1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 // SPDX-License-Identifier: GPL-2.0 #include <linux/memblock.h> #include <linux/mmdebug.h> #include <linux/export.h> #include <linux/mm.h> #include <asm/page.h> #include <linux/vmalloc.h> #include "physaddr.h" #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ VIRTUAL_BUG_ON((x > y) || !phys_addr_valid(x)); } return x; } EXPORT_SYMBOL(__phys_addr); unsigned long __phys_addr_symbol(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* only check upper bounds since lower bounds will trigger carry */ VIRTUAL_BUG_ON(y >= KERNEL_IMAGE_SIZE); return y + phys_base; } EXPORT_SYMBOL(__phys_addr_symbol); #endif bool __virt_addr_valid(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ if (unlikely(x > y)) { x = y + phys_base; if (y >= KERNEL_IMAGE_SIZE) return false; } else { x = y + (__START_KERNEL_map - PAGE_OFFSET); /* carry flag will be set if starting x was >= PAGE_OFFSET */ if ((x > y) || !phys_addr_valid(x)) return false; } return pfn_valid(x >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #else #ifdef CONFIG_DEBUG_VIRTUAL unsigned long __phys_addr(unsigned long x) { unsigned long phys_addr = x - PAGE_OFFSET; /* VMALLOC_* aren't constants */ VIRTUAL_BUG_ON(x < PAGE_OFFSET); VIRTUAL_BUG_ON(__vmalloc_start_set && is_vmalloc_addr((void *) x)); /* max_low_pfn is set early, but not _that_ early */ if (max_low_pfn) { VIRTUAL_BUG_ON((phys_addr >> PAGE_SHIFT) > max_low_pfn); BUG_ON(slow_virt_to_phys((void *)x) != phys_addr); } return phys_addr; } EXPORT_SYMBOL(__phys_addr); #endif bool __virt_addr_valid(unsigned long x) { if (x < PAGE_OFFSET) return false; if (__vmalloc_start_set && is_vmalloc_addr((void *) x)) return false; if (x >= FIXADDR_START) return false; return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT); } EXPORT_SYMBOL(__virt_addr_valid); #endif /* CONFIG_X86_64 */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SWAPOPS_H #define _LINUX_SWAPOPS_H #include <linux/radix-tree.h> #include <linux/bug.h> #include <linux/mm_types.h> #ifdef CONFIG_MMU /* * swapcache pages are stored in the swapper_space radix tree. We want to * get good packing density in that tree, so the index should be dense in * the low-order bits. * * We arrange the `type' and `offset' fields so that `type' is at the seven * high-order bits of the swp_entry_t and `offset' is right-aligned in the * remaining bits. Although `type' itself needs only five bits, we allow for * shmem/tmpfs to shift it all up a further two bits: see swp_to_radix_entry(). * * swp_entry_t's are *never* stored anywhere in their arch-dependent format. */ #define SWP_TYPE_SHIFT (BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT) #define SWP_OFFSET_MASK ((1UL << SWP_TYPE_SHIFT) - 1) /* Clear all flags but only keep swp_entry_t related information */ static inline pte_t pte_swp_clear_flags(pte_t pte) { if (pte_swp_soft_dirty(pte)) pte = pte_swp_clear_soft_dirty(pte); if (pte_swp_uffd_wp(pte)) pte = pte_swp_clear_uffd_wp(pte); return pte; } /* * Store a type+offset into a swp_entry_t in an arch-independent format */ static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset) { swp_entry_t ret; ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK); return ret; } /* * Extract the `type' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline unsigned swp_type(swp_entry_t entry) { return (entry.val >> SWP_TYPE_SHIFT); } /* * Extract the `offset' field from a swp_entry_t. The swp_entry_t is in * arch-independent format */ static inline pgoff_t swp_offset(swp_entry_t entry) { return entry.val & SWP_OFFSET_MASK; } /* check whether a pte points to a swap entry */ static inline int is_swap_pte(pte_t pte) { return !pte_none(pte) && !pte_present(pte); } /* * Convert the arch-dependent pte representation of a swp_entry_t into an * arch-independent swp_entry_t. */ static inline swp_entry_t pte_to_swp_entry(pte_t pte) { swp_entry_t arch_entry; pte = pte_swp_clear_flags(pte); arch_entry = __pte_to_swp_entry(pte); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } /* * Convert the arch-independent representation of a swp_entry_t into the * arch-dependent pte representation. */ static inline pte_t swp_entry_to_pte(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pte(arch_entry); } static inline swp_entry_t radix_to_swp_entry(void *arg) { swp_entry_t entry; entry.val = xa_to_value(arg); return entry; } static inline void *swp_to_radix_entry(swp_entry_t entry) { return xa_mk_value(entry.val); } #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(write ? SWP_DEVICE_WRITE : SWP_DEVICE_READ, page_to_pfn(page)); } static inline bool is_device_private_entry(swp_entry_t entry) { int type = swp_type(entry); return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE; } static inline void make_device_private_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_DEVICE_READ, swp_offset(*entry)); } static inline bool is_write_device_private_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_DEVICE_WRITE); } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return pfn_to_page(swp_offset(entry)); } #else /* CONFIG_DEVICE_PRIVATE */ static inline swp_entry_t make_device_private_entry(struct page *page, bool write) { return swp_entry(0, 0); } static inline void make_device_private_entry_read(swp_entry_t *entry) { } static inline bool is_device_private_entry(swp_entry_t entry) { return false; } static inline bool is_write_device_private_entry(swp_entry_t entry) { return false; } static inline unsigned long device_private_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *device_private_entry_to_page(swp_entry_t entry) { return NULL; } #endif /* CONFIG_DEVICE_PRIVATE */ #ifdef CONFIG_MIGRATION static inline swp_entry_t make_migration_entry(struct page *page, int write) { BUG_ON(!PageLocked(compound_head(page))); return swp_entry(write ? SWP_MIGRATION_WRITE : SWP_MIGRATION_READ, page_to_pfn(page)); } static inline int is_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_READ || swp_type(entry) == SWP_MIGRATION_WRITE); } static inline int is_write_migration_entry(swp_entry_t entry) { return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE); } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return swp_offset(entry); } static inline struct page *migration_entry_to_page(swp_entry_t entry) { struct page *p = pfn_to_page(swp_offset(entry)); /* * Any use of migration entries may only occur while the * corresponding page is locked */ BUG_ON(!PageLocked(compound_head(p))); return p; } static inline void make_migration_entry_read(swp_entry_t *entry) { *entry = swp_entry(SWP_MIGRATION_READ, swp_offset(*entry)); } extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl); extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address); extern void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte); #else #define make_migration_entry(page, write) swp_entry(0, 0) static inline int is_migration_entry(swp_entry_t swp) { return 0; } static inline unsigned long migration_entry_to_pfn(swp_entry_t entry) { return 0; } static inline struct page *migration_entry_to_page(swp_entry_t entry) { return NULL; } static inline void make_migration_entry_read(swp_entry_t *entryp) { } static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, spinlock_t *ptl) { } static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { } static inline void migration_entry_wait_huge(struct vm_area_struct *vma, struct mm_struct *mm, pte_t *pte) { } static inline int is_write_migration_entry(swp_entry_t entry) { return 0; } #endif struct page_vma_mapped_walk; #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION extern void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page); extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new); extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd); static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { swp_entry_t arch_entry; if (pmd_swp_soft_dirty(pmd)) pmd = pmd_swp_clear_soft_dirty(pmd); if (pmd_swp_uffd_wp(pmd)) pmd = pmd_swp_clear_uffd_wp(pmd); arch_entry = __pmd_to_swp_entry(pmd); return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry)); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { swp_entry_t arch_entry; arch_entry = __swp_entry(swp_type(entry), swp_offset(entry)); return __swp_entry_to_pmd(arch_entry); } static inline int is_pmd_migration_entry(pmd_t pmd) { return !pmd_present(pmd) && is_migration_entry(pmd_to_swp_entry(pmd)); } #else static inline void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, struct page *page) { BUILD_BUG(); } static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) { BUILD_BUG(); } static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { } static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd) { return swp_entry(0, 0); } static inline pmd_t swp_entry_to_pmd(swp_entry_t entry) { return __pmd(0); } static inline int is_pmd_migration_entry(pmd_t pmd) { return 0; } #endif #ifdef CONFIG_MEMORY_FAILURE extern atomic_long_t num_poisoned_pages __read_mostly; /* * Support for hardware poisoned pages */ static inline swp_entry_t make_hwpoison_entry(struct page *page) { BUG_ON(!PageLocked(page)); return swp_entry(SWP_HWPOISON, page_to_pfn(page)); } static inline int is_hwpoison_entry(swp_entry_t entry) { return swp_type(entry) == SWP_HWPOISON; } static inline void num_poisoned_pages_inc(void) { atomic_long_inc(&num_poisoned_pages); } static inline void num_poisoned_pages_dec(void) { atomic_long_dec(&num_poisoned_pages); } #else static inline swp_entry_t make_hwpoison_entry(struct page *page) { return swp_entry(0, 0); } static inline int is_hwpoison_entry(swp_entry_t swp) { return 0; } static inline void num_poisoned_pages_inc(void) { } #endif #if defined(CONFIG_MEMORY_FAILURE) || defined(CONFIG_MIGRATION) || \ defined(CONFIG_DEVICE_PRIVATE) static inline int non_swap_entry(swp_entry_t entry) { return swp_type(entry) >= MAX_SWAPFILES; } #else static inline int non_swap_entry(swp_entry_t entry) { return 0; } #endif #endif /* CONFIG_MMU */ #endif /* _LINUX_SWAPOPS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_HUGETLB_INLINE_H #define _LINUX_HUGETLB_INLINE_H #ifdef CONFIG_HUGETLB_PAGE #include <linux/mm.h> static inline bool is_vm_hugetlb_page(struct vm_area_struct *vma) { return !!(vma->vm_flags & VM_HUGETLB); } #else static inline bool is_vm_hugetlb_page(struct vm_area_struct *vma) { return false; } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2009-2019 Christoph Hellwig * * NOTE: none of these tracepoints shall be consider a stable kernel ABI * as they can change at any time. */ #undef TRACE_SYSTEM #define TRACE_SYSTEM iomap #if !defined(_IOMAP_TRACE_H) || defined(TRACE_HEADER_MULTI_READ) #define _IOMAP_TRACE_H #include <linux/tracepoint.h> struct inode; DECLARE_EVENT_CLASS(iomap_readpage_class, TP_PROTO(struct inode *inode, int nr_pages), TP_ARGS(inode, nr_pages), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(int, nr_pages) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->nr_pages = nr_pages; ), TP_printk("dev %d:%d ino 0x%llx nr_pages %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->nr_pages) ) #define DEFINE_READPAGE_EVENT(name) \ DEFINE_EVENT(iomap_readpage_class, name, \ TP_PROTO(struct inode *inode, int nr_pages), \ TP_ARGS(inode, nr_pages)) DEFINE_READPAGE_EVENT(iomap_readpage); DEFINE_READPAGE_EVENT(iomap_readahead); DECLARE_EVENT_CLASS(iomap_range_class, TP_PROTO(struct inode *inode, unsigned long off, unsigned int len), TP_ARGS(inode, off, len), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(loff_t, size) __field(unsigned long, offset) __field(unsigned int, length) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->size = i_size_read(inode); __entry->offset = off; __entry->length = len; ), TP_printk("dev %d:%d ino 0x%llx size 0x%llx offset %lx " "length %x", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->size, __entry->offset, __entry->length) ) #define DEFINE_RANGE_EVENT(name) \ DEFINE_EVENT(iomap_range_class, name, \ TP_PROTO(struct inode *inode, unsigned long off, unsigned int len),\ TP_ARGS(inode, off, len)) DEFINE_RANGE_EVENT(iomap_writepage); DEFINE_RANGE_EVENT(iomap_releasepage); DEFINE_RANGE_EVENT(iomap_invalidatepage); DEFINE_RANGE_EVENT(iomap_dio_invalidate_fail); #define IOMAP_TYPE_STRINGS \ { IOMAP_HOLE, "HOLE" }, \ { IOMAP_DELALLOC, "DELALLOC" }, \ { IOMAP_MAPPED, "MAPPED" }, \ { IOMAP_UNWRITTEN, "UNWRITTEN" }, \ { IOMAP_INLINE, "INLINE" } #define IOMAP_FLAGS_STRINGS \ { IOMAP_WRITE, "WRITE" }, \ { IOMAP_ZERO, "ZERO" }, \ { IOMAP_REPORT, "REPORT" }, \ { IOMAP_FAULT, "FAULT" }, \ { IOMAP_DIRECT, "DIRECT" }, \ { IOMAP_NOWAIT, "NOWAIT" } #define IOMAP_F_FLAGS_STRINGS \ { IOMAP_F_NEW, "NEW" }, \ { IOMAP_F_DIRTY, "DIRTY" }, \ { IOMAP_F_SHARED, "SHARED" }, \ { IOMAP_F_MERGED, "MERGED" }, \ { IOMAP_F_BUFFER_HEAD, "BH" }, \ { IOMAP_F_SIZE_CHANGED, "SIZE_CHANGED" } DECLARE_EVENT_CLASS(iomap_class, TP_PROTO(struct inode *inode, struct iomap *iomap), TP_ARGS(inode, iomap), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(u64, addr) __field(loff_t, offset) __field(u64, length) __field(u16, type) __field(u16, flags) __field(dev_t, bdev) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->addr = iomap->addr; __entry->offset = iomap->offset; __entry->length = iomap->length; __entry->type = iomap->type; __entry->flags = iomap->flags; __entry->bdev = iomap->bdev ? iomap->bdev->bd_dev : 0; ), TP_printk("dev %d:%d ino 0x%llx bdev %d:%d addr %lld offset %lld " "length %llu type %s flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, MAJOR(__entry->bdev), MINOR(__entry->bdev), __entry->addr, __entry->offset, __entry->length, __print_symbolic(__entry->type, IOMAP_TYPE_STRINGS), __print_flags(__entry->flags, "|", IOMAP_F_FLAGS_STRINGS)) ) #define DEFINE_IOMAP_EVENT(name) \ DEFINE_EVENT(iomap_class, name, \ TP_PROTO(struct inode *inode, struct iomap *iomap), \ TP_ARGS(inode, iomap)) DEFINE_IOMAP_EVENT(iomap_apply_dstmap); DEFINE_IOMAP_EVENT(iomap_apply_srcmap); TRACE_EVENT(iomap_apply, TP_PROTO(struct inode *inode, loff_t pos, loff_t length, unsigned int flags, const void *ops, void *actor, unsigned long caller), TP_ARGS(inode, pos, length, flags, ops, actor, caller), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(loff_t, pos) __field(loff_t, length) __field(unsigned int, flags) __field(const void *, ops) __field(void *, actor) __field(unsigned long, caller) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = pos; __entry->length = length; __entry->flags = flags; __entry->ops = ops; __entry->actor = actor; __entry->caller = caller; ), TP_printk("dev %d:%d ino 0x%llx pos %lld length %lld flags %s (0x%x) " "ops %ps caller %pS actor %ps", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->pos, __entry->length, __print_flags(__entry->flags, "|", IOMAP_FLAGS_STRINGS), __entry->flags, __entry->ops, (void *)__entry->caller, __entry->actor) ); #endif /* _IOMAP_TRACE_H */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * ALSA sequencer Timer * Copyright (c) 1998-1999 by Frank van de Pol <fvdpol@coil.demon.nl> */ #ifndef __SND_SEQ_TIMER_H #define __SND_SEQ_TIMER_H #include <sound/timer.h> #include <sound/seq_kernel.h> struct snd_seq_timer_tick { snd_seq_tick_time_t cur_tick; /* current tick */ unsigned long resolution; /* time per tick in nsec */ unsigned long fraction; /* current time per tick in nsec */ }; struct snd_seq_timer { /* ... tempo / offset / running state */ unsigned int running:1, /* running state of queue */ initialized:1; /* timer is initialized */ unsigned int tempo; /* current tempo, us/tick */ int ppq; /* time resolution, ticks/quarter */ snd_seq_real_time_t cur_time; /* current time */ struct snd_seq_timer_tick tick; /* current tick */ int tick_updated; int type; /* timer type */ struct snd_timer_id alsa_id; /* ALSA's timer ID */ struct snd_timer_instance *timeri; /* timer instance */ unsigned int ticks; unsigned long preferred_resolution; /* timer resolution, ticks/sec */ unsigned int skew; unsigned int skew_base; struct timespec64 last_update; /* time of last clock update, used for interpolation */ spinlock_t lock; }; /* create new timer (constructor) */ struct snd_seq_timer *snd_seq_timer_new(void); /* delete timer (destructor) */ void snd_seq_timer_delete(struct snd_seq_timer **tmr); /* */ static inline void snd_seq_timer_update_tick(struct snd_seq_timer_tick *tick, unsigned long resolution) { if (tick->resolution > 0) { tick->fraction += resolution; tick->cur_tick += (unsigned int)(tick->fraction / tick->resolution); tick->fraction %= tick->resolution; } } /* compare timestamp between events */ /* return 1 if a >= b; otherwise return 0 */ static inline int snd_seq_compare_tick_time(snd_seq_tick_time_t *a, snd_seq_tick_time_t *b) { /* compare ticks */ return (*a >= *b); } static inline int snd_seq_compare_real_time(snd_seq_real_time_t *a, snd_seq_real_time_t *b) { /* compare real time */ if (a->tv_sec > b->tv_sec) return 1; if ((a->tv_sec == b->tv_sec) && (a->tv_nsec >= b->tv_nsec)) return 1; return 0; } static inline void snd_seq_sanity_real_time(snd_seq_real_time_t *tm) { while (tm->tv_nsec >= 1000000000) { /* roll-over */ tm->tv_nsec -= 1000000000; tm->tv_sec++; } } /* increment timestamp */ static inline void snd_seq_inc_real_time(snd_seq_real_time_t *tm, snd_seq_real_time_t *inc) { tm->tv_sec += inc->tv_sec; tm->tv_nsec += inc->tv_nsec; snd_seq_sanity_real_time(tm); } static inline void snd_seq_inc_time_nsec(snd_seq_real_time_t *tm, unsigned long nsec) { tm->tv_nsec += nsec; snd_seq_sanity_real_time(tm); } /* called by timer isr */ struct snd_seq_queue; int snd_seq_timer_open(struct snd_seq_queue *q); int snd_seq_timer_close(struct snd_seq_queue *q); int snd_seq_timer_midi_open(struct snd_seq_queue *q); int snd_seq_timer_midi_close(struct snd_seq_queue *q); void snd_seq_timer_defaults(struct snd_seq_timer *tmr); void snd_seq_timer_reset(struct snd_seq_timer *tmr); int snd_seq_timer_stop(struct snd_seq_timer *tmr); int snd_seq_timer_start(struct snd_seq_timer *tmr); int snd_seq_timer_continue(struct snd_seq_timer *tmr); int snd_seq_timer_set_tempo(struct snd_seq_timer *tmr, int tempo); int snd_seq_timer_set_tempo_ppq(struct snd_seq_timer *tmr, int tempo, int ppq); int snd_seq_timer_set_position_tick(struct snd_seq_timer *tmr, snd_seq_tick_time_t position); int snd_seq_timer_set_position_time(struct snd_seq_timer *tmr, snd_seq_real_time_t position); int snd_seq_timer_set_skew(struct snd_seq_timer *tmr, unsigned int skew, unsigned int base); snd_seq_real_time_t snd_seq_timer_get_cur_time(struct snd_seq_timer *tmr, bool adjust_ktime); snd_seq_tick_time_t snd_seq_timer_get_cur_tick(struct snd_seq_timer *tmr); extern int seq_default_timer_class; extern int seq_default_timer_sclass; extern int seq_default_timer_card; extern int seq_default_timer_device; extern int seq_default_timer_subdevice; extern int seq_default_timer_resolution; #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PGALLLC_TRACK_H #define _LINUX_PGALLLC_TRACK_H #if defined(CONFIG_MMU) static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(pgd_none(*pgd))) { if (__p4d_alloc(mm, pgd, address)) return NULL; *mod_mask |= PGTBL_PGD_MODIFIED; } return p4d_offset(pgd, address); } static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(p4d_none(*p4d))) { if (__pud_alloc(mm, p4d, address)) return NULL; *mod_mask |= PGTBL_P4D_MODIFIED; } return pud_offset(p4d, address); } static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, unsigned long address, pgtbl_mod_mask *mod_mask) { if (unlikely(pud_none(*pud))) { if (__pmd_alloc(mm, pud, address)) return NULL; *mod_mask |= PGTBL_PUD_MODIFIED; } return pmd_offset(pud, address); } #endif /* CONFIG_MMU */ #define pte_alloc_kernel_track(pmd, address, mask) \ ((unlikely(pmd_none(*(pmd))) && \ (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ NULL: pte_offset_kernel(pmd, address)) #endif /* _LINUX_PGALLLC_TRACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __CFG80211_RDEV_OPS #define __CFG80211_RDEV_OPS #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "core.h" #include "trace.h" static inline int rdev_suspend(struct cfg80211_registered_device *rdev, struct cfg80211_wowlan *wowlan) { int ret; trace_rdev_suspend(&rdev->wiphy, wowlan); ret = rdev->ops->suspend(&rdev->wiphy, wowlan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_resume(struct cfg80211_registered_device *rdev) { int ret; trace_rdev_resume(&rdev->wiphy); ret = rdev->ops->resume(&rdev->wiphy); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_set_wakeup(struct cfg80211_registered_device *rdev, bool enabled) { trace_rdev_set_wakeup(&rdev->wiphy, enabled); rdev->ops->set_wakeup(&rdev->wiphy, enabled); trace_rdev_return_void(&rdev->wiphy); } static inline struct wireless_dev *rdev_add_virtual_intf(struct cfg80211_registered_device *rdev, char *name, unsigned char name_assign_type, enum nl80211_iftype type, struct vif_params *params) { struct wireless_dev *ret; trace_rdev_add_virtual_intf(&rdev->wiphy, name, type); ret = rdev->ops->add_virtual_intf(&rdev->wiphy, name, name_assign_type, type, params); trace_rdev_return_wdev(&rdev->wiphy, ret); return ret; } static inline int rdev_del_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_del_virtual_intf(&rdev->wiphy, wdev); ret = rdev->ops->del_virtual_intf(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_virtual_intf(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype type, struct vif_params *params) { int ret; trace_rdev_change_virtual_intf(&rdev->wiphy, dev, type); ret = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, type, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int ret; trace_rdev_add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params->mode); ret = rdev->ops->add_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback)(void *cookie, struct key_params*)) { int ret; trace_rdev_get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->get_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr, cookie, callback); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr) { int ret; trace_rdev_del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); ret = rdev->ops->del_key(&rdev->wiphy, netdev, key_index, pairwise, mac_addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index, bool unicast, bool multicast) { int ret; trace_rdev_set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); ret = rdev->ops->set_default_key(&rdev->wiphy, netdev, key_index, unicast, multicast); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_mgmt_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_mgmt_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_mgmt_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_default_beacon_key(struct cfg80211_registered_device *rdev, struct net_device *netdev, u8 key_index) { int ret; trace_rdev_set_default_beacon_key(&rdev->wiphy, netdev, key_index); ret = rdev->ops->set_default_beacon_key(&rdev->wiphy, netdev, key_index); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ap_settings *settings) { int ret; trace_rdev_start_ap(&rdev->wiphy, dev, settings); ret = rdev->ops->start_ap(&rdev->wiphy, dev, settings); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_beacon(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_beacon_data *info) { int ret; trace_rdev_change_beacon(&rdev->wiphy, dev, info); ret = rdev->ops->change_beacon(&rdev->wiphy, dev, info); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_stop_ap(&rdev->wiphy, dev); ret = rdev->ops->stop_ap(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_add_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->add_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_station(struct cfg80211_registered_device *rdev, struct net_device *dev, struct station_del_parameters *params) { int ret; trace_rdev_del_station(&rdev->wiphy, dev, params); ret = rdev->ops->del_station(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_station(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *mac, struct station_parameters *params) { int ret; trace_rdev_change_station(&rdev->wiphy, dev, mac, params); ret = rdev->ops->change_station(&rdev->wiphy, dev, mac, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_station(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_get_station(&rdev->wiphy, dev, mac); ret = rdev->ops->get_station(&rdev->wiphy, dev, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_dump_station(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { int ret; trace_rdev_dump_station(&rdev->wiphy, dev, idx, mac); ret = rdev->ops->dump_station(&rdev->wiphy, dev, idx, mac, sinfo); trace_rdev_return_int_station_info(&rdev->wiphy, ret, sinfo); return ret; } static inline int rdev_add_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_add_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->add_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst) { int ret; trace_rdev_del_mpath(&rdev->wiphy, dev, dst); ret = rdev->ops->del_mpath(&rdev->wiphy, dev, dst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop) { int ret; trace_rdev_change_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->change_mpath(&rdev->wiphy, dev, dst, next_hop); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpath(&rdev->wiphy, dev, dst, next_hop); ret = rdev->ops->get_mpath(&rdev->wiphy, dev, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_get_mpp(&rdev->wiphy, dev, dst, mpp); ret = rdev->ops->get_mpp(&rdev->wiphy, dev, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpath(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *next_hop, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop); ret = rdev->ops->dump_mpath(&rdev->wiphy, dev, idx, dst, next_hop, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_dump_mpp(struct cfg80211_registered_device *rdev, struct net_device *dev, int idx, u8 *dst, u8 *mpp, struct mpath_info *pinfo) { int ret; trace_rdev_dump_mpp(&rdev->wiphy, dev, idx, dst, mpp); ret = rdev->ops->dump_mpp(&rdev->wiphy, dev, idx, dst, mpp, pinfo); trace_rdev_return_int_mpath_info(&rdev->wiphy, ret, pinfo); return ret; } static inline int rdev_get_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_config *conf) { int ret; trace_rdev_get_mesh_config(&rdev->wiphy, dev); ret = rdev->ops->get_mesh_config(&rdev->wiphy, dev, conf); trace_rdev_return_int_mesh_config(&rdev->wiphy, ret, conf); return ret; } static inline int rdev_update_mesh_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 mask, const struct mesh_config *nconf) { int ret; trace_rdev_update_mesh_config(&rdev->wiphy, dev, mask, nconf); ret = rdev->ops->update_mesh_config(&rdev->wiphy, dev, mask, nconf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, const struct mesh_config *conf, const struct mesh_setup *setup) { int ret; trace_rdev_join_mesh(&rdev->wiphy, dev, conf, setup); ret = rdev->ops->join_mesh(&rdev->wiphy, dev, conf, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_mesh(&rdev->wiphy, dev); ret = rdev->ops->leave_mesh(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup) { int ret; trace_rdev_join_ocb(&rdev->wiphy, dev, setup); ret = rdev->ops->join_ocb(&rdev->wiphy, dev, setup); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ocb(&rdev->wiphy, dev); ret = rdev->ops->leave_ocb(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_change_bss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct bss_parameters *params) { int ret; trace_rdev_change_bss(&rdev->wiphy, dev, params); ret = rdev->ops->change_bss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_txq_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_txq_params *params) { int ret; trace_rdev_set_txq_params(&rdev->wiphy, dev, params); ret = rdev->ops->set_txq_params(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_libertas_set_mesh_channel(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan) { int ret; trace_rdev_libertas_set_mesh_channel(&rdev->wiphy, dev, chan); ret = rdev->ops->libertas_set_mesh_channel(&rdev->wiphy, dev, chan); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_monitor_channel(&rdev->wiphy, chandef); ret = rdev->ops->set_monitor_channel(&rdev->wiphy, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_scan(struct cfg80211_registered_device *rdev, struct cfg80211_scan_request *request) { int ret; trace_rdev_scan(&rdev->wiphy, request); ret = rdev->ops->scan(&rdev->wiphy, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_scan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_abort_scan(&rdev->wiphy, wdev); rdev->ops->abort_scan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_auth_request *req) { int ret; trace_rdev_auth(&rdev->wiphy, dev, req); ret = rdev->ops->auth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_assoc_request *req) { int ret; trace_rdev_assoc(&rdev->wiphy, dev, req); ret = rdev->ops->assoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_deauth_request *req) { int ret; trace_rdev_deauth(&rdev->wiphy, dev, req); ret = rdev->ops->deauth(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_disassoc_request *req) { int ret; trace_rdev_disassoc(&rdev->wiphy, dev, req); ret = rdev->ops->disassoc(&rdev->wiphy, dev, req); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme) { int ret; trace_rdev_connect(&rdev->wiphy, dev, sme); ret = rdev->ops->connect(&rdev->wiphy, dev, sme); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_connect_params(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *sme, u32 changed) { int ret; trace_rdev_update_connect_params(&rdev->wiphy, dev, sme, changed); ret = rdev->ops->update_connect_params(&rdev->wiphy, dev, sme, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason_code) { int ret; trace_rdev_disconnect(&rdev->wiphy, dev, reason_code); ret = rdev->ops->disconnect(&rdev->wiphy, dev, reason_code); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params) { int ret; trace_rdev_join_ibss(&rdev->wiphy, dev, params); ret = rdev->ops->join_ibss(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev) { int ret; trace_rdev_leave_ibss(&rdev->wiphy, dev); ret = rdev->ops->leave_ibss(&rdev->wiphy, dev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_wiphy_params(struct cfg80211_registered_device *rdev, u32 changed) { int ret; if (!rdev->ops->set_wiphy_params) return -EOPNOTSUPP; trace_rdev_set_wiphy_params(&rdev->wiphy, changed); ret = rdev->ops->set_wiphy_params(&rdev->wiphy, changed); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_tx_power_setting type, int mbm) { int ret; trace_rdev_set_tx_power(&rdev->wiphy, wdev, type, mbm); ret = rdev->ops->set_tx_power(&rdev->wiphy, wdev, type, mbm); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_tx_power(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, int *dbm) { int ret; trace_rdev_get_tx_power(&rdev->wiphy, wdev); ret = rdev->ops->get_tx_power(&rdev->wiphy, wdev, dbm); trace_rdev_return_int_int(&rdev->wiphy, ret, *dbm); return ret; } static inline int rdev_set_wds_peer(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { int ret; trace_rdev_set_wds_peer(&rdev->wiphy, dev, addr); ret = rdev->ops->set_wds_peer(&rdev->wiphy, dev, addr); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_multicast_to_unicast(struct cfg80211_registered_device *rdev, struct net_device *dev, const bool enabled) { int ret; trace_rdev_set_multicast_to_unicast(&rdev->wiphy, dev, enabled); ret = rdev->ops->set_multicast_to_unicast(&rdev->wiphy, dev, enabled); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_txq_stats(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_txq_stats *txqstats) { int ret; trace_rdev_get_txq_stats(&rdev->wiphy, wdev); ret = rdev->ops->get_txq_stats(&rdev->wiphy, wdev, txqstats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_rfkill_poll(struct cfg80211_registered_device *rdev) { trace_rdev_rfkill_poll(&rdev->wiphy); rdev->ops->rfkill_poll(&rdev->wiphy); trace_rdev_return_void(&rdev->wiphy); } #ifdef CONFIG_NL80211_TESTMODE static inline int rdev_testmode_cmd(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, void *data, int len) { int ret; trace_rdev_testmode_cmd(&rdev->wiphy, wdev); ret = rdev->ops->testmode_cmd(&rdev->wiphy, wdev, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_testmode_dump(struct cfg80211_registered_device *rdev, struct sk_buff *skb, struct netlink_callback *cb, void *data, int len) { int ret; trace_rdev_testmode_dump(&rdev->wiphy); ret = rdev->ops->testmode_dump(&rdev->wiphy, skb, cb, data, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif static inline int rdev_set_bitrate_mask(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, const struct cfg80211_bitrate_mask *mask) { int ret; trace_rdev_set_bitrate_mask(&rdev->wiphy, dev, peer, mask); ret = rdev->ops->set_bitrate_mask(&rdev->wiphy, dev, peer, mask); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_dump_survey(struct cfg80211_registered_device *rdev, struct net_device *netdev, int idx, struct survey_info *info) { int ret; trace_rdev_dump_survey(&rdev->wiphy, netdev, idx); ret = rdev->ops->dump_survey(&rdev->wiphy, netdev, idx, info); if (ret < 0) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_survey_info(&rdev->wiphy, ret, info); return ret; } static inline int rdev_set_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_set_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->set_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_pmksa *pmksa) { int ret; trace_rdev_del_pmksa(&rdev->wiphy, netdev, pmksa); ret = rdev->ops->del_pmksa(&rdev->wiphy, netdev, pmksa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_flush_pmksa(struct cfg80211_registered_device *rdev, struct net_device *netdev) { int ret; trace_rdev_flush_pmksa(&rdev->wiphy, netdev); ret = rdev->ops->flush_pmksa(&rdev->wiphy, netdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { int ret; trace_rdev_remain_on_channel(&rdev->wiphy, wdev, chan, duration); ret = rdev->ops->remain_on_channel(&rdev->wiphy, wdev, chan, duration, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_cancel_remain_on_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); ret = rdev->ops->cancel_remain_on_channel(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { int ret; trace_rdev_mgmt_tx(&rdev->wiphy, wdev, params); ret = rdev->ops->mgmt_tx(&rdev->wiphy, wdev, params, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_tx_control_port(struct cfg80211_registered_device *rdev, struct net_device *dev, const void *buf, size_t len, const u8 *dest, __be16 proto, const bool noencrypt, u64 *cookie) { int ret; trace_rdev_tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt); ret = rdev->ops->tx_control_port(&rdev->wiphy, dev, buf, len, dest, proto, noencrypt, cookie); if (cookie) trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); else trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_mgmt_tx_cancel_wait(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { int ret; trace_rdev_mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); ret = rdev->ops->mgmt_tx_cancel_wait(&rdev->wiphy, wdev, cookie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_power_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, bool enabled, int timeout) { int ret; trace_rdev_set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); ret = rdev->ops->set_power_mgmt(&rdev->wiphy, dev, enabled, timeout); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 rssi_thold, u32 rssi_hyst) { int ret; trace_rdev_set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); ret = rdev->ops->set_cqm_rssi_config(&rdev->wiphy, dev, rssi_thold, rssi_hyst); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_rssi_range_config(struct cfg80211_registered_device *rdev, struct net_device *dev, s32 low, s32 high) { int ret; trace_rdev_set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); ret = rdev->ops->set_cqm_rssi_range_config(&rdev->wiphy, dev, low, high); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_cqm_txe_config(struct cfg80211_registered_device *rdev, struct net_device *dev, u32 rate, u32 pkts, u32 intvl) { int ret; trace_rdev_set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); ret = rdev->ops->set_cqm_txe_config(&rdev->wiphy, dev, rate, pkts, intvl); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_update_mgmt_frame_registrations(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct mgmt_frame_regs *upd) { might_sleep(); trace_rdev_update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); if (rdev->ops->update_mgmt_frame_registrations) rdev->ops->update_mgmt_frame_registrations(&rdev->wiphy, wdev, upd); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_antenna(struct cfg80211_registered_device *rdev, u32 tx_ant, u32 rx_ant) { int ret; trace_rdev_set_antenna(&rdev->wiphy, tx_ant, rx_ant); ret = rdev->ops->set_antenna(&rdev->wiphy, tx_ant, rx_ant); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_antenna(struct cfg80211_registered_device *rdev, u32 *tx_ant, u32 *rx_ant) { int ret; trace_rdev_get_antenna(&rdev->wiphy); ret = rdev->ops->get_antenna(&rdev->wiphy, tx_ant, rx_ant); if (ret) trace_rdev_return_int(&rdev->wiphy, ret); else trace_rdev_return_int_tx_rx(&rdev->wiphy, ret, *tx_ant, *rx_ant); return ret; } static inline int rdev_sched_scan_start(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_sched_scan_request *request) { int ret; trace_rdev_sched_scan_start(&rdev->wiphy, dev, request->reqid); ret = rdev->ops->sched_scan_start(&rdev->wiphy, dev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_sched_scan_stop(struct cfg80211_registered_device *rdev, struct net_device *dev, u64 reqid) { int ret; trace_rdev_sched_scan_stop(&rdev->wiphy, dev, reqid); ret = rdev->ops->sched_scan_stop(&rdev->wiphy, dev, reqid); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_rekey_data(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_gtk_rekey_data *data) { int ret; trace_rdev_set_rekey_data(&rdev->wiphy, dev); ret = rdev->ops->set_rekey_data(&rdev->wiphy, dev, data); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_mgmt(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, u8 action_code, u8 dialog_token, u16 status_code, u32 peer_capability, bool initiator, const u8 *buf, size_t len) { int ret; trace_rdev_tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); ret = rdev->ops->tdls_mgmt(&rdev->wiphy, dev, peer, action_code, dialog_token, status_code, peer_capability, initiator, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_oper(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 *peer, enum nl80211_tdls_operation oper) { int ret; trace_rdev_tdls_oper(&rdev->wiphy, dev, peer, oper); ret = rdev->ops->tdls_oper(&rdev->wiphy, dev, peer, oper); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_client(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u64 *cookie) { int ret; trace_rdev_probe_client(&rdev->wiphy, dev, peer); ret = rdev->ops->probe_client(&rdev->wiphy, dev, peer, cookie); trace_rdev_return_int_cookie(&rdev->wiphy, ret, *cookie); return ret; } static inline int rdev_set_noack_map(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 noack_map) { int ret; trace_rdev_set_noack_map(&rdev->wiphy, dev, noack_map); ret = rdev->ops->set_noack_map(&rdev->wiphy, dev, noack_map); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_get_channel(&rdev->wiphy, wdev); ret = rdev->ops->get_channel(&rdev->wiphy, wdev, chandef); trace_rdev_return_chandef(&rdev->wiphy, ret, chandef); return ret; } static inline int rdev_start_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { int ret; trace_rdev_start_p2p_device(&rdev->wiphy, wdev); ret = rdev->ops->start_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_p2p_device(&rdev->wiphy, wdev); rdev->ops->stop_p2p_device(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf) { int ret; trace_rdev_start_nan(&rdev->wiphy, wdev, conf); ret = rdev->ops->start_nan(&rdev->wiphy, wdev, conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_stop_nan(&rdev->wiphy, wdev); rdev->ops->stop_nan(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_add_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_func *nan_func) { int ret; trace_rdev_add_nan_func(&rdev->wiphy, wdev, nan_func); ret = rdev->ops->add_nan_func(&rdev->wiphy, wdev, nan_func); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_del_nan_func(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u64 cookie) { trace_rdev_del_nan_func(&rdev->wiphy, wdev, cookie); rdev->ops->del_nan_func(&rdev->wiphy, wdev, cookie); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_nan_change_conf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_nan_conf *conf, u32 changes) { int ret; trace_rdev_nan_change_conf(&rdev->wiphy, wdev, conf, changes); if (rdev->ops->nan_change_conf) ret = rdev->ops->nan_change_conf(&rdev->wiphy, wdev, conf, changes); else ret = -ENOTSUPP; trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_mac_acl(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_acl_data *params) { int ret; trace_rdev_set_mac_acl(&rdev->wiphy, dev, params); ret = rdev->ops->set_mac_acl(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_update_ft_ies(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { int ret; trace_rdev_update_ft_ies(&rdev->wiphy, dev, ftie); ret = rdev->ops->update_ft_ies(&rdev->wiphy, dev, ftie); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_crit_proto_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_crit_proto_id protocol, u16 duration) { int ret; trace_rdev_crit_proto_start(&rdev->wiphy, wdev, protocol, duration); ret = rdev->ops->crit_proto_start(&rdev->wiphy, wdev, protocol, duration); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_crit_proto_stop(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { trace_rdev_crit_proto_stop(&rdev->wiphy, wdev); rdev->ops->crit_proto_stop(&rdev->wiphy, wdev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_csa_settings *params) { int ret; trace_rdev_channel_switch(&rdev->wiphy, dev, params); ret = rdev->ops->channel_switch(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_qos_map(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_qos_map *qos_map) { int ret = -EOPNOTSUPP; if (rdev->ops->set_qos_map) { trace_rdev_set_qos_map(&rdev->wiphy, dev, qos_map); ret = rdev->ops->set_qos_map(&rdev->wiphy, dev, qos_map); trace_rdev_return_int(&rdev->wiphy, ret); } return ret; } static inline int rdev_set_ap_chanwidth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_set_ap_chanwidth(&rdev->wiphy, dev, chandef); ret = rdev->ops->set_ap_chanwidth(&rdev->wiphy, dev, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_add_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer, u8 user_prio, u16 admitted_time) { int ret = -EOPNOTSUPP; trace_rdev_add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); if (rdev->ops->add_tx_ts) ret = rdev->ops->add_tx_ts(&rdev->wiphy, dev, tsid, peer, user_prio, admitted_time); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_tx_ts(struct cfg80211_registered_device *rdev, struct net_device *dev, u8 tsid, const u8 *peer) { int ret = -EOPNOTSUPP; trace_rdev_del_tx_ts(&rdev->wiphy, dev, tsid, peer); if (rdev->ops->del_tx_ts) ret = rdev->ops->del_tx_ts(&rdev->wiphy, dev, tsid, peer); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_tdls_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr, u8 oper_class, struct cfg80211_chan_def *chandef) { int ret; trace_rdev_tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); ret = rdev->ops->tdls_channel_switch(&rdev->wiphy, dev, addr, oper_class, chandef); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_tdls_cancel_channel_switch(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *addr) { trace_rdev_tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); rdev->ops->tdls_cancel_channel_switch(&rdev->wiphy, dev, addr); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_start_radar_detection(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_chan_def *chandef, u32 cac_time_ms) { int ret = -ENOTSUPP; trace_rdev_start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); if (rdev->ops->start_radar_detection) ret = rdev->ops->start_radar_detection(&rdev->wiphy, dev, chandef, cac_time_ms); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_end_cac(struct cfg80211_registered_device *rdev, struct net_device *dev) { trace_rdev_end_cac(&rdev->wiphy, dev); if (rdev->ops->end_cac) rdev->ops->end_cac(&rdev->wiphy, dev); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_set_mcast_rate(struct cfg80211_registered_device *rdev, struct net_device *dev, int mcast_rate[NUM_NL80211_BANDS]) { int ret = -ENOTSUPP; trace_rdev_set_mcast_rate(&rdev->wiphy, dev, mcast_rate); if (rdev->ops->set_mcast_rate) ret = rdev->ops->set_mcast_rate(&rdev->wiphy, dev, mcast_rate); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_coalesce(struct cfg80211_registered_device *rdev, struct cfg80211_coalesce *coalesce) { int ret = -ENOTSUPP; trace_rdev_set_coalesce(&rdev->wiphy, coalesce); if (rdev->ops->set_coalesce) ret = rdev->ops->set_coalesce(&rdev->wiphy, coalesce); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_pmk_conf *pmk_conf) { int ret = -EOPNOTSUPP; trace_rdev_set_pmk(&rdev->wiphy, dev, pmk_conf); if (rdev->ops->set_pmk) ret = rdev->ops->set_pmk(&rdev->wiphy, dev, pmk_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_del_pmk(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *aa) { int ret = -EOPNOTSUPP; trace_rdev_del_pmk(&rdev->wiphy, dev, aa); if (rdev->ops->del_pmk) ret = rdev->ops->del_pmk(&rdev->wiphy, dev, aa); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_external_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_external_auth_params *params) { int ret = -EOPNOTSUPP; trace_rdev_external_auth(&rdev->wiphy, dev, params); if (rdev->ops->external_auth) ret = rdev->ops->external_auth(&rdev->wiphy, dev, params); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_get_ftm_responder_stats(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ftm_responder_stats *ftm_stats) { int ret = -EOPNOTSUPP; trace_rdev_get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); if (rdev->ops->get_ftm_responder_stats) ret = rdev->ops->get_ftm_responder_stats(&rdev->wiphy, dev, ftm_stats); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_start_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; trace_rdev_start_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->start_pmsr) ret = rdev->ops->start_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline void rdev_abort_pmsr(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_pmsr_request *request) { trace_rdev_abort_pmsr(&rdev->wiphy, wdev, request->cookie); if (rdev->ops->abort_pmsr) rdev->ops->abort_pmsr(&rdev->wiphy, wdev, request); trace_rdev_return_void(&rdev->wiphy); } static inline int rdev_update_owe_info(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_update_owe_info *oweinfo) { int ret = -EOPNOTSUPP; trace_rdev_update_owe_info(&rdev->wiphy, dev, oweinfo); if (rdev->ops->update_owe_info) ret = rdev->ops->update_owe_info(&rdev->wiphy, dev, oweinfo); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_probe_mesh_link(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *dest, const void *buf, size_t len) { int ret; trace_rdev_probe_mesh_link(&rdev->wiphy, dev, dest, buf, len); ret = rdev->ops->probe_mesh_link(&rdev->wiphy, dev, buf, len); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_set_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_tid_config *tid_conf) { int ret; trace_rdev_set_tid_config(&rdev->wiphy, dev, tid_conf); ret = rdev->ops->set_tid_config(&rdev->wiphy, dev, tid_conf); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } static inline int rdev_reset_tid_config(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *peer, u8 tids) { int ret; trace_rdev_reset_tid_config(&rdev->wiphy, dev, peer, tids); ret = rdev->ops->reset_tid_config(&rdev->wiphy, dev, peer, tids); trace_rdev_return_int(&rdev->wiphy, ret); return ret; } #endif /* __CFG80211_RDEV_OPS */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM jbd2 #if !defined(_TRACE_JBD2_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_JBD2_H #include <linux/jbd2.h> #include <linux/tracepoint.h> struct transaction_chp_stats_s; struct transaction_run_stats_s; TRACE_EVENT(jbd2_checkpoint, TP_PROTO(journal_t *journal, int result), TP_ARGS(journal, result), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, result ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->result = result; ), TP_printk("dev %d,%d result %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->result) ); DECLARE_EVENT_CLASS(jbd2_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction), TP_STRUCT__entry( __field( dev_t, dev ) __field( char, sync_commit ) __field( int, transaction ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->sync_commit = commit_transaction->t_synchronous_commit; __entry->transaction = commit_transaction->t_tid; ), TP_printk("dev %d,%d transaction %d sync %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->transaction, __entry->sync_commit) ); DEFINE_EVENT(jbd2_commit, jbd2_start_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_locking, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_flushing, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_logging, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_drop_transaction, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); TRACE_EVENT(jbd2_end_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction), TP_STRUCT__entry( __field( dev_t, dev ) __field( char, sync_commit ) __field( int, transaction ) __field( int, head ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->sync_commit = commit_transaction->t_synchronous_commit; __entry->transaction = commit_transaction->t_tid; __entry->head = journal->j_tail_sequence; ), TP_printk("dev %d,%d transaction %d sync %d head %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->transaction, __entry->sync_commit, __entry->head) ); TRACE_EVENT(jbd2_submit_inode_data, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; ), TP_printk("dev %d,%d ino %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino) ); DECLARE_EVENT_CLASS(jbd2_handle_start_class, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, requested_blocks) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->requested_blocks = requested_blocks; ), TP_printk("dev %d,%d tid %lu type %u line_no %u " "requested_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->requested_blocks) ); DEFINE_EVENT(jbd2_handle_start_class, jbd2_handle_start, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks) ); DEFINE_EVENT(jbd2_handle_start_class, jbd2_handle_restart, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks) ); TRACE_EVENT(jbd2_handle_extend, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int buffer_credits, int requested_blocks), TP_ARGS(dev, tid, type, line_no, buffer_credits, requested_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, buffer_credits ) __field( int, requested_blocks) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->buffer_credits = buffer_credits; __entry->requested_blocks = requested_blocks; ), TP_printk("dev %d,%d tid %lu type %u line_no %u " "buffer_credits %d requested_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->buffer_credits, __entry->requested_blocks) ); TRACE_EVENT(jbd2_handle_stats, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int interval, int sync, int requested_blocks, int dirtied_blocks), TP_ARGS(dev, tid, type, line_no, interval, sync, requested_blocks, dirtied_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, interval ) __field( int, sync ) __field( int, requested_blocks) __field( int, dirtied_blocks ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->interval = interval; __entry->sync = sync; __entry->requested_blocks = requested_blocks; __entry->dirtied_blocks = dirtied_blocks; ), TP_printk("dev %d,%d tid %lu type %u line_no %u interval %d " "sync %d requested_blocks %d dirtied_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->interval, __entry->sync, __entry->requested_blocks, __entry->dirtied_blocks) ); TRACE_EVENT(jbd2_run_stats, TP_PROTO(dev_t dev, unsigned long tid, struct transaction_run_stats_s *stats), TP_ARGS(dev, tid, stats), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned long, wait ) __field( unsigned long, request_delay ) __field( unsigned long, running ) __field( unsigned long, locked ) __field( unsigned long, flushing ) __field( unsigned long, logging ) __field( __u32, handle_count ) __field( __u32, blocks ) __field( __u32, blocks_logged ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->wait = stats->rs_wait; __entry->request_delay = stats->rs_request_delay; __entry->running = stats->rs_running; __entry->locked = stats->rs_locked; __entry->flushing = stats->rs_flushing; __entry->logging = stats->rs_logging; __entry->handle_count = stats->rs_handle_count; __entry->blocks = stats->rs_blocks; __entry->blocks_logged = stats->rs_blocks_logged; ), TP_printk("dev %d,%d tid %lu wait %u request_delay %u running %u " "locked %u flushing %u logging %u handle_count %u " "blocks %u blocks_logged %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, jiffies_to_msecs(__entry->wait), jiffies_to_msecs(__entry->request_delay), jiffies_to_msecs(__entry->running), jiffies_to_msecs(__entry->locked), jiffies_to_msecs(__entry->flushing), jiffies_to_msecs(__entry->logging), __entry->handle_count, __entry->blocks, __entry->blocks_logged) ); TRACE_EVENT(jbd2_checkpoint_stats, TP_PROTO(dev_t dev, unsigned long tid, struct transaction_chp_stats_s *stats), TP_ARGS(dev, tid, stats), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned long, chp_time ) __field( __u32, forced_to_close ) __field( __u32, written ) __field( __u32, dropped ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->chp_time = stats->cs_chp_time; __entry->forced_to_close= stats->cs_forced_to_close; __entry->written = stats->cs_written; __entry->dropped = stats->cs_dropped; ), TP_printk("dev %d,%d tid %lu chp_time %u forced_to_close %u " "written %u dropped %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, jiffies_to_msecs(__entry->chp_time), __entry->forced_to_close, __entry->written, __entry->dropped) ); TRACE_EVENT(jbd2_update_log_tail, TP_PROTO(journal_t *journal, tid_t first_tid, unsigned long block_nr, unsigned long freed), TP_ARGS(journal, first_tid, block_nr, freed), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tail_sequence ) __field( tid_t, first_tid ) __field(unsigned long, block_nr ) __field(unsigned long, freed ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->tail_sequence = journal->j_tail_sequence; __entry->first_tid = first_tid; __entry->block_nr = block_nr; __entry->freed = freed; ), TP_printk("dev %d,%d from %u to %u offset %lu freed %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tail_sequence, __entry->first_tid, __entry->block_nr, __entry->freed) ); TRACE_EVENT(jbd2_write_superblock, TP_PROTO(journal_t *journal, int write_op), TP_ARGS(journal, write_op), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, write_op ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->write_op = write_op; ), TP_printk("dev %d,%d write_op %x", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->write_op) ); TRACE_EVENT(jbd2_lock_buffer_stall, TP_PROTO(dev_t dev, unsigned long stall_ms), TP_ARGS(dev, stall_ms), TP_STRUCT__entry( __field( dev_t, dev ) __field(unsigned long, stall_ms ) ), TP_fast_assign( __entry->dev = dev; __entry->stall_ms = stall_ms; ), TP_printk("dev %d,%d stall_ms %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->stall_ms) ); #endif /* _TRACE_JBD2_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_JUMP_LABEL_H #define _LINUX_JUMP_LABEL_H /* * Jump label support * * Copyright (C) 2009-2012 Jason Baron <jbaron@redhat.com> * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra * * DEPRECATED API: * * The use of 'struct static_key' directly, is now DEPRECATED. In addition * static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following: * * struct static_key false = STATIC_KEY_INIT_FALSE; * struct static_key true = STATIC_KEY_INIT_TRUE; * static_key_true() * static_key_false() * * The updated API replacements are: * * DEFINE_STATIC_KEY_TRUE(key); * DEFINE_STATIC_KEY_FALSE(key); * DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count); * DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count); * static_branch_likely() * static_branch_unlikely() * * Jump labels provide an interface to generate dynamic branches using * self-modifying code. Assuming toolchain and architecture support, if we * define a "key" that is initially false via "DEFINE_STATIC_KEY_FALSE(key)", * an "if (static_branch_unlikely(&key))" statement is an unconditional branch * (which defaults to false - and the true block is placed out of line). * Similarly, we can define an initially true key via * "DEFINE_STATIC_KEY_TRUE(key)", and use it in the same * "if (static_branch_unlikely(&key))", in which case we will generate an * unconditional branch to the out-of-line true branch. Keys that are * initially true or false can be using in both static_branch_unlikely() * and static_branch_likely() statements. * * At runtime we can change the branch target by setting the key * to true via a call to static_branch_enable(), or false using * static_branch_disable(). If the direction of the branch is switched by * these calls then we run-time modify the branch target via a * no-op -> jump or jump -> no-op conversion. For example, for an * initially false key that is used in an "if (static_branch_unlikely(&key))" * statement, setting the key to true requires us to patch in a jump * to the out-of-line of true branch. * * In addition to static_branch_{enable,disable}, we can also reference count * the key or branch direction via static_branch_{inc,dec}. Thus, * static_branch_inc() can be thought of as a 'make more true' and * static_branch_dec() as a 'make more false'. * * Since this relies on modifying code, the branch modifying functions * must be considered absolute slow paths (machine wide synchronization etc.). * OTOH, since the affected branches are unconditional, their runtime overhead * will be absolutely minimal, esp. in the default (off) case where the total * effect is a single NOP of appropriate size. The on case will patch in a jump * to the out-of-line block. * * When the control is directly exposed to userspace, it is prudent to delay the * decrement to avoid high frequency code modifications which can (and do) * cause significant performance degradation. Struct static_key_deferred and * static_key_slow_dec_deferred() provide for this. * * Lacking toolchain and or architecture support, static keys fall back to a * simple conditional branch. * * Additional babbling in: Documentation/staging/static-keys.rst */ #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/compiler.h> extern bool static_key_initialized; #define STATIC_KEY_CHECK_USE(key) WARN(!static_key_initialized, \ "%s(): static key '%pS' used before call to jump_label_init()", \ __func__, (key)) #ifdef CONFIG_JUMP_LABEL struct static_key { atomic_t enabled; /* * Note: * To make anonymous unions work with old compilers, the static * initialization of them requires brackets. This creates a dependency * on the order of the struct with the initializers. If any fields * are added, STATIC_KEY_INIT_TRUE and STATIC_KEY_INIT_FALSE may need * to be modified. * * bit 0 => 1 if key is initially true * 0 if initially false * bit 1 => 1 if points to struct static_key_mod * 0 if points to struct jump_entry */ union { unsigned long type; struct jump_entry *entries; struct static_key_mod *next; }; }; #else struct static_key { atomic_t enabled; }; #endif /* CONFIG_JUMP_LABEL */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_JUMP_LABEL #include <asm/jump_label.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE struct jump_entry { s32 code; s32 target; long key; // key may be far away from the core kernel under KASLR }; static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return (unsigned long)&entry->code + entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return (unsigned long)&entry->target + entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { long offset = entry->key & ~3L; return (struct static_key *)((unsigned long)&entry->key + offset); } #else static inline unsigned long jump_entry_code(const struct jump_entry *entry) { return entry->code; } static inline unsigned long jump_entry_target(const struct jump_entry *entry) { return entry->target; } static inline struct static_key *jump_entry_key(const struct jump_entry *entry) { return (struct static_key *)((unsigned long)entry->key & ~3UL); } #endif static inline bool jump_entry_is_branch(const struct jump_entry *entry) { return (unsigned long)entry->key & 1UL; } static inline bool jump_entry_is_init(const struct jump_entry *entry) { return (unsigned long)entry->key & 2UL; } static inline void jump_entry_set_init(struct jump_entry *entry) { entry->key |= 2; } #endif #endif #ifndef __ASSEMBLY__ enum jump_label_type { JUMP_LABEL_NOP = 0, JUMP_LABEL_JMP, }; struct module; #ifdef CONFIG_JUMP_LABEL #define JUMP_TYPE_FALSE 0UL #define JUMP_TYPE_TRUE 1UL #define JUMP_TYPE_LINKED 2UL #define JUMP_TYPE_MASK 3UL static __always_inline bool static_key_false(struct static_key *key) { return arch_static_branch(key, false); } static __always_inline bool static_key_true(struct static_key *key) { return !arch_static_branch(key, true); } extern struct jump_entry __start___jump_table[]; extern struct jump_entry __stop___jump_table[]; extern void jump_label_init(void); extern void jump_label_lock(void); extern void jump_label_unlock(void); extern void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type); extern bool arch_jump_label_transform_queue(struct jump_entry *entry, enum jump_label_type type); extern void arch_jump_label_transform_apply(void); extern int jump_label_text_reserved(void *start, void *end); extern void static_key_slow_inc(struct static_key *key); extern void static_key_slow_dec(struct static_key *key); extern void static_key_slow_inc_cpuslocked(struct static_key *key); extern void static_key_slow_dec_cpuslocked(struct static_key *key); extern void jump_label_apply_nops(struct module *mod); extern int static_key_count(struct static_key *key); extern void static_key_enable(struct static_key *key); extern void static_key_disable(struct static_key *key); extern void static_key_enable_cpuslocked(struct static_key *key); extern void static_key_disable_cpuslocked(struct static_key *key); /* * We should be using ATOMIC_INIT() for initializing .enabled, but * the inclusion of atomic.h is problematic for inclusion of jump_label.h * in 'low-level' headers. Thus, we are initializing .enabled with a * raw value, but have added a BUILD_BUG_ON() to catch any issues in * jump_label_init() see: kernel/jump_label.c. */ #define STATIC_KEY_INIT_TRUE \ { .enabled = { 1 }, \ { .entries = (void *)JUMP_TYPE_TRUE } } #define STATIC_KEY_INIT_FALSE \ { .enabled = { 0 }, \ { .entries = (void *)JUMP_TYPE_FALSE } } #else /* !CONFIG_JUMP_LABEL */ #include <linux/atomic.h> #include <linux/bug.h> static inline int static_key_count(struct static_key *key) { return atomic_read(&key->enabled); } static __always_inline void jump_label_init(void) { static_key_initialized = true; } static __always_inline bool static_key_false(struct static_key *key) { if (unlikely(static_key_count(key) > 0)) return true; return false; } static __always_inline bool static_key_true(struct static_key *key) { if (likely(static_key_count(key) > 0)) return true; return false; } static inline void static_key_slow_inc(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_inc(&key->enabled); } static inline void static_key_slow_dec(struct static_key *key) { STATIC_KEY_CHECK_USE(key); atomic_dec(&key->enabled); } #define static_key_slow_inc_cpuslocked(key) static_key_slow_inc(key) #define static_key_slow_dec_cpuslocked(key) static_key_slow_dec(key) static inline int jump_label_text_reserved(void *start, void *end) { return 0; } static inline void jump_label_lock(void) {} static inline void jump_label_unlock(void) {} static inline int jump_label_apply_nops(struct module *mod) { return 0; } static inline void static_key_enable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 0) { WARN_ON_ONCE(atomic_read(&key->enabled) != 1); return; } atomic_set(&key->enabled, 1); } static inline void static_key_disable(struct static_key *key) { STATIC_KEY_CHECK_USE(key); if (atomic_read(&key->enabled) != 1) { WARN_ON_ONCE(atomic_read(&key->enabled) != 0); return; } atomic_set(&key->enabled, 0); } #define static_key_enable_cpuslocked(k) static_key_enable((k)) #define static_key_disable_cpuslocked(k) static_key_disable((k)) #define STATIC_KEY_INIT_TRUE { .enabled = ATOMIC_INIT(1) } #define STATIC_KEY_INIT_FALSE { .enabled = ATOMIC_INIT(0) } #endif /* CONFIG_JUMP_LABEL */ #define STATIC_KEY_INIT STATIC_KEY_INIT_FALSE #define jump_label_enabled static_key_enabled /* -------------------------------------------------------------------------- */ /* * Two type wrappers around static_key, such that we can use compile time * type differentiation to emit the right code. * * All the below code is macros in order to play type games. */ struct static_key_true { struct static_key key; }; struct static_key_false { struct static_key key; }; #define STATIC_KEY_TRUE_INIT (struct static_key_true) { .key = STATIC_KEY_INIT_TRUE, } #define STATIC_KEY_FALSE_INIT (struct static_key_false){ .key = STATIC_KEY_INIT_FALSE, } #define DEFINE_STATIC_KEY_TRUE(name) \ struct static_key_true name = STATIC_KEY_TRUE_INIT #define DEFINE_STATIC_KEY_TRUE_RO(name) \ struct static_key_true name __ro_after_init = STATIC_KEY_TRUE_INIT #define DECLARE_STATIC_KEY_TRUE(name) \ extern struct static_key_true name #define DEFINE_STATIC_KEY_FALSE(name) \ struct static_key_false name = STATIC_KEY_FALSE_INIT #define DEFINE_STATIC_KEY_FALSE_RO(name) \ struct static_key_false name __ro_after_init = STATIC_KEY_FALSE_INIT #define DECLARE_STATIC_KEY_FALSE(name) \ extern struct static_key_false name #define DEFINE_STATIC_KEY_ARRAY_TRUE(name, count) \ struct static_key_true name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_TRUE_INIT, \ } #define DEFINE_STATIC_KEY_ARRAY_FALSE(name, count) \ struct static_key_false name[count] = { \ [0 ... (count) - 1] = STATIC_KEY_FALSE_INIT, \ } extern bool ____wrong_branch_error(void); #define static_key_enabled(x) \ ({ \ if (!__builtin_types_compatible_p(typeof(*x), struct static_key) && \ !__builtin_types_compatible_p(typeof(*x), struct static_key_true) &&\ !__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ ____wrong_branch_error(); \ static_key_count((struct static_key *)x) > 0; \ }) #ifdef CONFIG_JUMP_LABEL /* * Combine the right initial value (type) with the right branch order * to generate the desired result. * * * type\branch| likely (1) | unlikely (0) * -----------+-----------------------+------------------ * | | * true (1) | ... | ... * | NOP | JMP L * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * | | * false (0) | ... | ... * | JMP L | NOP * | <br-stmts> | 1: ... * | L: ... | * | | * | | L: <br-stmts> * | | jmp 1b * | | * -----------+-----------------------+------------------ * * The initial value is encoded in the LSB of static_key::entries, * type: 0 = false, 1 = true. * * The branch type is encoded in the LSB of jump_entry::key, * branch: 0 = unlikely, 1 = likely. * * This gives the following logic table: * * enabled type branch instuction * -----------------------------+----------- * 0 0 0 | NOP * 0 0 1 | JMP * 0 1 0 | NOP * 0 1 1 | JMP * * 1 0 0 | JMP * 1 0 1 | NOP * 1 1 0 | JMP * 1 1 1 | NOP * * Which gives the following functions: * * dynamic: instruction = enabled ^ branch * static: instruction = type ^ branch * * See jump_label_type() / jump_label_init_type(). */ #define static_branch_likely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = !arch_static_branch(&(x)->key, true); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = !arch_static_branch_jump(&(x)->key, true); \ else \ branch = ____wrong_branch_error(); \ likely(branch); \ }) #define static_branch_unlikely(x) \ ({ \ bool branch; \ if (__builtin_types_compatible_p(typeof(*x), struct static_key_true)) \ branch = arch_static_branch_jump(&(x)->key, false); \ else if (__builtin_types_compatible_p(typeof(*x), struct static_key_false)) \ branch = arch_static_branch(&(x)->key, false); \ else \ branch = ____wrong_branch_error(); \ unlikely(branch); \ }) #else /* !CONFIG_JUMP_LABEL */ #define static_branch_likely(x) likely(static_key_enabled(&(x)->key)) #define static_branch_unlikely(x) unlikely(static_key_enabled(&(x)->key)) #endif /* CONFIG_JUMP_LABEL */ /* * Advanced usage; refcount, branch is enabled when: count != 0 */ #define static_branch_inc(x) static_key_slow_inc(&(x)->key) #define static_branch_dec(x) static_key_slow_dec(&(x)->key) #define static_branch_inc_cpuslocked(x) static_key_slow_inc_cpuslocked(&(x)->key) #define static_branch_dec_cpuslocked(x) static_key_slow_dec_cpuslocked(&(x)->key) /* * Normal usage; boolean enable/disable. */ #define static_branch_enable(x) static_key_enable(&(x)->key) #define static_branch_disable(x) static_key_disable(&(x)->key) #define static_branch_enable_cpuslocked(x) static_key_enable_cpuslocked(&(x)->key) #define static_branch_disable_cpuslocked(x) static_key_disable_cpuslocked(&(x)->key) #endif /* __ASSEMBLY__ */ #endif /* _LINUX_JUMP_LABEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/prandom.h * * Include file for the fast pseudo-random 32-bit * generation. */ #ifndef _LINUX_PRANDOM_H #define _LINUX_PRANDOM_H #include <linux/types.h> #include <linux/percpu.h> u32 prandom_u32(void); void prandom_bytes(void *buf, size_t nbytes); void prandom_seed(u32 seed); void prandom_reseed_late(void); DECLARE_PER_CPU(unsigned long, net_rand_noise); #define PRANDOM_ADD_NOISE(a, b, c, d) \ prandom_u32_add_noise((unsigned long)(a), (unsigned long)(b), \ (unsigned long)(c), (unsigned long)(d)) #if BITS_PER_LONG == 64 /* * The core SipHash round function. Each line can be executed in * parallel given enough CPU resources. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \ v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \ v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \ v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \ ) #define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261) #define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573) #elif BITS_PER_LONG == 32 /* * On 32-bit machines, we use HSipHash, a reduced-width version of SipHash. * This is weaker, but 32-bit machines are not used for high-traffic * applications, so there is less output for an attacker to analyze. */ #define PRND_SIPROUND(v0, v1, v2, v3) ( \ v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \ v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \ v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \ v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \ ) #define PRND_K0 0x6c796765 #define PRND_K1 0x74656462 #else #error Unsupported BITS_PER_LONG #endif static inline void prandom_u32_add_noise(unsigned long a, unsigned long b, unsigned long c, unsigned long d) { /* * This is not used cryptographically; it's just * a convenient 4-word hash function. (3 xor, 2 add, 2 rol) */ a ^= raw_cpu_read(net_rand_noise); PRND_SIPROUND(a, b, c, d); raw_cpu_write(net_rand_noise, d); } struct rnd_state { __u32 s1, s2, s3, s4; }; u32 prandom_u32_state(struct rnd_state *state); void prandom_bytes_state(struct rnd_state *state, void *buf, size_t nbytes); void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state); #define prandom_init_once(pcpu_state) \ DO_ONCE(prandom_seed_full_state, (pcpu_state)) /** * prandom_u32_max - returns a pseudo-random number in interval [0, ep_ro) * @ep_ro: right open interval endpoint * * Returns a pseudo-random number that is in interval [0, ep_ro). Note * that the result depends on PRNG being well distributed in [0, ~0U] * u32 space. Here we use maximally equidistributed combined Tausworthe * generator, that is, prandom_u32(). This is useful when requesting a * random index of an array containing ep_ro elements, for example. * * Returns: pseudo-random number in interval [0, ep_ro) */ static inline u32 prandom_u32_max(u32 ep_ro) { return (u32)(((u64) prandom_u32() * ep_ro) >> 32); } /* * Handle minimum values for seeds */ static inline u32 __seed(u32 x, u32 m) { return (x < m) ? x + m : x; } /** * prandom_seed_state - set seed for prandom_u32_state(). * @state: pointer to state structure to receive the seed. * @seed: arbitrary 64-bit value to use as a seed. */ static inline void prandom_seed_state(struct rnd_state *state, u64 seed) { u32 i = ((seed >> 32) ^ (seed << 10) ^ seed) & 0xffffffffUL; state->s1 = __seed(i, 2U); state->s2 = __seed(i, 8U); state->s3 = __seed(i, 16U); state->s4 = __seed(i, 128U); PRANDOM_ADD_NOISE(state, i, 0, 0); } /* Pseudo random number generator from numerical recipes. */ static inline u32 next_pseudo_random32(u32 seed) { return seed * 1664525 + 1013904223; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 /* SPDX-License-Identifier: GPL-2.0-only */ #ifndef _NET_ETHTOOL_NETLINK_H #define _NET_ETHTOOL_NETLINK_H #include <linux/ethtool_netlink.h> #include <linux/netdevice.h> #include <net/genetlink.h> #include <net/sock.h> struct ethnl_req_info; int ethnl_parse_header_dev_get(struct ethnl_req_info *req_info, const struct nlattr *nest, struct net *net, struct netlink_ext_ack *extack, bool require_dev); int ethnl_fill_reply_header(struct sk_buff *skb, struct net_device *dev, u16 attrtype); struct sk_buff *ethnl_reply_init(size_t payload, struct net_device *dev, u8 cmd, u16 hdr_attrtype, struct genl_info *info, void **ehdrp); void *ethnl_dump_put(struct sk_buff *skb, struct netlink_callback *cb, u8 cmd); void *ethnl_bcastmsg_put(struct sk_buff *skb, u8 cmd); int ethnl_multicast(struct sk_buff *skb, struct net_device *dev); /** * ethnl_strz_size() - calculate attribute length for fixed size string * @s: ETH_GSTRING_LEN sized string (may not be null terminated) * * Return: total length of an attribute with null terminated string from @s */ static inline int ethnl_strz_size(const char *s) { return nla_total_size(strnlen(s, ETH_GSTRING_LEN) + 1); } /** * ethnl_put_strz() - put string attribute with fixed size string * @skb: skb with the message * @attrype: attribute type * @s: ETH_GSTRING_LEN sized string (may not be null terminated) * * Puts an attribute with null terminated string from @s into the message. * * Return: 0 on success, negative error code on failure */ static inline int ethnl_put_strz(struct sk_buff *skb, u16 attrtype, const char *s) { unsigned int len = strnlen(s, ETH_GSTRING_LEN); struct nlattr *attr; attr = nla_reserve(skb, attrtype, len + 1); if (!attr) return -EMSGSIZE; memcpy(nla_data(attr), s, len); ((char *)nla_data(attr))[len] = '\0'; return 0; } /** * ethnl_update_u32() - update u32 value from NLA_U32 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Copy the u32 value from NLA_U32 netlink attribute @attr into variable * pointed to by @dst; do nothing if @attr is null. Bool pointed to by @mod * is set to true if this function changed the value of *dst, otherwise it * is left as is. */ static inline void ethnl_update_u32(u32 *dst, const struct nlattr *attr, bool *mod) { u32 val; if (!attr) return; val = nla_get_u32(attr); if (*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_u8() - update u8 value from NLA_U8 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Copy the u8 value from NLA_U8 netlink attribute @attr into variable * pointed to by @dst; do nothing if @attr is null. Bool pointed to by @mod * is set to true if this function changed the value of *dst, otherwise it * is left as is. */ static inline void ethnl_update_u8(u8 *dst, const struct nlattr *attr, bool *mod) { u8 val; if (!attr) return; val = nla_get_u8(attr); if (*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_bool32() - update u32 used as bool from NLA_U8 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Use the u8 value from NLA_U8 netlink attribute @attr to set u32 variable * pointed to by @dst to 0 (if zero) or 1 (if not); do nothing if @attr is * null. Bool pointed to by @mod is set to true if this function changed the * logical value of *dst, otherwise it is left as is. */ static inline void ethnl_update_bool32(u32 *dst, const struct nlattr *attr, bool *mod) { u8 val; if (!attr) return; val = !!nla_get_u8(attr); if (!!*dst == val) return; *dst = val; *mod = true; } /** * ethnl_update_binary() - update binary data from NLA_BINARY atribute * @dst: value to update * @len: destination buffer length * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Use the u8 value from NLA_U8 netlink attribute @attr to rewrite data block * of length @len at @dst by attribute payload; do nothing if @attr is null. * Bool pointed to by @mod is set to true if this function changed the logical * value of *dst, otherwise it is left as is. */ static inline void ethnl_update_binary(void *dst, unsigned int len, const struct nlattr *attr, bool *mod) { if (!attr) return; if (nla_len(attr) < len) len = nla_len(attr); if (!memcmp(dst, nla_data(attr), len)) return; memcpy(dst, nla_data(attr), len); *mod = true; } /** * ethnl_update_bitfield32() - update u32 value from NLA_BITFIELD32 attribute * @dst: value to update * @attr: netlink attribute with new value or null * @mod: pointer to bool for modification tracking * * Update bits in u32 value which are set in attribute's mask to values from * attribute's value. Do nothing if @attr is null or the value wouldn't change; * otherwise, set bool pointed to by @mod to true. */ static inline void ethnl_update_bitfield32(u32 *dst, const struct nlattr *attr, bool *mod) { struct nla_bitfield32 change; u32 newval; if (!attr) return; change = nla_get_bitfield32(attr); newval = (*dst & ~change.selector) | (change.value & change.selector); if (*dst == newval) return; *dst = newval; *mod = true; } /** * ethnl_reply_header_size() - total size of reply header * * This is an upper estimate so that we do not need to hold RTNL lock longer * than necessary (to prevent rename between size estimate and composing the * message). Accounts only for device ifindex and name as those are the only * attributes ethnl_fill_reply_header() puts into the reply header. */ static inline unsigned int ethnl_reply_header_size(void) { return nla_total_size(nla_total_size(sizeof(u32)) + nla_total_size(IFNAMSIZ)); } /* GET request handling */ /* Unified processing of GET requests uses two data structures: request info * and reply data. Request info holds information parsed from client request * and its stays constant through all request processing. Reply data holds data * retrieved from ethtool_ops callbacks or other internal sources which is used * to compose the reply. When processing a dump request, request info is filled * only once (when the request message is parsed) but reply data is filled for * each reply message. * * Both structures consist of part common for all request types (struct * ethnl_req_info and struct ethnl_reply_data defined below) and optional * parts specific for each request type. Common part always starts at offset 0. */ /** * struct ethnl_req_info - base type of request information for GET requests * @dev: network device the request is for (may be null) * @flags: request flags common for all request types * * This is a common base for request specific structures holding data from * parsed userspace request. These always embed struct ethnl_req_info at * zero offset. */ struct ethnl_req_info { struct net_device *dev; u32 flags; }; /** * struct ethnl_reply_data - base type of reply data for GET requests * @dev: device for current reply message; in single shot requests it is * equal to &ethnl_req_info.dev; in dumps it's different for each * reply message * * This is a common base for request specific structures holding data for * kernel reply message. These always embed struct ethnl_reply_data at zero * offset. */ struct ethnl_reply_data { struct net_device *dev; }; static inline int ethnl_ops_begin(struct net_device *dev) { if (dev && dev->reg_state == NETREG_UNREGISTERING) return -ENODEV; if (dev && dev->ethtool_ops->begin) return dev->ethtool_ops->begin(dev); else return 0; } static inline void ethnl_ops_complete(struct net_device *dev) { if (dev && dev->ethtool_ops->complete) dev->ethtool_ops->complete(dev); } /** * struct ethnl_request_ops - unified handling of GET requests * @request_cmd: command id for request (GET) * @reply_cmd: command id for reply (GET_REPLY) * @hdr_attr: attribute type for request header * @req_info_size: size of request info * @reply_data_size: size of reply data * @allow_nodev_do: allow non-dump request with no device identification * @parse_request: * Parse request except common header (struct ethnl_req_info). Common * header is already filled on entry, the rest up to @repdata_offset * is zero initialized. This callback should only modify type specific * request info by parsed attributes from request message. * @prepare_data: * Retrieve and prepare data needed to compose a reply message. Calls to * ethtool_ops handlers are limited to this callback. Common reply data * (struct ethnl_reply_data) is filled on entry, type specific part after * it is zero initialized. This callback should only modify the type * specific part of reply data. Device identification from struct * ethnl_reply_data is to be used as for dump requests, it iterates * through network devices while dev member of struct ethnl_req_info * points to the device from client request. * @reply_size: * Estimate reply message size. Returned value must be sufficient for * message payload without common reply header. The callback may returned * estimate higher than actual message size if exact calculation would * not be worth the saved memory space. * @fill_reply: * Fill reply message payload (except for common header) from reply data. * The callback must not generate more payload than previously called * ->reply_size() estimated. * @cleanup_data: * Optional cleanup called when reply data is no longer needed. Can be * used e.g. to free any additional data structures outside the main * structure which were allocated by ->prepare_data(). When processing * dump requests, ->cleanup() is called for each message. * * Description of variable parts of GET request handling when using the * unified infrastructure. When used, a pointer to an instance of this * structure is to be added to &ethnl_default_requests array and generic * handlers ethnl_default_doit(), ethnl_default_dumpit(), * ethnl_default_start() and ethnl_default_done() used in @ethtool_genl_ops; * ethnl_default_notify() can be used in @ethnl_notify_handlers to send * notifications of the corresponding type. */ struct ethnl_request_ops { u8 request_cmd; u8 reply_cmd; u16 hdr_attr; unsigned int req_info_size; unsigned int reply_data_size; bool allow_nodev_do; int (*parse_request)(struct ethnl_req_info *req_info, struct nlattr **tb, struct netlink_ext_ack *extack); int (*prepare_data)(const struct ethnl_req_info *req_info, struct ethnl_reply_data *reply_data, struct genl_info *info); int (*reply_size)(const struct ethnl_req_info *req_info, const struct ethnl_reply_data *reply_data); int (*fill_reply)(struct sk_buff *skb, const struct ethnl_req_info *req_info, const struct ethnl_reply_data *reply_data); void (*cleanup_data)(struct ethnl_reply_data *reply_data); }; /* request handlers */ extern const struct ethnl_request_ops ethnl_strset_request_ops; extern const struct ethnl_request_ops ethnl_linkinfo_request_ops; extern const struct ethnl_request_ops ethnl_linkmodes_request_ops; extern const struct ethnl_request_ops ethnl_linkstate_request_ops; extern const struct ethnl_request_ops ethnl_debug_request_ops; extern const struct ethnl_request_ops ethnl_wol_request_ops; extern const struct ethnl_request_ops ethnl_features_request_ops; extern const struct ethnl_request_ops ethnl_privflags_request_ops; extern const struct ethnl_request_ops ethnl_rings_request_ops; extern const struct ethnl_request_ops ethnl_channels_request_ops; extern const struct ethnl_request_ops ethnl_coalesce_request_ops; extern const struct ethnl_request_ops ethnl_pause_request_ops; extern const struct ethnl_request_ops ethnl_eee_request_ops; extern const struct ethnl_request_ops ethnl_tsinfo_request_ops; extern const struct nla_policy ethnl_header_policy[ETHTOOL_A_HEADER_FLAGS + 1]; extern const struct nla_policy ethnl_header_policy_stats[ETHTOOL_A_HEADER_FLAGS + 1]; extern const struct nla_policy ethnl_strset_get_policy[ETHTOOL_A_STRSET_COUNTS_ONLY + 1]; extern const struct nla_policy ethnl_linkinfo_get_policy[ETHTOOL_A_LINKINFO_HEADER + 1]; extern const struct nla_policy ethnl_linkinfo_set_policy[ETHTOOL_A_LINKINFO_TP_MDIX_CTRL + 1]; extern const struct nla_policy ethnl_linkmodes_get_policy[ETHTOOL_A_LINKMODES_HEADER + 1]; extern const struct nla_policy ethnl_linkmodes_set_policy[ETHTOOL_A_LINKMODES_MASTER_SLAVE_CFG + 1]; extern const struct nla_policy ethnl_linkstate_get_policy[ETHTOOL_A_LINKSTATE_HEADER + 1]; extern const struct nla_policy ethnl_debug_get_policy[ETHTOOL_A_DEBUG_HEADER + 1]; extern const struct nla_policy ethnl_debug_set_policy[ETHTOOL_A_DEBUG_MSGMASK + 1]; extern const struct nla_policy ethnl_wol_get_policy[ETHTOOL_A_WOL_HEADER + 1]; extern const struct nla_policy ethnl_wol_set_policy[ETHTOOL_A_WOL_SOPASS + 1]; extern const struct nla_policy ethnl_features_get_policy[ETHTOOL_A_FEATURES_HEADER + 1]; extern const struct nla_policy ethnl_features_set_policy[ETHTOOL_A_FEATURES_WANTED + 1]; extern const struct nla_policy ethnl_privflags_get_policy[ETHTOOL_A_PRIVFLAGS_HEADER + 1]; extern const struct nla_policy ethnl_privflags_set_policy[ETHTOOL_A_PRIVFLAGS_FLAGS + 1]; extern const struct nla_policy ethnl_rings_get_policy[ETHTOOL_A_RINGS_HEADER + 1]; extern const struct nla_policy ethnl_rings_set_policy[ETHTOOL_A_RINGS_TX + 1]; extern const struct nla_policy ethnl_channels_get_policy[ETHTOOL_A_CHANNELS_HEADER + 1]; extern const struct nla_policy ethnl_channels_set_policy[ETHTOOL_A_CHANNELS_COMBINED_COUNT + 1]; extern const struct nla_policy ethnl_coalesce_get_policy[ETHTOOL_A_COALESCE_HEADER + 1]; extern const struct nla_policy ethnl_coalesce_set_policy[ETHTOOL_A_COALESCE_RATE_SAMPLE_INTERVAL + 1]; extern const struct nla_policy ethnl_pause_get_policy[ETHTOOL_A_PAUSE_HEADER + 1]; extern const struct nla_policy ethnl_pause_set_policy[ETHTOOL_A_PAUSE_TX + 1]; extern const struct nla_policy ethnl_eee_get_policy[ETHTOOL_A_EEE_HEADER + 1]; extern const struct nla_policy ethnl_eee_set_policy[ETHTOOL_A_EEE_TX_LPI_TIMER + 1]; extern const struct nla_policy ethnl_tsinfo_get_policy[ETHTOOL_A_TSINFO_HEADER + 1]; extern const struct nla_policy ethnl_cable_test_act_policy[ETHTOOL_A_CABLE_TEST_HEADER + 1]; extern const struct nla_policy ethnl_cable_test_tdr_act_policy[ETHTOOL_A_CABLE_TEST_TDR_CFG + 1]; extern const struct nla_policy ethnl_tunnel_info_get_policy[ETHTOOL_A_TUNNEL_INFO_HEADER + 1]; int ethnl_set_linkinfo(struct sk_buff *skb, struct genl_info *info); int ethnl_set_linkmodes(struct sk_buff *skb, struct genl_info *info); int ethnl_set_debug(struct sk_buff *skb, struct genl_info *info); int ethnl_set_wol(struct sk_buff *skb, struct genl_info *info); int ethnl_set_features(struct sk_buff *skb, struct genl_info *info); int ethnl_set_privflags(struct sk_buff *skb, struct genl_info *info); int ethnl_set_rings(struct sk_buff *skb, struct genl_info *info); int ethnl_set_channels(struct sk_buff *skb, struct genl_info *info); int ethnl_set_coalesce(struct sk_buff *skb, struct genl_info *info); int ethnl_set_pause(struct sk_buff *skb, struct genl_info *info); int ethnl_set_eee(struct sk_buff *skb, struct genl_info *info); int ethnl_act_cable_test(struct sk_buff *skb, struct genl_info *info); int ethnl_act_cable_test_tdr(struct sk_buff *skb, struct genl_info *info); int ethnl_tunnel_info_doit(struct sk_buff *skb, struct genl_info *info); int ethnl_tunnel_info_start(struct netlink_callback *cb); int ethnl_tunnel_info_dumpit(struct sk_buff *skb, struct netlink_callback *cb); #endif /* _NET_ETHTOOL_NETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __IPC_NAMESPACE_H__ #define __IPC_NAMESPACE_H__ #include <linux/err.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <linux/notifier.h> #include <linux/nsproxy.h> #include <linux/ns_common.h> #include <linux/refcount.h> #include <linux/rhashtable-types.h> struct user_namespace; struct ipc_ids { int in_use; unsigned short seq; struct rw_semaphore rwsem; struct idr ipcs_idr; int max_idx; int last_idx; /* For wrap around detection */ #ifdef CONFIG_CHECKPOINT_RESTORE int next_id; #endif struct rhashtable key_ht; }; struct ipc_namespace { refcount_t count; struct ipc_ids ids[3]; int sem_ctls[4]; int used_sems; unsigned int msg_ctlmax; unsigned int msg_ctlmnb; unsigned int msg_ctlmni; atomic_t msg_bytes; atomic_t msg_hdrs; size_t shm_ctlmax; size_t shm_ctlall; unsigned long shm_tot; int shm_ctlmni; /* * Defines whether IPC_RMID is forced for _all_ shm segments regardless * of shmctl() */ int shm_rmid_forced; struct notifier_block ipcns_nb; /* The kern_mount of the mqueuefs sb. We take a ref on it */ struct vfsmount *mq_mnt; /* # queues in this ns, protected by mq_lock */ unsigned int mq_queues_count; /* next fields are set through sysctl */ unsigned int mq_queues_max; /* initialized to DFLT_QUEUESMAX */ unsigned int mq_msg_max; /* initialized to DFLT_MSGMAX */ unsigned int mq_msgsize_max; /* initialized to DFLT_MSGSIZEMAX */ unsigned int mq_msg_default; unsigned int mq_msgsize_default; /* user_ns which owns the ipc ns */ struct user_namespace *user_ns; struct ucounts *ucounts; struct llist_node mnt_llist; struct ns_common ns; } __randomize_layout; extern struct ipc_namespace init_ipc_ns; extern spinlock_t mq_lock; #ifdef CONFIG_SYSVIPC extern void shm_destroy_orphaned(struct ipc_namespace *ns); #else /* CONFIG_SYSVIPC */ static inline void shm_destroy_orphaned(struct ipc_namespace *ns) {} #endif /* CONFIG_SYSVIPC */ #ifdef CONFIG_POSIX_MQUEUE extern int mq_init_ns(struct ipc_namespace *ns); /* * POSIX Message Queue default values: * * MIN_*: Lowest value an admin can set the maximum unprivileged limit to * DFLT_*MAX: Default values for the maximum unprivileged limits * DFLT_{MSG,MSGSIZE}: Default values used when the user doesn't supply * an attribute to the open call and the queue must be created * HARD_*: Highest value the maximums can be set to. These are enforced * on CAP_SYS_RESOURCE apps as well making them inviolate (so make them * suitably high) * * POSIX Requirements: * Per app minimum openable message queues - 8. This does not map well * to the fact that we limit the number of queues on a per namespace * basis instead of a per app basis. So, make the default high enough * that no given app should have a hard time opening 8 queues. * Minimum maximum for HARD_MSGMAX - 32767. I bumped this to 65536. * Minimum maximum for HARD_MSGSIZEMAX - POSIX is silent on this. However, * we have run into a situation where running applications in the wild * require this to be at least 5MB, and preferably 10MB, so I set the * value to 16MB in hopes that this user is the worst of the bunch and * the new maximum will handle anyone else. I may have to revisit this * in the future. */ #define DFLT_QUEUESMAX 256 #define MIN_MSGMAX 1 #define DFLT_MSG 10U #define DFLT_MSGMAX 10 #define HARD_MSGMAX 65536 #define MIN_MSGSIZEMAX 128 #define DFLT_MSGSIZE 8192U #define DFLT_MSGSIZEMAX 8192 #define HARD_MSGSIZEMAX (16*1024*1024) #else static inline int mq_init_ns(struct ipc_namespace *ns) { return 0; } #endif #if defined(CONFIG_IPC_NS) extern struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns); static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { if (ns) refcount_inc(&ns->count); return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { if (ns) { if (refcount_inc_not_zero(&ns->count)) return ns; } return NULL; } extern void put_ipc_ns(struct ipc_namespace *ns); #else static inline struct ipc_namespace *copy_ipcs(unsigned long flags, struct user_namespace *user_ns, struct ipc_namespace *ns) { if (flags & CLONE_NEWIPC) return ERR_PTR(-EINVAL); return ns; } static inline struct ipc_namespace *get_ipc_ns(struct ipc_namespace *ns) { return ns; } static inline struct ipc_namespace *get_ipc_ns_not_zero(struct ipc_namespace *ns) { return ns; } static inline void put_ipc_ns(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_POSIX_MQUEUE_SYSCTL struct ctl_table_header; extern struct ctl_table_header *mq_register_sysctl_table(void); #else /* CONFIG_POSIX_MQUEUE_SYSCTL */ static inline struct ctl_table_header *mq_register_sysctl_table(void) { return NULL; } #endif /* CONFIG_POSIX_MQUEUE_SYSCTL */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMU_NOTIFIER_H #define _LINUX_MMU_NOTIFIER_H #include <linux/list.h> #include <linux/spinlock.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/srcu.h> #include <linux/interval_tree.h> struct mmu_notifier_subscriptions; struct mmu_notifier; struct mmu_notifier_range; struct mmu_interval_notifier; /** * enum mmu_notifier_event - reason for the mmu notifier callback * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that * move the range * * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like * madvise() or replacing a page by another one, ...). * * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range * ie using the vma access permission (vm_page_prot) to update the whole range * is enough no need to inspect changes to the CPU page table (mprotect() * syscall) * * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for * pages in the range so to mirror those changes the user must inspect the CPU * page table (from the end callback). * * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same * access flags). User should soft dirty the page in the end callback to make * sure that anyone relying on soft dirtyness catch pages that might be written * through non CPU mappings. * * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal * that the mm refcount is zero and the range is no longer accessible. * * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal * a device driver to possibly ignore the invalidation if the * migrate_pgmap_owner field matches the driver's device private pgmap owner. */ enum mmu_notifier_event { MMU_NOTIFY_UNMAP = 0, MMU_NOTIFY_CLEAR, MMU_NOTIFY_PROTECTION_VMA, MMU_NOTIFY_PROTECTION_PAGE, MMU_NOTIFY_SOFT_DIRTY, MMU_NOTIFY_RELEASE, MMU_NOTIFY_MIGRATE, }; #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) struct mmu_notifier_ops { /* * Called either by mmu_notifier_unregister or when the mm is * being destroyed by exit_mmap, always before all pages are * freed. This can run concurrently with other mmu notifier * methods (the ones invoked outside the mm context) and it * should tear down all secondary mmu mappings and freeze the * secondary mmu. If this method isn't implemented you've to * be sure that nothing could possibly write to the pages * through the secondary mmu by the time the last thread with * tsk->mm == mm exits. * * As side note: the pages freed after ->release returns could * be immediately reallocated by the gart at an alias physical * address with a different cache model, so if ->release isn't * implemented because all _software_ driven memory accesses * through the secondary mmu are terminated by the time the * last thread of this mm quits, you've also to be sure that * speculative _hardware_ operations can't allocate dirty * cachelines in the cpu that could not be snooped and made * coherent with the other read and write operations happening * through the gart alias address, so leading to memory * corruption. */ void (*release)(struct mmu_notifier *subscription, struct mm_struct *mm); /* * clear_flush_young is called after the VM is * test-and-clearing the young/accessed bitflag in the * pte. This way the VM will provide proper aging to the * accesses to the page through the secondary MMUs and not * only to the ones through the Linux pte. * Start-end is necessary in case the secondary MMU is mapping the page * at a smaller granularity than the primary MMU. */ int (*clear_flush_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * clear_young is a lightweight version of clear_flush_young. Like the * latter, it is supposed to test-and-clear the young/accessed bitflag * in the secondary pte, but it may omit flushing the secondary tlb. */ int (*clear_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * test_young is called to check the young/accessed bitflag in * the secondary pte. This is used to know if the page is * frequently used without actually clearing the flag or tearing * down the secondary mapping on the page. */ int (*test_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long address); /* * change_pte is called in cases that pte mapping to page is changed: * for example, when ksm remaps pte to point to a new shared page. */ void (*change_pte)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long address, pte_t pte); /* * invalidate_range_start() and invalidate_range_end() must be * paired and are called only when the mmap_lock and/or the * locks protecting the reverse maps are held. If the subsystem * can't guarantee that no additional references are taken to * the pages in the range, it has to implement the * invalidate_range() notifier to remove any references taken * after invalidate_range_start(). * * Invalidation of multiple concurrent ranges may be * optionally permitted by the driver. Either way the * establishment of sptes is forbidden in the range passed to * invalidate_range_begin/end for the whole duration of the * invalidate_range_begin/end critical section. * * invalidate_range_start() is called when all pages in the * range are still mapped and have at least a refcount of one. * * invalidate_range_end() is called when all pages in the * range have been unmapped and the pages have been freed by * the VM. * * The VM will remove the page table entries and potentially * the page between invalidate_range_start() and * invalidate_range_end(). If the page must not be freed * because of pending I/O or other circumstances then the * invalidate_range_start() callback (or the initial mapping * by the driver) must make sure that the refcount is kept * elevated. * * If the driver increases the refcount when the pages are * initially mapped into an address space then either * invalidate_range_start() or invalidate_range_end() may * decrease the refcount. If the refcount is decreased on * invalidate_range_start() then the VM can free pages as page * table entries are removed. If the refcount is only * droppped on invalidate_range_end() then the driver itself * will drop the last refcount but it must take care to flush * any secondary tlb before doing the final free on the * page. Pages will no longer be referenced by the linux * address space but may still be referenced by sptes until * the last refcount is dropped. * * If blockable argument is set to false then the callback cannot * sleep and has to return with -EAGAIN if sleeping would be required. * 0 should be returned otherwise. Please note that notifiers that can * fail invalidate_range_start are not allowed to implement * invalidate_range_end, as there is no mechanism for informing the * notifier that its start failed. */ int (*invalidate_range_start)(struct mmu_notifier *subscription, const struct mmu_notifier_range *range); void (*invalidate_range_end)(struct mmu_notifier *subscription, const struct mmu_notifier_range *range); /* * invalidate_range() is either called between * invalidate_range_start() and invalidate_range_end() when the * VM has to free pages that where unmapped, but before the * pages are actually freed, or outside of _start()/_end() when * a (remote) TLB is necessary. * * If invalidate_range() is used to manage a non-CPU TLB with * shared page-tables, it not necessary to implement the * invalidate_range_start()/end() notifiers, as * invalidate_range() alread catches the points in time when an * external TLB range needs to be flushed. For more in depth * discussion on this see Documentation/vm/mmu_notifier.rst * * Note that this function might be called with just a sub-range * of what was passed to invalidate_range_start()/end(), if * called between those functions. */ void (*invalidate_range)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * These callbacks are used with the get/put interface to manage the * lifetime of the mmu_notifier memory. alloc_notifier() returns a new * notifier for use with the mm. * * free_notifier() is only called after the mmu_notifier has been * fully put, calls to any ops callback are prevented and no ops * callbacks are currently running. It is called from a SRCU callback * and cannot sleep. */ struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); void (*free_notifier)(struct mmu_notifier *subscription); }; /* * The notifier chains are protected by mmap_lock and/or the reverse map * semaphores. Notifier chains are only changed when all reverse maps and * the mmap_lock locks are taken. * * Therefore notifier chains can only be traversed when either * * 1. mmap_lock is held. * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). * 3. No other concurrent thread can access the list (release) */ struct mmu_notifier { struct hlist_node hlist; const struct mmu_notifier_ops *ops; struct mm_struct *mm; struct rcu_head rcu; unsigned int users; }; /** * struct mmu_interval_notifier_ops * @invalidate: Upon return the caller must stop using any SPTEs within this * range. This function can sleep. Return false only if sleeping * was required but mmu_notifier_range_blockable(range) is false. */ struct mmu_interval_notifier_ops { bool (*invalidate)(struct mmu_interval_notifier *interval_sub, const struct mmu_notifier_range *range, unsigned long cur_seq); }; struct mmu_interval_notifier { struct interval_tree_node interval_tree; const struct mmu_interval_notifier_ops *ops; struct mm_struct *mm; struct hlist_node deferred_item; unsigned long invalidate_seq; }; #ifdef CONFIG_MMU_NOTIFIER #ifdef CONFIG_LOCKDEP extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; #endif struct mmu_notifier_range { struct vm_area_struct *vma; struct mm_struct *mm; unsigned long start; unsigned long end; unsigned flags; enum mmu_notifier_event event; void *migrate_pgmap_owner; }; static inline int mm_has_notifiers(struct mm_struct *mm) { return unlikely(mm->notifier_subscriptions); } struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, struct mm_struct *mm); static inline struct mmu_notifier * mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) { struct mmu_notifier *ret; mmap_write_lock(mm); ret = mmu_notifier_get_locked(ops, mm); mmap_write_unlock(mm); return ret; } void mmu_notifier_put(struct mmu_notifier *subscription); void mmu_notifier_synchronize(void); extern int mmu_notifier_register(struct mmu_notifier *subscription, struct mm_struct *mm); extern int __mmu_notifier_register(struct mmu_notifier *subscription, struct mm_struct *mm); extern void mmu_notifier_unregister(struct mmu_notifier *subscription, struct mm_struct *mm); unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops); int mmu_interval_notifier_insert_locked( struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops); void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); /** * mmu_interval_set_seq - Save the invalidation sequence * @interval_sub - The subscription passed to invalidate * @cur_seq - The cur_seq passed to the invalidate() callback * * This must be called unconditionally from the invalidate callback of a * struct mmu_interval_notifier_ops under the same lock that is used to call * mmu_interval_read_retry(). It updates the sequence number for later use by * mmu_interval_read_retry(). The provided cur_seq will always be odd. * * If the caller does not call mmu_interval_read_begin() or * mmu_interval_read_retry() then this call is not required. */ static inline void mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, unsigned long cur_seq) { WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); } /** * mmu_interval_read_retry - End a read side critical section against a VA range * interval_sub: The subscription * seq: The return of the paired mmu_interval_read_begin() * * This MUST be called under a user provided lock that is also held * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). * * Each call should be paired with a single mmu_interval_read_begin() and * should be used to conclude the read side. * * Returns true if an invalidation collided with this critical section, and * the caller should retry. */ static inline bool mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, unsigned long seq) { return interval_sub->invalidate_seq != seq; } /** * mmu_interval_check_retry - Test if a collision has occurred * interval_sub: The subscription * seq: The return of the matching mmu_interval_read_begin() * * This can be used in the critical section between mmu_interval_read_begin() * and mmu_interval_read_retry(). A return of true indicates an invalidation * has collided with this critical region and a future * mmu_interval_read_retry() will return true. * * False is not reliable and only suggests a collision may not have * occured. It can be called many times and does not have to hold the user * provided lock. * * This call can be used as part of loops and other expensive operations to * expedite a retry. */ static inline bool mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, unsigned long seq) { /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ return READ_ONCE(interval_sub->invalidate_seq) != seq; } extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); extern void __mmu_notifier_release(struct mm_struct *mm); extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end); extern int __mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end); extern int __mmu_notifier_test_young(struct mm_struct *mm, unsigned long address); extern void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte); extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, bool only_end); extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end); extern bool mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); static inline bool mmu_notifier_range_blockable(const struct mmu_notifier_range *range) { return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); } static inline void mmu_notifier_release(struct mm_struct *mm) { if (mm_has_notifiers(mm)) __mmu_notifier_release(mm); } static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) return __mmu_notifier_clear_flush_young(mm, start, end); return 0; } static inline int mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) return __mmu_notifier_clear_young(mm, start, end); return 0; } static inline int mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { if (mm_has_notifiers(mm)) return __mmu_notifier_test_young(mm, address); return 0; } static inline void mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { if (mm_has_notifiers(mm)) __mmu_notifier_change_pte(mm, address, pte); } static inline void mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { might_sleep(); lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); if (mm_has_notifiers(range->mm)) { range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; __mmu_notifier_invalidate_range_start(range); } lock_map_release(&__mmu_notifier_invalidate_range_start_map); } static inline int mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) { int ret = 0; lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); if (mm_has_notifiers(range->mm)) { range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; ret = __mmu_notifier_invalidate_range_start(range); } lock_map_release(&__mmu_notifier_invalidate_range_start_map); return ret; } static inline void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) { if (mmu_notifier_range_blockable(range)) might_sleep(); if (mm_has_notifiers(range->mm)) __mmu_notifier_invalidate_range_end(range, false); } static inline void mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) { if (mm_has_notifiers(range->mm)) __mmu_notifier_invalidate_range_end(range, true); } static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) __mmu_notifier_invalidate_range(mm, start, end); } static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) { mm->notifier_subscriptions = NULL; } static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) { if (mm_has_notifiers(mm)) __mmu_notifier_subscriptions_destroy(mm); } static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, enum mmu_notifier_event event, unsigned flags, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end) { range->vma = vma; range->event = event; range->mm = mm; range->start = start; range->end = end; range->flags = flags; } static inline void mmu_notifier_range_init_migrate( struct mmu_notifier_range *range, unsigned int flags, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end, void *pgmap) { mmu_notifier_range_init(range, MMU_NOTIFY_MIGRATE, flags, vma, mm, start, end); range->migrate_pgmap_owner = pgmap; } #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ ___address, \ ___address + \ PAGE_SIZE); \ __young; \ }) #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ ___address, \ ___address + \ PMD_SIZE); \ __young; \ }) #define ptep_clear_young_notify(__vma, __address, __ptep) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ ___address + PAGE_SIZE); \ __young; \ }) #define pmdp_clear_young_notify(__vma, __address, __pmdp) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ ___address + PMD_SIZE); \ __young; \ }) #define ptep_clear_flush_notify(__vma, __address, __ptep) \ ({ \ unsigned long ___addr = __address & PAGE_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pte_t ___pte; \ \ ___pte = ptep_clear_flush(__vma, __address, __ptep); \ mmu_notifier_invalidate_range(___mm, ___addr, \ ___addr + PAGE_SIZE); \ \ ___pte; \ }) #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ ({ \ unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pmd_t ___pmd; \ \ ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ mmu_notifier_invalidate_range(___mm, ___haddr, \ ___haddr + HPAGE_PMD_SIZE); \ \ ___pmd; \ }) #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ ({ \ unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pud_t ___pud; \ \ ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ mmu_notifier_invalidate_range(___mm, ___haddr, \ ___haddr + HPAGE_PUD_SIZE); \ \ ___pud; \ }) /* * set_pte_at_notify() sets the pte _after_ running the notifier. * This is safe to start by updating the secondary MMUs, because the primary MMU * pte invalidate must have already happened with a ptep_clear_flush() before * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is * required when we change both the protection of the mapping from read-only to * read-write and the pfn (like during copy on write page faults). Otherwise the * old page would remain mapped readonly in the secondary MMUs after the new * page is already writable by some CPU through the primary MMU. */ #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ ({ \ struct mm_struct *___mm = __mm; \ unsigned long ___address = __address; \ pte_t ___pte = __pte; \ \ mmu_notifier_change_pte(___mm, ___address, ___pte); \ set_pte_at(___mm, ___address, __ptep, ___pte); \ }) #else /* CONFIG_MMU_NOTIFIER */ struct mmu_notifier_range { unsigned long start; unsigned long end; }; static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, unsigned long start, unsigned long end) { range->start = start; range->end = end; } #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \ _mmu_notifier_range_init(range, start, end) #define mmu_notifier_range_init_migrate(range, flags, vma, mm, start, end, \ pgmap) \ _mmu_notifier_range_init(range, start, end) static inline bool mmu_notifier_range_blockable(const struct mmu_notifier_range *range) { return true; } static inline int mm_has_notifiers(struct mm_struct *mm) { return 0; } static inline void mmu_notifier_release(struct mm_struct *mm) { } static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { return 0; } static inline int mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { return 0; } static inline void mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { } static inline void mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { } static inline int mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) { return 0; } static inline void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) { } static inline void mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) { } static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { } static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) { } static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) { } #define mmu_notifier_range_update_to_read_only(r) false #define ptep_clear_flush_young_notify ptep_clear_flush_young #define pmdp_clear_flush_young_notify pmdp_clear_flush_young #define ptep_clear_young_notify ptep_test_and_clear_young #define pmdp_clear_young_notify pmdp_test_and_clear_young #define ptep_clear_flush_notify ptep_clear_flush #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush #define pudp_huge_clear_flush_notify pudp_huge_clear_flush #define set_pte_at_notify set_pte_at static inline void mmu_notifier_synchronize(void) { } #endif /* CONFIG_MMU_NOTIFIER */ #endif /* _LINUX_MMU_NOTIFIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SOCK_REUSEPORT_H #define _SOCK_REUSEPORT_H #include <linux/filter.h> #include <linux/skbuff.h> #include <linux/types.h> #include <linux/spinlock.h> #include <net/sock.h> extern spinlock_t reuseport_lock; struct sock_reuseport { struct rcu_head rcu; u16 max_socks; /* length of socks */ u16 num_socks; /* elements in socks */ /* The last synq overflow event timestamp of this * reuse->socks[] group. */ unsigned int synq_overflow_ts; /* ID stays the same even after the size of socks[] grows. */ unsigned int reuseport_id; unsigned int bind_inany:1; unsigned int has_conns:1; struct bpf_prog __rcu *prog; /* optional BPF sock selector */ struct sock *socks[]; /* array of sock pointers */ }; extern int reuseport_alloc(struct sock *sk, bool bind_inany); extern int reuseport_add_sock(struct sock *sk, struct sock *sk2, bool bind_inany); extern void reuseport_detach_sock(struct sock *sk); extern struct sock *reuseport_select_sock(struct sock *sk, u32 hash, struct sk_buff *skb, int hdr_len); extern int reuseport_attach_prog(struct sock *sk, struct bpf_prog *prog); extern int reuseport_detach_prog(struct sock *sk); static inline bool reuseport_has_conns(struct sock *sk, bool set) { struct sock_reuseport *reuse; bool ret = false; rcu_read_lock(); reuse = rcu_dereference(sk->sk_reuseport_cb); if (reuse) { if (set) reuse->has_conns = 1; ret = reuse->has_conns; } rcu_read_unlock(); return ret; } #endif /* _SOCK_REUSEPORT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 // SPDX-License-Identifier: GPL-2.0 /* * device.h - generic, centralized driver model * * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2008-2009 Novell Inc. * * See Documentation/driver-api/driver-model/ for more information. */ #ifndef _DEVICE_H_ #define _DEVICE_H_ #include <linux/dev_printk.h> #include <linux/energy_model.h> #include <linux/ioport.h> #include <linux/kobject.h> #include <linux/klist.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/compiler.h> #include <linux/types.h> #include <linux/mutex.h> #include <linux/pm.h> #include <linux/atomic.h> #include <linux/uidgid.h> #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/device/bus.h> #include <linux/device/class.h> #include <linux/device/driver.h> #include <asm/device.h> struct device; struct device_private; struct device_driver; struct driver_private; struct module; struct class; struct subsys_private; struct device_node; struct fwnode_handle; struct iommu_ops; struct iommu_group; struct dev_pin_info; struct dev_iommu; /** * struct subsys_interface - interfaces to device functions * @name: name of the device function * @subsys: subsytem of the devices to attach to * @node: the list of functions registered at the subsystem * @add_dev: device hookup to device function handler * @remove_dev: device hookup to device function handler * * Simple interfaces attached to a subsystem. Multiple interfaces can * attach to a subsystem and its devices. Unlike drivers, they do not * exclusively claim or control devices. Interfaces usually represent * a specific functionality of a subsystem/class of devices. */ struct subsys_interface { const char *name; struct bus_type *subsys; struct list_head node; int (*add_dev)(struct device *dev, struct subsys_interface *sif); void (*remove_dev)(struct device *dev, struct subsys_interface *sif); }; int subsys_interface_register(struct subsys_interface *sif); void subsys_interface_unregister(struct subsys_interface *sif); int subsys_system_register(struct bus_type *subsys, const struct attribute_group **groups); int subsys_virtual_register(struct bus_type *subsys, const struct attribute_group **groups); /* * The type of device, "struct device" is embedded in. A class * or bus can contain devices of different types * like "partitions" and "disks", "mouse" and "event". * This identifies the device type and carries type-specific * information, equivalent to the kobj_type of a kobject. * If "name" is specified, the uevent will contain it in * the DEVTYPE variable. */ struct device_type { const char *name; const struct attribute_group **groups; int (*uevent)(struct device *dev, struct kobj_uevent_env *env); char *(*devnode)(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid); void (*release)(struct device *dev); const struct dev_pm_ops *pm; }; /* interface for exporting device attributes */ struct device_attribute { struct attribute attr; ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf); ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); }; struct dev_ext_attribute { struct device_attribute attr; void *var; }; ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_int(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_int(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, char *buf); ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); #define DEVICE_ATTR(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store) #define DEVICE_ATTR_PREALLOC(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_PREALLOC(_name, _mode, _show, _store) #define DEVICE_ATTR_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW(_name) #define DEVICE_ATTR_ADMIN_RW(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RW_MODE(_name, 0600) #define DEVICE_ATTR_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO(_name) #define DEVICE_ATTR_ADMIN_RO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_RO_MODE(_name, 0400) #define DEVICE_ATTR_WO(_name) \ struct device_attribute dev_attr_##_name = __ATTR_WO(_name) #define DEVICE_ULONG_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) } #define DEVICE_INT_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) } #define DEVICE_BOOL_ATTR(_name, _mode, _var) \ struct dev_ext_attribute dev_attr_##_name = \ { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) } #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \ struct device_attribute dev_attr_##_name = \ __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) int device_create_file(struct device *device, const struct device_attribute *entry); void device_remove_file(struct device *dev, const struct device_attribute *attr); bool device_remove_file_self(struct device *dev, const struct device_attribute *attr); int __must_check device_create_bin_file(struct device *dev, const struct bin_attribute *attr); void device_remove_bin_file(struct device *dev, const struct bin_attribute *attr); /* device resource management */ typedef void (*dr_release_t)(struct device *dev, void *res); typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data); #ifdef CONFIG_DEBUG_DEVRES void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, const char *name) __malloc; #define devres_alloc(release, size, gfp) \ __devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release) #define devres_alloc_node(release, size, gfp, nid) \ __devres_alloc_node(release, size, gfp, nid, #release) #else void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid) __malloc; static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) { return devres_alloc_node(release, size, gfp, NUMA_NO_NODE); } #endif void devres_for_each_res(struct device *dev, dr_release_t release, dr_match_t match, void *match_data, void (*fn)(struct device *, void *, void *), void *data); void devres_free(void *res); void devres_add(struct device *dev, void *res); void *devres_find(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); void *devres_get(struct device *dev, void *new_res, dr_match_t match, void *match_data); void *devres_remove(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); int devres_destroy(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); int devres_release(struct device *dev, dr_release_t release, dr_match_t match, void *match_data); /* devres group */ void * __must_check devres_open_group(struct device *dev, void *id, gfp_t gfp); void devres_close_group(struct device *dev, void *id); void devres_remove_group(struct device *dev, void *id); int devres_release_group(struct device *dev, void *id); /* managed devm_k.alloc/kfree for device drivers */ void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc; void *devm_krealloc(struct device *dev, void *ptr, size_t size, gfp_t gfp) __must_check; __printf(3, 0) char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap) __malloc; __printf(3, 4) char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc; static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp) { return devm_kmalloc(dev, size, gfp | __GFP_ZERO); } static inline void *devm_kmalloc_array(struct device *dev, size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; return devm_kmalloc(dev, bytes, flags); } static inline void *devm_kcalloc(struct device *dev, size_t n, size_t size, gfp_t flags) { return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); } void devm_kfree(struct device *dev, const void *p); char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc; const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp); void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp); unsigned long devm_get_free_pages(struct device *dev, gfp_t gfp_mask, unsigned int order); void devm_free_pages(struct device *dev, unsigned long addr); void __iomem *devm_ioremap_resource(struct device *dev, const struct resource *res); void __iomem *devm_ioremap_resource_wc(struct device *dev, const struct resource *res); void __iomem *devm_of_iomap(struct device *dev, struct device_node *node, int index, resource_size_t *size); /* allows to add/remove a custom action to devres stack */ int devm_add_action(struct device *dev, void (*action)(void *), void *data); void devm_remove_action(struct device *dev, void (*action)(void *), void *data); void devm_release_action(struct device *dev, void (*action)(void *), void *data); static inline int devm_add_action_or_reset(struct device *dev, void (*action)(void *), void *data) { int ret; ret = devm_add_action(dev, action, data); if (ret) action(data); return ret; } /** * devm_alloc_percpu - Resource-managed alloc_percpu * @dev: Device to allocate per-cpu memory for * @type: Type to allocate per-cpu memory for * * Managed alloc_percpu. Per-cpu memory allocated with this function is * automatically freed on driver detach. * * RETURNS: * Pointer to allocated memory on success, NULL on failure. */ #define devm_alloc_percpu(dev, type) \ ((typeof(type) __percpu *)__devm_alloc_percpu((dev), sizeof(type), \ __alignof__(type))) void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, size_t align); void devm_free_percpu(struct device *dev, void __percpu *pdata); struct device_dma_parameters { /* * a low level driver may set these to teach IOMMU code about * sg limitations. */ unsigned int max_segment_size; unsigned int min_align_mask; unsigned long segment_boundary_mask; }; /** * enum device_link_state - Device link states. * @DL_STATE_NONE: The presence of the drivers is not being tracked. * @DL_STATE_DORMANT: None of the supplier/consumer drivers is present. * @DL_STATE_AVAILABLE: The supplier driver is present, but the consumer is not. * @DL_STATE_CONSUMER_PROBE: The consumer is probing (supplier driver present). * @DL_STATE_ACTIVE: Both the supplier and consumer drivers are present. * @DL_STATE_SUPPLIER_UNBIND: The supplier driver is unbinding. */ enum device_link_state { DL_STATE_NONE = -1, DL_STATE_DORMANT = 0, DL_STATE_AVAILABLE, DL_STATE_CONSUMER_PROBE, DL_STATE_ACTIVE, DL_STATE_SUPPLIER_UNBIND, }; /* * Device link flags. * * STATELESS: The core will not remove this link automatically. * AUTOREMOVE_CONSUMER: Remove the link automatically on consumer driver unbind. * PM_RUNTIME: If set, the runtime PM framework will use this link. * RPM_ACTIVE: Run pm_runtime_get_sync() on the supplier during link creation. * AUTOREMOVE_SUPPLIER: Remove the link automatically on supplier driver unbind. * AUTOPROBE_CONSUMER: Probe consumer driver automatically after supplier binds. * MANAGED: The core tracks presence of supplier/consumer drivers (internal). * SYNC_STATE_ONLY: Link only affects sync_state() behavior. */ #define DL_FLAG_STATELESS BIT(0) #define DL_FLAG_AUTOREMOVE_CONSUMER BIT(1) #define DL_FLAG_PM_RUNTIME BIT(2) #define DL_FLAG_RPM_ACTIVE BIT(3) #define DL_FLAG_AUTOREMOVE_SUPPLIER BIT(4) #define DL_FLAG_AUTOPROBE_CONSUMER BIT(5) #define DL_FLAG_MANAGED BIT(6) #define DL_FLAG_SYNC_STATE_ONLY BIT(7) /** * enum dl_dev_state - Device driver presence tracking information. * @DL_DEV_NO_DRIVER: There is no driver attached to the device. * @DL_DEV_PROBING: A driver is probing. * @DL_DEV_DRIVER_BOUND: The driver has been bound to the device. * @DL_DEV_UNBINDING: The driver is unbinding from the device. */ enum dl_dev_state { DL_DEV_NO_DRIVER = 0, DL_DEV_PROBING, DL_DEV_DRIVER_BOUND, DL_DEV_UNBINDING, }; /** * struct dev_links_info - Device data related to device links. * @suppliers: List of links to supplier devices. * @consumers: List of links to consumer devices. * @needs_suppliers: Hook to global list of devices waiting for suppliers. * @defer_hook: Hook to global list of devices that have deferred sync_state or * deferred fw_devlink. * @need_for_probe: If needs_suppliers is on a list, this indicates if the * suppliers are needed for probe or not. * @status: Driver status information. */ struct dev_links_info { struct list_head suppliers; struct list_head consumers; struct list_head needs_suppliers; struct list_head defer_hook; bool need_for_probe; enum dl_dev_state status; }; /** * struct device - The basic device structure * @parent: The device's "parent" device, the device to which it is attached. * In most cases, a parent device is some sort of bus or host * controller. If parent is NULL, the device, is a top-level device, * which is not usually what you want. * @p: Holds the private data of the driver core portions of the device. * See the comment of the struct device_private for detail. * @kobj: A top-level, abstract class from which other classes are derived. * @init_name: Initial name of the device. * @type: The type of device. * This identifies the device type and carries type-specific * information. * @mutex: Mutex to synchronize calls to its driver. * @lockdep_mutex: An optional debug lock that a subsystem can use as a * peer lock to gain localized lockdep coverage of the device_lock. * @bus: Type of bus device is on. * @driver: Which driver has allocated this * @platform_data: Platform data specific to the device. * Example: For devices on custom boards, as typical of embedded * and SOC based hardware, Linux often uses platform_data to point * to board-specific structures describing devices and how they * are wired. That can include what ports are available, chip * variants, which GPIO pins act in what additional roles, and so * on. This shrinks the "Board Support Packages" (BSPs) and * minimizes board-specific #ifdefs in drivers. * @driver_data: Private pointer for driver specific info. * @links: Links to suppliers and consumers of this device. * @power: For device power management. * See Documentation/driver-api/pm/devices.rst for details. * @pm_domain: Provide callbacks that are executed during system suspend, * hibernation, system resume and during runtime PM transitions * along with subsystem-level and driver-level callbacks. * @em_pd: device's energy model performance domain * @pins: For device pin management. * See Documentation/driver-api/pinctl.rst for details. * @msi_list: Hosts MSI descriptors * @msi_domain: The generic MSI domain this device is using. * @numa_node: NUMA node this device is close to. * @dma_ops: DMA mapping operations for this device. * @dma_mask: Dma mask (if dma'ble device). * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all * hardware supports 64-bit addresses for consistent allocations * such descriptors. * @bus_dma_limit: Limit of an upstream bridge or bus which imposes a smaller * DMA limit than the device itself supports. * @dma_range_map: map for DMA memory ranges relative to that of RAM * @dma_parms: A low level driver may set these to teach IOMMU code about * segment limitations. * @dma_pools: Dma pools (if dma'ble device). * @dma_mem: Internal for coherent mem override. * @cma_area: Contiguous memory area for dma allocations * @archdata: For arch-specific additions. * @of_node: Associated device tree node. * @fwnode: Associated device node supplied by platform firmware. * @devt: For creating the sysfs "dev". * @id: device instance * @devres_lock: Spinlock to protect the resource of the device. * @devres_head: The resources list of the device. * @knode_class: The node used to add the device to the class list. * @class: The class of the device. * @groups: Optional attribute groups. * @release: Callback to free the device after all references have * gone away. This should be set by the allocator of the * device (i.e. the bus driver that discovered the device). * @iommu_group: IOMMU group the device belongs to. * @iommu: Per device generic IOMMU runtime data * * @offline_disabled: If set, the device is permanently online. * @offline: Set after successful invocation of bus type's .offline(). * @of_node_reused: Set if the device-tree node is shared with an ancestor * device. * @state_synced: The hardware state of this device has been synced to match * the software state of this device by calling the driver/bus * sync_state() callback. * @dma_coherent: this particular device is dma coherent, even if the * architecture supports non-coherent devices. * @dma_ops_bypass: If set to %true then the dma_ops are bypassed for the * streaming DMA operations (->map_* / ->unmap_* / ->sync_*), * and optionall (if the coherent mask is large enough) also * for dma allocations. This flag is managed by the dma ops * instance from ->dma_supported. * * At the lowest level, every device in a Linux system is represented by an * instance of struct device. The device structure contains the information * that the device model core needs to model the system. Most subsystems, * however, track additional information about the devices they host. As a * result, it is rare for devices to be represented by bare device structures; * instead, that structure, like kobject structures, is usually embedded within * a higher-level representation of the device. */ struct device { struct kobject kobj; struct device *parent; struct device_private *p; const char *init_name; /* initial name of the device */ const struct device_type *type; struct bus_type *bus; /* type of bus device is on */ struct device_driver *driver; /* which driver has allocated this device */ void *platform_data; /* Platform specific data, device core doesn't touch it */ void *driver_data; /* Driver data, set and get with dev_set_drvdata/dev_get_drvdata */ #ifdef CONFIG_PROVE_LOCKING struct mutex lockdep_mutex; #endif struct mutex mutex; /* mutex to synchronize calls to * its driver. */ struct dev_links_info links; struct dev_pm_info power; struct dev_pm_domain *pm_domain; #ifdef CONFIG_ENERGY_MODEL struct em_perf_domain *em_pd; #endif #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN struct irq_domain *msi_domain; #endif #ifdef CONFIG_PINCTRL struct dev_pin_info *pins; #endif #ifdef CONFIG_GENERIC_MSI_IRQ raw_spinlock_t msi_lock; struct list_head msi_list; #endif #ifdef CONFIG_DMA_OPS const struct dma_map_ops *dma_ops; #endif u64 *dma_mask; /* dma mask (if dma'able device) */ u64 coherent_dma_mask;/* Like dma_mask, but for alloc_coherent mappings as not all hardware supports 64 bit addresses for consistent allocations such descriptors. */ u64 bus_dma_limit; /* upstream dma constraint */ const struct bus_dma_region *dma_range_map; struct device_dma_parameters *dma_parms; struct list_head dma_pools; /* dma pools (if dma'ble) */ #ifdef CONFIG_DMA_DECLARE_COHERENT struct dma_coherent_mem *dma_mem; /* internal for coherent mem override */ #endif #ifdef CONFIG_DMA_CMA struct cma *cma_area; /* contiguous memory area for dma allocations */ #endif /* arch specific additions */ struct dev_archdata archdata; struct device_node *of_node; /* associated device tree node */ struct fwnode_handle *fwnode; /* firmware device node */ #ifdef CONFIG_NUMA int numa_node; /* NUMA node this device is close to */ #endif dev_t devt; /* dev_t, creates the sysfs "dev" */ u32 id; /* device instance */ spinlock_t devres_lock; struct list_head devres_head; struct class *class; const struct attribute_group **groups; /* optional groups */ void (*release)(struct device *dev); struct iommu_group *iommu_group; struct dev_iommu *iommu; bool offline_disabled:1; bool offline:1; bool of_node_reused:1; bool state_synced:1; #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) bool dma_coherent:1; #endif #ifdef CONFIG_DMA_OPS_BYPASS bool dma_ops_bypass : 1; #endif }; /** * struct device_link - Device link representation. * @supplier: The device on the supplier end of the link. * @s_node: Hook to the supplier device's list of links to consumers. * @consumer: The device on the consumer end of the link. * @c_node: Hook to the consumer device's list of links to suppliers. * @link_dev: device used to expose link details in sysfs * @status: The state of the link (with respect to the presence of drivers). * @flags: Link flags. * @rpm_active: Whether or not the consumer device is runtime-PM-active. * @kref: Count repeated addition of the same link. * @rm_work: Work structure used for removing the link. * @supplier_preactivated: Supplier has been made active before consumer probe. */ struct device_link { struct device *supplier; struct list_head s_node; struct device *consumer; struct list_head c_node; struct device link_dev; enum device_link_state status; u32 flags; refcount_t rpm_active; struct kref kref; struct work_struct rm_work; bool supplier_preactivated; /* Owned by consumer probe. */ }; static inline struct device *kobj_to_dev(struct kobject *kobj) { return container_of(kobj, struct device, kobj); } /** * device_iommu_mapped - Returns true when the device DMA is translated * by an IOMMU * @dev: Device to perform the check on */ static inline bool device_iommu_mapped(struct device *dev) { return (dev->iommu_group != NULL); } /* Get the wakeup routines, which depend on struct device */ #include <linux/pm_wakeup.h> static inline const char *dev_name(const struct device *dev) { /* Use the init name until the kobject becomes available */ if (dev->init_name) return dev->init_name; return kobject_name(&dev->kobj); } /** * dev_bus_name - Return a device's bus/class name, if at all possible * @dev: struct device to get the bus/class name of * * Will return the name of the bus/class the device is attached to. If it is * not attached to a bus/class, an empty string will be returned. */ static inline const char *dev_bus_name(const struct device *dev) { return dev->bus ? dev->bus->name : (dev->class ? dev->class->name : ""); } __printf(2, 3) int dev_set_name(struct device *dev, const char *name, ...); #ifdef CONFIG_NUMA static inline int dev_to_node(struct device *dev) { return dev->numa_node; } static inline void set_dev_node(struct device *dev, int node) { dev->numa_node = node; } #else static inline int dev_to_node(struct device *dev) { return NUMA_NO_NODE; } static inline void set_dev_node(struct device *dev, int node) { } #endif static inline struct irq_domain *dev_get_msi_domain(const struct device *dev) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN return dev->msi_domain; #else return NULL; #endif } static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d) { #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN dev->msi_domain = d; #endif } static inline void *dev_get_drvdata(const struct device *dev) { return dev->driver_data; } static inline void dev_set_drvdata(struct device *dev, void *data) { dev->driver_data = data; } static inline struct pm_subsys_data *dev_to_psd(struct device *dev) { return dev ? dev->power.subsys_data : NULL; } static inline unsigned int dev_get_uevent_suppress(const struct device *dev) { return dev->kobj.uevent_suppress; } static inline void dev_set_uevent_suppress(struct device *dev, int val) { dev->kobj.uevent_suppress = val; } static inline int device_is_registered(struct device *dev) { return dev->kobj.state_in_sysfs; } static inline void device_enable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = true; } static inline void device_disable_async_suspend(struct device *dev) { if (!dev->power.is_prepared) dev->power.async_suspend = false; } static inline bool device_async_suspend_enabled(struct device *dev) { return !!dev->power.async_suspend; } static inline bool device_pm_not_required(struct device *dev) { return dev->power.no_pm; } static inline void device_set_pm_not_required(struct device *dev) { dev->power.no_pm = true; } static inline void dev_pm_syscore_device(struct device *dev, bool val) { #ifdef CONFIG_PM_SLEEP dev->power.syscore = val; #endif } static inline void dev_pm_set_driver_flags(struct device *dev, u32 flags) { dev->power.driver_flags = flags; } static inline bool dev_pm_test_driver_flags(struct device *dev, u32 flags) { return !!(dev->power.driver_flags & flags); } static inline void device_lock(struct device *dev) { mutex_lock(&dev->mutex); } static inline int device_lock_interruptible(struct device *dev) { return mutex_lock_interruptible(&dev->mutex); } static inline int device_trylock(struct device *dev) { return mutex_trylock(&dev->mutex); } static inline void device_unlock(struct device *dev) { mutex_unlock(&dev->mutex); } static inline void device_lock_assert(struct device *dev) { lockdep_assert_held(&dev->mutex); } static inline struct device_node *dev_of_node(struct device *dev) { if (!IS_ENABLED(CONFIG_OF) || !dev) return NULL; return dev->of_node; } static inline bool dev_has_sync_state(struct device *dev) { if (!dev) return false; if (dev->driver && dev->driver->sync_state) return true; if (dev->bus && dev->bus->sync_state) return true; return false; } /* * High level routines for use by the bus drivers */ int __must_check device_register(struct device *dev); void device_unregister(struct device *dev); void device_initialize(struct device *dev); int __must_check device_add(struct device *dev); void device_del(struct device *dev); int device_for_each_child(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); int device_for_each_child_reverse(struct device *dev, void *data, int (*fn)(struct device *dev, void *data)); struct device *device_find_child(struct device *dev, void *data, int (*match)(struct device *dev, void *data)); struct device *device_find_child_by_name(struct device *parent, const char *name); int device_rename(struct device *dev, const char *new_name); int device_move(struct device *dev, struct device *new_parent, enum dpm_order dpm_order); int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); const char *device_get_devnode(struct device *dev, umode_t *mode, kuid_t *uid, kgid_t *gid, const char **tmp); int device_is_dependent(struct device *dev, void *target); static inline bool device_supports_offline(struct device *dev) { return dev->bus && dev->bus->offline && dev->bus->online; } void lock_device_hotplug(void); void unlock_device_hotplug(void); int lock_device_hotplug_sysfs(void); int device_offline(struct device *dev); int device_online(struct device *dev); void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode); void device_set_of_node_from_dev(struct device *dev, const struct device *dev2); static inline int dev_num_vf(struct device *dev) { if (dev->bus && dev->bus->num_vf) return dev->bus->num_vf(dev); return 0; } /* * Root device objects for grouping under /sys/devices */ struct device *__root_device_register(const char *name, struct module *owner); /* This is a macro to avoid include problems with THIS_MODULE */ #define root_device_register(name) \ __root_device_register(name, THIS_MODULE) void root_device_unregister(struct device *root); static inline void *dev_get_platdata(const struct device *dev) { return dev->platform_data; } /* * Manual binding of a device to driver. See drivers/base/bus.c * for information on use. */ int __must_check device_bind_driver(struct device *dev); void device_release_driver(struct device *dev); int __must_check device_attach(struct device *dev); int __must_check driver_attach(struct device_driver *drv); void device_initial_probe(struct device *dev); int __must_check device_reprobe(struct device *dev); bool device_is_bound(struct device *dev); /* * Easy functions for dynamically creating devices on the fly */ __printf(5, 6) struct device * device_create(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const char *fmt, ...); __printf(6, 7) struct device * device_create_with_groups(struct class *cls, struct device *parent, dev_t devt, void *drvdata, const struct attribute_group **groups, const char *fmt, ...); void device_destroy(struct class *cls, dev_t devt); int __must_check device_add_groups(struct device *dev, const struct attribute_group **groups); void device_remove_groups(struct device *dev, const struct attribute_group **groups); static inline int __must_check device_add_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_add_groups(dev, groups); } static inline void device_remove_group(struct device *dev, const struct attribute_group *grp) { const struct attribute_group *groups[] = { grp, NULL }; return device_remove_groups(dev, groups); } int __must_check devm_device_add_groups(struct device *dev, const struct attribute_group **groups); void devm_device_remove_groups(struct device *dev, const struct attribute_group **groups); int __must_check devm_device_add_group(struct device *dev, const struct attribute_group *grp); void devm_device_remove_group(struct device *dev, const struct attribute_group *grp); /* * Platform "fixup" functions - allow the platform to have their say * about devices and actions that the general device layer doesn't * know about. */ /* Notify platform of device discovery */ extern int (*platform_notify)(struct device *dev); extern int (*platform_notify_remove)(struct device *dev); /* * get_device - atomically increment the reference count for the device. * */ struct device *get_device(struct device *dev); void put_device(struct device *dev); bool kill_device(struct device *dev); #ifdef CONFIG_DEVTMPFS int devtmpfs_mount(void); #else static inline int devtmpfs_mount(void) { return 0; } #endif /* drivers/base/power/shutdown.c */ void device_shutdown(void); /* debugging and troubleshooting/diagnostic helpers. */ const char *dev_driver_string(const struct device *dev); /* Device links interface. */ struct device_link *device_link_add(struct device *consumer, struct device *supplier, u32 flags); void device_link_del(struct device_link *link); void device_link_remove(void *consumer, struct device *supplier); void device_links_supplier_sync_state_pause(void); void device_links_supplier_sync_state_resume(void); extern __printf(3, 4) int dev_err_probe(const struct device *dev, int err, const char *fmt, ...); /* Create alias, so I can be autoloaded. */ #define MODULE_ALIAS_CHARDEV(major,minor) \ MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_CHARDEV_MAJOR(major) \ MODULE_ALIAS("char-major-" __stringify(major) "-*") #ifdef CONFIG_SYSFS_DEPRECATED extern long sysfs_deprecated; #else #define sysfs_deprecated 0 #endif #endif /* _DEVICE_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Berkeley style UIO structures - Alan Cox 1994. */ #ifndef __LINUX_UIO_H #define __LINUX_UIO_H #include <linux/kernel.h> #include <linux/thread_info.h> #include <uapi/linux/uio.h> struct page; struct pipe_inode_info; struct kvec { void *iov_base; /* and that should *never* hold a userland pointer */ size_t iov_len; }; enum iter_type { /* iter types */ ITER_IOVEC = 4, ITER_KVEC = 8, ITER_BVEC = 16, ITER_PIPE = 32, ITER_DISCARD = 64, }; struct iov_iter { /* * Bit 0 is the read/write bit, set if we're writing. * Bit 1 is the BVEC_FLAG_NO_REF bit, set if type is a bvec and * the caller isn't expecting to drop a page reference when done. */ unsigned int type; size_t iov_offset; size_t count; union { const struct iovec *iov; const struct kvec *kvec; const struct bio_vec *bvec; struct pipe_inode_info *pipe; }; union { unsigned long nr_segs; struct { unsigned int head; unsigned int start_head; }; }; }; static inline enum iter_type iov_iter_type(const struct iov_iter *i) { return i->type & ~(READ | WRITE); } static inline bool iter_is_iovec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_IOVEC; } static inline bool iov_iter_is_kvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_KVEC; } static inline bool iov_iter_is_bvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_BVEC; } static inline bool iov_iter_is_pipe(const struct iov_iter *i) { return iov_iter_type(i) == ITER_PIPE; } static inline bool iov_iter_is_discard(const struct iov_iter *i) { return iov_iter_type(i) == ITER_DISCARD; } static inline unsigned char iov_iter_rw(const struct iov_iter *i) { return i->type & (READ | WRITE); } /* * Total number of bytes covered by an iovec. * * NOTE that it is not safe to use this function until all the iovec's * segment lengths have been validated. Because the individual lengths can * overflow a size_t when added together. */ static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs) { unsigned long seg; size_t ret = 0; for (seg = 0; seg < nr_segs; seg++) ret += iov[seg].iov_len; return ret; } static inline struct iovec iov_iter_iovec(const struct iov_iter *iter) { return (struct iovec) { .iov_base = iter->iov->iov_base + iter->iov_offset, .iov_len = min(iter->count, iter->iov->iov_len - iter->iov_offset), }; } size_t iov_iter_copy_from_user_atomic(struct page *page, struct iov_iter *i, unsigned long offset, size_t bytes); void iov_iter_advance(struct iov_iter *i, size_t bytes); void iov_iter_revert(struct iov_iter *i, size_t bytes); int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes); size_t iov_iter_single_seg_count(const struct iov_iter *i); size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i); bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i); bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i); static __always_inline __must_check size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, true))) return 0; else return _copy_to_iter(addr, bytes, i); } static __always_inline __must_check size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return 0; else return _copy_from_iter(addr, bytes, i); } static __always_inline __must_check bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return false; else return _copy_from_iter_full(addr, bytes, i); } static __always_inline __must_check size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return 0; else return _copy_from_iter_nocache(addr, bytes, i); } static __always_inline __must_check bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return false; else return _copy_from_iter_full_nocache(addr, bytes, i); } #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /* * Note, users like pmem that depend on the stricter semantics of * copy_from_iter_flushcache() than copy_from_iter_nocache() must check for * IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the * destination is flushed from the cache on return. */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_from_iter_flushcache _copy_from_iter_nocache #endif #ifdef CONFIG_ARCH_HAS_COPY_MC size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i); #else #define _copy_mc_to_iter _copy_to_iter #endif static __always_inline __must_check size_t copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, false))) return 0; else return _copy_from_iter_flushcache(addr, bytes, i); } static __always_inline __must_check size_t copy_mc_to_iter(void *addr, size_t bytes, struct iov_iter *i) { if (unlikely(!check_copy_size(addr, bytes, true))) return 0; else return _copy_mc_to_iter(addr, bytes, i); } size_t iov_iter_zero(size_t bytes, struct iov_iter *); unsigned long iov_iter_alignment(const struct iov_iter *i); unsigned long iov_iter_gap_alignment(const struct iov_iter *i); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count); void iov_iter_pipe(struct iov_iter *i, unsigned int direction, struct pipe_inode_info *pipe, size_t count); void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count); ssize_t iov_iter_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start); ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start); int iov_iter_npages(const struct iov_iter *i, int maxpages); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags); static inline size_t iov_iter_count(const struct iov_iter *i) { return i->count; } /* * Cap the iov_iter by given limit; note that the second argument is * *not* the new size - it's upper limit for such. Passing it a value * greater than the amount of data in iov_iter is fine - it'll just do * nothing in that case. */ static inline void iov_iter_truncate(struct iov_iter *i, u64 count) { /* * count doesn't have to fit in size_t - comparison extends both * operands to u64 here and any value that would be truncated by * conversion in assignement is by definition greater than all * values of size_t, including old i->count. */ if (i->count > count) i->count = count; } /* * reexpand a previously truncated iterator; count must be no more than how much * we had shrunk it. */ static inline void iov_iter_reexpand(struct iov_iter *i, size_t count) { i->count = count; } struct csum_state { __wsum csum; size_t off; }; size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csstate, struct iov_iter *i); size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i); bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i); size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, struct iov_iter *i); struct iovec *iovec_from_user(const struct iovec __user *uvector, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_iov, bool compat); ssize_t import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i); ssize_t __import_iovec(int type, const struct iovec __user *uvec, unsigned nr_segs, unsigned fast_segs, struct iovec **iovp, struct iov_iter *i, bool compat); int import_single_range(int type, void __user *buf, size_t len, struct iovec *iov, struct iov_iter *i); int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, int (*f)(struct kvec *vec, void *context), void *context); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* * 25-Jul-1998 Major changes to allow for ip chain table * * 3-Jan-2000 Named tables to allow packet selection for different uses. */ /* * Format of an IP firewall descriptor * * src, dst, src_mask, dst_mask are always stored in network byte order. * flags are stored in host byte order (of course). * Port numbers are stored in HOST byte order. */ #ifndef _UAPI_IPTABLES_H #define _UAPI_IPTABLES_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/if.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter/x_tables.h> #ifndef __KERNEL__ #define IPT_FUNCTION_MAXNAMELEN XT_FUNCTION_MAXNAMELEN #define IPT_TABLE_MAXNAMELEN XT_TABLE_MAXNAMELEN #define ipt_match xt_match #define ipt_target xt_target #define ipt_table xt_table #define ipt_get_revision xt_get_revision #define ipt_entry_match xt_entry_match #define ipt_entry_target xt_entry_target #define ipt_standard_target xt_standard_target #define ipt_error_target xt_error_target #define ipt_counters xt_counters #define IPT_CONTINUE XT_CONTINUE #define IPT_RETURN XT_RETURN /* This group is older than old (iptables < v1.4.0-rc1~89) */ #include <linux/netfilter/xt_tcpudp.h> #define ipt_udp xt_udp #define ipt_tcp xt_tcp #define IPT_TCP_INV_SRCPT XT_TCP_INV_SRCPT #define IPT_TCP_INV_DSTPT XT_TCP_INV_DSTPT #define IPT_TCP_INV_FLAGS XT_TCP_INV_FLAGS #define IPT_TCP_INV_OPTION XT_TCP_INV_OPTION #define IPT_TCP_INV_MASK XT_TCP_INV_MASK #define IPT_UDP_INV_SRCPT XT_UDP_INV_SRCPT #define IPT_UDP_INV_DSTPT XT_UDP_INV_DSTPT #define IPT_UDP_INV_MASK XT_UDP_INV_MASK /* The argument to IPT_SO_ADD_COUNTERS. */ #define ipt_counters_info xt_counters_info /* Standard return verdict, or do jump. */ #define IPT_STANDARD_TARGET XT_STANDARD_TARGET /* Error verdict. */ #define IPT_ERROR_TARGET XT_ERROR_TARGET /* fn returns 0 to continue iteration */ #define IPT_MATCH_ITERATE(e, fn, args...) \ XT_MATCH_ITERATE(struct ipt_entry, e, fn, ## args) /* fn returns 0 to continue iteration */ #define IPT_ENTRY_ITERATE(entries, size, fn, args...) \ XT_ENTRY_ITERATE(struct ipt_entry, entries, size, fn, ## args) #endif /* Yes, Virginia, you have to zero the padding. */ struct ipt_ip { /* Source and destination IP addr */ struct in_addr src, dst; /* Mask for src and dest IP addr */ struct in_addr smsk, dmsk; char iniface[IFNAMSIZ], outiface[IFNAMSIZ]; unsigned char iniface_mask[IFNAMSIZ], outiface_mask[IFNAMSIZ]; /* Protocol, 0 = ANY */ __u16 proto; /* Flags word */ __u8 flags; /* Inverse flags */ __u8 invflags; }; /* Values for "flag" field in struct ipt_ip (general ip structure). */ #define IPT_F_FRAG 0x01 /* Set if rule is a fragment rule */ #define IPT_F_GOTO 0x02 /* Set if jump is a goto */ #define IPT_F_MASK 0x03 /* All possible flag bits mask. */ /* Values for "inv" field in struct ipt_ip. */ #define IPT_INV_VIA_IN 0x01 /* Invert the sense of IN IFACE. */ #define IPT_INV_VIA_OUT 0x02 /* Invert the sense of OUT IFACE */ #define IPT_INV_TOS 0x04 /* Invert the sense of TOS. */ #define IPT_INV_SRCIP 0x08 /* Invert the sense of SRC IP. */ #define IPT_INV_DSTIP 0x10 /* Invert the sense of DST OP. */ #define IPT_INV_FRAG 0x20 /* Invert the sense of FRAG. */ #define IPT_INV_PROTO XT_INV_PROTO #define IPT_INV_MASK 0x7F /* All possible flag bits mask. */ /* This structure defines each of the firewall rules. Consists of 3 parts which are 1) general IP header stuff 2) match specific stuff 3) the target to perform if the rule matches */ struct ipt_entry { struct ipt_ip ip; /* Mark with fields that we care about. */ unsigned int nfcache; /* Size of ipt_entry + matches */ __u16 target_offset; /* Size of ipt_entry + matches + target */ __u16 next_offset; /* Back pointer */ unsigned int comefrom; /* Packet and byte counters. */ struct xt_counters counters; /* The matches (if any), then the target. */ unsigned char elems[0]; }; /* * New IP firewall options for [gs]etsockopt at the RAW IP level. * Unlike BSD Linux inherits IP options so you don't have to use a raw * socket for this. Instead we check rights in the calls. * * ATTENTION: check linux/in.h before adding new number here. */ #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_SET_ADD_COUNTERS (IPT_BASE_CTL + 1) #define IPT_SO_SET_MAX IPT_SO_SET_ADD_COUNTERS #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) #define IPT_SO_GET_REVISION_MATCH (IPT_BASE_CTL + 2) #define IPT_SO_GET_REVISION_TARGET (IPT_BASE_CTL + 3) #define IPT_SO_GET_MAX IPT_SO_GET_REVISION_TARGET /* ICMP matching stuff */ struct ipt_icmp { __u8 type; /* type to match */ __u8 code[2]; /* range of code */ __u8 invflags; /* Inverse flags */ }; /* Values for "inv" field for struct ipt_icmp. */ #define IPT_ICMP_INV 0x01 /* Invert the sense of type/code test */ /* The argument to IPT_SO_GET_INFO */ struct ipt_getinfo { /* Which table: caller fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* Kernel fills these in. */ /* Which hook entry points are valid: bitmask */ unsigned int valid_hooks; /* Hook entry points: one per netfilter hook. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Number of entries */ unsigned int num_entries; /* Size of entries. */ unsigned int size; }; /* The argument to IPT_SO_SET_REPLACE. */ struct ipt_replace { /* Which table. */ char name[XT_TABLE_MAXNAMELEN]; /* Which hook entry points are valid: bitmask. You can't change this. */ unsigned int valid_hooks; /* Number of entries */ unsigned int num_entries; /* Total size of new entries */ unsigned int size; /* Hook entry points. */ unsigned int hook_entry[NF_INET_NUMHOOKS]; /* Underflow points. */ unsigned int underflow[NF_INET_NUMHOOKS]; /* Information about old entries: */ /* Number of counters (must be equal to current number of entries). */ unsigned int num_counters; /* The old entries' counters. */ struct xt_counters __user *counters; /* The entries (hang off end: not really an array). */ struct ipt_entry entries[0]; }; /* The argument to IPT_SO_GET_ENTRIES. */ struct ipt_get_entries { /* Which table: user fills this in. */ char name[XT_TABLE_MAXNAMELEN]; /* User fills this in: total entry size. */ unsigned int size; /* The entries. */ struct ipt_entry entrytable[0]; }; /* Helper functions */ static __inline__ struct xt_entry_target * ipt_get_target(struct ipt_entry *e) { return (struct xt_entry_target *)((char *)e + e->target_offset); } /* * Main firewall chains definitions and global var's definitions. */ #endif /* _UAPI_IPTABLES_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_VMACACHE_H #define __LINUX_VMACACHE_H #include <linux/sched.h> #include <linux/mm.h> static inline void vmacache_flush(struct task_struct *tsk) { memset(tsk->vmacache.vmas, 0, sizeof(tsk->vmacache.vmas)); } extern void vmacache_update(unsigned long addr, struct vm_area_struct *newvma); extern struct vm_area_struct *vmacache_find(struct mm_struct *mm, unsigned long addr); #ifndef CONFIG_MMU extern struct vm_area_struct *vmacache_find_exact(struct mm_struct *mm, unsigned long start, unsigned long end); #endif static inline void vmacache_invalidate(struct mm_struct *mm) { mm->vmacache_seqnum++; } #endif /* __LINUX_VMACACHE_H */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ /* * Prevent the compiler from merging or refetching reads or writes. The * compiler is also forbidden from reordering successive instances of * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some * particular ordering. One way to make the compiler aware of ordering is to * put the two invocations of READ_ONCE or WRITE_ONCE in different C * statements. * * These two macros will also work on aggregate data types like structs or * unions. * * Their two major use cases are: (1) Mediating communication between * process-level code and irq/NMI handlers, all running on the same CPU, * and (2) Ensuring that the compiler does not fold, spindle, or otherwise * mutilate accesses that either do not require ordering or that interact * with an explicit memory barrier or atomic instruction that provides the * required ordering. */ #ifndef __ASM_GENERIC_RWONCE_H #define __ASM_GENERIC_RWONCE_H #ifndef __ASSEMBLY__ #include <linux/compiler_types.h> #include <linux/kasan-checks.h> #include <linux/kcsan-checks.h> /* * Yes, this permits 64-bit accesses on 32-bit architectures. These will * actually be atomic in some cases (namely Armv7 + LPAE), but for others we * rely on the access being split into 2x32-bit accesses for a 32-bit quantity * (e.g. a virtual address) and a strong prevailing wind. */ #define compiletime_assert_rwonce_type(t) \ compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \ "Unsupported access size for {READ,WRITE}_ONCE().") /* * Use __READ_ONCE() instead of READ_ONCE() if you do not require any * atomicity. Note that this may result in tears! */ #ifndef __READ_ONCE #define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x)) #endif #define READ_ONCE(x) \ ({ \ compiletime_assert_rwonce_type(x); \ __READ_ONCE(x); \ }) #define __WRITE_ONCE(x, val) \ do { \ *(volatile typeof(x) *)&(x) = (val); \ } while (0) #define WRITE_ONCE(x, val) \ do { \ compiletime_assert_rwonce_type(x); \ __WRITE_ONCE(x, val); \ } while (0) static __no_sanitize_or_inline unsigned long __read_once_word_nocheck(const void *addr) { return __READ_ONCE(*(unsigned long *)addr); } /* * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a * word from memory atomically but without telling KASAN/KCSAN. This is * usually used by unwinding code when walking the stack of a running process. */ #define READ_ONCE_NOCHECK(x) \ ({ \ compiletime_assert(sizeof(x) == sizeof(unsigned long), \ "Unsupported access size for READ_ONCE_NOCHECK()."); \ (typeof(x))__read_once_word_nocheck(&(x)); \ }) static __no_kasan_or_inline unsigned long read_word_at_a_time(const void *addr) { kasan_check_read(addr, 1); return *(unsigned long *)addr; } #endif /* __ASSEMBLY__ */ #endif /* __ASM_GENERIC_RWONCE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_FIB_RULES_H #define __NET_FIB_RULES_H #include <linux/types.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/fib_rules.h> #include <linux/refcount.h> #include <net/flow.h> #include <net/rtnetlink.h> #include <net/fib_notifier.h> #include <linux/indirect_call_wrapper.h> struct fib_kuid_range { kuid_t start; kuid_t end; }; struct fib_rule { struct list_head list; int iifindex; int oifindex; u32 mark; u32 mark_mask; u32 flags; u32 table; u8 action; u8 l3mdev; u8 proto; u8 ip_proto; u32 target; __be64 tun_id; struct fib_rule __rcu *ctarget; struct net *fr_net; refcount_t refcnt; u32 pref; int suppress_ifgroup; int suppress_prefixlen; char iifname[IFNAMSIZ]; char oifname[IFNAMSIZ]; struct fib_kuid_range uid_range; struct fib_rule_port_range sport_range; struct fib_rule_port_range dport_range; struct rcu_head rcu; }; struct fib_lookup_arg { void *lookup_ptr; const void *lookup_data; void *result; struct fib_rule *rule; u32 table; int flags; #define FIB_LOOKUP_NOREF 1 #define FIB_LOOKUP_IGNORE_LINKSTATE 2 }; struct fib_rules_ops { int family; struct list_head list; int rule_size; int addr_size; int unresolved_rules; int nr_goto_rules; unsigned int fib_rules_seq; int (*action)(struct fib_rule *, struct flowi *, int, struct fib_lookup_arg *); bool (*suppress)(struct fib_rule *, int, struct fib_lookup_arg *); int (*match)(struct fib_rule *, struct flowi *, int); int (*configure)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *, struct nlattr **, struct netlink_ext_ack *); int (*delete)(struct fib_rule *); int (*compare)(struct fib_rule *, struct fib_rule_hdr *, struct nlattr **); int (*fill)(struct fib_rule *, struct sk_buff *, struct fib_rule_hdr *); size_t (*nlmsg_payload)(struct fib_rule *); /* Called after modifications to the rules set, must flush * the route cache if one exists. */ void (*flush_cache)(struct fib_rules_ops *ops); int nlgroup; const struct nla_policy *policy; struct list_head rules_list; struct module *owner; struct net *fro_net; struct rcu_head rcu; }; struct fib_rule_notifier_info { struct fib_notifier_info info; /* must be first */ struct fib_rule *rule; }; #define FRA_GENERIC_POLICY \ [FRA_UNSPEC] = { .strict_start_type = FRA_DPORT_RANGE + 1 }, \ [FRA_IIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_OIFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, \ [FRA_PRIORITY] = { .type = NLA_U32 }, \ [FRA_FWMARK] = { .type = NLA_U32 }, \ [FRA_TUN_ID] = { .type = NLA_U64 }, \ [FRA_FWMASK] = { .type = NLA_U32 }, \ [FRA_TABLE] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_PREFIXLEN] = { .type = NLA_U32 }, \ [FRA_SUPPRESS_IFGROUP] = { .type = NLA_U32 }, \ [FRA_GOTO] = { .type = NLA_U32 }, \ [FRA_L3MDEV] = { .type = NLA_U8 }, \ [FRA_UID_RANGE] = { .len = sizeof(struct fib_rule_uid_range) }, \ [FRA_PROTOCOL] = { .type = NLA_U8 }, \ [FRA_IP_PROTO] = { .type = NLA_U8 }, \ [FRA_SPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) }, \ [FRA_DPORT_RANGE] = { .len = sizeof(struct fib_rule_port_range) } static inline void fib_rule_get(struct fib_rule *rule) { refcount_inc(&rule->refcnt); } static inline void fib_rule_put(struct fib_rule *rule) { if (refcount_dec_and_test(&rule->refcnt)) kfree_rcu(rule, rcu); } #ifdef CONFIG_NET_L3_MASTER_DEV static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->l3mdev ? arg->table : rule->table; } #else static inline u32 fib_rule_get_table(struct fib_rule *rule, struct fib_lookup_arg *arg) { return rule->table; } #endif static inline u32 frh_get_table(struct fib_rule_hdr *frh, struct nlattr **nla) { if (nla[FRA_TABLE]) return nla_get_u32(nla[FRA_TABLE]); return frh->table; } static inline bool fib_rule_port_range_set(const struct fib_rule_port_range *range) { return range->start != 0 && range->end != 0; } static inline bool fib_rule_port_inrange(const struct fib_rule_port_range *a, __be16 port) { return ntohs(port) >= a->start && ntohs(port) <= a->end; } static inline bool fib_rule_port_range_valid(const struct fib_rule_port_range *a) { return a->start != 0 && a->end != 0 && a->end < 0xffff && a->start <= a->end; } static inline bool fib_rule_port_range_compare(struct fib_rule_port_range *a, struct fib_rule_port_range *b) { return a->start == b->start && a->end == b->end; } static inline bool fib_rule_requires_fldissect(struct fib_rule *rule) { return rule->iifindex != LOOPBACK_IFINDEX && (rule->ip_proto || fib_rule_port_range_set(&rule->sport_range) || fib_rule_port_range_set(&rule->dport_range)); } struct fib_rules_ops *fib_rules_register(const struct fib_rules_ops *, struct net *); void fib_rules_unregister(struct fib_rules_ops *); int fib_rules_lookup(struct fib_rules_ops *, struct flowi *, int flags, struct fib_lookup_arg *); int fib_default_rule_add(struct fib_rules_ops *, u32 pref, u32 table, u32 flags); bool fib_rule_matchall(const struct fib_rule *rule); int fib_rules_dump(struct net *net, struct notifier_block *nb, int family, struct netlink_ext_ack *extack); unsigned int fib_rules_seq_read(struct net *net, int family); int fib_nl_newrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); int fib_nl_delrule(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack); INDIRECT_CALLABLE_DECLARE(int fib6_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)); INDIRECT_CALLABLE_DECLARE(int fib6_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(int fib4_rule_action(struct fib_rule *rule, struct flowi *flp, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib6_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); INDIRECT_CALLABLE_DECLARE(bool fib4_rule_suppress(struct fib_rule *rule, int flags, struct fib_lookup_arg *arg)); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FIB_LOOKUP_H #define _FIB_LOOKUP_H #include <linux/types.h> #include <linux/list.h> #include <net/ip_fib.h> #include <net/nexthop.h> struct fib_alias { struct hlist_node fa_list; struct fib_info *fa_info; u8 fa_tos; u8 fa_type; u8 fa_state; u8 fa_slen; u32 tb_id; s16 fa_default; u8 offload:1, trap:1, unused:6; struct rcu_head rcu; }; #define FA_S_ACCESSED 0x01 /* Dont write on fa_state unless needed, to keep it shared on all cpus */ static inline void fib_alias_accessed(struct fib_alias *fa) { if (!(fa->fa_state & FA_S_ACCESSED)) fa->fa_state |= FA_S_ACCESSED; } /* Exported by fib_semantics.c */ void fib_release_info(struct fib_info *); struct fib_info *fib_create_info(struct fib_config *cfg, struct netlink_ext_ack *extack); int fib_nh_match(struct net *net, struct fib_config *cfg, struct fib_info *fi, struct netlink_ext_ack *extack); bool fib_metrics_match(struct fib_config *cfg, struct fib_info *fi); int fib_dump_info(struct sk_buff *skb, u32 pid, u32 seq, int event, struct fib_rt_info *fri, unsigned int flags); void rtmsg_fib(int event, __be32 key, struct fib_alias *fa, int dst_len, u32 tb_id, const struct nl_info *info, unsigned int nlm_flags); static inline void fib_result_assign(struct fib_result *res, struct fib_info *fi) { /* we used to play games with refcounts, but we now use RCU */ res->fi = fi; res->nhc = fib_info_nhc(fi, 0); } struct fib_prop { int error; u8 scope; }; extern const struct fib_prop fib_props[RTN_MAX + 1]; #endif /* _FIB_LOOKUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_IVERSION_H #define _LINUX_IVERSION_H #include <linux/fs.h> /* * The inode->i_version field: * --------------------------- * The change attribute (i_version) is mandated by NFSv4 and is mostly for * knfsd, but is also used for other purposes (e.g. IMA). The i_version must * appear different to observers if there was a change to the inode's data or * metadata since it was last queried. * * Observers see the i_version as a 64-bit number that never decreases. If it * remains the same since it was last checked, then nothing has changed in the * inode. If it's different then something has changed. Observers cannot infer * anything about the nature or magnitude of the changes from the value, only * that the inode has changed in some fashion. * * Not all filesystems properly implement the i_version counter. Subsystems that * want to use i_version field on an inode should first check whether the * filesystem sets the SB_I_VERSION flag (usually via the IS_I_VERSION macro). * * Those that set SB_I_VERSION will automatically have their i_version counter * incremented on writes to normal files. If the SB_I_VERSION is not set, then * the VFS will not touch it on writes, and the filesystem can use it how it * wishes. Note that the filesystem is always responsible for updating the * i_version on namespace changes in directories (mkdir, rmdir, unlink, etc.). * We consider these sorts of filesystems to have a kernel-managed i_version. * * It may be impractical for filesystems to keep i_version updates atomic with * respect to the changes that cause them. They should, however, guarantee * that i_version updates are never visible before the changes that caused * them. Also, i_version updates should never be delayed longer than it takes * the original change to reach disk. * * This implementation uses the low bit in the i_version field as a flag to * track when the value has been queried. If it has not been queried since it * was last incremented, we can skip the increment in most cases. * * In the event that we're updating the ctime, we will usually go ahead and * bump the i_version anyway. Since that has to go to stable storage in some * fashion, we might as well increment it as well. * * With this implementation, the value should always appear to observers to * increase over time if the file has changed. It's recommended to use * inode_eq_iversion() helper to compare values. * * Note that some filesystems (e.g. NFS and AFS) just use the field to store * a server-provided value (for the most part). For that reason, those * filesystems do not set SB_I_VERSION. These filesystems are considered to * have a self-managed i_version. * * Persistently storing the i_version * ---------------------------------- * Queries of the i_version field are not gated on them hitting the backing * store. It's always possible that the host could crash after allowing * a query of the value but before it has made it to disk. * * To mitigate this problem, filesystems should always use * inode_set_iversion_queried when loading an existing inode from disk. This * ensures that the next attempted inode increment will result in the value * changing. * * Storing the value to disk therefore does not count as a query, so those * filesystems should use inode_peek_iversion to grab the value to be stored. * There is no need to flag the value as having been queried in that case. */ /* * We borrow the lowest bit in the i_version to use as a flag to tell whether * it has been queried since we last incremented it. If it has, then we must * increment it on the next change. After that, we can clear the flag and * avoid incrementing it again until it has again been queried. */ #define I_VERSION_QUERIED_SHIFT (1) #define I_VERSION_QUERIED (1ULL << (I_VERSION_QUERIED_SHIFT - 1)) #define I_VERSION_INCREMENT (1ULL << I_VERSION_QUERIED_SHIFT) /** * inode_set_iversion_raw - set i_version to the specified raw value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for use by * filesystems that self-manage the i_version. * * For example, the NFS client stores its NFSv4 change attribute in this way, * and the AFS client stores the data_version from the server here. */ static inline void inode_set_iversion_raw(struct inode *inode, u64 val) { atomic64_set(&inode->i_version, val); } /** * inode_peek_iversion_raw - grab a "raw" iversion value * @inode: inode from which i_version should be read * * Grab a "raw" inode->i_version value and return it. The i_version is not * flagged or converted in any way. This is mostly used to access a self-managed * i_version. * * With those filesystems, we want to treat the i_version as an entirely * opaque value. */ static inline u64 inode_peek_iversion_raw(const struct inode *inode) { return atomic64_read(&inode->i_version); } /** * inode_set_max_iversion_raw - update i_version new value is larger * @inode: inode to set * @val: new i_version to set * * Some self-managed filesystems (e.g Ceph) will only update the i_version * value if the new value is larger than the one we already have. */ static inline void inode_set_max_iversion_raw(struct inode *inode, u64 val) { u64 cur, old; cur = inode_peek_iversion_raw(inode); for (;;) { if (cur > val) break; old = atomic64_cmpxchg(&inode->i_version, cur, val); if (likely(old == cur)) break; cur = old; } } /** * inode_set_iversion - set i_version to a particular value * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val. This function is for filesystems with * a kernel-managed i_version, for initializing a newly-created inode from * scratch. * * In this case, we do not set the QUERIED flag since we know that this value * has never been queried. */ static inline void inode_set_iversion(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, val << I_VERSION_QUERIED_SHIFT); } /** * inode_set_iversion_queried - set i_version to a particular value as quereied * @inode: inode to set * @val: new i_version value to set * * Set @inode's i_version field to @val, and flag it for increment on the next * change. * * Filesystems that persistently store the i_version on disk should use this * when loading an existing inode from disk. * * When loading in an i_version value from a backing store, we can't be certain * that it wasn't previously viewed before being stored. Thus, we must assume * that it was, to ensure that we don't end up handing out the same value for * different versions of the same inode. */ static inline void inode_set_iversion_queried(struct inode *inode, u64 val) { inode_set_iversion_raw(inode, (val << I_VERSION_QUERIED_SHIFT) | I_VERSION_QUERIED); } /** * inode_maybe_inc_iversion - increments i_version * @inode: inode with the i_version that should be updated * @force: increment the counter even if it's not necessary? * * Every time the inode is modified, the i_version field must be seen to have * changed by any observer. * * If "force" is set or the QUERIED flag is set, then ensure that we increment * the value, and clear the queried flag. * * In the common case where neither is set, then we can return "false" without * updating i_version. * * If this function returns false, and no other metadata has changed, then we * can avoid logging the metadata. */ static inline bool inode_maybe_inc_iversion(struct inode *inode, bool force) { u64 cur, old, new; /* * The i_version field is not strictly ordered with any other inode * information, but the legacy inode_inc_iversion code used a spinlock * to serialize increments. * * Here, we add full memory barriers to ensure that any de-facto * ordering with other info is preserved. * * This barrier pairs with the barrier in inode_query_iversion() */ smp_mb(); cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is clear then we needn't do anything */ if (!force && !(cur & I_VERSION_QUERIED)) return false; /* Since lowest bit is flag, add 2 to avoid it */ new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return true; } /** * inode_inc_iversion - forcibly increment i_version * @inode: inode that needs to be updated * * Forcbily increment the i_version field. This always results in a change to * the observable value. */ static inline void inode_inc_iversion(struct inode *inode) { inode_maybe_inc_iversion(inode, true); } /** * inode_iversion_need_inc - is the i_version in need of being incremented? * @inode: inode to check * * Returns whether the inode->i_version counter needs incrementing on the next * change. Just fetch the value and check the QUERIED flag. */ static inline bool inode_iversion_need_inc(struct inode *inode) { return inode_peek_iversion_raw(inode) & I_VERSION_QUERIED; } /** * inode_inc_iversion_raw - forcibly increment raw i_version * @inode: inode that needs to be updated * * Forcbily increment the raw i_version field. This always results in a change * to the raw value. * * NFS will use the i_version field to store the value from the server. It * mostly treats it as opaque, but in the case where it holds a write * delegation, it must increment the value itself. This function does that. */ static inline void inode_inc_iversion_raw(struct inode *inode) { atomic64_inc(&inode->i_version); } /** * inode_peek_iversion - read i_version without flagging it to be incremented * @inode: inode from which i_version should be read * * Read the inode i_version counter for an inode without registering it as a * query. * * This is typically used by local filesystems that need to store an i_version * on disk. In that situation, it's not necessary to flag it as having been * viewed, as the result won't be used to gauge changes from that point. */ static inline u64 inode_peek_iversion(const struct inode *inode) { return inode_peek_iversion_raw(inode) >> I_VERSION_QUERIED_SHIFT; } /** * inode_query_iversion - read i_version for later use * @inode: inode from which i_version should be read * * Read the inode i_version counter. This should be used by callers that wish * to store the returned i_version for later comparison. This will guarantee * that a later query of the i_version will result in a different value if * anything has changed. * * In this implementation, we fetch the current value, set the QUERIED flag and * then try to swap it into place with a cmpxchg, if it wasn't already set. If * that fails, we try again with the newly fetched value from the cmpxchg. */ static inline u64 inode_query_iversion(struct inode *inode) { u64 cur, old, new; cur = inode_peek_iversion_raw(inode); for (;;) { /* If flag is already set, then no need to swap */ if (cur & I_VERSION_QUERIED) { /* * This barrier (and the implicit barrier in the * cmpxchg below) pairs with the barrier in * inode_maybe_inc_iversion(). */ smp_mb(); break; } new = cur | I_VERSION_QUERIED; old = atomic64_cmpxchg(&inode->i_version, cur, new); if (likely(old == cur)) break; cur = old; } return cur >> I_VERSION_QUERIED_SHIFT; } /** * inode_eq_iversion_raw - check whether the raw i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare the current raw i_version counter with a previous one. Returns true * if they are the same or false if they are different. */ static inline bool inode_eq_iversion_raw(const struct inode *inode, u64 old) { return inode_peek_iversion_raw(inode) == old; } /** * inode_eq_iversion - check whether the i_version counter has changed * @inode: inode to check * @old: old value to check against its i_version * * Compare an i_version counter with a previous one. Returns true if they are * the same, and false if they are different. * * Note that we don't need to set the QUERIED flag in this case, as the value * in the inode is not being recorded for later use. */ static inline bool inode_eq_iversion(const struct inode *inode, u64 old) { return inode_peek_iversion(inode) == old; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGTABLE_64_H #define _ASM_X86_PGTABLE_64_H #include <linux/const.h> #include <asm/pgtable_64_types.h> #ifndef __ASSEMBLY__ /* * This file contains the functions and defines necessary to modify and use * the x86-64 page table tree. */ #include <asm/processor.h> #include <linux/bitops.h> #include <linux/threads.h> #include <asm/fixmap.h> extern p4d_t level4_kernel_pgt[512]; extern p4d_t level4_ident_pgt[512]; extern pud_t level3_kernel_pgt[512]; extern pud_t level3_ident_pgt[512]; extern pmd_t level2_kernel_pgt[512]; extern pmd_t level2_fixmap_pgt[512]; extern pmd_t level2_ident_pgt[512]; extern pte_t level1_fixmap_pgt[512 * FIXMAP_PMD_NUM]; extern pgd_t init_top_pgt[]; #define swapper_pg_dir init_top_pgt extern void paging_init(void); static inline void sync_initial_page_table(void) { } #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pud_val(e)) #if CONFIG_PGTABLE_LEVELS >= 5 #define p4d_ERROR(e) \ pr_err("%s:%d: bad p4d %p(%016lx)\n", \ __FILE__, __LINE__, &(e), p4d_val(e)) #endif #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx)\n", \ __FILE__, __LINE__, &(e), pgd_val(e)) struct mm_struct; #define mm_p4d_folded mm_p4d_folded static inline bool mm_p4d_folded(struct mm_struct *mm) { return !pgtable_l5_enabled(); } void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte); void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte); static inline void native_set_pte(pte_t *ptep, pte_t pte) { WRITE_ONCE(*ptep, pte); } static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { native_set_pte(ptep, native_make_pte(0)); } static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) { native_set_pte(ptep, pte); } static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void native_pmd_clear(pmd_t *pmd) { native_set_pmd(pmd, native_make_pmd(0)); } static inline pte_t native_ptep_get_and_clear(pte_t *xp) { #ifdef CONFIG_SMP return native_make_pte(xchg(&xp->pte, 0)); #else /* native_local_ptep_get_and_clear, but duplicated because of cyclic dependency */ pte_t ret = *xp; native_pte_clear(NULL, 0, xp); return ret; #endif } static inline pmd_t native_pmdp_get_and_clear(pmd_t *xp) { #ifdef CONFIG_SMP return native_make_pmd(xchg(&xp->pmd, 0)); #else /* native_local_pmdp_get_and_clear, but duplicated because of cyclic dependency */ pmd_t ret = *xp; native_pmd_clear(xp); return ret; #endif } static inline void native_set_pud(pud_t *pudp, pud_t pud) { WRITE_ONCE(*pudp, pud); } static inline void native_pud_clear(pud_t *pud) { native_set_pud(pud, native_make_pud(0)); } static inline pud_t native_pudp_get_and_clear(pud_t *xp) { #ifdef CONFIG_SMP return native_make_pud(xchg(&xp->pud, 0)); #else /* native_local_pudp_get_and_clear, * but duplicated because of cyclic dependency */ pud_t ret = *xp; native_pud_clear(xp); return ret; #endif } static inline void native_set_p4d(p4d_t *p4dp, p4d_t p4d) { pgd_t pgd; if (pgtable_l5_enabled() || !IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION)) { WRITE_ONCE(*p4dp, p4d); return; } pgd = native_make_pgd(native_p4d_val(p4d)); pgd = pti_set_user_pgtbl((pgd_t *)p4dp, pgd); WRITE_ONCE(*p4dp, native_make_p4d(native_pgd_val(pgd))); } static inline void native_p4d_clear(p4d_t *p4d) { native_set_p4d(p4d, native_make_p4d(0)); } static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd) { WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd)); } static inline void native_pgd_clear(pgd_t *pgd) { native_set_pgd(pgd, native_make_pgd(0)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ /* PGD - Level 4 access */ /* PUD - Level 3 access */ /* PMD - Level 2 access */ /* PTE - Level 1 access */ /* * Encode and de-code a swap entry * * | ... | 11| 10| 9|8|7|6|5| 4| 3|2| 1|0| <- bit number * | ... |SW3|SW2|SW1|G|L|D|A|CD|WT|U| W|P| <- bit names * | TYPE (59-63) | ~OFFSET (9-58) |0|0|X|X| X| X|F|SD|0| <- swp entry * * G (8) is aliased and used as a PROT_NONE indicator for * !present ptes. We need to start storing swap entries above * there. We also need to avoid using A and D because of an * erratum where they can be incorrectly set by hardware on * non-present PTEs. * * SD Bits 1-4 are not used in non-present format and available for * special use described below: * * SD (1) in swp entry is used to store soft dirty bit, which helps us * remember soft dirty over page migration * * F (2) in swp entry is used to record when a pagetable is * writeprotected by userfaultfd WP support. * * Bit 7 in swp entry should be 0 because pmd_present checks not only P, * but also L and G. * * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define SWP_TYPE_BITS 5 #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) /* We always extract/encode the offset by shifting it all the way up, and then down again */ #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT+SWP_TYPE_BITS) #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) /* Extract the high bits for type */ #define __swp_type(x) ((x).val >> (64 - SWP_TYPE_BITS)) /* Shift up (to get rid of type), then down to get value */ #define __swp_offset(x) (~(x).val << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT) /* * Shift the offset up "too far" by TYPE bits, then down again * The offset is inverted by a binary not operation to make the high * physical bits set. */ #define __swp_entry(type, offset) ((swp_entry_t) { \ (~(unsigned long)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ | ((unsigned long)(type) << (64-SWP_TYPE_BITS)) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val((pmd)) }) #define __swp_entry_to_pte(x) ((pte_t) { .pte = (x).val }) #define __swp_entry_to_pmd(x) ((pmd_t) { .pmd = (x).val }) extern int kern_addr_valid(unsigned long addr); extern void cleanup_highmap(void); #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #define PAGE_AGP PAGE_KERNEL_NOCACHE #define HAVE_PAGE_AGP 1 /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK) #define kc_offset_to_vaddr(o) ((o) | ~__VIRTUAL_MASK) #define __HAVE_ARCH_PTE_SAME #define vmemmap ((struct page *)VMEMMAP_START) extern void init_extra_mapping_uc(unsigned long phys, unsigned long size); extern void init_extra_mapping_wb(unsigned long phys, unsigned long size); #define gup_fast_permitted gup_fast_permitted static inline bool gup_fast_permitted(unsigned long start, unsigned long end) { if (end >> __VIRTUAL_MASK_SHIFT) return false; return true; } #include <asm/pgtable-invert.h> #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BITMAP_H #define __LINUX_BITMAP_H #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/bitops.h> #include <linux/string.h> #include <linux/kernel.h> /* * bitmaps provide bit arrays that consume one or more unsigned * longs. The bitmap interface and available operations are listed * here, in bitmap.h * * Function implementations generic to all architectures are in * lib/bitmap.c. Functions implementations that are architecture * specific are in various include/asm-<arch>/bitops.h headers * and other arch/<arch> specific files. * * See lib/bitmap.c for more details. */ /** * DOC: bitmap overview * * The available bitmap operations and their rough meaning in the * case that the bitmap is a single unsigned long are thus: * * The generated code is more efficient when nbits is known at * compile-time and at most BITS_PER_LONG. * * :: * * bitmap_zero(dst, nbits) *dst = 0UL * bitmap_fill(dst, nbits) *dst = ~0UL * bitmap_copy(dst, src, nbits) *dst = *src * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) * bitmap_complement(dst, src, nbits) *dst = ~(*src) * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? * bitmap_empty(src, nbits) Are all bits zero in *src? * bitmap_full(src, nbits) Are all bits set in *src? * bitmap_weight(src, nbits) Hamming Weight: number set bits * bitmap_set(dst, pos, nbits) Set specified bit area * bitmap_clear(dst, pos, nbits) Clear specified bit area * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above * bitmap_next_clear_region(map, &start, &end, nbits) Find next clear region * bitmap_next_set_region(map, &start, &end, nbits) Find next set region * bitmap_for_each_clear_region(map, rs, re, start, end) * Iterate over all clear regions * bitmap_for_each_set_region(map, rs, re, start, end) * Iterate over all set regions * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region * bitmap_release_region(bitmap, pos, order) Free specified bit region * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst * bitmap_get_value8(map, start) Get 8bit value from map at start * bitmap_set_value8(map, value, start) Set 8bit value to map at start * * Note, bitmap_zero() and bitmap_fill() operate over the region of * unsigned longs, that is, bits behind bitmap till the unsigned long * boundary will be zeroed or filled as well. Consider to use * bitmap_clear() or bitmap_set() to make explicit zeroing or filling * respectively. */ /** * DOC: bitmap bitops * * Also the following operations in asm/bitops.h apply to bitmaps.:: * * set_bit(bit, addr) *addr |= bit * clear_bit(bit, addr) *addr &= ~bit * change_bit(bit, addr) *addr ^= bit * test_bit(bit, addr) Is bit set in *addr? * test_and_set_bit(bit, addr) Set bit and return old value * test_and_clear_bit(bit, addr) Clear bit and return old value * test_and_change_bit(bit, addr) Change bit and return old value * find_first_zero_bit(addr, nbits) Position first zero bit in *addr * find_first_bit(addr, nbits) Position first set bit in *addr * find_next_zero_bit(addr, nbits, bit) * Position next zero bit in *addr >= bit * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit * find_next_and_bit(addr1, addr2, nbits, bit) * Same as find_next_bit, but in * (*addr1 & *addr2) * */ /** * DOC: declare bitmap * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used * to declare an array named 'name' of just enough unsigned longs to * contain all bit positions from 0 to 'bits' - 1. */ /* * Allocation and deallocation of bitmap. * Provided in lib/bitmap.c to avoid circular dependency. */ extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); extern void bitmap_free(const unsigned long *bitmap); /* * lib/bitmap.c provides these functions: */ extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits); extern int __bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern bool __pure __bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits); extern void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits); extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits); extern void bitmap_cut(unsigned long *dst, const unsigned long *src, unsigned int first, unsigned int cut, unsigned int nbits); extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern void __bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits); extern int __bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_subset(const unsigned long *bitmap1, const unsigned long *bitmap2, unsigned int nbits); extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); extern void __bitmap_set(unsigned long *map, unsigned int start, int len); extern void __bitmap_clear(unsigned long *map, unsigned int start, int len); extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask, unsigned long align_offset); /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds is multiples of that * power of 2. A @align_mask of 0 means no alignment is required. */ static inline unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask) { return bitmap_find_next_zero_area_off(map, size, start, nr, align_mask, 0); } extern int bitmap_parse(const char *buf, unsigned int buflen, unsigned long *dst, int nbits); extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits); extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern void bitmap_remap(unsigned long *dst, const unsigned long *src, const unsigned long *old, const unsigned long *new, unsigned int nbits); extern int bitmap_bitremap(int oldbit, const unsigned long *old, const unsigned long *new, int bits); extern void bitmap_onto(unsigned long *dst, const unsigned long *orig, const unsigned long *relmap, unsigned int bits); extern void bitmap_fold(unsigned long *dst, const unsigned long *orig, unsigned int sz, unsigned int nbits); extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); #ifdef __BIG_ENDIAN extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); #else #define bitmap_copy_le bitmap_copy #endif extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); extern int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, int nmaskbits); #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) /* * The static inlines below do not handle constant nbits==0 correctly, * so make such users (should any ever turn up) call the out-of-line * versions. */ #define small_const_nbits(nbits) \ (__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0) static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0, len); } static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0xff, len); } static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits) { unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memcpy(dst, src, len); } /* * Copy bitmap and clear tail bits in last word. */ static inline void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits) { bitmap_copy(dst, src, nbits); if (nbits % BITS_PER_LONG) dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); } /* * On 32-bit systems bitmaps are represented as u32 arrays internally, and * therefore conversion is not needed when copying data from/to arrays of u32. */ #if BITS_PER_LONG == 64 extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits); extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits); #else #define bitmap_from_arr32(bitmap, buf, nbits) \ bitmap_copy_clear_tail((unsigned long *) (bitmap), \ (const unsigned long *) (buf), (nbits)) #define bitmap_to_arr32(buf, bitmap, nbits) \ bitmap_copy_clear_tail((unsigned long *) (buf), \ (const unsigned long *) (bitmap), (nbits)) #endif static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_and(dst, src1, src2, nbits); } static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 | *src2; else __bitmap_or(dst, src1, src2, nbits); } static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = *src1 ^ *src2; else __bitmap_xor(dst, src1, src2, nbits); } static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; return __bitmap_andnot(dst, src1, src2, nbits); } static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = ~(*src); else __bitmap_complement(dst, src, nbits); } #ifdef __LITTLE_ENDIAN #define BITMAP_MEM_ALIGNMENT 8 #else #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) #endif #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) static inline int bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) return !memcmp(src1, src2, nbits / 8); return __bitmap_equal(src1, src2, nbits); } /** * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third * @src1: Pointer to bitmap 1 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 * @nbits: number of bits in each of these bitmaps * * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise */ static inline bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2, const unsigned long *src3, unsigned int nbits) { if (!small_const_nbits(nbits)) return __bitmap_or_equal(src1, src2, src3, nbits); return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); } static inline int bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; else return __bitmap_intersects(src1, src2, nbits); } static inline int bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits) { if (small_const_nbits(nbits)) return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_subset(src1, src2, nbits); } static inline int bitmap_empty(const unsigned long *src, unsigned nbits) { if (small_const_nbits(nbits)) return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); return find_first_bit(src, nbits) == nbits; } static inline int bitmap_full(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); return find_first_zero_bit(src, nbits) == nbits; } static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight(src, nbits); } static __always_inline void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __set_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0xff, nbits / 8); else __bitmap_set(map, start, nbits); } static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits) { if (__builtin_constant_p(nbits) && nbits == 1) __clear_bit(start, map); else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && __builtin_constant_p(nbits & BITMAP_MEM_MASK) && IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) memset((char *)map + start / 8, 0, nbits / 8); else __bitmap_clear(map, start, nbits); } static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; else __bitmap_shift_right(dst, src, shift, nbits); } static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, unsigned int shift, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); else __bitmap_shift_left(dst, src, shift, nbits); } static inline void bitmap_replace(unsigned long *dst, const unsigned long *old, const unsigned long *new, const unsigned long *mask, unsigned int nbits) { if (small_const_nbits(nbits)) *dst = (*old & ~(*mask)) | (*new & *mask); else __bitmap_replace(dst, old, new, mask, nbits); } static inline void bitmap_next_clear_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_zero_bit(bitmap, end, *rs); *re = find_next_bit(bitmap, end, *rs + 1); } static inline void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs, unsigned int *re, unsigned int end) { *rs = find_next_bit(bitmap, end, *rs); *re = find_next_zero_bit(bitmap, end, *rs + 1); } /* * Bitmap region iterators. Iterates over the bitmap between [@start, @end). * @rs and @re should be integer variables and will be set to start and end * index of the current clear or set region. */ #define bitmap_for_each_clear_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_clear_region((bitmap), &(rs), &(re), (end))) #define bitmap_for_each_set_region(bitmap, rs, re, start, end) \ for ((rs) = (start), \ bitmap_next_set_region((bitmap), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, \ bitmap_next_set_region((bitmap), &(rs), &(re), (end))) /** * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. * @n: u64 value * * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit * integers in 32-bit environment, and 64-bit integers in 64-bit one. * * There are four combinations of endianness and length of the word in linux * ABIs: LE64, BE64, LE32 and BE32. * * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in * bitmaps and therefore don't require any special handling. * * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the * other hand is represented as an array of 32-bit words and the position of * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that * word. For example, bit #42 is located at 10th position of 2nd word. * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit * values in memory as it usually does. But for BE we need to swap hi and lo * words manually. * * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps * hi and lo words, as is expected by bitmap. */ #if __BITS_PER_LONG == 64 #define BITMAP_FROM_U64(n) (n) #else #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ ((unsigned long) ((u64)(n) >> 32)) #endif /** * bitmap_from_u64 - Check and swap words within u64. * @mask: source bitmap * @dst: destination bitmap * * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` * to read u64 mask, we will get the wrong word. * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, * but we expect the lower 32-bits of u64. */ static inline void bitmap_from_u64(unsigned long *dst, u64 mask) { dst[0] = mask & ULONG_MAX; if (sizeof(mask) > sizeof(unsigned long)) dst[1] = mask >> 32; } /** * bitmap_get_value8 - get an 8-bit value within a memory region * @map: address to the bitmap memory region * @start: bit offset of the 8-bit value; must be a multiple of 8 * * Returns the 8-bit value located at the @start bit offset within the @src * memory region. */ static inline unsigned long bitmap_get_value8(const unsigned long *map, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; return (map[index] >> offset) & 0xFF; } /** * bitmap_set_value8 - set an 8-bit value within a memory region * @map: address to the bitmap memory region * @value: the 8-bit value; values wider than 8 bits may clobber bitmap * @start: bit offset of the 8-bit value; must be a multiple of 8 */ static inline void bitmap_set_value8(unsigned long *map, unsigned long value, unsigned long start) { const size_t index = BIT_WORD(start); const unsigned long offset = start % BITS_PER_LONG; map[index] &= ~(0xFFUL << offset); map[index] |= value << offset; } #endif /* __ASSEMBLY__ */ #endif /* __LINUX_BITMAP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 /* SPDX-License-Identifier: GPL-2.0-only */ /* * kref.h - library routines for handling generic reference counted objects * * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com> * Copyright (C) 2004 IBM Corp. * * based on kobject.h which was: * Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org> * Copyright (C) 2002-2003 Open Source Development Labs */ #ifndef _KREF_H_ #define _KREF_H_ #include <linux/spinlock.h> #include <linux/refcount.h> struct kref { refcount_t refcount; }; #define KREF_INIT(n) { .refcount = REFCOUNT_INIT(n), } /** * kref_init - initialize object. * @kref: object in question. */ static inline void kref_init(struct kref *kref) { refcount_set(&kref->refcount, 1); } static inline unsigned int kref_read(const struct kref *kref) { return refcount_read(&kref->refcount); } /** * kref_get - increment refcount for object. * @kref: object. */ static inline void kref_get(struct kref *kref) { refcount_inc(&kref->refcount); } /** * kref_put - decrement refcount for object. * @kref: object. * @release: pointer to the function that will clean up the object when the * last reference to the object is released. * This pointer is required, and it is not acceptable to pass kfree * in as this function. * * Decrement the refcount, and if 0, call release(). * Return 1 if the object was removed, otherwise return 0. Beware, if this * function returns 0, you still can not count on the kref from remaining in * memory. Only use the return value if you want to see if the kref is now * gone, not present. */ static inline int kref_put(struct kref *kref, void (*release)(struct kref *kref)) { if (refcount_dec_and_test(&kref->refcount)) { release(kref); return 1; } return 0; } static inline int kref_put_mutex(struct kref *kref, void (*release)(struct kref *kref), struct mutex *lock) { if (refcount_dec_and_mutex_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } static inline int kref_put_lock(struct kref *kref, void (*release)(struct kref *kref), spinlock_t *lock) { if (refcount_dec_and_lock(&kref->refcount, lock)) { release(kref); return 1; } return 0; } /** * kref_get_unless_zero - Increment refcount for object unless it is zero. * @kref: object. * * Return non-zero if the increment succeeded. Otherwise return 0. * * This function is intended to simplify locking around refcounting for * objects that can be looked up from a lookup structure, and which are * removed from that lookup structure in the object destructor. * Operations on such objects require at least a read lock around * lookup + kref_get, and a write lock around kref_put + remove from lookup * structure. Furthermore, RCU implementations become extremely tricky. * With a lookup followed by a kref_get_unless_zero *with return value check* * locking in the kref_put path can be deferred to the actual removal from * the lookup structure and RCU lookups become trivial. */ static inline int __must_check kref_get_unless_zero(struct kref *kref) { return refcount_inc_not_zero(&kref->refcount); } #endif /* _KREF_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DAX_H #define _LINUX_DAX_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/radix-tree.h> /* Flag for synchronous flush */ #define DAXDEV_F_SYNC (1UL << 0) typedef unsigned long dax_entry_t; struct iomap_ops; struct iomap; struct dax_device; struct dax_operations { /* * direct_access: translate a device-relative * logical-page-offset into an absolute physical pfn. Return the * number of pages available for DAX at that pfn. */ long (*direct_access)(struct dax_device *, pgoff_t, long, void **, pfn_t *); /* * Validate whether this device is usable as an fsdax backing * device. */ bool (*dax_supported)(struct dax_device *, struct block_device *, int, sector_t, sector_t); /* copy_from_iter: required operation for fs-dax direct-i/o */ size_t (*copy_from_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* copy_to_iter: required operation for fs-dax direct-i/o */ size_t (*copy_to_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* zero_page_range: required operation. Zero page range */ int (*zero_page_range)(struct dax_device *, pgoff_t, size_t); }; extern struct attribute_group dax_attribute_group; #if IS_ENABLED(CONFIG_DAX) struct dax_device *dax_get_by_host(const char *host); struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags); void put_dax(struct dax_device *dax_dev); void kill_dax(struct dax_device *dax_dev); void dax_write_cache(struct dax_device *dax_dev, bool wc); bool dax_write_cache_enabled(struct dax_device *dax_dev); bool __dax_synchronous(struct dax_device *dax_dev); static inline bool dax_synchronous(struct dax_device *dax_dev) { return __dax_synchronous(dax_dev); } void __set_dax_synchronous(struct dax_device *dax_dev); static inline void set_dax_synchronous(struct dax_device *dax_dev) { __set_dax_synchronous(dax_dev); } bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len); /* * Check if given mapping is supported by the file / underlying device. */ static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { if (!(vma->vm_flags & VM_SYNC)) return true; if (!IS_DAX(file_inode(vma->vm_file))) return false; return dax_synchronous(dax_dev); } #else static inline struct dax_device *dax_get_by_host(const char *host) { return NULL; } static inline struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags) { /* * Callers should check IS_ENABLED(CONFIG_DAX) to know if this * NULL is an error or expected. */ return NULL; } static inline void put_dax(struct dax_device *dax_dev) { } static inline void kill_dax(struct dax_device *dax_dev) { } static inline void dax_write_cache(struct dax_device *dax_dev, bool wc) { } static inline bool dax_write_cache_enabled(struct dax_device *dax_dev) { return false; } static inline bool dax_synchronous(struct dax_device *dax_dev) { return true; } static inline void set_dax_synchronous(struct dax_device *dax_dev) { } static inline bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len) { return false; } static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { return !(vma->vm_flags & VM_SYNC); } #endif struct writeback_control; int bdev_dax_pgoff(struct block_device *, sector_t, size_t, pgoff_t *pgoff); #if IS_ENABLED(CONFIG_FS_DAX) bool __bdev_dax_supported(struct block_device *bdev, int blocksize); static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return __bdev_dax_supported(bdev, blocksize); } bool __generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors); static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return __generic_fsdax_supported(dax_dev, bdev, blocksize, start, sectors); } static inline void fs_put_dax(struct dax_device *dax_dev) { put_dax(dax_dev); } struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev); int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc); struct page *dax_layout_busy_page(struct address_space *mapping); struct page *dax_layout_busy_page_range(struct address_space *mapping, loff_t start, loff_t end); dax_entry_t dax_lock_page(struct page *page); void dax_unlock_page(struct page *page, dax_entry_t cookie); #else static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return false; } static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return false; } static inline void fs_put_dax(struct dax_device *dax_dev) { } static inline struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev) { return NULL; } static inline struct page *dax_layout_busy_page(struct address_space *mapping) { return NULL; } static inline struct page *dax_layout_busy_page_range(struct address_space *mapping, pgoff_t start, pgoff_t nr_pages) { return NULL; } static inline int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc) { return -EOPNOTSUPP; } static inline dax_entry_t dax_lock_page(struct page *page) { if (IS_DAX(page->mapping->host)) return ~0UL; return 0; } static inline void dax_unlock_page(struct page *page, dax_entry_t cookie) { } #endif #if IS_ENABLED(CONFIG_DAX) int dax_read_lock(void); void dax_read_unlock(int id); #else static inline int dax_read_lock(void) { return 0; } static inline void dax_read_unlock(int id) { } #endif /* CONFIG_DAX */ bool dax_alive(struct dax_device *dax_dev); void *dax_get_private(struct dax_device *dax_dev); long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn); size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, size_t nr_pages); void dax_flush(struct dax_device *dax_dev, void *addr, size_t size); ssize_t dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops); vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t *pfnp, int *errp, const struct iomap_ops *ops); vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t pfn); int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index); int dax_invalidate_mapping_entry_sync(struct address_space *mapping, pgoff_t index); s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap); static inline bool dax_mapping(struct address_space *mapping) { return mapping->host && IS_DAX(mapping->host); } #ifdef CONFIG_DEV_DAX_HMEM_DEVICES void hmem_register_device(int target_nid, struct resource *r); #else static inline void hmem_register_device(int target_nid, struct resource *r) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_EXTEND_H #define _NF_CONNTRACK_EXTEND_H #include <linux/slab.h> #include <net/netfilter/nf_conntrack.h> enum nf_ct_ext_id { NF_CT_EXT_HELPER, #if IS_ENABLED(CONFIG_NF_NAT) NF_CT_EXT_NAT, #endif NF_CT_EXT_SEQADJ, NF_CT_EXT_ACCT, #ifdef CONFIG_NF_CONNTRACK_EVENTS NF_CT_EXT_ECACHE, #endif #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP NF_CT_EXT_TSTAMP, #endif #ifdef CONFIG_NF_CONNTRACK_TIMEOUT NF_CT_EXT_TIMEOUT, #endif #ifdef CONFIG_NF_CONNTRACK_LABELS NF_CT_EXT_LABELS, #endif #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY) NF_CT_EXT_SYNPROXY, #endif NF_CT_EXT_NUM, }; #define NF_CT_EXT_HELPER_TYPE struct nf_conn_help #define NF_CT_EXT_NAT_TYPE struct nf_conn_nat #define NF_CT_EXT_SEQADJ_TYPE struct nf_conn_seqadj #define NF_CT_EXT_ACCT_TYPE struct nf_conn_acct #define NF_CT_EXT_ECACHE_TYPE struct nf_conntrack_ecache #define NF_CT_EXT_TSTAMP_TYPE struct nf_conn_tstamp #define NF_CT_EXT_TIMEOUT_TYPE struct nf_conn_timeout #define NF_CT_EXT_LABELS_TYPE struct nf_conn_labels #define NF_CT_EXT_SYNPROXY_TYPE struct nf_conn_synproxy /* Extensions: optional stuff which isn't permanently in struct. */ struct nf_ct_ext { u8 offset[NF_CT_EXT_NUM]; u8 len; char data[]; }; static inline bool __nf_ct_ext_exist(const struct nf_ct_ext *ext, u8 id) { return !!ext->offset[id]; } static inline bool nf_ct_ext_exist(const struct nf_conn *ct, u8 id) { return (ct->ext && __nf_ct_ext_exist(ct->ext, id)); } static inline void *__nf_ct_ext_find(const struct nf_conn *ct, u8 id) { if (!nf_ct_ext_exist(ct, id)) return NULL; return (void *)ct->ext + ct->ext->offset[id]; } #define nf_ct_ext_find(ext, id) \ ((id##_TYPE *)__nf_ct_ext_find((ext), (id))) /* Destroy all relationships */ void nf_ct_ext_destroy(struct nf_conn *ct); /* Add this type, returns pointer to data or NULL. */ void *nf_ct_ext_add(struct nf_conn *ct, enum nf_ct_ext_id id, gfp_t gfp); struct nf_ct_ext_type { /* Destroys relationships (can be NULL). */ void (*destroy)(struct nf_conn *ct); enum nf_ct_ext_id id; /* Length and min alignment. */ u8 len; u8 align; }; int nf_ct_extend_register(const struct nf_ct_ext_type *type); void nf_ct_extend_unregister(const struct nf_ct_ext_type *type); #endif /* _NF_CONNTRACK_EXTEND_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PAGE_64_H #define _ASM_X86_PAGE_64_H #include <asm/page_64_types.h> #ifndef __ASSEMBLY__ #include <asm/alternative.h> /* duplicated to the one in bootmem.h */ extern unsigned long max_pfn; extern unsigned long phys_base; extern unsigned long page_offset_base; extern unsigned long vmalloc_base; extern unsigned long vmemmap_base; static inline unsigned long __phys_addr_nodebug(unsigned long x) { unsigned long y = x - __START_KERNEL_map; /* use the carry flag to determine if x was < __START_KERNEL_map */ x = y + ((x > y) ? phys_base : (__START_KERNEL_map - PAGE_OFFSET)); return x; } #ifdef CONFIG_DEBUG_VIRTUAL extern unsigned long __phys_addr(unsigned long); extern unsigned long __phys_addr_symbol(unsigned long); #else #define __phys_addr(x) __phys_addr_nodebug(x) #define __phys_addr_symbol(x) \ ((unsigned long)(x) - __START_KERNEL_map + phys_base) #endif #define __phys_reloc_hide(x) (x) #ifdef CONFIG_FLATMEM #define pfn_valid(pfn) ((pfn) < max_pfn) #endif void clear_page_orig(void *page); void clear_page_rep(void *page); void clear_page_erms(void *page); static inline void clear_page(void *page) { alternative_call_2(clear_page_orig, clear_page_rep, X86_FEATURE_REP_GOOD, clear_page_erms, X86_FEATURE_ERMS, "=D" (page), "0" (page) : "cc", "memory", "rax", "rcx"); } void copy_page(void *to, void *from); #endif /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_VSYSCALL_EMULATION # define __HAVE_ARCH_GATE_AREA 1 #endif #endif /* _ASM_X86_PAGE_64_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/xattr.h Extended attributes handling. Copyright (C) 2001 by Andreas Gruenbacher <a.gruenbacher@computer.org> Copyright (c) 2001-2002 Silicon Graphics, Inc. All Rights Reserved. Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #ifndef _LINUX_XATTR_H #define _LINUX_XATTR_H #include <linux/slab.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <uapi/linux/xattr.h> struct inode; struct dentry; /* * struct xattr_handler: When @name is set, match attributes with exactly that * name. When @prefix is set instead, match attributes with that prefix and * with a non-empty suffix. */ struct xattr_handler { const char *name; const char *prefix; int flags; /* fs private flags */ bool (*list)(struct dentry *dentry); int (*get)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, void *buffer, size_t size); int (*set)(const struct xattr_handler *, struct dentry *dentry, struct inode *inode, const char *name, const void *buffer, size_t size, int flags); }; const char *xattr_full_name(const struct xattr_handler *, const char *); struct xattr { const char *name; void *value; size_t value_len; }; ssize_t __vfs_getxattr(struct dentry *, struct inode *, const char *, void *, size_t); ssize_t vfs_getxattr(struct dentry *, const char *, void *, size_t); ssize_t vfs_listxattr(struct dentry *d, char *list, size_t size); int __vfs_setxattr(struct dentry *, struct inode *, const char *, const void *, size_t, int); int __vfs_setxattr_noperm(struct dentry *, const char *, const void *, size_t, int); int __vfs_setxattr_locked(struct dentry *, const char *, const void *, size_t, int, struct inode **); int vfs_setxattr(struct dentry *, const char *, const void *, size_t, int); int __vfs_removexattr(struct dentry *, const char *); int __vfs_removexattr_locked(struct dentry *, const char *, struct inode **); int vfs_removexattr(struct dentry *, const char *); ssize_t generic_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size); ssize_t vfs_getxattr_alloc(struct dentry *dentry, const char *name, char **xattr_value, size_t size, gfp_t flags); int xattr_supported_namespace(struct inode *inode, const char *prefix); static inline const char *xattr_prefix(const struct xattr_handler *handler) { return handler->prefix ?: handler->name; } struct simple_xattrs { struct list_head head; spinlock_t lock; }; struct simple_xattr { struct list_head list; char *name; size_t size; char value[]; }; /* * initialize the simple_xattrs structure */ static inline void simple_xattrs_init(struct simple_xattrs *xattrs) { INIT_LIST_HEAD(&xattrs->head); spin_lock_init(&xattrs->lock); } /* * free all the xattrs */ static inline void simple_xattrs_free(struct simple_xattrs *xattrs) { struct simple_xattr *xattr, *node; list_for_each_entry_safe(xattr, node, &xattrs->head, list) { kfree(xattr->name); kvfree(xattr); } } struct simple_xattr *simple_xattr_alloc(const void *value, size_t size); int simple_xattr_get(struct simple_xattrs *xattrs, const char *name, void *buffer, size_t size); int simple_xattr_set(struct simple_xattrs *xattrs, const char *name, const void *value, size_t size, int flags, ssize_t *removed_size); ssize_t simple_xattr_list(struct inode *inode, struct simple_xattrs *xattrs, char *buffer, size_t size); void simple_xattr_list_add(struct simple_xattrs *xattrs, struct simple_xattr *new_xattr); #endif /* _LINUX_XATTR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* delayacct.h - per-task delay accounting * * Copyright (C) Shailabh Nagar, IBM Corp. 2006 */ #ifndef _LINUX_DELAYACCT_H #define _LINUX_DELAYACCT_H #include <uapi/linux/taskstats.h> /* * Per-task flags relevant to delay accounting * maintained privately to avoid exhausting similar flags in sched.h:PF_* * Used to set current->delays->flags */ #define DELAYACCT_PF_SWAPIN 0x00000001 /* I am doing a swapin */ #define DELAYACCT_PF_BLKIO 0x00000002 /* I am waiting on IO */ #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info { raw_spinlock_t lock; unsigned int flags; /* Private per-task flags */ /* For each stat XXX, add following, aligned appropriately * * struct timespec XXX_start, XXX_end; * u64 XXX_delay; * u32 XXX_count; * * Atomicity of updates to XXX_delay, XXX_count protected by * single lock above (split into XXX_lock if contention is an issue). */ /* * XXX_count is incremented on every XXX operation, the delay * associated with the operation is added to XXX_delay. * XXX_delay contains the accumulated delay time in nanoseconds. */ u64 blkio_start; /* Shared by blkio, swapin */ u64 blkio_delay; /* wait for sync block io completion */ u64 swapin_delay; /* wait for swapin block io completion */ u32 blkio_count; /* total count of the number of sync block */ /* io operations performed */ u32 swapin_count; /* total count of the number of swapin block */ /* io operations performed */ u64 freepages_start; u64 freepages_delay; /* wait for memory reclaim */ u64 thrashing_start; u64 thrashing_delay; /* wait for thrashing page */ u32 freepages_count; /* total count of memory reclaim */ u32 thrashing_count; /* total count of thrash waits */ }; #endif #include <linux/sched.h> #include <linux/slab.h> #ifdef CONFIG_TASK_DELAY_ACCT extern int delayacct_on; /* Delay accounting turned on/off */ extern struct kmem_cache *delayacct_cache; extern void delayacct_init(void); extern void __delayacct_tsk_init(struct task_struct *); extern void __delayacct_tsk_exit(struct task_struct *); extern void __delayacct_blkio_start(void); extern void __delayacct_blkio_end(struct task_struct *); extern int __delayacct_add_tsk(struct taskstats *, struct task_struct *); extern __u64 __delayacct_blkio_ticks(struct task_struct *); extern void __delayacct_freepages_start(void); extern void __delayacct_freepages_end(void); extern void __delayacct_thrashing_start(void); extern void __delayacct_thrashing_end(void); static inline int delayacct_is_task_waiting_on_io(struct task_struct *p) { if (p->delays) return (p->delays->flags & DELAYACCT_PF_BLKIO); else return 0; } static inline void delayacct_set_flag(int flag) { if (current->delays) current->delays->flags |= flag; } static inline void delayacct_clear_flag(int flag) { if (current->delays) current->delays->flags &= ~flag; } static inline void delayacct_tsk_init(struct task_struct *tsk) { /* reinitialize in case parent's non-null pointer was dup'ed*/ tsk->delays = NULL; if (delayacct_on) __delayacct_tsk_init(tsk); } /* Free tsk->delays. Called from bad fork and __put_task_struct * where there's no risk of tsk->delays being accessed elsewhere */ static inline void delayacct_tsk_free(struct task_struct *tsk) { if (tsk->delays) kmem_cache_free(delayacct_cache, tsk->delays); tsk->delays = NULL; } static inline void delayacct_blkio_start(void) { delayacct_set_flag(DELAYACCT_PF_BLKIO); if (current->delays) __delayacct_blkio_start(); } static inline void delayacct_blkio_end(struct task_struct *p) { if (p->delays) __delayacct_blkio_end(p); delayacct_clear_flag(DELAYACCT_PF_BLKIO); } static inline int delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk) { if (!delayacct_on || !tsk->delays) return 0; return __delayacct_add_tsk(d, tsk); } static inline __u64 delayacct_blkio_ticks(struct task_struct *tsk) { if (tsk->delays) return __delayacct_blkio_ticks(tsk); return 0; } static inline void delayacct_freepages_start(void) { if (current->delays) __delayacct_freepages_start(); } static inline void delayacct_freepages_end(void) { if (current->delays) __delayacct_freepages_end(); } static inline void delayacct_thrashing_start(void) { if (current->delays) __delayacct_thrashing_start(); } static inline void delayacct_thrashing_end(void) { if (current->delays) __delayacct_thrashing_end(); } #else static inline void delayacct_set_flag(int flag) {} static inline void delayacct_clear_flag(int flag) {} static inline void delayacct_init(void) {} static inline void delayacct_tsk_init(struct task_struct *tsk) {} static inline void delayacct_tsk_free(struct task_struct *tsk) {} static inline void delayacct_blkio_start(void) {} static inline void delayacct_blkio_end(struct task_struct *p) {} static inline int delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk) { return 0; } static inline __u64 delayacct_blkio_ticks(struct task_struct *tsk) { return 0; } static inline int delayacct_is_task_waiting_on_io(struct task_struct *p) { return 0; } static inline void delayacct_freepages_start(void) {} static inline void delayacct_freepages_end(void) {} static inline void delayacct_thrashing_start(void) {} static inline void delayacct_thrashing_end(void) {} #endif /* CONFIG_TASK_DELAY_ACCT */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM percpu #if !defined(_TRACE_PERCPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_PERCPU_H #include <linux/tracepoint.h> TRACE_EVENT(percpu_alloc_percpu, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align, void *base_addr, int off, void __percpu *ptr), TP_ARGS(reserved, is_atomic, size, align, base_addr, off, ptr), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu base_addr=%p off=%d ptr=%p", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align, __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_free_percpu, TP_PROTO(void *base_addr, int off, void __percpu *ptr), TP_ARGS(base_addr, off, ptr), TP_STRUCT__entry( __field( void *, base_addr ) __field( int, off ) __field( void __percpu *, ptr ) ), TP_fast_assign( __entry->base_addr = base_addr; __entry->off = off; __entry->ptr = ptr; ), TP_printk("base_addr=%p off=%d ptr=%p", __entry->base_addr, __entry->off, __entry->ptr) ); TRACE_EVENT(percpu_alloc_percpu_fail, TP_PROTO(bool reserved, bool is_atomic, size_t size, size_t align), TP_ARGS(reserved, is_atomic, size, align), TP_STRUCT__entry( __field( bool, reserved ) __field( bool, is_atomic ) __field( size_t, size ) __field( size_t, align ) ), TP_fast_assign( __entry->reserved = reserved; __entry->is_atomic = is_atomic; __entry->size = size; __entry->align = align; ), TP_printk("reserved=%d is_atomic=%d size=%zu align=%zu", __entry->reserved, __entry->is_atomic, __entry->size, __entry->align) ); TRACE_EVENT(percpu_create_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); TRACE_EVENT(percpu_destroy_chunk, TP_PROTO(void *base_addr), TP_ARGS(base_addr), TP_STRUCT__entry( __field( void *, base_addr ) ), TP_fast_assign( __entry->base_addr = base_addr; ), TP_printk("base_addr=%p", __entry->base_addr) ); #endif /* _TRACE_PERCPU_H */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 /* SPDX-License-Identifier: GPL-2.0 */ /* * NUMA memory policies for Linux. * Copyright 2003,2004 Andi Kleen SuSE Labs */ #ifndef _LINUX_MEMPOLICY_H #define _LINUX_MEMPOLICY_H 1 #include <linux/sched.h> #include <linux/mmzone.h> #include <linux/dax.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <uapi/linux/mempolicy.h> struct mm_struct; #ifdef CONFIG_NUMA /* * Describe a memory policy. * * A mempolicy can be either associated with a process or with a VMA. * For VMA related allocations the VMA policy is preferred, otherwise * the process policy is used. Interrupts ignore the memory policy * of the current process. * * Locking policy for interleave: * In process context there is no locking because only the process accesses * its own state. All vma manipulation is somewhat protected by a down_read on * mmap_lock. * * Freeing policy: * Mempolicy objects are reference counted. A mempolicy will be freed when * mpol_put() decrements the reference count to zero. * * Duplicating policy objects: * mpol_dup() allocates a new mempolicy and copies the specified mempolicy * to the new storage. The reference count of the new object is initialized * to 1, representing the caller of mpol_dup(). */ struct mempolicy { atomic_t refcnt; unsigned short mode; /* See MPOL_* above */ unsigned short flags; /* See set_mempolicy() MPOL_F_* above */ union { short preferred_node; /* preferred */ nodemask_t nodes; /* interleave/bind */ /* undefined for default */ } v; union { nodemask_t cpuset_mems_allowed; /* relative to these nodes */ nodemask_t user_nodemask; /* nodemask passed by user */ } w; }; /* * Support for managing mempolicy data objects (clone, copy, destroy) * The default fast path of a NULL MPOL_DEFAULT policy is always inlined. */ extern void __mpol_put(struct mempolicy *pol); static inline void mpol_put(struct mempolicy *pol) { if (pol) __mpol_put(pol); } /* * Does mempolicy pol need explicit unref after use? * Currently only needed for shared policies. */ static inline int mpol_needs_cond_ref(struct mempolicy *pol) { return (pol && (pol->flags & MPOL_F_SHARED)); } static inline void mpol_cond_put(struct mempolicy *pol) { if (mpol_needs_cond_ref(pol)) __mpol_put(pol); } extern struct mempolicy *__mpol_dup(struct mempolicy *pol); static inline struct mempolicy *mpol_dup(struct mempolicy *pol) { if (pol) pol = __mpol_dup(pol); return pol; } #define vma_policy(vma) ((vma)->vm_policy) static inline void mpol_get(struct mempolicy *pol) { if (pol) atomic_inc(&pol->refcnt); } extern bool __mpol_equal(struct mempolicy *a, struct mempolicy *b); static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (a == b) return true; return __mpol_equal(a, b); } /* * Tree of shared policies for a shared memory region. * Maintain the policies in a pseudo mm that contains vmas. The vmas * carry the policy. As a special twist the pseudo mm is indexed in pages, not * bytes, so that we can work with shared memory segments bigger than * unsigned long. */ struct sp_node { struct rb_node nd; unsigned long start, end; struct mempolicy *policy; }; struct shared_policy { struct rb_root root; rwlock_t lock; }; int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst); void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol); int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *new); void mpol_free_shared_policy(struct shared_policy *p); struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx); struct mempolicy *get_task_policy(struct task_struct *p); struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr); bool vma_policy_mof(struct vm_area_struct *vma); extern void numa_default_policy(void); extern void numa_policy_init(void); extern void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new); extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new); extern int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask); extern bool init_nodemask_of_mempolicy(nodemask_t *mask); extern bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask); extern nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy); static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { struct mempolicy *mpol = get_task_policy(current); return policy_nodemask(gfp, mpol); } extern unsigned int mempolicy_slab_node(void); extern enum zone_type policy_zone; static inline void check_highest_zone(enum zone_type k) { if (k > policy_zone && k != ZONE_MOVABLE) policy_zone = k; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags); #ifdef CONFIG_TMPFS extern int mpol_parse_str(char *str, struct mempolicy **mpol); #endif extern void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol); /* Check if a vma is migratable */ extern bool vma_migratable(struct vm_area_struct *vma); extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long); extern void mpol_put_task_policy(struct task_struct *); #else struct mempolicy {}; static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { return true; } static inline void mpol_put(struct mempolicy *p) { } static inline void mpol_cond_put(struct mempolicy *pol) { } static inline void mpol_get(struct mempolicy *pol) { } struct shared_policy {}; static inline void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { } static inline void mpol_free_shared_policy(struct shared_policy *p) { } static inline struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { return NULL; } #define vma_policy(vma) NULL static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { return 0; } static inline void numa_policy_init(void) { } static inline void numa_default_policy(void) { } static inline void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { } static inline void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { } static inline int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { *mpol = NULL; *nodemask = NULL; return 0; } static inline bool init_nodemask_of_mempolicy(nodemask_t *m) { return false; } static inline int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return 0; } static inline void check_highest_zone(int k) { } #ifdef CONFIG_TMPFS static inline int mpol_parse_str(char *str, struct mempolicy **mpol) { return 1; /* error */ } #endif static inline int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long address) { return -1; /* no node preference */ } static inline void mpol_put_task_policy(struct task_struct *task) { } static inline nodemask_t *policy_nodemask_current(gfp_t gfp) { return NULL; } #endif /* CONFIG_NUMA */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VIRTIO_NET_H #define _LINUX_VIRTIO_NET_H #include <linux/if_vlan.h> #include <uapi/linux/tcp.h> #include <uapi/linux/udp.h> #include <uapi/linux/virtio_net.h> static inline bool virtio_net_hdr_match_proto(__be16 protocol, __u8 gso_type) { switch (gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: return protocol == cpu_to_be16(ETH_P_IP); case VIRTIO_NET_HDR_GSO_TCPV6: return protocol == cpu_to_be16(ETH_P_IPV6); case VIRTIO_NET_HDR_GSO_UDP: return protocol == cpu_to_be16(ETH_P_IP) || protocol == cpu_to_be16(ETH_P_IPV6); default: return false; } } static inline int virtio_net_hdr_set_proto(struct sk_buff *skb, const struct virtio_net_hdr *hdr) { if (skb->protocol) return 0; switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: case VIRTIO_NET_HDR_GSO_UDP: skb->protocol = cpu_to_be16(ETH_P_IP); break; case VIRTIO_NET_HDR_GSO_TCPV6: skb->protocol = cpu_to_be16(ETH_P_IPV6); break; default: return -EINVAL; } return 0; } static inline int virtio_net_hdr_to_skb(struct sk_buff *skb, const struct virtio_net_hdr *hdr, bool little_endian) { unsigned int gso_type = 0; unsigned int thlen = 0; unsigned int p_off = 0; unsigned int ip_proto; if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { case VIRTIO_NET_HDR_GSO_TCPV4: gso_type = SKB_GSO_TCPV4; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_TCPV6: gso_type = SKB_GSO_TCPV6; ip_proto = IPPROTO_TCP; thlen = sizeof(struct tcphdr); break; case VIRTIO_NET_HDR_GSO_UDP: gso_type = SKB_GSO_UDP; ip_proto = IPPROTO_UDP; thlen = sizeof(struct udphdr); break; default: return -EINVAL; } if (hdr->gso_type & VIRTIO_NET_HDR_GSO_ECN) gso_type |= SKB_GSO_TCP_ECN; if (hdr->gso_size == 0) return -EINVAL; } skb_reset_mac_header(skb); if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { u32 start = __virtio16_to_cpu(little_endian, hdr->csum_start); u32 off = __virtio16_to_cpu(little_endian, hdr->csum_offset); u32 needed = start + max_t(u32, thlen, off + sizeof(__sum16)); if (!pskb_may_pull(skb, needed)) return -EINVAL; if (!skb_partial_csum_set(skb, start, off)) return -EINVAL; p_off = skb_transport_offset(skb) + thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } else { /* gso packets without NEEDS_CSUM do not set transport_offset. * probe and drop if does not match one of the above types. */ if (gso_type && skb->network_header) { struct flow_keys_basic keys; if (!skb->protocol) { __be16 protocol = dev_parse_header_protocol(skb); if (!protocol) virtio_net_hdr_set_proto(skb, hdr); else if (!virtio_net_hdr_match_proto(protocol, hdr->gso_type)) return -EINVAL; else skb->protocol = protocol; } retry: if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) { /* UFO does not specify ipv4 or 6: try both */ if (gso_type & SKB_GSO_UDP && skb->protocol == htons(ETH_P_IP)) { skb->protocol = htons(ETH_P_IPV6); goto retry; } return -EINVAL; } p_off = keys.control.thoff + thlen; if (!pskb_may_pull(skb, p_off) || keys.basic.ip_proto != ip_proto) return -EINVAL; skb_set_transport_header(skb, keys.control.thoff); } else if (gso_type) { p_off = thlen; if (!pskb_may_pull(skb, p_off)) return -EINVAL; } } if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) { u16 gso_size = __virtio16_to_cpu(little_endian, hdr->gso_size); unsigned int nh_off = p_off; struct skb_shared_info *shinfo = skb_shinfo(skb); /* UFO may not include transport header in gso_size. */ if (gso_type & SKB_GSO_UDP) nh_off -= thlen; /* Too small packets are not really GSO ones. */ if (skb->len - nh_off > gso_size) { shinfo->gso_size = gso_size; shinfo->gso_type = gso_type; /* Header must be checked, and gso_segs computed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } } return 0; } static inline int virtio_net_hdr_from_skb(const struct sk_buff *skb, struct virtio_net_hdr *hdr, bool little_endian, bool has_data_valid, int vlan_hlen) { memset(hdr, 0, sizeof(*hdr)); /* no info leak */ if (skb_is_gso(skb)) { struct skb_shared_info *sinfo = skb_shinfo(skb); /* This is a hint as to how much should be linear. */ hdr->hdr_len = __cpu_to_virtio16(little_endian, skb_headlen(skb)); hdr->gso_size = __cpu_to_virtio16(little_endian, sinfo->gso_size); if (sinfo->gso_type & SKB_GSO_TCPV4) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4; else if (sinfo->gso_type & SKB_GSO_TCPV6) hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6; else return -EINVAL; if (sinfo->gso_type & SKB_GSO_TCP_ECN) hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN; } else hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE; if (skb->ip_summed == CHECKSUM_PARTIAL) { hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; hdr->csum_start = __cpu_to_virtio16(little_endian, skb_checksum_start_offset(skb) + vlan_hlen); hdr->csum_offset = __cpu_to_virtio16(little_endian, skb->csum_offset); } else if (has_data_valid && skb->ip_summed == CHECKSUM_UNNECESSARY) { hdr->flags = VIRTIO_NET_HDR_F_DATA_VALID; } /* else everything is zero */ return 0; } #endif /* _LINUX_VIRTIO_NET_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi_bus.h - ACPI Bus Driver ($Revision: 22 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef __ACPI_BUS_H__ #define __ACPI_BUS_H__ #include <linux/device.h> #include <linux/property.h> /* TBD: Make dynamic */ #define ACPI_MAX_HANDLES 10 struct acpi_handle_list { u32 count; acpi_handle handles[ACPI_MAX_HANDLES]; }; /* acpi_utils.h */ acpi_status acpi_extract_package(union acpi_object *package, struct acpi_buffer *format, struct acpi_buffer *buffer); acpi_status acpi_evaluate_integer(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, unsigned long long *data); acpi_status acpi_evaluate_reference(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, struct acpi_handle_list *list); acpi_status acpi_evaluate_ost(acpi_handle handle, u32 source_event, u32 status_code, struct acpi_buffer *status_buf); acpi_status acpi_get_physical_device_location(acpi_handle handle, struct acpi_pld_info **pld); bool acpi_has_method(acpi_handle handle, char *name); acpi_status acpi_execute_simple_method(acpi_handle handle, char *method, u64 arg); acpi_status acpi_evaluate_ej0(acpi_handle handle); acpi_status acpi_evaluate_lck(acpi_handle handle, int lock); acpi_status acpi_evaluate_reg(acpi_handle handle, u8 space_id, u32 function); bool acpi_ata_match(acpi_handle handle); bool acpi_bay_match(acpi_handle handle); bool acpi_dock_match(acpi_handle handle); bool acpi_check_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 funcs); union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4); static inline union acpi_object * acpi_evaluate_dsm_typed(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4, acpi_object_type type) { union acpi_object *obj; obj = acpi_evaluate_dsm(handle, guid, rev, func, argv4); if (obj && obj->type != type) { ACPI_FREE(obj); obj = NULL; } return obj; } #define ACPI_INIT_DSM_ARGV4(cnt, eles) \ { \ .package.type = ACPI_TYPE_PACKAGE, \ .package.count = (cnt), \ .package.elements = (eles) \ } bool acpi_dev_found(const char *hid); bool acpi_dev_present(const char *hid, const char *uid, s64 hrv); #ifdef CONFIG_ACPI struct proc_dir_entry; #define ACPI_BUS_FILE_ROOT "acpi" extern struct proc_dir_entry *acpi_root_dir; enum acpi_bus_device_type { ACPI_BUS_TYPE_DEVICE = 0, ACPI_BUS_TYPE_POWER, ACPI_BUS_TYPE_PROCESSOR, ACPI_BUS_TYPE_THERMAL, ACPI_BUS_TYPE_POWER_BUTTON, ACPI_BUS_TYPE_SLEEP_BUTTON, ACPI_BUS_TYPE_ECDT_EC, ACPI_BUS_DEVICE_TYPE_COUNT }; struct acpi_driver; struct acpi_device; /* * ACPI Scan Handler * ----------------- */ struct acpi_hotplug_profile { struct kobject kobj; int (*scan_dependent)(struct acpi_device *adev); void (*notify_online)(struct acpi_device *adev); bool enabled:1; bool demand_offline:1; }; static inline struct acpi_hotplug_profile *to_acpi_hotplug_profile( struct kobject *kobj) { return container_of(kobj, struct acpi_hotplug_profile, kobj); } struct acpi_scan_handler { const struct acpi_device_id *ids; struct list_head list_node; bool (*match)(const char *idstr, const struct acpi_device_id **matchid); int (*attach)(struct acpi_device *dev, const struct acpi_device_id *id); void (*detach)(struct acpi_device *dev); void (*bind)(struct device *phys_dev); void (*unbind)(struct device *phys_dev); struct acpi_hotplug_profile hotplug; }; /* * ACPI Hotplug Context * -------------------- */ struct acpi_hotplug_context { struct acpi_device *self; int (*notify)(struct acpi_device *, u32); void (*uevent)(struct acpi_device *, u32); void (*fixup)(struct acpi_device *); }; /* * ACPI Driver * ----------- */ typedef int (*acpi_op_add) (struct acpi_device * device); typedef int (*acpi_op_remove) (struct acpi_device * device); typedef void (*acpi_op_notify) (struct acpi_device * device, u32 event); struct acpi_device_ops { acpi_op_add add; acpi_op_remove remove; acpi_op_notify notify; }; #define ACPI_DRIVER_ALL_NOTIFY_EVENTS 0x1 /* system AND device events */ struct acpi_driver { char name[80]; char class[80]; const struct acpi_device_id *ids; /* Supported Hardware IDs */ unsigned int flags; struct acpi_device_ops ops; struct device_driver drv; struct module *owner; }; /* * ACPI Device * ----------- */ /* Status (_STA) */ struct acpi_device_status { u32 present:1; u32 enabled:1; u32 show_in_ui:1; u32 functional:1; u32 battery_present:1; u32 reserved:27; }; /* Flags */ struct acpi_device_flags { u32 dynamic_status:1; u32 removable:1; u32 ejectable:1; u32 power_manageable:1; u32 match_driver:1; u32 initialized:1; u32 visited:1; u32 hotplug_notify:1; u32 is_dock_station:1; u32 of_compatible_ok:1; u32 coherent_dma:1; u32 cca_seen:1; u32 enumeration_by_parent:1; u32 reserved:19; }; /* File System */ struct acpi_device_dir { struct proc_dir_entry *entry; }; #define acpi_device_dir(d) ((d)->dir.entry) /* Plug and Play */ typedef char acpi_bus_id[8]; typedef u64 acpi_bus_address; typedef char acpi_device_name[40]; typedef char acpi_device_class[20]; struct acpi_hardware_id { struct list_head list; const char *id; }; struct acpi_pnp_type { u32 hardware_id:1; u32 bus_address:1; u32 platform_id:1; u32 reserved:29; }; struct acpi_device_pnp { acpi_bus_id bus_id; /* Object name */ int instance_no; /* Instance number of this object */ struct acpi_pnp_type type; /* ID type */ acpi_bus_address bus_address; /* _ADR */ char *unique_id; /* _UID */ struct list_head ids; /* _HID and _CIDs */ acpi_device_name device_name; /* Driver-determined */ acpi_device_class device_class; /* " */ union acpi_object *str_obj; /* unicode string for _STR method */ }; #define acpi_device_bid(d) ((d)->pnp.bus_id) #define acpi_device_adr(d) ((d)->pnp.bus_address) const char *acpi_device_hid(struct acpi_device *device); #define acpi_device_uid(d) ((d)->pnp.unique_id) #define acpi_device_name(d) ((d)->pnp.device_name) #define acpi_device_class(d) ((d)->pnp.device_class) /* Power Management */ struct acpi_device_power_flags { u32 explicit_get:1; /* _PSC present? */ u32 power_resources:1; /* Power resources */ u32 inrush_current:1; /* Serialize Dx->D0 */ u32 power_removed:1; /* Optimize Dx->D0 */ u32 ignore_parent:1; /* Power is independent of parent power state */ u32 dsw_present:1; /* _DSW present? */ u32 reserved:26; }; struct acpi_device_power_state { struct { u8 valid:1; u8 explicit_set:1; /* _PSx present? */ u8 reserved:6; } flags; int power; /* % Power (compared to D0) */ int latency; /* Dx->D0 time (microseconds) */ struct list_head resources; /* Power resources referenced */ }; struct acpi_device_power { int state; /* Current state */ struct acpi_device_power_flags flags; struct acpi_device_power_state states[ACPI_D_STATE_COUNT]; /* Power states (D0-D3Cold) */ }; /* Performance Management */ struct acpi_device_perf_flags { u8 reserved:8; }; struct acpi_device_perf_state { struct { u8 valid:1; u8 reserved:7; } flags; u8 power; /* % Power (compared to P0) */ u8 performance; /* % Performance ( " ) */ int latency; /* Px->P0 time (microseconds) */ }; struct acpi_device_perf { int state; struct acpi_device_perf_flags flags; int state_count; struct acpi_device_perf_state *states; }; /* Wakeup Management */ struct acpi_device_wakeup_flags { u8 valid:1; /* Can successfully enable wakeup? */ u8 notifier_present:1; /* Wake-up notify handler has been installed */ }; struct acpi_device_wakeup_context { void (*func)(struct acpi_device_wakeup_context *context); struct device *dev; }; struct acpi_device_wakeup { acpi_handle gpe_device; u64 gpe_number; u64 sleep_state; struct list_head resources; struct acpi_device_wakeup_flags flags; struct acpi_device_wakeup_context context; struct wakeup_source *ws; int prepare_count; int enable_count; }; struct acpi_device_physical_node { unsigned int node_id; struct list_head node; struct device *dev; bool put_online:1; }; struct acpi_device_properties { const guid_t *guid; const union acpi_object *properties; struct list_head list; }; /* ACPI Device Specific Data (_DSD) */ struct acpi_device_data { const union acpi_object *pointer; struct list_head properties; const union acpi_object *of_compatible; struct list_head subnodes; }; struct acpi_gpio_mapping; /* Device */ struct acpi_device { int device_type; acpi_handle handle; /* no handle for fixed hardware */ struct fwnode_handle fwnode; struct acpi_device *parent; struct list_head children; struct list_head node; struct list_head wakeup_list; struct list_head del_list; struct acpi_device_status status; struct acpi_device_flags flags; struct acpi_device_pnp pnp; struct acpi_device_power power; struct acpi_device_wakeup wakeup; struct acpi_device_perf performance; struct acpi_device_dir dir; struct acpi_device_data data; struct acpi_scan_handler *handler; struct acpi_hotplug_context *hp; struct acpi_driver *driver; const struct acpi_gpio_mapping *driver_gpios; void *driver_data; struct device dev; unsigned int physical_node_count; unsigned int dep_unmet; struct list_head physical_node_list; struct mutex physical_node_lock; void (*remove)(struct acpi_device *); }; /* Non-device subnode */ struct acpi_data_node { const char *name; acpi_handle handle; struct fwnode_handle fwnode; struct fwnode_handle *parent; struct acpi_device_data data; struct list_head sibling; struct kobject kobj; struct completion kobj_done; }; extern const struct fwnode_operations acpi_device_fwnode_ops; extern const struct fwnode_operations acpi_data_fwnode_ops; extern const struct fwnode_operations acpi_static_fwnode_ops; bool is_acpi_device_node(const struct fwnode_handle *fwnode); bool is_acpi_data_node(const struct fwnode_handle *fwnode); static inline bool is_acpi_node(const struct fwnode_handle *fwnode) { return (is_acpi_device_node(fwnode) || is_acpi_data_node(fwnode)); } #define to_acpi_device_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_device_node_fwnode = __fwnode; \ \ is_acpi_device_node(__to_acpi_device_node_fwnode) ? \ container_of(__to_acpi_device_node_fwnode, \ struct acpi_device, fwnode) : \ NULL; \ }) #define to_acpi_data_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_data_node_fwnode = __fwnode; \ \ is_acpi_data_node(__to_acpi_data_node_fwnode) ? \ container_of(__to_acpi_data_node_fwnode, \ struct acpi_data_node, fwnode) : \ NULL; \ }) static inline bool is_acpi_static_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_static_fwnode_ops; } static inline bool acpi_data_node_match(const struct fwnode_handle *fwnode, const char *name) { return is_acpi_data_node(fwnode) ? (!strcmp(to_acpi_data_node(fwnode)->name, name)) : false; } static inline struct fwnode_handle *acpi_fwnode_handle(struct acpi_device *adev) { return &adev->fwnode; } static inline void *acpi_driver_data(struct acpi_device *d) { return d->driver_data; } #define to_acpi_device(d) container_of(d, struct acpi_device, dev) #define to_acpi_driver(d) container_of(d, struct acpi_driver, drv) static inline void acpi_set_device_status(struct acpi_device *adev, u32 sta) { *((u32 *)&adev->status) = sta; } static inline void acpi_set_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp) { hp->self = adev; adev->hp = hp; } void acpi_initialize_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp, int (*notify)(struct acpi_device *, u32), void (*uevent)(struct acpi_device *, u32)); /* acpi_device.dev.bus == &acpi_bus_type */ extern struct bus_type acpi_bus_type; /* * Events * ------ */ struct acpi_bus_event { struct list_head node; acpi_device_class device_class; acpi_bus_id bus_id; u32 type; u32 data; }; extern struct kobject *acpi_kobj; extern int acpi_bus_generate_netlink_event(const char*, const char*, u8, int); void acpi_bus_private_data_handler(acpi_handle, void *); int acpi_bus_get_private_data(acpi_handle, void **); int acpi_bus_attach_private_data(acpi_handle, void *); void acpi_bus_detach_private_data(acpi_handle); extern int acpi_notifier_call_chain(struct acpi_device *, u32, u32); extern int register_acpi_notifier(struct notifier_block *); extern int unregister_acpi_notifier(struct notifier_block *); /* * External Functions */ int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device); struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle); void acpi_bus_put_acpi_device(struct acpi_device *adev); acpi_status acpi_bus_get_status_handle(acpi_handle handle, unsigned long long *sta); int acpi_bus_get_status(struct acpi_device *device); int acpi_bus_set_power(acpi_handle handle, int state); const char *acpi_power_state_string(int state); int acpi_device_set_power(struct acpi_device *device, int state); int acpi_bus_init_power(struct acpi_device *device); int acpi_device_fix_up_power(struct acpi_device *device); int acpi_bus_update_power(acpi_handle handle, int *state_p); int acpi_device_update_power(struct acpi_device *device, int *state_p); bool acpi_bus_power_manageable(acpi_handle handle); int acpi_device_power_add_dependent(struct acpi_device *adev, struct device *dev); void acpi_device_power_remove_dependent(struct acpi_device *adev, struct device *dev); #ifdef CONFIG_PM bool acpi_bus_can_wakeup(acpi_handle handle); #else static inline bool acpi_bus_can_wakeup(acpi_handle handle) { return false; } #endif void acpi_scan_lock_acquire(void); void acpi_scan_lock_release(void); void acpi_lock_hp_context(void); void acpi_unlock_hp_context(void); int acpi_scan_add_handler(struct acpi_scan_handler *handler); int acpi_bus_register_driver(struct acpi_driver *driver); void acpi_bus_unregister_driver(struct acpi_driver *driver); int acpi_bus_scan(acpi_handle handle); void acpi_bus_trim(struct acpi_device *start); acpi_status acpi_bus_get_ejd(acpi_handle handle, acpi_handle * ejd); int acpi_match_device_ids(struct acpi_device *device, const struct acpi_device_id *ids); void acpi_set_modalias(struct acpi_device *adev, const char *default_id, char *modalias, size_t len); int acpi_create_dir(struct acpi_device *); void acpi_remove_dir(struct acpi_device *); static inline bool acpi_device_enumerated(struct acpi_device *adev) { return adev && adev->flags.initialized && adev->flags.visited; } /** * module_acpi_driver(acpi_driver) - Helper macro for registering an ACPI driver * @__acpi_driver: acpi_driver struct * * Helper macro for ACPI drivers which do not do anything special in module * init/exit. This eliminates a lot of boilerplate. Each module may only * use this macro once, and calling it replaces module_init() and module_exit() */ #define module_acpi_driver(__acpi_driver) \ module_driver(__acpi_driver, acpi_bus_register_driver, \ acpi_bus_unregister_driver) /* * Bind physical devices with ACPI devices */ struct acpi_bus_type { struct list_head list; const char *name; bool (*match)(struct device *dev); struct acpi_device * (*find_companion)(struct device *); void (*setup)(struct device *); void (*cleanup)(struct device *); }; int register_acpi_bus_type(struct acpi_bus_type *); int unregister_acpi_bus_type(struct acpi_bus_type *); int acpi_bind_one(struct device *dev, struct acpi_device *adev); int acpi_unbind_one(struct device *dev); struct acpi_pci_root { struct acpi_device * device; struct pci_bus *bus; u16 segment; struct resource secondary; /* downstream bus range */ u32 osc_support_set; /* _OSC state of support bits */ u32 osc_control_set; /* _OSC state of control bits */ phys_addr_t mcfg_addr; }; /* helper */ bool acpi_dma_supported(struct acpi_device *adev); enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev); int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, u64 *size); int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, const u32 *input_id); static inline int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr) { return acpi_dma_configure_id(dev, attr, NULL); } struct acpi_device *acpi_find_child_device(struct acpi_device *parent, u64 address, bool check_children); int acpi_is_root_bridge(acpi_handle); struct acpi_pci_root *acpi_pci_find_root(acpi_handle handle); int acpi_enable_wakeup_device_power(struct acpi_device *dev, int state); int acpi_disable_wakeup_device_power(struct acpi_device *dev); #ifdef CONFIG_X86 bool acpi_device_always_present(struct acpi_device *adev); #else static inline bool acpi_device_always_present(struct acpi_device *adev) { return false; } #endif #ifdef CONFIG_PM void acpi_pm_wakeup_event(struct device *dev); acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)); acpi_status acpi_remove_pm_notifier(struct acpi_device *adev); bool acpi_pm_device_can_wakeup(struct device *dev); int acpi_pm_device_sleep_state(struct device *, int *, int); int acpi_pm_set_device_wakeup(struct device *dev, bool enable); #else static inline void acpi_pm_wakeup_event(struct device *dev) { } static inline acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)) { return AE_SUPPORT; } static inline acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) { return AE_SUPPORT; } static inline bool acpi_pm_device_can_wakeup(struct device *dev) { return false; } static inline int acpi_pm_device_sleep_state(struct device *d, int *p, int m) { if (p) *p = ACPI_STATE_D0; return (m >= ACPI_STATE_D0 && m <= ACPI_STATE_D3_COLD) ? m : ACPI_STATE_D0; } static inline int acpi_pm_set_device_wakeup(struct device *dev, bool enable) { return -ENODEV; } #endif #ifdef CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT bool acpi_sleep_state_supported(u8 sleep_state); #else static inline bool acpi_sleep_state_supported(u8 sleep_state) { return false; } #endif #ifdef CONFIG_ACPI_SLEEP u32 acpi_target_system_state(void); #else static inline u32 acpi_target_system_state(void) { return ACPI_STATE_S0; } #endif static inline bool acpi_device_power_manageable(struct acpi_device *adev) { return adev->flags.power_manageable; } static inline bool acpi_device_can_wakeup(struct acpi_device *adev) { return adev->wakeup.flags.valid; } static inline bool acpi_device_can_poweroff(struct acpi_device *adev) { return adev->power.states[ACPI_STATE_D3_COLD].flags.valid || ((acpi_gbl_FADT.header.revision < 6) && adev->power.states[ACPI_STATE_D3_HOT].flags.explicit_set); } bool acpi_dev_hid_uid_match(struct acpi_device *adev, const char *hid2, const char *uid2); struct acpi_device * acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv); static inline void acpi_dev_put(struct acpi_device *adev) { if (adev) put_device(&adev->dev); } #else /* CONFIG_ACPI */ static inline int register_acpi_bus_type(void *bus) { return 0; } static inline int unregister_acpi_bus_type(void *bus) { return 0; } #endif /* CONFIG_ACPI */ #endif /*__ACPI_BUS_H__*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 /* * DRBG based on NIST SP800-90A * * Copyright Stephan Mueller <smueller@chronox.de>, 2014 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * ALTERNATIVELY, this product may be distributed under the terms of * the GNU General Public License, in which case the provisions of the GPL are * required INSTEAD OF the above restrictions. (This clause is * necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #ifndef _DRBG_H #define _DRBG_H #include <linux/random.h> #include <linux/scatterlist.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/module.h> #include <linux/crypto.h> #include <linux/slab.h> #include <crypto/internal/rng.h> #include <crypto/rng.h> #include <linux/fips.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/workqueue.h> /* * Concatenation Helper and string operation helper * * SP800-90A requires the concatenation of different data. To avoid copying * buffers around or allocate additional memory, the following data structure * is used to point to the original memory with its size. In addition, it * is used to build a linked list. The linked list defines the concatenation * of individual buffers. The order of memory block referenced in that * linked list determines the order of concatenation. */ struct drbg_string { const unsigned char *buf; size_t len; struct list_head list; }; static inline void drbg_string_fill(struct drbg_string *string, const unsigned char *buf, size_t len) { string->buf = buf; string->len = len; INIT_LIST_HEAD(&string->list); } struct drbg_state; typedef uint32_t drbg_flag_t; struct drbg_core { drbg_flag_t flags; /* flags for the cipher */ __u8 statelen; /* maximum state length */ __u8 blocklen_bytes; /* block size of output in bytes */ char cra_name[CRYPTO_MAX_ALG_NAME]; /* mapping to kernel crypto API */ /* kernel crypto API backend cipher name */ char backend_cra_name[CRYPTO_MAX_ALG_NAME]; }; struct drbg_state_ops { int (*update)(struct drbg_state *drbg, struct list_head *seed, int reseed); int (*generate)(struct drbg_state *drbg, unsigned char *buf, unsigned int buflen, struct list_head *addtl); int (*crypto_init)(struct drbg_state *drbg); int (*crypto_fini)(struct drbg_state *drbg); }; struct drbg_test_data { struct drbg_string *testentropy; /* TEST PARAMETER: test entropy */ }; struct drbg_state { struct mutex drbg_mutex; /* lock around DRBG */ unsigned char *V; /* internal state 10.1.1.1 1a) */ unsigned char *Vbuf; /* hash: static value 10.1.1.1 1b) hmac / ctr: key */ unsigned char *C; unsigned char *Cbuf; /* Number of RNG requests since last reseed -- 10.1.1.1 1c) */ size_t reseed_ctr; size_t reseed_threshold; /* some memory the DRBG can use for its operation */ unsigned char *scratchpad; unsigned char *scratchpadbuf; void *priv_data; /* Cipher handle */ struct crypto_skcipher *ctr_handle; /* CTR mode cipher handle */ struct skcipher_request *ctr_req; /* CTR mode request handle */ __u8 *outscratchpadbuf; /* CTR mode output scratchpad */ __u8 *outscratchpad; /* CTR mode aligned outbuf */ struct crypto_wait ctr_wait; /* CTR mode async wait obj */ struct scatterlist sg_in, sg_out; /* CTR mode SGLs */ bool seeded; /* DRBG fully seeded? */ bool pr; /* Prediction resistance enabled? */ bool fips_primed; /* Continuous test primed? */ unsigned char *prev; /* FIPS 140-2 continuous test value */ struct work_struct seed_work; /* asynchronous seeding support */ struct crypto_rng *jent; const struct drbg_state_ops *d_ops; const struct drbg_core *core; struct drbg_string test_data; struct random_ready_callback random_ready; }; static inline __u8 drbg_statelen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->statelen; return 0; } static inline __u8 drbg_blocklen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->blocklen_bytes; return 0; } static inline __u8 drbg_keylen(struct drbg_state *drbg) { if (drbg && drbg->core) return (drbg->core->statelen - drbg->core->blocklen_bytes); return 0; } static inline size_t drbg_max_request_bytes(struct drbg_state *drbg) { /* SP800-90A requires the limit 2**19 bits, but we return bytes */ return (1 << 16); } static inline size_t drbg_max_addtl(struct drbg_state *drbg) { /* SP800-90A requires 2**35 bytes additional info str / pers str */ #if (__BITS_PER_LONG == 32) /* * SP800-90A allows smaller maximum numbers to be returned -- we * return SIZE_MAX - 1 to allow the verification of the enforcement * of this value in drbg_healthcheck_sanity. */ return (SIZE_MAX - 1); #else return (1UL<<35); #endif } static inline size_t drbg_max_requests(struct drbg_state *drbg) { /* SP800-90A requires 2**48 maximum requests before reseeding */ return (1<<20); } /* * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data. * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl) { return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data and * allow furnishing of test_data * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl_test(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_reset() to allow the caller to provide test_data * * @drng DRBG handle -- see crypto_rng_reset * @pers personalization string input buffer * @perslen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_reset */ static inline int crypto_drbg_reset_test(struct crypto_rng *drng, struct drbg_string *pers, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_reset(drng, pers->buf, pers->len); } /* DRBG type flags */ #define DRBG_CTR ((drbg_flag_t)1<<0) #define DRBG_HMAC ((drbg_flag_t)1<<1) #define DRBG_HASH ((drbg_flag_t)1<<2) #define DRBG_TYPE_MASK (DRBG_CTR | DRBG_HMAC | DRBG_HASH) /* DRBG strength flags */ #define DRBG_STRENGTH128 ((drbg_flag_t)1<<3) #define DRBG_STRENGTH192 ((drbg_flag_t)1<<4) #define DRBG_STRENGTH256 ((drbg_flag_t)1<<5) #define DRBG_STRENGTH_MASK (DRBG_STRENGTH128 | DRBG_STRENGTH192 | \ DRBG_STRENGTH256) enum drbg_prefixes { DRBG_PREFIX0 = 0x00, DRBG_PREFIX1, DRBG_PREFIX2, DRBG_PREFIX3 }; #endif /* _DRBG_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_HOST_H #define _SCSI_SCSI_HOST_H #include <linux/device.h> #include <linux/list.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/seq_file.h> #include <linux/blk-mq.h> #include <scsi/scsi.h> struct block_device; struct completion; struct module; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_host_cmd_pool; struct scsi_transport_template; #define SG_ALL SG_CHUNK_SIZE #define MODE_UNKNOWN 0x00 #define MODE_INITIATOR 0x01 #define MODE_TARGET 0x02 struct scsi_host_template { struct module *module; const char *name; /* * The info function will return whatever useful information the * developer sees fit. If not provided, then the name field will * be used instead. * * Status: OPTIONAL */ const char *(* info)(struct Scsi_Host *); /* * Ioctl interface * * Status: OPTIONAL */ int (*ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT /* * Compat handler. Handle 32bit ABI. * When unknown ioctl is passed return -ENOIOCTLCMD. * * Status: OPTIONAL */ int (*compat_ioctl)(struct scsi_device *dev, unsigned int cmd, void __user *arg); #endif int (*init_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); int (*exit_cmd_priv)(struct Scsi_Host *shost, struct scsi_cmnd *cmd); /* * The queuecommand function is used to queue up a scsi * command block to the LLDD. When the driver finished * processing the command the done callback is invoked. * * If queuecommand returns 0, then the driver has accepted the * command. It must also push it to the HBA if the scsi_cmnd * flag SCMD_LAST is set, or if the driver does not implement * commit_rqs. The done() function must be called on the command * when the driver has finished with it. (you may call done on the * command before queuecommand returns, but in this case you * *must* return 0 from queuecommand). * * Queuecommand may also reject the command, in which case it may * not touch the command and must not call done() for it. * * There are two possible rejection returns: * * SCSI_MLQUEUE_DEVICE_BUSY: Block this device temporarily, but * allow commands to other devices serviced by this host. * * SCSI_MLQUEUE_HOST_BUSY: Block all devices served by this * host temporarily. * * For compatibility, any other non-zero return is treated the * same as SCSI_MLQUEUE_HOST_BUSY. * * NOTE: "temporarily" means either until the next command for# * this device/host completes, or a period of time determined by * I/O pressure in the system if there are no other outstanding * commands. * * STATUS: REQUIRED */ int (* queuecommand)(struct Scsi_Host *, struct scsi_cmnd *); /* * The commit_rqs function is used to trigger a hardware * doorbell after some requests have been queued with * queuecommand, when an error is encountered before sending * the request with SCMD_LAST set. * * STATUS: OPTIONAL */ void (*commit_rqs)(struct Scsi_Host *, u16); /* * This is an error handling strategy routine. You don't need to * define one of these if you don't want to - there is a default * routine that is present that should work in most cases. For those * driver authors that have the inclination and ability to write their * own strategy routine, this is where it is specified. Note - the * strategy routine is *ALWAYS* run in the context of the kernel eh * thread. Thus you are guaranteed to *NOT* be in an interrupt * handler when you execute this, and you are also guaranteed to * *NOT* have any other commands being queued while you are in the * strategy routine. When you return from this function, operations * return to normal. * * See scsi_error.c scsi_unjam_host for additional comments about * what this function should and should not be attempting to do. * * Status: REQUIRED (at least one of them) */ int (* eh_abort_handler)(struct scsi_cmnd *); int (* eh_device_reset_handler)(struct scsi_cmnd *); int (* eh_target_reset_handler)(struct scsi_cmnd *); int (* eh_bus_reset_handler)(struct scsi_cmnd *); int (* eh_host_reset_handler)(struct scsi_cmnd *); /* * Before the mid layer attempts to scan for a new device where none * currently exists, it will call this entry in your driver. Should * your driver need to allocate any structs or perform any other init * items in order to send commands to a currently unused target/lun * combo, then this is where you can perform those allocations. This * is specifically so that drivers won't have to perform any kind of * "is this a new device" checks in their queuecommand routine, * thereby making the hot path a bit quicker. * * Return values: 0 on success, non-0 on failure * * Deallocation: If we didn't find any devices at this ID, you will * get an immediate call to slave_destroy(). If we find something * here then you will get a call to slave_configure(), then the * device will be used for however long it is kept around, then when * the device is removed from the system (or * possibly at reboot * time), you will then get a call to slave_destroy(). This is * assuming you implement slave_configure and slave_destroy. * However, if you allocate memory and hang it off the device struct, * then you must implement the slave_destroy() routine at a minimum * in order to avoid leaking memory * each time a device is tore down. * * Status: OPTIONAL */ int (* slave_alloc)(struct scsi_device *); /* * Once the device has responded to an INQUIRY and we know the * device is online, we call into the low level driver with the * struct scsi_device *. If the low level device driver implements * this function, it *must* perform the task of setting the queue * depth on the device. All other tasks are optional and depend * on what the driver supports and various implementation details. * * Things currently recommended to be handled at this time include: * * 1. Setting the device queue depth. Proper setting of this is * described in the comments for scsi_change_queue_depth. * 2. Determining if the device supports the various synchronous * negotiation protocols. The device struct will already have * responded to INQUIRY and the results of the standard items * will have been shoved into the various device flag bits, eg. * device->sdtr will be true if the device supports SDTR messages. * 3. Allocating command structs that the device will need. * 4. Setting the default timeout on this device (if needed). * 5. Anything else the low level driver might want to do on a device * specific setup basis... * 6. Return 0 on success, non-0 on error. The device will be marked * as offline on error so that no access will occur. If you return * non-0, your slave_destroy routine will never get called for this * device, so don't leave any loose memory hanging around, clean * up after yourself before returning non-0 * * Status: OPTIONAL */ int (* slave_configure)(struct scsi_device *); /* * Immediately prior to deallocating the device and after all activity * has ceased the mid layer calls this point so that the low level * driver may completely detach itself from the scsi device and vice * versa. The low level driver is responsible for freeing any memory * it allocated in the slave_alloc or slave_configure calls. * * Status: OPTIONAL */ void (* slave_destroy)(struct scsi_device *); /* * Before the mid layer attempts to scan for a new device attached * to a target where no target currently exists, it will call this * entry in your driver. Should your driver need to allocate any * structs or perform any other init items in order to send commands * to a currently unused target, then this is where you can perform * those allocations. * * Return values: 0 on success, non-0 on failure * * Status: OPTIONAL */ int (* target_alloc)(struct scsi_target *); /* * Immediately prior to deallocating the target structure, and * after all activity to attached scsi devices has ceased, the * midlayer calls this point so that the driver may deallocate * and terminate any references to the target. * * Status: OPTIONAL */ void (* target_destroy)(struct scsi_target *); /* * If a host has the ability to discover targets on its own instead * of scanning the entire bus, it can fill in this function and * call scsi_scan_host(). This function will be called periodically * until it returns 1 with the scsi_host and the elapsed time of * the scan in jiffies. * * Status: OPTIONAL */ int (* scan_finished)(struct Scsi_Host *, unsigned long); /* * If the host wants to be called before the scan starts, but * after the midlayer has set up ready for the scan, it can fill * in this function. * * Status: OPTIONAL */ void (* scan_start)(struct Scsi_Host *); /* * Fill in this function to allow the queue depth of this host * to be changeable (on a per device basis). Returns either * the current queue depth setting (may be different from what * was passed in) or an error. An error should only be * returned if the requested depth is legal but the driver was * unable to set it. If the requested depth is illegal, the * driver should set and return the closest legal queue depth. * * Status: OPTIONAL */ int (* change_queue_depth)(struct scsi_device *, int); /* * This functions lets the driver expose the queue mapping * to the block layer. * * Status: OPTIONAL */ int (* map_queues)(struct Scsi_Host *shost); /* * Check if scatterlists need to be padded for DMA draining. * * Status: OPTIONAL */ bool (* dma_need_drain)(struct request *rq); /* * This function determines the BIOS parameters for a given * harddisk. These tend to be numbers that are made up by * the host adapter. Parameters: * size, device, list (heads, sectors, cylinders) * * Status: OPTIONAL */ int (* bios_param)(struct scsi_device *, struct block_device *, sector_t, int []); /* * This function is called when one or more partitions on the * device reach beyond the end of the device. * * Status: OPTIONAL */ void (*unlock_native_capacity)(struct scsi_device *); /* * Can be used to export driver statistics and other infos to the * world outside the kernel ie. userspace and it also provides an * interface to feed the driver with information. * * Status: OBSOLETE */ int (*show_info)(struct seq_file *, struct Scsi_Host *); int (*write_info)(struct Scsi_Host *, char *, int); /* * This is an optional routine that allows the transport to become * involved when a scsi io timer fires. The return value tells the * timer routine how to finish the io timeout handling. * * Status: OPTIONAL */ enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd *); /* This is an optional routine that allows transport to initiate * LLD adapter or firmware reset using sysfs attribute. * * Return values: 0 on success, -ve value on failure. * * Status: OPTIONAL */ int (*host_reset)(struct Scsi_Host *shost, int reset_type); #define SCSI_ADAPTER_RESET 1 #define SCSI_FIRMWARE_RESET 2 /* * Name of proc directory */ const char *proc_name; /* * Used to store the procfs directory if a driver implements the * show_info method. */ struct proc_dir_entry *proc_dir; /* * This determines if we will use a non-interrupt driven * or an interrupt driven scheme. It is set to the maximum number * of simultaneous commands a single hw queue in HBA will accept. */ int can_queue; /* * In many instances, especially where disconnect / reconnect are * supported, our host also has an ID on the SCSI bus. If this is * the case, then it must be reserved. Please set this_id to -1 if * your setup is in single initiator mode, and the host lacks an * ID. */ int this_id; /* * This determines the degree to which the host adapter is capable * of scatter-gather. */ unsigned short sg_tablesize; unsigned short sg_prot_tablesize; /* * Set this if the host adapter has limitations beside segment count. */ unsigned int max_sectors; /* * Maximum size in bytes of a single segment. */ unsigned int max_segment_size; /* * DMA scatter gather segment boundary limit. A segment crossing this * boundary will be split in two. */ unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * This specifies "machine infinity" for host templates which don't * limit the transfer size. Note this limit represents an absolute * maximum, and may be over the transfer limits allowed for * individual devices (e.g. 256 for SCSI-1). */ #define SCSI_DEFAULT_MAX_SECTORS 1024 /* * True if this host adapter can make good use of linked commands. * This will allow more than one command to be queued to a given * unit on a given host. Set this to the maximum number of command * blocks to be provided for each device. Set this to 1 for one * command block per lun, 2 for two, etc. Do not set this to 0. * You should make sure that the host adapter will do the right thing * before you try setting this above 1. */ short cmd_per_lun; /* * present contains counter indicating how many boards of this * type were found when we did the scan. */ unsigned char present; /* If use block layer to manage tags, this is tag allocation policy */ int tag_alloc_policy; /* * Track QUEUE_FULL events and reduce queue depth on demand. */ unsigned track_queue_depth:1; /* * This specifies the mode that a LLD supports. */ unsigned supported_mode:2; /* * True if this host adapter uses unchecked DMA onto an ISA bus. */ unsigned unchecked_isa_dma:1; /* * True for emulated SCSI host adapters (e.g. ATAPI). */ unsigned emulated:1; /* * True if the low-level driver performs its own reset-settle delays. */ unsigned skip_settle_delay:1; /* True if the controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* * Countdown for host blocking with no commands outstanding. */ unsigned int max_host_blocked; /* * Default value for the blocking. If the queue is empty, * host_blocked counts down in the request_fn until it restarts * host operations as zero is reached. * * FIXME: This should probably be a value in the template */ #define SCSI_DEFAULT_HOST_BLOCKED 7 /* * Pointer to the sysfs class properties for this host, NULL terminated. */ struct device_attribute **shost_attrs; /* * Pointer to the SCSI device properties for this host, NULL terminated. */ struct device_attribute **sdev_attrs; /* * Pointer to the SCSI device attribute groups for this host, * NULL terminated. */ const struct attribute_group **sdev_groups; /* * Vendor Identifier associated with the host * * Note: When specifying vendor_id, be sure to read the * Vendor Type and ID formatting requirements specified in * scsi_netlink.h */ u64 vendor_id; /* * Additional per-command data allocated for the driver. */ unsigned int cmd_size; struct scsi_host_cmd_pool *cmd_pool; /* Delay for runtime autosuspend */ int rpm_autosuspend_delay; }; /* * Temporary #define for host lock push down. Can be removed when all * drivers have been updated to take advantage of unlocked * queuecommand. * */ #define DEF_SCSI_QCMD(func_name) \ int func_name(struct Scsi_Host *shost, struct scsi_cmnd *cmd) \ { \ unsigned long irq_flags; \ int rc; \ spin_lock_irqsave(shost->host_lock, irq_flags); \ rc = func_name##_lck (cmd, cmd->scsi_done); \ spin_unlock_irqrestore(shost->host_lock, irq_flags); \ return rc; \ } /* * shost state: If you alter this, you also need to alter scsi_sysfs.c * (for the ascii descriptions) and the state model enforcer: * scsi_host_set_state() */ enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING, SHOST_CANCEL, SHOST_DEL, SHOST_RECOVERY, SHOST_CANCEL_RECOVERY, SHOST_DEL_RECOVERY, }; struct Scsi_Host { /* * __devices is protected by the host_lock, but you should * usually use scsi_device_lookup / shost_for_each_device * to access it and don't care about locking yourself. * In the rare case of being in irq context you can use * their __ prefixed variants with the lock held. NEVER * access this list directly from a driver. */ struct list_head __devices; struct list_head __targets; struct list_head starved_list; spinlock_t default_lock; spinlock_t *host_lock; struct mutex scan_mutex;/* serialize scanning activity */ struct list_head eh_cmd_q; struct task_struct * ehandler; /* Error recovery thread. */ struct completion * eh_action; /* Wait for specific actions on the host. */ wait_queue_head_t host_wait; struct scsi_host_template *hostt; struct scsi_transport_template *transportt; /* Area to keep a shared tag map */ struct blk_mq_tag_set tag_set; atomic_t host_blocked; unsigned int host_failed; /* commands that failed. protected by host_lock */ unsigned int host_eh_scheduled; /* EH scheduled without command */ unsigned int host_no; /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */ /* next two fields are used to bound the time spent in error handling */ int eh_deadline; unsigned long last_reset; /* * These three parameters can be used to allow for wide scsi, * and for host adapters that support multiple busses * The last two should be set to 1 more than the actual max id * or lun (e.g. 8 for SCSI parallel systems). */ unsigned int max_channel; unsigned int max_id; u64 max_lun; /* * This is a unique identifier that must be assigned so that we * have some way of identifying each detected host adapter properly * and uniquely. For hosts that do not support more than one card * in the system at one time, this does not need to be set. It is * initialized to 0 in scsi_register. */ unsigned int unique_id; /* * The maximum length of SCSI commands that this host can accept. * Probably 12 for most host adapters, but could be 16 for others. * or 260 if the driver supports variable length cdbs. * For drivers that don't set this field, a value of 12 is * assumed. */ unsigned short max_cmd_len; int this_id; int can_queue; short cmd_per_lun; short unsigned int sg_tablesize; short unsigned int sg_prot_tablesize; unsigned int max_sectors; unsigned int max_segment_size; unsigned long dma_boundary; unsigned long virt_boundary_mask; /* * In scsi-mq mode, the number of hardware queues supported by the LLD. * * Note: it is assumed that each hardware queue has a queue depth of * can_queue. In other words, the total queue depth per host * is nr_hw_queues * can_queue. However, for when host_tagset is set, * the total queue depth is can_queue. */ unsigned nr_hw_queues; unsigned active_mode:2; unsigned unchecked_isa_dma:1; /* * Host has requested that no further requests come through for the * time being. */ unsigned host_self_blocked:1; /* * Host uses correct SCSI ordering not PC ordering. The bit is * set for the minority of drivers whose authors actually read * the spec ;). */ unsigned reverse_ordering:1; /* Task mgmt function in progress */ unsigned tmf_in_progress:1; /* Asynchronous scan in progress */ unsigned async_scan:1; /* Don't resume host in EH */ unsigned eh_noresume:1; /* The controller does not support WRITE SAME */ unsigned no_write_same:1; /* True if the host uses host-wide tagspace */ unsigned host_tagset:1; /* Host responded with short (<36 bytes) INQUIRY result */ unsigned short_inquiry:1; /* The transport requires the LUN bits NOT to be stored in CDB[1] */ unsigned no_scsi2_lun_in_cdb:1; /* * Optional work queue to be utilized by the transport */ char work_q_name[20]; struct workqueue_struct *work_q; /* * Task management function work queue */ struct workqueue_struct *tmf_work_q; /* * Value host_blocked counts down from */ unsigned int max_host_blocked; /* Protection Information */ unsigned int prot_capabilities; unsigned char prot_guard_type; /* legacy crap */ unsigned long base; unsigned long io_port; unsigned char n_io_port; unsigned char dma_channel; unsigned int irq; enum scsi_host_state shost_state; /* ldm bits */ struct device shost_gendev, shost_dev; /* * Points to the transport data (if any) which is allocated * separately */ void *shost_data; /* * Points to the physical bus device we'd use to do DMA * Needed just in case we have virtual hosts. */ struct device *dma_dev; /* * We should ensure that this is aligned, both for better performance * and also because some compilers (m68k) don't automatically force * alignment to a long boundary. */ unsigned long hostdata[] /* Used for storage of host specific stuff */ __attribute__ ((aligned (sizeof(unsigned long)))); }; #define class_to_shost(d) \ container_of(d, struct Scsi_Host, shost_dev) #define shost_printk(prefix, shost, fmt, a...) \ dev_printk(prefix, &(shost)->shost_gendev, fmt, ##a) static inline void *shost_priv(struct Scsi_Host *shost) { return (void *)shost->hostdata; } int scsi_is_host_device(const struct device *); static inline struct Scsi_Host *dev_to_shost(struct device *dev) { while (!scsi_is_host_device(dev)) { if (!dev->parent) return NULL; dev = dev->parent; } return container_of(dev, struct Scsi_Host, shost_gendev); } static inline int scsi_host_in_recovery(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RECOVERY || shost->shost_state == SHOST_CANCEL_RECOVERY || shost->shost_state == SHOST_DEL_RECOVERY || shost->tmf_in_progress; } extern int scsi_queue_work(struct Scsi_Host *, struct work_struct *); extern void scsi_flush_work(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template *, int); extern int __must_check scsi_add_host_with_dma(struct Scsi_Host *, struct device *, struct device *); extern void scsi_scan_host(struct Scsi_Host *); extern void scsi_rescan_device(struct device *); extern void scsi_remove_host(struct Scsi_Host *); extern struct Scsi_Host *scsi_host_get(struct Scsi_Host *); extern int scsi_host_busy(struct Scsi_Host *shost); extern void scsi_host_put(struct Scsi_Host *t); extern struct Scsi_Host *scsi_host_lookup(unsigned short); extern const char *scsi_host_state_name(enum scsi_host_state); extern void scsi_host_complete_all_commands(struct Scsi_Host *shost, int status); static inline int __must_check scsi_add_host(struct Scsi_Host *host, struct device *dev) { return scsi_add_host_with_dma(host, dev, dev); } static inline struct device *scsi_get_device(struct Scsi_Host *shost) { return shost->shost_gendev.parent; } /** * scsi_host_scan_allowed - Is scanning of this host allowed * @shost: Pointer to Scsi_Host. **/ static inline int scsi_host_scan_allowed(struct Scsi_Host *shost) { return shost->shost_state == SHOST_RUNNING || shost->shost_state == SHOST_RECOVERY; } extern void scsi_unblock_requests(struct Scsi_Host *); extern void scsi_block_requests(struct Scsi_Host *); extern int scsi_host_block(struct Scsi_Host *shost); extern int scsi_host_unblock(struct Scsi_Host *shost, int new_state); void scsi_host_busy_iter(struct Scsi_Host *, bool (*fn)(struct scsi_cmnd *, void *, bool), void *priv); struct class_container; /* * These two functions are used to allocate and free a pseudo device * which will connect to the host adapter itself rather than any * physical device. You must deallocate when you are done with the * thing. This physical pseudo-device isn't real and won't be available * from any high-level drivers. */ extern void scsi_free_host_dev(struct scsi_device *); extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host *); /* * DIF defines the exchange of protection information between * initiator and SBC block device. * * DIX defines the exchange of protection information between OS and * initiator. */ enum scsi_host_prot_capabilities { SHOST_DIF_TYPE1_PROTECTION = 1 << 0, /* T10 DIF Type 1 */ SHOST_DIF_TYPE2_PROTECTION = 1 << 1, /* T10 DIF Type 2 */ SHOST_DIF_TYPE3_PROTECTION = 1 << 2, /* T10 DIF Type 3 */ SHOST_DIX_TYPE0_PROTECTION = 1 << 3, /* DIX between OS and HBA only */ SHOST_DIX_TYPE1_PROTECTION = 1 << 4, /* DIX with DIF Type 1 */ SHOST_DIX_TYPE2_PROTECTION = 1 << 5, /* DIX with DIF Type 2 */ SHOST_DIX_TYPE3_PROTECTION = 1 << 6, /* DIX with DIF Type 3 */ }; /* * SCSI hosts which support the Data Integrity Extensions must * indicate their capabilities by setting the prot_capabilities using * this call. */ static inline void scsi_host_set_prot(struct Scsi_Host *shost, unsigned int mask) { shost->prot_capabilities = mask; } static inline unsigned int scsi_host_get_prot(struct Scsi_Host *shost) { return shost->prot_capabilities; } static inline int scsi_host_prot_dma(struct Scsi_Host *shost) { return shost->prot_capabilities >= SHOST_DIX_TYPE0_PROTECTION; } static inline unsigned int scsi_host_dif_capable(struct Scsi_Host *shost, unsigned int target_type) { static unsigned char cap[] = { 0, SHOST_DIF_TYPE1_PROTECTION, SHOST_DIF_TYPE2_PROTECTION, SHOST_DIF_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type] ? target_type : 0; } static inline unsigned int scsi_host_dix_capable(struct Scsi_Host *shost, unsigned int target_type) { #if defined(CONFIG_BLK_DEV_INTEGRITY) static unsigned char cap[] = { SHOST_DIX_TYPE0_PROTECTION, SHOST_DIX_TYPE1_PROTECTION, SHOST_DIX_TYPE2_PROTECTION, SHOST_DIX_TYPE3_PROTECTION }; if (target_type >= ARRAY_SIZE(cap)) return 0; return shost->prot_capabilities & cap[target_type]; #endif return 0; } /* * All DIX-capable initiators must support the T10-mandated CRC * checksum. Controllers can optionally implement the IP checksum * scheme which has much lower impact on system performance. Note * that the main rationale for the checksum is to match integrity * metadata with data. Detecting bit errors are a job for ECC memory * and buses. */ enum scsi_host_guard_type { SHOST_DIX_GUARD_CRC = 1 << 0, SHOST_DIX_GUARD_IP = 1 << 1, }; static inline void scsi_host_set_guard(struct Scsi_Host *shost, unsigned char type) { shost->prot_guard_type = type; } static inline unsigned char scsi_host_get_guard(struct Scsi_Host *shost) { return shost->prot_guard_type; } extern int scsi_host_set_state(struct Scsi_Host *, enum scsi_host_state); #endif /* _SCSI_SCSI_HOST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SR-IPv6 implementation * * Author: * David Lebrun <david.lebrun@uclouvain.be> */ #ifndef _NET_SEG6_H #define _NET_SEG6_H #include <linux/net.h> #include <linux/ipv6.h> #include <linux/seg6.h> #include <linux/rhashtable-types.h> static inline void update_csum_diff4(struct sk_buff *skb, __be32 from, __be32 to) { __be32 diff[] = { ~from, to }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } static inline void update_csum_diff16(struct sk_buff *skb, __be32 *from, __be32 *to) { __be32 diff[] = { ~from[0], ~from[1], ~from[2], ~from[3], to[0], to[1], to[2], to[3], }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } struct seg6_pernet_data { struct mutex lock; struct in6_addr __rcu *tun_src; #ifdef CONFIG_IPV6_SEG6_HMAC struct rhashtable hmac_infos; #endif }; static inline struct seg6_pernet_data *seg6_pernet(struct net *net) { #if IS_ENABLED(CONFIG_IPV6) return net->ipv6.seg6_data; #else return NULL; #endif } extern int seg6_init(void); extern void seg6_exit(void); extern int seg6_iptunnel_init(void); extern void seg6_iptunnel_exit(void); extern int seg6_local_init(void); extern void seg6_local_exit(void); extern bool seg6_validate_srh(struct ipv6_sr_hdr *srh, int len, bool reduced); extern int seg6_do_srh_encap(struct sk_buff *skb, struct ipv6_sr_hdr *osrh, int proto); extern int seg6_do_srh_inline(struct sk_buff *skb, struct ipv6_sr_hdr *osrh); extern int seg6_lookup_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr, u32 tbl_id); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/pm_qos.h> static inline void device_pm_init_common(struct device *dev) { if (!dev->power.early_init) { spin_lock_init(&dev->power.lock); dev->power.qos = NULL; dev->power.early_init = true; } } #ifdef CONFIG_PM static inline void pm_runtime_early_init(struct device *dev) { dev->power.disable_depth = 1; device_pm_init_common(dev); } extern void pm_runtime_init(struct device *dev); extern void pm_runtime_reinit(struct device *dev); extern void pm_runtime_remove(struct device *dev); extern u64 pm_runtime_active_time(struct device *dev); #define WAKE_IRQ_DEDICATED_ALLOCATED BIT(0) #define WAKE_IRQ_DEDICATED_MANAGED BIT(1) #define WAKE_IRQ_DEDICATED_MASK (WAKE_IRQ_DEDICATED_ALLOCATED | \ WAKE_IRQ_DEDICATED_MANAGED) struct wake_irq { struct device *dev; unsigned int status; int irq; const char *name; }; extern void dev_pm_arm_wake_irq(struct wake_irq *wirq); extern void dev_pm_disarm_wake_irq(struct wake_irq *wirq); extern void dev_pm_enable_wake_irq_check(struct device *dev, bool can_change_status); extern void dev_pm_disable_wake_irq_check(struct device *dev); #ifdef CONFIG_PM_SLEEP extern void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq); extern void device_wakeup_detach_irq(struct device *dev); extern void device_wakeup_arm_wake_irqs(void); extern void device_wakeup_disarm_wake_irqs(void); #else static inline void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq) {} static inline void device_wakeup_detach_irq(struct device *dev) { } #endif /* CONFIG_PM_SLEEP */ /* * sysfs.c */ extern int dpm_sysfs_add(struct device *dev); extern void dpm_sysfs_remove(struct device *dev); extern void rpm_sysfs_remove(struct device *dev); extern int wakeup_sysfs_add(struct device *dev); extern void wakeup_sysfs_remove(struct device *dev); extern int pm_qos_sysfs_add_resume_latency(struct device *dev); extern void pm_qos_sysfs_remove_resume_latency(struct device *dev); extern int pm_qos_sysfs_add_flags(struct device *dev); extern void pm_qos_sysfs_remove_flags(struct device *dev); extern int pm_qos_sysfs_add_latency_tolerance(struct device *dev); extern void pm_qos_sysfs_remove_latency_tolerance(struct device *dev); extern int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); #else /* CONFIG_PM */ static inline void pm_runtime_early_init(struct device *dev) { device_pm_init_common(dev); } static inline void pm_runtime_init(struct device *dev) {} static inline void pm_runtime_reinit(struct device *dev) {} static inline void pm_runtime_remove(struct device *dev) {} static inline int dpm_sysfs_add(struct device *dev) { return 0; } static inline void dpm_sysfs_remove(struct device *dev) {} static inline int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) { return 0; } #endif #ifdef CONFIG_PM_SLEEP /* kernel/power/main.c */ extern int pm_async_enabled; /* drivers/base/power/main.c */ extern struct list_head dpm_list; /* The active device list */ static inline struct device *to_device(struct list_head *entry) { return container_of(entry, struct device, power.entry); } extern void device_pm_sleep_init(struct device *dev); extern void device_pm_add(struct device *); extern void device_pm_remove(struct device *); extern void device_pm_move_before(struct device *, struct device *); extern void device_pm_move_after(struct device *, struct device *); extern void device_pm_move_last(struct device *); extern void device_pm_check_callbacks(struct device *dev); static inline bool device_pm_initialized(struct device *dev) { return dev->power.in_dpm_list; } /* drivers/base/power/wakeup_stats.c */ extern int wakeup_source_sysfs_add(struct device *parent, struct wakeup_source *ws); extern void wakeup_source_sysfs_remove(struct wakeup_source *ws); extern int pm_wakeup_source_sysfs_add(struct device *parent); #else /* !CONFIG_PM_SLEEP */ static inline void device_pm_sleep_init(struct device *dev) {} static inline void device_pm_add(struct device *dev) {} static inline void device_pm_remove(struct device *dev) { pm_runtime_remove(dev); } static inline void device_pm_move_before(struct device *deva, struct device *devb) {} static inline void device_pm_move_after(struct device *deva, struct device *devb) {} static inline void device_pm_move_last(struct device *dev) {} static inline void device_pm_check_callbacks(struct device *dev) {} static inline bool device_pm_initialized(struct device *dev) { return device_is_registered(dev); } static inline int pm_wakeup_source_sysfs_add(struct device *parent) { return 0; } #endif /* !CONFIG_PM_SLEEP */ static inline void device_pm_init(struct device *dev) { device_pm_init_common(dev); device_pm_sleep_init(dev); pm_runtime_init(dev); }
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_H #define _LINUX_LIST_H #include <linux/types.h> #include <linux/stddef.h> #include <linux/poison.h> #include <linux/const.h> #include <linux/kernel.h> /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) /** * INIT_LIST_HEAD - Initialize a list_head structure * @list: list_head structure to be initialized. * * Initializes the list_head to point to itself. If it is a list header, * the result is an empty list. */ static inline void INIT_LIST_HEAD(struct list_head *list) { WRITE_ONCE(list->next, list); list->prev = list; } #ifdef CONFIG_DEBUG_LIST extern bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next); extern bool __list_del_entry_valid(struct list_head *entry); #else static inline bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next) { return true; } static inline bool __list_del_entry_valid(struct list_head *entry) { return true; } #endif /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next) { if (!__list_add_valid(new, prev, next)) return; next->prev = new; new->next = next; new->prev = prev; WRITE_ONCE(prev->next, new); } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void list_add(struct list_head *new, struct list_head *head) { __list_add(new, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *new, struct list_head *head) { __list_add(new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head * prev, struct list_head * next) { next->prev = prev; WRITE_ONCE(prev->next, next); } /* * Delete a list entry and clear the 'prev' pointer. * * This is a special-purpose list clearing method used in the networking code * for lists allocated as per-cpu, where we don't want to incur the extra * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this * needs to check the node 'prev' pointer instead of calling list_empty(). */ static inline void __list_del_clearprev(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->prev = NULL; } static inline void __list_del_entry(struct list_head *entry) { if (!__list_del_entry_valid(entry)) return; __list_del(entry->prev, entry->next); } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ static inline void list_del(struct list_head *entry) { __list_del_entry(entry); entry->next = LIST_POISON1; entry->prev = LIST_POISON2; } /** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace(struct list_head *old, struct list_head *new) { new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new; } /** * list_replace_init - replace old entry by new one and initialize the old one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */ static inline void list_replace_init(struct list_head *old, struct list_head *new) { list_replace(old, new); INIT_LIST_HEAD(old); } /** * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position * @entry1: the location to place entry2 * @entry2: the location to place entry1 */ static inline void list_swap(struct list_head *entry1, struct list_head *entry2) { struct list_head *pos = entry2->prev; list_del(entry2); list_replace(entry1, entry2); if (pos == entry1) pos = entry2; list_add(entry1, pos); } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static inline void list_del_init(struct list_head *entry) { __list_del_entry(entry); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static inline void list_move(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static inline void list_move_tail(struct list_head *list, struct list_head *head) { __list_del_entry(list); list_add_tail(list, head); } /** * list_bulk_move_tail - move a subsection of a list to its tail * @head: the head that will follow our entry * @first: first entry to move * @last: last entry to move, can be the same as first * * Move all entries between @first and including @last before @head. * All three entries must belong to the same linked list. */ static inline void list_bulk_move_tail(struct list_head *head, struct list_head *first, struct list_head *last) { first->prev->next = last->next; last->next->prev = first->prev; head->prev->next = first; first->prev = head->prev; last->next = head; head->prev = last; } /** * list_is_first -- tests whether @list is the first entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_first(const struct list_head *list, const struct list_head *head) { return list->prev == head; } /** * list_is_last - tests whether @list is the last entry in list @head * @list: the entry to test * @head: the head of the list */ static inline int list_is_last(const struct list_head *list, const struct list_head *head) { return list->next == head; } /** * list_empty - tests whether a list is empty * @head: the list to test. */ static inline int list_empty(const struct list_head *head) { return READ_ONCE(head->next) == head; } /** * list_del_init_careful - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. * * This is the same as list_del_init(), except designed to be used * together with list_empty_careful() in a way to guarantee ordering * of other memory operations. * * Any memory operations done before a list_del_init_careful() are * guaranteed to be visible after a list_empty_careful() test. */ static inline void list_del_init_careful(struct list_head *entry) { __list_del_entry(entry); entry->prev = entry; smp_store_release(&entry->next, entry); } /** * list_empty_careful - tests whether a list is empty and not being modified * @head: the list to test * * Description: * tests whether a list is empty _and_ checks that no other CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */ static inline int list_empty_careful(const struct list_head *head) { struct list_head *next = smp_load_acquire(&head->next); return (next == head) && (next == head->prev); } /** * list_rotate_left - rotate the list to the left * @head: the head of the list */ static inline void list_rotate_left(struct list_head *head) { struct list_head *first; if (!list_empty(head)) { first = head->next; list_move_tail(first, head); } } /** * list_rotate_to_front() - Rotate list to specific item. * @list: The desired new front of the list. * @head: The head of the list. * * Rotates list so that @list becomes the new front of the list. */ static inline void list_rotate_to_front(struct list_head *list, struct list_head *head) { /* * Deletes the list head from the list denoted by @head and * places it as the tail of @list, this effectively rotates the * list so that @list is at the front. */ list_move_tail(head, list); } /** * list_is_singular - tests whether a list has just one entry. * @head: the list to test. */ static inline int list_is_singular(const struct list_head *head) { return !list_empty(head) && (head->next == head->prev); } static inline void __list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { struct list_head *new_first = entry->next; list->next = head->next; list->next->prev = list; list->prev = entry; entry->next = list; head->next = new_first; new_first->prev = head; } /** * list_cut_position - cut a list into two * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * and if so we won't cut the list * * This helper moves the initial part of @head, up to and * including @entry, from @head to @list. You should * pass on @entry an element you know is on @head. @list * should be an empty list or a list you do not care about * losing its data. * */ static inline void list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry) { if (list_empty(head)) return; if (list_is_singular(head) && (head->next != entry && head != entry)) return; if (entry == head) INIT_LIST_HEAD(list); else __list_cut_position(list, head, entry); } /** * list_cut_before - cut a list into two, before given entry * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * * This helper moves the initial part of @head, up to but * excluding @entry, from @head to @list. You should pass * in @entry an element you know is on @head. @list should * be an empty list or a list you do not care about losing * its data. * If @entry == @head, all entries on @head are moved to * @list. */ static inline void list_cut_before(struct list_head *list, struct list_head *head, struct list_head *entry) { if (head->next == entry) { INIT_LIST_HEAD(list); return; } list->next = head->next; list->next->prev = list; list->prev = entry->prev; list->prev->next = list; head->next = entry; entry->prev = head; } static inline void __list_splice(const struct list_head *list, struct list_head *prev, struct list_head *next) { struct list_head *first = list->next; struct list_head *last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; } /** * list_splice - join two lists, this is designed for stacks * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice(const struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head, head->next); } /** * list_splice_tail - join two lists, each list being a queue * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice_tail(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head->prev, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static inline void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head, head->next); INIT_LIST_HEAD(list); } } /** * list_splice_tail_init - join two lists and reinitialise the emptied list * @list: the new list to add. * @head: the place to add it in the first list. * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void list_splice_tail_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head->prev, head); INIT_LIST_HEAD(list); } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. */ #define list_entry(ptr, type, member) \ container_of(ptr, type, member) /** * list_first_entry - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_first_entry(ptr, type, member) \ list_entry((ptr)->next, type, member) /** * list_last_entry - get the last element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */ #define list_last_entry(ptr, type, member) \ list_entry((ptr)->prev, type, member) /** * list_first_entry_or_null - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. */ #define list_first_entry_or_null(ptr, type, member) ({ \ struct list_head *head__ = (ptr); \ struct list_head *pos__ = READ_ONCE(head__->next); \ pos__ != head__ ? list_entry(pos__, type, member) : NULL; \ }) /** * list_next_entry - get the next element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_next_entry(pos, member) \ list_entry((pos)->member.next, typeof(*(pos)), member) /** * list_prev_entry - get the prev element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */ #define list_prev_entry(pos, member) \ list_entry((pos)->member.prev, typeof(*(pos)), member) /** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) /** * list_for_each_continue - continue iteration over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. * * Continue to iterate over a list, continuing after the current position. */ #define list_for_each_continue(pos, head) \ for (pos = pos->next; pos != (head); pos = pos->next) /** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */ #define list_for_each_prev(pos, head) \ for (pos = (head)->prev; pos != (head); pos = pos->prev) /** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /** * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; \ pos != (head); \ pos = n, n = pos->prev) /** * list_entry_is_head - test if the entry points to the head of the list * @pos: the type * to cursor * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_entry_is_head(pos, head, member) \ (&pos->member == (head)) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry(pos, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_reverse - iterate backwards over list of given type. * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_reverse(pos, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() * @pos: the type * to use as a start point * @head: the head of the list * @member: the name of the list_head within the struct. * * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). */ #define list_prepare_entry(pos, head, member) \ ((pos) ? : list_entry(head, typeof(*pos), member)) /** * list_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position. */ #define list_for_each_entry_continue(pos, head, member) \ for (pos = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_continue_reverse - iterate backwards from the given point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Start to iterate over list of given type backwards, continuing after * the current position. */ #define list_for_each_entry_continue_reverse(pos, head, member) \ for (pos = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_from - iterate over list of given type from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing from current position. */ #define list_for_each_entry_from(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_next_entry(pos, member)) /** * list_for_each_entry_from_reverse - iterate backwards over list of given type * from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, continuing from current position. */ #define list_for_each_entry_from_reverse(pos, head, member) \ for (; !list_entry_is_head(pos, head, member); \ pos = list_prev_entry(pos, member)) /** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_continue - continue list iteration safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing after current point, * safe against removal of list entry. */ #define list_for_each_entry_safe_continue(pos, n, head, member) \ for (pos = list_next_entry(pos, member), \ n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_from - iterate over list from current point safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type from current point, safe against * removal of list entry. */ #define list_for_each_entry_safe_from(pos, n, head, member) \ for (n = list_next_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_next_entry(n, member)) /** * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, safe against removal * of list entry. */ #define list_for_each_entry_safe_reverse(pos, n, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member), \ n = list_prev_entry(pos, member); \ !list_entry_is_head(pos, head, member); \ pos = n, n = list_prev_entry(n, member)) /** * list_safe_reset_next - reset a stale list_for_each_entry_safe loop * @pos: the loop cursor used in the list_for_each_entry_safe loop * @n: temporary storage used in list_for_each_entry_safe * @member: the name of the list_head within the struct. * * list_safe_reset_next is not safe to use in general if the list may be * modified concurrently (eg. the lock is dropped in the loop body). An * exception to this is if the cursor element (pos) is pinned in the list, * and list_safe_reset_next is called after re-taking the lock and before * completing the current iteration of the loop body. */ #define list_safe_reset_next(pos, n, member) \ n = list_next_entry(pos, member) /* * Double linked lists with a single pointer list head. * Mostly useful for hash tables where the two pointer list head is * too wasteful. * You lose the ability to access the tail in O(1). */ #define HLIST_HEAD_INIT { .first = NULL } #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) static inline void INIT_HLIST_NODE(struct hlist_node *h) { h->next = NULL; h->pprev = NULL; } /** * hlist_unhashed - Has node been removed from list and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed * state. For example, hlist_nulls_del_init_rcu() does leave the * node in unhashed state, but hlist_nulls_del() does not. */ static inline int hlist_unhashed(const struct hlist_node *h) { return !h->pprev; } /** * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use * @h: Node to be checked * * This variant of hlist_unhashed() must be used in lockless contexts * to avoid potential load-tearing. The READ_ONCE() is paired with the * various WRITE_ONCE() in hlist helpers that are defined below. */ static inline int hlist_unhashed_lockless(const struct hlist_node *h) { return !READ_ONCE(h->pprev); } /** * hlist_empty - Is the specified hlist_head structure an empty hlist? * @h: Structure to check. */ static inline int hlist_empty(const struct hlist_head *h) { return !READ_ONCE(h->first); } static inline void __hlist_del(struct hlist_node *n) { struct hlist_node *next = n->next; struct hlist_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (next) WRITE_ONCE(next->pprev, pprev); } /** * hlist_del - Delete the specified hlist_node from its list * @n: Node to delete. * * Note that this function leaves the node in hashed state. Use * hlist_del_init() or similar instead to unhash @n. */ static inline void hlist_del(struct hlist_node *n) { __hlist_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2; } /** * hlist_del_init - Delete the specified hlist_node from its list and initialize * @n: Node to delete. * * Note that this function leaves the node in unhashed state. */ static inline void hlist_del_init(struct hlist_node *n) { if (!hlist_unhashed(n)) { __hlist_del(n); INIT_HLIST_NODE(n); } } /** * hlist_add_head - add a new entry at the beginning of the hlist * @n: new entry to be added * @h: hlist head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) { struct hlist_node *first = h->first; WRITE_ONCE(n->next, first); if (first) WRITE_ONCE(first->pprev, &n->next); WRITE_ONCE(h->first, n); WRITE_ONCE(n->pprev, &h->first); } /** * hlist_add_before - add a new entry before the one specified * @n: new entry to be added * @next: hlist node to add it before, which must be non-NULL */ static inline void hlist_add_before(struct hlist_node *n, struct hlist_node *next) { WRITE_ONCE(n->pprev, next->pprev); WRITE_ONCE(n->next, next); WRITE_ONCE(next->pprev, &n->next); WRITE_ONCE(*(n->pprev), n); } /** * hlist_add_behing - add a new entry after the one specified * @n: new entry to be added * @prev: hlist node to add it after, which must be non-NULL */ static inline void hlist_add_behind(struct hlist_node *n, struct hlist_node *prev) { WRITE_ONCE(n->next, prev->next); WRITE_ONCE(prev->next, n); WRITE_ONCE(n->pprev, &prev->next); if (n->next) WRITE_ONCE(n->next->pprev, &n->next); } /** * hlist_add_fake - create a fake hlist consisting of a single headless node * @n: Node to make a fake list out of * * This makes @n appear to be its own predecessor on a headless hlist. * The point of this is to allow things like hlist_del() to work correctly * in cases where there is no list. */ static inline void hlist_add_fake(struct hlist_node *n) { n->pprev = &n->next; } /** * hlist_fake: Is this node a fake hlist? * @h: Node to check for being a self-referential fake hlist. */ static inline bool hlist_fake(struct hlist_node *h) { return h->pprev == &h->next; } /** * hlist_is_singular_node - is node the only element of the specified hlist? * @n: Node to check for singularity. * @h: Header for potentially singular list. * * Check whether the node is the only node of the head without * accessing head, thus avoiding unnecessary cache misses. */ static inline bool hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) { return !n->next && n->pprev == &h->first; } /** * hlist_move_list - Move an hlist * @old: hlist_head for old list. * @new: hlist_head for new list. * * Move a list from one list head to another. Fixup the pprev * reference of the first entry if it exists. */ static inline void hlist_move_list(struct hlist_head *old, struct hlist_head *new) { new->first = old->first; if (new->first) new->first->pprev = &new->first; old->first = NULL; } #define hlist_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_for_each(pos, head) \ for (pos = (head)->first; pos ; pos = pos->next) #define hlist_for_each_safe(pos, n, head) \ for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ pos = n) #define hlist_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ }) /** * hlist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry(pos, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_continue - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_continue(pos, member) \ for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_from - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_from(pos, member) \ for (; pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) /** * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: a &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */ #define hlist_for_each_entry_safe(pos, n, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ pos && ({ n = pos->member.next; 1; }); \ pos = hlist_entry_safe(n, typeof(*pos), member)) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_INETDEVICE_H #define _LINUX_INETDEVICE_H #ifdef __KERNEL__ #include <linux/bitmap.h> #include <linux/if.h> #include <linux/ip.h> #include <linux/netdevice.h> #include <linux/rcupdate.h> #include <linux/timer.h> #include <linux/sysctl.h> #include <linux/rtnetlink.h> #include <linux/refcount.h> struct ipv4_devconf { void *sysctl; int data[IPV4_DEVCONF_MAX]; DECLARE_BITMAP(state, IPV4_DEVCONF_MAX); }; #define MC_HASH_SZ_LOG 9 struct in_device { struct net_device *dev; refcount_t refcnt; int dead; struct in_ifaddr __rcu *ifa_list;/* IP ifaddr chain */ struct ip_mc_list __rcu *mc_list; /* IP multicast filter chain */ struct ip_mc_list __rcu * __rcu *mc_hash; int mc_count; /* Number of installed mcasts */ spinlock_t mc_tomb_lock; struct ip_mc_list *mc_tomb; unsigned long mr_v1_seen; unsigned long mr_v2_seen; unsigned long mr_maxdelay; unsigned long mr_qi; /* Query Interval */ unsigned long mr_qri; /* Query Response Interval */ unsigned char mr_qrv; /* Query Robustness Variable */ unsigned char mr_gq_running; u32 mr_ifc_count; struct timer_list mr_gq_timer; /* general query timer */ struct timer_list mr_ifc_timer; /* interface change timer */ struct neigh_parms *arp_parms; struct ipv4_devconf cnf; struct rcu_head rcu_head; }; #define IPV4_DEVCONF(cnf, attr) ((cnf).data[IPV4_DEVCONF_ ## attr - 1]) #define IPV4_DEVCONF_ALL(net, attr) \ IPV4_DEVCONF((*(net)->ipv4.devconf_all), attr) static inline int ipv4_devconf_get(struct in_device *in_dev, int index) { index--; return in_dev->cnf.data[index]; } static inline void ipv4_devconf_set(struct in_device *in_dev, int index, int val) { index--; set_bit(index, in_dev->cnf.state); in_dev->cnf.data[index] = val; } static inline void ipv4_devconf_setall(struct in_device *in_dev) { bitmap_fill(in_dev->cnf.state, IPV4_DEVCONF_MAX); } #define IN_DEV_CONF_GET(in_dev, attr) \ ipv4_devconf_get((in_dev), IPV4_DEVCONF_ ## attr) #define IN_DEV_CONF_SET(in_dev, attr, val) \ ipv4_devconf_set((in_dev), IPV4_DEVCONF_ ## attr, (val)) #define IN_DEV_ANDCONF(in_dev, attr) \ (IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr) && \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_NET_ORCONF(in_dev, net, attr) \ (IPV4_DEVCONF_ALL(net, attr) || \ IN_DEV_CONF_GET((in_dev), attr)) #define IN_DEV_ORCONF(in_dev, attr) \ IN_DEV_NET_ORCONF(in_dev, dev_net(in_dev->dev), attr) #define IN_DEV_MAXCONF(in_dev, attr) \ (max(IPV4_DEVCONF_ALL(dev_net(in_dev->dev), attr), \ IN_DEV_CONF_GET((in_dev), attr))) #define IN_DEV_FORWARD(in_dev) IN_DEV_CONF_GET((in_dev), FORWARDING) #define IN_DEV_MFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), MC_FORWARDING) #define IN_DEV_BFORWARD(in_dev) IN_DEV_ANDCONF((in_dev), BC_FORWARDING) #define IN_DEV_RPFILTER(in_dev) IN_DEV_MAXCONF((in_dev), RP_FILTER) #define IN_DEV_SRC_VMARK(in_dev) IN_DEV_ORCONF((in_dev), SRC_VMARK) #define IN_DEV_SOURCE_ROUTE(in_dev) IN_DEV_ANDCONF((in_dev), \ ACCEPT_SOURCE_ROUTE) #define IN_DEV_ACCEPT_LOCAL(in_dev) IN_DEV_ORCONF((in_dev), ACCEPT_LOCAL) #define IN_DEV_BOOTP_RELAY(in_dev) IN_DEV_ANDCONF((in_dev), BOOTP_RELAY) #define IN_DEV_LOG_MARTIANS(in_dev) IN_DEV_ORCONF((in_dev), LOG_MARTIANS) #define IN_DEV_PROXY_ARP(in_dev) IN_DEV_ORCONF((in_dev), PROXY_ARP) #define IN_DEV_PROXY_ARP_PVLAN(in_dev) IN_DEV_CONF_GET(in_dev, PROXY_ARP_PVLAN) #define IN_DEV_SHARED_MEDIA(in_dev) IN_DEV_ORCONF((in_dev), SHARED_MEDIA) #define IN_DEV_TX_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), SEND_REDIRECTS) #define IN_DEV_SEC_REDIRECTS(in_dev) IN_DEV_ORCONF((in_dev), \ SECURE_REDIRECTS) #define IN_DEV_IDTAG(in_dev) IN_DEV_CONF_GET(in_dev, TAG) #define IN_DEV_MEDIUM_ID(in_dev) IN_DEV_CONF_GET(in_dev, MEDIUM_ID) #define IN_DEV_PROMOTE_SECONDARIES(in_dev) \ IN_DEV_ORCONF((in_dev), \ PROMOTE_SECONDARIES) #define IN_DEV_ROUTE_LOCALNET(in_dev) IN_DEV_ORCONF(in_dev, ROUTE_LOCALNET) #define IN_DEV_NET_ROUTE_LOCALNET(in_dev, net) \ IN_DEV_NET_ORCONF(in_dev, net, ROUTE_LOCALNET) #define IN_DEV_RX_REDIRECTS(in_dev) \ ((IN_DEV_FORWARD(in_dev) && \ IN_DEV_ANDCONF((in_dev), ACCEPT_REDIRECTS)) \ || (!IN_DEV_FORWARD(in_dev) && \ IN_DEV_ORCONF((in_dev), ACCEPT_REDIRECTS))) #define IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) \ IN_DEV_CONF_GET((in_dev), IGNORE_ROUTES_WITH_LINKDOWN) #define IN_DEV_ARPFILTER(in_dev) IN_DEV_ORCONF((in_dev), ARPFILTER) #define IN_DEV_ARP_ACCEPT(in_dev) IN_DEV_ORCONF((in_dev), ARP_ACCEPT) #define IN_DEV_ARP_ANNOUNCE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_ANNOUNCE) #define IN_DEV_ARP_IGNORE(in_dev) IN_DEV_MAXCONF((in_dev), ARP_IGNORE) #define IN_DEV_ARP_NOTIFY(in_dev) IN_DEV_MAXCONF((in_dev), ARP_NOTIFY) struct in_ifaddr { struct hlist_node hash; struct in_ifaddr __rcu *ifa_next; struct in_device *ifa_dev; struct rcu_head rcu_head; __be32 ifa_local; __be32 ifa_address; __be32 ifa_mask; __u32 ifa_rt_priority; __be32 ifa_broadcast; unsigned char ifa_scope; unsigned char ifa_prefixlen; __u32 ifa_flags; char ifa_label[IFNAMSIZ]; /* In seconds, relative to tstamp. Expiry is at tstamp + HZ * lft. */ __u32 ifa_valid_lft; __u32 ifa_preferred_lft; unsigned long ifa_cstamp; /* created timestamp */ unsigned long ifa_tstamp; /* updated timestamp */ }; struct in_validator_info { __be32 ivi_addr; struct in_device *ivi_dev; struct netlink_ext_ack *extack; }; int register_inetaddr_notifier(struct notifier_block *nb); int unregister_inetaddr_notifier(struct notifier_block *nb); int register_inetaddr_validator_notifier(struct notifier_block *nb); int unregister_inetaddr_validator_notifier(struct notifier_block *nb); void inet_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv4_devconf *devconf); struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref); static inline struct net_device *ip_dev_find(struct net *net, __be32 addr) { return __ip_dev_find(net, addr, true); } int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b); int devinet_ioctl(struct net *net, unsigned int cmd, struct ifreq *); void devinet_init(void); struct in_device *inetdev_by_index(struct net *, int); __be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope); __be32 inet_confirm_addr(struct net *net, struct in_device *in_dev, __be32 dst, __be32 local, int scope); struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix, __be32 mask); struct in_ifaddr *inet_lookup_ifaddr_rcu(struct net *net, __be32 addr); static inline bool inet_ifa_match(__be32 addr, const struct in_ifaddr *ifa) { return !((addr^ifa->ifa_address)&ifa->ifa_mask); } /* * Check if a mask is acceptable. */ static __inline__ bool bad_mask(__be32 mask, __be32 addr) { __u32 hmask; if (addr & (mask = ~mask)) return true; hmask = ntohl(mask); if (hmask & (hmask+1)) return true; return false; } #define in_dev_for_each_ifa_rtnl(ifa, in_dev) \ for (ifa = rtnl_dereference((in_dev)->ifa_list); ifa; \ ifa = rtnl_dereference(ifa->ifa_next)) #define in_dev_for_each_ifa_rcu(ifa, in_dev) \ for (ifa = rcu_dereference((in_dev)->ifa_list); ifa; \ ifa = rcu_dereference(ifa->ifa_next)) static inline struct in_device *__in_dev_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->ip_ptr); } static inline struct in_device *in_dev_get(const struct net_device *dev) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (in_dev) refcount_inc(&in_dev->refcnt); rcu_read_unlock(); return in_dev; } static inline struct in_device *__in_dev_get_rtnl(const struct net_device *dev) { return rtnl_dereference(dev->ip_ptr); } /* called with rcu_read_lock or rtnl held */ static inline bool ip_ignore_linkdown(const struct net_device *dev) { struct in_device *in_dev; bool rc = false; in_dev = rcu_dereference_rtnl(dev->ip_ptr); if (in_dev && IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev)) rc = true; return rc; } static inline struct neigh_parms *__in_dev_arp_parms_get_rcu(const struct net_device *dev) { struct in_device *in_dev = __in_dev_get_rcu(dev); return in_dev ? in_dev->arp_parms : NULL; } void in_dev_finish_destroy(struct in_device *idev); static inline void in_dev_put(struct in_device *idev) { if (refcount_dec_and_test(&idev->refcnt)) in_dev_finish_destroy(idev); } #define __in_dev_put(idev) refcount_dec(&(idev)->refcnt) #define in_dev_hold(idev) refcount_inc(&(idev)->refcnt) #endif /* __KERNEL__ */ static __inline__ __be32 inet_make_mask(int logmask) { if (logmask) return htonl(~((1U<<(32-logmask))-1)); return 0; } static __inline__ int inet_mask_len(__be32 mask) { __u32 hmask = ntohl(mask); if (!hmask) return 0; return 32 - ffz(~hmask); } #endif /* _LINUX_INETDEVICE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_BIT_SPINLOCK_H #define __LINUX_BIT_SPINLOCK_H #include <linux/kernel.h> #include <linux/preempt.h> #include <linux/atomic.h> #include <linux/bug.h> /* * bit-based spin_lock() * * Don't use this unless you really need to: spin_lock() and spin_unlock() * are significantly faster. */ static inline void bit_spin_lock(int bitnum, unsigned long *addr) { /* * Assuming the lock is uncontended, this never enters * the body of the outer loop. If it is contended, then * within the inner loop a non-atomic test is used to * busywait with less bus contention for a good time to * attempt to acquire the lock bit. */ preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) while (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); do { cpu_relax(); } while (test_bit(bitnum, addr)); preempt_disable(); } #endif __acquire(bitlock); } /* * Return true if it was acquired */ static inline int bit_spin_trylock(int bitnum, unsigned long *addr) { preempt_disable(); #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) if (unlikely(test_and_set_bit_lock(bitnum, addr))) { preempt_enable(); return 0; } #endif __acquire(bitlock); return 1; } /* * bit-based spin_unlock() */ static inline void bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * bit-based spin_unlock() * non-atomic version, which can be used eg. if the bit lock itself is * protecting the rest of the flags in the word. */ static inline void __bit_spin_unlock(int bitnum, unsigned long *addr) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(!test_bit(bitnum, addr)); #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) __clear_bit_unlock(bitnum, addr); #endif preempt_enable(); __release(bitlock); } /* * Return true if the lock is held. */ static inline int bit_spin_is_locked(int bitnum, unsigned long *addr) { #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) return test_bit(bitnum, addr); #elif defined CONFIG_PREEMPT_COUNT return preempt_count(); #else return 1; #endif } #endif /* __LINUX_BIT_SPINLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions of the Internet Protocol. * * Version: @(#)in.h 1.0.1 04/21/93 * * Authors: Original taken from the GNU Project <netinet/in.h> file. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_IN_H #define _LINUX_IN_H #include <linux/errno.h> #include <uapi/linux/in.h> static inline int proto_ports_offset(int proto) { switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_DCCP: case IPPROTO_ESP: /* SPI */ case IPPROTO_SCTP: case IPPROTO_UDPLITE: return 0; case IPPROTO_AH: /* SPI */ return 4; default: return -EINVAL; } } static inline bool ipv4_is_loopback(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x7f000000); } static inline bool ipv4_is_multicast(__be32 addr) { return (addr & htonl(0xf0000000)) == htonl(0xe0000000); } static inline bool ipv4_is_local_multicast(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xe0000000); } static inline bool ipv4_is_lbcast(__be32 addr) { /* limited broadcast */ return addr == htonl(INADDR_BROADCAST); } static inline bool ipv4_is_all_snoopers(__be32 addr) { return addr == htonl(INADDR_ALLSNOOPERS_GROUP); } static inline bool ipv4_is_zeronet(__be32 addr) { return (addr == 0); } /* Special-Use IPv4 Addresses (RFC3330) */ static inline bool ipv4_is_private_10(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x0a000000); } static inline bool ipv4_is_private_172(__be32 addr) { return (addr & htonl(0xfff00000)) == htonl(0xac100000); } static inline bool ipv4_is_private_192(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xc0a80000); } static inline bool ipv4_is_linklocal_169(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xa9fe0000); } static inline bool ipv4_is_anycast_6to4(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0586300); } static inline bool ipv4_is_test_192(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0000200); } static inline bool ipv4_is_test_198(__be32 addr) { return (addr & htonl(0xfffe0000)) == htonl(0xc6120000); } #endif /* _LINUX_IN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 /* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */ /* * Copyright 1997 Transmeta Corporation - All Rights Reserved * Copyright 1999-2000 Jeremy Fitzhardinge <jeremy@goop.org> * Copyright 2005-2006,2013,2017-2018 Ian Kent <raven@themaw.net> * * This file is part of the Linux kernel and is made available under * the terms of the GNU General Public License, version 2, or at your * option, any later version, incorporated herein by reference. * * ----------------------------------------------------------------------- */ #ifndef _UAPI_LINUX_AUTO_FS_H #define _UAPI_LINUX_AUTO_FS_H #include <linux/types.h> #include <linux/limits.h> #ifndef __KERNEL__ #include <sys/ioctl.h> #endif /* __KERNEL__ */ #define AUTOFS_PROTO_VERSION 5 #define AUTOFS_MIN_PROTO_VERSION 3 #define AUTOFS_MAX_PROTO_VERSION 5 #define AUTOFS_PROTO_SUBVERSION 5 /* * The wait_queue_token (autofs_wqt_t) is part of a structure which is passed * back to the kernel via ioctl from userspace. On architectures where 32- and * 64-bit userspace binaries can be executed it's important that the size of * autofs_wqt_t stays constant between 32- and 64-bit Linux kernels so that we * do not break the binary ABI interface by changing the structure size. */ #if defined(__ia64__) || defined(__alpha__) /* pure 64bit architectures */ typedef unsigned long autofs_wqt_t; #else typedef unsigned int autofs_wqt_t; #endif /* Packet types */ #define autofs_ptype_missing 0 /* Missing entry (mount request) */ #define autofs_ptype_expire 1 /* Expire entry (umount request) */ struct autofs_packet_hdr { int proto_version; /* Protocol version */ int type; /* Type of packet */ }; struct autofs_packet_missing { struct autofs_packet_hdr hdr; autofs_wqt_t wait_queue_token; int len; char name[NAME_MAX+1]; }; /* v3 expire (via ioctl) */ struct autofs_packet_expire { struct autofs_packet_hdr hdr; int len; char name[NAME_MAX+1]; }; #define AUTOFS_IOCTL 0x93 enum { AUTOFS_IOC_READY_CMD = 0x60, AUTOFS_IOC_FAIL_CMD, AUTOFS_IOC_CATATONIC_CMD, AUTOFS_IOC_PROTOVER_CMD, AUTOFS_IOC_SETTIMEOUT_CMD, AUTOFS_IOC_EXPIRE_CMD, }; #define AUTOFS_IOC_READY _IO(AUTOFS_IOCTL, AUTOFS_IOC_READY_CMD) #define AUTOFS_IOC_FAIL _IO(AUTOFS_IOCTL, AUTOFS_IOC_FAIL_CMD) #define AUTOFS_IOC_CATATONIC _IO(AUTOFS_IOCTL, AUTOFS_IOC_CATATONIC_CMD) #define AUTOFS_IOC_PROTOVER _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_PROTOVER_CMD, int) #define AUTOFS_IOC_SETTIMEOUT32 _IOWR(AUTOFS_IOCTL, \ AUTOFS_IOC_SETTIMEOUT_CMD, \ compat_ulong_t) #define AUTOFS_IOC_SETTIMEOUT _IOWR(AUTOFS_IOCTL, \ AUTOFS_IOC_SETTIMEOUT_CMD, \ unsigned long) #define AUTOFS_IOC_EXPIRE _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_EXPIRE_CMD, \ struct autofs_packet_expire) /* autofs version 4 and later definitions */ /* Mask for expire behaviour */ #define AUTOFS_EXP_NORMAL 0x00 #define AUTOFS_EXP_IMMEDIATE 0x01 #define AUTOFS_EXP_LEAVES 0x02 #define AUTOFS_EXP_FORCED 0x04 #define AUTOFS_TYPE_ANY 0U #define AUTOFS_TYPE_INDIRECT 1U #define AUTOFS_TYPE_DIRECT 2U #define AUTOFS_TYPE_OFFSET 4U static inline void set_autofs_type_indirect(unsigned int *type) { *type = AUTOFS_TYPE_INDIRECT; } static inline unsigned int autofs_type_indirect(unsigned int type) { return (type == AUTOFS_TYPE_INDIRECT); } static inline void set_autofs_type_direct(unsigned int *type) { *type = AUTOFS_TYPE_DIRECT; } static inline unsigned int autofs_type_direct(unsigned int type) { return (type == AUTOFS_TYPE_DIRECT); } static inline void set_autofs_type_offset(unsigned int *type) { *type = AUTOFS_TYPE_OFFSET; } static inline unsigned int autofs_type_offset(unsigned int type) { return (type == AUTOFS_TYPE_OFFSET); } static inline unsigned int autofs_type_trigger(unsigned int type) { return (type == AUTOFS_TYPE_DIRECT || type == AUTOFS_TYPE_OFFSET); } /* * This isn't really a type as we use it to say "no type set" to * indicate we want to search for "any" mount in the * autofs_dev_ioctl_ismountpoint() device ioctl function. */ static inline void set_autofs_type_any(unsigned int *type) { *type = AUTOFS_TYPE_ANY; } static inline unsigned int autofs_type_any(unsigned int type) { return (type == AUTOFS_TYPE_ANY); } /* Daemon notification packet types */ enum autofs_notify { NFY_NONE, NFY_MOUNT, NFY_EXPIRE }; /* Kernel protocol version 4 packet types */ /* Expire entry (umount request) */ #define autofs_ptype_expire_multi 2 /* Kernel protocol version 5 packet types */ /* Indirect mount missing and expire requests. */ #define autofs_ptype_missing_indirect 3 #define autofs_ptype_expire_indirect 4 /* Direct mount missing and expire requests */ #define autofs_ptype_missing_direct 5 #define autofs_ptype_expire_direct 6 /* v4 multi expire (via pipe) */ struct autofs_packet_expire_multi { struct autofs_packet_hdr hdr; autofs_wqt_t wait_queue_token; int len; char name[NAME_MAX+1]; }; union autofs_packet_union { struct autofs_packet_hdr hdr; struct autofs_packet_missing missing; struct autofs_packet_expire expire; struct autofs_packet_expire_multi expire_multi; }; /* autofs v5 common packet struct */ struct autofs_v5_packet { struct autofs_packet_hdr hdr; autofs_wqt_t wait_queue_token; __u32 dev; __u64 ino; __u32 uid; __u32 gid; __u32 pid; __u32 tgid; __u32 len; char name[NAME_MAX+1]; }; typedef struct autofs_v5_packet autofs_packet_missing_indirect_t; typedef struct autofs_v5_packet autofs_packet_expire_indirect_t; typedef struct autofs_v5_packet autofs_packet_missing_direct_t; typedef struct autofs_v5_packet autofs_packet_expire_direct_t; union autofs_v5_packet_union { struct autofs_packet_hdr hdr; struct autofs_v5_packet v5_packet; autofs_packet_missing_indirect_t missing_indirect; autofs_packet_expire_indirect_t expire_indirect; autofs_packet_missing_direct_t missing_direct; autofs_packet_expire_direct_t expire_direct; }; enum { AUTOFS_IOC_EXPIRE_MULTI_CMD = 0x66, /* AUTOFS_IOC_EXPIRE_CMD + 1 */ AUTOFS_IOC_PROTOSUBVER_CMD, AUTOFS_IOC_ASKUMOUNT_CMD = 0x70, /* AUTOFS_DEV_IOCTL_VERSION_CMD - 1 */ }; #define AUTOFS_IOC_EXPIRE_MULTI _IOW(AUTOFS_IOCTL, \ AUTOFS_IOC_EXPIRE_MULTI_CMD, int) #define AUTOFS_IOC_PROTOSUBVER _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_PROTOSUBVER_CMD, int) #define AUTOFS_IOC_ASKUMOUNT _IOR(AUTOFS_IOCTL, \ AUTOFS_IOC_ASKUMOUNT_CMD, int) #endif /* _UAPI_LINUX_AUTO_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NET_SCM_H #define __LINUX_NET_SCM_H #include <linux/limits.h> #include <linux/net.h> #include <linux/cred.h> #include <linux/security.h> #include <linux/pid.h> #include <linux/nsproxy.h> #include <linux/sched/signal.h> /* Well, we should have at least one descriptor open * to accept passed FDs 8) */ #define SCM_MAX_FD 253 struct scm_creds { u32 pid; kuid_t uid; kgid_t gid; }; struct scm_fp_list { short count; short max; struct user_struct *user; struct file *fp[SCM_MAX_FD]; }; struct scm_cookie { struct pid *pid; /* Skb credentials */ struct scm_fp_list *fp; /* Passed files */ struct scm_creds creds; /* Skb credentials */ #ifdef CONFIG_SECURITY_NETWORK u32 secid; /* Passed security ID */ #endif }; void scm_detach_fds(struct msghdr *msg, struct scm_cookie *scm); void scm_detach_fds_compat(struct msghdr *msg, struct scm_cookie *scm); int __scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm); void __scm_destroy(struct scm_cookie *scm); struct scm_fp_list *scm_fp_dup(struct scm_fp_list *fpl); #ifdef CONFIG_SECURITY_NETWORK static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { security_socket_getpeersec_dgram(sock, NULL, &scm->secid); } #else static __inline__ void unix_get_peersec_dgram(struct socket *sock, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_set_cred(struct scm_cookie *scm, struct pid *pid, kuid_t uid, kgid_t gid) { scm->pid = get_pid(pid); scm->creds.pid = pid_vnr(pid); scm->creds.uid = uid; scm->creds.gid = gid; } static __inline__ void scm_destroy_cred(struct scm_cookie *scm) { put_pid(scm->pid); scm->pid = NULL; } static __inline__ void scm_destroy(struct scm_cookie *scm) { scm_destroy_cred(scm); if (scm->fp) __scm_destroy(scm); } static __inline__ int scm_send(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, bool forcecreds) { memset(scm, 0, sizeof(*scm)); scm->creds.uid = INVALID_UID; scm->creds.gid = INVALID_GID; if (forcecreds) scm_set_cred(scm, task_tgid(current), current_uid(), current_gid()); unix_get_peersec_dgram(sock, scm); if (msg->msg_controllen <= 0) return 0; return __scm_send(sock, msg, scm); } #ifdef CONFIG_SECURITY_NETWORK static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { char *secdata; u32 seclen; int err; if (test_bit(SOCK_PASSSEC, &sock->flags)) { err = security_secid_to_secctx(scm->secid, &secdata, &seclen); if (!err) { put_cmsg(msg, SOL_SOCKET, SCM_SECURITY, seclen, secdata); security_release_secctx(secdata, seclen); } } } #else static inline void scm_passec(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm) { } #endif /* CONFIG_SECURITY_NETWORK */ static __inline__ void scm_recv(struct socket *sock, struct msghdr *msg, struct scm_cookie *scm, int flags) { if (!msg->msg_control) { if (test_bit(SOCK_PASSCRED, &sock->flags) || scm->fp) msg->msg_flags |= MSG_CTRUNC; scm_destroy(scm); return; } if (test_bit(SOCK_PASSCRED, &sock->flags)) { struct user_namespace *current_ns = current_user_ns(); struct ucred ucreds = { .pid = scm->creds.pid, .uid = from_kuid_munged(current_ns, scm->creds.uid), .gid = from_kgid_munged(current_ns, scm->creds.gid), }; put_cmsg(msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(ucreds), &ucreds); } scm_destroy_cred(scm); scm_passec(sock, msg, scm); if (!scm->fp) return; scm_detach_fds(msg, scm); } #endif /* __LINUX_NET_SCM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM udp #if !defined(_TRACE_UDP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_UDP_H #include <linux/udp.h> #include <linux/tracepoint.h> TRACE_EVENT(udp_fail_queue_rcv_skb, TP_PROTO(int rc, struct sock *sk), TP_ARGS(rc, sk), TP_STRUCT__entry( __field(int, rc) __field(__u16, lport) ), TP_fast_assign( __entry->rc = rc; __entry->lport = inet_sk(sk)->inet_num; ), TP_printk("rc=%d port=%hu", __entry->rc, __entry->lport) ); #endif /* _TRACE_UDP_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790