARCH_WANT_SYSCALL_NO_AT */ asmlinkage long compat_sys_open(const char __user *filename, int flags, umode_t mode); /* __ARCH_WANT_SYSCALL_NO_FLAGS */ asmlinkage long compat_sys_signalfd(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* __ARCH_WANT_SYSCALL_OFF_T */ asmlinkage long compat_sys_newstat(const char __user *filename, struct compat_stat __user *statbuf); asmlinkage long compat_sys_newlstat(const char __user *filename, struct compat_stat __user *statbuf); /* __ARCH_WANT_SYSCALL_DEPRECATED */ asmlinkage long compat_sys_select(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timeval32 __user *tvp); asmlinkage long compat_sys_ustat(unsigned dev, struct compat_ustat __user *u32); asmlinkage long compat_sys_recv(int fd, void __user *buf, compat_size_t len, unsigned flags); /* obsolete: fs/readdir.c */ asmlinkage long compat_sys_old_readdir(unsigned int fd, struct compat_old_linux_dirent __user *, unsigned int count); /* obsolete: fs/select.c */ asmlinkage long compat_sys_old_select(struct compat_sel_arg_struct __user *arg); /* obsolete: ipc */ asmlinkage long compat_sys_ipc(u32, int, int, u32, compat_uptr_t, u32); /* obsolete: kernel/signal.c */ #ifdef __ARCH_WANT_SYS_SIGPENDING asmlinkage long compat_sys_sigpending(compat_old_sigset_t __user *set); #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *nset, compat_old_sigset_t __user *oset); #endif #ifdef CONFIG_COMPAT_OLD_SIGACTION asmlinkage long compat_sys_sigaction(int sig, const struct compat_old_sigaction __user *act, struct compat_old_sigaction __user *oact); #endif /* obsolete: net/socket.c */ asmlinkage long compat_sys_socketcall(int call, u32 __user *args); #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ /* * For most but not all architectures, "am I in a compat syscall?" and * "am I a compat task?" are the same question. For architectures on which * they aren't the same question, arch code can override in_compat_syscall. */ #ifndef in_compat_syscall static inline bool in_compat_syscall(void) { return is_compat_task(); } #endif /** * ns_to_old_timeval32 - Compat version of ns_to_timeval * @nsec: the nanoseconds value to be converted * * Returns the old_timeval32 representation of the nsec parameter. */ static inline struct old_timeval32 ns_to_old_timeval32(s64 nsec) { struct __kernel_old_timeval tv; struct old_timeval32 ctv; tv = ns_to_kernel_old_timeval(nsec); ctv.tv_sec = tv.tv_sec; ctv.tv_usec = tv.tv_usec; return ctv; } /* * Kernel code should not call compat syscalls (i.e., compat_sys_xyzyyz()) * directly. Instead, use one of the functions which work equivalently, such * as the kcompat_sys_xyzyyz() functions prototyped below. */ int kcompat_sys_statfs64(const char __user * pathname, compat_size_t sz, struct compat_statfs64 __user * buf); int kcompat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user * buf); #else /* !CONFIG_COMPAT */ #define is_compat_task() (0) /* Ensure no one redefines in_compat_syscall() under !CONFIG_COMPAT */ #define in_compat_syscall in_compat_syscall static inline bool in_compat_syscall(void) { return false; } #endif /* CONFIG_COMPAT */ /* * Some legacy ABIs like the i386 one use less than natural alignment for 64-bit * types, and will need special compat treatment for that. Most architectures * don't need that special handling even for compat syscalls. */ #ifndef compat_need_64bit_alignment_fixup #define compat_need_64bit_alignment_fixup() false #endif /* * A pointer passed in from user mode. This should not * be used for syscall parameters, just declare them * as pointers because the syscall entry code will have * appropriately converted them already. */ #ifndef compat_ptr static inline void __user *compat_ptr(compat_uptr_t uptr) { return (void __user *)(unsigned long)uptr; } #endif static inline compat_uptr_t ptr_to_compat(void __user *uptr) { return (u32)(unsigned long)uptr; } #endif /* _LINUX_COMPAT_H */
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 /* SPDX-License-Identifier: GPL-2.0 */ /* * descriptor table internals; you almost certainly want file.h instead. */ #ifndef __LINUX_FDTABLE_H #define __LINUX_FDTABLE_H #include <linux/posix_types.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/nospec.h> #include <linux/types.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/atomic.h> /* * The default fd array needs to be at least BITS_PER_LONG, * as this is the granularity returned by copy_fdset(). */ #define NR_OPEN_DEFAULT BITS_PER_LONG #define NR_OPEN_MAX ~0U struct fdtable { unsigned int max_fds; struct file __rcu **fd; /* current fd array */ unsigned long *close_on_exec; unsigned long *open_fds; unsigned long *full_fds_bits; struct rcu_head rcu; }; static inline bool close_on_exec(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->close_on_exec); } static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt) { return test_bit(fd, fdt->open_fds); } /* * Open file table structure */ struct files_struct { /* * read mostly part */ atomic_t count; bool resize_in_progress; wait_queue_head_t resize_wait; struct fdtable __rcu *fdt; struct fdtable fdtab; /* * written part on a separate cache line in SMP */ spinlock_t file_lock ____cacheline_aligned_in_smp; unsigned int next_fd; unsigned long close_on_exec_init[1]; unsigned long open_fds_init[1]; unsigned long full_fds_bits_init[1]; struct file __rcu * fd_array[NR_OPEN_DEFAULT]; }; struct file_operations; struct vfsmount; struct dentry; #define rcu_dereference_check_fdtable(files, fdtfd) \ rcu_dereference_check((fdtfd), lockdep_is_held(&(files)->file_lock)) #define files_fdtable(files) \ rcu_dereference_check_fdtable((files), (files)->fdt) /* * The caller must ensure that fd table isn't shared or hold rcu or file lock */ static inline struct file *__fcheck_files(struct files_struct *files, unsigned int fd) { struct fdtable *fdt = rcu_dereference_raw(files->fdt); if (fd < fdt->max_fds) { fd = array_index_nospec(fd, fdt->max_fds); return rcu_dereference_raw(fdt->fd[fd]); } return NULL; } static inline struct file *fcheck_files(struct files_struct *files, unsigned int fd) { RCU_LOCKDEP_WARN(!rcu_read_lock_held() && !lockdep_is_held(&files->file_lock), "suspicious rcu_dereference_check() usage"); return __fcheck_files(files, fd); } /* * Check whether the specified fd has an open file. */ #define fcheck(fd) fcheck_files(current->files, fd) struct task_struct; struct files_struct *get_files_struct(struct task_struct *); void put_files_struct(struct files_struct *fs); void reset_files_struct(struct files_struct *); int unshare_files(struct files_struct **); struct files_struct *dup_fd(struct files_struct *, unsigned, int *) __latent_entropy; void do_close_on_exec(struct files_struct *); int iterate_fd(struct files_struct *, unsigned, int (*)(const void *, struct file *, unsigned), const void *); extern int __alloc_fd(struct files_struct *files, unsigned start, unsigned end, unsigned flags); extern void __fd_install(struct files_struct *files, unsigned int fd, struct file *file); extern int __close_fd(struct files_struct *files, unsigned int fd); extern int __close_range(unsigned int fd, unsigned int max_fd, unsigned int flags); extern int __close_fd_get_file(unsigned int fd, struct file **res); extern int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, struct files_struct **new_fdp); extern struct kmem_cache *files_cachep; #endif /* __LINUX_FDTABLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM migrate #if !defined(_TRACE_MIGRATE_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MIGRATE_H #include <linux/tracepoint.h> #define MIGRATE_MODE \ EM( MIGRATE_ASYNC, "MIGRATE_ASYNC") \ EM( MIGRATE_SYNC_LIGHT, "MIGRATE_SYNC_LIGHT") \ EMe(MIGRATE_SYNC, "MIGRATE_SYNC") #define MIGRATE_REASON \ EM( MR_COMPACTION, "compaction") \ EM( MR_MEMORY_FAILURE, "memory_failure") \ EM( MR_MEMORY_HOTPLUG, "memory_hotplug") \ EM( MR_SYSCALL, "syscall_or_cpuset") \ EM( MR_MEMPOLICY_MBIND, "mempolicy_mbind") \ EM( MR_NUMA_MISPLACED, "numa_misplaced") \ EMe(MR_CONTIG_RANGE, "contig_range") /* * First define the enums in the above macros to be exported to userspace * via TRACE_DEFINE_ENUM(). */ #undef EM #undef EMe #define EM(a, b) TRACE_DEFINE_ENUM(a); #define EMe(a, b) TRACE_DEFINE_ENUM(a); MIGRATE_MODE MIGRATE_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a, b) {a, b}, #define EMe(a, b) {a, b} TRACE_EVENT(mm_migrate_pages, TP_PROTO(unsigned long succeeded, unsigned long failed, unsigned long thp_succeeded, unsigned long thp_failed, unsigned long thp_split, enum migrate_mode mode, int reason), TP_ARGS(succeeded, failed, thp_succeeded, thp_failed, thp_split, mode, reason), TP_STRUCT__entry( __field( unsigned long, succeeded) __field( unsigned long, failed) __field( unsigned long, thp_succeeded) __field( unsigned long, thp_failed) __field( unsigned long, thp_split) __field( enum migrate_mode, mode) __field( int, reason) ), TP_fast_assign( __entry->succeeded = succeeded; __entry->failed = failed; __entry->thp_succeeded = thp_succeeded; __entry->thp_failed = thp_failed; __entry->thp_split = thp_split; __entry->mode = mode; __entry->reason = reason; ), TP_printk("nr_succeeded=%lu nr_failed=%lu nr_thp_succeeded=%lu nr_thp_failed=%lu nr_thp_split=%lu mode=%s reason=%s", __entry->succeeded, __entry->failed, __entry->thp_succeeded, __entry->thp_failed, __entry->thp_split, __print_symbolic(__entry->mode, MIGRATE_MODE), __print_symbolic(__entry->reason, MIGRATE_REASON)) ); #endif /* _TRACE_MIGRATE_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 /* * include/linux/topology.h * * Written by: Matthew Dobson, IBM Corporation * * Copyright (C) 2002, IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to <colpatch@us.ibm.com> */ #ifndef _LINUX_TOPOLOGY_H #define _LINUX_TOPOLOGY_H #include <linux/arch_topology.h> #include <linux/cpumask.h> #include <linux/bitops.h> #include <linux/mmzone.h> #include <linux/smp.h> #include <linux/percpu.h> #include <asm/topology.h> #ifndef nr_cpus_node #define nr_cpus_node(node) cpumask_weight(cpumask_of_node(node)) #endif #define for_each_node_with_cpus(node) \ for_each_online_node(node) \ if (nr_cpus_node(node)) int arch_update_cpu_topology(void); /* Conform to ACPI 2.0 SLIT distance definitions */ #define LOCAL_DISTANCE 10 #define REMOTE_DISTANCE 20 #ifndef node_distance #define node_distance(from,to) ((from) == (to) ? LOCAL_DISTANCE : REMOTE_DISTANCE) #endif #ifndef RECLAIM_DISTANCE /* * If the distance between nodes in a system is larger than RECLAIM_DISTANCE * (in whatever arch specific measurement units returned by node_distance()) * and node_reclaim_mode is enabled then the VM will only call node_reclaim() * on nodes within this distance. */ #define RECLAIM_DISTANCE 30 #endif /* * The following tunable allows platforms to override the default node * reclaim distance (RECLAIM_DISTANCE) if remote memory accesses are * sufficiently fast that the default value actually hurts * performance. * * AMD EPYC machines use this because even though the 2-hop distance * is 32 (3.2x slower than a local memory access) performance actually * *improves* if allowed to reclaim memory and load balance tasks * between NUMA nodes 2-hops apart. */ extern int __read_mostly node_reclaim_distance; #ifndef PENALTY_FOR_NODE_WITH_CPUS #define PENALTY_FOR_NODE_WITH_CPUS (1) #endif #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID DECLARE_PER_CPU(int, numa_node); #ifndef numa_node_id /* Returns the number of the current Node. */ static inline int numa_node_id(void) { return raw_cpu_read(numa_node); } #endif #ifndef cpu_to_node static inline int cpu_to_node(int cpu) { return per_cpu(numa_node, cpu); } #endif #ifndef set_numa_node static inline void set_numa_node(int node) { this_cpu_write(numa_node, node); } #endif #ifndef set_cpu_numa_node static inline void set_cpu_numa_node(int cpu, int node) { per_cpu(numa_node, cpu) = node; } #endif #else /* !CONFIG_USE_PERCPU_NUMA_NODE_ID */ /* Returns the number of the current Node. */ #ifndef numa_node_id static inline int numa_node_id(void) { return cpu_to_node(raw_smp_processor_id()); } #endif #endif /* [!]CONFIG_USE_PERCPU_NUMA_NODE_ID */ #ifdef CONFIG_HAVE_MEMORYLESS_NODES /* * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem(). */ DECLARE_PER_CPU(int, _numa_mem_); #ifndef set_numa_mem static inline void set_numa_mem(int node) { this_cpu_write(_numa_mem_, node); } #endif #ifndef numa_mem_id /* Returns the number of the nearest Node with memory */ static inline int numa_mem_id(void) { return raw_cpu_read(_numa_mem_); } #endif #ifndef cpu_to_mem static inline int cpu_to_mem(int cpu) { return per_cpu(_numa_mem_, cpu); } #endif #ifndef set_cpu_numa_mem static inline void set_cpu_numa_mem(int cpu, int node) { per_cpu(_numa_mem_, cpu) = node; } #endif #else /* !CONFIG_HAVE_MEMORYLESS_NODES */ #ifndef numa_mem_id /* Returns the number of the nearest Node with memory */ static inline int numa_mem_id(void) { return numa_node_id(); } #endif #ifndef cpu_to_mem static inline int cpu_to_mem(int cpu) { return cpu_to_node(cpu); } #endif #endif /* [!]CONFIG_HAVE_MEMORYLESS_NODES */ #ifndef topology_physical_package_id #define topology_physical_package_id(cpu) ((void)(cpu), -1) #endif #ifndef topology_die_id #define topology_die_id(cpu) ((void)(cpu), -1) #endif #ifndef topology_core_id #define topology_core_id(cpu) ((void)(cpu), 0) #endif #ifndef topology_sibling_cpumask #define topology_sibling_cpumask(cpu) cpumask_of(cpu) #endif #ifndef topology_core_cpumask #define topology_core_cpumask(cpu) cpumask_of(cpu) #endif #ifndef topology_die_cpumask #define topology_die_cpumask(cpu) cpumask_of(cpu) #endif #if defined(CONFIG_SCHED_SMT) && !defined(cpu_smt_mask) static inline const struct cpumask *cpu_smt_mask(int cpu) { return topology_sibling_cpumask(cpu); } #endif static inline const struct cpumask *cpu_cpu_mask(int cpu) { return cpumask_of_node(cpu_to_node(cpu)); } #endif /* _LINUX_TOPOLOGY_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 // SPDX-License-Identifier: GPL-2.0 /* * Detect hard and soft lockups on a system * * started by Don Zickus, Copyright (C) 2010 Red Hat, Inc. * * Note: Most of this code is borrowed heavily from the original softlockup * detector, so thanks to Ingo for the initial implementation. * Some chunks also taken from the old x86-specific nmi watchdog code, thanks * to those contributors as well. */ #define pr_fmt(fmt) "watchdog: " fmt #include <linux/mm.h> #include <linux/cpu.h> #include <linux/nmi.h> #include <linux/init.h> #include <linux/module.h> #include <linux/sysctl.h> #include <linux/tick.h> #include <linux/sched/clock.h> #include <linux/sched/debug.h> #include <linux/sched/isolation.h> #include <linux/stop_machine.h> #include <asm/irq_regs.h> #include <linux/kvm_para.h> static DEFINE_MUTEX(watchdog_mutex); #if defined(CONFIG_HARDLOCKUP_DETECTOR) || defined(CONFIG_HAVE_NMI_WATCHDOG) # define WATCHDOG_DEFAULT (SOFT_WATCHDOG_ENABLED | NMI_WATCHDOG_ENABLED) # define NMI_WATCHDOG_DEFAULT 1 #else # define WATCHDOG_DEFAULT (SOFT_WATCHDOG_ENABLED) # define NMI_WATCHDOG_DEFAULT 0 #endif unsigned long __read_mostly watchdog_enabled; int __read_mostly watchdog_user_enabled = 1; int __read_mostly nmi_watchdog_user_enabled = NMI_WATCHDOG_DEFAULT; int __read_mostly soft_watchdog_user_enabled = 1; int __read_mostly watchdog_thresh = 10; static int __read_mostly nmi_watchdog_available; struct cpumask watchdog_cpumask __read_mostly; unsigned long *watchdog_cpumask_bits = cpumask_bits(&watchdog_cpumask); #ifdef CONFIG_HARDLOCKUP_DETECTOR # ifdef CONFIG_SMP int __read_mostly sysctl_hardlockup_all_cpu_backtrace; # endif /* CONFIG_SMP */ /* * Should we panic when a soft-lockup or hard-lockup occurs: */ unsigned int __read_mostly hardlockup_panic = CONFIG_BOOTPARAM_HARDLOCKUP_PANIC_VALUE; /* * We may not want to enable hard lockup detection by default in all cases, * for example when running the kernel as a guest on a hypervisor. In these * cases this function can be called to disable hard lockup detection. This * function should only be executed once by the boot processor before the * kernel command line parameters are parsed, because otherwise it is not * possible to override this in hardlockup_panic_setup(). */ void __init hardlockup_detector_disable(void) { nmi_watchdog_user_enabled = 0; } static int __init hardlockup_panic_setup(char *str) { if (!strncmp(str, "panic", 5)) hardlockup_panic = 1; else if (!strncmp(str, "nopanic", 7)) hardlockup_panic = 0; else if (!strncmp(str, "0", 1)) nmi_watchdog_user_enabled = 0; else if (!strncmp(str, "1", 1)) nmi_watchdog_user_enabled = 1; return 1; } __setup("nmi_watchdog=", hardlockup_panic_setup); #endif /* CONFIG_HARDLOCKUP_DETECTOR */ /* * These functions can be overridden if an architecture implements its * own hardlockup detector. * * watchdog_nmi_enable/disable can be implemented to start and stop when * softlockup watchdog threads start and stop. The arch must select the * SOFTLOCKUP_DETECTOR Kconfig. */ int __weak watchdog_nmi_enable(unsigned int cpu) { hardlockup_detector_perf_enable(); return 0; } void __weak watchdog_nmi_disable(unsigned int cpu) { hardlockup_detector_perf_disable(); } /* Return 0, if a NMI watchdog is available. Error code otherwise */ int __weak __init watchdog_nmi_probe(void) { return hardlockup_detector_perf_init(); } /** * watchdog_nmi_stop - Stop the watchdog for reconfiguration * * The reconfiguration steps are: * watchdog_nmi_stop(); * update_variables(); * watchdog_nmi_start(); */ void __weak watchdog_nmi_stop(void) { } /** * watchdog_nmi_start - Start the watchdog after reconfiguration * * Counterpart to watchdog_nmi_stop(). * * The following variables have been updated in update_variables() and * contain the currently valid configuration: * - watchdog_enabled * - watchdog_thresh * - watchdog_cpumask */ void __weak watchdog_nmi_start(void) { } /** * lockup_detector_update_enable - Update the sysctl enable bit * * Caller needs to make sure that the NMI/perf watchdogs are off, so this * can't race with watchdog_nmi_disable(). */ static void lockup_detector_update_enable(void) { watchdog_enabled = 0; if (!watchdog_user_enabled) return; if (nmi_watchdog_available && nmi_watchdog_user_enabled) watchdog_enabled |= NMI_WATCHDOG_ENABLED; if (soft_watchdog_user_enabled) watchdog_enabled |= SOFT_WATCHDOG_ENABLED; } #ifdef CONFIG_SOFTLOCKUP_DETECTOR #define SOFTLOCKUP_RESET ULONG_MAX #ifdef CONFIG_SMP int __read_mostly sysctl_softlockup_all_cpu_backtrace; #endif static struct cpumask watchdog_allowed_mask __read_mostly; /* Global variables, exported for sysctl */ unsigned int __read_mostly softlockup_panic = CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC_VALUE; static bool softlockup_initialized __read_mostly; static u64 __read_mostly sample_period; static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts); static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer); static DEFINE_PER_CPU(bool, softlockup_touch_sync); static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts); static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts_saved); static unsigned long soft_lockup_nmi_warn; static int __init nowatchdog_setup(char *str) { watchdog_user_enabled = 0; return 1; } __setup("nowatchdog", nowatchdog_setup); static int __init nosoftlockup_setup(char *str) { soft_watchdog_user_enabled = 0; return 1; } __setup("nosoftlockup", nosoftlockup_setup); static int __init watchdog_thresh_setup(char *str) { get_option(&str, &watchdog_thresh); return 1; } __setup("watchdog_thresh=", watchdog_thresh_setup); static void __lockup_detector_cleanup(void); /* * Hard-lockup warnings should be triggered after just a few seconds. Soft- * lockups can have false positives under extreme conditions. So we generally * want a higher threshold for soft lockups than for hard lockups. So we couple * the thresholds with a factor: we make the soft threshold twice the amount of * time the hard threshold is. */ static int get_softlockup_thresh(void) { return watchdog_thresh * 2; } /* * Returns seconds, approximately. We don't need nanosecond * resolution, and we don't need to waste time with a big divide when * 2^30ns == 1.074s. */ static unsigned long get_timestamp(void) { return running_clock() >> 30LL; /* 2^30 ~= 10^9 */ } static void set_sample_period(void) { /* * convert watchdog_thresh from seconds to ns * the divide by 5 is to give hrtimer several chances (two * or three with the current relation between the soft * and hard thresholds) to increment before the * hardlockup detector generates a warning */ sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / 5); watchdog_update_hrtimer_threshold(sample_period); } /* Commands for resetting the watchdog */ static void update_touch_ts(void) { __this_cpu_write(watchdog_touch_ts, get_timestamp()); } /** * touch_softlockup_watchdog_sched - touch watchdog on scheduler stalls * * Call when the scheduler may have stalled for legitimate reasons * preventing the watchdog task from executing - e.g. the scheduler * entering idle state. This should only be used for scheduler events. * Use touch_softlockup_watchdog() for everything else. */ notrace void touch_softlockup_watchdog_sched(void) { /* * Preemption can be enabled. It doesn't matter which CPU's timestamp * gets zeroed here, so use the raw_ operation. */ raw_cpu_write(watchdog_touch_ts, SOFTLOCKUP_RESET); } notrace void touch_softlockup_watchdog(void) { touch_softlockup_watchdog_sched(); wq_watchdog_touch(raw_smp_processor_id()); } EXPORT_SYMBOL(touch_softlockup_watchdog); void touch_all_softlockup_watchdogs(void) { int cpu; /* * watchdog_mutex cannpt be taken here, as this might be called * from (soft)interrupt context, so the access to * watchdog_allowed_cpumask might race with a concurrent update. * * The watchdog time stamp can race against a concurrent real * update as well, the only side effect might be a cycle delay for * the softlockup check. */ for_each_cpu(cpu, &watchdog_allowed_mask) per_cpu(watchdog_touch_ts, cpu) = SOFTLOCKUP_RESET; wq_watchdog_touch(-1); } void touch_softlockup_watchdog_sync(void) { __this_cpu_write(softlockup_touch_sync, true); __this_cpu_write(watchdog_touch_ts, SOFTLOCKUP_RESET); } static int is_softlockup(unsigned long touch_ts) { unsigned long now = get_timestamp(); if ((watchdog_enabled & SOFT_WATCHDOG_ENABLED) && watchdog_thresh){ /* Warn about unreasonable delays. */ if (time_after(now, touch_ts + get_softlockup_thresh())) return now - touch_ts; } return 0; } /* watchdog detector functions */ bool is_hardlockup(void) { unsigned long hrint = __this_cpu_read(hrtimer_interrupts); if (__this_cpu_read(hrtimer_interrupts_saved) == hrint) return true; __this_cpu_write(hrtimer_interrupts_saved, hrint); return false; } static void watchdog_interrupt_count(void) { __this_cpu_inc(hrtimer_interrupts); } static DEFINE_PER_CPU(struct completion, softlockup_completion); static DEFINE_PER_CPU(struct cpu_stop_work, softlockup_stop_work); /* * The watchdog thread function - touches the timestamp. * * It only runs once every sample_period seconds (4 seconds by * default) to reset the softlockup timestamp. If this gets delayed * for more than 2*watchdog_thresh seconds then the debug-printout * triggers in watchdog_timer_fn(). */ static int softlockup_fn(void *data) { update_touch_ts(); complete(this_cpu_ptr(&softlockup_completion)); return 0; } /* watchdog kicker functions */ static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer) { unsigned long touch_ts = __this_cpu_read(watchdog_touch_ts); struct pt_regs *regs = get_irq_regs(); int duration; int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace; if (!watchdog_enabled) return HRTIMER_NORESTART; /* kick the hardlockup detector */ watchdog_interrupt_count(); /* kick the softlockup detector */ if (completion_done(this_cpu_ptr(&softlockup_completion))) { reinit_completion(this_cpu_ptr(&softlockup_completion)); stop_one_cpu_nowait(smp_processor_id(), softlockup_fn, NULL, this_cpu_ptr(&softlockup_stop_work)); } /* .. and repeat */ hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period)); if (touch_ts == SOFTLOCKUP_RESET) { if (unlikely(__this_cpu_read(softlockup_touch_sync))) { /* * If the time stamp was touched atomically * make sure the scheduler tick is up to date. */ __this_cpu_write(softlockup_touch_sync, false); sched_clock_tick(); } /* Clear the guest paused flag on watchdog reset */ kvm_check_and_clear_guest_paused(); update_touch_ts(); return HRTIMER_RESTART; } /* check for a softlockup * This is done by making sure a high priority task is * being scheduled. The task touches the watchdog to * indicate it is getting cpu time. If it hasn't then * this is a good indication some task is hogging the cpu */ duration = is_softlockup(touch_ts); if (unlikely(duration)) { /* * If a virtual machine is stopped by the host it can look to * the watchdog like a soft lockup, check to see if the host * stopped the vm before we issue the warning */ if (kvm_check_and_clear_guest_paused()) return HRTIMER_RESTART; /* * Prevent multiple soft-lockup reports if one cpu is already * engaged in dumping all cpu back traces. */ if (softlockup_all_cpu_backtrace) { if (test_and_set_bit_lock(0, &soft_lockup_nmi_warn)) return HRTIMER_RESTART; } /* Start period for the next softlockup warning. */ update_touch_ts(); pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n", smp_processor_id(), duration, current->comm, task_pid_nr(current)); print_modules(); print_irqtrace_events(current); if (regs) show_regs(regs); else dump_stack(); if (softlockup_all_cpu_backtrace) { trigger_allbutself_cpu_backtrace(); clear_bit_unlock(0, &soft_lockup_nmi_warn); } add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK); if (softlockup_panic) panic("softlockup: hung tasks"); } return HRTIMER_RESTART; } static void watchdog_enable(unsigned int cpu) { struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer); struct completion *done = this_cpu_ptr(&softlockup_completion); WARN_ON_ONCE(cpu != smp_processor_id()); init_completion(done); complete(done); /* * Start the timer first to prevent the NMI watchdog triggering * before the timer has a chance to fire. */ hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); hrtimer->function = watchdog_timer_fn; hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL_PINNED_HARD); /* Initialize timestamp */ update_touch_ts(); /* Enable the perf event */ if (watchdog_enabled & NMI_WATCHDOG_ENABLED) watchdog_nmi_enable(cpu); } static void watchdog_disable(unsigned int cpu) { struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer); WARN_ON_ONCE(cpu != smp_processor_id()); /* * Disable the perf event first. That prevents that a large delay * between disabling the timer and disabling the perf event causes * the perf NMI to detect a false positive. */ watchdog_nmi_disable(cpu); hrtimer_cancel(hrtimer); wait_for_completion(this_cpu_ptr(&softlockup_completion)); } static int softlockup_stop_fn(void *data) { watchdog_disable(smp_processor_id()); return 0; } static void softlockup_stop_all(void) { int cpu; if (!softlockup_initialized) return; for_each_cpu(cpu, &watchdog_allowed_mask) smp_call_on_cpu(cpu, softlockup_stop_fn, NULL, false); cpumask_clear(&watchdog_allowed_mask); } static int softlockup_start_fn(void *data) { watchdog_enable(smp_processor_id()); return 0; } static void softlockup_start_all(void) { int cpu; cpumask_copy(&watchdog_allowed_mask, &watchdog_cpumask); for_each_cpu(cpu, &watchdog_allowed_mask) smp_call_on_cpu(cpu, softlockup_start_fn, NULL, false); } int lockup_detector_online_cpu(unsigned int cpu) { if (cpumask_test_cpu(cpu, &watchdog_allowed_mask)) watchdog_enable(cpu); return 0; } int lockup_detector_offline_cpu(unsigned int cpu) { if (cpumask_test_cpu(cpu, &watchdog_allowed_mask)) watchdog_disable(cpu); return 0; } static void lockup_detector_reconfigure(void) { cpus_read_lock(); watchdog_nmi_stop(); softlockup_stop_all(); set_sample_period(); lockup_detector_update_enable(); if (watchdog_enabled && watchdog_thresh) softlockup_start_all(); watchdog_nmi_start(); cpus_read_unlock(); /* * Must be called outside the cpus locked section to prevent * recursive locking in the perf code. */ __lockup_detector_cleanup(); } /* * Create the watchdog thread infrastructure and configure the detector(s). * * The threads are not unparked as watchdog_allowed_mask is empty. When * the threads are successfully initialized, take the proper locks and * unpark the threads in the watchdog_cpumask if the watchdog is enabled. */ static __init void lockup_detector_setup(void) { /* * If sysctl is off and watchdog got disabled on the command line, * nothing to do here. */ lockup_detector_update_enable(); if (!IS_ENABLED(CONFIG_SYSCTL) && !(watchdog_enabled && watchdog_thresh)) return; mutex_lock(&watchdog_mutex); lockup_detector_reconfigure(); softlockup_initialized = true; mutex_unlock(&watchdog_mutex); } #else /* CONFIG_SOFTLOCKUP_DETECTOR */ static void lockup_detector_reconfigure(void) { cpus_read_lock(); watchdog_nmi_stop(); lockup_detector_update_enable(); watchdog_nmi_start(); cpus_read_unlock(); } static inline void lockup_detector_setup(void) { lockup_detector_reconfigure(); } #endif /* !CONFIG_SOFTLOCKUP_DETECTOR */ static void __lockup_detector_cleanup(void) { lockdep_assert_held(&watchdog_mutex); hardlockup_detector_perf_cleanup(); } /** * lockup_detector_cleanup - Cleanup after cpu hotplug or sysctl changes * * Caller must not hold the cpu hotplug rwsem. */ void lockup_detector_cleanup(void) { mutex_lock(&watchdog_mutex); __lockup_detector_cleanup(); mutex_unlock(&watchdog_mutex); } /** * lockup_detector_soft_poweroff - Interface to stop lockup detector(s) * * Special interface for parisc. It prevents lockup detector warnings from * the default pm_poweroff() function which busy loops forever. */ void lockup_detector_soft_poweroff(void) { watchdog_enabled = 0; } #ifdef CONFIG_SYSCTL /* Propagate any changes to the watchdog threads */ static void proc_watchdog_update(void) { /* Remove impossible cpus to keep sysctl output clean. */ cpumask_and(&watchdog_cpumask, &watchdog_cpumask, cpu_possible_mask); lockup_detector_reconfigure(); } /* * common function for watchdog, nmi_watchdog and soft_watchdog parameter * * caller | table->data points to | 'which' * -------------------|----------------------------|-------------------------- * proc_watchdog | watchdog_user_enabled | NMI_WATCHDOG_ENABLED | * | | SOFT_WATCHDOG_ENABLED * -------------------|----------------------------|-------------------------- * proc_nmi_watchdog | nmi_watchdog_user_enabled | NMI_WATCHDOG_ENABLED * -------------------|----------------------------|-------------------------- * proc_soft_watchdog | soft_watchdog_user_enabled | SOFT_WATCHDOG_ENABLED */ static int proc_watchdog_common(int which, struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int err, old, *param = table->data; mutex_lock(&watchdog_mutex); if (!write) { /* * On read synchronize the userspace interface. This is a * racy snapshot. */ *param = (watchdog_enabled & which) != 0; err = proc_dointvec_minmax(table, write, buffer, lenp, ppos); } else { old = READ_ONCE(*param); err = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (!err && old != READ_ONCE(*param)) proc_watchdog_update(); } mutex_unlock(&watchdog_mutex); return err; } /* * /proc/sys/kernel/watchdog */ int proc_watchdog(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return proc_watchdog_common(NMI_WATCHDOG_ENABLED|SOFT_WATCHDOG_ENABLED, table, write, buffer, lenp, ppos); } /* * /proc/sys/kernel/nmi_watchdog */ int proc_nmi_watchdog(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { if (!nmi_watchdog_available && write) return -ENOTSUPP; return proc_watchdog_common(NMI_WATCHDOG_ENABLED, table, write, buffer, lenp, ppos); } /* * /proc/sys/kernel/soft_watchdog */ int proc_soft_watchdog(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return proc_watchdog_common(SOFT_WATCHDOG_ENABLED, table, write, buffer, lenp, ppos); } /* * /proc/sys/kernel/watchdog_thresh */ int proc_watchdog_thresh(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int err, old; mutex_lock(&watchdog_mutex); old = READ_ONCE(watchdog_thresh); err = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (!err && write && old != READ_ONCE(watchdog_thresh)) proc_watchdog_update(); mutex_unlock(&watchdog_mutex); return err; } /* * The cpumask is the mask of possible cpus that the watchdog can run * on, not the mask of cpus it is actually running on. This allows the * user to specify a mask that will include cpus that have not yet * been brought online, if desired. */ int proc_watchdog_cpumask(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int err; mutex_lock(&watchdog_mutex); err = proc_do_large_bitmap(table, write, buffer, lenp, ppos); if (!err && write) proc_watchdog_update(); mutex_unlock(&watchdog_mutex); return err; } #endif /* CONFIG_SYSCTL */ void __init lockup_detector_init(void) { if (tick_nohz_full_enabled()) pr_info("Disabling watchdog on nohz_full cores by default\n"); cpumask_copy(&watchdog_cpumask, housekeeping_cpumask(HK_FLAG_TIMER)); if (!watchdog_nmi_probe()) nmi_watchdog_available = true; lockup_detector_setup(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM tcp #if !defined(_TRACE_TCP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TCP_H #include <linux/ipv6.h> #include <linux/tcp.h> #include <linux/tracepoint.h> #include <net/ipv6.h> #include <net/tcp.h> #include <linux/sock_diag.h> #define TP_STORE_V4MAPPED(__entry, saddr, daddr) \ do { \ struct in6_addr *pin6; \ \ pin6 = (struct in6_addr *)__entry->saddr_v6; \ ipv6_addr_set_v4mapped(saddr, pin6); \ pin6 = (struct in6_addr *)__entry->daddr_v6; \ ipv6_addr_set_v4mapped(daddr, pin6); \ } while (0) #if IS_ENABLED(CONFIG_IPV6) #define TP_STORE_ADDRS(__entry, saddr, daddr, saddr6, daddr6) \ do { \ if (sk->sk_family == AF_INET6) { \ struct in6_addr *pin6; \ \ pin6 = (struct in6_addr *)__entry->saddr_v6; \ *pin6 = saddr6; \ pin6 = (struct in6_addr *)__entry->daddr_v6; \ *pin6 = daddr6; \ } else { \ TP_STORE_V4MAPPED(__entry, saddr, daddr); \ } \ } while (0) #else #define TP_STORE_ADDRS(__entry, saddr, daddr, saddr6, daddr6) \ TP_STORE_V4MAPPED(__entry, saddr, daddr) #endif /* * tcp event with arguments sk and skb * * Note: this class requires a valid sk pointer; while skb pointer could * be NULL. */ DECLARE_EVENT_CLASS(tcp_event_sk_skb, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( __field(const void *, skbaddr) __field(const void *, skaddr) __field(int, state) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); __be32 *p32; __entry->skbaddr = skb; __entry->skaddr = sk; __entry->state = sk->sk_state; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; TP_STORE_ADDRS(__entry, inet->inet_saddr, inet->inet_daddr, sk->sk_v6_rcv_saddr, sk->sk_v6_daddr); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c state=%s", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, show_tcp_state_name(__entry->state)) ); DEFINE_EVENT(tcp_event_sk_skb, tcp_retransmit_skb, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb) ); /* * skb of trace_tcp_send_reset is the skb that caused RST. In case of * active reset, skb should be NULL */ DEFINE_EVENT(tcp_event_sk_skb, tcp_send_reset, TP_PROTO(const struct sock *sk, const struct sk_buff *skb), TP_ARGS(sk, skb) ); /* * tcp event with arguments sk * * Note: this class requires a valid sk pointer. */ DECLARE_EVENT_CLASS(tcp_event_sk, TP_PROTO(struct sock *sk), TP_ARGS(sk), TP_STRUCT__entry( __field(const void *, skaddr) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) __field(__u64, sock_cookie) ), TP_fast_assign( struct inet_sock *inet = inet_sk(sk); __be32 *p32; __entry->skaddr = sk; __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); p32 = (__be32 *) __entry->saddr; *p32 = inet->inet_saddr; p32 = (__be32 *) __entry->daddr; *p32 = inet->inet_daddr; TP_STORE_ADDRS(__entry, inet->inet_saddr, inet->inet_daddr, sk->sk_v6_rcv_saddr, sk->sk_v6_daddr); __entry->sock_cookie = sock_gen_cookie(sk); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c sock_cookie=%llx", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6, __entry->sock_cookie) ); DEFINE_EVENT(tcp_event_sk, tcp_receive_reset, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); DEFINE_EVENT(tcp_event_sk, tcp_destroy_sock, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); DEFINE_EVENT(tcp_event_sk, tcp_rcv_space_adjust, TP_PROTO(struct sock *sk), TP_ARGS(sk) ); TRACE_EVENT(tcp_retransmit_synack, TP_PROTO(const struct sock *sk, const struct request_sock *req), TP_ARGS(sk, req), TP_STRUCT__entry( __field(const void *, skaddr) __field(const void *, req) __field(__u16, sport) __field(__u16, dport) __array(__u8, saddr, 4) __array(__u8, daddr, 4) __array(__u8, saddr_v6, 16) __array(__u8, daddr_v6, 16) ), TP_fast_assign( struct inet_request_sock *ireq = inet_rsk(req); __be32 *p32; __entry->skaddr = sk; __entry->req = req; __entry->sport = ireq->ir_num; __entry->dport = ntohs(ireq->ir_rmt_port); p32 = (__be32 *) __entry->saddr; *p32 = ireq->ir_loc_addr; p32 = (__be32 *) __entry->daddr; *p32 = ireq->ir_rmt_addr; TP_STORE_ADDRS(__entry, ireq->ir_loc_addr, ireq->ir_rmt_addr, ireq->ir_v6_loc_addr, ireq->ir_v6_rmt_addr); ), TP_printk("sport=%hu dport=%hu saddr=%pI4 daddr=%pI4 saddrv6=%pI6c daddrv6=%pI6c", __entry->sport, __entry->dport, __entry->saddr, __entry->daddr, __entry->saddr_v6, __entry->daddr_v6) ); #include <trace/events/net_probe_common.h> TRACE_EVENT(tcp_probe, TP_PROTO(struct sock *sk, struct sk_buff *skb), TP_ARGS(sk, skb), TP_STRUCT__entry( /* sockaddr_in6 is always bigger than sockaddr_in */ __array(__u8, saddr, sizeof(struct sockaddr_in6)) __array(__u8, daddr, sizeof(struct sockaddr_in6)) __field(__u16, sport) __field(__u16, dport) __field(__u32, mark) __field(__u16, data_len) __field(__u32, snd_nxt) __field(__u32, snd_una) __field(__u32, snd_cwnd) __field(__u32, ssthresh) __field(__u32, snd_wnd) __field(__u32, srtt) __field(__u32, rcv_wnd) __field(__u64, sock_cookie) ), TP_fast_assign( const struct tcphdr *th = (const struct tcphdr *)skb->data; const struct inet_sock *inet = inet_sk(sk); const struct tcp_sock *tp = tcp_sk(sk); memset(__entry->saddr, 0, sizeof(struct sockaddr_in6)); memset(__entry->daddr, 0, sizeof(struct sockaddr_in6)); TP_STORE_ADDR_PORTS(__entry, inet, sk); /* For filtering use */ __entry->sport = ntohs(inet->inet_sport); __entry->dport = ntohs(inet->inet_dport); __entry->mark = skb->mark; __entry->data_len = skb->len - __tcp_hdrlen(th); __entry->snd_nxt = tp->snd_nxt; __entry->snd_una = tp->snd_una; __entry->snd_cwnd = tp->snd_cwnd; __entry->snd_wnd = tp->snd_wnd; __entry->rcv_wnd = tp->rcv_wnd; __entry->ssthresh = tcp_current_ssthresh(sk); __entry->srtt = tp->srtt_us >> 3; __entry->sock_cookie = sock_gen_cookie(sk); ), TP_printk("src=%pISpc dest=%pISpc mark=%#x data_len=%d snd_nxt=%#x snd_una=%#x snd_cwnd=%u ssthresh=%u snd_wnd=%u srtt=%u rcv_wnd=%u sock_cookie=%llx", __entry->saddr, __entry->daddr, __entry->mark, __entry->data_len, __entry->snd_nxt, __entry->snd_una, __entry->snd_cwnd, __entry->ssthresh, __entry->snd_wnd, __entry->srtt, __entry->rcv_wnd, __entry->sock_cookie) ); #endif /* _TRACE_TCP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_ATOMIC_H #define _ASM_X86_ATOMIC_H #include <linux/compiler.h> #include <linux/types.h> #include <asm/alternative.h> #include <asm/cmpxchg.h> #include <asm/rmwcc.h> #include <asm/barrier.h> /* * Atomic operations that C can't guarantee us. Useful for * resource counting etc.. */ /** * arch_atomic_read - read atomic variable * @v: pointer of type atomic_t * * Atomically reads the value of @v. */ static __always_inline int arch_atomic_read(const atomic_t *v) { /* * Note for KASAN: we deliberately don't use READ_ONCE_NOCHECK() here, * it's non-inlined function that increases binary size and stack usage. */ return __READ_ONCE((v)->counter); } /** * arch_atomic_set - set atomic variable * @v: pointer of type atomic_t * @i: required value * * Atomically sets the value of @v to @i. */ static __always_inline void arch_atomic_set(atomic_t *v, int i) { __WRITE_ONCE(v->counter, i); } /** * arch_atomic_add - add integer to atomic variable * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v. */ static __always_inline void arch_atomic_add(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "addl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } /** * arch_atomic_sub - subtract integer from atomic variable * @i: integer value to subtract * @v: pointer of type atomic_t * * Atomically subtracts @i from @v. */ static __always_inline void arch_atomic_sub(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "subl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } /** * arch_atomic_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_sub_and_test(int i, atomic_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "subl", v->counter, e, "er", i); } #define arch_atomic_sub_and_test arch_atomic_sub_and_test /** * arch_atomic_inc - increment atomic variable * @v: pointer of type atomic_t * * Atomically increments @v by 1. */ static __always_inline void arch_atomic_inc(atomic_t *v) { asm volatile(LOCK_PREFIX "incl %0" : "+m" (v->counter) :: "memory"); } #define arch_atomic_inc arch_atomic_inc /** * arch_atomic_dec - decrement atomic variable * @v: pointer of type atomic_t * * Atomically decrements @v by 1. */ static __always_inline void arch_atomic_dec(atomic_t *v) { asm volatile(LOCK_PREFIX "decl %0" : "+m" (v->counter) :: "memory"); } #define arch_atomic_dec arch_atomic_dec /** * arch_atomic_dec_and_test - decrement and test * @v: pointer of type atomic_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic_dec_and_test(atomic_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "decl", v->counter, e); } #define arch_atomic_dec_and_test arch_atomic_dec_and_test /** * arch_atomic_inc_and_test - increment and test * @v: pointer of type atomic_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_inc_and_test(atomic_t *v) { return GEN_UNARY_RMWcc(LOCK_PREFIX "incl", v->counter, e); } #define arch_atomic_inc_and_test arch_atomic_inc_and_test /** * arch_atomic_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic_add_negative(int i, atomic_t *v) { return GEN_BINARY_RMWcc(LOCK_PREFIX "addl", v->counter, s, "er", i); } #define arch_atomic_add_negative arch_atomic_add_negative /** * arch_atomic_add_return - add integer and return * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v and returns @i + @v */ static __always_inline int arch_atomic_add_return(int i, atomic_t *v) { return i + xadd(&v->counter, i); } #define arch_atomic_add_return arch_atomic_add_return /** * arch_atomic_sub_return - subtract integer and return * @v: pointer of type atomic_t * @i: integer value to subtract * * Atomically subtracts @i from @v and returns @v - @i */ static __always_inline int arch_atomic_sub_return(int i, atomic_t *v) { return arch_atomic_add_return(-i, v); } #define arch_atomic_sub_return arch_atomic_sub_return static __always_inline int arch_atomic_fetch_add(int i, atomic_t *v) { return xadd(&v->counter, i); } #define arch_atomic_fetch_add arch_atomic_fetch_add static __always_inline int arch_atomic_fetch_sub(int i, atomic_t *v) { return xadd(&v->counter, -i); } #define arch_atomic_fetch_sub arch_atomic_fetch_sub static __always_inline int arch_atomic_cmpxchg(atomic_t *v, int old, int new) { return arch_cmpxchg(&v->counter, old, new); } #define arch_atomic_cmpxchg arch_atomic_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { return try_cmpxchg(&v->counter, old, new); } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg static __always_inline int arch_atomic_xchg(atomic_t *v, int new) { return arch_xchg(&v->counter, new); } #define arch_atomic_xchg arch_atomic_xchg static __always_inline void arch_atomic_and(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "andl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } static __always_inline int arch_atomic_fetch_and(int i, atomic_t *v) { int val = arch_atomic_read(v); do { } while (!arch_atomic_try_cmpxchg(v, &val, val & i)); return val; } #define arch_atomic_fetch_and arch_atomic_fetch_and static __always_inline void arch_atomic_or(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "orl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v) { int val = arch_atomic_read(v); do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i)); return val; } #define arch_atomic_fetch_or arch_atomic_fetch_or static __always_inline void arch_atomic_xor(int i, atomic_t *v) { asm volatile(LOCK_PREFIX "xorl %1,%0" : "+m" (v->counter) : "ir" (i) : "memory"); } static __always_inline int arch_atomic_fetch_xor(int i, atomic_t *v) { int val = arch_atomic_read(v); do { } while (!arch_atomic_try_cmpxchg(v, &val, val ^ i)); return val; } #define arch_atomic_fetch_xor arch_atomic_fetch_xor #ifdef CONFIG_X86_32 # include <asm/atomic64_32.h> #else # include <asm/atomic64_64.h> #endif #define ARCH_ATOMIC #endif /* _ASM_X86_ATOMIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PARAVIRT_H #define _ASM_X86_PARAVIRT_H /* Various instructions on x86 need to be replaced for * para-virtualization: those hooks are defined here. */ #ifdef CONFIG_PARAVIRT #include <asm/pgtable_types.h> #include <asm/asm.h> #include <asm/nospec-branch.h> #include <asm/paravirt_types.h> #ifndef __ASSEMBLY__ #include <linux/bug.h> #include <linux/types.h> #include <linux/cpumask.h> #include <asm/frame.h> static inline unsigned long long paravirt_sched_clock(void) { return PVOP_CALL0(unsigned long long, time.sched_clock); } struct static_key; extern struct static_key paravirt_steal_enabled; extern struct static_key paravirt_steal_rq_enabled; __visible void __native_queued_spin_unlock(struct qspinlock *lock); bool pv_is_native_spin_unlock(void); __visible bool __native_vcpu_is_preempted(long cpu); bool pv_is_native_vcpu_is_preempted(void); static inline u64 paravirt_steal_clock(int cpu) { return PVOP_CALL1(u64, time.steal_clock, cpu); } /* The paravirtualized I/O functions */ static inline void slow_down_io(void) { pv_ops.cpu.io_delay(); #ifdef REALLY_SLOW_IO pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); pv_ops.cpu.io_delay(); #endif } void native_flush_tlb_local(void); void native_flush_tlb_global(void); void native_flush_tlb_one_user(unsigned long addr); void native_flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info); static inline void __flush_tlb_local(void) { PVOP_VCALL0(mmu.flush_tlb_user); } static inline void __flush_tlb_global(void) { PVOP_VCALL0(mmu.flush_tlb_kernel); } static inline void __flush_tlb_one_user(unsigned long addr) { PVOP_VCALL1(mmu.flush_tlb_one_user, addr); } static inline void __flush_tlb_others(const struct cpumask *cpumask, const struct flush_tlb_info *info) { PVOP_VCALL2(mmu.flush_tlb_others, cpumask, info); } static inline void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table) { PVOP_VCALL2(mmu.tlb_remove_table, tlb, table); } static inline void paravirt_arch_exit_mmap(struct mm_struct *mm) { PVOP_VCALL1(mmu.exit_mmap, mm); } #ifdef CONFIG_PARAVIRT_XXL static inline void load_sp0(unsigned long sp0) { PVOP_VCALL1(cpu.load_sp0, sp0); } /* The paravirtualized CPUID instruction. */ static inline void __cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { PVOP_VCALL4(cpu.cpuid, eax, ebx, ecx, edx); } /* * These special macros can be used to get or set a debugging register */ static inline unsigned long paravirt_get_debugreg(int reg) { return PVOP_CALL1(unsigned long, cpu.get_debugreg, reg); } #define get_debugreg(var, reg) var = paravirt_get_debugreg(reg) static inline void set_debugreg(unsigned long val, int reg) { PVOP_VCALL2(cpu.set_debugreg, reg, val); } static inline unsigned long read_cr0(void) { return PVOP_CALL0(unsigned long, cpu.read_cr0); } static inline void write_cr0(unsigned long x) { PVOP_VCALL1(cpu.write_cr0, x); } static inline unsigned long read_cr2(void) { return PVOP_CALLEE0(unsigned long, mmu.read_cr2); } static inline void write_cr2(unsigned long x) { PVOP_VCALL1(mmu.write_cr2, x); } static inline unsigned long __read_cr3(void) { return PVOP_CALL0(unsigned long, mmu.read_cr3); } static inline void write_cr3(unsigned long x) { PVOP_VCALL1(mmu.write_cr3, x); } static inline void __write_cr4(unsigned long x) { PVOP_VCALL1(cpu.write_cr4, x); } static inline void arch_safe_halt(void) { PVOP_VCALL0(irq.safe_halt); } static inline void halt(void) { PVOP_VCALL0(irq.halt); } static inline void wbinvd(void) { PVOP_VCALL0(cpu.wbinvd); } static inline u64 paravirt_read_msr(unsigned msr) { return PVOP_CALL1(u64, cpu.read_msr, msr); } static inline void paravirt_write_msr(unsigned msr, unsigned low, unsigned high) { PVOP_VCALL3(cpu.write_msr, msr, low, high); } static inline u64 paravirt_read_msr_safe(unsigned msr, int *err) { return PVOP_CALL2(u64, cpu.read_msr_safe, msr, err); } static inline int paravirt_write_msr_safe(unsigned msr, unsigned low, unsigned high) { return PVOP_CALL3(int, cpu.write_msr_safe, msr, low, high); } #define rdmsr(msr, val1, val2) \ do { \ u64 _l = paravirt_read_msr(msr); \ val1 = (u32)_l; \ val2 = _l >> 32; \ } while (0) #define wrmsr(msr, val1, val2) \ do { \ paravirt_write_msr(msr, val1, val2); \ } while (0) #define rdmsrl(msr, val) \ do { \ val = paravirt_read_msr(msr); \ } while (0) static inline void wrmsrl(unsigned msr, u64 val) { wrmsr(msr, (u32)val, (u32)(val>>32)); } #define wrmsr_safe(msr, a, b) paravirt_write_msr_safe(msr, a, b) /* rdmsr with exception handling */ #define rdmsr_safe(msr, a, b) \ ({ \ int _err; \ u64 _l = paravirt_read_msr_safe(msr, &_err); \ (*a) = (u32)_l; \ (*b) = _l >> 32; \ _err; \ }) static inline int rdmsrl_safe(unsigned msr, unsigned long long *p) { int err; *p = paravirt_read_msr_safe(msr, &err); return err; } static inline unsigned long long paravirt_read_pmc(int counter) { return PVOP_CALL1(u64, cpu.read_pmc, counter); } #define rdpmc(counter, low, high) \ do { \ u64 _l = paravirt_read_pmc(counter); \ low = (u32)_l; \ high = _l >> 32; \ } while (0) #define rdpmcl(counter, val) ((val) = paravirt_read_pmc(counter)) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.alloc_ldt, ldt, entries); } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { PVOP_VCALL2(cpu.free_ldt, ldt, entries); } static inline void load_TR_desc(void) { PVOP_VCALL0(cpu.load_tr_desc); } static inline void load_gdt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_gdt, dtr); } static inline void load_idt(const struct desc_ptr *dtr) { PVOP_VCALL1(cpu.load_idt, dtr); } static inline void set_ldt(const void *addr, unsigned entries) { PVOP_VCALL2(cpu.set_ldt, addr, entries); } static inline unsigned long paravirt_store_tr(void) { return PVOP_CALL0(unsigned long, cpu.store_tr); } #define store_tr(tr) ((tr) = paravirt_store_tr()) static inline void load_TLS(struct thread_struct *t, unsigned cpu) { PVOP_VCALL2(cpu.load_tls, t, cpu); } static inline void load_gs_index(unsigned int gs) { PVOP_VCALL1(cpu.load_gs_index, gs); } static inline void write_ldt_entry(struct desc_struct *dt, int entry, const void *desc) { PVOP_VCALL3(cpu.write_ldt_entry, dt, entry, desc); } static inline void write_gdt_entry(struct desc_struct *dt, int entry, void *desc, int type) { PVOP_VCALL4(cpu.write_gdt_entry, dt, entry, desc, type); } static inline void write_idt_entry(gate_desc *dt, int entry, const gate_desc *g) { PVOP_VCALL3(cpu.write_idt_entry, dt, entry, g); } #ifdef CONFIG_X86_IOPL_IOPERM static inline void tss_invalidate_io_bitmap(void) { PVOP_VCALL0(cpu.invalidate_io_bitmap); } static inline void tss_update_io_bitmap(void) { PVOP_VCALL0(cpu.update_io_bitmap); } #endif static inline void paravirt_activate_mm(struct mm_struct *prev, struct mm_struct *next) { PVOP_VCALL2(mmu.activate_mm, prev, next); } static inline void paravirt_arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) { PVOP_VCALL2(mmu.dup_mmap, oldmm, mm); } static inline int paravirt_pgd_alloc(struct mm_struct *mm) { return PVOP_CALL1(int, mmu.pgd_alloc, mm); } static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) { PVOP_VCALL2(mmu.pgd_free, mm, pgd); } static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pte, mm, pfn); } static inline void paravirt_release_pte(unsigned long pfn) { PVOP_VCALL1(mmu.release_pte, pfn); } static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pmd, mm, pfn); } static inline void paravirt_release_pmd(unsigned long pfn) { PVOP_VCALL1(mmu.release_pmd, pfn); } static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_pud, mm, pfn); } static inline void paravirt_release_pud(unsigned long pfn) { PVOP_VCALL1(mmu.release_pud, pfn); } static inline void paravirt_alloc_p4d(struct mm_struct *mm, unsigned long pfn) { PVOP_VCALL2(mmu.alloc_p4d, mm, pfn); } static inline void paravirt_release_p4d(unsigned long pfn) { PVOP_VCALL1(mmu.release_p4d, pfn); } static inline pte_t __pte(pteval_t val) { return (pte_t) { PVOP_CALLEE1(pteval_t, mmu.make_pte, val) }; } static inline pteval_t pte_val(pte_t pte) { return PVOP_CALLEE1(pteval_t, mmu.pte_val, pte.pte); } static inline pgd_t __pgd(pgdval_t val) { return (pgd_t) { PVOP_CALLEE1(pgdval_t, mmu.make_pgd, val) }; } static inline pgdval_t pgd_val(pgd_t pgd) { return PVOP_CALLEE1(pgdval_t, mmu.pgd_val, pgd.pgd); } #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pteval_t ret; ret = PVOP_CALL3(pteval_t, mmu.ptep_modify_prot_start, vma, addr, ptep); return (pte_t) { .pte = ret }; } static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { PVOP_VCALL4(mmu.ptep_modify_prot_commit, vma, addr, ptep, pte.pte); } static inline void set_pte(pte_t *ptep, pte_t pte) { PVOP_VCALL2(mmu.set_pte, ptep, pte.pte); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { PVOP_VCALL2(mmu.set_pmd, pmdp, native_pmd_val(pmd)); } static inline pmd_t __pmd(pmdval_t val) { return (pmd_t) { PVOP_CALLEE1(pmdval_t, mmu.make_pmd, val) }; } static inline pmdval_t pmd_val(pmd_t pmd) { return PVOP_CALLEE1(pmdval_t, mmu.pmd_val, pmd.pmd); } static inline void set_pud(pud_t *pudp, pud_t pud) { PVOP_VCALL2(mmu.set_pud, pudp, native_pud_val(pud)); } static inline pud_t __pud(pudval_t val) { pudval_t ret; ret = PVOP_CALLEE1(pudval_t, mmu.make_pud, val); return (pud_t) { ret }; } static inline pudval_t pud_val(pud_t pud) { return PVOP_CALLEE1(pudval_t, mmu.pud_val, pud.pud); } static inline void pud_clear(pud_t *pudp) { set_pud(pudp, native_make_pud(0)); } static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) { p4dval_t val = native_p4d_val(p4d); PVOP_VCALL2(mmu.set_p4d, p4dp, val); } #if CONFIG_PGTABLE_LEVELS >= 5 static inline p4d_t __p4d(p4dval_t val) { p4dval_t ret = PVOP_CALLEE1(p4dval_t, mmu.make_p4d, val); return (p4d_t) { ret }; } static inline p4dval_t p4d_val(p4d_t p4d) { return PVOP_CALLEE1(p4dval_t, mmu.p4d_val, p4d.p4d); } static inline void __set_pgd(pgd_t *pgdp, pgd_t pgd) { PVOP_VCALL2(mmu.set_pgd, pgdp, native_pgd_val(pgd)); } #define set_pgd(pgdp, pgdval) do { \ if (pgtable_l5_enabled()) \ __set_pgd(pgdp, pgdval); \ else \ set_p4d((p4d_t *)(pgdp), (p4d_t) { (pgdval).pgd }); \ } while (0) #define pgd_clear(pgdp) do { \ if (pgtable_l5_enabled()) \ set_pgd(pgdp, native_make_pgd(0)); \ } while (0) #endif /* CONFIG_PGTABLE_LEVELS == 5 */ static inline void p4d_clear(p4d_t *p4dp) { set_p4d(p4dp, native_make_p4d(0)); } static inline void set_pte_atomic(pte_t *ptep, pte_t pte) { set_pte(ptep, pte); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { set_pte(ptep, native_make_pte(0)); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, native_make_pmd(0)); } #define __HAVE_ARCH_START_CONTEXT_SWITCH static inline void arch_start_context_switch(struct task_struct *prev) { PVOP_VCALL1(cpu.start_context_switch, prev); } static inline void arch_end_context_switch(struct task_struct *next) { PVOP_VCALL1(cpu.end_context_switch, next); } #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE static inline void arch_enter_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.enter); } static inline void arch_leave_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.leave); } static inline void arch_flush_lazy_mmu_mode(void) { PVOP_VCALL0(mmu.lazy_mode.flush); } static inline void __set_fixmap(unsigned /* enum fixed_addresses */ idx, phys_addr_t phys, pgprot_t flags) { pv_ops.mmu.set_fixmap(idx, phys, flags); } #endif #if defined(CONFIG_SMP) && defined(CONFIG_PARAVIRT_SPINLOCKS) static __always_inline void pv_queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) { PVOP_VCALL2(lock.queued_spin_lock_slowpath, lock, val); } static __always_inline void pv_queued_spin_unlock(struct qspinlock *lock) { PVOP_VCALLEE1(lock.queued_spin_unlock, lock); } static __always_inline void pv_wait(u8 *ptr, u8 val) { PVOP_VCALL2(lock.wait, ptr, val); } static __always_inline void pv_kick(int cpu) { PVOP_VCALL1(lock.kick, cpu); } static __always_inline bool pv_vcpu_is_preempted(long cpu) { return PVOP_CALLEE1(bool, lock.vcpu_is_preempted, cpu); } void __raw_callee_save___native_queued_spin_unlock(struct qspinlock *lock); bool __raw_callee_save___native_vcpu_is_preempted(long cpu); #endif /* SMP && PARAVIRT_SPINLOCKS */ #ifdef CONFIG_X86_32 /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS "pushl %ecx;" #define PV_RESTORE_ALL_CALLER_REGS "popl %ecx;" #else /* save and restore all caller-save registers, except return value */ #define PV_SAVE_ALL_CALLER_REGS \ "push %rcx;" \ "push %rdx;" \ "push %rsi;" \ "push %rdi;" \ "push %r8;" \ "push %r9;" \ "push %r10;" \ "push %r11;" #define PV_RESTORE_ALL_CALLER_REGS \ "pop %r11;"