1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ #ifndef __LINUX_OVERFLOW_H #define __LINUX_OVERFLOW_H #include <linux/compiler.h> #include <linux/limits.h> /* * In the fallback code below, we need to compute the minimum and * maximum values representable in a given type. These macros may also * be useful elsewhere, so we provide them outside the * COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW block. * * It would seem more obvious to do something like * * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0) * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0) * * Unfortunately, the middle expressions, strictly speaking, have * undefined behaviour, and at least some versions of gcc warn about * the type_max expression (but not if -fsanitize=undefined is in * effect; in that case, the warning is deferred to runtime...). * * The slightly excessive casting in type_min is to make sure the * macros also produce sensible values for the exotic type _Bool. [The * overflow checkers only almost work for _Bool, but that's * a-feature-not-a-bug, since people shouldn't be doing arithmetic on * _Bools. Besides, the gcc builtins don't allow _Bool* as third * argument.] * * Idea stolen from * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html - * credit to Christian Biere. */ #define is_signed_type(type) (((type)(-1)) < (type)1) #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type))) #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T))) #define type_min(T) ((T)((T)-type_max(T)-(T)1)) /* * Avoids triggering -Wtype-limits compilation warning, * while using unsigned data types to check a < 0. */ #define is_non_negative(a) ((a) > 0 || (a) == 0) #define is_negative(a) (!(is_non_negative(a))) /* * Allows for effectively applying __must_check to a macro so we can have * both the type-agnostic benefits of the macros while also being able to * enforce that the return value is, in fact, checked. */ static inline bool __must_check __must_check_overflow(bool overflow) { return unlikely(overflow); } #ifdef COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW /* * For simplicity and code hygiene, the fallback code below insists on * a, b and *d having the same type (similar to the min() and max() * macros), whereas gcc's type-generic overflow checkers accept * different types. Hence we don't just make check_add_overflow an * alias for __builtin_add_overflow, but add type checks similar to * below. */ #define check_add_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_add_overflow(__a, __b, __d); \ })) #define check_sub_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_sub_overflow(__a, __b, __d); \ })) #define check_mul_overflow(a, b, d) __must_check_overflow(({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ __builtin_mul_overflow(__a, __b, __d); \ })) #else /* Checking for unsigned overflow is relatively easy without causing UB. */ #define __unsigned_add_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a + __b; \ *__d < __a; \ }) #define __unsigned_sub_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a - __b; \ __a < __b; \ }) /* * If one of a or b is a compile-time constant, this avoids a division. */ #define __unsigned_mul_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = __a * __b; \ __builtin_constant_p(__b) ? \ __b > 0 && __a > type_max(typeof(__a)) / __b : \ __a > 0 && __b > type_max(typeof(__b)) / __a; \ }) /* * For signed types, detecting overflow is much harder, especially if * we want to avoid UB. But the interface of these macros is such that * we must provide a result in *d, and in fact we must produce the * result promised by gcc's builtins, which is simply the possibly * wrapped-around value. Fortunately, we can just formally do the * operations in the widest relevant unsigned type (u64) and then * truncate the result - gcc is smart enough to generate the same code * with and without the (u64) casts. */ /* * Adding two signed integers can overflow only if they have the same * sign, and overflow has happened iff the result has the opposite * sign. */ #define __signed_add_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a + (u64)__b; \ (((~(__a ^ __b)) & (*__d ^ __a)) \ & type_min(typeof(__a))) != 0; \ }) /* * Subtraction is similar, except that overflow can now happen only * when the signs are opposite. In this case, overflow has happened if * the result has the opposite sign of a. */ #define __signed_sub_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a - (u64)__b; \ ((((__a ^ __b)) & (*__d ^ __a)) \ & type_min(typeof(__a))) != 0; \ }) /* * Signed multiplication is rather hard. gcc always follows C99, so * division is truncated towards 0. This means that we can write the * overflow check like this: * * (a > 0 && (b > MAX/a || b < MIN/a)) || * (a < -1 && (b > MIN/a || b < MAX/a) || * (a == -1 && b == MIN) * * The redundant casts of -1 are to silence an annoying -Wtype-limits * (included in -Wextra) warning: When the type is u8 or u16, the * __b_c_e in check_mul_overflow obviously selects * __unsigned_mul_overflow, but unfortunately gcc still parses this * code and warns about the limited range of __b. */ #define __signed_mul_overflow(a, b, d) ({ \ typeof(a) __a = (a); \ typeof(b) __b = (b); \ typeof(d) __d = (d); \ typeof(a) __tmax = type_max(typeof(a)); \ typeof(a) __tmin = type_min(typeof(a)); \ (void) (&__a == &__b); \ (void) (&__a == __d); \ *__d = (u64)__a * (u64)__b; \ (__b > 0 && (__a > __tmax/__b || __a < __tmin/__b)) || \ (__b < (typeof(__b))-1 && (__a > __tmin/__b || __a < __tmax/__b)) || \ (__b == (typeof(__b))-1 && __a == __tmin); \ }) #define check_add_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_add_overflow(a, b, d), \ __unsigned_add_overflow(a, b, d))) #define check_sub_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_sub_overflow(a, b, d), \ __unsigned_sub_overflow(a, b, d))) #define check_mul_overflow(a, b, d) __must_check_overflow( \ __builtin_choose_expr(is_signed_type(typeof(a)), \ __signed_mul_overflow(a, b, d), \ __unsigned_mul_overflow(a, b, d))) #endif /* COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW */ /** check_shl_overflow() - Calculate a left-shifted value and check overflow * * @a: Value to be shifted * @s: How many bits left to shift * @d: Pointer to where to store the result * * Computes *@d = (@a << @s) * * Returns true if '*d' cannot hold the result or when 'a << s' doesn't * make sense. Example conditions: * - 'a << s' causes bits to be lost when stored in *d. * - 's' is garbage (e.g. negative) or so large that the result of * 'a << s' is guaranteed to be 0. * - 'a' is negative. * - 'a << s' sets the sign bit, if any, in '*d'. * * '*d' will hold the results of the attempted shift, but is not * considered "safe for use" if false is returned. */ #define check_shl_overflow(a, s, d) __must_check_overflow(({ \ typeof(a) _a = a; \ typeof(s) _s = s; \ typeof(d) _d = d; \ u64 _a_full = _a; \ unsigned int _to_shift = \ is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \ *_d = (_a_full << _to_shift); \ (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \ (*_d >> _to_shift) != _a); \ })) /** * array_size() - Calculate size of 2-dimensional array. * * @a: dimension one * @b: dimension two * * Calculates size of 2-dimensional array: @a * @b. * * Returns: number of bytes needed to represent the array or SIZE_MAX on * overflow. */ static inline __must_check size_t array_size(size_t a, size_t b) { size_t bytes; if (check_mul_overflow(a, b, &bytes)) return SIZE_MAX; return bytes; } /** * array3_size() - Calculate size of 3-dimensional array. * * @a: dimension one * @b: dimension two * @c: dimension three * * Calculates size of 3-dimensional array: @a * @b * @c. * * Returns: number of bytes needed to represent the array or SIZE_MAX on * overflow. */ static inline __must_check size_t array3_size(size_t a, size_t b, size_t c) { size_t bytes; if (check_mul_overflow(a, b, &bytes)) return SIZE_MAX; if (check_mul_overflow(bytes, c, &bytes)) return SIZE_MAX; return bytes; } /* * Compute a*b+c, returning SIZE_MAX on overflow. Internal helper for * struct_size() below. */ static inline __must_check size_t __ab_c_size(size_t a, size_t b, size_t c) { size_t bytes; if (check_mul_overflow(a, b, &bytes)) return SIZE_MAX; if (check_add_overflow(bytes, c, &bytes)) return SIZE_MAX; return bytes; } /** * struct_size() - Calculate size of structure with trailing array. * @p: Pointer to the structure. * @member: Name of the array member. * @count: Number of elements in the array. * * Calculates size of memory needed for structure @p followed by an * array of @count number of @member elements. * * Return: number of bytes needed or SIZE_MAX on overflow. */ #define struct_size(p, member, count) \ __ab_c_size(count, \ sizeof(*(p)->member) + __must_be_array((p)->member),\ sizeof(*(p))) /** * flex_array_size() - Calculate size of a flexible array member * within an enclosing structure. * * @p: Pointer to the structure. * @member: Name of the flexible array member. * @count: Number of elements in the array. * * Calculates size of a flexible array of @count number of @member * elements, at the end of structure @p. * * Return: number of bytes needed or SIZE_MAX on overflow. */ #define flex_array_size(p, member, count) \ array_size(count, \ sizeof(*(p)->member) + __must_be_array((p)->member)) #endif /* __LINUX_OVERFLOW_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Asymmetric Public-key cryptography key type interface * * See Documentation/crypto/asymmetric-keys.rst * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _KEYS_ASYMMETRIC_TYPE_H #define _KEYS_ASYMMETRIC_TYPE_H #include <linux/key-type.h> #include <linux/verification.h> extern struct key_type key_type_asymmetric; /* * The key payload is four words. The asymmetric-type key uses them as * follows: */ enum asymmetric_payload_bits { asym_crypto, /* The data representing the key */ asym_subtype, /* Pointer to an asymmetric_key_subtype struct */ asym_key_ids, /* Pointer to an asymmetric_key_ids struct */ asym_auth /* The key's authorisation (signature, parent key ID) */ }; /* * Identifiers for an asymmetric key ID. We have three ways of looking up a * key derived from an X.509 certificate: * * (1) Serial Number & Issuer. Non-optional. This is the only valid way to * map a PKCS#7 signature to an X.509 certificate. * * (2) Issuer & Subject Unique IDs. Optional. These were the original way to * match X.509 certificates, but have fallen into disuse in favour of (3). * * (3) Auth & Subject Key Identifiers. Optional. SKIDs are only provided on * CA keys that are intended to sign other keys, so don't appear in end * user certificates unless forced. * * We could also support an PGP key identifier, which is just a SHA1 sum of the * public key and certain parameters, but since we don't support PGP keys at * the moment, we shall ignore those. * * What we actually do is provide a place where binary identifiers can be * stashed and then compare against them when checking for an id match. */ struct asymmetric_key_id { unsigned short len; unsigned char data[]; }; struct asymmetric_key_ids { void *id[2]; }; extern bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1, const struct asymmetric_key_id *kid2); extern bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1, const struct asymmetric_key_id *kid2); extern struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1, size_t len_1, const void *val_2, size_t len_2); static inline const struct asymmetric_key_ids *asymmetric_key_ids(const struct key *key) { return key->payload.data[asym_key_ids]; } extern struct key *find_asymmetric_key(struct key *keyring, const struct asymmetric_key_id *id_0, const struct asymmetric_key_id *id_1, bool partial); /* * The payload is at the discretion of the subtype. */ #endif /* _KEYS_ASYMMETRIC_TYPE_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 // SPDX-License-Identifier: GPL-2.0-only #include <crypto/hash.h> #include <linux/export.h> #include <linux/bvec.h> #include <linux/fault-inject-usercopy.h> #include <linux/uio.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/splice.h> #include <linux/compat.h> #include <net/checksum.h> #include <linux/scatterlist.h> #include <linux/instrumented.h> #define PIPE_PARANOIA /* for now */ #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ size_t left; \ size_t wanted = n; \ __p = i->iov; \ __v.iov_len = min(n, __p->iov_len - skip); \ if (likely(__v.iov_len)) { \ __v.iov_base = __p->iov_base + skip; \ left = (STEP); \ __v.iov_len -= left; \ skip += __v.iov_len; \ n -= __v.iov_len; \ } else { \ left = 0; \ } \ while (unlikely(!left && n)) { \ __p++; \ __v.iov_len = min(n, __p->iov_len); \ if (unlikely(!__v.iov_len)) \ continue; \ __v.iov_base = __p->iov_base; \ left = (STEP); \ __v.iov_len -= left; \ skip = __v.iov_len; \ n -= __v.iov_len; \ } \ n = wanted - n; \ } #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ size_t wanted = n; \ __p = i->kvec; \ __v.iov_len = min(n, __p->iov_len - skip); \ if (likely(__v.iov_len)) { \ __v.iov_base = __p->iov_base + skip; \ (void)(STEP); \ skip += __v.iov_len; \ n -= __v.iov_len; \ } \ while (unlikely(n)) { \ __p++; \ __v.iov_len = min(n, __p->iov_len); \ if (unlikely(!__v.iov_len)) \ continue; \ __v.iov_base = __p->iov_base; \ (void)(STEP); \ skip = __v.iov_len; \ n -= __v.iov_len; \ } \ n = wanted; \ } #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ struct bvec_iter __start; \ __start.bi_size = n; \ __start.bi_bvec_done = skip; \ __start.bi_idx = 0; \ for_each_bvec(__v, i->bvec, __bi, __start) { \ if (!__v.bv_len) \ continue; \ (void)(STEP); \ } \ } #define iterate_all_kinds(i, n, v, I, B, K) { \ if (likely(n)) { \ size_t skip = i->iov_offset; \ if (unlikely(i->type & ITER_BVEC)) { \ struct bio_vec v; \ struct bvec_iter __bi; \ iterate_bvec(i, n, v, __bi, skip, (B)) \ } else if (unlikely(i->type & ITER_KVEC)) { \ const struct kvec *kvec; \ struct kvec v; \ iterate_kvec(i, n, v, kvec, skip, (K)) \ } else if (unlikely(i->type & ITER_DISCARD)) { \ } else { \ const struct iovec *iov; \ struct iovec v; \ iterate_iovec(i, n, v, iov, skip, (I)) \ } \ } \ } #define iterate_and_advance(i, n, v, I, B, K) { \ if (unlikely(i->count < n)) \ n = i->count; \ if (i->count) { \ size_t skip = i->iov_offset; \ if (unlikely(i->type & ITER_BVEC)) { \ const struct bio_vec *bvec = i->bvec; \ struct bio_vec v; \ struct bvec_iter __bi; \ iterate_bvec(i, n, v, __bi, skip, (B)) \ i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ i->nr_segs -= i->bvec - bvec; \ skip = __bi.bi_bvec_done; \ } else if (unlikely(i->type & ITER_KVEC)) { \ const struct kvec *kvec; \ struct kvec v; \ iterate_kvec(i, n, v, kvec, skip, (K)) \ if (skip == kvec->iov_len) { \ kvec++; \ skip = 0; \ } \ i->nr_segs -= kvec - i->kvec; \ i->kvec = kvec; \ } else if (unlikely(i->type & ITER_DISCARD)) { \ skip += n; \ } else { \ const struct iovec *iov; \ struct iovec v; \ iterate_iovec(i, n, v, iov, skip, (I)) \ if (skip == iov->iov_len) { \ iov++; \ skip = 0; \ } \ i->nr_segs -= iov - i->iov; \ i->iov = iov; \ } \ i->count -= n; \ i->iov_offset = skip; \ } \ } static int copyout(void __user *to, const void *from, size_t n) { if (should_fail_usercopy()) return n; if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } static int copyin(void *to, const void __user *from, size_t n) { if (should_fail_usercopy()) return n; if (access_ok(from, n)) { instrument_copy_from_user(to, from, n); n = raw_copy_from_user(to, from, n); } return n; } static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *from; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { kaddr = kmap_atomic(page); from = kaddr + offset; /* first chunk, usually the only one */ left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = from - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); from = kaddr + offset; left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *to; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { kaddr = kmap_atomic(page); to = kaddr + offset; /* first chunk, usually the only one */ left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = to - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); to = kaddr + offset; left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } #ifdef PIPE_PARANOIA static bool sanity(const struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_head = pipe->head; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int p_occupancy = pipe_occupancy(p_head, p_tail); unsigned int i_head = i->head; unsigned int idx; if (i->iov_offset) { struct pipe_buffer *p; if (unlikely(p_occupancy == 0)) goto Bad; // pipe must be non-empty if (unlikely(i_head != p_head - 1)) goto Bad; // must be at the last buffer... p = &pipe->bufs[i_head & p_mask]; if (unlikely(p->offset + p->len != i->iov_offset)) goto Bad; // ... at the end of segment } else { if (i_head != p_head) goto Bad; // must be right after the last buffer } return true; Bad: printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset); printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n", p_head, p_tail, pipe->ring_size); for (idx = 0; idx < pipe->ring_size; idx++) printk(KERN_ERR "[%p %p %d %d]\n", pipe->bufs[idx].ops, pipe->bufs[idx].page, pipe->bufs[idx].offset, pipe->bufs[idx].len); WARN_ON(1); return false; } #else #define sanity(i) true #endif static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; struct pipe_buffer *buf; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; if (!sanity(i)) return 0; off = i->iov_offset; buf = &pipe->bufs[i_head & p_mask]; if (off) { if (offset == off && buf->page == page) { /* merge with the last one */ buf->len += bytes; i->iov_offset += bytes; goto out; } i_head++; buf = &pipe->bufs[i_head & p_mask]; } if (pipe_full(i_head, p_tail, pipe->max_usage)) return 0; buf->ops = &page_cache_pipe_buf_ops; get_page(page); buf->page = page; buf->offset = offset; buf->len = bytes; pipe->head = i_head + 1; i->iov_offset = offset + bytes; i->head = i_head; out: i->count -= bytes; return bytes; } /* * Fault in one or more iovecs of the given iov_iter, to a maximum length of * bytes. For each iovec, fault in each page that constitutes the iovec. * * Return 0 on success, or non-zero if the memory could not be accessed (i.e. * because it is an invalid address). */ int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) { size_t skip = i->iov_offset; const struct iovec *iov; int err; struct iovec v; if (iter_is_iovec(i)) { iterate_iovec(i, bytes, v, iov, skip, ({ err = fault_in_pages_readable(v.iov_base, v.iov_len); if (unlikely(err)) return err; 0;})) } return 0; } EXPORT_SYMBOL(iov_iter_fault_in_readable); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); direction &= READ | WRITE; /* It will get better. Eventually... */ if (uaccess_kernel()) { i->type = ITER_KVEC | direction; i->kvec = (struct kvec *)iov; } else { i->type = ITER_IOVEC | direction; i->iov = iov; } i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_init); static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) { char *from = kmap_atomic(page); memcpy(to, from + offset, len); kunmap_atomic(from); } static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) { char *to = kmap_atomic(page); memcpy(to + offset, from, len); kunmap_atomic(to); } static void memzero_page(struct page *page, size_t offset, size_t len) { char *addr = kmap_atomic(page); memset(addr + offset, 0, len); kunmap_atomic(addr); } static inline bool allocated(struct pipe_buffer *buf) { return buf->ops == &default_pipe_buf_ops; } static inline void data_start(const struct iov_iter *i, unsigned int *iter_headp, size_t *offp) { unsigned int p_mask = i->pipe->ring_size - 1; unsigned int iter_head = i->head; size_t off = i->iov_offset; if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) || off == PAGE_SIZE)) { iter_head++; off = 0; } *iter_headp = iter_head; *offp = off; } static size_t push_pipe(struct iov_iter *i, size_t size, int *iter_headp, size_t *offp) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_tail = pipe->tail; unsigned int p_mask = pipe->ring_size - 1; unsigned int iter_head; size_t off; ssize_t left; if (unlikely(size > i->count)) size = i->count; if (unlikely(!size)) return 0; left = size; data_start(i, &iter_head, &off); *iter_headp = iter_head; *offp = off; if (off) { left -= PAGE_SIZE - off; if (left <= 0) { pipe->bufs[iter_head & p_mask].len += size; return size; } pipe->bufs[iter_head & p_mask].len = PAGE_SIZE; iter_head++; } while (!pipe_full(iter_head, p_tail, pipe->max_usage)) { struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask]; struct page *page = alloc_page(GFP_USER); if (!page) break; buf->ops = &default_pipe_buf_ops; buf->page = page; buf->offset = 0; buf->len = min_t(ssize_t, left, PAGE_SIZE); left -= buf->len; iter_head++; pipe->head = iter_head; if (left == 0) return size; } return size - left; } static size_t copy_pipe_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk); i->head = i_head; i->iov_offset = off + chunk; n -= chunk; addr += chunk; off = 0; i_head++; } while (n); i->count -= bytes; return bytes; } static __wsum csum_and_memcpy(void *to, const void *from, size_t len, __wsum sum, size_t off) { __wsum next = csum_partial_copy_nocheck(from, to, len); return csum_block_add(sum, next, off); } static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, struct csum_state *csstate, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; __wsum sum = csstate->csum; size_t off = csstate->off; unsigned int i_head; size_t n, r; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &r); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - r); char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page); sum = csum_and_memcpy(p + r, addr, chunk, sum, off); kunmap_atomic(p); i->head = i_head; i->iov_offset = r + chunk; n -= chunk; off += chunk; addr += chunk; r = 0; i_head++; } while (n); i->count -= bytes; csstate->csum = sum; csstate->off = off; return bytes; } size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { const char *from = addr; if (unlikely(iov_iter_is_pipe(i))) return copy_pipe_to_iter(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), memcpy_to_page(v.bv_page, v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len), memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_to_iter); #ifdef CONFIG_ARCH_HAS_COPY_MC static int copyout_mc(void __user *to, const void *from, size_t n) { if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = copy_mc_to_user((__force void *) to, from, n); } return n; } static unsigned long copy_mc_to_page(struct page *page, size_t offset, const char *from, size_t len) { unsigned long ret; char *to; to = kmap_atomic(page); ret = copy_mc_to_kernel(to + offset, from, len); kunmap_atomic(to); return ret; } static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off, xfer = 0; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); unsigned long rem; rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk); i->head = i_head; i->iov_offset = off + chunk - rem; xfer += chunk - rem; if (rem) break; n -= chunk; addr += chunk; off = 0; i_head++; } while (n); i->count -= xfer; return xfer; } /** * _copy_mc_to_iter - copy to iter with source memory error exception handling * @addr: source kernel address * @bytes: total transfer length * @iter: destination iterator * * The pmem driver deploys this for the dax operation * (dax_copy_to_iter()) for dax reads (bypass page-cache and the * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes * successfully copied. * * The main differences between this and typical _copy_to_iter(). * * * Typical tail/residue handling after a fault retries the copy * byte-by-byte until the fault happens again. Re-triggering machine * checks is potentially fatal so the implementation uses source * alignment and poison alignment assumptions to avoid re-triggering * hardware exceptions. * * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. * Compare to copy_to_iter() where only ITER_IOVEC attempts might return * a short copy. */ size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { const char *from = addr; unsigned long rem, curr_addr, s_addr = (unsigned long) addr; if (unlikely(iov_iter_is_pipe(i))) return copy_mc_pipe_to_iter(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), ({ rem = copy_mc_to_page(v.bv_page, v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len); if (rem) { curr_addr = (unsigned long) from; bytes = curr_addr - s_addr - rem; return bytes; } }), ({ rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len); if (rem) { curr_addr = (unsigned long) from; bytes = curr_addr - s_addr - rem; return bytes; } }) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_mc_to_iter); #endif /* CONFIG_ARCH_HAS_COPY_MC */ size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter); bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; if (iter_is_iovec(i)) might_fault(); iterate_all_kinds(i, bytes, v, ({ if (copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)) return false; 0;}), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(_copy_from_iter_full); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter_nocache); #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /** * _copy_from_iter_flushcache - write destination through cpu cache * @addr: destination kernel address * @bytes: total transfer length * @iter: source iterator * * The pmem driver arranges for filesystem-dax to use this facility via * dax_copy_from_iter() for ensuring that writes to persistent memory * are flushed through the CPU cache. It is differentiated from * _copy_from_iter_nocache() in that guarantees all data is flushed for * all iterator types. The _copy_from_iter_nocache() only attempts to * bypass the cache for the ITER_IOVEC case, and on some archs may use * instructions that strand dirty-data in the cache. */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); #endif bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; iterate_all_kinds(i, bytes, v, ({ if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)) return false; 0;}), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(_copy_from_iter_full_nocache); static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) { struct page *head; size_t v = n + offset; /* * The general case needs to access the page order in order * to compute the page size. * However, we mostly deal with order-0 pages and thus can * avoid a possible cache line miss for requests that fit all * page orders. */ if (n <= v && v <= PAGE_SIZE) return true; head = compound_head(page); v += (page - head) << PAGE_SHIFT; if (likely(n <= v && v <= (page_size(head)))) return true; WARN_ON(1); return false; } size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; if (i->type & (ITER_BVEC|ITER_KVEC)) { void *kaddr = kmap_atomic(page); size_t wanted = copy_to_iter(kaddr + offset, bytes, i); kunmap_atomic(kaddr); return wanted; } else if (unlikely(iov_iter_is_discard(i))) { if (unlikely(i->count < bytes)) bytes = i->count; i->count -= bytes; return bytes; } else if (likely(!iov_iter_is_pipe(i))) return copy_page_to_iter_iovec(page, offset, bytes, i); else return copy_page_to_iter_pipe(page, offset, bytes, i); } EXPORT_SYMBOL(copy_page_to_iter); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return 0; } if (i->type & (ITER_BVEC|ITER_KVEC)) { void *kaddr = kmap_atomic(page); size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); kunmap_atomic(kaddr); return wanted; } else return copy_page_from_iter_iovec(page, offset, bytes, i); } EXPORT_SYMBOL(copy_page_from_iter); static size_t pipe_zero(size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head; size_t n, off; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &i_head, &off); if (unlikely(!n)) return 0; do { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk); i->head = i_head; i->iov_offset = off + chunk; n -= chunk; off = 0; i_head++; } while (n); i->count -= bytes; return bytes; } size_t iov_iter_zero(size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return pipe_zero(bytes, i); iterate_and_advance(i, bytes, v, clear_user(v.iov_base, v.iov_len), memzero_page(v.bv_page, v.bv_offset, v.bv_len), memset(v.iov_base, 0, v.iov_len) ) return bytes; } EXPORT_SYMBOL(iov_iter_zero); size_t iov_iter_copy_from_user_atomic(struct page *page, struct iov_iter *i, unsigned long offset, size_t bytes) { char *kaddr = kmap_atomic(page), *p = kaddr + offset; if (unlikely(!page_copy_sane(page, offset, bytes))) { kunmap_atomic(kaddr); return 0; } if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { kunmap_atomic(kaddr); WARN_ON(1); return 0; } iterate_all_kinds(i, bytes, v, copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) kunmap_atomic(kaddr); return bytes; } EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); static inline void pipe_truncate(struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_tail = pipe->tail; unsigned int p_head = pipe->head; unsigned int p_mask = pipe->ring_size - 1; if (!pipe_empty(p_head, p_tail)) { struct pipe_buffer *buf; unsigned int i_head = i->head; size_t off = i->iov_offset; if (off) { buf = &pipe->bufs[i_head & p_mask]; buf->len = off - buf->offset; i_head++; } while (p_head != i_head) { p_head--; pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]); } pipe->head = p_head; } } static void pipe_advance(struct iov_iter *i, size_t size) { struct pipe_inode_info *pipe = i->pipe; if (unlikely(i->count < size)) size = i->count; if (size) { struct pipe_buffer *buf; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off = i->iov_offset, left = size; if (off) /* make it relative to the beginning of buffer */ left += off - pipe->bufs[i_head & p_mask].offset; while (1) { buf = &pipe->bufs[i_head & p_mask]; if (left <= buf->len) break; left -= buf->len; i_head++; } i->head = i_head; i->iov_offset = buf->offset + left; } i->count -= size; /* ... and discard everything past that point */ pipe_truncate(i); } void iov_iter_advance(struct iov_iter *i, size_t size) { if (unlikely(iov_iter_is_pipe(i))) { pipe_advance(i, size); return; } if (unlikely(iov_iter_is_discard(i))) { i->count -= size; return; } iterate_and_advance(i, size, v, 0, 0, 0) } EXPORT_SYMBOL(iov_iter_advance); void iov_iter_revert(struct iov_iter *i, size_t unroll) { if (!unroll) return; if (WARN_ON(unroll > MAX_RW_COUNT)) return; i->count += unroll; if (unlikely(iov_iter_is_pipe(i))) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; unsigned int i_head = i->head; size_t off = i->iov_offset; while (1) { struct pipe_buffer *b = &pipe->bufs[i_head & p_mask]; size_t n = off - b->offset; if (unroll < n) { off -= unroll; break; } unroll -= n; if (!unroll && i_head == i->start_head) { off = 0; break; } i_head--; b = &pipe->bufs[i_head & p_mask]; off = b->offset + b->len; } i->iov_offset = off; i->head = i_head; pipe_truncate(i); return; } if (unlikely(iov_iter_is_discard(i))) return; if (unroll <= i->iov_offset) { i->iov_offset -= unroll; return; } unroll -= i->iov_offset; if (iov_iter_is_bvec(i)) { const struct bio_vec *bvec = i->bvec; while (1) { size_t n = (--bvec)->bv_len; i->nr_segs++; if (unroll <= n) { i->bvec = bvec; i->iov_offset = n - unroll; return; } unroll -= n; } } else { /* same logics for iovec and kvec */ const struct iovec *iov = i->iov; while (1) { size_t n = (--iov)->iov_len; i->nr_segs++; if (unroll <= n) { i->iov = iov; i->iov_offset = n - unroll; return; } unroll -= n; } } } EXPORT_SYMBOL(iov_iter_revert); /* * Return the count of just the current iov_iter segment. */ size_t iov_iter_single_seg_count(const struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return i->count; // it is a silly place, anyway if (i->nr_segs == 1) return i->count; if (unlikely(iov_iter_is_discard(i))) return i->count; else if (iov_iter_is_bvec(i)) return min(i->count, i->bvec->bv_len - i->iov_offset); else return min(i->count, i->iov->iov_len - i->iov_offset); } EXPORT_SYMBOL(iov_iter_single_seg_count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); i->type = ITER_KVEC | (direction & (READ | WRITE)); i->kvec = kvec; i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_kvec); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); i->type = ITER_BVEC | (direction & (READ | WRITE)); i->bvec = bvec; i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_bvec); void iov_iter_pipe(struct iov_iter *i, unsigned int direction, struct pipe_inode_info *pipe, size_t count) { BUG_ON(direction != READ); WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size)); i->type = ITER_PIPE | READ; i->pipe = pipe; i->head = pipe->head; i->iov_offset = 0; i->count = count; i->start_head = i->head; } EXPORT_SYMBOL(iov_iter_pipe); /** * iov_iter_discard - Initialise an I/O iterator that discards data * @i: The iterator to initialise. * @direction: The direction of the transfer. * @count: The size of the I/O buffer in bytes. * * Set up an I/O iterator that just discards everything that's written to it. * It's only available as a READ iterator. */ void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) { BUG_ON(direction != READ); i->type = ITER_DISCARD | READ; i->count = count; i->iov_offset = 0; } EXPORT_SYMBOL(iov_iter_discard); unsigned long iov_iter_alignment(const struct iov_iter *i) { unsigned long res = 0; size_t size = i->count; if (unlikely(iov_iter_is_pipe(i))) { unsigned int p_mask = i->pipe->ring_size - 1; if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask])) return size | i->iov_offset; return size; } iterate_all_kinds(i, size, v, (res |= (unsigned long)v.iov_base | v.iov_len, 0), res |= v.bv_offset | v.bv_len, res |= (unsigned long)v.iov_base | v.iov_len ) return res; } EXPORT_SYMBOL(iov_iter_alignment); unsigned long iov_iter_gap_alignment(const struct iov_iter *i) { unsigned long res = 0; size_t size = i->count; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return ~0U; } iterate_all_kinds(i, size, v, (res |= (!res ? 0 : (unsigned long)v.iov_base) | (size != v.iov_len ? size : 0), 0), (res |= (!res ? 0 : (unsigned long)v.bv_offset) | (size != v.bv_len ? size : 0)), (res |= (!res ? 0 : (unsigned long)v.iov_base) | (size != v.iov_len ? size : 0)) ); return res; } EXPORT_SYMBOL(iov_iter_gap_alignment); static inline ssize_t __pipe_get_pages(struct iov_iter *i, size_t maxsize, struct page **pages, int iter_head, size_t *start) { struct pipe_inode_info *pipe = i->pipe; unsigned int p_mask = pipe->ring_size - 1; ssize_t n = push_pipe(i, maxsize, &iter_head, start); if (!n) return -EFAULT; maxsize = n; n += *start; while (n > 0) { get_page(*pages++ = pipe->bufs[iter_head & p_mask].page); iter_head++; n -= PAGE_SIZE; } return maxsize; } static ssize_t pipe_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { unsigned int iter_head, npages; size_t capacity; if (!maxsize) return 0; if (!sanity(i)) return -EFAULT; data_start(i, &iter_head, start); /* Amount of free space: some of this one + all after this one */ npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); capacity = min(npages, maxpages) * PAGE_SIZE - *start; return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start); } ssize_t iov_iter_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { if (maxsize > i->count) maxsize = i->count; if (unlikely(iov_iter_is_pipe(i))) return pipe_get_pages(i, pages, maxsize, maxpages, start); if (unlikely(iov_iter_is_discard(i))) return -EFAULT; iterate_all_kinds(i, maxsize, v, ({ unsigned long addr = (unsigned long)v.iov_base; size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); int n; int res; if (len > maxpages * PAGE_SIZE) len = maxpages * PAGE_SIZE; addr &= ~(PAGE_SIZE - 1); n = DIV_ROUND_UP(len, PAGE_SIZE); res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, pages); if (unlikely(res <= 0)) return res; return (res == n ? len : res * PAGE_SIZE) - *start; 0;}),({ /* can't be more than PAGE_SIZE */ *start = v.bv_offset; get_page(*pages = v.bv_page); return v.bv_len; }),({ return -EFAULT; }) ) return 0; } EXPORT_SYMBOL(iov_iter_get_pages); static struct page **get_pages_array(size_t n) { return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); } static ssize_t pipe_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; unsigned int iter_head, npages; ssize_t n; if (!maxsize) return 0; if (!sanity(i)) return -EFAULT; data_start(i, &iter_head, start); /* Amount of free space: some of this one + all after this one */ npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe); n = npages * PAGE_SIZE - *start; if (maxsize > n) maxsize = n; else npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); p = get_pages_array(npages); if (!p) return -ENOMEM; n = __pipe_get_pages(i, maxsize, p, iter_head, start); if (n > 0) *pages = p; else kvfree(p); return n; } ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; if (maxsize > i->count) maxsize = i->count; if (unlikely(iov_iter_is_pipe(i))) return pipe_get_pages_alloc(i, pages, maxsize, start); if (unlikely(iov_iter_is_discard(i))) return -EFAULT; iterate_all_kinds(i, maxsize, v, ({ unsigned long addr = (unsigned long)v.iov_base; size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); int n; int res; addr &= ~(PAGE_SIZE - 1); n = DIV_ROUND_UP(len, PAGE_SIZE); p = get_pages_array(n); if (!p) return -ENOMEM; res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p); if (unlikely(res <= 0)) { kvfree(p); *pages = NULL; return res; } *pages = p; return (res == n ? len : res * PAGE_SIZE) - *start; 0;}),({ /* can't be more than PAGE_SIZE */ *start = v.bv_offset; *pages = p = get_pages_array(1); if (!p) return -ENOMEM; get_page(*p = v.bv_page); return v.bv_len; }),({ return -EFAULT; }) ) return 0; } EXPORT_SYMBOL(iov_iter_get_pages_alloc); size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { char *to = addr; __wsum sum, next; size_t off = 0; sum = *csum; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, ({ next = csum_and_copy_from_user(v.iov_base, (to += v.iov_len) - v.iov_len, v.iov_len); if (next) { sum = csum_block_add(sum, next, off); off += v.iov_len; } next ? 0 : v.iov_len; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, p + v.bv_offset, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len, sum, off); off += v.iov_len; }) ) *csum = sum; return bytes; } EXPORT_SYMBOL(csum_and_copy_from_iter); bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { char *to = addr; __wsum sum, next; size_t off = 0; sum = *csum; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; iterate_all_kinds(i, bytes, v, ({ next = csum_and_copy_from_user(v.iov_base, (to += v.iov_len) - v.iov_len, v.iov_len); if (!next) return false; sum = csum_block_add(sum, next, off); off += v.iov_len; 0; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, p + v.bv_offset, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len, sum, off); off += v.iov_len; }) ) *csum = sum; iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(csum_and_copy_from_iter_full); size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate, struct iov_iter *i) { struct csum_state *csstate = _csstate; const char *from = addr; __wsum sum, next; size_t off; if (unlikely(iov_iter_is_pipe(i))) return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i); sum = csstate->csum; off = csstate->off; if (unlikely(iov_iter_is_discard(i))) { WARN_ON(1); /* for now */ return 0; } iterate_and_advance(i, bytes, v, ({ next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, v.iov_base, v.iov_len); if (next) { sum = csum_block_add(sum, next, off); off += v.iov_len; } next ? 0 : v.iov_len; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy(p + v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len, sum, off); off += v.iov_len; }) ) csstate->csum = sum; csstate->off = off; return bytes; } EXPORT_SYMBOL(csum_and_copy_to_iter); size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, struct iov_iter *i) { #ifdef CONFIG_CRYPTO_HASH struct ahash_request *hash = hashp; struct scatterlist sg; size_t copied; copied = copy_to_iter(addr, bytes, i); sg_init_one(&sg, addr, copied); ahash_request_set_crypt(hash, &sg, NULL, copied); crypto_ahash_update(hash); return copied; #else return 0; #endif } EXPORT_SYMBOL(hash_and_copy_to_iter); int iov_iter_npages(const struct iov_iter *i, int maxpages) { size_t size = i->count; int npages = 0; if (!size) return 0; if (unlikely(iov_iter_is_discard(i))) return 0; if (unlikely(iov_iter_is_pipe(i))) { struct pipe_inode_info *pipe = i->pipe; unsigned int iter_head; size_t off; if (!sanity(i)) return 0; data_start(i, &iter_head, &off); /* some of this one + all after this one */ npages = pipe_space_for_user(iter_head, pipe->tail, pipe); if (npages >= maxpages) return maxpages; } else iterate_all_kinds(i, size, v, ({ unsigned long p = (unsigned long)v.iov_base; npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) - p / PAGE_SIZE; if (npages >= maxpages) return maxpages; 0;}),({ npages++; if (npages >= maxpages) return maxpages; }),({ unsigned long p = (unsigned long)v.iov_base; npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) - p / PAGE_SIZE; if (npages >= maxpages) return maxpages; }) ) return npages; } EXPORT_SYMBOL(iov_iter_npages); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) { *new = *old; if (unlikely(iov_iter_is_pipe(new))) { WARN_ON(1); return NULL; } if (unlikely(iov_iter_is_discard(new))) return NULL; if (iov_iter_is_bvec(new)) return new->bvec = kmemdup(new->bvec, new->nr_segs * sizeof(struct bio_vec), flags); else /* iovec and kvec have identical layout */ return new->iov = kmemdup(new->iov, new->nr_segs * sizeof(struct iovec), flags); } EXPORT_SYMBOL(dup_iter); static int copy_compat_iovec_from_user(struct iovec *iov, const struct iovec __user *uvec, unsigned long nr_segs) { const struct compat_iovec __user *uiov = (const struct compat_iovec __user *)uvec; int ret = -EFAULT, i; if (!user_access_begin(uiov, nr_segs * sizeof(*uiov))) return -EFAULT; for (i = 0; i < nr_segs; i++) { compat_uptr_t buf; compat_ssize_t len; unsafe_get_user(len, &uiov[i].iov_len, uaccess_end); unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end); /* check for compat_size_t not fitting in compat_ssize_t .. */ if (len < 0) { ret = -EINVAL; goto uaccess_end; } iov[i].iov_base = compat_ptr(buf); iov[i].iov_len = len; } ret = 0; uaccess_end: user_access_end(); return ret; } static int copy_iovec_from_user(struct iovec *iov, const struct iovec __user *uvec, unsigned long nr_segs) { unsigned long seg; if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec))) return -EFAULT; for (seg = 0; seg < nr_segs; seg++) { if ((ssize_t)iov[seg].iov_len < 0) return -EINVAL; } return 0; } struct iovec *iovec_from_user(const struct iovec __user *uvec, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat) { struct iovec *iov = fast_iov; int ret; /* * SuS says "The readv() function *may* fail if the iovcnt argument was * less than or equal to 0, or greater than {IOV_MAX}. Linux has * traditionally returned zero for zero segments, so... */ if (nr_segs == 0) return iov; if (nr_segs > UIO_MAXIOV) return ERR_PTR(-EINVAL); if (nr_segs > fast_segs) { iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL); if (!iov) return ERR_PTR(-ENOMEM); } if (compat) ret = copy_compat_iovec_from_user(iov, uvec, nr_segs); else ret = copy_iovec_from_user(iov, uvec, nr_segs); if (ret) { if (iov != fast_iov) kfree(iov); return ERR_PTR(ret); } return iov; } ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat) { ssize_t total_len = 0; unsigned long seg; struct iovec *iov; iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat); if (IS_ERR(iov)) { *iovp = NULL; return PTR_ERR(iov); } /* * According to the Single Unix Specification we should return EINVAL if * an element length is < 0 when cast to ssize_t or if the total length * would overflow the ssize_t return value of the system call. * * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the * overflow case. */ for (seg = 0; seg < nr_segs; seg++) { ssize_t len = (ssize_t)iov[seg].iov_len; if (!access_ok(iov[seg].iov_base, len)) { if (iov != *iovp) kfree(iov); *iovp = NULL; return -EFAULT; } if (len > MAX_RW_COUNT - total_len) { len = MAX_RW_COUNT - total_len; iov[seg].iov_len = len; } total_len += len; } iov_iter_init(i, type, iov, nr_segs, total_len); if (iov == *iovp) *iovp = NULL; else *iovp = iov; return total_len; } /** * import_iovec() - Copy an array of &struct iovec from userspace * into the kernel, check that it is valid, and initialize a new * &struct iov_iter iterator to access it. * * @type: One of %READ or %WRITE. * @uvec: Pointer to the userspace array. * @nr_segs: Number of elements in userspace array. * @fast_segs: Number of elements in @iov. * @iovp: (input and output parameter) Pointer to pointer to (usually small * on-stack) kernel array. * @i: Pointer to iterator that will be initialized on success. * * If the array pointed to by *@iov is large enough to hold all @nr_segs, * then this function places %NULL in *@iov on return. Otherwise, a new * array will be allocated and the result placed in *@iov. This means that * the caller may call kfree() on *@iov regardless of whether the small * on-stack array was used or not (and regardless of whether this function * returns an error or not). * * Return: Negative error code on error, bytes imported on success */ ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i) { return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i, in_compat_syscall()); } EXPORT_SYMBOL(import_iovec); int import_single_range(int rw, void __user *buf, size_t len, struct iovec *iov, struct iov_iter *i) { if (len > MAX_RW_COUNT) len = MAX_RW_COUNT; if (unlikely(!access_ok(buf, len))) return -EFAULT; iov->iov_base = buf; iov->iov_len = len; iov_iter_init(i, rw, iov, 1, len); return 0; } EXPORT_SYMBOL(import_single_range); int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, int (*f)(struct kvec *vec, void *context), void *context) { struct kvec w; int err = -EINVAL; if (!bytes) return 0; iterate_all_kinds(i, bytes, v, -EINVAL, ({ w.iov_base = kmap(v.bv_page) + v.bv_offset; w.iov_len = v.bv_len; err = f(&w, context); kunmap(v.bv_page); err;}), ({ w = v; err = f(&w, context);}) ) return err; } EXPORT_SYMBOL(iov_iter_for_each_range);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_H #define _LINUX_PID_H #include <linux/rculist.h> #include <linux/wait.h> #include <linux/refcount.h> enum pid_type { PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, PIDTYPE_SID, PIDTYPE_MAX, }; /* * What is struct pid? * * A struct pid is the kernel's internal notion of a process identifier. * It refers to individual tasks, process groups, and sessions. While * there are processes attached to it the struct pid lives in a hash * table, so it and then the processes that it refers to can be found * quickly from the numeric pid value. The attached processes may be * quickly accessed by following pointers from struct pid. * * Storing pid_t values in the kernel and referring to them later has a * problem. The process originally with that pid may have exited and the * pid allocator wrapped, and another process could have come along * and been assigned that pid. * * Referring to user space processes by holding a reference to struct * task_struct has a problem. When the user space process exits * the now useless task_struct is still kept. A task_struct plus a * stack consumes around 10K of low kernel memory. More precisely * this is THREAD_SIZE + sizeof(struct task_struct). By comparison * a struct pid is about 64 bytes. * * Holding a reference to struct pid solves both of these problems. * It is small so holding a reference does not consume a lot of * resources, and since a new struct pid is allocated when the numeric pid * value is reused (when pids wrap around) we don't mistakenly refer to new * processes. */ /* * struct upid is used to get the id of the struct pid, as it is * seen in particular namespace. Later the struct pid is found with * find_pid_ns() using the int nr and struct pid_namespace *ns. */ struct upid { int nr; struct pid_namespace *ns; }; struct pid { refcount_t count; unsigned int level; spinlock_t lock; /* lists of tasks that use this pid */ struct hlist_head tasks[PIDTYPE_MAX]; struct hlist_head inodes; /* wait queue for pidfd notifications */ wait_queue_head_t wait_pidfd; struct rcu_head rcu; struct upid numbers[1]; }; extern struct pid init_struct_pid; extern const struct file_operations pidfd_fops; struct file; extern struct pid *pidfd_pid(const struct file *file); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); static inline struct pid *get_pid(struct pid *pid) { if (pid) refcount_inc(&pid->count); return pid; } extern void put_pid(struct pid *pid); extern struct task_struct *pid_task(struct pid *pid, enum pid_type); static inline bool pid_has_task(struct pid *pid, enum pid_type type) { return !hlist_empty(&pid->tasks[type]); } extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); /* * these helpers must be called with the tasklist_lock write-held. */ extern void attach_pid(struct task_struct *task, enum pid_type); extern void detach_pid(struct task_struct *task, enum pid_type); extern void change_pid(struct task_struct *task, enum pid_type, struct pid *pid); extern void exchange_tids(struct task_struct *task, struct task_struct *old); extern void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type); struct pid_namespace; extern struct pid_namespace init_pid_ns; extern int pid_max; extern int pid_max_min, pid_max_max; /* * look up a PID in the hash table. Must be called with the tasklist_lock * or rcu_read_lock() held. * * find_pid_ns() finds the pid in the namespace specified * find_vpid() finds the pid by its virtual id, i.e. in the current namespace * * see also find_task_by_vpid() set in include/linux/sched.h */ extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); extern struct pid *find_vpid(int nr); /* * Lookup a PID in the hash table, and return with it's count elevated. */ extern struct pid *find_get_pid(int nr); extern struct pid *find_ge_pid(int nr, struct pid_namespace *); extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size); extern void free_pid(struct pid *pid); extern void disable_pid_allocation(struct pid_namespace *ns); /* * ns_of_pid() returns the pid namespace in which the specified pid was * allocated. * * NOTE: * ns_of_pid() is expected to be called for a process (task) that has * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid * is expected to be non-NULL. If @pid is NULL, caller should handle * the resulting NULL pid-ns. */ static inline struct pid_namespace *ns_of_pid(struct pid *pid) { struct pid_namespace *ns = NULL; if (pid) ns = pid->numbers[pid->level].ns; return ns; } /* * is_child_reaper returns true if the pid is the init process * of the current namespace. As this one could be checked before * pid_ns->child_reaper is assigned in copy_process, we check * with the pid number. */ static inline bool is_child_reaper(struct pid *pid) { return pid->numbers[pid->level].nr == 1; } /* * the helpers to get the pid's id seen from different namespaces * * pid_nr() : global id, i.e. the id seen from the init namespace; * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * pid_nr_ns() : id seen from the ns specified. * * see also task_xid_nr() etc in include/linux/sched.h */ static inline pid_t pid_nr(struct pid *pid) { pid_t nr = 0; if (pid) nr = pid->numbers[0].nr; return nr; } pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); pid_t pid_vnr(struct pid *pid); #define do_each_pid_task(pid, type, task) \ do { \ if ((pid) != NULL) \ hlist_for_each_entry_rcu((task), \ &(pid)->tasks[type], pid_links[type]) { /* * Both old and new leaders may be attached to * the same pid in the middle of de_thread(). */ #define while_each_pid_task(pid, type, task) \ if (type == PIDTYPE_PID) \ break; \ } \ } while (0) #define do_each_pid_thread(pid, type, task) \ do_each_pid_task(pid, type, task) { \ struct task_struct *tg___ = task; \ for_each_thread(tg___, task) { #define while_each_pid_thread(pid, type, task) \ } \ task = tg___; \ } while_each_pid_task(pid, type, task) #endif /* _LINUX_PID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Hash algorithms. * * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_HASH_H #define _CRYPTO_INTERNAL_HASH_H #include <crypto/algapi.h> #include <crypto/hash.h> struct ahash_request; struct scatterlist; struct crypto_hash_walk { char *data; unsigned int offset; unsigned int alignmask; struct page *pg; unsigned int entrylen; unsigned int total; struct scatterlist *sg; unsigned int flags; }; struct ahash_instance { void (*free)(struct ahash_instance *inst); union { struct { char head[offsetof(struct ahash_alg, halg.base)]; struct crypto_instance base; } s; struct ahash_alg alg; }; }; struct shash_instance { void (*free)(struct shash_instance *inst); union { struct { char head[offsetof(struct shash_alg, base)]; struct crypto_instance base; } s; struct shash_alg alg; }; }; struct crypto_ahash_spawn { struct crypto_spawn base; }; struct crypto_shash_spawn { struct crypto_spawn base; }; int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err); int crypto_hash_walk_first(struct ahash_request *req, struct crypto_hash_walk *walk); static inline int crypto_hash_walk_last(struct crypto_hash_walk *walk) { return !(walk->entrylen | walk->total); } int crypto_register_ahash(struct ahash_alg *alg); void crypto_unregister_ahash(struct ahash_alg *alg); int crypto_register_ahashes(struct ahash_alg *algs, int count); void crypto_unregister_ahashes(struct ahash_alg *algs, int count); int ahash_register_instance(struct crypto_template *tmpl, struct ahash_instance *inst); bool crypto_shash_alg_has_setkey(struct shash_alg *alg); static inline bool crypto_shash_alg_needs_key(struct shash_alg *alg) { return crypto_shash_alg_has_setkey(alg) && !(alg->base.cra_flags & CRYPTO_ALG_OPTIONAL_KEY); } bool crypto_hash_alg_has_setkey(struct hash_alg_common *halg); int crypto_grab_ahash(struct crypto_ahash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_ahash(struct crypto_ahash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct hash_alg_common *crypto_spawn_ahash_alg( struct crypto_ahash_spawn *spawn) { return __crypto_hash_alg_common(spawn->base.alg); } int crypto_register_shash(struct shash_alg *alg); void crypto_unregister_shash(struct shash_alg *alg); int crypto_register_shashes(struct shash_alg *algs, int count); void crypto_unregister_shashes(struct shash_alg *algs, int count); int shash_register_instance(struct crypto_template *tmpl, struct shash_instance *inst); void shash_free_singlespawn_instance(struct shash_instance *inst); int crypto_grab_shash(struct crypto_shash_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_shash(struct crypto_shash_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct shash_alg *crypto_spawn_shash_alg( struct crypto_shash_spawn *spawn) { return __crypto_shash_alg(spawn->base.alg); } int shash_ahash_update(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_finup(struct ahash_request *req, struct shash_desc *desc); int shash_ahash_digest(struct ahash_request *req, struct shash_desc *desc); int crypto_init_shash_ops_async(struct crypto_tfm *tfm); static inline void *crypto_ahash_ctx(struct crypto_ahash *tfm) { return crypto_tfm_ctx(crypto_ahash_tfm(tfm)); } static inline struct ahash_alg *__crypto_ahash_alg(struct crypto_alg *alg) { return container_of(__crypto_hash_alg_common(alg), struct ahash_alg, halg); } static inline void crypto_ahash_set_reqsize(struct crypto_ahash *tfm, unsigned int reqsize) { tfm->reqsize = reqsize; } static inline struct crypto_instance *ahash_crypto_instance( struct ahash_instance *inst) { return &inst->s.base; } static inline struct ahash_instance *ahash_instance( struct crypto_instance *inst) { return container_of(inst, struct ahash_instance, s.base); } static inline struct ahash_instance *ahash_alg_instance( struct crypto_ahash *ahash) { return ahash_instance(crypto_tfm_alg_instance(&ahash->base)); } static inline void *ahash_instance_ctx(struct ahash_instance *inst) { return crypto_instance_ctx(ahash_crypto_instance(inst)); } static inline void ahash_request_complete(struct ahash_request *req, int err) { req->base.complete(&req->base, err); } static inline u32 ahash_request_flags(struct ahash_request *req) { return req->base.flags; } static inline struct crypto_ahash *crypto_spawn_ahash( struct crypto_ahash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline int ahash_enqueue_request(struct crypto_queue *queue, struct ahash_request *request) { return crypto_enqueue_request(queue, &request->base); } static inline struct ahash_request *ahash_dequeue_request( struct crypto_queue *queue) { return ahash_request_cast(crypto_dequeue_request(queue)); } static inline void *crypto_shash_ctx(struct crypto_shash *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline struct crypto_instance *shash_crypto_instance( struct shash_instance *inst) { return &inst->s.base; } static inline struct shash_instance *shash_instance( struct crypto_instance *inst) { return container_of(inst, struct shash_instance, s.base); } static inline struct shash_instance *shash_alg_instance( struct crypto_shash *shash) { return shash_instance(crypto_tfm_alg_instance(&shash->base)); } static inline void *shash_instance_ctx(struct shash_instance *inst) { return crypto_instance_ctx(shash_crypto_instance(inst)); } static inline struct crypto_shash *crypto_spawn_shash( struct crypto_shash_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void *crypto_shash_ctx_aligned(struct crypto_shash *tfm) { return crypto_tfm_ctx_aligned(&tfm->base); } static inline struct crypto_shash *__crypto_shash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_shash, base); } #endif /* _CRYPTO_INTERNAL_HASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2016 Qualcomm Atheros, Inc * * Based on net/sched/sch_fq_codel.c */ #ifndef __NET_SCHED_FQ_IMPL_H #define __NET_SCHED_FQ_IMPL_H #include <net/fq.h> /* functions that are embedded into includer */ static void fq_adjust_removal(struct fq *fq, struct fq_flow *flow, struct sk_buff *skb) { struct fq_tin *tin = flow->tin; tin->backlog_bytes -= skb->len; tin->backlog_packets--; flow->backlog -= skb->len; fq->backlog--; fq->memory_usage -= skb->truesize; } static void fq_rejigger_backlog(struct fq *fq, struct fq_flow *flow) { struct fq_flow *i; if (flow->backlog == 0) { list_del_init(&flow->backlogchain); } else { i = flow; list_for_each_entry_continue(i, &fq->backlogs, backlogchain) if (i->backlog < flow->backlog) break; list_move_tail(&flow->backlogchain, &i->backlogchain); } } static struct sk_buff *fq_flow_dequeue(struct fq *fq, struct fq_flow *flow) { struct sk_buff *skb; lockdep_assert_held(&fq->lock); skb = __skb_dequeue(&flow->queue); if (!skb) return NULL; fq_adjust_removal(fq, flow, skb); fq_rejigger_backlog(fq, flow); return skb; } static struct sk_buff *fq_tin_dequeue(struct fq *fq, struct fq_tin *tin, fq_tin_dequeue_t dequeue_func) { struct fq_flow *flow; struct list_head *head; struct sk_buff *skb; lockdep_assert_held(&fq->lock); begin: head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) return NULL; } flow = list_first_entry(head, struct fq_flow, flowchain); if (flow->deficit <= 0) { flow->deficit += fq->quantum; list_move_tail(&flow->flowchain, &tin->old_flows); goto begin; } skb = dequeue_func(fq, tin, flow); if (!skb) { /* force a pass through old_flows to prevent starvation */ if ((head == &tin->new_flows) && !list_empty(&tin->old_flows)) { list_move_tail(&flow->flowchain, &tin->old_flows); } else { list_del_init(&flow->flowchain); flow->tin = NULL; } goto begin; } flow->deficit -= skb->len; tin->tx_bytes += skb->len; tin->tx_packets++; return skb; } static u32 fq_flow_idx(struct fq *fq, struct sk_buff *skb) { u32 hash = skb_get_hash(skb); return reciprocal_scale(hash, fq->flows_cnt); } static struct fq_flow *fq_flow_classify(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); flow = &fq->flows[idx]; if (flow->tin && flow->tin != tin) { flow = get_default_func(fq, tin, idx, skb); tin->collisions++; fq->collisions++; } if (!flow->tin) tin->flows++; return flow; } static void fq_recalc_backlog(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct fq_flow *i; if (list_empty(&flow->backlogchain)) list_add_tail(&flow->backlogchain, &fq->backlogs); i = flow; list_for_each_entry_continue_reverse(i, &fq->backlogs, backlogchain) if (i->backlog > flow->backlog) break; list_move(&flow->backlogchain, &i->backlogchain); } static void fq_tin_enqueue(struct fq *fq, struct fq_tin *tin, u32 idx, struct sk_buff *skb, fq_skb_free_t free_func, fq_flow_get_default_t get_default_func) { struct fq_flow *flow; bool oom; lockdep_assert_held(&fq->lock); flow = fq_flow_classify(fq, tin, idx, skb, get_default_func); flow->tin = tin; flow->backlog += skb->len; tin->backlog_bytes += skb->len; tin->backlog_packets++; fq->memory_usage += skb->truesize; fq->backlog++; fq_recalc_backlog(fq, tin, flow); if (list_empty(&flow->flowchain)) { flow->deficit = fq->quantum; list_add_tail(&flow->flowchain, &tin->new_flows); } __skb_queue_tail(&flow->queue, skb); oom = (fq->memory_usage > fq->memory_limit); while (fq->backlog > fq->limit || oom) { flow = list_first_entry_or_null(&fq->backlogs, struct fq_flow, backlogchain); if (!flow) return; skb = fq_flow_dequeue(fq, flow); if (!skb) return; free_func(fq, flow->tin, flow, skb); flow->tin->overlimit++; fq->overlimit++; if (oom) { fq->overmemory++; oom = (fq->memory_usage > fq->memory_limit); } } } static void fq_flow_filter(struct fq *fq, struct fq_flow *flow, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_tin *tin = flow->tin; struct sk_buff *skb, *tmp; lockdep_assert_held(&fq->lock); skb_queue_walk_safe(&flow->queue, skb, tmp) { if (!filter_func(fq, tin, flow, skb, filter_data)) continue; __skb_unlink(skb, &flow->queue); fq_adjust_removal(fq, flow, skb); free_func(fq, tin, flow, skb); } fq_rejigger_backlog(fq, flow); } static void fq_tin_filter(struct fq *fq, struct fq_tin *tin, fq_skb_filter_t filter_func, void *filter_data, fq_skb_free_t free_func) { struct fq_flow *flow; lockdep_assert_held(&fq->lock); list_for_each_entry(flow, &tin->new_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); list_for_each_entry(flow, &tin->old_flows, flowchain) fq_flow_filter(fq, flow, filter_func, filter_data, free_func); } static void fq_flow_reset(struct fq *fq, struct fq_flow *flow, fq_skb_free_t free_func) { struct sk_buff *skb; while ((skb = fq_flow_dequeue(fq, flow))) free_func(fq, flow->tin, flow, skb); if (!list_empty(&flow->flowchain)) list_del_init(&flow->flowchain); if (!list_empty(&flow->backlogchain)) list_del_init(&flow->backlogchain); flow->tin = NULL; WARN_ON_ONCE(flow->backlog); } static void fq_tin_reset(struct fq *fq, struct fq_tin *tin, fq_skb_free_t free_func) { struct list_head *head; struct fq_flow *flow; for (;;) { head = &tin->new_flows; if (list_empty(head)) { head = &tin->old_flows; if (list_empty(head)) break; } flow = list_first_entry(head, struct fq_flow, flowchain); fq_flow_reset(fq, flow, free_func); } WARN_ON_ONCE(tin->backlog_bytes); WARN_ON_ONCE(tin->backlog_packets); } static void fq_flow_init(struct fq_flow *flow) { INIT_LIST_HEAD(&flow->flowchain); INIT_LIST_HEAD(&flow->backlogchain); __skb_queue_head_init(&flow->queue); } static void fq_tin_init(struct fq_tin *tin) { INIT_LIST_HEAD(&tin->new_flows); INIT_LIST_HEAD(&tin->old_flows); } static int fq_init(struct fq *fq, int flows_cnt) { int i; memset(fq, 0, sizeof(fq[0])); INIT_LIST_HEAD(&fq->backlogs); spin_lock_init(&fq->lock); fq->flows_cnt = max_t(u32, flows_cnt, 1); fq->quantum = 300; fq->limit = 8192; fq->memory_limit = 16 << 20; /* 16 MBytes */ fq->flows = kvcalloc(fq->flows_cnt, sizeof(fq->flows[0]), GFP_KERNEL); if (!fq->flows) return -ENOMEM; for (i = 0; i < fq->flows_cnt; i++) fq_flow_init(&fq->flows[i]); return 0; } static void fq_reset(struct fq *fq, fq_skb_free_t free_func) { int i; for (i = 0; i < fq->flows_cnt; i++) fq_flow_reset(fq, &fq->flows[i], free_func); kvfree(fq->flows); fq->flows = NULL; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0 */ /* * A security identifier table (sidtab) is a lookup table * of security context structures indexed by SID value. * * Original author: Stephen Smalley, <sds@tycho.nsa.gov> * Author: Ondrej Mosnacek, <omosnacek@gmail.com> * * Copyright (C) 2018 Red Hat, Inc. */ #ifndef _SS_SIDTAB_H_ #define _SS_SIDTAB_H_ #include <linux/spinlock_types.h> #include <linux/log2.h> #include <linux/hashtable.h> #include "context.h" struct sidtab_entry { u32 sid; u32 hash; struct context context; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 struct sidtab_str_cache __rcu *cache; #endif struct hlist_node list; }; union sidtab_entry_inner { struct sidtab_node_inner *ptr_inner; struct sidtab_node_leaf *ptr_leaf; }; /* align node size to page boundary */ #define SIDTAB_NODE_ALLOC_SHIFT PAGE_SHIFT #define SIDTAB_NODE_ALLOC_SIZE PAGE_SIZE #define size_to_shift(size) ((size) == 1 ? 1 : (const_ilog2((size) - 1) + 1)) #define SIDTAB_INNER_SHIFT \ (SIDTAB_NODE_ALLOC_SHIFT - size_to_shift(sizeof(union sidtab_entry_inner))) #define SIDTAB_INNER_ENTRIES ((size_t)1 << SIDTAB_INNER_SHIFT) #define SIDTAB_LEAF_ENTRIES \ (SIDTAB_NODE_ALLOC_SIZE / sizeof(struct sidtab_entry)) #define SIDTAB_MAX_BITS 32 #define SIDTAB_MAX U32_MAX /* ensure enough tree levels for SIDTAB_MAX entries */ #define SIDTAB_MAX_LEVEL \ DIV_ROUND_UP(SIDTAB_MAX_BITS - size_to_shift(SIDTAB_LEAF_ENTRIES), \ SIDTAB_INNER_SHIFT) struct sidtab_node_leaf { struct sidtab_entry entries[SIDTAB_LEAF_ENTRIES]; }; struct sidtab_node_inner { union sidtab_entry_inner entries[SIDTAB_INNER_ENTRIES]; }; struct sidtab_isid_entry { int set; struct sidtab_entry entry; }; struct sidtab_convert_params { int (*func)(struct context *oldc, struct context *newc, void *args); void *args; struct sidtab *target; }; #define SIDTAB_HASH_BITS CONFIG_SECURITY_SELINUX_SIDTAB_HASH_BITS #define SIDTAB_HASH_BUCKETS (1 << SIDTAB_HASH_BITS) struct sidtab { /* * lock-free read access only for as many items as a prior read of * 'count' */ union sidtab_entry_inner roots[SIDTAB_MAX_LEVEL + 1]; /* * access atomically via {READ|WRITE}_ONCE(); only increment under * spinlock */ u32 count; /* access only under spinlock */ struct sidtab_convert_params *convert; bool frozen; spinlock_t lock; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 /* SID -> context string cache */ u32 cache_free_slots; struct list_head cache_lru_list; spinlock_t cache_lock; #endif /* index == SID - 1 (no entry for SECSID_NULL) */ struct sidtab_isid_entry isids[SECINITSID_NUM]; /* Hash table for fast reverse context-to-sid lookups. */ DECLARE_HASHTABLE(context_to_sid, SIDTAB_HASH_BITS); }; int sidtab_init(struct sidtab *s); int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context); struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid); struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid); static inline struct context *sidtab_search(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry(s, sid); return entry ? &entry->context : NULL; } static inline struct context *sidtab_search_force(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry_force(s, sid); return entry ? &entry->context : NULL; } int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params); void sidtab_cancel_convert(struct sidtab *s); void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock); void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock); int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid); void sidtab_destroy(struct sidtab *s); int sidtab_hash_stats(struct sidtab *sidtab, char *page); #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len); int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len); #else static inline void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len) { } static inline int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len) { return -ENOENT; } #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */ #endif /* _SS_SIDTAB_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/nmi.h */ #ifndef LINUX_NMI_H #define LINUX_NMI_H #include <linux/sched.h> #include <asm/irq.h> #if defined(CONFIG_HAVE_NMI_WATCHDOG) #include <asm/nmi.h> #endif #ifdef CONFIG_LOCKUP_DETECTOR void lockup_detector_init(void); void lockup_detector_soft_poweroff(void); void lockup_detector_cleanup(void); bool is_hardlockup(void); extern int watchdog_user_enabled; extern int nmi_watchdog_user_enabled; extern int soft_watchdog_user_enabled; extern int watchdog_thresh; extern unsigned long watchdog_enabled; extern struct cpumask watchdog_cpumask; extern unsigned long *watchdog_cpumask_bits; #ifdef CONFIG_SMP extern int sysctl_softlockup_all_cpu_backtrace; extern int sysctl_hardlockup_all_cpu_backtrace; #else #define sysctl_softlockup_all_cpu_backtrace 0 #define sysctl_hardlockup_all_cpu_backtrace 0 #endif /* !CONFIG_SMP */ #else /* CONFIG_LOCKUP_DETECTOR */ static inline void lockup_detector_init(void) { } static inline void lockup_detector_soft_poweroff(void) { } static inline void lockup_detector_cleanup(void) { } #endif /* !CONFIG_LOCKUP_DETECTOR */ #ifdef CONFIG_SOFTLOCKUP_DETECTOR extern void touch_softlockup_watchdog_sched(void); extern void touch_softlockup_watchdog(void); extern void touch_softlockup_watchdog_sync(void); extern void touch_all_softlockup_watchdogs(void); extern unsigned int softlockup_panic; extern int lockup_detector_online_cpu(unsigned int cpu); extern int lockup_detector_offline_cpu(unsigned int cpu); #else /* CONFIG_SOFTLOCKUP_DETECTOR */ static inline void touch_softlockup_watchdog_sched(void) { } static inline void touch_softlockup_watchdog(void) { } static inline void touch_softlockup_watchdog_sync(void) { } static inline void touch_all_softlockup_watchdogs(void) { } #define lockup_detector_online_cpu NULL #define lockup_detector_offline_cpu NULL #endif /* CONFIG_SOFTLOCKUP_DETECTOR */ #ifdef CONFIG_DETECT_HUNG_TASK void reset_hung_task_detector(void); #else static inline void reset_hung_task_detector(void) { } #endif /* * The run state of the lockup detectors is controlled by the content of the * 'watchdog_enabled' variable. Each lockup detector has its dedicated bit - * bit 0 for the hard lockup detector and bit 1 for the soft lockup detector. * * 'watchdog_user_enabled', 'nmi_watchdog_user_enabled' and * 'soft_watchdog_user_enabled' are variables that are only used as an * 'interface' between the parameters in /proc/sys/kernel and the internal * state bits in 'watchdog_enabled'. The 'watchdog_thresh' variable is * handled differently because its value is not boolean, and the lockup * detectors are 'suspended' while 'watchdog_thresh' is equal zero. */ #define NMI_WATCHDOG_ENABLED_BIT 0 #define SOFT_WATCHDOG_ENABLED_BIT 1 #define NMI_WATCHDOG_ENABLED (1 << NMI_WATCHDOG_ENABLED_BIT) #define SOFT_WATCHDOG_ENABLED (1 << SOFT_WATCHDOG_ENABLED_BIT) #if defined(CONFIG_HARDLOCKUP_DETECTOR) extern void hardlockup_detector_disable(void); extern unsigned int hardlockup_panic; #else static inline void hardlockup_detector_disable(void) {} #endif #if defined(CONFIG_HAVE_NMI_WATCHDOG) || defined(CONFIG_HARDLOCKUP_DETECTOR) # define NMI_WATCHDOG_SYSCTL_PERM 0644 #else # define NMI_WATCHDOG_SYSCTL_PERM 0444 #endif #if defined(CONFIG_HARDLOCKUP_DETECTOR_PERF) extern void arch_touch_nmi_watchdog(void); extern void hardlockup_detector_perf_stop(void); extern void hardlockup_detector_perf_restart(void); extern void hardlockup_detector_perf_disable(void); extern void hardlockup_detector_perf_enable(void); extern void hardlockup_detector_perf_cleanup(void); extern int hardlockup_detector_perf_init(void); #else static inline void hardlockup_detector_perf_stop(void) { } static inline void hardlockup_detector_perf_restart(void) { } static inline void hardlockup_detector_perf_disable(void) { } static inline void hardlockup_detector_perf_enable(void) { } static inline void hardlockup_detector_perf_cleanup(void) { } # if !defined(CONFIG_HAVE_NMI_WATCHDOG) static inline int hardlockup_detector_perf_init(void) { return -ENODEV; } static inline void arch_touch_nmi_watchdog(void) {} # else static inline int hardlockup_detector_perf_init(void) { return 0; } # endif #endif void watchdog_nmi_stop(void); void watchdog_nmi_start(void); int watchdog_nmi_probe(void); int watchdog_nmi_enable(unsigned int cpu); void watchdog_nmi_disable(unsigned int cpu); /** * touch_nmi_watchdog - restart NMI watchdog timeout. * * If the architecture supports the NMI watchdog, touch_nmi_watchdog() * may be used to reset the timeout - for code which intentionally * disables interrupts for a long time. This call is stateless. */ static inline void touch_nmi_watchdog(void) { arch_touch_nmi_watchdog(); touch_softlockup_watchdog(); } /* * Create trigger_all_cpu_backtrace() out of the arch-provided * base function. Return whether such support was available, * to allow calling code to fall back to some other mechanism: */ #ifdef arch_trigger_cpumask_backtrace static inline bool trigger_all_cpu_backtrace(void) { arch_trigger_cpumask_backtrace(cpu_online_mask, false); return true; } static inline bool trigger_allbutself_cpu_backtrace(void) { arch_trigger_cpumask_backtrace(cpu_online_mask, true); return true; } static inline bool trigger_cpumask_backtrace(struct cpumask *mask) { arch_trigger_cpumask_backtrace(mask, false); return true; } static inline bool trigger_single_cpu_backtrace(int cpu) { arch_trigger_cpumask_backtrace(cpumask_of(cpu), false); return true; } /* generic implementation */ void nmi_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self, void (*raise)(cpumask_t *mask)); bool nmi_cpu_backtrace(struct pt_regs *regs); #else static inline bool trigger_all_cpu_backtrace(void) { return false; } static inline bool trigger_allbutself_cpu_backtrace(void) { return false; } static inline bool trigger_cpumask_backtrace(struct cpumask *mask) { return false; } static inline bool trigger_single_cpu_backtrace(int cpu) { return false; } #endif #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF u64 hw_nmi_get_sample_period(int watchdog_thresh); #endif #if defined(CONFIG_HARDLOCKUP_CHECK_TIMESTAMP) && \ defined(CONFIG_HARDLOCKUP_DETECTOR) void watchdog_update_hrtimer_threshold(u64 period); #else static inline void watchdog_update_hrtimer_threshold(u64 period) { } #endif struct ctl_table; int proc_watchdog(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_nmi_watchdog(struct ctl_table *, int , void *, size_t *, loff_t *); int proc_soft_watchdog(struct ctl_table *, int , void *, size_t *, loff_t *); int proc_watchdog_thresh(struct ctl_table *, int , void *, size_t *, loff_t *); int proc_watchdog_cpumask(struct ctl_table *, int, void *, size_t *, loff_t *); #ifdef CONFIG_HAVE_ACPI_APEI_NMI #include <asm/nmi.h> #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __INCLUDE_LINUX_OOM_H #define __INCLUDE_LINUX_OOM_H #include <linux/sched/signal.h> #include <linux/types.h> #include <linux/nodemask.h> #include <uapi/linux/oom.h> #include <linux/sched/coredump.h> /* MMF_* */ #include <linux/mm.h> /* VM_FAULT* */ struct zonelist; struct notifier_block; struct mem_cgroup; struct task_struct; enum oom_constraint { CONSTRAINT_NONE, CONSTRAINT_CPUSET, CONSTRAINT_MEMORY_POLICY, CONSTRAINT_MEMCG, }; /* * Details of the page allocation that triggered the oom killer that are used to * determine what should be killed. */ struct oom_control { /* Used to determine cpuset */ struct zonelist *zonelist; /* Used to determine mempolicy */ nodemask_t *nodemask; /* Memory cgroup in which oom is invoked, or NULL for global oom */ struct mem_cgroup *memcg; /* Used to determine cpuset and node locality requirement */ const gfp_t gfp_mask; /* * order == -1 means the oom kill is required by sysrq, otherwise only * for display purposes. */ const int order; /* Used by oom implementation, do not set */ unsigned long totalpages; struct task_struct *chosen; long chosen_points; /* Used to print the constraint info. */ enum oom_constraint constraint; }; extern struct mutex oom_lock; extern struct mutex oom_adj_mutex; static inline void set_current_oom_origin(void) { current->signal->oom_flag_origin = true; } static inline void clear_current_oom_origin(void) { current->signal->oom_flag_origin = false; } static inline bool oom_task_origin(const struct task_struct *p) { return p->signal->oom_flag_origin; } static inline bool tsk_is_oom_victim(struct task_struct * tsk) { return tsk->signal->oom_mm; } /* * Use this helper if tsk->mm != mm and the victim mm needs a special * handling. This is guaranteed to stay true after once set. */ static inline bool mm_is_oom_victim(struct mm_struct *mm) { return test_bit(MMF_OOM_VICTIM, &mm->flags); } /* * Checks whether a page fault on the given mm is still reliable. * This is no longer true if the oom reaper started to reap the * address space which is reflected by MMF_UNSTABLE flag set in * the mm. At that moment any !shared mapping would lose the content * and could cause a memory corruption (zero pages instead of the * original content). * * User should call this before establishing a page table entry for * a !shared mapping and under the proper page table lock. * * Return 0 when the PF is safe VM_FAULT_SIGBUS otherwise. */ static inline vm_fault_t check_stable_address_space(struct mm_struct *mm) { if (unlikely(test_bit(MMF_UNSTABLE, &mm->flags))) return VM_FAULT_SIGBUS; return 0; } bool __oom_reap_task_mm(struct mm_struct *mm); long oom_badness(struct task_struct *p, unsigned long totalpages); extern bool out_of_memory(struct oom_control *oc); extern void exit_oom_victim(void); extern int register_oom_notifier(struct notifier_block *nb); extern int unregister_oom_notifier(struct notifier_block *nb); extern bool oom_killer_disable(signed long timeout); extern void oom_killer_enable(void); extern struct task_struct *find_lock_task_mm(struct task_struct *p); /* sysctls */ extern int sysctl_oom_dump_tasks; extern int sysctl_oom_kill_allocating_task; extern int sysctl_panic_on_oom; #endif /* _INCLUDE_LINUX_OOM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM x86_fpu #if !defined(_TRACE_FPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FPU_H #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(x86_fpu, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu), TP_STRUCT__entry( __field(struct fpu *, fpu) __field(bool, load_fpu) __field(u64, xfeatures) __field(u64, xcomp_bv) ), TP_fast_assign( __entry->fpu = fpu; __entry->load_fpu = test_thread_flag(TIF_NEED_FPU_LOAD); if (boot_cpu_has(X86_FEATURE_OSXSAVE)) { __entry->xfeatures = fpu->state.xsave.header.xfeatures; __entry->xcomp_bv = fpu->state.xsave.header.xcomp_bv; } ), TP_printk("x86/fpu: %p load: %d xfeatures: %llx xcomp_bv: %llx", __entry->fpu, __entry->load_fpu, __entry->xfeatures, __entry->xcomp_bv ) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_activated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_deactivated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_init_state, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_dropped, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_src, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_dst, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_xstate_check_failed, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/trace/ #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE fpu #endif /* _TRACE_FPU_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rpm #if !defined(_TRACE_RUNTIME_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RUNTIME_POWER_H #include <linux/ktime.h> #include <linux/tracepoint.h> struct device; /* * The rpm_internal events are used for tracing some important * runtime pm internal functions. */ DECLARE_EVENT_CLASS(rpm_internal, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags), TP_STRUCT__entry( __string( name, dev_name(dev) ) __field( int, flags ) __field( int , usage_count ) __field( int , disable_depth ) __field( int , runtime_auto ) __field( int , request_pending ) __field( int , irq_safe ) __field( int , child_count ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->flags = flags; __entry->usage_count = atomic_read( &dev->power.usage_count); __entry->disable_depth = dev->power.disable_depth; __entry->runtime_auto = dev->power.runtime_auto; __entry->request_pending = dev->power.request_pending; __entry->irq_safe = dev->power.irq_safe; __entry->child_count = atomic_read( &dev->power.child_count); ), TP_printk("%s flags-%x cnt-%-2d dep-%-2d auto-%-1d p-%-1d" " irq-%-1d child-%d", __get_str(name), __entry->flags, __entry->usage_count, __entry->disable_depth, __entry->runtime_auto, __entry->request_pending, __entry->irq_safe, __entry->child_count ) ); DEFINE_EVENT(rpm_internal, rpm_suspend, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_resume, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_idle, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); DEFINE_EVENT(rpm_internal, rpm_usage, TP_PROTO(struct device *dev, int flags), TP_ARGS(dev, flags) ); TRACE_EVENT(rpm_return_int, TP_PROTO(struct device *dev, unsigned long ip, int ret), TP_ARGS(dev, ip, ret), TP_STRUCT__entry( __string( name, dev_name(dev)) __field( unsigned long, ip ) __field( int, ret ) ), TP_fast_assign( __assign_str(name, dev_name(dev)); __entry->ip = ip; __entry->ret = ret; ), TP_printk("%pS:%s ret=%d", (void *)__entry->ip, __get_str(name), __entry->ret) ); #endif /* _TRACE_RUNTIME_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Checksumming functions for IPv6 * * Authors: Jorge Cwik, <jorge@laser.satlink.net> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Borrows very liberally from tcp.c and ip.c, see those * files for more names. */ /* * Fixes: * * Ralf Baechle : generic ipv6 checksum * <ralf@waldorf-gmbh.de> */ #ifndef _CHECKSUM_IPV6_H #define _CHECKSUM_IPV6_H #include <asm/types.h> #include <asm/byteorder.h> #include <net/ip.h> #include <asm/checksum.h> #include <linux/in6.h> #include <linux/tcp.h> #include <linux/ipv6.h> #ifndef _HAVE_ARCH_IPV6_CSUM __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum); #endif static inline __wsum ip6_compute_pseudo(struct sk_buff *skb, int proto) { return ~csum_unfold(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, skb->len, proto, 0)); } static inline __wsum ip6_gro_compute_pseudo(struct sk_buff *skb, int proto) { const struct ipv6hdr *iph = skb_gro_network_header(skb); return ~csum_unfold(csum_ipv6_magic(&iph->saddr, &iph->daddr, skb_gro_len(skb), proto, 0)); } static __inline__ __sum16 tcp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_TCP, base); } static inline void __tcp_v6_send_check(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct tcphdr *th = tcp_hdr(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) { th->check = ~tcp_v6_check(skb->len, saddr, daddr, 0); skb->csum_start = skb_transport_header(skb) - skb->head; skb->csum_offset = offsetof(struct tcphdr, check); } else { th->check = tcp_v6_check(skb->len, saddr, daddr, csum_partial(th, th->doff << 2, skb->csum)); } } static inline void tcp_v6_gso_csum_prep(struct sk_buff *skb) { struct ipv6hdr *ipv6h = ipv6_hdr(skb); struct tcphdr *th = tcp_hdr(skb); ipv6h->payload_len = 0; th->check = ~tcp_v6_check(0, &ipv6h->saddr, &ipv6h->daddr, 0); } static inline __sum16 udp_v6_check(int len, const struct in6_addr *saddr, const struct in6_addr *daddr, __wsum base) { return csum_ipv6_magic(saddr, daddr, len, IPPROTO_UDP, base); } void udp6_set_csum(bool nocheck, struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int len); int udp6_csum_init(struct sk_buff *skb, struct udphdr *uh, int proto); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2006, Johannes Berg <johannes@sipsolutions.net> */ #include <linux/list.h> #include <linux/spinlock.h> #include <linux/leds.h> #include "ieee80211_i.h" #define MAC80211_BLINK_DELAY 50 /* ms */ static inline void ieee80211_led_rx(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_LEDS unsigned long led_delay = MAC80211_BLINK_DELAY; if (!atomic_read(&local->rx_led_active)) return; led_trigger_blink_oneshot(&local->rx_led, &led_delay, &led_delay, 0); #endif } static inline void ieee80211_led_tx(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_LEDS unsigned long led_delay = MAC80211_BLINK_DELAY; if (!atomic_read(&local->tx_led_active)) return; led_trigger_blink_oneshot(&local->tx_led, &led_delay, &led_delay, 0); #endif } #ifdef CONFIG_MAC80211_LEDS void ieee80211_led_assoc(struct ieee80211_local *local, bool associated); void ieee80211_led_radio(struct ieee80211_local *local, bool enabled); void ieee80211_alloc_led_names(struct ieee80211_local *local); void ieee80211_free_led_names(struct ieee80211_local *local); void ieee80211_led_init(struct ieee80211_local *local); void ieee80211_led_exit(struct ieee80211_local *local); void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off); #else static inline void ieee80211_led_assoc(struct ieee80211_local *local, bool associated) { } static inline void ieee80211_led_radio(struct ieee80211_local *local, bool enabled) { } static inline void ieee80211_alloc_led_names(struct ieee80211_local *local) { } static inline void ieee80211_free_led_names(struct ieee80211_local *local) { } static inline void ieee80211_led_init(struct ieee80211_local *local) { } static inline void ieee80211_led_exit(struct ieee80211_local *local) { } static inline void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off) { } #endif static inline void ieee80211_tpt_led_trig_tx(struct ieee80211_local *local, __le16 fc, int bytes) { #ifdef CONFIG_MAC80211_LEDS if (ieee80211_is_data(fc) && atomic_read(&local->tpt_led_active)) local->tpt_led_trigger->tx_bytes += bytes; #endif } static inline void ieee80211_tpt_led_trig_rx(struct ieee80211_local *local, __le16 fc, int bytes) { #ifdef CONFIG_MAC80211_LEDS if (ieee80211_is_data(fc) && atomic_read(&local->tpt_led_active)) local->tpt_led_trigger->rx_bytes += bytes; #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * inet6 interface/address list definitions * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> */ #ifndef _NET_IF_INET6_H #define _NET_IF_INET6_H #include <net/snmp.h> #include <linux/ipv6.h> #include <linux/refcount.h> /* inet6_dev.if_flags */ #define IF_RA_OTHERCONF 0x80 #define IF_RA_MANAGED 0x40 #define IF_RA_RCVD 0x20 #define IF_RS_SENT 0x10 #define IF_READY 0x80000000 /* prefix flags */ #define IF_PREFIX_ONLINK 0x01 #define IF_PREFIX_AUTOCONF 0x02 enum { INET6_IFADDR_STATE_PREDAD, INET6_IFADDR_STATE_DAD, INET6_IFADDR_STATE_POSTDAD, INET6_IFADDR_STATE_ERRDAD, INET6_IFADDR_STATE_DEAD, }; struct inet6_ifaddr { struct in6_addr addr; __u32 prefix_len; __u32 rt_priority; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 valid_lft; __u32 prefered_lft; refcount_t refcnt; spinlock_t lock; int state; __u32 flags; __u8 dad_probes; __u8 stable_privacy_retry; __u16 scope; __u64 dad_nonce; unsigned long cstamp; /* created timestamp */ unsigned long tstamp; /* updated timestamp */ struct delayed_work dad_work; struct inet6_dev *idev; struct fib6_info *rt; struct hlist_node addr_lst; struct list_head if_list; struct list_head tmp_list; struct inet6_ifaddr *ifpub; int regen_count; bool tokenized; struct rcu_head rcu; struct in6_addr peer_addr; }; struct ip6_sf_socklist { unsigned int sl_max; unsigned int sl_count; struct in6_addr sl_addr[]; }; #define IP6_SFLSIZE(count) (sizeof(struct ip6_sf_socklist) + \ (count) * sizeof(struct in6_addr)) #define IP6_SFBLOCK 10 /* allocate this many at once */ struct ipv6_mc_socklist { struct in6_addr addr; int ifindex; unsigned int sfmode; /* MCAST_{INCLUDE,EXCLUDE} */ struct ipv6_mc_socklist __rcu *next; rwlock_t sflock; struct ip6_sf_socklist *sflist; struct rcu_head rcu; }; struct ip6_sf_list { struct ip6_sf_list *sf_next; struct in6_addr sf_addr; unsigned long sf_count[2]; /* include/exclude counts */ unsigned char sf_gsresp; /* include in g & s response? */ unsigned char sf_oldin; /* change state */ unsigned char sf_crcount; /* retrans. left to send */ }; #define MAF_TIMER_RUNNING 0x01 #define MAF_LAST_REPORTER 0x02 #define MAF_LOADED 0x04 #define MAF_NOREPORT 0x08 #define MAF_GSQUERY 0x10 struct ifmcaddr6 { struct in6_addr mca_addr; struct inet6_dev *idev; struct ifmcaddr6 *next; struct ip6_sf_list *mca_sources; struct ip6_sf_list *mca_tomb; unsigned int mca_sfmode; unsigned char mca_crcount; unsigned long mca_sfcount[2]; struct timer_list mca_timer; unsigned int mca_flags; int mca_users; refcount_t mca_refcnt; spinlock_t mca_lock; unsigned long mca_cstamp; unsigned long mca_tstamp; }; /* Anycast stuff */ struct ipv6_ac_socklist { struct in6_addr acl_addr; int acl_ifindex; struct ipv6_ac_socklist *acl_next; }; struct ifacaddr6 { struct in6_addr aca_addr; struct fib6_info *aca_rt; struct ifacaddr6 *aca_next; struct hlist_node aca_addr_lst; int aca_users; refcount_t aca_refcnt; unsigned long aca_cstamp; unsigned long aca_tstamp; struct rcu_head rcu; }; #define IFA_HOST IPV6_ADDR_LOOPBACK #define IFA_LINK IPV6_ADDR_LINKLOCAL #define IFA_SITE IPV6_ADDR_SITELOCAL struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry; DEFINE_SNMP_STAT(struct ipstats_mib, ipv6); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6_mib_device, icmpv6dev); DEFINE_SNMP_STAT_ATOMIC(struct icmpv6msg_mib_device, icmpv6msgdev); }; struct inet6_dev { struct net_device *dev; struct list_head addr_list; struct ifmcaddr6 *mc_list; struct ifmcaddr6 *mc_tomb; spinlock_t mc_lock; unsigned char mc_qrv; /* Query Robustness Variable */ unsigned char mc_gq_running; unsigned char mc_ifc_count; unsigned char mc_dad_count; unsigned long mc_v1_seen; /* Max time we stay in MLDv1 mode */ unsigned long mc_qi; /* Query Interval */ unsigned long mc_qri; /* Query Response Interval */ unsigned long mc_maxdelay; struct timer_list mc_gq_timer; /* general query timer */ struct timer_list mc_ifc_timer; /* interface change timer */ struct timer_list mc_dad_timer; /* dad complete mc timer */ struct ifacaddr6 *ac_list; rwlock_t lock; refcount_t refcnt; __u32 if_flags; int dead; u32 desync_factor; struct list_head tempaddr_list; struct in6_addr token; struct neigh_parms *nd_parms; struct ipv6_devconf cnf; struct ipv6_devstat stats; struct timer_list rs_timer; __s32 rs_interval; /* in jiffies */ __u8 rs_probes; unsigned long tstamp; /* ipv6InterfaceTable update timestamp */ struct rcu_head rcu; }; static inline void ipv6_eth_mc_map(const struct in6_addr *addr, char *buf) { /* * +-------+-------+-------+-------+-------+-------+ * | 33 | 33 | DST13 | DST14 | DST15 | DST16 | * +-------+-------+-------+-------+-------+-------+ */ buf[0]= 0x33; buf[1]= 0x33; memcpy(buf + 2, &addr->s6_addr32[3], sizeof(__u32)); } static inline void ipv6_arcnet_mc_map(const struct in6_addr *addr, char *buf) { buf[0] = 0x00; } static inline void ipv6_ib_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { unsigned char scope = broadcast[5] & 0xF; buf[0] = 0; /* Reserved */ buf[1] = 0xff; /* Multicast QPN */ buf[2] = 0xff; buf[3] = 0xff; buf[4] = 0xff; buf[5] = 0x10 | scope; /* scope from broadcast address */ buf[6] = 0x60; /* IPv6 signature */ buf[7] = 0x1b; buf[8] = broadcast[8]; /* P_Key */ buf[9] = broadcast[9]; memcpy(buf + 10, addr->s6_addr + 6, 10); } static inline int ipv6_ipgre_mc_map(const struct in6_addr *addr, const unsigned char *broadcast, char *buf) { if ((broadcast[0] | broadcast[1] | broadcast[2] | broadcast[3]) != 0) { memcpy(buf, broadcast, 4); } else { /* v4mapped? */ if ((addr->s6_addr32[0] | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x0000ffff))) != 0) return -EINVAL; memcpy(buf, &addr->s6_addr32[3], 4); } return 0; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAP_H #define _LINUX_SWAP_H #include <linux/spinlock.h> #include <linux/linkage.h> #include <linux/mmzone.h> #include <linux/list.h> #include <linux/memcontrol.h> #include <linux/sched.h> #include <linux/node.h> #include <linux/fs.h> #include <linux/atomic.h> #include <linux/page-flags.h> #include <asm/page.h> struct notifier_block; struct bio; struct pagevec; #define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */ #define SWAP_FLAG_PRIO_MASK 0x7fff #define SWAP_FLAG_PRIO_SHIFT 0 #define SWAP_FLAG_DISCARD 0x10000 /* enable discard for swap */ #define SWAP_FLAG_DISCARD_ONCE 0x20000 /* discard swap area at swapon-time */ #define SWAP_FLAG_DISCARD_PAGES 0x40000 /* discard page-clusters after use */ #define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \ SWAP_FLAG_DISCARD | SWAP_FLAG_DISCARD_ONCE | \ SWAP_FLAG_DISCARD_PAGES) #define SWAP_BATCH 64 static inline int current_is_kswapd(void) { return current->flags & PF_KSWAPD; } /* * MAX_SWAPFILES defines the maximum number of swaptypes: things which can * be swapped to. The swap type and the offset into that swap type are * encoded into pte's and into pgoff_t's in the swapcache. Using five bits * for the type means that the maximum number of swapcache pages is 27 bits * on 32-bit-pgoff_t architectures. And that assumes that the architecture packs * the type/offset into the pte as 5/27 as well. */ #define MAX_SWAPFILES_SHIFT 5 /* * Use some of the swap files numbers for other purposes. This * is a convenient way to hook into the VM to trigger special * actions on faults. */ /* * Unaddressable device memory support. See include/linux/hmm.h and * Documentation/vm/hmm.rst. Short description is we need struct pages for * device memory that is unaddressable (inaccessible) by CPU, so that we can * migrate part of a process memory to device memory. * * When a page is migrated from CPU to device, we set the CPU page table entry * to a special SWP_DEVICE_* entry. */ #ifdef CONFIG_DEVICE_PRIVATE #define SWP_DEVICE_NUM 2 #define SWP_DEVICE_WRITE (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM) #define SWP_DEVICE_READ (MAX_SWAPFILES+SWP_HWPOISON_NUM+SWP_MIGRATION_NUM+1) #else #define SWP_DEVICE_NUM 0 #endif /* * NUMA node memory migration support */ #ifdef CONFIG_MIGRATION #define SWP_MIGRATION_NUM 2 #define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM) #define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1) #else #define SWP_MIGRATION_NUM 0 #endif /* * Handling of hardware poisoned pages with memory corruption. */ #ifdef CONFIG_MEMORY_FAILURE #define SWP_HWPOISON_NUM 1 #define SWP_HWPOISON MAX_SWAPFILES #else #define SWP_HWPOISON_NUM 0 #endif #define MAX_SWAPFILES \ ((1 << MAX_SWAPFILES_SHIFT) - SWP_DEVICE_NUM - \ SWP_MIGRATION_NUM - SWP_HWPOISON_NUM) /* * Magic header for a swap area. The first part of the union is * what the swap magic looks like for the old (limited to 128MB) * swap area format, the second part of the union adds - in the * old reserved area - some extra information. Note that the first * kilobyte is reserved for boot loader or disk label stuff... * * Having the magic at the end of the PAGE_SIZE makes detecting swap * areas somewhat tricky on machines that support multiple page sizes. * For 2.5 we'll probably want to move the magic to just beyond the * bootbits... */ union swap_header { struct { char reserved[PAGE_SIZE - 10]; char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */ } magic; struct { char bootbits[1024]; /* Space for disklabel etc. */ __u32 version; __u32 last_page; __u32 nr_badpages; unsigned char sws_uuid[16]; unsigned char sws_volume[16]; __u32 padding[117]; __u32 badpages[1]; } info; }; /* * current->reclaim_state points to one of these when a task is running * memory reclaim */ struct reclaim_state { unsigned long reclaimed_slab; }; #ifdef __KERNEL__ struct address_space; struct sysinfo; struct writeback_control; struct zone; /* * A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of * disk blocks. A list of swap extents maps the entire swapfile. (Where the * term `swapfile' refers to either a blockdevice or an IS_REG file. Apart * from setup, they're handled identically. * * We always assume that blocks are of size PAGE_SIZE. */ struct swap_extent { struct rb_node rb_node; pgoff_t start_page; pgoff_t nr_pages; sector_t start_block; }; /* * Max bad pages in the new format.. */ #define MAX_SWAP_BADPAGES \ ((offsetof(union swap_header, magic.magic) - \ offsetof(union swap_header, info.badpages)) / sizeof(int)) enum { SWP_USED = (1 << 0), /* is slot in swap_info[] used? */ SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */ SWP_DISCARDABLE = (1 << 2), /* blkdev support discard */ SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */ SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */ SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */ SWP_BLKDEV = (1 << 6), /* its a block device */ SWP_ACTIVATED = (1 << 7), /* set after swap_activate success */ SWP_FS_OPS = (1 << 8), /* swapfile operations go through fs */ SWP_AREA_DISCARD = (1 << 9), /* single-time swap area discards */ SWP_PAGE_DISCARD = (1 << 10), /* freed swap page-cluster discards */ SWP_STABLE_WRITES = (1 << 11), /* no overwrite PG_writeback pages */ SWP_SYNCHRONOUS_IO = (1 << 12), /* synchronous IO is efficient */ SWP_VALID = (1 << 13), /* swap is valid to be operated on? */ /* add others here before... */ SWP_SCANNING = (1 << 14), /* refcount in scan_swap_map */ }; #define SWAP_CLUSTER_MAX 32UL #define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX /* Bit flag in swap_map */ #define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */ #define COUNT_CONTINUED 0x80 /* Flag swap_map continuation for full count */ /* Special value in first swap_map */ #define SWAP_MAP_MAX 0x3e /* Max count */ #define SWAP_MAP_BAD 0x3f /* Note page is bad */ #define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs */ /* Special value in each swap_map continuation */ #define SWAP_CONT_MAX 0x7f /* Max count */ /* * We use this to track usage of a cluster. A cluster is a block of swap disk * space with SWAPFILE_CLUSTER pages long and naturally aligns in disk. All * free clusters are organized into a list. We fetch an entry from the list to * get a free cluster. * * The data field stores next cluster if the cluster is free or cluster usage * counter otherwise. The flags field determines if a cluster is free. This is * protected by swap_info_struct.lock. */ struct swap_cluster_info { spinlock_t lock; /* * Protect swap_cluster_info fields * and swap_info_struct->swap_map * elements correspond to the swap * cluster */ unsigned int data:24; unsigned int flags:8; }; #define CLUSTER_FLAG_FREE 1 /* This cluster is free */ #define CLUSTER_FLAG_NEXT_NULL 2 /* This cluster has no next cluster */ #define CLUSTER_FLAG_HUGE 4 /* This cluster is backing a transparent huge page */ /* * We assign a cluster to each CPU, so each CPU can allocate swap entry from * its own cluster and swapout sequentially. The purpose is to optimize swapout * throughput. */ struct percpu_cluster { struct swap_cluster_info index; /* Current cluster index */ unsigned int next; /* Likely next allocation offset */ }; struct swap_cluster_list { struct swap_cluster_info head; struct swap_cluster_info tail; }; /* * The in-memory structure used to track swap areas. */ struct swap_info_struct { unsigned long flags; /* SWP_USED etc: see above */ signed short prio; /* swap priority of this type */ struct plist_node list; /* entry in swap_active_head */ signed char type; /* strange name for an index */ unsigned int max; /* extent of the swap_map */ unsigned char *swap_map; /* vmalloc'ed array of usage counts */ struct swap_cluster_info *cluster_info; /* cluster info. Only for SSD */ struct swap_cluster_list free_clusters; /* free clusters list */ unsigned int lowest_bit; /* index of first free in swap_map */ unsigned int highest_bit; /* index of last free in swap_map */ unsigned int pages; /* total of usable pages of swap */ unsigned int inuse_pages; /* number of those currently in use */ unsigned int cluster_next; /* likely index for next allocation */ unsigned int cluster_nr; /* countdown to next cluster search */ unsigned int __percpu *cluster_next_cpu; /*percpu index for next allocation */ struct percpu_cluster __percpu *percpu_cluster; /* per cpu's swap location */ struct rb_root swap_extent_root;/* root of the swap extent rbtree */ struct block_device *bdev; /* swap device or bdev of swap file */ struct file *swap_file; /* seldom referenced */ unsigned int old_block_size; /* seldom referenced */ #ifdef CONFIG_FRONTSWAP unsigned long *frontswap_map; /* frontswap in-use, one bit per page */ atomic_t frontswap_pages; /* frontswap pages in-use counter */ #endif spinlock_t lock; /* * protect map scan related fields like * swap_map, lowest_bit, highest_bit, * inuse_pages, cluster_next, * cluster_nr, lowest_alloc, * highest_alloc, free/discard cluster * list. other fields are only changed * at swapon/swapoff, so are protected * by swap_lock. changing flags need * hold this lock and swap_lock. If * both locks need hold, hold swap_lock * first. */ spinlock_t cont_lock; /* * protect swap count continuation page * list. */ struct work_struct discard_work; /* discard worker */ struct swap_cluster_list discard_clusters; /* discard clusters list */ struct plist_node avail_lists[]; /* * entries in swap_avail_heads, one * entry per node. * Must be last as the number of the * array is nr_node_ids, which is not * a fixed value so have to allocate * dynamically. * And it has to be an array so that * plist_for_each_* can work. */ }; #ifdef CONFIG_64BIT #define SWAP_RA_ORDER_CEILING 5 #else /* Avoid stack overflow, because we need to save part of page table */ #define SWAP_RA_ORDER_CEILING 3 #define SWAP_RA_PTE_CACHE_SIZE (1 << SWAP_RA_ORDER_CEILING) #endif struct vma_swap_readahead { unsigned short win; unsigned short offset; unsigned short nr_pte; #ifdef CONFIG_64BIT pte_t *ptes; #else pte_t ptes[SWAP_RA_PTE_CACHE_SIZE]; #endif }; /* linux/mm/workingset.c */ void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages); void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg); void workingset_refault(struct page *page, void *shadow); void workingset_activation(struct page *page); /* Only track the nodes of mappings with shadow entries */ void workingset_update_node(struct xa_node *node); #define mapping_set_update(xas, mapping) do { \ if (!dax_mapping(mapping) && !shmem_mapping(mapping)) \ xas_set_update(xas, workingset_update_node); \ } while (0) /* linux/mm/page_alloc.c */ extern unsigned long totalreserve_pages; extern unsigned long nr_free_buffer_pages(void); /* Definition of global_zone_page_state not available yet */ #define nr_free_pages() global_zone_page_state(NR_FREE_PAGES) /* linux/mm/swap.c */ extern void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages); extern void lru_note_cost_page(struct page *); extern void lru_cache_add(struct page *); extern void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec, struct list_head *head); extern void mark_page_accessed(struct page *); extern void lru_add_drain(void); extern void lru_add_drain_cpu(int cpu); extern void lru_add_drain_cpu_zone(struct zone *zone); extern void lru_add_drain_all(void); extern void rotate_reclaimable_page(struct page *page); extern void deactivate_file_page(struct page *page); extern void deactivate_page(struct page *page); extern void mark_page_lazyfree(struct page *page); extern void swap_setup(void); extern void lru_cache_add_inactive_or_unevictable(struct page *page, struct vm_area_struct *vma); /* linux/mm/vmscan.c */ extern unsigned long zone_reclaimable_pages(struct zone *zone); extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *mask); extern int __isolate_lru_page(struct page *page, isolate_mode_t mode); extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, unsigned long nr_pages, gfp_t gfp_mask, bool may_swap); extern unsigned long mem_cgroup_shrink_node(struct mem_cgroup *mem, gfp_t gfp_mask, bool noswap, pg_data_t *pgdat, unsigned long *nr_scanned); extern unsigned long shrink_all_memory(unsigned long nr_pages); extern int vm_swappiness; extern int remove_mapping(struct address_space *mapping, struct page *page); extern unsigned long reclaim_pages(struct list_head *page_list); #ifdef CONFIG_NUMA extern int node_reclaim_mode; extern int sysctl_min_unmapped_ratio; extern int sysctl_min_slab_ratio; #else #define node_reclaim_mode 0 #endif extern void check_move_unevictable_pages(struct pagevec *pvec); extern int kswapd_run(int nid); extern void kswapd_stop(int nid); #ifdef CONFIG_SWAP #include <linux/blk_types.h> /* for bio_end_io_t */ /* linux/mm/page_io.c */ extern int swap_readpage(struct page *page, bool do_poll); extern int swap_writepage(struct page *page, struct writeback_control *wbc); extern void end_swap_bio_write(struct bio *bio); extern int __swap_writepage(struct page *page, struct writeback_control *wbc, bio_end_io_t end_write_func); extern int swap_set_page_dirty(struct page *page); int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block); int generic_swapfile_activate(struct swap_info_struct *, struct file *, sector_t *); /* linux/mm/swap_state.c */ /* One swap address space for each 64M swap space */ #define SWAP_ADDRESS_SPACE_SHIFT 14 #define SWAP_ADDRESS_SPACE_PAGES (1 << SWAP_ADDRESS_SPACE_SHIFT) extern struct address_space *swapper_spaces[]; #define swap_address_space(entry) \ (&swapper_spaces[swp_type(entry)][swp_offset(entry) \ >> SWAP_ADDRESS_SPACE_SHIFT]) extern unsigned long total_swapcache_pages(void); extern void show_swap_cache_info(void); extern int add_to_swap(struct page *page); extern void *get_shadow_from_swap_cache(swp_entry_t entry); extern int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp, void **shadowp); extern void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow); extern void delete_from_swap_cache(struct page *); extern void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end); extern void free_page_and_swap_cache(struct page *); extern void free_pages_and_swap_cache(struct page **, int); extern struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr); struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index); extern struct page *read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool do_poll); extern struct page *__read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr, bool *new_page_allocated); extern struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); extern struct page *swapin_readahead(swp_entry_t entry, gfp_t flag, struct vm_fault *vmf); /* linux/mm/swapfile.c */ extern atomic_long_t nr_swap_pages; extern long total_swap_pages; extern atomic_t nr_rotate_swap; extern bool has_usable_swap(void); /* Swap 50% full? Release swapcache more aggressively.. */ static inline bool vm_swap_full(void) { return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages; } static inline long get_nr_swap_pages(void) { return atomic_long_read(&nr_swap_pages); } extern void si_swapinfo(struct sysinfo *); extern swp_entry_t get_swap_page(struct page *page); extern void put_swap_page(struct page *page, swp_entry_t entry); extern swp_entry_t get_swap_page_of_type(int); extern int get_swap_pages(int n, swp_entry_t swp_entries[], int entry_size); extern int add_swap_count_continuation(swp_entry_t, gfp_t); extern void swap_shmem_alloc(swp_entry_t); extern int swap_duplicate(swp_entry_t); extern int swapcache_prepare(swp_entry_t); extern void swap_free(swp_entry_t); extern void swapcache_free_entries(swp_entry_t *entries, int n); extern int free_swap_and_cache(swp_entry_t); int swap_type_of(dev_t device, sector_t offset); int find_first_swap(dev_t *device); extern unsigned int count_swap_pages(int, int); extern sector_t map_swap_page(struct page *, struct block_device **); extern sector_t swapdev_block(int, pgoff_t); extern int page_swapcount(struct page *); extern int __swap_count(swp_entry_t entry); extern int __swp_swapcount(swp_entry_t entry); extern int swp_swapcount(swp_entry_t entry); extern struct swap_info_struct *page_swap_info(struct page *); extern struct swap_info_struct *swp_swap_info(swp_entry_t entry); extern bool reuse_swap_page(struct page *, int *); extern int try_to_free_swap(struct page *); struct backing_dev_info; extern int init_swap_address_space(unsigned int type, unsigned long nr_pages); extern void exit_swap_address_space(unsigned int type); extern struct swap_info_struct *get_swap_device(swp_entry_t entry); sector_t swap_page_sector(struct page *page); static inline void put_swap_device(struct swap_info_struct *si) { rcu_read_unlock(); } #else /* CONFIG_SWAP */ static inline int swap_readpage(struct page *page, bool do_poll) { return 0; } static inline struct swap_info_struct *swp_swap_info(swp_entry_t entry) { return NULL; } #define swap_address_space(entry) (NULL) #define get_nr_swap_pages() 0L #define total_swap_pages 0L #define total_swapcache_pages() 0UL #define vm_swap_full() 0 #define si_swapinfo(val) \ do { (val)->freeswap = (val)->totalswap = 0; } while (0) /* only sparc can not include linux/pagemap.h in this file * so leave put_page and release_pages undeclared... */ #define free_page_and_swap_cache(page) \ put_page(page) #define free_pages_and_swap_cache(pages, nr) \ release_pages((pages), (nr)); static inline void show_swap_cache_info(void) { } #define free_swap_and_cache(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) #define swapcache_prepare(e) ({(is_migration_entry(e) || is_device_private_entry(e));}) static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask) { return 0; } static inline void swap_shmem_alloc(swp_entry_t swp) { } static inline int swap_duplicate(swp_entry_t swp) { return 0; } static inline void swap_free(swp_entry_t swp) { } static inline void put_swap_page(struct page *page, swp_entry_t swp) { } static inline struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask, struct vm_fault *vmf) { return NULL; } static inline int swap_writepage(struct page *p, struct writeback_control *wbc) { return 0; } static inline struct page *lookup_swap_cache(swp_entry_t swp, struct vm_area_struct *vma, unsigned long addr) { return NULL; } static inline struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) { return find_get_page(mapping, index); } static inline int add_to_swap(struct page *page) { return 0; } static inline void *get_shadow_from_swap_cache(swp_entry_t entry) { return NULL; } static inline int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask, void **shadowp) { return -1; } static inline void __delete_from_swap_cache(struct page *page, swp_entry_t entry, void *shadow) { } static inline void delete_from_swap_cache(struct page *page) { } static inline void clear_shadow_from_swap_cache(int type, unsigned long begin, unsigned long end) { } static inline int page_swapcount(struct page *page) { return 0; } static inline int __swap_count(swp_entry_t entry) { return 0; } static inline int __swp_swapcount(swp_entry_t entry) { return 0; } static inline int swp_swapcount(swp_entry_t entry) { return 0; } #define reuse_swap_page(page, total_map_swapcount) \ (page_trans_huge_mapcount(page, total_map_swapcount) == 1) static inline int try_to_free_swap(struct page *page) { return 0; } static inline swp_entry_t get_swap_page(struct page *page) { swp_entry_t entry; entry.val = 0; return entry; } #endif /* CONFIG_SWAP */ #ifdef CONFIG_THP_SWAP extern int split_swap_cluster(swp_entry_t entry); #else static inline int split_swap_cluster(swp_entry_t entry) { return 0; } #endif #ifdef CONFIG_MEMCG static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg) { /* Cgroup2 doesn't have per-cgroup swappiness */ if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) return vm_swappiness; /* root ? */ if (mem_cgroup_disabled() || mem_cgroup_is_root(memcg)) return vm_swappiness; return memcg->swappiness; } #else static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) { return vm_swappiness; } #endif #if defined(CONFIG_SWAP) && defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) extern void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask); #else static inline void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) { } #endif #ifdef CONFIG_MEMCG_SWAP extern void mem_cgroup_swapout(struct page *page, swp_entry_t entry); extern int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry); extern void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages); extern long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg); extern bool mem_cgroup_swap_full(struct page *page); #else static inline void mem_cgroup_swapout(struct page *page, swp_entry_t entry) { } static inline int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) { return 0; } static inline void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) { } static inline long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) { return get_nr_swap_pages(); } static inline bool mem_cgroup_swap_full(struct page *page) { return vm_swap_full(); } #endif #endif /* __KERNEL__*/ #endif /* _LINUX_SWAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef LINUX_MM_INLINE_H #define LINUX_MM_INLINE_H #include <linux/huge_mm.h> #include <linux/swap.h> /** * page_is_file_lru - should the page be on a file LRU or anon LRU? * @page: the page to test * * Returns 1 if @page is a regular filesystem backed page cache page or a lazily * freed anonymous page (e.g. via MADV_FREE). Returns 0 if @page is a normal * anonymous page, a tmpfs page or otherwise ram or swap backed page. Used by * functions that manipulate the LRU lists, to sort a page onto the right LRU * list. * * We would like to get this info without a page flag, but the state * needs to survive until the page is last deleted from the LRU, which * could be as far down as __page_cache_release. */ static inline int page_is_file_lru(struct page *page) { return !PageSwapBacked(page); } static __always_inline void __update_lru_size(struct lruvec *lruvec, enum lru_list lru, enum zone_type zid, int nr_pages) { struct pglist_data *pgdat = lruvec_pgdat(lruvec); __mod_lruvec_state(lruvec, NR_LRU_BASE + lru, nr_pages); __mod_zone_page_state(&pgdat->node_zones[zid], NR_ZONE_LRU_BASE + lru, nr_pages); } static __always_inline void update_lru_size(struct lruvec *lruvec, enum lru_list lru, enum zone_type zid, int nr_pages) { __update_lru_size(lruvec, lru, zid, nr_pages); #ifdef CONFIG_MEMCG mem_cgroup_update_lru_size(lruvec, lru, zid, nr_pages); #endif } static __always_inline void add_page_to_lru_list(struct page *page, struct lruvec *lruvec, enum lru_list lru) { update_lru_size(lruvec, lru, page_zonenum(page), thp_nr_pages(page)); list_add(&page->lru, &lruvec->lists[lru]); } static __always_inline void add_page_to_lru_list_tail(struct page *page, struct lruvec *lruvec, enum lru_list lru) { update_lru_size(lruvec, lru, page_zonenum(page), thp_nr_pages(page)); list_add_tail(&page->lru, &lruvec->lists[lru]); } static __always_inline void del_page_from_lru_list(struct page *page, struct lruvec *lruvec, enum lru_list lru) { list_del(&page->lru); update_lru_size(lruvec, lru, page_zonenum(page), -thp_nr_pages(page)); } /** * page_lru_base_type - which LRU list type should a page be on? * @page: the page to test * * Used for LRU list index arithmetic. * * Returns the base LRU type - file or anon - @page should be on. */ static inline enum lru_list page_lru_base_type(struct page *page) { if (page_is_file_lru(page)) return LRU_INACTIVE_FILE; return LRU_INACTIVE_ANON; } /** * page_off_lru - which LRU list was page on? clearing its lru flags. * @page: the page to test * * Returns the LRU list a page was on, as an index into the array of LRU * lists; and clears its Unevictable or Active flags, ready for freeing. */ static __always_inline enum lru_list page_off_lru(struct page *page) { enum lru_list lru; if (PageUnevictable(page)) { __ClearPageUnevictable(page); lru = LRU_UNEVICTABLE; } else { lru = page_lru_base_type(page); if (PageActive(page)) { __ClearPageActive(page); lru += LRU_ACTIVE; } } return lru; } /** * page_lru - which LRU list should a page be on? * @page: the page to test * * Returns the LRU list a page should be on, as an index * into the array of LRU lists. */ static __always_inline enum lru_list page_lru(struct page *page) { enum lru_list lru; if (PageUnevictable(page)) lru = LRU_UNEVICTABLE; else { lru = page_lru_base_type(page); if (PageActive(page)) lru += LRU_ACTIVE; } return lru; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 /* SPDX-License-Identifier: GPL-2.0+ */ #undef TRACE_SYSTEM #define TRACE_SYSTEM rseq #if !defined(_TRACE_RSEQ_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RSEQ_H #include <linux/tracepoint.h> #include <linux/types.h> TRACE_EVENT(rseq_update, TP_PROTO(struct task_struct *t), TP_ARGS(t), TP_STRUCT__entry( __field(s32, cpu_id) ), TP_fast_assign( __entry->cpu_id = raw_smp_processor_id(); ), TP_printk("cpu_id=%d", __entry->cpu_id) ); TRACE_EVENT(rseq_ip_fixup, TP_PROTO(unsigned long regs_ip, unsigned long start_ip, unsigned long post_commit_offset, unsigned long abort_ip), TP_ARGS(regs_ip, start_ip, post_commit_offset, abort_ip), TP_STRUCT__entry( __field(unsigned long, regs_ip) __field(unsigned long, start_ip) __field(unsigned long, post_commit_offset) __field(unsigned long, abort_ip) ), TP_fast_assign( __entry->regs_ip = regs_ip; __entry->start_ip = start_ip; __entry->post_commit_offset = post_commit_offset; __entry->abort_ip = abort_ip; ), TP_printk("regs_ip=0x%lx start_ip=0x%lx post_commit_offset=%lu abort_ip=0x%lx", __entry->regs_ip, __entry->start_ip, __entry->post_commit_offset, __entry->abort_ip) ); #endif /* _TRACE_SOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP router. * * Version: @(#)route.h 1.0.4 05/27/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Fixes: * Alan Cox : Reformatted. Added ip_rt_local() * Alan Cox : Support for TCP parameters. * Alexey Kuznetsov: Major changes for new routing code. * Mike McLagan : Routing by source * Robert Olsson : Added rt_cache statistics */ #ifndef _ROUTE_H #define _ROUTE_H #include <net/dst.h> #include <net/inetpeer.h> #include <net/flow.h> #include <net/inet_sock.h> #include <net/ip_fib.h> #include <net/arp.h> #include <net/ndisc.h> #include <linux/in_route.h> #include <linux/rtnetlink.h> #include <linux/rcupdate.h> #include <linux/route.h> #include <linux/ip.h> #include <linux/cache.h> #include <linux/security.h> /* IPv4 datagram length is stored into 16bit field (tot_len) */ #define IP_MAX_MTU 0xFFFFU #define RTO_ONLINK 0x01 #define RT_CONN_FLAGS(sk) (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE)) #define RT_CONN_FLAGS_TOS(sk,tos) (RT_TOS(tos) | sock_flag(sk, SOCK_LOCALROUTE)) struct fib_nh; struct fib_info; struct uncached_list; struct rtable { struct dst_entry dst; int rt_genid; unsigned int rt_flags; __u16 rt_type; __u8 rt_is_input; __u8 rt_uses_gateway; int rt_iif; u8 rt_gw_family; /* Info on neighbour */ union { __be32 rt_gw4; struct in6_addr rt_gw6; }; /* Miscellaneous cached information */ u32 rt_mtu_locked:1, rt_pmtu:31; struct list_head rt_uncached; struct uncached_list *rt_uncached_list; }; static inline bool rt_is_input_route(const struct rtable *rt) { return rt->rt_is_input != 0; } static inline bool rt_is_output_route(const struct rtable *rt) { return rt->rt_is_input == 0; } static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr) { if (rt->rt_gw_family == AF_INET) return rt->rt_gw4; return daddr; } struct ip_rt_acct { __u32 o_bytes; __u32 o_packets; __u32 i_bytes; __u32 i_packets; }; struct rt_cache_stat { unsigned int in_slow_tot; unsigned int in_slow_mc; unsigned int in_no_route; unsigned int in_brd; unsigned int in_martian_dst; unsigned int in_martian_src; unsigned int out_slow_tot; unsigned int out_slow_mc; }; extern struct ip_rt_acct __percpu *ip_rt_acct; struct in_device; int ip_rt_init(void); void rt_cache_flush(struct net *net); void rt_flush_dev(struct net_device *dev); struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp, const struct sk_buff *skb); struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp, struct fib_result *res, const struct sk_buff *skb); static inline struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_key_hash(net, flp, NULL); } struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp, const struct sock *sk); struct rtable *ip_route_output_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, __be32 *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache); struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig); static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_flow(net, flp, NULL); } static inline struct rtable *ip_route_output(struct net *net, __be32 daddr, __be32 saddr, u8 tos, int oif) { struct flowi4 fl4 = { .flowi4_oif = oif, .flowi4_tos = tos, .daddr = daddr, .saddr = saddr, }; return ip_route_output_key(net, &fl4); } static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4, struct sock *sk, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, __u8 proto, __u8 tos, int oif) { flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos, RT_SCOPE_UNIVERSE, proto, sk ? inet_sk_flowi_flags(sk) : 0, daddr, saddr, dport, sport, sock_net_uid(net, sk)); if (sk) security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4, __be32 daddr, __be32 saddr, __be32 gre_key, __u8 tos, int oif) { memset(fl4, 0, sizeof(*fl4)); fl4->flowi4_oif = oif; fl4->daddr = daddr; fl4->saddr = saddr; fl4->flowi4_tos = tos; fl4->flowi4_proto = IPPROTO_GRE; fl4->fl4_gre_key = gre_key; return ip_route_output_key(net, fl4); } int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, struct in_device *in_dev, u32 *itag); int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin); int ip_route_input_rcu(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, struct fib_result *res); int ip_route_use_hint(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, const struct sk_buff *hint); static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin) { int err; rcu_read_lock(); err = ip_route_input_noref(skb, dst, src, tos, devin); if (!err) { skb_dst_force(skb); if (!skb_dst(skb)) err = -EINVAL; } rcu_read_unlock(); return err; } void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif, u8 protocol); void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu); void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol); void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk); void ip_rt_send_redirect(struct sk_buff *skb); unsigned int inet_addr_type(struct net *net, __be32 addr); unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id); unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr); unsigned int inet_addr_type_dev_table(struct net *net, const struct net_device *dev, __be32 addr); void ip_rt_multicast_event(struct in_device *); int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt); void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt); struct rtable *rt_dst_alloc(struct net_device *dev, unsigned int flags, u16 type, bool nopolicy, bool noxfrm); struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt); struct in_ifaddr; void fib_add_ifaddr(struct in_ifaddr *); void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *); void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric); void rt_add_uncached_list(struct rtable *rt); void rt_del_uncached_list(struct rtable *rt); int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb, u32 table_id, struct fib_info *fi, int *fa_index, int fa_start, unsigned int flags); static inline void ip_rt_put(struct rtable *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rtable */ BUILD_BUG_ON(offsetof(struct rtable, dst) != 0); dst_release(&rt->dst); } #define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3) extern const __u8 ip_tos2prio[16]; static inline char rt_tos2priority(u8 tos) { return ip_tos2prio[IPTOS_TOS(tos)>>1]; } /* ip_route_connect() and ip_route_newports() work in tandem whilst * binding a socket for a new outgoing connection. * * In order to use IPSEC properly, we must, in the end, have a * route that was looked up using all available keys including source * and destination ports. * * However, if a source port needs to be allocated (the user specified * a wildcard source port) we need to obtain addressing information * in order to perform that allocation. * * So ip_route_connect() looks up a route using wildcarded source and * destination ports in the key, simply so that we can get a pair of * addresses to use for port allocation. * * Later, once the ports are allocated, ip_route_newports() will make * another route lookup if needed to make sure we catch any IPSEC * rules keyed on the port information. * * The callers allocate the flow key on their stack, and must pass in * the same flowi4 object to both the ip_route_connect() and the * ip_route_newports() calls. */ static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { __u8 flow_flags = 0; if (inet_sk(sk)->transparent) flow_flags |= FLOWI_FLAG_ANYSRC; flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE, protocol, flow_flags, dst, src, dport, sport, sk->sk_uid); } static inline struct rtable *ip_route_connect(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { struct net *net = sock_net(sk); struct rtable *rt; ip_route_connect_init(fl4, dst, src, tos, oif, protocol, sport, dport, sk); if (!dst || !src) { rt = __ip_route_output_key(net, fl4); if (IS_ERR(rt)) return rt; ip_rt_put(rt); flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr); } security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt, __be16 orig_sport, __be16 orig_dport, __be16 sport, __be16 dport, struct sock *sk) { if (sport != orig_sport || dport != orig_dport) { fl4->fl4_dport = dport; fl4->fl4_sport = sport; ip_rt_put(rt); flowi4_update_output(fl4, sk->sk_bound_dev_if, RT_CONN_FLAGS(sk), fl4->daddr, fl4->saddr); security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(sock_net(sk), fl4, sk); } return rt; } static inline int inet_iif(const struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); if (rt && rt->rt_iif) return rt->rt_iif; return skb->skb_iif; } static inline int ip4_dst_hoplimit(const struct dst_entry *dst) { int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT); struct net *net = dev_net(dst->dev); if (hoplimit == 0) hoplimit = net->ipv4.sysctl_ip_default_ttl; return hoplimit; } static inline struct neighbour *ip_neigh_gw4(struct net_device *dev, __be32 daddr) { struct neighbour *neigh; neigh = __ipv4_neigh_lookup_noref(dev, daddr); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &daddr, dev, false); return neigh; } static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt, struct sk_buff *skb, bool *is_v6gw) { struct net_device *dev = rt->dst.dev; struct neighbour *neigh; if (likely(rt->rt_gw_family == AF_INET)) { neigh = ip_neigh_gw4(dev, rt->rt_gw4); } else if (rt->rt_gw_family == AF_INET6) { neigh = ip_neigh_gw6(dev, &rt->rt_gw6); *is_v6gw = true; } else { neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr); } return neigh; } #endif /* _ROUTE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM timer #if !defined(_TRACE_TIMER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TIMER_H #include <linux/tracepoint.h> #include <linux/hrtimer.h> #include <linux/timer.h> DECLARE_EVENT_CLASS(timer_class, TP_PROTO(struct timer_list *timer), TP_ARGS(timer), TP_STRUCT__entry( __field( void *, timer ) ), TP_fast_assign( __entry->timer = timer; ), TP_printk("timer=%p", __entry->timer) ); /** * timer_init - called when the timer is initialized * @timer: pointer to struct timer_list */ DEFINE_EVENT(timer_class, timer_init, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); #define decode_timer_flags(flags) \ __print_flags(flags, "|", \ { TIMER_MIGRATING, "M" }, \ { TIMER_DEFERRABLE, "D" }, \ { TIMER_PINNED, "P" }, \ { TIMER_IRQSAFE, "I" }) /** * timer_start - called when the timer is started * @timer: pointer to struct timer_list * @expires: the timers expiry time */ TRACE_EVENT(timer_start, TP_PROTO(struct timer_list *timer, unsigned long expires, unsigned int flags), TP_ARGS(timer, expires, flags), TP_STRUCT__entry( __field( void *, timer ) __field( void *, function ) __field( unsigned long, expires ) __field( unsigned long, now ) __field( unsigned int, flags ) ), TP_fast_assign( __entry->timer = timer; __entry->function = timer->function; __entry->expires = expires; __entry->now = jiffies; __entry->flags = flags; ), TP_printk("timer=%p function=%ps expires=%lu [timeout=%ld] cpu=%u idx=%u flags=%s", __entry->timer, __entry->function, __entry->expires, (long)__entry->expires - __entry->now, __entry->flags & TIMER_CPUMASK, __entry->flags >> TIMER_ARRAYSHIFT, decode_timer_flags(__entry->flags & TIMER_TRACE_FLAGMASK)) ); /** * timer_expire_entry - called immediately before the timer callback * @timer: pointer to struct timer_list * * Allows to determine the timer latency. */ TRACE_EVENT(timer_expire_entry, TP_PROTO(struct timer_list *timer, unsigned long baseclk), TP_ARGS(timer, baseclk), TP_STRUCT__entry( __field( void *, timer ) __field( unsigned long, now ) __field( void *, function) __field( unsigned long, baseclk ) ), TP_fast_assign( __entry->timer = timer; __entry->now = jiffies; __entry->function = timer->function; __entry->baseclk = baseclk; ), TP_printk("timer=%p function=%ps now=%lu baseclk=%lu", __entry->timer, __entry->function, __entry->now, __entry->baseclk) ); /** * timer_expire_exit - called immediately after the timer callback returns * @timer: pointer to struct timer_list * * When used in combination with the timer_expire_entry tracepoint we can * determine the runtime of the timer callback function. * * NOTE: Do NOT derefernce timer in TP_fast_assign. The pointer might * be invalid. We solely track the pointer. */ DEFINE_EVENT(timer_class, timer_expire_exit, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); /** * timer_cancel - called when the timer is canceled * @timer: pointer to struct timer_list */ DEFINE_EVENT(timer_class, timer_cancel, TP_PROTO(struct timer_list *timer), TP_ARGS(timer) ); #define decode_clockid(type) \ __print_symbolic(type, \ { CLOCK_REALTIME, "CLOCK_REALTIME" }, \ { CLOCK_MONOTONIC, "CLOCK_MONOTONIC" }, \ { CLOCK_BOOTTIME, "CLOCK_BOOTTIME" }, \ { CLOCK_TAI, "CLOCK_TAI" }) #define decode_hrtimer_mode(mode) \ __print_symbolic(mode, \ { HRTIMER_MODE_ABS, "ABS" }, \ { HRTIMER_MODE_REL, "REL" }, \ { HRTIMER_MODE_ABS_PINNED, "ABS|PINNED" }, \ { HRTIMER_MODE_REL_PINNED, "REL|PINNED" }, \ { HRTIMER_MODE_ABS_SOFT, "ABS|SOFT" }, \ { HRTIMER_MODE_REL_SOFT, "REL|SOFT" }, \ { HRTIMER_MODE_ABS_PINNED_SOFT, "ABS|PINNED|SOFT" }, \ { HRTIMER_MODE_REL_PINNED_SOFT, "REL|PINNED|SOFT" }) /** * hrtimer_init - called when the hrtimer is initialized * @hrtimer: pointer to struct hrtimer * @clockid: the hrtimers clock * @mode: the hrtimers mode */ TRACE_EVENT(hrtimer_init, TP_PROTO(struct hrtimer *hrtimer, clockid_t clockid, enum hrtimer_mode mode), TP_ARGS(hrtimer, clockid, mode), TP_STRUCT__entry( __field( void *, hrtimer ) __field( clockid_t, clockid ) __field( enum hrtimer_mode, mode ) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->clockid = clockid; __entry->mode = mode; ), TP_printk("hrtimer=%p clockid=%s mode=%s", __entry->hrtimer, decode_clockid(__entry->clockid), decode_hrtimer_mode(__entry->mode)) ); /** * hrtimer_start - called when the hrtimer is started * @hrtimer: pointer to struct hrtimer */ TRACE_EVENT(hrtimer_start, TP_PROTO(struct hrtimer *hrtimer, enum hrtimer_mode mode), TP_ARGS(hrtimer, mode), TP_STRUCT__entry( __field( void *, hrtimer ) __field( void *, function ) __field( s64, expires ) __field( s64, softexpires ) __field( enum hrtimer_mode, mode ) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->function = hrtimer->function; __entry->expires = hrtimer_get_expires(hrtimer); __entry->softexpires = hrtimer_get_softexpires(hrtimer); __entry->mode = mode; ), TP_printk("hrtimer=%p function=%ps expires=%llu softexpires=%llu " "mode=%s", __entry->hrtimer, __entry->function, (unsigned long long) __entry->expires, (unsigned long long) __entry->softexpires, decode_hrtimer_mode(__entry->mode)) ); /** * hrtimer_expire_entry - called immediately before the hrtimer callback * @hrtimer: pointer to struct hrtimer * @now: pointer to variable which contains current time of the * timers base. * * Allows to determine the timer latency. */ TRACE_EVENT(hrtimer_expire_entry, TP_PROTO(struct hrtimer *hrtimer, ktime_t *now), TP_ARGS(hrtimer, now), TP_STRUCT__entry( __field( void *, hrtimer ) __field( s64, now ) __field( void *, function) ), TP_fast_assign( __entry->hrtimer = hrtimer; __entry->now = *now; __entry->function = hrtimer->function; ), TP_printk("hrtimer=%p function=%ps now=%llu", __entry->hrtimer, __entry->function, (unsigned long long) __entry->now) ); DECLARE_EVENT_CLASS(hrtimer_class, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer), TP_STRUCT__entry( __field( void *, hrtimer ) ), TP_fast_assign( __entry->hrtimer = hrtimer; ), TP_printk("hrtimer=%p", __entry->hrtimer) ); /** * hrtimer_expire_exit - called immediately after the hrtimer callback returns * @hrtimer: pointer to struct hrtimer * * When used in combination with the hrtimer_expire_entry tracepoint we can * determine the runtime of the callback function. */ DEFINE_EVENT(hrtimer_class, hrtimer_expire_exit, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer) ); /** * hrtimer_cancel - called when the hrtimer is canceled * @hrtimer: pointer to struct hrtimer */ DEFINE_EVENT(hrtimer_class, hrtimer_cancel, TP_PROTO(struct hrtimer *hrtimer), TP_ARGS(hrtimer) ); /** * itimer_state - called when itimer is started or canceled * @which: name of the interval timer * @value: the itimers value, itimer is canceled if value->it_value is * zero, otherwise it is started * @expires: the itimers expiry time */ TRACE_EVENT(itimer_state, TP_PROTO(int which, const struct itimerspec64 *const value, unsigned long long expires), TP_ARGS(which, value, expires), TP_STRUCT__entry( __field( int, which ) __field( unsigned long long, expires ) __field( long, value_sec ) __field( long, value_nsec ) __field( long, interval_sec ) __field( long, interval_nsec ) ), TP_fast_assign( __entry->which = which; __entry->expires = expires; __entry->value_sec = value->it_value.tv_sec; __entry->value_nsec = value->it_value.tv_nsec; __entry->interval_sec = value->it_interval.tv_sec; __entry->interval_nsec = value->it_interval.tv_nsec; ), TP_printk("which=%d expires=%llu it_value=%ld.%06ld it_interval=%ld.%06ld", __entry->which, __entry->expires, __entry->value_sec, __entry->value_nsec / NSEC_PER_USEC, __entry->interval_sec, __entry->interval_nsec / NSEC_PER_USEC) ); /** * itimer_expire - called when itimer expires * @which: type of the interval timer * @pid: pid of the process which owns the timer * @now: current time, used to calculate the latency of itimer */ TRACE_EVENT(itimer_expire, TP_PROTO(int which, struct pid *pid, unsigned long long now), TP_ARGS(which, pid, now), TP_STRUCT__entry( __field( int , which ) __field( pid_t, pid ) __field( unsigned long long, now ) ), TP_fast_assign( __entry->which = which; __entry->now = now; __entry->pid = pid_nr(pid); ), TP_printk("which=%d pid=%d now=%llu", __entry->which, (int) __entry->pid, __entry->now) ); #ifdef CONFIG_NO_HZ_COMMON #define TICK_DEP_NAMES \ tick_dep_mask_name(NONE) \ tick_dep_name(POSIX_TIMER) \ tick_dep_name(PERF_EVENTS) \ tick_dep_name(SCHED) \ tick_dep_name(CLOCK_UNSTABLE) \ tick_dep_name_end(RCU) #undef tick_dep_name #undef tick_dep_mask_name #undef tick_dep_name_end /* The MASK will convert to their bits and they need to be processed too */ #define tick_dep_name(sdep) TRACE_DEFINE_ENUM(TICK_DEP_BIT_##sdep); \ TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); #define tick_dep_name_end(sdep) TRACE_DEFINE_ENUM(TICK_DEP_BIT_##sdep); \ TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); /* NONE only has a mask defined for it */ #define tick_dep_mask_name(sdep) TRACE_DEFINE_ENUM(TICK_DEP_MASK_##sdep); TICK_DEP_NAMES #undef tick_dep_name #undef tick_dep_mask_name #undef tick_dep_name_end #define tick_dep_name(sdep) { TICK_DEP_MASK_##sdep, #sdep }, #define tick_dep_mask_name(sdep) { TICK_DEP_MASK_##sdep, #sdep }, #define tick_dep_name_end(sdep) { TICK_DEP_MASK_##sdep, #sdep } #define show_tick_dep_name(val) \ __print_symbolic(val, TICK_DEP_NAMES) TRACE_EVENT(tick_stop, TP_PROTO(int success, int dependency), TP_ARGS(success, dependency), TP_STRUCT__entry( __field( int , success ) __field( int , dependency ) ), TP_fast_assign( __entry->success = success; __entry->dependency = dependency; ), TP_printk("success=%d dependency=%s", __entry->success, \ show_tick_dep_name(__entry->dependency)) ); #endif #endif /* _TRACE_TIMER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Symmetric key ciphers. * * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_SKCIPHER_H #define _CRYPTO_INTERNAL_SKCIPHER_H #include <crypto/algapi.h> #include <crypto/skcipher.h> #include <linux/list.h> #include <linux/types.h> struct aead_request; struct rtattr; struct skcipher_instance { void (*free)(struct skcipher_instance *inst); union { struct { char head[offsetof(struct skcipher_alg, base)]; struct crypto_instance base; } s; struct skcipher_alg alg; }; }; struct crypto_skcipher_spawn { struct crypto_spawn base; }; struct skcipher_walk { union { struct { struct page *page; unsigned long offset; } phys; struct { u8 *page; void *addr; } virt; } src, dst; struct scatter_walk in; unsigned int nbytes; struct scatter_walk out; unsigned int total; struct list_head buffers; u8 *page; u8 *buffer; u8 *oiv; void *iv; unsigned int ivsize; int flags; unsigned int blocksize; unsigned int stride; unsigned int alignmask; }; static inline struct crypto_instance *skcipher_crypto_instance( struct skcipher_instance *inst) { return &inst->s.base; } static inline struct skcipher_instance *skcipher_alg_instance( struct crypto_skcipher *skcipher) { return container_of(crypto_skcipher_alg(skcipher), struct skcipher_instance, alg); } static inline void *skcipher_instance_ctx(struct skcipher_instance *inst) { return crypto_instance_ctx(skcipher_crypto_instance(inst)); } static inline void skcipher_request_complete(struct skcipher_request *req, int err) { req->base.complete(&req->base, err); } int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_skcipher(struct crypto_skcipher_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct skcipher_alg *crypto_skcipher_spawn_alg( struct crypto_skcipher_spawn *spawn) { return container_of(spawn->base.alg, struct skcipher_alg, base); } static inline struct skcipher_alg *crypto_spawn_skcipher_alg( struct crypto_skcipher_spawn *spawn) { return crypto_skcipher_spawn_alg(spawn); } static inline struct crypto_skcipher *crypto_spawn_skcipher( struct crypto_skcipher_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void crypto_skcipher_set_reqsize( struct crypto_skcipher *skcipher, unsigned int reqsize) { skcipher->reqsize = reqsize; } int crypto_register_skcipher(struct skcipher_alg *alg); void crypto_unregister_skcipher(struct skcipher_alg *alg); int crypto_register_skciphers(struct skcipher_alg *algs, int count); void crypto_unregister_skciphers(struct skcipher_alg *algs, int count); int skcipher_register_instance(struct crypto_template *tmpl, struct skcipher_instance *inst); int skcipher_walk_done(struct skcipher_walk *walk, int err); int skcipher_walk_virt(struct skcipher_walk *walk, struct skcipher_request *req, bool atomic); void skcipher_walk_atomise(struct skcipher_walk *walk); int skcipher_walk_async(struct skcipher_walk *walk, struct skcipher_request *req); int skcipher_walk_aead_encrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic); int skcipher_walk_aead_decrypt(struct skcipher_walk *walk, struct aead_request *req, bool atomic); void skcipher_walk_complete(struct skcipher_walk *walk, int err); static inline void skcipher_walk_abort(struct skcipher_walk *walk) { skcipher_walk_done(walk, -ECANCELED); } static inline void *crypto_skcipher_ctx(struct crypto_skcipher *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline void *skcipher_request_ctx(struct skcipher_request *req) { return req->__ctx; } static inline u32 skcipher_request_flags(struct skcipher_request *req) { return req->base.flags; } static inline unsigned int crypto_skcipher_alg_min_keysize( struct skcipher_alg *alg) { return alg->min_keysize; } static inline unsigned int crypto_skcipher_alg_max_keysize( struct skcipher_alg *alg) { return alg->max_keysize; } static inline unsigned int crypto_skcipher_alg_walksize( struct skcipher_alg *alg) { return alg->walksize; } /** * crypto_skcipher_walksize() - obtain walk size * @tfm: cipher handle * * In some cases, algorithms can only perform optimally when operating on * multiple blocks in parallel. This is reflected by the walksize, which * must be a multiple of the chunksize (or equal if the concern does not * apply) * * Return: walk size in bytes */ static inline unsigned int crypto_skcipher_walksize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm)); } /* Helpers for simple block cipher modes of operation */ struct skcipher_ctx_simple { struct crypto_cipher *cipher; /* underlying block cipher */ }; static inline struct crypto_cipher * skcipher_cipher_simple(struct crypto_skcipher *tfm) { struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm); return ctx->cipher; } struct skcipher_instance *skcipher_alloc_instance_simple( struct crypto_template *tmpl, struct rtattr **tb); static inline struct crypto_alg *skcipher_ialg_simple( struct skcipher_instance *inst) { struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst); return crypto_spawn_cipher_alg(spawn); } #endif /* _CRYPTO_INTERNAL_SKCIPHER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_HOST_H #define _SCSI_SCSI_HOST_H #include <linux/device.h> #include <linux/list.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/seq_file.h> #include <linux/blk-mq.h> #include <scsi/scsi.h> struct block_device; struct completion; struct module; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_host_cmd_pool; struct scsi_transport_template; #define SG_ALL SG_CHUNK_SIZE #define MODE_UNKNOWN 0x00 #define MODE_INITIATOR 0x01 #define MODE_TARGET 0x02 struct scsi_host_template { struct module *module; const char *name; /* * The info function will return whatever useful information the * developer sees fit. If not provided, then the name field will * be used instead. * * Status: OPTIONAL */ const char *(* info)(struct Scsi_Host *); /* * Ioctl interface * * Status: OPTIONAL */ int (*ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT /* * Compat handler. Handle 32bit ABI. * When unknown ioctl is passed return -ENOIOCTLCMD. * * Status: OPTIONAL */ int (*compat_ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #endif int (*init_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); int (*exit_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); /* * The queuecommand function is used to queue up a scsi * command block to the LLDD. When the driver finished * processing the command the done callback is invoked. * * If queuecommand returns 0, then the driver has accepted the * command. It must also push it to the HBA if the scsi_cmnd * flag SCMD_LAST is set, or if the driver does not implement * commit_rqs. The done() function must be called on the command * when the driver has finished with it. (you may call done on the * command before queuecommand returns, but in this case you * *must* return 0 from queuecommand). * * Queuecommand may also reject the command, in which case it may * not touch the command and must not call done() for it. * * There are two possible rejection returns: * * SCSI_MLQUEUE_DEVICE_BUSY: Block this device temporarily, but * allow commands to other devices serviced by this host. * * SCSI_MLQUEUE_HOST_BUSY: Block all devices served by this * host temporarily. * * For compatibility, any other non-zero return is treated the * same as SCSI_MLQUEUE_HOST_BUSY. * * NOTE: "temporarily" means either until the next command for# * this device/host completes, or a period of time determined by * I/O pressure in the system if there are no other outstanding * commands. * * STATUS: REQUIRED */ int (* queuecommand)(struct Scsi_Host *, struct scsi_cmnd *); /* * The commit_rqs function is used to trigger a hardware * doorbell after some requests have been queued with * queuecommand, when an error is encountered before sending * the request with SCMD_LAST set. * * STATUS: OPTIONAL */ void (*commit_rqs)(struct Scsi_Host *, u16); /* * This is an error handling strategy routine. You don't need to * define one of these if you don't want to - there is a default * routine that is present that should work in most cases. For those * driver authors that have the inclination and ability to write their * own strategy routine, this is where it is specified. Note - the * strategy routine is *ALWAYS* run in the context of the kernel eh * thread. Thus you are guaranteed to *NOT* be in an interrupt * handler when you execute this, and you are also guaranteed to * *NOT* have any other commands being queued while you are in the * strategy routine. When you return from this function, operations * return to normal. * * See scsi_error.c scsi_unjam_host for additional comments about * what this function should and should not be attempting to do. * * Status: REQUIRED (at least one of them) */ int (* eh_abort_handler)(struct scsi_cmnd *); int (* eh_device_reset_handler)(struct scsi_cmnd *); int (* eh_target_reset_handler)(struct scsi_cmnd *); int (* eh_bus_reset_handler)(struct scsi_cmnd *); int (* eh_host_reset_handler)(struct scsi_cmnd *); /* * Before the mid layer attempts to scan for a new device where none * currently exists, it will call this entry in your driver. Should * your driver need to allocate any structs or perform any other init * items in order to send commands to a currently unused target/lun * combo, then this is where you can perform those allocations. This * is specifically so that drivers won't have to perform any kind of * "is this a new device" checks in their queuecommand routine, * thereby making the hot path a bit quicker. * * Return values: 0 on success, non-0 on failure * * Deallocation: If we didn't find any devices at this ID, you will * get an immediate call to slave_destroy(). If we find something * here then you will get a call to slave_configure(), then the * device will be used for however long it is kept around, then when * the device is removed from the system (or * possibly at reboot * time), you will then get a call to slave_destroy(). This is * assuming you implement slave_configure and slave_destroy. * However, if you allocate memory and hang it off the device struct, * then you must implement the slave_destroy() routine at a minimum * in order to avoid leaking memory * each time a device is tore down. * * Status: OPTIONAL */ int (* slave_alloc)(struct scsi_device *); /* * Once the device has responded to an INQUIRY and we know the * device is online, we call into the low level driver with the * struct scsi_device *. If the low level device driver implements * this function, it *must* perform the task of setting the queue * depth on the device. All other tasks are optional and depend * on what the driver supports and various implementation details. * * Things currently recommended to be handled at this time include: * * 1. Setting the device queue depth. Proper setting of this is * described in the comments for scsi_change_queue_depth. * 2. Determining if the device supports the various synchronous * negotiation protocols. The device struct will already have * responded to INQUIRY and the results of the standard items * will have been shoved into the various device flag bits, eg. * device->sdtr will be true if the device supports SDTR messages. * 3. Allocating command structs that the device will need. * 4. Setting the default timeout on this device (if needed). * 5. Anything else the low level driver might want to do on a device * specific setup basis... * 6. Return 0 on success, non-0 on error. The device will be marked * as offline on error so that no access will occur. If you return * non-0, your slave_destroy routine will never get called for this * device, so don't leave any loose memory hanging around, clean * up after yourself before returning non-0 * * Status: OPTIONAL */ int (* slave_configure)(struct scsi_device *); /* * Immediately prior to deallocating the device and after all activity * has ceased the mid layer calls this point so that the low level * driver may completely detach itself from the scsi device and vice * versa. The low level driver is responsible for freeing any memory * it allocated in the slave_alloc or slave_configure calls. * * Status: OPTIONAL */ void (* slave_destroy)(struct scsi_device *); /* * Before the mid layer attempts to scan for a new device attached * to a target where no target currently exists, it will call this * entry in your driver. Should your driver need to allocate any * structs or perform any other init items in order to send commands * to a currently unused target, then this is where you can perform * those allocations. * * Return values: 0 on success, non-0 on failure * * Status: OPTIONAL */ int (* target_alloc)(struct scsi_target *); /* * Immediately prior to deallocating the target structure, and * after all activity to attached scsi devices has ceased, the * midlayer calls this point so that the driver may deallocate * and terminate any references to the target. * * Status: OPTIONAL */ void (* target_destroy)(struct scsi_target *); /* * If a host has the ability to discover targets on its own instead * of scanning the entire bus, it can fill in this function and * call scsi_scan_host(). This function will be called periodically * until it returns 1 with the scsi_host and the elapsed time of * the scan in jiffies. * * Status: OPTIONAL */ int (* scan_finished)(struct Scsi_Host *, unsigned long); /* * If the host wants to be called before the scan starts, but * after the midlayer has set up ready for the scan, it can fill * in this function. * * Status: OPTIONAL */ void (* scan_start)(struct Scsi_Host *); /* * Fill in this function to allow the queue depth of this host * to be changeable (on a per device basis). Returns either * the current queue depth setting (may be different from what * was passed in) or an error. An error should only be * returned if the requested depth is legal but the driver was * unable to set it. If the requested depth is illegal, the * driver should set and return the closest legal queue depth. * * Status: OPTIONAL */ int (* change_queue_depth)(struct scsi_device *, int); /* * This functions lets the driver expose the queue mapping * to the block layer. * * Status: OPTIONAL */ int (* map_queues)(struct Scsi_Host *shost); /* * Check if scatterlists need to be padded for DMA draining. * * Status: OPTIONAL */ bool (* dma_need_drain)(struct request *rq); /* * This function determines the BIOS parameters for a given * harddisk. These tend to be numbers that are made up by * the host adapter. Parameters: * size, device, list (heads, sectors, cylinders) * * Status: OPTIONAL */ int (* bios_param)(struct scsi_device *, struct block_device *, sector_t, int []); /* * This function is called when one or more partitions on the * device reach beyond the end of the device. * * Status: OPTIONAL */ void (*unlock_native_capacity)(struct scsi_device *); /* * Can be used to export driver statistics and other infos to the * world outside the kernel ie. userspace and it also provides an * interface to feed the driver with information. * * Status: OBSOLETE */ int (*show_info)(struct seq_file *, struct Scsi_Host *); int (*write_info)(struct Scsi_Host *, char *, int); /* * This is an optional routine that allows the transport to become * involved when a scsi io timer fires. The return value tells the * timer routine how to finish the io timeout handling. * * Status: OPTIONAL */ enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd *); /* This is an optional routine that allows transport to initiate * LLD adapter or firmware reset using sysfs attribute. * * Return values: 0 on success, -ve value on failure. * * Status: OPTIONAL */ int (*host_reset)(struct Scsi_Host *shost, int reset_type); #define SCSI_ADAPTER_RESET 1 #define SCSI_FIRMWARE_RESET 2 /* * Name of proc directory */ const char *proc_name; /* * Used to store the procfs directory if a driver implements the * show_info method. */ struct proc_dir_entry *proc_dir; /* * This determines if we will use a non-interrupt driven * or an interrupt driven scheme. It is set to the maximum number * of simultaneous commands a single hw queue in HBA will accept. */ int can_queue; /* * In many instances, especially where disconnect / reconnect are * supported, our host also has an ID on the SCSI bus. If this is * the case, then it must be reserved. Please set this_id to -1 if * your setup is in single initiator mode, and the host lacks an * ID. */ int this_id; /* * This determines the degree to which the host adapter is capable * of scatter-gather. */ unsigned short sg_tablesize; unsigned short sg_prot_tablesize; /* * Set this if the host adapter has limitations beside segment count. */ unsigned int max_sectors; /* * Maximum size in bytes of a single segment. */ unsigned int max_segment_size; /* * DMA scatter gather segment boundary limit. A segment crossing this * boundary will be split in two. */ unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * This specifies "machine infinity" for host templates which don't * limit the transfer size. Note this limit represents an absolute * maximum, and may be over the transfer limits allowed for * individual devices (e.g. 256 for SCSI-1). */ #define SCSI_DEFAULT_MAX_SECTORS 1024 /* * True if this host adapter can make good use of linked commands. * This will allow more than one command to be queued to a given * unit on a given host. Set this to the maximum number of command * blocks to be provided for each device. Set this to 1 for one * command block per lun, 2 for two, etc. Do not set this to 0. * You should make sure that the host adapter will do the right thing * before you try setting this above 1. */ short cmd_per_lun; /* * present contains counter indicating how many boards of this * type were found when we did the scan. */ unsigned char present; /* If use block layer to manage tags, this is tag allocation policy */ int tag_alloc_policy; /* * Track QUEUE_FULL events and reduce queue depth on demand. */ unsigned track_queue_depth:1; /* * This specifies the mode that a LLD supports. */ unsigned supported_mode:2; /* * True if this host adapter uses unchecked DMA onto an ISA bus. */ unsigned unchecked_isa_dma:1; /* * True for emulated SCSI host adapters (e.g. ATAPI). */ unsigned emulated:1; /* * True if the low-level driver performs its own reset-settle delays. */ unsigned skip_settle_delay:1; /* True if the controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* * Countdown for host blocking with no commands outstanding. */ unsigned int max_host_blocked; /* * Default value for the blocking. If the queue is empty, * host_blocked counts down in the request_fn until it restarts * host operations as zero is reached. * * FIXME: This should probably be a value in the template */ #define SCSI_DEFAULT_HOST_BLOCKED 7 /* * Pointer to the sysfs class properties for this host, NULL terminated. */ struct device_attribute **shost_attrs; /* * Pointer to the SCSI device properties for this host, NULL terminated. */ struct device_attribute **sdev_attrs; /* * Pointer to the SCSI device attribute groups for this host, * NULL terminated. */ const struct attribute_group **sdev_groups; /* * Vendor Identifier associated with the host * * Note: When specifying vendor_id, be sure to read the * Vendor Type and ID formatting requirements specified in * scsi_netlink.h */ u64 vendor_id; /* * Additional per-command data allocated for the driver. */ unsigned int cmd_size; struct scsi_host_cmd_pool *cmd_pool; /* Delay for runtime autosuspend */ int rpm_autosuspend_delay; }; /* * Temporary #define for host lock push down. Can be removed when all * drivers have been updated to take advantage of unlocked * queuecommand. * */ #define DEF_SCSI_QCMD(func_name) \ int func_name(struct Scsi_Host *shost, struct scsi_cmnd *cmd) \ { \ unsigned long irq_flags; \ int rc; \ spin_lock_irqsave(shost->host_lock, irq_flags); \ rc = func_name##_lck (cmd, cmd->scsi_done); \ spin_unlock_irqrestore(shost->host_lock, irq_flags); \ return rc; \ } /* * shost state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_host_set_state() */ enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING, SHOST_CANCEL, SHOST_DEL, SHOST_RECOVERY, SHOST_CANCEL_RECOVERY, SHOST_DEL_RECOVERY, }; struct Scsi_Host { /* * __devices is protected by the host_lock, but you should * usually use scsi_device_lookup / shost_for_each_device * to access it and don't care about locking yourself. * In the rare case of being in irq context you can use * their __ prefixed variants with the lock held. NEVER * access this list directly from a driver. */ struct list_head __devices; struct list_head __targets; struct list_head starved_list; spinlock_t default_lock; spinlock_t *host_lock; struct mutex scan_mutex;/* serialize scanning activity */ struct list_head eh_cmd_q; struct task_struct * ehandler; /* Error recovery thread. */ struct completion * eh_action; /* Wait for specific actions on the host. */ wait_queue_head_t host_wait; struct scsi_host_template *hostt; struct scsi_transport_template *transportt; /* Area to keep a shared tag map */ struct blk_mq_tag_set tag_set; atomic_t host_blocked; unsigned int host_failed; /* commands that failed. protected by host_lock */ unsigned int host_eh_scheduled; /* EH scheduled without command */ unsigned int host_no; /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */ /* next two fields are used to bound the time spent in error handling */ int eh_deadline; unsigned long last_reset; /* * These three parameters can be used to allow for wide scsi, * and for host adapters that support multiple busses * The last two should be set to 1 more than the actual max id * or lun (e.g. 8 for SCSI parallel systems). */ unsigned int max_channel; unsigned int max_id; u64 max_lun; /* * This is a unique identifier that must be assigned so that we * have some way of identifying each detected host adapter properly * and uniquely. For hosts that do not support more than one card * in the system at one time, this does not need to be set. It is * initialized to 0 in scsi_register. */ unsigned int unique_id; /* * The maximum length of SCSI commands that this host can accept. * Probably 12 for most host adapters, but could be 16 for others. * or 260 if the driver supports variable length cdbs. * For drivers that don't set this field, a value of 12 is * assumed. */ unsigned short max_cmd_len; int this_id; int can_queue; short cmd_per_lun; short unsigned int sg_tablesize; short unsigned int sg_prot_tablesize; unsigned int max_sectors; unsigned int max_segment_size; unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * In scsi-mq mode, the number of hardware queues supported by the LLD. * * Note: it is assumed that each hardware queue has a queue depth of * can_queue. In other words, the total queue depth per host * is nr_hw_queues * can_queue. However, for when host_tagset is set, * the total queue depth is can_queue. */ unsigned nr_hw_queues; unsigned active_mode:2; unsigned unchecked_isa_dma:1; /* * Host has requested that no further requests come through for the * time being. */ unsigned host_self_blocked:1; /* * Host uses correct SCSI ordering not PC ordering. The bit is * set for the minority of drivers whose authors actually read * the spec ;). */ unsigned reverse_ordering:1; /* Task mgmt function in progress */ unsigned tmf_in_progress:1; /* Asynchronous scan in progress */ unsigned async_scan:1; /* Don't resume host in EH */ unsigned eh_noresume:1; /* The controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* Host responded with short (<36 bytes) INQUIRY result */ unsigned short_inquiry:1; /* The transport requires the LUN bits NOT to be stored in CDB[1] */ unsigned no_scsi2_lun_in_cdb:1; /* * Optional work queue to be utilized by the transport */ char work_q_name[20]; struct workqueue_struct *work_q; /* * Task management function work queue */ struct workqueue_struct *tmf_work_q; /* * Value host_blocked counts down from */ unsigned int max_host_blocked; /* Protection Information */ unsigned int prot_capabilities; unsigned char prot_guard_type; /* legacy crap */ unsigned long base; unsigned long io_port; unsigned char n_io_port; unsigned char dma_channel; unsigned int irq; enum scsi_host_state shost_state; /* ldm bits */ struct device shost_gendev, shost_dev; /* * Points to the transport data (if any) which is allocated * separately */ void *shost_data; /* * Points to the physical bus device we'd use to do DMA * Needed just in case we have virtual hosts. */ struct device *dma_dev; /* * We should ensure that this is aligned, both for better performance * and also because some compilers (m68k) don't automatically force * alignment to a long boundary. */ unsigned long hostdata[] /* Used for storage of host specific stuff */ __attribute__ ((aligned (sizeof(unsigned long)))); }; #define class_to_shost(d) \ container_of(d, struct Scsi_Host, shost_dev) #define shost_printk(prefix, shost, fmt, a...) \ dev_printk(prefix, &(shost)->shost_gendev, fmt, ##a) static inline void *shost_priv(struct Scsi_Host *shost) { return (void *)shost->hostdata; } int scsi_is_host_device(const struct device *); static inline struct Scsi_Host *dev_to_shost(struct device *dev) { while (!scsi_is_host_device(dev)) { if (!dev->parent) return NULL; dev = dev->parent; } return container_of(dev, struct Scsi_Host, shost_gendev); } static inline int scsi_host_in_recovery(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RECOVERY || shost->shost_state == SHOST_CANCEL_RECOVERY || shost->shost_state == SHOST_DEL_RECOVERY || shost->tmf_in_progress; } extern int scsi_queue_work(struct Scsi_Host *, struct work_struct *); extern void scsi_flush_work(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *, int); extern int __must_check scsi_add_host_with_dma(struct Scsi_Host *, struct device *, struct device *); extern void scsi_scan_host(struct Scsi_Host *); extern void scsi_rescan_device(struct device *); extern void scsi_remove_host(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_get(struct Scsi_Host *); extern int scsi_host_busy(struct Scsi_Host *shost); extern void scsi_host_put(struct Scsi_Host *t); extern struct Scsi_Host *scsi_host_lookup(unsigned short); extern const char *scsi_host_state_name(enum scsi_host_state); extern void scsi_host_complete_all_commands(struct Scsi_Host *shost, int status); static inline int __must_check scsi_add_host(struct Scsi_Host *host, struct device *dev) { return scsi_add_host_with_dma(host, dev, dev); } static inline struct device *scsi_get_device(struct Scsi_Host *shost) { return shost->shost_gendev.parent; } /** * scsi_host_scan_allowed - Is scanning of this host allowed * @shost: Pointer to Scsi_Host. **/ static inline int scsi_host_scan_allowed(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RUNNING || shost->shost_state == SHOST_RECOVERY; } extern void scsi_unblock_requests(struct Scsi_Host *); extern void scsi_block_requests(struct Scsi_Host *); extern int scsi_host_block(struct Scsi_Host *shost); extern int scsi_host_unblock(struct Scsi_Host *shost, int new_state); void scsi_host_busy_iter(struct Scsi_Host *, bool (*fn)(struct scsi_cmnd *, void *, bool), void *priv); struct class_container; /* * These two functions are used to allocate and free a pseudo device * which will connect to the host adapter itself rather than any * physical device. You must deallocate when you are done with the * thing. This physical pseudo-device isn't real and won't be available * from any high-level drivers. */ extern void scsi_free_host_dev(struct scsi_device *); extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host *); /* * DIF defines the exchange of protection information between * initiator and SBC block device. * * DIX defines the exchange of protection information between OS and * initiator. */ enum scsi_host_prot_capabilities { SHOST_DIF_TYPE1_PROTECTION = 1 << 0, /* T10 DIF Type 1 */ SHOST_DIF_TYPE2_PROTECTION = 1 << 1, /* T10 DIF Type 2 */ SHOST_DIF_TYPE3_PROTECTION = 1 << 2, /* T10 DIF Type 3 */ SHOST_DIX_TYPE0_PROTECTION = 1 << 3, /* DIX between OS and HBA only */ SHOST_DIX_TYPE1_PROTECTION = 1 << 4, /* DIX with DIF Type 1 */ SHOST_DIX_TYPE2_PROTECTION = 1 << 5, /* DIX with DIF Type 2 */ SHOST_DIX_TYPE3_PROTECTION = 1 << 6, /* DIX with DIF Type 3 */ }; /* * SCSI hosts which support the Data Integrity Extensions must * indicate their capabilities by setting the prot_capabilities using * this call. */ static inline void scsi_host_set_prot(struct Scsi_Host *shost, unsigned int mask) { shost->prot_capabilities = mask; } static inline unsigned int scsi_host_get_prot(struct Scsi_Host *shost) { return shost->prot_capabilities; } static inline int scsi_host_prot_dma(struct Scsi_Host *shost) { return shost->prot_capabilities >= SHOST_DIX_TYPE0_PROTECTION; } static inline unsigned int scsi_host_dif_capable(struct Scsi_Host *shost, unsigned int target_type) { static unsigned char cap[] = { 0, SHOST_DIF_TYPE1_PROTECTION, SHOST_DIF_TYPE2_PROTECTION, SHOST_DIF_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type] ? target_type : 0; } static inline unsigned int scsi_host_dix_capable(struct Scsi_Host *shost, unsigned int target_type) { #if defined(CONFIG_BLK_DEV_INTEGRITY) static unsigned char cap[] = { SHOST_DIX_TYPE0_PROTECTION, SHOST_DIX_TYPE1_PROTECTION, SHOST_DIX_TYPE2_PROTECTION, SHOST_DIX_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type]; #endif return 0; } /* * All DIX-capable initiators must support the T10-mandated CRC * checksum. Controllers can optionally implement the IP checksum * scheme which has much lower impact on system performance. Note * that the main rationale for the checksum is to match integrity * metadata with data. Detecting bit errors are a job for ECC memory * and buses. */ enum scsi_host_guard_type { SHOST_DIX_GUARD_CRC = 1 << 0, SHOST_DIX_GUARD_IP = 1 << 1, }; static inline void scsi_host_set_guard(struct Scsi_Host *shost, unsigned char type) { shost->prot_guard_type = type; } static inline unsigned char scsi_host_get_guard(struct Scsi_Host *shost) { return shost->prot_guard_type; } extern int scsi_host_set_state(struct Scsi_Host *, enum scsi_host_state); #endif /* _SCSI_SCSI_HOST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 /* SPDX-License-Identifier: GPL-2.0 */ /* * bvec iterator * * Copyright (C) 2001 Ming Lei <ming.lei@canonical.com> */ #ifndef __LINUX_BVEC_ITER_H #define __LINUX_BVEC_ITER_H #include <linux/bug.h> #include <linux/errno.h> #include <linux/limits.h> #include <linux/minmax.h> #include <linux/mm.h> #include <linux/types.h> struct page; /** * struct bio_vec - a contiguous range of physical memory addresses * @bv_page: First page associated with the address range. * @bv_len: Number of bytes in the address range. * @bv_offset: Start of the address range relative to the start of @bv_page. * * The following holds for a bvec if n * PAGE_SIZE < bv_offset + bv_len: * * nth_page(@bv_page, n) == @bv_page + n * * This holds because page_is_mergeable() checks the above property. */ struct bio_vec { struct page *bv_page; unsigned int bv_len; unsigned int bv_offset; }; struct bvec_iter { sector_t bi_sector; /* device address in 512 byte sectors */ unsigned int bi_size; /* residual I/O count */ unsigned int bi_idx; /* current index into bvl_vec */ unsigned int bi_bvec_done; /* number of bytes completed in current bvec */ }; struct bvec_iter_all { struct bio_vec bv; int idx; unsigned done; }; /* * various member access, note that bio_data should of course not be used * on highmem page vectors */ #define __bvec_iter_bvec(bvec, iter) (&(bvec)[(iter).bi_idx]) /* multi-page (mp_bvec) helpers */ #define mp_bvec_iter_page(bvec, iter) \ (__bvec_iter_bvec((bvec), (iter))->bv_page) #define mp_bvec_iter_len(bvec, iter) \ min((iter).bi_size, \ __bvec_iter_bvec((bvec), (iter))->bv_len - (iter).bi_bvec_done) #define mp_bvec_iter_offset(bvec, iter) \ (__bvec_iter_bvec((bvec), (iter))->bv_offset + (iter).bi_bvec_done) #define mp_bvec_iter_page_idx(bvec, iter) \ (mp_bvec_iter_offset((bvec), (iter)) / PAGE_SIZE) #define mp_bvec_iter_bvec(bvec, iter) \ ((struct bio_vec) { \ .bv_page = mp_bvec_iter_page((bvec), (iter)), \ .bv_len = mp_bvec_iter_len((bvec), (iter)), \ .bv_offset = mp_bvec_iter_offset((bvec), (iter)), \ }) /* For building single-page bvec in flight */ #define bvec_iter_offset(bvec, iter) \ (mp_bvec_iter_offset((bvec), (iter)) % PAGE_SIZE) #define bvec_iter_len(bvec, iter) \ min_t(unsigned, mp_bvec_iter_len((bvec), (iter)), \ PAGE_SIZE - bvec_iter_offset((bvec), (iter))) #define bvec_iter_page(bvec, iter) \ (mp_bvec_iter_page((bvec), (iter)) + \ mp_bvec_iter_page_idx((bvec), (iter))) #define bvec_iter_bvec(bvec, iter) \ ((struct bio_vec) { \ .bv_page = bvec_iter_page((bvec), (iter)), \ .bv_len = bvec_iter_len((bvec), (iter)), \ .bv_offset = bvec_iter_offset((bvec), (iter)), \ }) static inline bool bvec_iter_advance(const struct bio_vec *bv, struct bvec_iter *iter, unsigned bytes) { unsigned int idx = iter->bi_idx; if (WARN_ONCE(bytes > iter->bi_size, "Attempted to advance past end of bvec iter\n")) { iter->bi_size = 0; return false; } iter->bi_size -= bytes; bytes += iter->bi_bvec_done; while (bytes && bytes >= bv[idx].bv_len) { bytes -= bv[idx].bv_len; idx++; } iter->bi_idx = idx; iter->bi_bvec_done = bytes; return true; } static inline void bvec_iter_skip_zero_bvec(struct bvec_iter *iter) { iter->bi_bvec_done = 0; iter->bi_idx++; } #define for_each_bvec(bvl, bio_vec, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bvl = bvec_iter_bvec((bio_vec), (iter))), 1); \ (bvl).bv_len ? (void)bvec_iter_advance((bio_vec), &(iter), \ (bvl).bv_len) : bvec_iter_skip_zero_bvec(&(iter))) /* for iterating one bio from start to end */ #define BVEC_ITER_ALL_INIT (struct bvec_iter) \ { \ .bi_sector = 0, \ .bi_size = UINT_MAX, \ .bi_idx = 0, \ .bi_bvec_done = 0, \ } static inline struct bio_vec *bvec_init_iter_all(struct bvec_iter_all *iter_all) { iter_all->done = 0; iter_all->idx = 0; return &iter_all->bv; } static inline void bvec_advance(const struct bio_vec *bvec, struct bvec_iter_all *iter_all) { struct bio_vec *bv = &iter_all->bv; if (iter_all->done) { bv->bv_page++; bv->bv_offset = 0; } else { bv->bv_page = bvec->bv_page + (bvec->bv_offset >> PAGE_SHIFT); bv->bv_offset = bvec->bv_offset & ~PAGE_MASK; } bv->bv_len = min_t(unsigned int, PAGE_SIZE - bv->bv_offset, bvec->bv_len - iter_all->done); iter_all->done += bv->bv_len; if (iter_all->done == bvec->bv_len) { iter_all->idx++; iter_all->done = 0; } } #endif /* __LINUX_BVEC_ITER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/cpu.h - generic cpu definition * * This is mainly for topological representation. We define the * basic 'struct cpu' here, which can be embedded in per-arch * definitions of processors. * * Basic handling of the devices is done in drivers/base/cpu.c * * CPUs are exported via sysfs in the devices/system/cpu * directory. */ #ifndef _LINUX_CPU_H_ #define _LINUX_CPU_H_ #include <linux/node.h> #include <linux/compiler.h> #include <linux/cpumask.h> #include <linux/cpuhotplug.h> struct device; struct device_node; struct attribute_group; struct cpu { int node_id; /* The node which contains the CPU */ int hotpluggable; /* creates sysfs control file if hotpluggable */ struct device dev; }; extern void boot_cpu_init(void); extern void boot_cpu_hotplug_init(void); extern void cpu_init(void); extern void trap_init(void); extern int register_cpu(struct cpu *cpu, int num); extern struct device *get_cpu_device(unsigned cpu); extern bool cpu_is_hotpluggable(unsigned cpu); extern bool arch_match_cpu_phys_id(int cpu, u64 phys_id); extern bool arch_find_n_match_cpu_physical_id(struct device_node *cpun, int cpu, unsigned int *thread); extern int cpu_add_dev_attr(struct device_attribute *attr); extern void cpu_remove_dev_attr(struct device_attribute *attr); extern int cpu_add_dev_attr_group(struct attribute_group *attrs); extern void cpu_remove_dev_attr_group(struct attribute_group *attrs); extern ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf); extern __printf(4, 5) struct device *cpu_device_create(struct device *parent, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); #ifdef CONFIG_HOTPLUG_CPU extern void unregister_cpu(struct cpu *cpu); extern ssize_t arch_cpu_probe(const char *, size_t); extern ssize_t arch_cpu_release(const char *, size_t); #endif /* * These states are not related to the core CPU hotplug mechanism. They are * used by various (sub)architectures to track internal state */ #define CPU_ONLINE 0x0002 /* CPU is up */ #define CPU_UP_PREPARE 0x0003 /* CPU coming up */ #define CPU_DEAD 0x0007 /* CPU dead */ #define CPU_DEAD_FROZEN 0x0008 /* CPU timed out on unplug */ #define CPU_POST_DEAD 0x0009 /* CPU successfully unplugged */ #define CPU_BROKEN 0x000B /* CPU did not die properly */ #ifdef CONFIG_SMP extern bool cpuhp_tasks_frozen; int add_cpu(unsigned int cpu); int cpu_device_up(struct device *dev); void notify_cpu_starting(unsigned int cpu); extern void cpu_maps_update_begin(void); extern void cpu_maps_update_done(void); int bringup_hibernate_cpu(unsigned int sleep_cpu); void bringup_nonboot_cpus(unsigned int setup_max_cpus); #else /* CONFIG_SMP */ #define cpuhp_tasks_frozen 0 static inline void cpu_maps_update_begin(void) { } static inline void cpu_maps_update_done(void) { } #endif /* CONFIG_SMP */ extern struct bus_type cpu_subsys; #ifdef CONFIG_HOTPLUG_CPU extern void cpus_write_lock(void); extern void cpus_write_unlock(void); extern void cpus_read_lock(void); extern void cpus_read_unlock(void); extern int cpus_read_trylock(void); extern void lockdep_assert_cpus_held(void); extern void cpu_hotplug_disable(void); extern void cpu_hotplug_enable(void); void clear_tasks_mm_cpumask(int cpu); int remove_cpu(unsigned int cpu); int cpu_device_down(struct device *dev); extern void smp_shutdown_nonboot_cpus(unsigned int primary_cpu); #else /* CONFIG_HOTPLUG_CPU */ static inline void cpus_write_lock(void) { } static inline void cpus_write_unlock(void) { } static inline void cpus_read_lock(void) { } static inline void cpus_read_unlock(void) { } static inline int cpus_read_trylock(void) { return true; } static inline void lockdep_assert_cpus_held(void) { } static inline void cpu_hotplug_disable(void) { } static inline void cpu_hotplug_enable(void) { } static inline void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) { } #endif /* !CONFIG_HOTPLUG_CPU */ /* Wrappers which go away once all code is converted */ static inline void cpu_hotplug_begin(void) { cpus_write_lock(); } static inline void cpu_hotplug_done(void) { cpus_write_unlock(); } static inline void get_online_cpus(void) { cpus_read_lock(); } static inline void put_online_cpus(void) { cpus_read_unlock(); } #ifdef CONFIG_PM_SLEEP_SMP extern int freeze_secondary_cpus(int primary); extern void thaw_secondary_cpus(void); static inline int suspend_disable_secondary_cpus(void) { int cpu = 0; if (IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) cpu = -1; return freeze_secondary_cpus(cpu); } static inline void suspend_enable_secondary_cpus(void) { return thaw_secondary_cpus(); } #else /* !CONFIG_PM_SLEEP_SMP */ static inline void thaw_secondary_cpus(void) {} static inline int suspend_disable_secondary_cpus(void) { return 0; } static inline void suspend_enable_secondary_cpus(void) { } #endif /* !CONFIG_PM_SLEEP_SMP */ void cpu_startup_entry(enum cpuhp_state state); void cpu_idle_poll_ctrl(bool enable); /* Attach to any functions which should be considered cpuidle. */ #define __cpuidle __section(".cpuidle.text") bool cpu_in_idle(unsigned long pc); void arch_cpu_idle(void); void arch_cpu_idle_prepare(void); void arch_cpu_idle_enter(void); void arch_cpu_idle_exit(void); void arch_cpu_idle_dead(void); int cpu_report_state(int cpu); int cpu_check_up_prepare(int cpu); void cpu_set_state_online(int cpu); void play_idle_precise(u64 duration_ns, u64 latency_ns); static inline void play_idle(unsigned long duration_us) { play_idle_precise(duration_us * NSEC_PER_USEC, U64_MAX); } #ifdef CONFIG_HOTPLUG_CPU bool cpu_wait_death(unsigned int cpu, int seconds); bool cpu_report_death(void); void cpuhp_report_idle_dead(void); #else static inline void cpuhp_report_idle_dead(void) { } #endif /* #ifdef CONFIG_HOTPLUG_CPU */ enum cpuhp_smt_control { CPU_SMT_ENABLED, CPU_SMT_DISABLED, CPU_SMT_FORCE_DISABLED, CPU_SMT_NOT_SUPPORTED, CPU_SMT_NOT_IMPLEMENTED, }; #if defined(CONFIG_SMP) && defined(CONFIG_HOTPLUG_SMT) extern enum cpuhp_smt_control cpu_smt_control; extern void cpu_smt_disable(bool force); extern void cpu_smt_check_topology(void); extern bool cpu_smt_possible(void); extern int cpuhp_smt_enable(void); extern int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval); #else # define cpu_smt_control (CPU_SMT_NOT_IMPLEMENTED) static inline void cpu_smt_disable(bool force) { } static inline void cpu_smt_check_topology(void) { } static inline bool cpu_smt_possible(void) { return false; } static inline int cpuhp_smt_enable(void) { return 0; } static inline int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) { return 0; } #endif extern bool cpu_mitigations_off(void); extern bool cpu_mitigations_auto_nosmt(void); #endif /* _LINUX_CPU_H_ */
1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wrapper functions for accessing the file_struct fd array. */ #ifndef __LINUX_FILE_H #define __LINUX_FILE_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/posix_types.h> #include <linux/errno.h> struct file; extern void fput(struct file *); extern void fput_many(struct file *, unsigned int); struct file_operations; struct task_struct; struct vfsmount; struct dentry; struct inode; struct path; extern struct file *alloc_file_pseudo(struct inode *, struct vfsmount *, const char *, int flags, const struct file_operations *); extern struct file *alloc_file_clone(struct file *, int flags, const struct file_operations *); static inline void fput_light(struct file *file, int fput_needed) { if (fput_needed) fput(file); } struct fd { struct file *file; unsigned int flags; }; #define FDPUT_FPUT 1 #define FDPUT_POS_UNLOCK 2 static inline void fdput(struct fd fd) { if (fd.flags & FDPUT_FPUT) fput(fd.file); } extern struct file *fget(unsigned int fd); extern struct file *fget_many(unsigned int fd, unsigned int refs); extern struct file *fget_raw(unsigned int fd); extern struct file *fget_task(struct task_struct *task, unsigned int fd); extern unsigned long __fdget(unsigned int fd); extern unsigned long __fdget_raw(unsigned int fd); extern unsigned long __fdget_pos(unsigned int fd); extern void __f_unlock_pos(struct file *); static inline struct fd __to_fd(unsigned long v) { return (struct fd){(struct file *)(v & ~3),v & 3}; } static inline struct fd fdget(unsigned int fd) { return __to_fd(__fdget(fd)); } static inline struct fd fdget_raw(unsigned int fd) { return __to_fd(__fdget_raw(fd)); } static inline struct fd fdget_pos(int fd) { return __to_fd(__fdget_pos(fd)); } static inline void fdput_pos(struct fd f) { if (f.flags & FDPUT_POS_UNLOCK) __f_unlock_pos(f.file); fdput(f); } extern int f_dupfd(unsigned int from, struct file *file, unsigned flags); extern int replace_fd(unsigned fd, struct file *file, unsigned flags); extern void set_close_on_exec(unsigned int fd, int flag); extern bool get_close_on_exec(unsigned int fd); extern int __get_unused_fd_flags(unsigned flags, unsigned long nofile); extern int get_unused_fd_flags(unsigned flags); extern void put_unused_fd(unsigned int fd); extern void fd_install(unsigned int fd, struct file *file); extern int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags); static inline int receive_fd_user(struct file *file, int __user *ufd, unsigned int o_flags) { if (ufd == NULL) return -EFAULT; return __receive_fd(-1, file, ufd, o_flags); } static inline int receive_fd(struct file *file, unsigned int o_flags) { return __receive_fd(-1, file, NULL, o_flags); } static inline int receive_fd_replace(int fd, struct file *file, unsigned int o_flags) { return __receive_fd(fd, file, NULL, o_flags); } extern void flush_delayed_fput(void); extern void __fput_sync(struct file *); extern unsigned int sysctl_nr_open_min, sysctl_nr_open_max; #endif /* __LINUX_FILE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/backing-dev.h * * low-level device information and state which is propagated up through * to high-level code. */ #ifndef _LINUX_BACKING_DEV_H #define _LINUX_BACKING_DEV_H #include <linux/kernel.h> #include <linux/fs.h> #include <linux/sched.h> #include <linux/blkdev.h> #include <linux/device.h> #include <linux/writeback.h> #include <linux/blk-cgroup.h> #include <linux/backing-dev-defs.h> #include <linux/slab.h> static inline struct backing_dev_info *bdi_get(struct backing_dev_info *bdi) { kref_get(&bdi->refcnt); return bdi; } struct backing_dev_info *bdi_get_by_id(u64 id); void bdi_put(struct backing_dev_info *bdi); __printf(2, 3) int bdi_register(struct backing_dev_info *bdi, const char *fmt, ...); __printf(2, 0) int bdi_register_va(struct backing_dev_info *bdi, const char *fmt, va_list args); void bdi_set_owner(struct backing_dev_info *bdi, struct device *owner); void bdi_unregister(struct backing_dev_info *bdi); struct backing_dev_info *bdi_alloc(int node_id); void wb_start_background_writeback(struct bdi_writeback *wb); void wb_workfn(struct work_struct *work); void wb_wakeup_delayed(struct bdi_writeback *wb); void wb_wait_for_completion(struct wb_completion *done); extern spinlock_t bdi_lock; extern struct list_head bdi_list; extern struct workqueue_struct *bdi_wq; extern struct workqueue_struct *bdi_async_bio_wq; static inline bool wb_has_dirty_io(struct bdi_writeback *wb) { return test_bit(WB_has_dirty_io, &wb->state); } static inline bool bdi_has_dirty_io(struct backing_dev_info *bdi) { /* * @bdi->tot_write_bandwidth is guaranteed to be > 0 if there are * any dirty wbs. See wb_update_write_bandwidth(). */ return atomic_long_read(&bdi->tot_write_bandwidth); } static inline void __add_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item, s64 amount) { percpu_counter_add_batch(&wb->stat[item], amount, WB_STAT_BATCH); } static inline void inc_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { __add_wb_stat(wb, item, 1); } static inline void dec_wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { __add_wb_stat(wb, item, -1); } static inline s64 wb_stat(struct bdi_writeback *wb, enum wb_stat_item item) { return percpu_counter_read_positive(&wb->stat[item]); } static inline s64 wb_stat_sum(struct bdi_writeback *wb, enum wb_stat_item item) { return percpu_counter_sum_positive(&wb->stat[item]); } extern void wb_writeout_inc(struct bdi_writeback *wb); /* * maximal error of a stat counter. */ static inline unsigned long wb_stat_error(void) { #ifdef CONFIG_SMP return nr_cpu_ids * WB_STAT_BATCH; #else return 1; #endif } int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio); int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio); /* * Flags in backing_dev_info::capability * * BDI_CAP_WRITEBACK: Supports dirty page writeback, and dirty pages * should contribute to accounting * BDI_CAP_WRITEBACK_ACCT: Automatically account writeback pages * BDI_CAP_STRICTLIMIT: Keep number of dirty pages below bdi threshold */ #define BDI_CAP_WRITEBACK (1 << 0) #define BDI_CAP_WRITEBACK_ACCT (1 << 1) #define BDI_CAP_STRICTLIMIT (1 << 2) extern struct backing_dev_info noop_backing_dev_info; /** * writeback_in_progress - determine whether there is writeback in progress * @wb: bdi_writeback of interest * * Determine whether there is writeback waiting to be handled against a * bdi_writeback. */ static inline bool writeback_in_progress(struct bdi_writeback *wb) { return test_bit(WB_writeback_running, &wb->state); } static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) { struct super_block *sb; if (!inode) return &noop_backing_dev_info; sb = inode->i_sb; #ifdef CONFIG_BLOCK if (sb_is_blkdev_sb(sb)) return I_BDEV(inode)->bd_bdi; #endif return sb->s_bdi; } static inline int wb_congested(struct bdi_writeback *wb, int cong_bits) { return wb->congested & cong_bits; } long congestion_wait(int sync, long timeout); long wait_iff_congested(int sync, long timeout); static inline bool mapping_can_writeback(struct address_space *mapping) { return inode_to_bdi(mapping->host)->capabilities & BDI_CAP_WRITEBACK; } static inline int bdi_sched_wait(void *word) { schedule(); return 0; } #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *wb_get_lookup(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css); struct bdi_writeback *wb_get_create(struct backing_dev_info *bdi, struct cgroup_subsys_state *memcg_css, gfp_t gfp); void wb_memcg_offline(struct mem_cgroup *memcg); void wb_blkcg_offline(struct blkcg *blkcg); int inode_congested(struct inode *inode, int cong_bits); /** * inode_cgwb_enabled - test whether cgroup writeback is enabled on an inode * @inode: inode of interest * * Cgroup writeback requires support from the filesystem. Also, both memcg and * iocg have to be on the default hierarchy. Test whether all conditions are * met. * * Note that the test result may change dynamically on the same inode * depending on how memcg and iocg are configured. */ static inline bool inode_cgwb_enabled(struct inode *inode) { struct backing_dev_info *bdi = inode_to_bdi(inode); return cgroup_subsys_on_dfl(memory_cgrp_subsys) && cgroup_subsys_on_dfl(io_cgrp_subsys) && (bdi->capabilities & BDI_CAP_WRITEBACK) && (inode->i_sb->s_iflags & SB_I_CGROUPWB); } /** * wb_find_current - find wb for %current on a bdi * @bdi: bdi of interest * * Find the wb of @bdi which matches both the memcg and blkcg of %current. * Must be called under rcu_read_lock() which protects the returend wb. * NULL if not found. */ static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi) { struct cgroup_subsys_state *memcg_css; struct bdi_writeback *wb; memcg_css = task_css(current, memory_cgrp_id); if (!memcg_css->parent) return &bdi->wb; wb = radix_tree_lookup(&bdi->cgwb_tree, memcg_css->id); /* * %current's blkcg equals the effective blkcg of its memcg. No * need to use the relatively expensive cgroup_get_e_css(). */ if (likely(wb && wb->blkcg_css == task_css(current, io_cgrp_id))) return wb; return NULL; } /** * wb_get_create_current - get or create wb for %current on a bdi * @bdi: bdi of interest * @gfp: allocation mask * * Equivalent to wb_get_create() on %current's memcg. This function is * called from a relatively hot path and optimizes the common cases using * wb_find_current(). */ static inline struct bdi_writeback * wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp) { struct bdi_writeback *wb; rcu_read_lock(); wb = wb_find_current(bdi); if (wb && unlikely(!wb_tryget(wb))) wb = NULL; rcu_read_unlock(); if (unlikely(!wb)) { struct cgroup_subsys_state *memcg_css; memcg_css = task_get_css(current, memory_cgrp_id); wb = wb_get_create(bdi, memcg_css, gfp); css_put(memcg_css); } return wb; } /** * inode_to_wb_is_valid - test whether an inode has a wb associated * @inode: inode of interest * * Returns %true if @inode has a wb associated. May be called without any * locking. */ static inline bool inode_to_wb_is_valid(struct inode *inode) { return inode->i_wb; } /** * inode_to_wb - determine the wb of an inode * @inode: inode of interest * * Returns the wb @inode is currently associated with. The caller must be * holding either @inode->i_lock, the i_pages lock, or the * associated wb's list_lock. */ static inline struct bdi_writeback *inode_to_wb(const struct inode *inode) { #ifdef CONFIG_LOCKDEP WARN_ON_ONCE(debug_locks && (!lockdep_is_held(&inode->i_lock) && !lockdep_is_held(&inode->i_mapping->i_pages.xa_lock) && !lockdep_is_held(&inode->i_wb->list_lock))); #endif return inode->i_wb; } /** * unlocked_inode_to_wb_begin - begin unlocked inode wb access transaction * @inode: target inode * @cookie: output param, to be passed to the end function * * The caller wants to access the wb associated with @inode but isn't * holding inode->i_lock, the i_pages lock or wb->list_lock. This * function determines the wb associated with @inode and ensures that the * association doesn't change until the transaction is finished with * unlocked_inode_to_wb_end(). * * The caller must call unlocked_inode_to_wb_end() with *@cookie afterwards and * can't sleep during the transaction. IRQs may or may not be disabled on * return. */ static inline struct bdi_writeback * unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie) { rcu_read_lock(); /* * Paired with store_release in inode_switch_wbs_work_fn() and * ensures that we see the new wb if we see cleared I_WB_SWITCH. */ cookie->locked = smp_load_acquire(&inode->i_state) & I_WB_SWITCH; if (unlikely(cookie->locked)) xa_lock_irqsave(&inode->i_mapping->i_pages, cookie->flags); /* * Protected by either !I_WB_SWITCH + rcu_read_lock() or the i_pages * lock. inode_to_wb() will bark. Deref directly. */ return inode->i_wb; } /** * unlocked_inode_to_wb_end - end inode wb access transaction * @inode: target inode * @cookie: @cookie from unlocked_inode_to_wb_begin() */ static inline void unlocked_inode_to_wb_end(struct inode *inode, struct wb_lock_cookie *cookie) { if (unlikely(cookie->locked)) xa_unlock_irqrestore(&inode->i_mapping->i_pages, cookie->flags); rcu_read_unlock(); } #else /* CONFIG_CGROUP_WRITEBACK */ static inline bool inode_cgwb_enabled(struct inode *inode) { return false; } static inline struct bdi_writeback *wb_find_current(struct backing_dev_info *bdi) { return &bdi->wb; } static inline struct bdi_writeback * wb_get_create_current(struct backing_dev_info *bdi, gfp_t gfp) { return &bdi->wb; } static inline bool inode_to_wb_is_valid(struct inode *inode) { return true; } static inline struct bdi_writeback *inode_to_wb(struct inode *inode) { return &inode_to_bdi(inode)->wb; } static inline struct bdi_writeback * unlocked_inode_to_wb_begin(struct inode *inode, struct wb_lock_cookie *cookie) { return inode_to_wb(inode); } static inline void unlocked_inode_to_wb_end(struct inode *inode, struct wb_lock_cookie *cookie) { } static inline void wb_memcg_offline(struct mem_cgroup *memcg) { } static inline void wb_blkcg_offline(struct blkcg *blkcg) { } static inline int inode_congested(struct inode *inode, int cong_bits) { return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); } #endif /* CONFIG_CGROUP_WRITEBACK */ static inline int inode_read_congested(struct inode *inode) { return inode_congested(inode, 1 << WB_sync_congested); } static inline int inode_write_congested(struct inode *inode) { return inode_congested(inode, 1 << WB_async_congested); } static inline int inode_rw_congested(struct inode *inode) { return inode_congested(inode, (1 << WB_sync_congested) | (1 << WB_async_congested)); } static inline int bdi_congested(struct backing_dev_info *bdi, int cong_bits) { return wb_congested(&bdi->wb, cong_bits); } static inline int bdi_read_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, 1 << WB_sync_congested); } static inline int bdi_write_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, 1 << WB_async_congested); } static inline int bdi_rw_congested(struct backing_dev_info *bdi) { return bdi_congested(bdi, (1 << WB_sync_congested) | (1 << WB_async_congested)); } const char *bdi_dev_name(struct backing_dev_info *bdi); #endif /* _LINUX_BACKING_DEV_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 // SPDX-License-Identifier: GPL-2.0-or-later /* * Neighbour Discovery for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Mike Shaver <shaver@ingenia.com> */ /* * Changes: * * Alexey I. Froloff : RFC6106 (DNSSL) support * Pierre Ynard : export userland ND options * through netlink (RDNSS support) * Lars Fenneberg : fixed MTU setting on receipt * of an RA. * Janos Farkas : kmalloc failure checks * Alexey Kuznetsov : state machine reworked * and moved to net/core. * Pekka Savola : RFC2461 validation * YOSHIFUJI Hideaki @USAGI : Verify ND options properly */ #define pr_fmt(fmt) "ICMPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/sched.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/route.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/jhash.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <net/flow.h> #include <net/ip6_checksum.h> #include <net/inet_common.h> #include <linux/proc_fs.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool ndisc_key_eq(const struct neighbour *neigh, const void *pkey); static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack); static int ndisc_constructor(struct neighbour *neigh); static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb); static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb); static int pndisc_constructor(struct pneigh_entry *n); static void pndisc_destructor(struct pneigh_entry *n); static void pndisc_redo(struct sk_buff *skb); static int ndisc_is_multicast(const void *pkey); static const struct neigh_ops ndisc_generic_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops ndisc_hh_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops ndisc_direct_ops = { .family = AF_INET6, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table nd_tbl = { .family = AF_INET6, .key_len = sizeof(struct in6_addr), .protocol = cpu_to_be16(ETH_P_IPV6), .hash = ndisc_hash, .key_eq = ndisc_key_eq, .constructor = ndisc_constructor, .pconstructor = pndisc_constructor, .pdestructor = pndisc_destructor, .proxy_redo = pndisc_redo, .is_multicast = ndisc_is_multicast, .allow_add = ndisc_allow_add, .id = "ndisc_cache", .parms = { .tbl = &nd_tbl, .reachable_time = ND_REACHABLE_TIME, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = ND_RETRANS_TIMER, [NEIGH_VAR_BASE_REACHABLE_TIME] = ND_REACHABLE_TIME, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL_GPL(nd_tbl); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, int data_len, int pad) { int space = __ndisc_opt_addr_space(data_len, pad); u8 *opt = skb_put(skb, space); opt[0] = type; opt[1] = space>>3; memset(opt + 2, 0, pad); opt += pad; space -= pad; memcpy(opt+2, data, data_len); data_len += 2; opt += data_len; space -= data_len; if (space > 0) memset(opt, 0, space); } EXPORT_SYMBOL_GPL(__ndisc_fill_addr_option); static inline void ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, u8 icmp6_type) { __ndisc_fill_addr_option(skb, type, data, skb->dev->addr_len, ndisc_addr_option_pad(skb->dev->type)); ndisc_ops_fill_addr_option(skb->dev, skb, icmp6_type); } static inline void ndisc_fill_redirect_addr_option(struct sk_buff *skb, void *ha, const u8 *ops_data) { ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, ha, NDISC_REDIRECT); ndisc_ops_fill_redirect_addr_option(skb->dev, skb, ops_data); } static struct nd_opt_hdr *ndisc_next_option(struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { int type; if (!cur || !end || cur >= end) return NULL; type = cur->nd_opt_type; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && cur->nd_opt_type != type); return cur <= end && cur->nd_opt_type == type ? cur : NULL; } static inline int ndisc_is_useropt(const struct net_device *dev, struct nd_opt_hdr *opt) { return opt->nd_opt_type == ND_OPT_RDNSS || opt->nd_opt_type == ND_OPT_DNSSL || opt->nd_opt_type == ND_OPT_CAPTIVE_PORTAL || opt->nd_opt_type == ND_OPT_PREF64 || ndisc_ops_is_useropt(dev, opt->nd_opt_type); } static struct nd_opt_hdr *ndisc_next_useropt(const struct net_device *dev, struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { if (!cur || !end || cur >= end) return NULL; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && !ndisc_is_useropt(dev, cur)); return cur <= end && ndisc_is_useropt(dev, cur) ? cur : NULL; } struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)opt; if (!nd_opt || opt_len < 0 || !ndopts) return NULL; memset(ndopts, 0, sizeof(*ndopts)); while (opt_len) { int l; if (opt_len < sizeof(struct nd_opt_hdr)) return NULL; l = nd_opt->nd_opt_len << 3; if (opt_len < l || l == 0) return NULL; if (ndisc_ops_parse_options(dev, nd_opt, ndopts)) goto next_opt; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LL_ADDR: case ND_OPT_TARGET_LL_ADDR: case ND_OPT_MTU: case ND_OPT_NONCE: case ND_OPT_REDIRECT_HDR: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { ND_PRINTK(2, warn, "%s: duplicated ND6 option found: type=%d\n", __func__, nd_opt->nd_opt_type); } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFO: ndopts->nd_opts_pi_end = nd_opt; if (!ndopts->nd_opt_array[nd_opt->nd_opt_type]) ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; break; #ifdef CONFIG_IPV6_ROUTE_INFO case ND_OPT_ROUTE_INFO: ndopts->nd_opts_ri_end = nd_opt; if (!ndopts->nd_opts_ri) ndopts->nd_opts_ri = nd_opt; break; #endif default: if (ndisc_is_useropt(dev, nd_opt)) { ndopts->nd_useropts_end = nd_opt; if (!ndopts->nd_useropts) ndopts->nd_useropts = nd_opt; } else { /* * Unknown options must be silently ignored, * to accommodate future extension to the * protocol. */ ND_PRINTK(2, notice, "%s: ignored unsupported option; type=%d, len=%d\n", __func__, nd_opt->nd_opt_type, nd_opt->nd_opt_len); } } next_opt: opt_len -= l; nd_opt = ((void *)nd_opt) + l; } return ndopts; } int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_IEEE802: /* Not sure. Check it later. --ANK */ case ARPHRD_FDDI: ipv6_eth_mc_map(addr, buf); return 0; case ARPHRD_ARCNET: ipv6_arcnet_mc_map(addr, buf); return 0; case ARPHRD_INFINIBAND: ipv6_ib_mc_map(addr, dev->broadcast, buf); return 0; case ARPHRD_IPGRE: return ipv6_ipgre_mc_map(addr, dev->broadcast, buf); default: if (dir) { memcpy(buf, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } EXPORT_SYMBOL(ndisc_mc_map); static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return ndisc_hashfn(pkey, dev, hash_rnd); } static bool ndisc_key_eq(const struct neighbour *n, const void *pkey) { return neigh_key_eq128(n, pkey); } static int ndisc_constructor(struct neighbour *neigh) { struct in6_addr *addr = (struct in6_addr *)&neigh->primary_key; struct net_device *dev = neigh->dev; struct inet6_dev *in6_dev; struct neigh_parms *parms; bool is_multicast = ipv6_addr_is_multicast(addr); in6_dev = in6_dev_get(dev); if (!in6_dev) { return -EINVAL; } parms = in6_dev->nd_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); neigh->type = is_multicast ? RTN_MULTICAST : RTN_UNICAST; if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &ndisc_direct_ops; neigh->output = neigh_direct_output; } else { if (is_multicast) { neigh->nud_state = NUD_NOARP; ndisc_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); if (dev->flags&IFF_LOOPBACK) neigh->type = RTN_LOCAL; } else if (dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &ndisc_hh_ops; else neigh->ops = &ndisc_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } in6_dev_put(in6_dev); return 0; } static int pndisc_constructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return -EINVAL; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); return 0; } static void pndisc_destructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } /* called with rtnl held */ static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev || idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on this device"); return false; } return true; } static struct sk_buff *ndisc_alloc_skb(struct net_device *dev, int len) { int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct sock *sk = dev_net(dev)->ipv6.ndisc_sk; struct sk_buff *skb; skb = alloc_skb(hlen + sizeof(struct ipv6hdr) + len + tlen, GFP_ATOMIC); if (!skb) { ND_PRINTK(0, err, "ndisc: %s failed to allocate an skb\n", __func__); return NULL; } skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reserve(skb, hlen + sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); /* Manually assign socket ownership as we avoid calling * sock_alloc_send_pskb() to bypass wmem buffer limits */ skb_set_owner_w(skb, sk); return skb; } static void ip6_nd_hdr(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int hop_limit, int len) { struct ipv6hdr *hdr; struct inet6_dev *idev; unsigned tclass; rcu_read_lock(); idev = __in6_dev_get(skb->dev); tclass = idev ? idev->cnf.ndisc_tclass : 0; rcu_read_unlock(); skb_push(skb, sizeof(*hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, tclass, 0); hdr->payload_len = htons(len); hdr->nexthdr = IPPROTO_ICMPV6; hdr->hop_limit = hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } static void ndisc_send_skb(struct sk_buff *skb, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(skb->dev); struct sock *sk = net->ipv6.ndisc_sk; struct inet6_dev *idev; int err; struct icmp6hdr *icmp6h = icmp6_hdr(skb); u8 type; type = icmp6h->icmp6_type; if (!dst) { struct flowi6 fl6; int oif = skb->dev->ifindex; icmpv6_flow_init(sk, &fl6, type, saddr, daddr, oif); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { kfree_skb(skb); return; } skb_dst_set(skb, dst); } icmp6h->icmp6_cksum = csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_ICMPV6, csum_partial(icmp6h, skb->len, 0)); ip6_nd_hdr(skb, saddr, daddr, inet6_sk(sk)->hop_limit, skb->len); rcu_read_lock(); idev = __in6_dev_get(dst->dev); IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUT, skb->len); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, dst->dev, dst_output); if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } rcu_read_unlock(); } void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt) { struct sk_buff *skb; struct in6_addr tmpaddr; struct inet6_ifaddr *ifp; const struct in6_addr *src_addr; struct nd_msg *msg; int optlen = 0; /* for anycast or proxy, solicited_addr != src_addr */ ifp = ipv6_get_ifaddr(dev_net(dev), solicited_addr, dev, 1); if (ifp) { src_addr = solicited_addr; if (ifp->flags & IFA_F_OPTIMISTIC) override = false; inc_opt |= ifp->idev->cnf.force_tllao; in6_ifa_put(ifp); } else { if (ipv6_dev_get_saddr(dev_net(dev), dev, daddr, inet6_sk(dev_net(dev)->ipv6.ndisc_sk)->srcprefs, &tmpaddr)) return; src_addr = &tmpaddr; } if (!dev->addr_len) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_ADVERTISEMENT); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT, .icmp6_router = router, .icmp6_solicited = solicited, .icmp6_override = override, }, .target = *solicited_addr, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_ADVERTISEMENT); ndisc_send_skb(skb, daddr, src_addr); } static void ndisc_send_unsol_na(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; idev = in6_dev_get(dev); if (!idev) return; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { /* skip tentative addresses until dad completes */ if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_OPTIMISTIC)) continue; ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifa->addr, /*router=*/ !!idev->cnf.forwarding, /*solicited=*/ false, /*override=*/ true, /*inc_opt=*/ true); } read_unlock_bh(&idev->lock); in6_dev_put(idev); } void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce) { struct sk_buff *skb; struct in6_addr addr_buf; int inc_opt = dev->addr_len; int optlen = 0; struct nd_msg *msg; if (!saddr) { if (ipv6_get_lladdr(dev, &addr_buf, (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC))) return; saddr = &addr_buf; } if (ipv6_addr_any(saddr)) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) optlen += 8; skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION, }, .target = *solicit, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) { u8 *opt = skb_put(skb, 8); opt[0] = ND_OPT_NONCE; opt[1] = 8 >> 3; memcpy(opt + 2, &nonce, 6); } ndisc_send_skb(skb, daddr, saddr); } void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct sk_buff *skb; struct rs_msg *msg; int send_sllao = dev->addr_len; int optlen = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * According to section 2.2 of RFC 4429, we must not * send router solicitations with a sllao from * optimistic addresses, but we may send the solicitation * if we don't include the sllao. So here we check * if our address is optimistic, and if so, we * suppress the inclusion of the sllao. */ if (send_sllao) { struct inet6_ifaddr *ifp = ipv6_get_ifaddr(dev_net(dev), saddr, dev, 1); if (ifp) { if (ifp->flags & IFA_F_OPTIMISTIC) { send_sllao = 0; } in6_ifa_put(ifp); } else { send_sllao = 0; } } #endif if (send_sllao) optlen += ndisc_opt_addr_space(dev, NDISC_ROUTER_SOLICITATION); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct rs_msg) { .icmph = { .icmp6_type = NDISC_ROUTER_SOLICITATION, }, }; if (send_sllao) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_ROUTER_SOLICITATION); ndisc_send_skb(skb, daddr, saddr); } static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb) { /* * "The sender MUST return an ICMP * destination unreachable" */ dst_link_failure(skb); kfree_skb(skb); } /* Called with locked neigh: either read or both */ static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb) { struct in6_addr *saddr = NULL; struct in6_addr mcaddr; struct net_device *dev = neigh->dev; struct in6_addr *target = (struct in6_addr *)&neigh->primary_key; int probes = atomic_read(&neigh->probes); if (skb && ipv6_chk_addr_and_flags(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, false, 1, IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) saddr = &ipv6_hdr(skb)->saddr; probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(neigh->nud_state & NUD_VALID)) { ND_PRINTK(1, dbg, "%s: trying to ucast probe in NUD_INVALID: %pI6\n", __func__, target); } ndisc_send_ns(dev, target, target, saddr, 0); } else if ((probes -= NEIGH_VAR(neigh->parms, APP_PROBES)) < 0) { neigh_app_ns(neigh); } else { addrconf_addr_solict_mult(target, &mcaddr); ndisc_send_ns(dev, target, &mcaddr, saddr, 0); } } static int pndisc_is_router(const void *pkey, struct net_device *dev) { struct pneigh_entry *n; int ret = -1; read_lock_bh(&nd_tbl.lock); n = __pneigh_lookup(&nd_tbl, dev_net(dev), pkey, dev); if (n) ret = !!(n->flags & NTF_ROUTER); read_unlock_bh(&nd_tbl.lock); return ret; } void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts) { neigh_update(neigh, lladdr, new, flags, 0); /* report ndisc ops about neighbour update */ ndisc_ops_update(dev, neigh, flags, icmp6_type, ndopts); } static void ndisc_recv_ns(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_ifaddr *ifp; struct inet6_dev *idev = NULL; struct neighbour *neigh; int dad = ipv6_addr_any(saddr); bool inc; int is_router = -1; u64 nonce = 0; if (skb->len < sizeof(struct nd_msg)) { ND_PRINTK(2, warn, "NS: packet too short\n"); return; } if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NS: multicast target address\n"); return; } /* * RFC2461 7.1.1: * DAD has to be destined for solicited node multicast address. */ if (dad && !ipv6_addr_is_solict_mult(daddr)) { ND_PRINTK(2, warn, "NS: bad DAD packet (wrong destination)\n"); return; } if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) { ND_PRINTK(2, warn, "NS: invalid ND options\n"); return; } if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NS: invalid link-layer address length\n"); return; } /* RFC2461 7.1.1: * If the IP source address is the unspecified address, * there MUST NOT be source link-layer address option * in the message. */ if (dad) { ND_PRINTK(2, warn, "NS: bad DAD packet (link-layer address option)\n"); return; } } if (ndopts.nd_opts_nonce && ndopts.nd_opts_nonce->nd_opt_len == 1) memcpy(&nonce, (u8 *)(ndopts.nd_opts_nonce + 1), 6); inc = ipv6_addr_is_multicast(daddr); ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { have_ifp: if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) { if (dad) { if (nonce != 0 && ifp->dad_nonce == nonce) { u8 *np = (u8 *)&nonce; /* Matching nonce if looped back */ ND_PRINTK(2, notice, "%s: IPv6 DAD loopback for address %pI6c nonce %pM ignored\n", ifp->idev->dev->name, &ifp->addr, np); goto out; } /* * We are colliding with another node * who is doing DAD * so fail our DAD process */ addrconf_dad_failure(skb, ifp); return; } else { /* * This is not a dad solicitation. * If we are an optimistic node, * we should respond. * Otherwise, we should ignore it. */ if (!(ifp->flags & IFA_F_OPTIMISTIC)) goto out; } } idev = ifp->idev; } else { struct net *net = dev_net(dev); /* perhaps an address on the master device */ if (netif_is_l3_slave(dev)) { struct net_device *mdev; mdev = netdev_master_upper_dev_get_rcu(dev); if (mdev) { ifp = ipv6_get_ifaddr(net, &msg->target, mdev, 1); if (ifp) goto have_ifp; } } idev = in6_dev_get(dev); if (!idev) { /* XXX: count this drop? */ return; } if (ipv6_chk_acast_addr(net, dev, &msg->target) || (idev->cnf.forwarding && (net->ipv6.devconf_all->proxy_ndp || idev->cnf.proxy_ndp) && (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) { if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) && skb->pkt_type != PACKET_HOST && inc && NEIGH_VAR(idev->nd_parms, PROXY_DELAY) != 0) { /* * for anycast or proxy, * sender should delay its response * by a random time between 0 and * MAX_ANYCAST_DELAY_TIME seconds. * (RFC2461) -- yoshfuji */ struct sk_buff *n = skb_clone(skb, GFP_ATOMIC); if (n) pneigh_enqueue(&nd_tbl, idev->nd_parms, n); goto out; } } else goto out; } if (is_router < 0) is_router = idev->cnf.forwarding; if (dad) { ndisc_send_na(dev, &in6addr_linklocal_allnodes, &msg->target, !!is_router, false, (ifp != NULL), true); goto out; } if (inc) NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast); else NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast); /* * update / create cache entry * for the source address */ neigh = __neigh_lookup(&nd_tbl, saddr, dev, !inc || lladdr || !dev->addr_len); if (neigh) ndisc_update(dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE, NDISC_NEIGHBOUR_SOLICITATION, &ndopts); if (neigh || !dev->header_ops) { ndisc_send_na(dev, saddr, &msg->target, !!is_router, true, (ifp != NULL && inc), inc); if (neigh) neigh_release(neigh); } out: if (ifp) in6_ifa_put(ifp); else in6_dev_put(idev); } static void ndisc_recv_na(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_dev *idev = __in6_dev_get(dev); struct inet6_ifaddr *ifp; struct neighbour *neigh; if (skb->len < sizeof(struct nd_msg)) { ND_PRINTK(2, warn, "NA: packet too short\n"); return; } if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NA: target address is multicast\n"); return; } if (ipv6_addr_is_multicast(daddr) && msg->icmph.icmp6_solicited) { ND_PRINTK(2, warn, "NA: solicited NA is multicasted\n"); return; } /* For some 802.11 wireless deployments (and possibly other networks), * there will be a NA proxy and unsolicitd packets are attacks * and thus should not be accepted. */ if (!msg->icmph.icmp6_solicited && idev && idev->cnf.drop_unsolicited_na) return; if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) { ND_PRINTK(2, warn, "NS: invalid ND option\n"); return; } if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NA: invalid link-layer address length\n"); return; } } ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { if (skb->pkt_type != PACKET_LOOPBACK && (ifp->flags & IFA_F_TENTATIVE)) { addrconf_dad_failure(skb, ifp); return; } /* What should we make now? The advertisement is invalid, but ndisc specs say nothing about it. It could be misconfiguration, or an smart proxy agent tries to help us :-) We should not print the error if NA has been received from loopback - it is just our own unsolicited advertisement. */ if (skb->pkt_type != PACKET_LOOPBACK) ND_PRINTK(1, warn, "NA: %pM advertised our address %pI6c on %s!\n", eth_hdr(skb)->h_source, &ifp->addr, ifp->idev->dev->name); in6_ifa_put(ifp); return; } neigh = neigh_lookup(&nd_tbl, &msg->target, dev); if (neigh) { u8 old_flags = neigh->flags; struct net *net = dev_net(dev); if (neigh->nud_state & NUD_FAILED) goto out; /* * Don't update the neighbor cache entry on a proxy NA from * ourselves because either the proxied node is off link or it * has already sent a NA to us. */ if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) && net->ipv6.devconf_all->forwarding && net->ipv6.devconf_all->proxy_ndp && pneigh_lookup(&nd_tbl, net, &msg->target, dev, 0)) { /* XXX: idev->cnf.proxy_ndp */ goto out; } ndisc_update(dev, neigh, lladdr, msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0), NDISC_NEIGHBOUR_ADVERTISEMENT, &ndopts); if ((old_flags & ~neigh->flags) & NTF_ROUTER) { /* * Change: router to host */ rt6_clean_tohost(dev_net(dev), saddr); } out: neigh_release(neigh); } } static void ndisc_recv_rs(struct sk_buff *skb) { struct rs_msg *rs_msg = (struct rs_msg *)skb_transport_header(skb); unsigned long ndoptlen = skb->len - sizeof(*rs_msg); struct neighbour *neigh; struct inet6_dev *idev; const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; struct ndisc_options ndopts; u8 *lladdr = NULL; if (skb->len < sizeof(*rs_msg)) return; idev = __in6_dev_get(skb->dev); if (!idev) { ND_PRINTK(1, err, "RS: can't find in6 device\n"); return; } /* Don't accept RS if we're not in router mode */ if (!idev->cnf.forwarding) goto out; /* * Don't update NCE if src = ::; * this implies that the source node has no ip address assigned yet. */ if (ipv6_addr_any(saddr)) goto out; /* Parse ND options */ if (!ndisc_parse_options(skb->dev, rs_msg->opt, ndoptlen, &ndopts)) { ND_PRINTK(2, notice, "NS: invalid ND option, ignored\n"); goto out; } if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) goto out; } neigh = __neigh_lookup(&nd_tbl, saddr, skb->dev, 1); if (neigh) { ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER, NDISC_ROUTER_SOLICITATION, &ndopts); neigh_release(neigh); } out: return; } static void ndisc_ra_useropt(struct sk_buff *ra, struct nd_opt_hdr *opt) { struct icmp6hdr *icmp6h = (struct icmp6hdr *)skb_transport_header(ra); struct sk_buff *skb; struct nlmsghdr *nlh; struct nduseroptmsg *ndmsg; struct net *net = dev_net(ra->dev); int err; int base_size = NLMSG_ALIGN(sizeof(struct nduseroptmsg) + (opt->nd_opt_len << 3)); size_t msg_size = base_size + nla_total_size(sizeof(struct in6_addr)); skb = nlmsg_new(msg_size, GFP_ATOMIC); if (!skb) { err = -ENOBUFS; goto errout; } nlh = nlmsg_put(skb, 0, 0, RTM_NEWNDUSEROPT, base_size, 0); if (!nlh) { goto nla_put_failure; } ndmsg = nlmsg_data(nlh); ndmsg->nduseropt_family = AF_INET6; ndmsg->nduseropt_ifindex = ra->dev->ifindex; ndmsg->nduseropt_icmp_type = icmp6h->icmp6_type; ndmsg->nduseropt_icmp_code = icmp6h->icmp6_code; ndmsg->nduseropt_opts_len = opt->nd_opt_len << 3; memcpy(ndmsg + 1, opt, opt->nd_opt_len << 3); if (nla_put_in6_addr(skb, NDUSEROPT_SRCADDR, &ipv6_hdr(ra)->saddr)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_ND_USEROPT, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_free(skb); err = -EMSGSIZE; errout: rtnl_set_sk_err(net, RTNLGRP_ND_USEROPT, err); } static void ndisc_router_discovery(struct sk_buff *skb) { struct ra_msg *ra_msg = (struct ra_msg *)skb_transport_header(skb); struct neighbour *neigh = NULL; struct inet6_dev *in6_dev; struct fib6_info *rt = NULL; struct net *net; int lifetime; struct ndisc_options ndopts; int optlen; unsigned int pref = 0; __u32 old_if_flags; bool send_ifinfo_notify = false; __u8 *opt = (__u8 *)(ra_msg + 1); optlen = (skb_tail_pointer(skb) - skb_transport_header(skb)) - sizeof(struct ra_msg); ND_PRINTK(2, info, "RA: %s, dev: %s\n", __func__, skb->dev->name); if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "RA: source address is not link-local\n"); return; } if (optlen < 0) { ND_PRINTK(2, warn, "RA: packet too short\n"); return; } #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_HOST) { ND_PRINTK(2, warn, "RA: from host or unauthorized router\n"); return; } #endif /* * set the RA_RECV flag in the interface */ in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) { ND_PRINTK(0, err, "RA: can't find inet6 device for %s\n", skb->dev->name); return; } if (!ndisc_parse_options(skb->dev, opt, optlen, &ndopts)) { ND_PRINTK(2, warn, "RA: invalid ND options\n"); return; } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, did not accept ra for dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific parameters from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT, dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #endif if (in6_dev->if_flags & IF_RS_SENT) { /* * flag that an RA was received after an RS was sent * out on this interface. */ in6_dev->if_flags |= IF_RA_RCVD; } /* * Remember the managed/otherconf flags from most recently * received RA message (RFC 2462) -- yoshfuji */ old_if_flags = in6_dev->if_flags; in6_dev->if_flags = (in6_dev->if_flags & ~(IF_RA_MANAGED | IF_RA_OTHERCONF)) | (ra_msg->icmph.icmp6_addrconf_managed ? IF_RA_MANAGED : 0) | (ra_msg->icmph.icmp6_addrconf_other ? IF_RA_OTHERCONF : 0); if (old_if_flags != in6_dev->if_flags) send_ifinfo_notify = true; if (!in6_dev->cnf.accept_ra_defrtr) { ND_PRINTK(2, info, "RA: %s, defrtr is false for dev: %s\n", __func__, skb->dev->name); goto skip_defrtr; } /* Do not accept RA with source-addr found on local machine unless * accept_ra_from_local is set to true. */ net = dev_net(in6_dev->dev); if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(net, &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: default router ignored\n", skb->dev->name); goto skip_defrtr; } lifetime = ntohs(ra_msg->icmph.icmp6_rt_lifetime); #ifdef CONFIG_IPV6_ROUTER_PREF pref = ra_msg->icmph.icmp6_router_pref; /* 10b is handled as if it were 00b (medium) */ if (pref == ICMPV6_ROUTER_PREF_INVALID || !in6_dev->cnf.accept_ra_rtr_pref) pref = ICMPV6_ROUTER_PREF_MEDIUM; #endif /* routes added from RAs do not use nexthop objects */ rt = rt6_get_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev); if (rt) { neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return; } } if (rt && lifetime == 0) { ip6_del_rt(net, rt, false); rt = NULL; } ND_PRINTK(3, info, "RA: rt: %p lifetime: %d, for dev: %s\n", rt, lifetime, skb->dev->name); if (!rt && lifetime) { ND_PRINTK(3, info, "RA: adding default router\n"); rt = rt6_add_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev, pref); if (!rt) { ND_PRINTK(0, err, "RA: %s failed to add default route\n", __func__); return; } neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return; } neigh->flags |= NTF_ROUTER; } else if (rt) { rt->fib6_flags = (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); } if (rt) fib6_set_expires(rt, jiffies + (HZ * lifetime)); if (in6_dev->cnf.accept_ra_min_hop_limit < 256 && ra_msg->icmph.icmp6_hop_limit) { if (in6_dev->cnf.accept_ra_min_hop_limit <= ra_msg->icmph.icmp6_hop_limit) { in6_dev->cnf.hop_limit = ra_msg->icmph.icmp6_hop_limit; fib6_metric_set(rt, RTAX_HOPLIMIT, ra_msg->icmph.icmp6_hop_limit); } else { ND_PRINTK(2, warn, "RA: Got route advertisement with lower hop_limit than minimum\n"); } } skip_defrtr: /* * Update Reachable Time and Retrans Timer */ if (in6_dev->nd_parms) { unsigned long rtime = ntohl(ra_msg->retrans_timer); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/HZ) { rtime = (rtime*HZ)/1000; if (rtime < HZ/100) rtime = HZ/100; NEIGH_VAR_SET(in6_dev->nd_parms, RETRANS_TIME, rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } rtime = ntohl(ra_msg->reachable_time); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/(3*HZ)) { rtime = (rtime*HZ)/1000; if (rtime < HZ/10) rtime = HZ/10; if (rtime != NEIGH_VAR(in6_dev->nd_parms, BASE_REACHABLE_TIME)) { NEIGH_VAR_SET(in6_dev->nd_parms, BASE_REACHABLE_TIME, rtime); NEIGH_VAR_SET(in6_dev->nd_parms, GC_STALETIME, 3 * rtime); in6_dev->nd_parms->reachable_time = neigh_rand_reach_time(rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } } } /* * Send a notify if RA changed managed/otherconf flags or timer settings */ if (send_ifinfo_notify) inet6_ifinfo_notify(RTM_NEWLINK, in6_dev); skip_linkparms: /* * Process options. */ if (!neigh) neigh = __neigh_lookup(&nd_tbl, &ipv6_hdr(skb)->saddr, skb->dev, 1); if (neigh) { u8 *lladdr = NULL; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) { ND_PRINTK(2, warn, "RA: invalid link-layer address length\n"); goto out; } } ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER, NDISC_ROUTER_ADVERTISEMENT, &ndopts); } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, accept_ra is false for dev: %s\n", __func__, skb->dev->name); goto out; } #ifdef CONFIG_IPV6_ROUTE_INFO if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(dev_net(in6_dev->dev), &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: router info ignored.\n", skb->dev->name); goto skip_routeinfo; } if (in6_dev->cnf.accept_ra_rtr_pref && ndopts.nd_opts_ri) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_ri; p; p = ndisc_next_option(p, ndopts.nd_opts_ri_end)) { struct route_info *ri = (struct route_info *)p; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT && ri->prefix_len == 0) continue; #endif if (ri->prefix_len == 0 && !in6_dev->cnf.accept_ra_defrtr) continue; if (ri->prefix_len < in6_dev->cnf.accept_ra_rt_info_min_plen) continue; if (ri->prefix_len > in6_dev->cnf.accept_ra_rt_info_max_plen) continue; rt6_route_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, &ipv6_hdr(skb)->saddr); } } skip_routeinfo: #endif #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific ndopts from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT (interior routes), dev: %s\n", __func__, skb->dev->name); goto out; } #endif if (in6_dev->cnf.accept_ra_pinfo && ndopts.nd_opts_pi) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_pi; p; p = ndisc_next_option(p, ndopts.nd_opts_pi_end)) { addrconf_prefix_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, ndopts.nd_opts_src_lladdr != NULL); } } if (ndopts.nd_opts_mtu && in6_dev->cnf.accept_ra_mtu) { __be32 n; u32 mtu; memcpy(&n, ((u8 *)(ndopts.nd_opts_mtu+1))+2, sizeof(mtu)); mtu = ntohl(n); if (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) { ND_PRINTK(2, warn, "RA: invalid mtu: %d\n", mtu); } else if (in6_dev->cnf.mtu6 != mtu) { in6_dev->cnf.mtu6 = mtu; fib6_metric_set(rt, RTAX_MTU, mtu); rt6_mtu_change(skb->dev, mtu); } } if (ndopts.nd_useropts) { struct nd_opt_hdr *p; for (p = ndopts.nd_useropts; p; p = ndisc_next_useropt(skb->dev, p, ndopts.nd_useropts_end)) { ndisc_ra_useropt(skb, p); } } if (ndopts.nd_opts_tgt_lladdr || ndopts.nd_opts_rh) { ND_PRINTK(2, warn, "RA: invalid RA options\n"); } out: fib6_info_release(rt); if (neigh) neigh_release(neigh); } static void ndisc_redirect_rcv(struct sk_buff *skb) { u8 *hdr; struct ndisc_options ndopts; struct rd_msg *msg = (struct rd_msg *)skb_transport_header(skb); u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct rd_msg, opt)); #ifdef CONFIG_IPV6_NDISC_NODETYPE switch (skb->ndisc_nodetype) { case NDISC_NODETYPE_HOST: case NDISC_NODETYPE_NODEFAULT: ND_PRINTK(2, warn, "Redirect: from host or unauthorized router\n"); return; } #endif if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: source address is not link-local\n"); return; } if (!ndisc_parse_options(skb->dev, msg->opt, ndoptlen, &ndopts)) return; if (!ndopts.nd_opts_rh) { ip6_redirect_no_header(skb, dev_net(skb->dev), skb->dev->ifindex); return; } hdr = (u8 *)ndopts.nd_opts_rh; hdr += 8; if (!pskb_pull(skb, hdr - skb_transport_header(skb))) return; icmpv6_notify(skb, NDISC_REDIRECT, 0, 0); } static void ndisc_fill_redirect_hdr_option(struct sk_buff *skb, struct sk_buff *orig_skb, int rd_len) { u8 *opt = skb_put(skb, rd_len); memset(opt, 0, 8); *(opt++) = ND_OPT_REDIRECT_HDR; *(opt++) = (rd_len >> 3); opt += 6; skb_copy_bits(orig_skb, skb_network_offset(orig_skb), opt, rd_len - 8); } void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); struct sock *sk = net->ipv6.ndisc_sk; int optlen = 0; struct inet_peer *peer; struct sk_buff *buff; struct rd_msg *msg; struct in6_addr saddr_buf; struct rt6_info *rt; struct dst_entry *dst; struct flowi6 fl6; int rd_len; u8 ha_buf[MAX_ADDR_LEN], *ha = NULL, ops_data_buf[NDISC_OPS_REDIRECT_DATA_SPACE], *ops_data = NULL; bool ret; if (netif_is_l3_master(skb->dev)) { dev = __dev_get_by_index(dev_net(skb->dev), IPCB(skb)->iif); if (!dev) return; } if (ipv6_get_lladdr(dev, &saddr_buf, IFA_F_TENTATIVE)) { ND_PRINTK(2, warn, "Redirect: no link-local address on %s\n", dev->name); return; } if (!ipv6_addr_equal(&ipv6_hdr(skb)->daddr, target) && ipv6_addr_type(target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: target address is not link-local unicast\n"); return; } icmpv6_flow_init(sk, &fl6, NDISC_REDIRECT, &saddr_buf, &ipv6_hdr(skb)->saddr, dev->ifindex); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_GATEWAY) { ND_PRINTK(2, warn, "Redirect: destination is not a neighbour\n"); goto release; } peer = inet_getpeer_v6(net->ipv6.peers, &ipv6_hdr(skb)->saddr, 1); ret = inet_peer_xrlim_allow(peer, 1*HZ); if (peer) inet_putpeer(peer); if (!ret) goto release; if (dev->addr_len) { struct neighbour *neigh = dst_neigh_lookup(skb_dst(skb), target); if (!neigh) { ND_PRINTK(2, warn, "Redirect: no neigh for target address\n"); goto release; } read_lock_bh(&neigh->lock); if (neigh->nud_state & NUD_VALID) { memcpy(ha_buf, neigh->ha, dev->addr_len); read_unlock_bh(&neigh->lock); ha = ha_buf; optlen += ndisc_redirect_opt_addr_space(dev, neigh, ops_data_buf, &ops_data); } else read_unlock_bh(&neigh->lock); neigh_release(neigh); } rd_len = min_t(unsigned int, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(*msg) - optlen, skb->len + 8); rd_len &= ~0x7; optlen += rd_len; buff = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!buff) goto release; msg = skb_put(buff, sizeof(*msg)); *msg = (struct rd_msg) { .icmph = { .icmp6_type = NDISC_REDIRECT, }, .target = *target, .dest = ipv6_hdr(skb)->daddr, }; /* * include target_address option */ if (ha) ndisc_fill_redirect_addr_option(buff, ha, ops_data); /* * build redirect option and copy skb over to the new packet. */ if (rd_len) ndisc_fill_redirect_hdr_option(buff, skb, rd_len); skb_dst_set(buff, dst); ndisc_send_skb(buff, &ipv6_hdr(skb)->saddr, &saddr_buf); return; release: dst_release(dst); } static void pndisc_redo(struct sk_buff *skb) { ndisc_recv_ns(skb); kfree_skb(skb); } static int ndisc_is_multicast(const void *pkey) { return ipv6_addr_is_multicast((struct in6_addr *)pkey); } static bool ndisc_suppress_frag_ndisc(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev) return true; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED && idev->cnf.suppress_frag_ndisc) { net_warn_ratelimited("Received fragmented ndisc packet. Carefully consider disabling suppress_frag_ndisc.\n"); return true; } return false; } int ndisc_rcv(struct sk_buff *skb) { struct nd_msg *msg; if (ndisc_suppress_frag_ndisc(skb)) return 0; if (skb_linearize(skb)) return 0; msg = (struct nd_msg *)skb_transport_header(skb); __skb_push(skb, skb->data - skb_transport_header(skb)); if (ipv6_hdr(skb)->hop_limit != 255) { ND_PRINTK(2, warn, "NDISC: invalid hop-limit: %d\n", ipv6_hdr(skb)->hop_limit); return 0; } if (msg->icmph.icmp6_code != 0) { ND_PRINTK(2, warn, "NDISC: invalid ICMPv6 code: %d\n", msg->icmph.icmp6_code); return 0; } switch (msg->icmph.icmp6_type) { case NDISC_NEIGHBOUR_SOLICITATION: memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); ndisc_recv_ns(skb); break; case NDISC_NEIGHBOUR_ADVERTISEMENT: ndisc_recv_na(skb); break; case NDISC_ROUTER_SOLICITATION: ndisc_recv_rs(skb); break; case NDISC_ROUTER_ADVERTISEMENT: ndisc_router_discovery(skb); break; case NDISC_REDIRECT: ndisc_redirect_rcv(skb); break; } return 0; } static int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct net *net = dev_net(dev); struct inet6_dev *idev; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&nd_tbl, dev); fib6_run_gc(0, net, false); fallthrough; case NETDEV_UP: idev = in6_dev_get(dev); if (!idev) break; if (idev->cnf.ndisc_notify || net->ipv6.devconf_all->ndisc_notify) ndisc_send_unsol_na(dev); in6_dev_put(idev); break; case NETDEV_CHANGE: change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&nd_tbl, dev); if (!netif_carrier_ok(dev)) neigh_carrier_down(&nd_tbl, dev); break; case NETDEV_DOWN: neigh_ifdown(&nd_tbl, dev); fib6_run_gc(0, net, false); break; case NETDEV_NOTIFY_PEERS: ndisc_send_unsol_na(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ndisc_netdev_notifier = { .notifier_call = ndisc_netdev_event, .priority = ADDRCONF_NOTIFY_PRIORITY - 5, }; #ifdef CONFIG_SYSCTL static void ndisc_warn_deprecated_sysctl(struct ctl_table *ctl, const char *func, const char *dev_name) { static char warncomm[TASK_COMM_LEN]; static int warned; if (strcmp(warncomm, current->comm) && warned < 5) { strcpy(warncomm, current->comm); pr_warn("process `%s' is using deprecated sysctl (%s) net.ipv6.neigh.%s.%s - use net.ipv6.neigh.%s.%s_ms instead\n", warncomm, func, dev_name, ctl->procname, dev_name, ctl->procname); warned++; } } int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net_device *dev = ctl->extra1; struct inet6_dev *idev; int ret; if ((strcmp(ctl->procname, "retrans_time") == 0) || (strcmp(ctl->procname, "base_reachable_time") == 0)) ndisc_warn_deprecated_sysctl(ctl, "syscall", dev ? dev->name : "default"); if (strcmp(ctl->procname, "retrans_time") == 0) ret = neigh_proc_dointvec(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if ((strcmp(ctl->procname, "retrans_time_ms") == 0) || (strcmp(ctl->procname, "base_reachable_time_ms") == 0)) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0 && dev && (idev = in6_dev_get(dev)) != NULL) { if (ctl->data == &NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)) idev->nd_parms->reachable_time = neigh_rand_reach_time(NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)); idev->tstamp = jiffies; inet6_ifinfo_notify(RTM_NEWLINK, idev); in6_dev_put(idev); } return ret; } #endif static int __net_init ndisc_net_init(struct net *net) { struct ipv6_pinfo *np; struct sock *sk; int err; err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { ND_PRINTK(0, err, "NDISC: Failed to initialize the control socket (err %d)\n", err); return err; } net->ipv6.ndisc_sk = sk; np = inet6_sk(sk); np->hop_limit = 255; /* Do not loopback ndisc messages */ np->mc_loop = 0; return 0; } static void __net_exit ndisc_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.ndisc_sk); } static struct pernet_operations ndisc_net_ops = { .init = ndisc_net_init, .exit = ndisc_net_exit, }; int __init ndisc_init(void) { int err; err = register_pernet_subsys(&ndisc_net_ops); if (err) return err; /* * Initialize the neighbour table */ neigh_table_init(NEIGH_ND_TABLE, &nd_tbl); #ifdef CONFIG_SYSCTL err = neigh_sysctl_register(NULL, &nd_tbl.parms, ndisc_ifinfo_sysctl_change); if (err) goto out_unregister_pernet; out: #endif return err; #ifdef CONFIG_SYSCTL out_unregister_pernet: unregister_pernet_subsys(&ndisc_net_ops); goto out; #endif } int __init ndisc_late_init(void) { return register_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_late_cleanup(void) { unregister_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_cleanup(void) { #ifdef CONFIG_SYSCTL neigh_sysctl_unregister(&nd_tbl.parms); #endif neigh_table_clear(NEIGH_ND_TABLE, &nd_tbl); unregister_pernet_subsys(&ndisc_net_ops); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPU's in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/kernel.h> #include <linux/threads.h> #include <linux/bitmap.h> #include <linux/atomic.h> #include <linux/bug.h> /* Don't assign or return these: may not be this big! */ typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; /** * cpumask_bits - get the bits in a cpumask * @maskp: the struct cpumask * * * You should only assume nr_cpu_ids bits of this mask are valid. This is * a macro so it's const-correct. */ #define cpumask_bits(maskp) ((maskp)->bits) /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if NR_CPUS == 1 #define nr_cpu_ids 1U #else extern unsigned int nr_cpu_ids; #endif #ifdef CONFIG_CPUMASK_OFFSTACK /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also, * not all bits may be allocated. */ #define nr_cpumask_bits nr_cpu_ids #else #define nr_cpumask_bits ((unsigned int)NR_CPUS) #endif /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU id's * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_possible_mask is forced to have * all NR_CPUS bits set, otherwise it is just the set of CPUs that * ACPI reports present at boot. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) extern atomic_t __num_online_cpus; #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. */ static inline unsigned int num_online_cpus(void) { return atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask) #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask) #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask) #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask) #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U #define cpu_online(cpu) ((cpu) == 0) #define cpu_possible(cpu) ((cpu) == 0) #define cpu_present(cpu) ((cpu) == 0) #define cpu_active(cpu) ((cpu) == 0) #endif extern cpumask_t cpus_booted_once_mask; static inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, nr_cpumask_bits); return cpu; } #if NR_CPUS == 1 /* Uniprocessor. Assume all masks are "1". */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return 0; } static inline unsigned int cpumask_last(const struct cpumask *srcp) { return 0; } /* Valid inputs for n are -1 and 0. */ static inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { return n+1; } static inline unsigned int cpumask_next_and(int n, const struct cpumask *srcp, const struct cpumask *andp) { return n+1; } static inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { /* cpu0 unless stop condition, wrap and at cpu0, then nr_cpumask_bits */ return (wrap && n == 0); } /* cpu must be a valid cpu, ie 0, so there's no other choice. */ static inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { return 1; } static inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static inline int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_next_and(-1, src1p, src2p); } #define for_each_cpu(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_not(cpu, mask) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask) #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)(start)) #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask1, (void)mask2) #else /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no cpus set. */ static inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Returns >= nr_cpumask_bits if no CPUs set. */ static inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), nr_cpumask_bits); } unsigned int cpumask_next(int n, const struct cpumask *srcp); /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (ie. return will be > @n) * @srcp: the cpumask pointer * * Returns >= nr_cpu_ids if no further cpus unset. */ static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1); } int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *); int cpumask_any_but(const struct cpumask *mask, unsigned int cpu); unsigned int cpumask_local_spread(unsigned int i, int node); int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next((cpu), (mask)), \ (cpu) < nr_cpu_ids;) /** * for_each_cpu_not - iterate over every cpu in a complemented mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_not(cpu, mask) \ for ((cpu) = -1; \ (cpu) = cpumask_next_zero((cpu), (mask)), \ (cpu) < nr_cpu_ids;) extern int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask poiter * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for ((cpu) = cpumask_next_wrap((start)-1, (mask), (start), false); \ (cpu) < nr_cpumask_bits; \ (cpu) = cpumask_next_wrap((cpu), (mask), (start), true)) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for ((cpu) = -1; \ (cpu) = cpumask_next_and((cpu), (mask1), (mask2)), \ (cpu) < nr_cpu_ids;) #endif /* SMP */ #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in @cpumask, else returns 0 */ static inline int cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_set_bit wrapper for cpumasks. */ static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Returns 1 if @cpu is set in old bitmap of @cpumask, else returns 0 * * test_and_clear_bit wrapper for cpumasks. */ static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_setall(struct cpumask *dstp) { bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * If *@dstp is empty, returns 0, else returns 1 */ static inline int cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_complement - *dstp = ~*srcp * @dstp: the cpumask result * @srcp: the input to invert */ static inline void cpumask_complement(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input */ static inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), nr_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input */ static inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Returns 1 if *@src1p is a subset of *@src2p, else returns 0 */ static inline int cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), nr_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. */ static inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. */ static inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. */ static inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @src1p: the first input * @src2p: the second input * * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p)) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Returns >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Returns -errno, or 0 for success. */ static inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - size to allocate for a 'struct cpumask' in bytes */ static inline unsigned int cpumask_size(void) { return BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long); } /* * cpumask_var_t: struct cpumask for stack usage. * * Oh, the wicked games we play! In order to make kernel coding a * little more difficult, we typedef cpumask_var_t to an array or a * pointer: doing &mask on an array is a noop, so it still works. * * ie. * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * ... use 'tmpmask' like a normal struct cpumask * ... * * free_cpumask_var(tmpmask); * * * However, one notable exception is there. alloc_cpumask_var() allocates * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. * * cpumask_var_t tmpmask; * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) * return -ENOMEM; * * var = *tmpmask; * * This code makes NR_CPUS length memcopy and brings to a memory corruption. * cpumask_copy() provide safe copy functionality. * * Note that there is another evil here: If you define a cpumask_var_t * as a percpu variable then the way to obtain the address of the cpumask * structure differently influences what this_cpu_* operation needs to be * used. Please use this_cpu_cpumask_var_t in those cases. The direct use * of this_cpu_ptr() or this_cpu_read() will lead to failures when the * other type of cpumask_var_t implementation is configured. * * Please also note that __cpumask_var_read_mostly can be used to declare * a cpumask_var_t variable itself (not its content) as read mostly. */ #ifdef CONFIG_CPUMASK_OFFSTACK typedef struct cpumask *cpumask_var_t; #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags); void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else typedef struct cpumask cpumask_var_t[1]; #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static inline void free_cpumask_var(cpumask_var_t mask) { } static inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); static inline void reset_cpu_possible_mask(void) { bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); } static inline void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, &__cpu_possible_mask); else cpumask_clear_cpu(cpu, &__cpu_possible_mask); } static inline void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, &__cpu_present_mask); else cpumask_clear_cpu(cpu, &__cpu_present_mask); } void set_cpu_online(unsigned int cpu, bool online); static inline void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, &__cpu_active_mask); else cpumask_clear_cpu(cpu, &__cpu_active_mask); } /** * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Returns the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } #endif /* __LINUX_CPUMASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM task #if !defined(_TRACE_TASK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TASK_H #include <linux/tracepoint.h> TRACE_EVENT(task_newtask, TP_PROTO(struct task_struct *task, unsigned long clone_flags), TP_ARGS(task, clone_flags), TP_STRUCT__entry( __field( pid_t, pid) __array( char, comm, TASK_COMM_LEN) __field( unsigned long, clone_flags) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(__entry->comm, task->comm, TASK_COMM_LEN); __entry->clone_flags = clone_flags; __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d comm=%s clone_flags=%lx oom_score_adj=%hd", __entry->pid, __entry->comm, __entry->clone_flags, __entry->oom_score_adj) ); TRACE_EVENT(task_rename, TP_PROTO(struct task_struct *task, const char *comm), TP_ARGS(task, comm), TP_STRUCT__entry( __field( pid_t, pid) __array( char, oldcomm, TASK_COMM_LEN) __array( char, newcomm, TASK_COMM_LEN) __field( short, oom_score_adj) ), TP_fast_assign( __entry->pid = task->pid; memcpy(entry->oldcomm, task->comm, TASK_COMM_LEN); strlcpy(entry->newcomm, comm, TASK_COMM_LEN); __entry->oom_score_adj = task->signal->oom_score_adj; ), TP_printk("pid=%d oldcomm=%s newcomm=%s oom_score_adj=%hd", __entry->pid, __entry->oldcomm, __entry->newcomm, __entry->oom_score_adj) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COOKIE_H #define __LINUX_COOKIE_H #include <linux/atomic.h> #include <linux/percpu.h> #include <asm/local.h> struct pcpu_gen_cookie { local_t nesting; u64 last; } __aligned(16); struct gen_cookie { struct pcpu_gen_cookie __percpu *local; atomic64_t forward_last ____cacheline_aligned_in_smp; atomic64_t reverse_last; }; #define COOKIE_LOCAL_BATCH 4096 #define DEFINE_COOKIE(name) \ static DEFINE_PER_CPU(struct pcpu_gen_cookie, __##name); \ static struct gen_cookie name = { \ .local = &__##name, \ .forward_last = ATOMIC64_INIT(0), \ .reverse_last = ATOMIC64_INIT(0), \ } static __always_inline u64 gen_cookie_next(struct gen_cookie *gc) { struct pcpu_gen_cookie *local = this_cpu_ptr(gc->local); u64 val; if (likely(local_inc_return(&local->nesting) == 1)) { val = local->last; if (__is_defined(CONFIG_SMP) && unlikely((val & (COOKIE_LOCAL_BATCH - 1)) == 0)) { s64 next = atomic64_add_return(COOKIE_LOCAL_BATCH, &gc->forward_last); val = next - COOKIE_LOCAL_BATCH; } local->last = ++val; } else { val = atomic64_dec_return(&gc->reverse_last); } local_dec(&local->nesting); return val; } #endif /* __LINUX_COOKIE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ /* * Prevent the compiler from merging or refetching reads or writes. The * compiler is also forbidden from reordering successive instances of * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some * particular ordering. One way to make the compiler aware of ordering is to * put the two invocations of READ_ONCE or WRITE_ONCE in different C * statements. * * These two macros will also work on aggregate data types like structs or * unions. * * Their two major use cases are: (1) Mediating communication between * process-level code and irq/NMI handlers, all running on the same CPU, * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. */ #ifndef __ASM_GENERIC_RWONCE_H #define __ASM_GENERIC_RWONCE_H #ifndef __ASSEMBLY__ #include <linux/compiler_types.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> /* * Yes, this permits 64-bit accesses on 32-bit architectures. These will * actually be atomic in some cases (namely Armv7 + LPAE), but for others we * rely on the access being split into 2x32-bit accesses for a 32-bit quantity * (e.g. a virtual address) and a strong prevailing wind. */ #define compiletime_assert_rwonce_type(t) \ compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \ "Unsupported access size for {READ,WRITE}_ONCE().") /* * Use __READ_ONCE() instead of READ_ONCE() if you do not require any * atomicity. Note that this may result in tears! */ #ifndef __READ_ONCE #define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x)) #endif #define READ_ONCE(x) \ ({ \ compiletime_assert_rwonce_type(x); \ __READ_ONCE(x); \ }) #define __WRITE_ONCE(x, val) \ do { \ *(volatile typeof(x) *)&(x) = (val); \ } while (0) #define WRITE_ONCE(x, val) \ do { \ compiletime_assert_rwonce_type(x); \ __WRITE_ONCE(x, val); \ } while (0) static __no_sanitize_or_inline unsigned long __read_once_word_nocheck(const void *addr) { return __READ_ONCE(*(unsigned long *)addr); } /* * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a * word from memory atomically but without telling KASAN/KCSAN. This is * usually used by unwinding code when walking the stack of a running process. */ #define READ_ONCE_NOCHECK(x) \ ({ \ compiletime_assert(sizeof(x) == sizeof(unsigned long), \ "Unsupported access size for READ_ONCE_NOCHECK()."); \ (typeof(x))__read_once_word_nocheck(&(x)); \ }) static __no_kasan_or_inline unsigned long read_word_at_a_time(const void *addr) { kasan_check_read(addr, 1); return *(unsigned long *)addr; } #endif /* __ASSEMBLY__ */ #endif /* __ASM_GENERIC_RWONCE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 /* SPDX-License-Identifier: GPL-2.0-only */ /* * An interface between IEEE802.15.4 device and rest of the kernel. * * Copyright (C) 2007-2012 Siemens AG * * Written by: * Pavel Smolenskiy <pavel.smolenskiy@gmail.com> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Maxim Osipov <maxim.osipov@siemens.com> * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #ifndef IEEE802154_NETDEVICE_H #define IEEE802154_NETDEVICE_H #include <net/af_ieee802154.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/ieee802154.h> #include <net/cfg802154.h> struct ieee802154_sechdr { #if defined(__LITTLE_ENDIAN_BITFIELD) u8 level:3, key_id_mode:2, reserved:3; #elif defined(__BIG_ENDIAN_BITFIELD) u8 reserved:3, key_id_mode:2, level:3; #else #error "Please fix <asm/byteorder.h>" #endif u8 key_id; __le32 frame_counter; union { __le32 short_src; __le64 extended_src; }; }; struct ieee802154_hdr_fc { #if defined(__LITTLE_ENDIAN_BITFIELD) u16 type:3, security_enabled:1, frame_pending:1, ack_request:1, intra_pan:1, reserved:3, dest_addr_mode:2, version:2, source_addr_mode:2; #elif defined(__BIG_ENDIAN_BITFIELD) u16 reserved:1, intra_pan:1, ack_request:1, frame_pending:1, security_enabled:1, type:3, source_addr_mode:2, version:2, dest_addr_mode:2, reserved2:2; #else #error "Please fix <asm/byteorder.h>" #endif }; struct ieee802154_hdr { struct ieee802154_hdr_fc fc; u8 seq; struct ieee802154_addr source; struct ieee802154_addr dest; struct ieee802154_sechdr sec; }; /* pushes hdr onto the skb. fields of hdr->fc that can be calculated from * the contents of hdr will be, and the actual value of those bits in * hdr->fc will be ignored. this includes the INTRA_PAN bit and the frame * version, if SECEN is set. */ int ieee802154_hdr_push(struct sk_buff *skb, struct ieee802154_hdr *hdr); /* pulls the entire 802.15.4 header off of the skb, including the security * header, and performs pan id decompression */ int ieee802154_hdr_pull(struct sk_buff *skb, struct ieee802154_hdr *hdr); /* parses the frame control, sequence number of address fields in a given skb * and stores them into hdr, performing pan id decompression and length checks * to be suitable for use in header_ops.parse */ int ieee802154_hdr_peek_addrs(const struct sk_buff *skb, struct ieee802154_hdr *hdr); /* parses the full 802.15.4 header a given skb and stores them into hdr, * performing pan id decompression and length checks to be suitable for use in * header_ops.parse */ int ieee802154_hdr_peek(const struct sk_buff *skb, struct ieee802154_hdr *hdr); int ieee802154_max_payload(const struct ieee802154_hdr *hdr); static inline int ieee802154_sechdr_authtag_len(const struct ieee802154_sechdr *sec) { switch (sec->level) { case IEEE802154_SCF_SECLEVEL_MIC32: case IEEE802154_SCF_SECLEVEL_ENC_MIC32: return 4; case IEEE802154_SCF_SECLEVEL_MIC64: case IEEE802154_SCF_SECLEVEL_ENC_MIC64: return 8; case IEEE802154_SCF_SECLEVEL_MIC128: case IEEE802154_SCF_SECLEVEL_ENC_MIC128: return 16; case IEEE802154_SCF_SECLEVEL_NONE: case IEEE802154_SCF_SECLEVEL_ENC: default: return 0; } } static inline int ieee802154_hdr_length(struct sk_buff *skb) { struct ieee802154_hdr hdr; int len = ieee802154_hdr_pull(skb, &hdr); if (len > 0) skb_push(skb, len); return len; } static inline bool ieee802154_addr_equal(const struct ieee802154_addr *a1, const struct ieee802154_addr *a2) { if (a1->pan_id != a2->pan_id || a1->mode != a2->mode) return false; if ((a1->mode == IEEE802154_ADDR_LONG && a1->extended_addr != a2->extended_addr) || (a1->mode == IEEE802154_ADDR_SHORT && a1->short_addr != a2->short_addr)) return false; return true; } static inline __le64 ieee802154_devaddr_from_raw(const void *raw) { u64 temp; memcpy(&temp, raw, IEEE802154_ADDR_LEN); return (__force __le64)swab64(temp); } static inline void ieee802154_devaddr_to_raw(void *raw, __le64 addr) { u64 temp = swab64((__force u64)addr); memcpy(raw, &temp, IEEE802154_ADDR_LEN); } static inline void ieee802154_addr_from_sa(struct ieee802154_addr *a, const struct ieee802154_addr_sa *sa) { a->mode = sa->addr_type; a->pan_id = cpu_to_le16(sa->pan_id); switch (a->mode) { case IEEE802154_ADDR_SHORT: a->short_addr = cpu_to_le16(sa->short_addr); break; case IEEE802154_ADDR_LONG: a->extended_addr = ieee802154_devaddr_from_raw(sa->hwaddr); break; } } static inline void ieee802154_addr_to_sa(struct ieee802154_addr_sa *sa, const struct ieee802154_addr *a) { sa->addr_type = a->mode; sa->pan_id = le16_to_cpu(a->pan_id); switch (a->mode) { case IEEE802154_ADDR_SHORT: sa->short_addr = le16_to_cpu(a->short_addr); break; case IEEE802154_ADDR_LONG: ieee802154_devaddr_to_raw(sa->hwaddr, a->extended_addr); break; } } /* * A control block of skb passed between the ARPHRD_IEEE802154 device * and other stack parts. */ struct ieee802154_mac_cb { u8 lqi; u8 type; bool ackreq; bool secen; bool secen_override; u8 seclevel; bool seclevel_override; struct ieee802154_addr source; struct ieee802154_addr dest; }; static inline struct ieee802154_mac_cb *mac_cb(struct sk_buff *skb) { return (struct ieee802154_mac_cb *)skb->cb; } static inline struct ieee802154_mac_cb *mac_cb_init(struct sk_buff *skb) { BUILD_BUG_ON(sizeof(struct ieee802154_mac_cb) > sizeof(skb->cb)); memset(skb->cb, 0, sizeof(struct ieee802154_mac_cb)); return mac_cb(skb); } enum { IEEE802154_LLSEC_DEVKEY_IGNORE, IEEE802154_LLSEC_DEVKEY_RESTRICT, IEEE802154_LLSEC_DEVKEY_RECORD, __IEEE802154_LLSEC_DEVKEY_MAX, }; #define IEEE802154_MAC_SCAN_ED 0 #define IEEE802154_MAC_SCAN_ACTIVE 1 #define IEEE802154_MAC_SCAN_PASSIVE 2 #define IEEE802154_MAC_SCAN_ORPHAN 3 struct ieee802154_mac_params { s8 transmit_power; u8 min_be; u8 max_be; u8 csma_retries; s8 frame_retries; bool lbt; struct wpan_phy_cca cca; s32 cca_ed_level; }; struct wpan_phy; enum { IEEE802154_LLSEC_PARAM_ENABLED = BIT(0), IEEE802154_LLSEC_PARAM_FRAME_COUNTER = BIT(1), IEEE802154_LLSEC_PARAM_OUT_LEVEL = BIT(2), IEEE802154_LLSEC_PARAM_OUT_KEY = BIT(3), IEEE802154_LLSEC_PARAM_KEY_SOURCE = BIT(4), IEEE802154_LLSEC_PARAM_PAN_ID = BIT(5), IEEE802154_LLSEC_PARAM_HWADDR = BIT(6), IEEE802154_LLSEC_PARAM_COORD_HWADDR = BIT(7), IEEE802154_LLSEC_PARAM_COORD_SHORTADDR = BIT(8), }; struct ieee802154_llsec_ops { int (*get_params)(struct net_device *dev, struct ieee802154_llsec_params *params); int (*set_params)(struct net_device *dev, const struct ieee802154_llsec_params *params, int changed); int (*add_key)(struct net_device *dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key); int (*del_key)(struct net_device *dev, const struct ieee802154_llsec_key_id *id); int (*add_dev)(struct net_device *dev, const struct ieee802154_llsec_device *llsec_dev); int (*del_dev)(struct net_device *dev, __le64 dev_addr); int (*add_devkey)(struct net_device *dev, __le64 device_addr, const struct ieee802154_llsec_device_key *key); int (*del_devkey)(struct net_device *dev, __le64 device_addr, const struct ieee802154_llsec_device_key *key); int (*add_seclevel)(struct net_device *dev, const struct ieee802154_llsec_seclevel *sl); int (*del_seclevel)(struct net_device *dev, const struct ieee802154_llsec_seclevel *sl); void (*lock_table)(struct net_device *dev); void (*get_table)(struct net_device *dev, struct ieee802154_llsec_table **t); void (*unlock_table)(struct net_device *dev); }; /* * This should be located at net_device->ml_priv * * get_phy should increment the reference counting on returned phy. * Use wpan_wpy_put to put that reference. */ struct ieee802154_mlme_ops { /* The following fields are optional (can be NULL). */ int (*assoc_req)(struct net_device *dev, struct ieee802154_addr *addr, u8 channel, u8 page, u8 cap); int (*assoc_resp)(struct net_device *dev, struct ieee802154_addr *addr, __le16 short_addr, u8 status); int (*disassoc_req)(struct net_device *dev, struct ieee802154_addr *addr, u8 reason); int (*start_req)(struct net_device *dev, struct ieee802154_addr *addr, u8 channel, u8 page, u8 bcn_ord, u8 sf_ord, u8 pan_coord, u8 blx, u8 coord_realign); int (*scan_req)(struct net_device *dev, u8 type, u32 channels, u8 page, u8 duration); int (*set_mac_params)(struct net_device *dev, const struct ieee802154_mac_params *params); void (*get_mac_params)(struct net_device *dev, struct ieee802154_mac_params *params); const struct ieee802154_llsec_ops *llsec; }; static inline struct ieee802154_mlme_ops * ieee802154_mlme_ops(const struct net_device *dev) { return dev->ml_priv; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 /* SPDX-License-Identifier: GPL-2.0 */ /* rwsem.h: R/W semaphores, public interface * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h */ #ifndef _LINUX_RWSEM_H #define _LINUX_RWSEM_H #include <linux/linkage.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif /* * For an uncontended rwsem, count and owner are the only fields a task * needs to touch when acquiring the rwsem. So they are put next to each * other to increase the chance that they will share the same cacheline. * * In a contended rwsem, the owner is likely the most frequently accessed * field in the structure as the optimistic waiter that holds the osq lock * will spin on owner. For an embedded rwsem, other hot fields in the * containing structure should be moved further away from the rwsem to * reduce the chance that they will share the same cacheline causing * cacheline bouncing problem. */ struct rw_semaphore { atomic_long_t count; /* * Write owner or one of the read owners as well flags regarding * the current state of the rwsem. Can be used as a speculative * check to see if the write owner is running on the cpu. */ atomic_long_t owner; #ifdef CONFIG_RWSEM_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* spinner MCS lock */ #endif raw_spinlock_t wait_lock; struct list_head wait_list; #ifdef CONFIG_DEBUG_RWSEMS void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; /* In all implementations count != 0 means locked */ static inline int rwsem_is_locked(struct rw_semaphore *sem) { return atomic_long_read(&sem->count) != 0; } #define RWSEM_UNLOCKED_VALUE 0L #define __RWSEM_COUNT_INIT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE) /* Common initializer macros and functions */ #ifdef CONFIG_DEBUG_LOCK_ALLOC # define __RWSEM_DEP_MAP_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_SLEEP, \ }, #else # define __RWSEM_DEP_MAP_INIT(lockname) #endif #ifdef CONFIG_DEBUG_RWSEMS # define __RWSEM_DEBUG_INIT(lockname) .magic = &lockname, #else # define __RWSEM_DEBUG_INIT(lockname) #endif #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #define __RWSEM_OPT_INIT(lockname) .osq = OSQ_LOCK_UNLOCKED, #else #define __RWSEM_OPT_INIT(lockname) #endif #define __RWSEM_INITIALIZER(name) \ { __RWSEM_COUNT_INIT(name), \ .owner = ATOMIC_LONG_INIT(0), \ __RWSEM_OPT_INIT(name) \ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),\ .wait_list = LIST_HEAD_INIT((name).wait_list), \ __RWSEM_DEBUG_INIT(name) \ __RWSEM_DEP_MAP_INIT(name) } #define DECLARE_RWSEM(name) \ struct rw_semaphore name = __RWSEM_INITIALIZER(name) extern void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) /* * This is the same regardless of which rwsem implementation that is being used. * It is just a heuristic meant to be called by somebody alreadying holding the * rwsem to see if somebody from an incompatible type is wanting access to the * lock. */ static inline int rwsem_is_contended(struct rw_semaphore *sem) { return !list_empty(&sem->wait_list); } /* * lock for reading */ extern void down_read(struct rw_semaphore *sem); extern int __must_check down_read_interruptible(struct rw_semaphore *sem); extern int __must_check down_read_killable(struct rw_semaphore *sem); /* * trylock for reading -- returns 1 if successful, 0 if contention */ extern int down_read_trylock(struct rw_semaphore *sem); /* * lock for writing */ extern void down_write(struct rw_semaphore *sem); extern int __must_check down_write_killable(struct rw_semaphore *sem); /* * trylock for writing -- returns 1 if successful, 0 if contention */ extern int down_write_trylock(struct rw_semaphore *sem); /* * release a read lock */ extern void up_read(struct rw_semaphore *sem); /* * release a write lock */ extern void up_write(struct rw_semaphore *sem); /* * downgrade write lock to read lock */ extern void downgrade_write(struct rw_semaphore *sem); #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * nested locking. NOTE: rwsems are not allowed to recurse * (which occurs if the same task tries to acquire the same * lock instance multiple times), but multiple locks of the * same lock class might be taken, if the order of the locks * is always the same. This ordering rule can be expressed * to lockdep via the _nested() APIs, but enumerating the * subclasses that are used. (If the nesting relationship is * static then another method for expressing nested locking is * the explicit definition of lock class keys and the use of * lockdep_set_class() at lock initialization time. * See Documentation/locking/lockdep-design.rst for more details.) */ extern void down_read_nested(struct rw_semaphore *sem, int subclass); extern int __must_check down_read_killable_nested(struct rw_semaphore *sem, int subclass); extern void down_write_nested(struct rw_semaphore *sem, int subclass); extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass); extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock); # define down_write_nest_lock(sem, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ _down_write_nest_lock(sem, &(nest_lock)->dep_map); \ } while (0); /* * Take/release a lock when not the owner will release it. * * [ This API should be avoided as much as possible - the * proper abstraction for this case is completions. ] */ extern void down_read_non_owner(struct rw_semaphore *sem); extern void up_read_non_owner(struct rw_semaphore *sem); #else # define down_read_nested(sem, subclass) down_read(sem) # define down_read_killable_nested(sem, subclass) down_read_killable(sem) # define down_write_nest_lock(sem, nest_lock) down_write(sem) # define down_write_nested(sem, subclass) down_write(sem) # define down_write_killable_nested(sem, subclass) down_write_killable(sem) # define down_read_non_owner(sem) down_read(sem) # define up_read_non_owner(sem) up_read(sem) #endif #endif /* _LINUX_RWSEM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic API. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_H #define _CRYPTO_INTERNAL_H #include <crypto/algapi.h> #include <linux/completion.h> #include <linux/list.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/numa.h> #include <linux/refcount.h> #include <linux/rwsem.h> #include <linux/sched.h> #include <linux/types.h> struct crypto_instance; struct crypto_template; struct crypto_larval { struct crypto_alg alg; struct crypto_alg *adult; struct completion completion; u32 mask; }; extern struct list_head crypto_alg_list; extern struct rw_semaphore crypto_alg_sem; extern struct blocking_notifier_head crypto_chain; #ifdef CONFIG_PROC_FS void __init crypto_init_proc(void); void __exit crypto_exit_proc(void); #else static inline void crypto_init_proc(void) { } static inline void crypto_exit_proc(void) { } #endif static inline unsigned int crypto_cipher_ctxsize(struct crypto_alg *alg) { return alg->cra_ctxsize; } static inline unsigned int crypto_compress_ctxsize(struct crypto_alg *alg) { return alg->cra_ctxsize; } struct crypto_alg *crypto_mod_get(struct crypto_alg *alg); struct crypto_alg *crypto_alg_mod_lookup(const char *name, u32 type, u32 mask); struct crypto_larval *crypto_larval_alloc(const char *name, u32 type, u32 mask); void crypto_larval_kill(struct crypto_alg *alg); void crypto_alg_tested(const char *name, int err); void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list, struct crypto_alg *nalg); void crypto_remove_final(struct list_head *list); void crypto_shoot_alg(struct crypto_alg *alg); struct crypto_tfm *__crypto_alloc_tfm(struct crypto_alg *alg, u32 type, u32 mask); void *crypto_create_tfm_node(struct crypto_alg *alg, const struct crypto_type *frontend, int node); static inline void *crypto_create_tfm(struct crypto_alg *alg, const struct crypto_type *frontend) { return crypto_create_tfm_node(alg, frontend, NUMA_NO_NODE); } struct crypto_alg *crypto_find_alg(const char *alg_name, const struct crypto_type *frontend, u32 type, u32 mask); void *crypto_alloc_tfm_node(const char *alg_name, const struct crypto_type *frontend, u32 type, u32 mask, int node); static inline void *crypto_alloc_tfm(const char *alg_name, const struct crypto_type *frontend, u32 type, u32 mask) { return crypto_alloc_tfm_node(alg_name, frontend, type, mask, NUMA_NO_NODE); } int crypto_probing_notify(unsigned long val, void *v); unsigned int crypto_alg_extsize(struct crypto_alg *alg); int crypto_type_has_alg(const char *name, const struct crypto_type *frontend, u32 type, u32 mask); static inline struct crypto_alg *crypto_alg_get(struct crypto_alg *alg) { refcount_inc(&alg->cra_refcnt); return alg; } static inline void crypto_alg_put(struct crypto_alg *alg) { if (refcount_dec_and_test(&alg->cra_refcnt) && alg->cra_destroy) alg->cra_destroy(alg); } static inline int crypto_tmpl_get(struct crypto_template *tmpl) { return try_module_get(tmpl->module); } static inline void crypto_tmpl_put(struct crypto_template *tmpl) { module_put(tmpl->module); } static inline int crypto_is_larval(struct crypto_alg *alg) { return alg->cra_flags & CRYPTO_ALG_LARVAL; } static inline int crypto_is_dead(struct crypto_alg *alg) { return alg->cra_flags & CRYPTO_ALG_DEAD; } static inline int crypto_is_moribund(struct crypto_alg *alg) { return alg->cra_flags & (CRYPTO_ALG_DEAD | CRYPTO_ALG_DYING); } static inline void crypto_notify(unsigned long val, void *v) { blocking_notifier_call_chain(&crypto_chain, val, v); } static inline void crypto_yield(u32 flags) { if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) cond_resched(); } #endif /* _CRYPTO_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_X86_KPROBES_H #define _ASM_X86_KPROBES_H /* * Kernel Probes (KProbes) * * Copyright (C) IBM Corporation, 2002, 2004 * * See arch/x86/kernel/kprobes.c for x86 kprobes history. */ #include <asm-generic/kprobes.h> #ifdef CONFIG_KPROBES #include <linux/types.h> #include <linux/ptrace.h> #include <linux/percpu.h> #include <asm/text-patching.h> #include <asm/insn.h> #define __ARCH_WANT_KPROBES_INSN_SLOT struct pt_regs; struct kprobe; typedef u8 kprobe_opcode_t; #define MAX_STACK_SIZE 64 #define CUR_STACK_SIZE(ADDR) \ (current_top_of_stack() - (unsigned long)(ADDR)) #define MIN_STACK_SIZE(ADDR) \ (MAX_STACK_SIZE < CUR_STACK_SIZE(ADDR) ? \ MAX_STACK_SIZE : CUR_STACK_SIZE(ADDR)) #define flush_insn_slot(p) do { } while (0) /* optinsn template addresses */ extern __visible kprobe_opcode_t optprobe_template_entry[]; extern __visible kprobe_opcode_t optprobe_template_clac[]; extern __visible kprobe_opcode_t optprobe_template_val[]; extern __visible kprobe_opcode_t optprobe_template_call[]; extern __visible kprobe_opcode_t optprobe_template_end[]; #define MAX_OPTIMIZED_LENGTH (MAX_INSN_SIZE + DISP32_SIZE) #define MAX_OPTINSN_SIZE \ (((unsigned long)optprobe_template_end - \ (unsigned long)optprobe_template_entry) + \ MAX_OPTIMIZED_LENGTH + JMP32_INSN_SIZE) extern const int kretprobe_blacklist_size; void arch_remove_kprobe(struct kprobe *p); asmlinkage void kretprobe_trampoline(void); extern void arch_kprobe_override_function(struct pt_regs *regs); /* Architecture specific copy of original instruction*/ struct arch_specific_insn { /* copy of the original instruction */ kprobe_opcode_t *insn; /* * boostable = false: This instruction type is not boostable. * boostable = true: This instruction has been boosted: we have * added a relative jump after the instruction copy in insn, * so no single-step and fixup are needed (unless there's * a post_handler). */ bool boostable; bool if_modifier; /* Number of bytes of text poked */ int tp_len; }; struct arch_optimized_insn { /* copy of the original instructions */ kprobe_opcode_t copied_insn[DISP32_SIZE]; /* detour code buffer */ kprobe_opcode_t *insn; /* the size of instructions copied to detour code buffer */ size_t size; }; /* Return true (!0) if optinsn is prepared for optimization. */ static inline int arch_prepared_optinsn(struct arch_optimized_insn *optinsn) { return optinsn->size; } struct prev_kprobe { struct kprobe *kp; unsigned long status; unsigned long old_flags; unsigned long saved_flags; }; /* per-cpu kprobe control block */ struct kprobe_ctlblk { unsigned long kprobe_status; unsigned long kprobe_old_flags; unsigned long kprobe_saved_flags; struct prev_kprobe prev_kprobe; }; extern int kprobe_fault_handler(struct pt_regs *regs, int trapnr); extern int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data); extern int kprobe_int3_handler(struct pt_regs *regs); extern int kprobe_debug_handler(struct pt_regs *regs); #else static inline int kprobe_debug_handler(struct pt_regs *regs) { return 0; } #endif /* CONFIG_KPROBES */ #endif /* _ASM_X86_KPROBES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_RCULIST_H #define _LINUX_RCULIST_H #ifdef __KERNEL__ /* * RCU-protected list version */ #include <linux/list.h> #include <linux/rcupdate.h> /* * Why is there no list_empty_rcu()? Because list_empty() serves this * purpose. The list_empty() function fetches the RCU-protected pointer * and compares it to the address of the list head, but neither dereferences * this pointer itself nor provides this pointer to the caller. Therefore, * it is not necessary to use rcu_dereference(), so that list_empty() can * be used anywhere you would want to use a list_empty_rcu(). */ /* * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers * @list: list to be initialized * * You should instead use INIT_LIST_HEAD() for normal initialization and * cleanup tasks, when readers have no access to the list being initialized. * However, if the list being initialized is visible to readers, you * need to keep the compiler from being too mischievous. */ static inline void INIT_LIST_HEAD_RCU(struct list_head *list) { WRITE_ONCE(list->next, list); WRITE_ONCE(list->prev, list); } /* * return the ->next pointer of a list_head in an rcu safe * way, we must not access it directly */ #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) /** * list_tail_rcu - returns the prev pointer of the head of the list * @head: the head of the list * * Note: This should only be used with the list header, and even then * only if list_del() and similar primitives are not also used on the * list header. */ #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) /* * Check during list traversal that we are within an RCU reader */ #define check_arg_count_one(dummy) #ifdef CONFIG_PROVE_RCU_LIST #define __list_check_rcu(dummy, cond, extra...) \ ({ \ check_arg_count_one(extra); \ RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ "RCU-list traversed in non-reader section!"); \ }) #define __list_check_srcu(cond) \ ({ \ RCU_LOCKDEP_WARN(!(cond), \ "RCU-list traversed without holding the required lock!");\ }) #else #define __list_check_rcu(dummy, cond, extra...) \ ({ check_arg_count_one(extra); }) #define __list_check_srcu(cond) ({ }) #endif /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add_rcu(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; new->next = next; new->prev = prev; rcu_assign_pointer(list_next_rcu(prev), new); next->prev = new; } /** * list_add_rcu - add a new entry to rcu-protected list * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_add_rcu() * or list_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). */ static inline void list_add_rcu(struct list_head *new, struct list_head *head) { __list_add_rcu(new, head, head->next); } /** * list_add_tail_rcu - add a new entry to rcu-protected list * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_add_tail_rcu() * or list_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). */ static inline void list_add_tail_rcu(struct list_head *new, struct list_head *head) { __list_add_rcu(new, head->prev, head); } /** * list_del_rcu - deletes entry from list without re-initialization * @entry: the element to delete from the list. * * Note: list_empty() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as list_del_rcu() * or list_add_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * list_for_each_entry_rcu(). * * Note that the caller is not permitted to immediately free * the newly deleted entry. Instead, either synchronize_rcu() * or call_rcu() must be used to defer freeing until an RCU * grace period has elapsed. */ static inline void list_del_rcu(struct list_head *entry) { __list_del_entry(entry); entry->prev = LIST_POISON2; } /** * hlist_del_init_rcu - deletes entry from hash list with re-initialization * @n: the element to delete from the hash list. * * Note: list_unhashed() on the node return true after this. It is * useful for RCU based read lockfree traversal if the writer side * must know if the list entry is still hashed or already unhashed. * * In particular, it means that we can not poison the forward pointers * that may still be used for walking the hash list and we can only * zero the pprev pointer so list_unhashed() will return true after * this. * * The caller must take whatever precautions are necessary (such as * holding appropriate locks) to avoid racing with another * list-mutation primitive, such as hlist_add_head_rcu() or * hlist_del_rcu(), running on this same list. However, it is * perfectly legal to run concurrently with the _rcu list-traversal * primitives, such as hlist_for_each_entry_rcu(). */ static inline void hlist_del_init_rcu(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); WRITE_ONCE(n->pprev, NULL); } } /** * list_replace_rcu - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * The @old entry will be replaced with the @new entry atomically. * Note: @old should not be empty. */ static inline void list_replace_rcu(struct list_head *old, struct list_head *new) { new->next = old->next; new->prev = old->prev; rcu_assign_pointer(list_next_rcu(new->prev), new); new->next->prev = new; old->prev = LIST_POISON2; } /** * __list_splice_init_rcu - join an RCU-protected list into an existing list. * @list: the RCU-protected list to splice * @prev: points to the last element of the existing list * @next: points to the first element of the existing list * @sync: synchronize_rcu, synchronize_rcu_expedited, ... * * The list pointed to by @prev and @next can be RCU-read traversed * concurrently with this function. * * Note that this function blocks. * * Important note: the caller must take whatever action is necessary to prevent * any other updates to the existing list. In principle, it is possible to * modify the list as soon as sync() begins execution. If this sort of thing * becomes necessary, an alternative version based on call_rcu() could be * created. But only if -really- needed -- there is no shortage of RCU API * members. */ static inline void __list_splice_init_rcu(struct list_head *list, struct list_head *prev, struct list_head *next, void (*sync)(void)) { struct list_head *first = list->next; struct list_head *last = list->prev; /* * "first" and "last" tracking list, so initialize it. RCU readers * have access to this list, so we must use INIT_LIST_HEAD_RCU() * instead of INIT_LIST_HEAD(). */ INIT_LIST_HEAD_RCU(list); /* * At this point, the list body still points to the source list. * Wait for any readers to finish using the list before splicing * the list body into the new list. Any new readers will see * an empty list. */ sync(); ASSERT_EXCLUSIVE_ACCESS(*first); ASSERT_EXCLUSIVE_ACCESS(*last); /* * Readers are finished with the source list, so perform splice. * The order is important if the new list is global and accessible * to concurrent RCU readers. Note that RCU readers are not * permitted to traverse the prev pointers without excluding * this function. */ last->next = next; rcu_assign_pointer(list_next_rcu(prev), first); first->prev = prev; next->prev = last; } /** * list_splice_init_rcu - splice an RCU-protected list into an existing list, * designed for stacks. * @list: the RCU-protected list to splice * @head: the place in the existing list to splice the first list into * @sync: synchronize_rcu, synchronize_rcu_expedited, ... */ static inline void list_splice_init_rcu(struct list_head *list, struct list_head *head, void (*sync)(void)) { if (!list_empty(list)) __list_splice_init_rcu(list, head, head->next, sync); } /** * list_splice_tail_init_rcu - splice an RCU-protected list into an existing * list, designed for queues. * @list: the RCU-protected list to splice * @head: the place in the existing list to splice the first list into * @sync: synchronize_rcu, synchronize_rcu_expedited, ... */ static inline void list_splice_tail_init_rcu(struct list_head *list, struct list_head *head, void (*sync)(void)) { if (!list_empty(list)) __list_splice_init_rcu(list, head->prev, head, sync); } /** * list_entry_rcu - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_entry_rcu(ptr, type, member) \ container_of(READ_ONCE(ptr), type, member) /* * Where are list_empty_rcu() and list_first_entry_rcu()? * * Implementing those functions following their counterparts list_empty() and * list_first_entry() is not advisable because they lead to subtle race * conditions as the following snippet shows: * * if (!list_empty_rcu(mylist)) { * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); * do_something(bar); * } * * The list may not be empty when list_empty_rcu checks it, but it may be when * list_first_entry_rcu rereads the ->next pointer. * * Rereading the ->next pointer is not a problem for list_empty() and * list_first_entry() because they would be protected by a lock that blocks * writers. * * See list_first_or_null_rcu for an alternative. */ /** * list_first_or_null_rcu - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_first_or_null_rcu(ptr, type, member) \ ({ \ struct list_head *__ptr = (ptr); \ struct list_head *__next = READ_ONCE(__ptr->next); \ likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ }) /** * list_next_or_null_rcu - get the first element from a list * @head: the head for the list. * @ptr: the list head to take the next element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the ptr is at the end of the list, NULL is returned. * * This primitive may safely run concurrently with the _rcu list-mutation * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). */ #define list_next_or_null_rcu(head, ptr, type, member) \ ({ \ struct list_head *__head = (head); \ struct list_head *__ptr = (ptr); \ struct list_head *__next = READ_ONCE(__ptr->next); \ likely(__next != __head) ? list_entry_rcu(__next, type, \ member) : NULL; \ }) /** * list_for_each_entry_rcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * @cond: optional lockdep expression if called from non-RCU protection. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as list_add_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define list_for_each_entry_rcu(pos, head, member, cond...) \ for (__list_check_rcu(dummy, ## cond, 0), \ pos = list_entry_rcu((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_srcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * @cond: lockdep expression for the lock required to traverse the list. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as list_add_rcu() * as long as the traversal is guarded by srcu_read_lock(). * The lockdep expression srcu_read_lock_held() can be passed as the * cond argument from read side. */ #define list_for_each_entry_srcu(pos, head, member, cond) \ for (__list_check_srcu(cond), \ pos = list_entry_rcu((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_entry_lockless - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * This primitive may safely run concurrently with the _rcu * list-mutation primitives such as list_add_rcu(), but requires some * implicit RCU read-side guarding. One example is running within a special * exception-time environment where preemption is disabled and where lockdep * cannot be invoked. Another example is when items are added to the list, * but never deleted. */ #define list_entry_lockless(ptr, type, member) \ container_of((typeof(ptr))READ_ONCE(ptr), type, member) /** * list_for_each_entry_lockless - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_struct within the struct. * * This primitive may safely run concurrently with the _rcu * list-mutation primitives such as list_add_rcu(), but requires some * implicit RCU read-side guarding. One example is running within a special * exception-time environment where preemption is disabled and where lockdep * cannot be invoked. Another example is when items are added to the list, * but never deleted. */ #define list_for_each_entry_lockless(pos, head, member) \ for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_continue_rcu - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position which must have been in the list when the RCU read * lock was taken. * This would typically require either that you obtained the node from a * previous walk of the list in the same RCU read-side critical section, or * that you held some sort of non-RCU reference (such as a reference count) * to keep the node alive *and* in the list. * * This iterator is similar to list_for_each_entry_from_rcu() except * this starts after the given position and that one starts at the given * position. */ #define list_for_each_entry_continue_rcu(pos, head, member) \ for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) /** * list_for_each_entry_from_rcu - iterate over a list from current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_node within the struct. * * Iterate over the tail of a list starting from a given position, * which must have been in the list when the RCU read lock was taken. * This would typically require either that you obtained the node from a * previous walk of the list in the same RCU read-side critical section, or * that you held some sort of non-RCU reference (such as a reference count) * to keep the node alive *and* in the list. * * This iterator is similar to list_for_each_entry_continue_rcu() except * this starts from the given position and that one starts from the position * after the given position. */ #define list_for_each_entry_from_rcu(pos, head, member) \ for (; &(pos)->member != (head); \ pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) /** * hlist_del_rcu - deletes entry from hash list without re-initialization * @n: the element to delete from the hash list. * * Note: list_unhashed() on entry does not return true after this, * the entry is in an undefined state. It is useful for RCU based * lockfree traversal. * * In particular, it means that we can not poison the forward * pointers that may still be used for walking the hash list. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry(). */ static inline void hlist_del_rcu(struct hlist_node *n) { __hlist_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_replace_rcu - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * The @old entry will be replaced with the @new entry atomically. */ static inline void hlist_replace_rcu(struct hlist_node *old, struct hlist_node *new) { struct hlist_node *next = old->next; new->next = next; WRITE_ONCE(new->pprev, old->pprev); rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); if (next) WRITE_ONCE(new->next->pprev, &new->next); WRITE_ONCE(old->pprev, LIST_POISON2); } /** * hlists_swap_heads_rcu - swap the lists the hlist heads point to * @left: The hlist head on the left * @right: The hlist head on the right * * The lists start out as [@left ][node1 ... ] and * [@right ][node2 ... ] * The lists end up as [@left ][node2 ... ] * [@right ][node1 ... ] */ static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) { struct hlist_node *node1 = left->first; struct hlist_node *node2 = right->first; rcu_assign_pointer(left->first, node2); rcu_assign_pointer(right->first, node1); WRITE_ONCE(node2->pprev, &left->first); WRITE_ONCE(node1->pprev, &right->first); } /* * return the first or the next element in an RCU protected hlist */ #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) /** * hlist_add_head_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_add_head_rcu(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); rcu_assign_pointer(hlist_first_rcu(h), n); if (first) WRITE_ONCE(first->pprev, &n->next); } /** * hlist_add_tail_rcu * @n: the element to add to the hash list. * @h: the list to add to. * * Description: * Adds the specified element to the specified hlist, * while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. Regardless of the type of CPU, the * list-traversal primitive must be guarded by rcu_read_lock(). */ static inline void hlist_add_tail_rcu(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *i, *last = NULL; /* Note: write side code, so rcu accessors are not needed. */ for (i = h->first; i; i = i->next) last = i; if (last) { n->next = last->next; WRITE_ONCE(n->pprev, &last->next); rcu_assign_pointer(hlist_next_rcu(last), n); } else { hlist_add_head_rcu(n, h); } } /** * hlist_add_before_rcu * @n: the new element to add to the hash list. * @next: the existing element to add the new element before. * * Description: * Adds the specified element to the specified hlist * before the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */ static inline void hlist_add_before_rcu(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); n->next = next; rcu_assign_pointer(hlist_pprev_rcu(n), n); WRITE_ONCE(next->pprev, &n->next); } /** * hlist_add_behind_rcu * @n: the new element to add to the hash list. * @prev: the existing element to add the new element after. * * Description: * Adds the specified element to the specified hlist * after the specified node while permitting racing traversals. * * The caller must take whatever precautions are necessary * (such as holding appropriate locks) to avoid racing * with another list-mutation primitive, such as hlist_add_head_rcu() * or hlist_del_rcu(), running on this same list. * However, it is perfectly legal to run concurrently with * the _rcu list-traversal primitives, such as * hlist_for_each_entry_rcu(), used to prevent memory-consistency * problems on Alpha CPUs. */ static inline void hlist_add_behind_rcu(struct hlist_node *n, struct hlist_node *prev) { n->next = prev->next; WRITE_ONCE(n->pprev, &prev->next); rcu_assign_pointer(hlist_next_rcu(prev), n); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } #define __hlist_for_each_rcu(pos, head) \ for (pos = rcu_dereference(hlist_first_rcu(head)); \ pos; \ pos = rcu_dereference(hlist_next_rcu(pos))) /** * hlist_for_each_entry_rcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * @cond: optional lockdep expression if called from non-RCU protection. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define hlist_for_each_entry_rcu(pos, head, member, cond...) \ for (__list_check_rcu(dummy, ## cond, 0), \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_srcu - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * @cond: lockdep expression for the lock required to traverse the list. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by srcu_read_lock(). * The lockdep expression srcu_read_lock_held() can be passed as the * cond argument from read side. */ #define hlist_for_each_entry_srcu(pos, head, member, cond) \ for (__list_check_srcu(cond), \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). * * This is the same as hlist_for_each_entry_rcu() except that it does * not do any RCU debugging or tracing. */ #define hlist_for_each_entry_rcu_notrace(pos, head, member) \ for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * * This list-traversal primitive may safely run concurrently with * the _rcu list-mutation primitives such as hlist_add_head_rcu() * as long as the traversal is guarded by rcu_read_lock(). */ #define hlist_for_each_entry_rcu_bh(pos, head, member) \ for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue_rcu(pos, member) \ for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue_rcu_bh(pos, member) \ for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member); \ pos; \ pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) /** * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from_rcu(pos, member) \ for (; pos; \ pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ &(pos)->member)), typeof(*(pos)), member)) #endif /* __KERNEL__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JIFFIES_H #define _LINUX_JIFFIES_H #include <linux/cache.h> #include <linux/limits.h> #include <linux/math64.h> #include <linux/minmax.h> #include <linux/types.h> #include <linux/time.h> #include <linux/timex.h> #include <vdso/jiffies.h> #include <asm/param.h> /* for HZ */ #include <generated/timeconst.h> /* * The following defines establish the engineering parameters of the PLL * model. The HZ variable establishes the timer interrupt frequency, 100 Hz * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the * nearest power of two in order to avoid hardware multiply operations. */ #if HZ >= 12 && HZ < 24 # define SHIFT_HZ 4 #elif HZ >= 24 && HZ < 48 # define SHIFT_HZ 5 #elif HZ >= 48 && HZ < 96 # define SHIFT_HZ 6 #elif HZ >= 96 && HZ < 192 # define SHIFT_HZ 7 #elif HZ >= 192 && HZ < 384 # define SHIFT_HZ 8 #elif HZ >= 384 && HZ < 768 # define SHIFT_HZ 9 #elif HZ >= 768 && HZ < 1536 # define SHIFT_HZ 10 #elif HZ >= 1536 && HZ < 3072 # define SHIFT_HZ 11 #elif HZ >= 3072 && HZ < 6144 # define SHIFT_HZ 12 #elif HZ >= 6144 && HZ < 12288 # define SHIFT_HZ 13 #else # error Invalid value of HZ. #endif /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can * improve accuracy by shifting LSH bits, hence calculating: * (NOM << LSH) / DEN * This however means trouble for large NOM, because (NOM << LSH) may no * longer fit in 32 bits. The following way of calculating this gives us * some slack, under the following conditions: * - (NOM / DEN) fits in (32 - LSH) bits. * - (NOM % DEN) fits in (32 - LSH) bits. */ #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) /* LATCH is used in the interval timer and ftape setup. */ #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ extern int register_refined_jiffies(long clock_tick_rate); /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */ #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ) /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) #ifndef __jiffy_arch_data #define __jiffy_arch_data #endif /* * The 64-bit value is not atomic - you MUST NOT read it * without sampling the sequence number in jiffies_lock. * get_jiffies_64() will do this for you as appropriate. */ extern u64 __cacheline_aligned_in_smp jiffies_64; extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies; #if (BITS_PER_LONG < 64) u64 get_jiffies_64(void); #else static inline u64 get_jiffies_64(void) { return (u64)jiffies; } #endif /* * These inlines deal with timer wrapping correctly. You are * strongly encouraged to use them * 1. Because people otherwise forget * 2. Because if the timer wrap changes in future you won't have to * alter your driver code. * * time_after(a,b) returns true if the time a is after time b. * * Do this with "<0" and ">=0" to only test the sign of the result. A * good compiler would generate better code (and a really good compiler * wouldn't care). Gcc is currently neither. */ #define time_after(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((b) - (a)) < 0)) #define time_before(a,b) time_after(b,a) #define time_after_eq(a,b) \ (typecheck(unsigned long, a) && \ typecheck(unsigned long, b) && \ ((long)((a) - (b)) >= 0)) #define time_before_eq(a,b) time_after_eq(b,a) /* * Calculate whether a is in the range of [b, c]. */ #define time_in_range(a,b,c) \ (time_after_eq(a,b) && \ time_before_eq(a,c)) /* * Calculate whether a is in the range of [b, c). */ #define time_in_range_open(a,b,c) \ (time_after_eq(a,b) && \ time_before(a,c)) /* Same as above, but does so with platform independent 64bit types. * These must be used when utilizing jiffies_64 (i.e. return value of * get_jiffies_64() */ #define time_after64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((b) - (a)) < 0)) #define time_before64(a,b) time_after64(b,a) #define time_after_eq64(a,b) \ (typecheck(__u64, a) && \ typecheck(__u64, b) && \ ((__s64)((a) - (b)) >= 0)) #define time_before_eq64(a,b) time_after_eq64(b,a) #define time_in_range64(a, b, c) \ (time_after_eq64(a, b) && \ time_before_eq64(a, c)) /* * These four macros compare jiffies and 'a' for convenience. */ /* time_is_before_jiffies(a) return true if a is before jiffies */ #define time_is_before_jiffies(a) time_after(jiffies, a) #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a) /* time_is_after_jiffies(a) return true if a is after jiffies */ #define time_is_after_jiffies(a) time_before(jiffies, a) #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a) /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a) /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a) /* * Have the 32 bit jiffies value wrap 5 minutes after boot * so jiffies wrap bugs show up earlier. */ #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) /* * Change timeval to jiffies, trying to avoid the * most obvious overflows.. * * And some not so obvious. * * Note that we don't want to return LONG_MAX, because * for various timeout reasons we often end up having * to wait "jiffies+1" in order to guarantee that we wait * at _least_ "jiffies" - so "jiffies+1" had better still * be positive. */ #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) extern unsigned long preset_lpj; /* * We want to do realistic conversions of time so we need to use the same * values the update wall clock code uses as the jiffies size. This value * is: TICK_NSEC (which is defined in timex.h). This * is a constant and is in nanoseconds. We will use scaled math * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and * NSEC_JIFFIE_SC. Note that these defines contain nothing but * constants and so are computed at compile time. SHIFT_HZ (computed in * timex.h) adjusts the scaling for different HZ values. * Scaled math??? What is that? * * Scaled math is a way to do integer math on values that would, * otherwise, either overflow, underflow, or cause undesired div * instructions to appear in the execution path. In short, we "scale" * up the operands so they take more bits (more precision, less * underflow), do the desired operation and then "scale" the result back * by the same amount. If we do the scaling by shifting we avoid the * costly mpy and the dastardly div instructions. * Suppose, for example, we want to convert from seconds to jiffies * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we * might calculate at compile time, however, the result will only have * about 3-4 bits of precision (less for smaller values of HZ). * * So, we scale as follows: * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; * Then we make SCALE a power of two so: * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; * Now we define: * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) * jiff = (sec * SEC_CONV) >> SCALE; * * Often the math we use will expand beyond 32-bits so we tell C how to * do this and pass the 64-bit result of the mpy through the ">> SCALE" * which should take the result back to 32-bits. We want this expansion * to capture as much precision as possible. At the same time we don't * want to overflow so we pick the SCALE to avoid this. In this file, * that means using a different scale for each range of HZ values (as * defined in timex.h). * * For those who want to know, gcc will give a 64-bit result from a "*" * operator if th