1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 /* SPDX-License-Identifier: GPL-2.0-only */ /* * An interface between IEEE802.15.4 device and rest of the kernel. * * Copyright (C) 2007-2012 Siemens AG * * Written by: * Pavel Smolenskiy <pavel.smolenskiy@gmail.com> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Maxim Osipov <maxim.osipov@siemens.com> * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #ifndef IEEE802154_NETDEVICE_H #define IEEE802154_NETDEVICE_H #include <net/af_ieee802154.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/ieee802154.h> #include <net/cfg802154.h> struct ieee802154_sechdr { #if defined(__LITTLE_ENDIAN_BITFIELD) u8 level:3, key_id_mode:2, reserved:3; #elif defined(__BIG_ENDIAN_BITFIELD) u8 reserved:3, key_id_mode:2, level:3; #else #error "Please fix <asm/byteorder.h>" #endif u8 key_id; __le32 frame_counter; union { __le32 short_src; __le64 extended_src; }; }; struct ieee802154_hdr_fc { #if defined(__LITTLE_ENDIAN_BITFIELD) u16 type:3, security_enabled:1, frame_pending:1, ack_request:1, intra_pan:1, reserved:3, dest_addr_mode:2, version:2, source_addr_mode:2; #elif defined(__BIG_ENDIAN_BITFIELD) u16 reserved:1, intra_pan:1, ack_request:1, frame_pending:1, security_enabled:1, type:3, source_addr_mode:2, version:2, dest_addr_mode:2, reserved2:2; #else #error "Please fix <asm/byteorder.h>" #endif }; struct ieee802154_hdr { struct ieee802154_hdr_fc fc; u8 seq; struct ieee802154_addr source; struct ieee802154_addr dest; struct ieee802154_sechdr sec; }; /* pushes hdr onto the skb. fields of hdr->fc that can be calculated from * the contents of hdr will be, and the actual value of those bits in * hdr->fc will be ignored. this includes the INTRA_PAN bit and the frame * version, if SECEN is set. */ int ieee802154_hdr_push(struct sk_buff *skb, struct ieee802154_hdr *hdr); /* pulls the entire 802.15.4 header off of the skb, including the security * header, and performs pan id decompression */ int ieee802154_hdr_pull(struct sk_buff *skb, struct ieee802154_hdr *hdr); /* parses the frame control, sequence number of address fields in a given skb * and stores them into hdr, performing pan id decompression and length checks * to be suitable for use in header_ops.parse */ int ieee802154_hdr_peek_addrs(const struct sk_buff *skb, struct ieee802154_hdr *hdr); /* parses the full 802.15.4 header a given skb and stores them into hdr, * performing pan id decompression and length checks to be suitable for use in * header_ops.parse */ int ieee802154_hdr_peek(const struct sk_buff *skb, struct ieee802154_hdr *hdr); int ieee802154_max_payload(const struct ieee802154_hdr *hdr); static inline int ieee802154_sechdr_authtag_len(const struct ieee802154_sechdr *sec) { switch (sec->level) { case IEEE802154_SCF_SECLEVEL_MIC32: case IEEE802154_SCF_SECLEVEL_ENC_MIC32: return 4; case IEEE802154_SCF_SECLEVEL_MIC64: case IEEE802154_SCF_SECLEVEL_ENC_MIC64: return 8; case IEEE802154_SCF_SECLEVEL_MIC128: case IEEE802154_SCF_SECLEVEL_ENC_MIC128: return 16; case IEEE802154_SCF_SECLEVEL_NONE: case IEEE802154_SCF_SECLEVEL_ENC: default: return 0; } } static inline int ieee802154_hdr_length(struct sk_buff *skb) { struct ieee802154_hdr hdr; int len = ieee802154_hdr_pull(skb, &hdr); if (len > 0) skb_push(skb, len); return len; } static inline bool ieee802154_addr_equal(const struct ieee802154_addr *a1, const struct ieee802154_addr *a2) { if (a1->pan_id != a2->pan_id || a1->mode != a2->mode) return false; if ((a1->mode == IEEE802154_ADDR_LONG && a1->extended_addr != a2->extended_addr) || (a1->mode == IEEE802154_ADDR_SHORT && a1->short_addr != a2->short_addr)) return false; return true; } static inline __le64 ieee802154_devaddr_from_raw(const void *raw) { u64 temp; memcpy(&temp, raw, IEEE802154_ADDR_LEN); return (__force __le64)swab64(temp); } static inline void ieee802154_devaddr_to_raw(void *raw, __le64 addr) { u64 temp = swab64((__force u64)addr); memcpy(raw, &temp, IEEE802154_ADDR_LEN); } static inline void ieee802154_addr_from_sa(struct ieee802154_addr *a, const struct ieee802154_addr_sa *sa) { a->mode = sa->addr_type; a->pan_id = cpu_to_le16(sa->pan_id); switch (a->mode) { case IEEE802154_ADDR_SHORT: a->short_addr = cpu_to_le16(sa->short_addr); break; case IEEE802154_ADDR_LONG: a->extended_addr = ieee802154_devaddr_from_raw(sa->hwaddr); break; } } static inline void ieee802154_addr_to_sa(struct ieee802154_addr_sa *sa, const struct ieee802154_addr *a) { sa->addr_type = a->mode; sa->pan_id = le16_to_cpu(a->pan_id); switch (a->mode) { case IEEE802154_ADDR_SHORT: sa->short_addr = le16_to_cpu(a->short_addr); break; case IEEE802154_ADDR_LONG: ieee802154_devaddr_to_raw(sa->hwaddr, a->extended_addr); break; } } /* * A control block of skb passed between the ARPHRD_IEEE802154 device * and other stack parts. */ struct ieee802154_mac_cb { u8 lqi; u8 type; bool ackreq; bool secen; bool secen_override; u8 seclevel; bool seclevel_override; struct ieee802154_addr source; struct ieee802154_addr dest; }; static inline struct ieee802154_mac_cb *mac_cb(struct sk_buff *skb) { return (struct ieee802154_mac_cb *)skb->cb; } static inline struct ieee802154_mac_cb *mac_cb_init(struct sk_buff *skb) { BUILD_BUG_ON(sizeof(struct ieee802154_mac_cb) > sizeof(skb->cb)); memset(skb->cb, 0, sizeof(struct ieee802154_mac_cb)); return mac_cb(skb); } enum { IEEE802154_LLSEC_DEVKEY_IGNORE, IEEE802154_LLSEC_DEVKEY_RESTRICT, IEEE802154_LLSEC_DEVKEY_RECORD, __IEEE802154_LLSEC_DEVKEY_MAX, }; #define IEEE802154_MAC_SCAN_ED 0 #define IEEE802154_MAC_SCAN_ACTIVE 1 #define IEEE802154_MAC_SCAN_PASSIVE 2 #define IEEE802154_MAC_SCAN_ORPHAN 3 struct ieee802154_mac_params { s8 transmit_power; u8 min_be; u8 max_be; u8 csma_retries; s8 frame_retries; bool lbt; struct wpan_phy_cca cca; s32 cca_ed_level; }; struct wpan_phy; enum { IEEE802154_LLSEC_PARAM_ENABLED = BIT(0), IEEE802154_LLSEC_PARAM_FRAME_COUNTER = BIT(1), IEEE802154_LLSEC_PARAM_OUT_LEVEL = BIT(2), IEEE802154_LLSEC_PARAM_OUT_KEY = BIT(3), IEEE802154_LLSEC_PARAM_KEY_SOURCE = BIT(4), IEEE802154_LLSEC_PARAM_PAN_ID = BIT(5), IEEE802154_LLSEC_PARAM_HWADDR = BIT(6), IEEE802154_LLSEC_PARAM_COORD_HWADDR = BIT(7), IEEE802154_LLSEC_PARAM_COORD_SHORTADDR = BIT(8), }; struct ieee802154_llsec_ops { int (*get_params)(struct net_device *dev, struct ieee802154_llsec_params *params); int (*set_params)(struct net_device *dev, const struct ieee802154_llsec_params *params, int changed); int (*add_key)(struct net_device *dev, const struct ieee802154_llsec_key_id *id, const struct ieee802154_llsec_key *key); int (*del_key)(struct net_device *dev, const struct ieee802154_llsec_key_id *id); int (*add_dev)(struct net_device *dev, const struct ieee802154_llsec_device *llsec_dev); int (*del_dev)(struct net_device *dev, __le64 dev_addr); int (*add_devkey)(struct net_device *dev, __le64 device_addr, const struct ieee802154_llsec_device_key *key); int (*del_devkey)(struct net_device *dev, __le64 device_addr, const struct ieee802154_llsec_device_key *key); int (*add_seclevel)(struct net_device *dev, const struct ieee802154_llsec_seclevel *sl); int (*del_seclevel)(struct net_device *dev, const struct ieee802154_llsec_seclevel *sl); void (*lock_table)(struct net_device *dev); void (*get_table)(struct net_device *dev, struct ieee802154_llsec_table **t); void (*unlock_table)(struct net_device *dev); }; /* * This should be located at net_device->ml_priv * * get_phy should increment the reference counting on returned phy. * Use wpan_wpy_put to put that reference. */ struct ieee802154_mlme_ops { /* The following fields are optional (can be NULL). */ int (*assoc_req)(struct net_device *dev, struct ieee802154_addr *addr, u8 channel, u8 page, u8 cap); int (*assoc_resp)(struct net_device *dev, struct ieee802154_addr *addr, __le16 short_addr, u8 status); int (*disassoc_req)(struct net_device *dev, struct ieee802154_addr *addr, u8 reason); int (*start_req)(struct net_device *dev, struct ieee802154_addr *addr, u8 channel, u8 page, u8 bcn_ord, u8 sf_ord, u8 pan_coord, u8 blx, u8 coord_realign); int (*scan_req)(struct net_device *dev, u8 type, u32 channels, u8 page, u8 duration); int (*set_mac_params)(struct net_device *dev, const struct ieee802154_mac_params *params); void (*get_mac_params)(struct net_device *dev, struct ieee802154_mac_params *params); const struct ieee802154_llsec_ops *llsec; }; static inline struct ieee802154_mlme_ops * ieee802154_mlme_ops(const struct net_device *dev) { return dev->ml_priv; } #endif
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/file_table.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/string.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/eventpoll.h> #include <linux/rcupdate.h> #include <linux/mount.h> #include <linux/capability.h> #include <linux/cdev.h> #include <linux/fsnotify.h> #include <linux/sysctl.h> #include <linux/percpu_counter.h> #include <linux/percpu.h> #include <linux/task_work.h> #include <linux/ima.h> #include <linux/swap.h> #include <linux/atomic.h> #include "internal.h" /* sysctl tunables... */ struct files_stat_struct files_stat = { .max_files = NR_FILE }; /* SLAB cache for file structures */ static struct kmem_cache *filp_cachep __read_mostly; static struct percpu_counter nr_files __cacheline_aligned_in_smp; static void file_free_rcu(struct rcu_head *head) { struct file *f = container_of(head, struct file, f_u.fu_rcuhead); put_cred(f->f_cred); kmem_cache_free(filp_cachep, f); } static inline void file_free(struct file *f) { security_file_free(f); if (!(f->f_mode & FMODE_NOACCOUNT)) percpu_counter_dec(&nr_files); call_rcu(&f->f_u.fu_rcuhead, file_free_rcu); } /* * Return the total number of open files in the system */ static long get_nr_files(void) { return percpu_counter_read_positive(&nr_files); } /* * Return the maximum number of open files in the system */ unsigned long get_max_files(void) { return files_stat.max_files; } EXPORT_SYMBOL_GPL(get_max_files); /* * Handle nr_files sysctl */ #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { files_stat.nr_files = get_nr_files(); return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } #else int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return -ENOSYS; } #endif static struct file *__alloc_file(int flags, const struct cred *cred) { struct file *f; int error; f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL); if (unlikely(!f)) return ERR_PTR(-ENOMEM); f->f_cred = get_cred(cred); error = security_file_alloc(f); if (unlikely(error)) { file_free_rcu(&f->f_u.fu_rcuhead); return ERR_PTR(error); } atomic_long_set(&f->f_count, 1); rwlock_init(&f->f_owner.lock); spin_lock_init(&f->f_lock); mutex_init(&f->f_pos_lock); eventpoll_init_file(f); f->f_flags = flags; f->f_mode = OPEN_FMODE(flags); /* f->f_version: 0 */ return f; } /* Find an unused file structure and return a pointer to it. * Returns an error pointer if some error happend e.g. we over file * structures limit, run out of memory or operation is not permitted. * * Be very careful using this. You are responsible for * getting write access to any mount that you might assign * to this filp, if it is opened for write. If this is not * done, you will imbalance int the mount's writer count * and a warning at __fput() time. */ struct file *alloc_empty_file(int flags, const struct cred *cred) { static long old_max; struct file *f; /* * Privileged users can go above max_files */ if (get_nr_files() >= files_stat.max_files && !capable(CAP_SYS_ADMIN)) { /* * percpu_counters are inaccurate. Do an expensive check before * we go and fail. */ if (percpu_counter_sum_positive(&nr_files) >= files_stat.max_files) goto over; } f = __alloc_file(flags, cred); if (!IS_ERR(f)) percpu_counter_inc(&nr_files); return f; over: /* Ran out of filps - report that */ if (get_nr_files() > old_max) { pr_info("VFS: file-max limit %lu reached\n", get_max_files()); old_max = get_nr_files(); } return ERR_PTR(-ENFILE); } /* * Variant of alloc_empty_file() that doesn't check and modify nr_files. * * Should not be used unless there's a very good reason to do so. */ struct file *alloc_empty_file_noaccount(int flags, const struct cred *cred) { struct file *f = __alloc_file(flags, cred); if (!IS_ERR(f)) f->f_mode |= FMODE_NOACCOUNT; return f; } /** * alloc_file - allocate and initialize a 'struct file' * * @path: the (dentry, vfsmount) pair for the new file * @flags: O_... flags with which the new file will be opened * @fop: the 'struct file_operations' for the new file */ static struct file *alloc_file(const struct path *path, int flags, const struct file_operations *fop) { struct file *file; file = alloc_empty_file(flags, current_cred()); if (IS_ERR(file)) return file; file->f_path = *path; file->f_inode = path->dentry->d_inode; file->f_mapping = path->dentry->d_inode->i_mapping; file->f_wb_err = filemap_sample_wb_err(file->f_mapping); file->f_sb_err = file_sample_sb_err(file); if ((file->f_mode & FMODE_READ) && likely(fop->read || fop->read_iter)) file->f_mode |= FMODE_CAN_READ; if ((file->f_mode & FMODE_WRITE) && likely(fop->write || fop->write_iter)) file->f_mode |= FMODE_CAN_WRITE; file->f_mode |= FMODE_OPENED; file->f_op = fop; if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) i_readcount_inc(path->dentry->d_inode); return file; } struct file *alloc_file_pseudo(struct inode *inode, struct vfsmount *mnt, const char *name, int flags, const struct file_operations *fops) { static const struct dentry_operations anon_ops = { .d_dname = simple_dname }; struct qstr this = QSTR_INIT(name, strlen(name)); struct path path; struct file *file; path.dentry = d_alloc_pseudo(mnt->mnt_sb, &this); if (!path.dentry) return ERR_PTR(-ENOMEM); if (!mnt->mnt_sb->s_d_op) d_set_d_op(path.dentry, &anon_ops); path.mnt = mntget(mnt); d_instantiate(path.dentry, inode); file = alloc_file(&path, flags, fops); if (IS_ERR(file)) { ihold(inode); path_put(&path); } return file; } EXPORT_SYMBOL(alloc_file_pseudo); struct file *alloc_file_clone(struct file *base, int flags, const struct file_operations *fops) { struct file *f = alloc_file(&base->f_path, flags, fops); if (!IS_ERR(f)) { path_get(&f->f_path); f->f_mapping = base->f_mapping; } return f; } /* the real guts of fput() - releasing the last reference to file */ static void __fput(struct file *file) { struct dentry *dentry = file->f_path.dentry; struct vfsmount *mnt = file->f_path.mnt; struct inode *inode = file->f_inode; fmode_t mode = file->f_mode; if (unlikely(!(file->f_mode & FMODE_OPENED))) goto out; might_sleep(); fsnotify_close(file); /* * The function eventpoll_release() should be the first called * in the file cleanup chain. */ eventpoll_release(file); locks_remove_file(file); ima_file_free(file); if (unlikely(file->f_flags & FASYNC)) { if (file->f_op->fasync) file->f_op->fasync(-1, file, 0); } if (file->f_op->release) file->f_op->release(inode, file); if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL && !(mode & FMODE_PATH))) { cdev_put(inode->i_cdev); } fops_put(file->f_op); put_pid(file->f_owner.pid); if ((mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) i_readcount_dec(inode); if (mode & FMODE_WRITER) { put_write_access(inode); __mnt_drop_write(mnt); } dput(dentry); if (unlikely(mode & FMODE_NEED_UNMOUNT)) dissolve_on_fput(mnt); mntput(mnt); out: file_free(file); } static LLIST_HEAD(delayed_fput_list); static void delayed_fput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_fput_list); struct file *f, *t; llist_for_each_entry_safe(f, t, node, f_u.fu_llist) __fput(f); } static void ____fput(struct callback_head *work) { __fput(container_of(work, struct file, f_u.fu_rcuhead)); } /* * If kernel thread really needs to have the final fput() it has done * to complete, call this. The only user right now is the boot - we * *do* need to make sure our writes to binaries on initramfs has * not left us with opened struct file waiting for __fput() - execve() * won't work without that. Please, don't add more callers without * very good reasons; in particular, never call that with locks * held and never call that from a thread that might need to do * some work on any kind of umount. */ void flush_delayed_fput(void) { delayed_fput(NULL); } EXPORT_SYMBOL_GPL(flush_delayed_fput); static DECLARE_DELAYED_WORK(delayed_fput_work, delayed_fput); void fput_many(struct file *file, unsigned int refs) { if (atomic_long_sub_and_test(refs, &file->f_count)) { struct task_struct *task = current; if (likely(!in_interrupt() && !(task->flags & PF_KTHREAD))) { init_task_work(&file->f_u.fu_rcuhead, ____fput); if (!task_work_add(task, &file->f_u.fu_rcuhead, TWA_RESUME)) return; /* * After this task has run exit_task_work(), * task_work_add() will fail. Fall through to delayed * fput to avoid leaking *file. */ } if (llist_add(&file->f_u.fu_llist, &delayed_fput_list)) schedule_delayed_work(&delayed_fput_work, 1); } } void fput(struct file *file) { fput_many(file, 1); } /* * synchronous analog of fput(); for kernel threads that might be needed * in some umount() (and thus can't use flush_delayed_fput() without * risking deadlocks), need to wait for completion of __fput() and know * for this specific struct file it won't involve anything that would * need them. Use only if you really need it - at the very least, * don't blindly convert fput() by kernel thread to that. */ void __fput_sync(struct file *file) { if (atomic_long_dec_and_test(&file->f_count)) { struct task_struct *task = current; BUG_ON(!(task->flags & PF_KTHREAD)); __fput(file); } } EXPORT_SYMBOL(fput); void __init files_init(void) { filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); percpu_counter_init(&nr_files, 0, GFP_KERNEL); } /* * One file with associated inode and dcache is very roughly 1K. Per default * do not use more than 10% of our memory for files. */ void __init files_maxfiles_init(void) { unsigned long n; unsigned long nr_pages = totalram_pages(); unsigned long memreserve = (nr_pages - nr_free_pages()) * 3/2; memreserve = min(memreserve, nr_pages - 1); n = ((nr_pages - memreserve) * (PAGE_SIZE / 1024)) / 10; files_stat.max_files = max_t(unsigned long, n, NR_FILE); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CHECKSUM_64_H #define _ASM_X86_CHECKSUM_64_H /* * Checksums for x86-64 * Copyright 2002 by Andi Kleen, SuSE Labs * with some code from asm-x86/checksum.h */ #include <linux/compiler.h> #include <linux/uaccess.h> #include <asm/byteorder.h> /** * csum_fold - Fold and invert a 32bit checksum. * sum: 32bit unfolded sum * * Fold a 32bit running checksum to 16bit and invert it. This is usually * the last step before putting a checksum into a packet. * Make sure not to mix with 64bit checksums. */ static inline __sum16 csum_fold(__wsum sum) { asm(" addl %1,%0\n" " adcl $0xffff,%0" : "=r" (sum) : "r" ((__force u32)sum << 16), "0" ((__force u32)sum & 0xffff0000)); return (__force __sum16)(~(__force u32)sum >> 16); } /* * This is a version of ip_compute_csum() optimized for IP headers, * which always checksum on 4 octet boundaries. * * By Jorge Cwik <jorge@laser.satlink.net>, adapted for linux by * Arnt Gulbrandsen. */ /** * ip_fast_csum - Compute the IPv4 header checksum efficiently. * iph: ipv4 header * ihl: length of header / 4 */ static inline __sum16 ip_fast_csum(const void *iph, unsigned int ihl) { unsigned int sum; asm(" movl (%1), %0\n" " subl $4, %2\n" " jbe 2f\n" " addl 4(%1), %0\n" " adcl 8(%1), %0\n" " adcl 12(%1), %0\n" "1: adcl 16(%1), %0\n" " lea 4(%1), %1\n" " decl %2\n" " jne 1b\n" " adcl $0, %0\n" " movl %0, %2\n" " shrl $16, %0\n" " addw %w2, %w0\n" " adcl $0, %0\n" " notl %0\n" "2:" /* Since the input registers which are loaded with iph and ihl are modified, we must also specify them as outputs, or gcc will assume they contain their original values. */ : "=r" (sum), "=r" (iph), "=r" (ihl) : "1" (iph), "2" (ihl) : "memory"); return (__force __sum16)sum; } /** * csum_tcpup_nofold - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the pseudo header checksum the input data. Result is * 32bit unfolded. */ static inline __wsum csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { asm(" addl %1, %0\n" " adcl %2, %0\n" " adcl %3, %0\n" " adcl $0, %0\n" : "=r" (sum) : "g" (daddr), "g" (saddr), "g" ((len + proto)<<8), "0" (sum)); return sum; } /** * csum_tcpup_magic - Compute an IPv4 pseudo header checksum. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: ip protocol of packet * @sum: initial sum to be added in (32bit unfolded) * * Returns the 16bit pseudo header checksum the input data already * complemented and ready to be filled in. */ static inline __sum16 csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __wsum sum) { return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum)); } /** * csum_partial - Compute an internet checksum. * @buff: buffer to be checksummed * @len: length of buffer. * @sum: initial sum to be added in (32bit unfolded) * * Returns the 32bit unfolded internet checksum of the buffer. * Before filling it in it needs to be csum_fold()'ed. * buff should be aligned to a 64bit boundary if possible. */ extern __wsum csum_partial(const void *buff, int len, __wsum sum); /* Do not call this directly. Use the wrappers below */ extern __visible __wsum csum_partial_copy_generic(const void *src, void *dst, int len); extern __wsum csum_and_copy_from_user(const void __user *src, void *dst, int len); extern __wsum csum_and_copy_to_user(const void *src, void __user *dst, int len); extern __wsum csum_partial_copy_nocheck(const void *src, void *dst, int len); /** * ip_compute_csum - Compute an 16bit IP checksum. * @buff: buffer address. * @len: length of buffer. * * Returns the 16bit folded/inverted checksum of the passed buffer. * Ready to fill in. */ extern __sum16 ip_compute_csum(const void *buff, int len); /** * csum_ipv6_magic - Compute checksum of an IPv6 pseudo header. * @saddr: source address * @daddr: destination address * @len: length of packet * @proto: protocol of packet * @sum: initial sum (32bit unfolded) to be added in * * Computes an IPv6 pseudo header checksum. This sum is added the checksum * into UDP/TCP packets and contains some link layer information. * Returns the unfolded 32bit checksum. */ struct in6_addr; #define _HAVE_ARCH_IPV6_CSUM 1 extern __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum sum); static inline unsigned add32_with_carry(unsigned a, unsigned b) { asm("addl %2,%0\n\t" "adcl $0,%0" : "=r" (a) : "0" (a), "rm" (b)); return a; } #define HAVE_ARCH_CSUM_ADD static inline __wsum csum_add(__wsum csum, __wsum addend) { return (__force __wsum)add32_with_carry((__force unsigned)csum, (__force unsigned)addend); } #endif /* _ASM_X86_CHECKSUM_64_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 // SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/swap.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/memremap.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/export.h> #include <linux/delayacct.h> #include <linux/init.h> #include <linux/pfn_t.h> #include <linux/writeback.h> #include <linux/memcontrol.h> #include <linux/mmu_notifier.h> #include <linux/swapops.h> #include <linux/elf.h> #include <linux/gfp.h> #include <linux/migrate.h> #include <linux/string.h> #include <linux/debugfs.h> #include <linux/userfaultfd_k.h> #include <linux/dax.h> #include <linux/oom.h> #include <linux/numa.h> #include <linux/perf_event.h> #include <linux/ptrace.h> #include <linux/vmalloc.h> #include <trace/events/kmem.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> #include <asm/tlb.h> #include <asm/tlbflush.h> #include "pgalloc-track.h" #include "internal.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NEED_MULTIPLE_NODES /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; EXPORT_SYMBOL(max_mapnr); struct page *mem_map; EXPORT_SYMBOL(mem_map); #endif /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void *high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif #ifndef arch_faults_on_old_pte static inline bool arch_faults_on_old_pte(void) { /* * Those arches which don't have hw access flag feature need to * implement their own helper. By default, "true" means pagefault * will be hit on old pte. */ return true; } #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); unsigned long highest_memmap_pfn __read_mostly; /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } early_initcall(init_zero_pfn); void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) { trace_rss_stat(mm, member, count); } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm) { int i; for (i = 0; i < NR_MM_COUNTERS; i++) { if (current->rss_stat.count[i]) { add_mm_counter(mm, i, current->rss_stat.count[i]); current->rss_stat.count[i] = 0; } } current->rss_stat.events = 0; } static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) { struct task_struct *task = current; if (likely(task->mm == mm)) task->rss_stat.count[member] += val; else add_mm_counter(mm, member, val); } #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) /* sync counter once per 64 page faults */ #define TASK_RSS_EVENTS_THRESH (64) static void check_sync_rss_stat(struct task_struct *task) { if (unlikely(task != current)) return; if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) sync_mm_rss(task->mm); } #else /* SPLIT_RSS_COUNTING */ #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) static void check_sync_rss_stat(struct task_struct *task) { } #endif /* SPLIT_RSS_COUNTING */ /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= P4D_MASK; if (start < floor) return; if (ceiling) { ceiling &= P4D_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { p4d_t *p4d; unsigned long next; unsigned long start; start = addr; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; free_pud_range(tlb, p4d, addr, next, floor, ceiling); } while (p4d++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; p4d = p4d_offset(pgd, start); pgd_clear(pgd); p4d_free_tlb(tlb, p4d, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; /* * We add page table cache pages with PAGE_SIZE, * (see pte_free_tlb()), flush the tlb if we need */ tlb_change_page_size(tlb, PAGE_SIZE); pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_p4d_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next ? next->vm_start : ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl; pgtable_t new = pte_alloc_one(mm); if (!new) return -ENOMEM; /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_rmb() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ mm_inc_nr_ptes(mm); pmd_populate(mm, pmd, new); new = NULL; } spin_unlock(ptl); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd) { pte_t *new = pte_alloc_one_kernel(&init_mm); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); p4d_t *p4d = p4d_offset(pgd, addr); pud_t *pud = pud_offset(p4d, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->readpage : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned long pfn = pte_pfn(pte); if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; if (pte_devmap(pte)) return NULL; print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (pmd_devmap(pmd)) return NULL; if (is_huge_zero_pmd(pmd)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static unsigned long copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, unsigned long addr, int *rss) { unsigned long vm_flags = dst_vma->vm_flags; pte_t pte = *src_pte; struct page *page; swp_entry_t entry = pte_to_swp_entry(pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return entry.val; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = migration_entry_to_page(entry); rss[mm_counter(page)]++; if (is_write_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both * parent and child to be set to read. */ make_migration_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(*src_pte)) pte = pte_swp_mksoft_dirty(pte); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = device_private_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; page_dup_rmap(page, false); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_write_device_private_entry(entry) && is_cow_mapping(vm_flags)) { make_device_private_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_uffd_wp(*src_pte)) pte = pte_swp_mkuffd_wp(pte); set_pte_at(src_mm, addr, src_pte, pte); } } if (!userfaultfd_wp(dst_vma)) pte = pte_swp_clear_uffd_wp(pte); set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } /* * Copy a present and normal page if necessary. * * NOTE! The usual case is that this doesn't need to do * anything, and can just return a positive value. That * will let the caller know that it can just increase * the page refcount and re-use the pte the traditional * way. * * But _if_ we need to copy it because it needs to be * pinned in the parent (and the child should get its own * copy rather than just a reference to the same page), * we'll do that here and return zero to let the caller * know we're done. * * And if we need a pre-allocated page but don't yet have * one, return a negative error to let the preallocation * code know so that it can do so outside the page table * lock. */ static inline int copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc, pte_t pte, struct page *page) { struct mm_struct *src_mm = src_vma->vm_mm; struct page *new_page; if (!is_cow_mapping(src_vma->vm_flags)) return 1; /* * What we want to do is to check whether this page may * have been pinned by the parent process. If so, * instead of wrprotect the pte on both sides, we copy * the page immediately so that we'll always guarantee * the pinned page won't be randomly replaced in the * future. * * The page pinning checks are just "has this mm ever * seen pinning", along with the (inexact) check of * the page count. That might give false positives for * for pinning, but it will work correctly. */ if (likely(!atomic_read(&src_mm->has_pinned))) return 1; if (likely(!page_maybe_dma_pinned(page))) return 1; new_page = *prealloc; if (!new_page) return -EAGAIN; /* * We have a prealloc page, all good! Take it * over and copy the page & arm it. */ *prealloc = NULL; copy_user_highpage(new_page, page, addr, src_vma); __SetPageUptodate(new_page); page_add_new_anon_rmap(new_page, dst_vma, addr, false); lru_cache_add_inactive_or_unevictable(new_page, dst_vma); rss[mm_counter(new_page)]++; /* All done, just insert the new page copy in the child */ pte = mk_pte(new_page, dst_vma->vm_page_prot); pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); if (userfaultfd_pte_wp(dst_vma, *src_pte)) /* Uffd-wp needs to be delivered to dest pte as well */ pte = pte_wrprotect(pte_mkuffd_wp(pte)); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } /* * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page * is required to copy this pte. */ static inline int copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc) { struct mm_struct *src_mm = src_vma->vm_mm; unsigned long vm_flags = src_vma->vm_flags; pte_t pte = *src_pte; struct page *page; page = vm_normal_page(src_vma, addr, pte); if (page) { int retval; retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, addr, rss, prealloc, pte, page); if (retval <= 0) return retval; get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags) && pte_write(pte)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); if (!userfaultfd_wp(dst_vma)) pte = pte_clear_uffd_wp(pte); set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); return 0; } static inline struct page * page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, unsigned long addr) { struct page *new_page; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); if (!new_page) return NULL; if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { put_page(new_page); return NULL; } cgroup_throttle_swaprate(new_page, GFP_KERNEL); return new_page; } static int copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress, ret = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; struct page *prealloc = NULL; again: progress = 0; init_rss_vec(rss); dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) { ret = -ENOMEM; goto out; } src_pte = pte_offset_map(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } if (unlikely(!pte_present(*src_pte))) { entry.val = copy_nonpresent_pte(dst_mm, src_mm, dst_pte, src_pte, dst_vma, src_vma, addr, rss); if (entry.val) break; progress += 8; continue; } /* copy_present_pte() will clear `*prealloc' if consumed */ ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, addr, rss, &prealloc); /* * If we need a pre-allocated page for this pte, drop the * locks, allocate, and try again. */ if (unlikely(ret == -EAGAIN)) break; if (unlikely(prealloc)) { /* * pre-alloc page cannot be reused by next time so as * to strictly follow mempolicy (e.g., alloc_page_vma() * will allocate page according to address). This * could only happen if one pinned pte changed. */ put_page(prealloc); prealloc = NULL; } progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); spin_unlock(src_ptl); pte_unmap(orig_src_pte); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (entry.val) { if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { ret = -ENOMEM; goto out; } entry.val = 0; } else if (ret) { WARN_ON_ONCE(ret != -EAGAIN); prealloc = page_copy_prealloc(src_mm, src_vma, addr); if (!prealloc) return -ENOMEM; /* We've captured and resolved the error. Reset, try again. */ ret = 0; } if (addr != end) goto again; out: if (unlikely(prealloc)) put_page(prealloc); return ret; } static inline int copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pud_t *dst_pud, pud_t *src_pud, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, dst_vma, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_p4d, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { int err; VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); err = copy_huge_pud(dst_mm, src_mm, dst_pud, src_pud, addr, src_vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } static inline int copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, unsigned long end) { struct mm_struct *dst_mm = dst_vma->vm_mm; p4d_t *src_p4d, *dst_p4d; unsigned long next; dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); if (!dst_p4d) return -ENOMEM; src_p4d = p4d_offset(src_pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(src_p4d)) continue; if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, addr, next)) return -ENOMEM; } while (dst_p4d++, src_p4d++, addr = next, addr != end); return 0; } int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = src_vma->vm_start; unsigned long end = src_vma->vm_end; struct mm_struct *dst_mm = dst_vma->vm_mm; struct mm_struct *src_mm = src_vma->vm_mm; struct mmu_notifier_range range; bool is_cow; int ret; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && !src_vma->anon_vma) return 0; if (is_vm_hugetlb_page(src_vma)) return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(src_vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(src_vma->vm_flags); if (is_cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, src_vma, src_mm, addr, end); mmu_notifier_invalidate_range_start(&range); /* * Disabling preemption is not needed for the write side, as * the read side doesn't spin, but goes to the mmap_lock. * * Use the raw variant of the seqcount_t write API to avoid * lockdep complaining about preemptibility. */ mmap_assert_write_locked(src_mm); raw_write_seqcount_begin(&src_mm->write_protect_seq); } ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, addr, next))) { ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) { raw_write_seqcount_end(&src_mm->write_protect_seq); mmu_notifier_invalidate_range_end(&range); } return ret; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; tlb_change_page_size(tlb, PAGE_SIZE); again: init_rss_vec(rss); start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte = start_pte; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = *pte; if (pte_none(ptent)) continue; if (need_resched()) break; if (pte_present(ptent)) { struct page *page; page = vm_normal_page(vma, addr, ptent); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page_rmapping(page)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (!PageAnon(page)) { if (pte_dirty(ptent)) { force_flush = 1; set_page_dirty(page); } if (pte_young(ptent) && likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); } rss[mm_counter(page)]--; page_remove_rmap(page, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); if (unlikely(__tlb_remove_page(tlb, page))) { force_flush = 1; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (is_device_private_entry(entry)) { struct page *page = device_private_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping != page_rmapping(page)) continue; } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); rss[mm_counter(page)]--; page_remove_rmap(page, false); put_page(page); continue; } /* If details->check_mapping, we leave swap entries. */ if (unlikely(details)) continue; if (!non_swap_entry(entry)) rss[MM_SWAPENTS]--; else if (is_migration_entry(entry)) { struct page *page; page = migration_entry_to_page(entry); rss[mm_counter(page)]--; } if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Restart if we didn't do everything. */ if (force_flush) { force_flush = 0; tlb_flush_mmu(tlb); } if (addr != end) { cond_resched(); goto again; } return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) __split_huge_pmd(vma, pmd, addr, false, NULL); else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ } else if (details && details->single_page && PageTransCompound(details->single_page) && next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { spinlock_t *ptl = pmd_lock(tlb->mm, pmd); /* * Take and drop THP pmd lock so that we cannot return * prematurely, while zap_huge_pmd() has cleared *pmd, * but not yet decremented compound_mapcount(). */ spin_unlock(ptl); } /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is * none or trans huge it can change under us. This is * because MADV_DONTNEED holds the mmap_lock in read * mode. */ if (pmd_none_or_trans_huge_or_clear_bad(pmd)) goto next; next = zap_pte_range(tlb, vma, pmd, addr, next, details); next: cond_resched(); } while (pmd++, addr = next, addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_trans_huge(*pud) || pud_devmap(*pud)) { if (next - addr != HPAGE_PUD_SIZE) { mmap_assert_locked(tlb->mm); split_huge_pud(vma, pud, addr); } else if (zap_huge_pud(tlb, vma, pud, addr)) goto next; /* fall through */ } if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); next: cond_resched(); } while (pud++, addr = next, addr != end); return addr; } static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { p4d_t *p4d; unsigned long next; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; next = zap_pud_range(tlb, vma, p4d, addr, next, details); } while (p4d++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_p4d_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { i_mmap_lock_write(vma->vm_file->f_mapping); __unmap_hugepage_range_final(tlb, vma, start, end, NULL); i_mmap_unlock_write(vma->vm_file->f_mapping); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mmu_notifier_range range; mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, start_addr, end_addr); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); mmu_notifier_invalidate_range_end(&range); } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @start: starting address of pages to zap * @size: number of bytes to zap * * Caller must protect the VMA list */ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long size) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, start, start + size); tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) unmap_single_vma(&tlb, vma, start, range.end, NULL); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, start, range.end); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mmu_notifier_range range; struct mmu_gather tlb; lru_add_drain(); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, address, address + size); tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); update_hiwater_rss(vma->vm_mm); mmu_notifier_invalidate_range_start(&range); unmap_single_vma(&tlb, vma, address, range.end, details); mmu_notifier_invalidate_range_end(&range); tlb_finish_mmu(&tlb, address, range.end); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * */ void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (address < vma->vm_start || address + size > vma->vm_end || !(vma->vm_flags & VM_PFNMAP)) return; zap_page_range_single(vma, address, size, NULL); } EXPORT_SYMBOL_GPL(zap_vma_ptes); static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = pgd_offset(mm, addr); p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return NULL; pud = pud_alloc(mm, p4d, addr); if (!pud) return NULL; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return NULL; VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pmd_t *pmd = walk_to_pmd(mm, addr); if (!pmd) return NULL; return pte_alloc_map_lock(mm, pmd, addr, ptl); } static int validate_page_before_insert(struct page *page) { if (PageAnon(page) || PageSlab(page) || page_has_type(page)) return -EINVAL; flush_dcache_page(page); return 0; } static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { if (!pte_none(*pte)) return -EBUSY; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter_fast(mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(mm, addr, pte, mk_pte(page, prot)); return 0; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte; spinlock_t *ptl; retval = validate_page_before_insert(page); if (retval) goto out; retval = -ENOMEM; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); pte_unmap_unlock(pte, ptl); out: return retval; } #ifdef pte_index static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, unsigned long addr, struct page *page, pgprot_t prot) { int err; if (!page_count(page)) return -EINVAL; err = validate_page_before_insert(page); if (err) return err; return insert_page_into_pte_locked(mm, pte, addr, page, prot); } /* insert_pages() amortizes the cost of spinlock operations * when inserting pages in a loop. Arch *must* define pte_index. */ static int insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num, pgprot_t prot) { pmd_t *pmd = NULL; pte_t *start_pte, *pte; spinlock_t *pte_lock; struct mm_struct *const mm = vma->vm_mm; unsigned long curr_page_idx = 0; unsigned long remaining_pages_total = *num; unsigned long pages_to_write_in_pmd; int ret; more: ret = -EFAULT; pmd = walk_to_pmd(mm, addr); if (!pmd) goto out; pages_to_write_in_pmd = min_t(unsigned long, remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); /* Allocate the PTE if necessary; takes PMD lock once only. */ ret = -ENOMEM; if (pte_alloc(mm, pmd)) goto out; while (pages_to_write_in_pmd) { int pte_idx = 0; const int batch_size = min_t(int, pages_to_write_in_pmd, 8); start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { int err = insert_page_in_batch_locked(mm, pte, addr, pages[curr_page_idx], prot); if (unlikely(err)) { pte_unmap_unlock(start_pte, pte_lock); ret = err; remaining_pages_total -= pte_idx; goto out; } addr += PAGE_SIZE; ++curr_page_idx; } pte_unmap_unlock(start_pte, pte_lock); pages_to_write_in_pmd -= batch_size; remaining_pages_total -= batch_size; } if (remaining_pages_total) goto more; ret = 0; out: *num = remaining_pages_total; return ret; } #endif /* ifdef pte_index */ /** * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. * @vma: user vma to map to * @addr: target start user address of these pages * @pages: source kernel pages * @num: in: number of pages to map. out: number of pages that were *not* * mapped. (0 means all pages were successfully mapped). * * Preferred over vm_insert_page() when inserting multiple pages. * * In case of error, we may have mapped a subset of the provided * pages. It is the caller's responsibility to account for this case. * * The same restrictions apply as in vm_insert_page(). */ int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num) { #ifdef pte_index const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; if (addr < vma->vm_start || end_addr >= vma->vm_end) return -EFAULT; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } /* Defer page refcount checking till we're about to map that page. */ return insert_pages(vma, addr, pages, num, vma->vm_page_prot); #else unsigned long idx = 0, pgcount = *num; int err = -EINVAL; for (; idx < pgcount; ++idx) { err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); if (err) break; } *num = pgcount - idx; return err; #endif /* ifdef pte_index */ } EXPORT_SYMBOL(vm_insert_pages); /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_lock write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. * * Return: %0 on success, negative error code otherwise. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(mmap_read_trylock(vma->vm_mm)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); /* * __vm_map_pages - maps range of kernel pages into user vma * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * @offset: user's requested vm_pgoff * * This allows drivers to map range of kernel pages into a user vma. * * Return: 0 on success and error code otherwise. */ static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num, unsigned long offset) { unsigned long count = vma_pages(vma); unsigned long uaddr = vma->vm_start; int ret, i; /* Fail if the user requested offset is beyond the end of the object */ if (offset >= num) return -ENXIO; /* Fail if the user requested size exceeds available object size */ if (count > num - offset) return -ENXIO; for (i = 0; i < count; i++) { ret = vm_insert_page(vma, uaddr, pages[offset + i]); if (ret < 0) return ret; uaddr += PAGE_SIZE; } return 0; } /** * vm_map_pages - maps range of kernel pages starts with non zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Maps an object consisting of @num pages, catering for the user's * requested vm_pgoff * * If we fail to insert any page into the vma, the function will return * immediately leaving any previously inserted pages present. Callers * from the mmap handler may immediately return the error as their caller * will destroy the vma, removing any successfully inserted pages. Other * callers should make their own arrangements for calling unmap_region(). * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, vma->vm_pgoff); } EXPORT_SYMBOL(vm_map_pages); /** * vm_map_pages_zero - map range of kernel pages starts with zero offset * @vma: user vma to map to * @pages: pointer to array of source kernel pages * @num: number of pages in page array * * Similar to vm_map_pages(), except that it explicitly sets the offset * to 0. This function is intended for the drivers that did not consider * vm_pgoff. * * Context: Process context. Called by mmap handlers. * Return: 0 on success and error code otherwise. */ int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num) { return __vm_map_pages(vma, pages, num, 0); } EXPORT_SYMBOL(vm_map_pages_zero); static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot, bool mkwrite) { struct mm_struct *mm = vma->vm_mm; pte_t *pte, entry; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) return VM_FAULT_OOM; if (!pte_none(*pte)) { if (mkwrite) { /* * For read faults on private mappings the PFN passed * in may not match the PFN we have mapped if the * mapped PFN is a writeable COW page. In the mkwrite * case we are creating a writable PTE for a shared * mapping and we expect the PFNs to match. If they * don't match, we are likely racing with block * allocation and mapping invalidation so just skip the * update. */ if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); goto out_unlock; } entry = pte_mkyoung(*pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, addr, pte, entry, 1)) update_mmu_cache(vma, addr, pte); } goto out_unlock; } /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); if (mkwrite) { entry = pte_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); } set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ out_unlock: pte_unmap_unlock(pte, ptl); return VM_FAULT_NOPAGE; } /** * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_pfn(), except that it allows drivers * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * COW mappings. In general, using multiple vmas is preferable; * vmf_insert_pfn_prot should only be used if using multiple VMAs is * impractical. * * See vmf_insert_mixed_prot() for a discussion of the implication of using * a value of @pgprot different from that of @vma->vm_page_prot. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; if (!pfn_modify_allowed(pfn, pgprot)) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, false); } EXPORT_SYMBOL(vmf_insert_pfn_prot); /** * vmf_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return the result of this function. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vmf_insert_pfn); static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) { /* these checks mirror the abort conditions in vm_normal_page */ if (vma->vm_flags & VM_MIXEDMAP) return true; if (pfn_t_devmap(pfn)) return true; if (pfn_t_special(pfn)) return true; if (is_zero_pfn(pfn_t_to_pfn(pfn))) return true; return false; } static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot, bool mkwrite) { int err; BUG_ON(!vm_mixed_ok(vma, pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return VM_FAULT_SIGBUS; track_pfn_insert(vma, &pgprot, pfn); if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return VM_FAULT_SIGBUS; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); err = insert_page(vma, addr, page, pgprot); } else { return insert_pfn(vma, addr, pfn, pgprot, mkwrite); } if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } /** * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vmf_insert_mixed(), except that it allows drivers * to override pgprot on a per-page basis. * * Typically this function should be used by drivers to set caching- and * encryption bits different than those of @vma->vm_page_prot, because * the caching- or encryption mode may not be known at mmap() time. * This is ok as long as @vma->vm_page_prot is not used by the core vm * to set caching and encryption bits for those vmas (except for COW pages). * This is ensured by core vm only modifying these page table entries using * functions that don't touch caching- or encryption bits, using pte_modify() * if needed. (See for example mprotect()). * Also when new page-table entries are created, this is only done using the * fault() callback, and never using the value of vma->vm_page_prot, * except for page-table entries that point to anonymous pages as the result * of COW. * * Context: Process context. May allocate using %GFP_KERNEL. * Return: vm_fault_t value. */ vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot) { return __vm_insert_mixed(vma, addr, pfn, pgprot, false); } EXPORT_SYMBOL(vmf_insert_mixed_prot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); } EXPORT_SYMBOL(vmf_insert_mixed); /* * If the insertion of PTE failed because someone else already added a * different entry in the mean time, we treat that as success as we assume * the same entry was actually inserted. */ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); } EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(*pte)); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(mapped_pte, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, p4d, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { p4d_t *p4d; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; p4d = p4d_alloc(mm, pgd, addr); if (!p4d) return -ENOMEM; do { next = p4d_addr_end(addr, end); err = remap_pud_range(mm, p4d, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (p4d++, addr = next, addr != end); return 0; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target page aligned user address to start at * @pfn: page frame number of kernel physical memory address * @size: size of mapping area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. * * Return: %0 on success, negative error code otherwise. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; unsigned long remap_pfn = pfn; int err; if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) return -EINVAL; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_p4d_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) break; } while (pgd++, addr = next, addr != end); if (err) untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of the physical memory to be mapped * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. * * Return: %0 on success, negative error code otherwise. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pte_t *pte; int err = 0; spinlock_t *ptl; if (create) { pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); } BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); if (fn) { do { if (create || !pte_none(*pte)) { err = fn(pte++, addr, data); if (err) break; } } while (addr += PAGE_SIZE, addr != end); } *mask |= PGTBL_PTE_MODIFIED; arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(pte-1, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pmd_t *pmd; unsigned long next; int err = 0; BUG_ON(pud_huge(*pud)); if (create) { pmd = pmd_alloc_track(mm, pud, addr, mask); if (!pmd) return -ENOMEM; } else { pmd = pmd_offset(pud, addr); } do { next = pmd_addr_end(addr, end); if (create || !pmd_none_or_clear_bad(pmd)) { err = apply_to_pte_range(mm, pmd, addr, next, fn, data, create, mask); if (err) break; } } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { pud_t *pud; unsigned long next; int err = 0; if (create) { pud = pud_alloc_track(mm, p4d, addr, mask); if (!pud) return -ENOMEM; } else { pud = pud_offset(p4d, addr); } do { next = pud_addr_end(addr, end); if (create || !pud_none_or_clear_bad(pud)) { err = apply_to_pmd_range(mm, pud, addr, next, fn, data, create, mask); if (err) break; } } while (pud++, addr = next, addr != end); return err; } static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { p4d_t *p4d; unsigned long next; int err = 0; if (create) { p4d = p4d_alloc_track(mm, pgd, addr, mask); if (!p4d) return -ENOMEM; } else { p4d = p4d_offset(pgd, addr); } do { next = p4d_addr_end(addr, end); if (create || !p4d_none_or_clear_bad(p4d)) { err = apply_to_pud_range(mm, p4d, addr, next, fn, data, create, mask); if (err) break; } } while (p4d++, addr = next, addr != end); return err; } static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data, bool create) { pgd_t *pgd; unsigned long start = addr, next; unsigned long end = addr + size; pgtbl_mod_mask mask = 0; int err = 0; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); if (!create && pgd_none_or_clear_bad(pgd)) continue; err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); if (err) break; } while (pgd++, addr = next, addr != end); if (mask & ARCH_PAGE_TABLE_SYNC_MASK) arch_sync_kernel_mappings(start, start + size); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, true); } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * Scan a region of virtual memory, calling a provided function on * each leaf page table where it exists. * * Unlike apply_to_page_range, this does _not_ fill in page tables * where they are absent. */ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { return __apply_to_page_range(mm, addr, size, fn, data, false); } EXPORT_SYMBOL_GPL(apply_to_existing_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } static inline bool cow_user_page(struct page *dst, struct page *src, struct vm_fault *vmf) { bool ret; void *kaddr; void __user *uaddr; bool locked = false; struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; unsigned long addr = vmf->address; if (likely(src)) { copy_user_highpage(dst, src, addr, vma); return true; } /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ kaddr = kmap_atomic(dst); uaddr = (void __user *)(addr & PAGE_MASK); /* * On architectures with software "accessed" bits, we would * take a double page fault, so mark it accessed here. */ if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { pte_t entry; vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* * Other thread has already handled the fault * and update local tlb only */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } entry = pte_mkyoung(vmf->orig_pte); if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) update_mmu_cache(vma, addr, vmf->pte); } /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { if (locked) goto warn; /* Re-validate under PTL if the page is still mapped */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); locked = true; if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { /* The PTE changed under us, update local tlb */ update_mmu_tlb(vma, addr, vmf->pte); ret = false; goto pte_unlock; } /* * The same page can be mapped back since last copy attempt. * Try to copy again under PTL. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { /* * Give a warn in case there can be some obscure * use-case */ warn: WARN_ON_ONCE(1); clear_page(kaddr); } } ret = true; pte_unlock: if (locked) pte_unmap_unlock(vmf->pte, vmf->ptl); kunmap_atomic(kaddr); flush_dcache_page(dst); return ret; } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) { vm_fault_t ret; struct page *page = vmf->page; unsigned int old_flags = vmf->flags; vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; if (vmf->vma->vm_file && IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) return VM_FAULT_SIGBUS; ret = vmf->vma->vm_ops->page_mkwrite(vmf); /* Restore original flags so that caller is not surprised */ vmf->flags = old_flags; if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { lock_page(page); if (!page->mapping) { unlock_page(page); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_PAGE(!PageLocked(page), page); return ret; } /* * Handle dirtying of a page in shared file mapping on a write fault. * * The function expects the page to be locked and unlocks it. */ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping; struct page *page = vmf->page; bool dirtied; bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; dirtied = set_page_dirty(page); VM_BUG_ON_PAGE(PageAnon(page), page); /* * Take a local copy of the address_space - page.mapping may be zeroed * by truncate after unlock_page(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on unlock_page()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = page_rmapping(page); unlock_page(page); if (!page_mkwrite) file_update_time(vma->vm_file); /* * Throttle page dirtying rate down to writeback speed. * * mapping may be NULL here because some device drivers do not * set page.mapping but still dirty their pages * * Drop the mmap_lock before waiting on IO, if we can. The file * is pinning the mapping, as per above. */ if ((dirtied || page_mkwrite) && mapping) { struct file *fpin; fpin = maybe_unlock_mmap_for_io(vmf, NULL); balance_dirty_pages_ratelimited(mapping); if (fpin) { fput(fpin); return VM_FAULT_RETRY; } } return 0; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline void wp_page_reuse(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; struct page *page = vmf->page; pte_t entry; /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = pte_mkyoung(vmf->orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) update_mmu_cache(vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); count_vm_event(PGREUSE); } /* * Handle the case of a page which we actually need to copy to a new page. * * Called with mmap_lock locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static vm_fault_t wp_page_copy(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *mm = vma->vm_mm; struct page *old_page = vmf->page; struct page *new_page = NULL; pte_t entry; int page_copied = 0; struct mmu_notifier_range range; if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { new_page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!new_page) goto oom; if (!cow_user_page(new_page, old_page, vmf)) { /* * COW failed, if the fault was solved by other, * it's fine. If not, userspace would re-fault on * the same address and we will handle the fault * from the second attempt. */ put_page(new_page); if (old_page) put_page(old_page); return 0; } } if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) goto oom_free_new; cgroup_throttle_swaprate(new_page, GFP_KERNEL); __SetPageUptodate(new_page); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, vmf->address & PAGE_MASK, (vmf->address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(&range); /* * Re-check the pte - we dropped the lock */ vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { if (old_page) { if (!PageAnon(old_page)) { dec_mm_counter_fast(mm, mm_counter_file(old_page)); inc_mm_counter_fast(mm, MM_ANONPAGES); } } else { inc_mm_counter_fast(mm, MM_ANONPAGES); } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* * Clear the pte entry and flush it first, before updating the * pte with the new entry. This will avoid a race condition * seen in the presence of one thread doing SMC and another * thread doing COW. */ ptep_clear_flush_notify(vma, vmf->address, vmf->pte); page_add_new_anon_rmap(new_page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(new_page, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ set_pte_at_notify(mm, vmf->address, vmf->pte, entry); update_mmu_cache(vma, vmf->address, vmf->pte); if (old_page) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(old_page, false); } /* Free the old page.. */ new_page = old_page; page_copied = 1; } else { update_mmu_tlb(vma, vmf->address, vmf->pte); } if (new_page) put_page(new_page); pte_unmap_unlock(vmf->pte, vmf->ptl); /* * No need to double call mmu_notifier->invalidate_range() callback as * the above ptep_clear_flush_notify() did already call it. */ mmu_notifier_invalidate_range_only_end(&range); if (old_page) { /* * Don't let another task, with possibly unlocked vma, * keep the mlocked page. */ if (page_copied && (vma->vm_flags & VM_LOCKED)) { lock_page(old_page); /* LRU manipulation */ if (PageMlocked(old_page)) munlock_vma_page(old_page); unlock_page(old_page); } put_page(old_page); } return page_copied ? VM_FAULT_WRITE : 0; oom_free_new: put_page(new_page); oom: if (old_page) put_page(old_page); return VM_FAULT_OOM; } /** * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE * writeable once the page is prepared * * @vmf: structure describing the fault * * This function handles all that is needed to finish a write page fault in a * shared mapping due to PTE being read-only once the mapped page is prepared. * It handles locking of PTE and modifying it. * * The function expects the page to be locked or other protection against * concurrent faults / writeback (such as DAX radix tree locks). * * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before * we acquired PTE lock. */ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) { WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * We might have raced with another page fault while we released the * pte_offset_map_lock. */ if (!pte_same(*vmf->pte, vmf->orig_pte)) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); pte_unmap_unlock(vmf->pte, vmf->ptl); return VM_FAULT_NOPAGE; } wp_page_reuse(vmf); return 0; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { vm_fault_t ret; pte_unmap_unlock(vmf->pte, vmf->ptl); vmf->flags |= FAULT_FLAG_MKWRITE; ret = vma->vm_ops->pfn_mkwrite(vmf); if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) return ret; return finish_mkwrite_fault(vmf); } wp_page_reuse(vmf); return VM_FAULT_WRITE; } static vm_fault_t wp_page_shared(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = VM_FAULT_WRITE; get_page(vmf->page); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { vm_fault_t tmp; pte_unmap_unlock(vmf->pte, vmf->ptl); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } tmp = finish_mkwrite_fault(vmf); if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { unlock_page(vmf->page); put_page(vmf->page); return tmp; } } else { wp_page_reuse(vmf); lock_page(vmf->page); } ret |= fault_dirty_shared_page(vmf); put_page(vmf->page); return ret; } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_wp_page(struct vm_fault *vmf) __releases(vmf->ptl) { struct vm_area_struct *vma = vmf->vma; if (userfaultfd_pte_wp(vma, *vmf->pte)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_WP); } /* * Userfaultfd write-protect can defer flushes. Ensure the TLB * is flushed in this case before copying. */ if (unlikely(userfaultfd_wp(vmf->vma) && mm_tlb_flush_pending(vmf->vma->vm_mm))) flush_tlb_page(vmf->vma, vmf->address); vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (!vmf->page) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) return wp_pfn_shared(vmf); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } /* * Take out anonymous pages first, anonymous shared vmas are * not dirty accountable. */ if (PageAnon(vmf->page)) { struct page *page = vmf->page; /* PageKsm() doesn't necessarily raise the page refcount */ if (PageKsm(page) || page_count(page) != 1) goto copy; if (!trylock_page(page)) goto copy; if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { unlock_page(page); goto copy; } /* * Ok, we've got the only map reference, and the only * page count reference, and the page is locked, * it's dark out, and we're wearing sunglasses. Hit it. */ unlock_page(page); wp_page_reuse(vmf); return VM_FAULT_WRITE; } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED))) { return wp_page_shared(vmf); } copy: /* * Ok, we need to copy. Oh, well.. */ get_page(vmf->page); pte_unmap_unlock(vmf->pte, vmf->ptl); return wp_page_copy(vmf); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root_cached *root, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, details->first_index, details->last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_page() - Unmap single page from processes. * @page: The locked page to be unmapped. * * Unmap this page from any userspace process which still has it mmaped. * Typically, for efficiency, the range of nearby pages has already been * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once * truncation or invalidation holds the lock on a page, it may find that * the page has been remapped again: and then uses unmap_mapping_page() * to unmap it finally. */ void unmap_mapping_page(struct page *page) { struct address_space *mapping = page->mapping; struct zap_details details = { }; VM_BUG_ON(!PageLocked(page)); VM_BUG_ON(PageTail(page)); details.check_mapping = mapping; details.first_index = page->index; details.last_index = page->index + thp_nr_pages(page) - 1; details.single_page = page; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_pages() - Unmap pages from processes. * @mapping: The address space containing pages to be unmapped. * @start: Index of first page to be unmapped. * @nr: Number of pages to be unmapped. 0 to unmap to end of file. * @even_cows: Whether to unmap even private COWed pages. * * Unmap the pages in this address space from any userspace process which * has them mmaped. Generally, you want to remove COWed pages as well when * a file is being truncated, but not when invalidating pages from the page * cache. */ void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { struct zap_details details = { }; details.check_mapping = even_cows ? NULL : mapping; details.first_index = start; details.last_index = start + nr - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified byte range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { pgoff_t hba = holebegin >> PAGE_SHIFT; pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } unmap_mapping_pages(mapping, hba, hlen, even_cows); } EXPORT_SYMBOL(unmap_mapping_range); /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_lock locked or unlocked in the same cases * as does filemap_fault(). */ vm_fault_t do_swap_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL, *swapcache; swp_entry_t entry; pte_t pte; int locked; int exclusive = 0; vm_fault_t ret = 0; void *shadow = NULL; if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) goto out; entry = pte_to_swp_entry(vmf->orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, vmf->pmd, vmf->address); } else if (is_device_private_entry(entry)) { vmf->page = device_private_entry_to_page(entry); ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else { print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } delayacct_set_flag(DELAYACCT_PF_SWAPIN); page = lookup_swap_cache(entry, vma, vmf->address); swapcache = page; if (!page) { struct swap_info_struct *si = swp_swap_info(entry); if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && __swap_count(entry) == 1) { /* skip swapcache */ page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (page) { int err; __SetPageLocked(page); __SetPageSwapBacked(page); set_page_private(page, entry.val); /* Tell memcg to use swap ownership records */ SetPageSwapCache(page); err = mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL); ClearPageSwapCache(page); if (err) { ret = VM_FAULT_OOM; goto out_page; } shadow = get_shadow_from_swap_cache(entry); if (shadow) workingset_refault(page, shadow); lru_cache_add(page); swap_readpage(page, true); } } else { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf); swapcache = page; } if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (likely(pte_same(*vmf->pte, vmf->orig_pte))) ret = VM_FAULT_OOM; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto out_release; } locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); delayacct_clear_flag(DELAYACCT_PF_SWAPIN); if (!locked) { ret |= VM_FAULT_RETRY; goto out_release; } /* * Make sure try_to_free_swap or reuse_swap_page or swapoff did not * release the swapcache from under us. The page pin, and pte_same * test below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not changed. */ if (unlikely((!PageSwapCache(page) || page_private(page) != entry.val)) && swapcache) goto out_page; page = ksm_might_need_to_copy(page, vma, vmf->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; page = swapcache; goto out_page; } cgroup_throttle_swaprate(page, GFP_KERNEL); /* * Back out if somebody else already faulted in this pte. */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * The page isn't present yet, go ahead with the fault. * * Be careful about the sequence of operations here. * To get its accounting right, reuse_swap_page() must be called * while the page is counted on swap but not yet in mapcount i.e. * before page_add_anon_rmap() and swap_free(); try_to_free_swap() * must be called after the swap_free(), or it will never succeed. */ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); vmf->flags &= ~FAULT_FLAG_WRITE; ret |= VM_FAULT_WRITE; exclusive = RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(vmf->orig_pte)) pte = pte_mksoft_dirty(pte); if (pte_swp_uffd_wp(vmf->orig_pte)) { pte = pte_mkuffd_wp(pte); pte = pte_wrprotect(pte); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); vmf->orig_pte = pte; /* ksm created a completely new copy */ if (unlikely(page != swapcache && swapcache)) { page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { do_page_add_anon_rmap(page, vma, vmf->address, exclusive); } swap_free(entry); if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) try_to_free_swap(page); unlock_page(page); if (page != swapcache && swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ unlock_page(swapcache); put_page(swapcache); } if (vmf->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(vmf); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); out: return ret; out_nomap: pte_unmap_unlock(vmf->pte, vmf->ptl); out_page: unlock_page(page); out_release: put_page(page); if (page != swapcache && swapcache) { unlock_page(swapcache); put_page(swapcache); } return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_lock still held, but pte unmapped and unlocked. */ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page; vm_fault_t ret = 0; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(). We can't run * pte_offset_map() on pmds where a huge pmd might be created * from a different thread. * * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when * parallel threads are excluded by other means. * * Here we only have mmap_read_lock(mm). */ if (pte_alloc(vma->vm_mm, vmf->pmd)) return VM_FAULT_OOM; /* See the comment in pte_alloc_one_map() */ if (unlikely(pmd_trans_unstable(vmf->pmd))) return 0; /* Use the zero-page for reads */ if (!(vmf->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), vma->vm_page_prot)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_tlb(vma, vmf->address, vmf->pte); goto unlock; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return handle_userfault(vmf, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; page = alloc_zeroed_user_highpage_movable(vma, vmf->address); if (!page) goto oom; if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) goto oom_free_page; cgroup_throttle_swaprate(page, GFP_KERNEL); /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); if (!pte_none(*vmf->pte)) { update_mmu_cache(vma, vmf->address, vmf->pte); goto release; } ret = check_stable_address_space(vma->vm_mm); if (ret) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(vmf->pte, vmf->ptl); put_page(page); return handle_userfault(vmf, VM_UFFD_MISSING); } inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); setpte: set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, vmf->address, vmf->pte); unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; release: put_page(page); goto unlock; oom_free_page: put_page(page); oom: return VM_FAULT_OOM; } /* * The mmap_lock must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static vm_fault_t __do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_one * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } ret = vma->vm_ops->fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | VM_FAULT_DONE_COW))) return ret; if (unlikely(PageHWPoison(vmf->page))) { if (ret & VM_FAULT_LOCKED) unlock_page(vmf->page); put_page(vmf->page); vmf->page = NULL; return VM_FAULT_HWPOISON; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf->page); else VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); return ret; } /* * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. * If we check pmd_trans_unstable() first we will trip the bad_pmd() check * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. */ static int pmd_devmap_trans_unstable(pmd_t *pmd) { return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); } static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; if (!pmd_none(*vmf->pmd)) goto map_pte; if (vmf->prealloc_pte) { vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) { spin_unlock(vmf->ptl); goto map_pte; } mm_inc_nr_ptes(vma->vm_mm); pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); spin_unlock(vmf->ptl); vmf->prealloc_pte = NULL; } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { return VM_FAULT_OOM; } map_pte: /* * If a huge pmd materialized under us just retry later. Use * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge * under us and then back to pmd_none, as a result of MADV_DONTNEED * running immediately after a huge pmd fault in a different thread of * this mm, in turn leading to a misleading pmd_trans_huge() retval. * All we have to ensure is that it is a regular pmd that we can walk * with pte_offset_map() and we can do that through an atomic read in * C, which is what pmd_trans_unstable() provides. */ if (pmd_devmap_trans_unstable(vmf->pmd)) return VM_FAULT_NOPAGE; /* * At this point we know that our vmf->pmd points to a page of ptes * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() * for the duration of the fault. If a racing MADV_DONTNEED runs and * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still * be valid and we will re-check to make sure the vmf->pte isn't * pte_none() under vmf->ptl protection when we return to * alloc_set_pte(). */ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); return 0; } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void deposit_prealloc_pte(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); /* * We are going to consume the prealloc table, * count that as nr_ptes. */ mm_inc_nr_ptes(vma->vm_mm); vmf->prealloc_pte = NULL; } static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned long haddr = vmf->address & HPAGE_PMD_MASK; pmd_t entry; int i; vm_fault_t ret = VM_FAULT_FALLBACK; if (!transhuge_vma_suitable(vma, haddr)) return ret; page = compound_head(page); if (compound_order(page) != HPAGE_PMD_ORDER) return ret; /* * Archs like ppc64 need additonal space to store information * related to pte entry. Use the preallocated table for that. */ if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); if (!vmf->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); if (unlikely(!pmd_none(*vmf->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); page_add_file_rmap(page, true); /* * deposit and withdraw with pmd lock held */ if (arch_needs_pgtable_deposit()) deposit_prealloc_pte(vmf); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); update_mmu_cache_pmd(vma, haddr, vmf->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(vmf->ptl); return ret; } #else static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) { BUILD_BUG(); return 0; } #endif /** * alloc_set_pte - setup new PTE entry for given page and add reverse page * mapping. If needed, the function allocates page table or use pre-allocated. * * @vmf: fault environment * @page: page to map * * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on * return. * * Target users are page handler itself and implementations of * vm_ops->map_pages. * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) { struct vm_area_struct *vma = vmf->vma; bool write = vmf->flags & FAULT_FLAG_WRITE; pte_t entry; vm_fault_t ret; if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { ret = do_set_pmd(vmf, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (!vmf->pte) { ret = pte_alloc_one_map(vmf); if (ret) return ret; } /* Re-check under ptl */ if (unlikely(!pte_none(*vmf->pte))) { update_mmu_tlb(vma, vmf->address, vmf->pte); return VM_FAULT_NOPAGE; } flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, vmf->address, false); lru_cache_add_inactive_or_unevictable(page, vma); } else { inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, false); } set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); /* no need to invalidate: a not-present page won't be cached */ update_mmu_cache(vma, vmf->address, vmf->pte); return 0; } /** * finish_fault - finish page fault once we have prepared the page to fault * * @vmf: structure describing the fault * * This function handles all that is needed to finish a page fault once the * page to fault in is prepared. It handles locking of PTEs, inserts PTE for * given page, adds reverse page mapping, handles memcg charges and LRU * addition. * * The function expects the page to be locked and on success it consumes a * reference of a page being mapped (for the PTE which maps it). * * Return: %0 on success, %VM_FAULT_ code in case of error. */ vm_fault_t finish_fault(struct vm_fault *vmf) { struct page *page; vm_fault_t ret = 0; /* Did we COW the page? */ if ((vmf->flags & FAULT_FLAG_WRITE) && !(vmf->vma->vm_flags & VM_SHARED)) page = vmf->cow_page; else page = vmf->page; /* * check even for read faults because we might have lost our CoWed * page */ if (!(vmf->vma->vm_flags & VM_SHARED)) ret = check_stable_address_space(vmf->vma->vm_mm); if (!ret) ret = alloc_set_pte(vmf, page); if (vmf->pte) pte_unmap_unlock(vmf->pte, vmf->ptl); return ret; } static unsigned long fault_around_bytes __read_mostly = rounddown_pow_of_two(65536); #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_bytes; return 0; } /* * fault_around_bytes must be rounded down to the nearest page order as it's * what do_fault_around() expects to see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; if (val > PAGE_SIZE) fault_around_bytes = rounddown_pow_of_two(val); else fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function is called with the page table lock taken. In the split ptlock * case the page table lock only protects only those entries which belong to * the page table corresponding to the fault address. * * This function doesn't cross the VMA boundaries, in order to call map_pages() * only once. * * fault_around_bytes defines how many bytes we'll try to map. * do_fault_around() expects it to be set to a power of two less than or equal * to PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to * fault_around_bytes rounded down to the machine page size * (and therefore to page order). This way it's easier to guarantee * that we don't cross page table boundaries. */ static vm_fault_t do_fault_around(struct vm_fault *vmf) { unsigned long address = vmf->address, nr_pages, mask; pgoff_t start_pgoff = vmf->pgoff; pgoff_t end_pgoff; int off; vm_fault_t ret = 0; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; vmf->address = max(address & mask, vmf->vma->vm_start); off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); start_pgoff -= off; /* * end_pgoff is either the end of the page table, the end of * the vma or nr_pages from start_pgoff, depending what is nearest. */ end_pgoff = start_pgoff - ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, start_pgoff + nr_pages - 1); if (pmd_none(*vmf->pmd)) { vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); if (!vmf->prealloc_pte) goto out; smp_wmb(); /* See comment in __pte_alloc() */ } vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); /* Huge page is mapped? Page fault is solved */ if (pmd_trans_huge(*vmf->pmd)) { ret = VM_FAULT_NOPAGE; goto out; } /* ->map_pages() haven't done anything useful. Cold page cache? */ if (!vmf->pte) goto out; /* check if the page fault is solved */ vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); if (!pte_none(*vmf->pte)) ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); out: vmf->address = address; vmf->pte = NULL; return ret; } static vm_fault_t do_read_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret = 0; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { ret = do_fault_around(vmf); if (ret) return ret; } ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= finish_fault(vmf); unlock_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) put_page(vmf->page); return ret; } static vm_fault_t do_cow_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); if (!vmf->cow_page) return VM_FAULT_OOM; if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { put_page(vmf->cow_page); return VM_FAULT_OOM; } cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (ret & VM_FAULT_DONE_COW) return ret; copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); __SetPageUptodate(vmf->cow_page); ret |= finish_fault(vmf); unlock_page(vmf->page); put_page(vmf->page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: put_page(vmf->cow_page); return ret; } static vm_fault_t do_shared_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; vm_fault_t ret, tmp; ret = __do_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { unlock_page(vmf->page); tmp = do_page_mkwrite(vmf); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(vmf->page); return tmp; } } ret |= finish_fault(vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { unlock_page(vmf->page); put_page(vmf->page); return ret; } ret |= fault_dirty_shared_page(vmf); return ret; } /* * We enter with non-exclusive mmap_lock (to exclude vma changes, * but allow concurrent faults). * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). * If mmap_lock is released, vma may become invalid (for example * by other thread calling munmap()). */ static vm_fault_t do_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct mm_struct *vm_mm = vma->vm_mm; vm_fault_t ret; /* * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) { /* * If we find a migration pmd entry or a none pmd entry, which * should never happen, return SIGBUS */ if (unlikely(!pmd_present(*vmf->pmd))) ret = VM_FAULT_SIGBUS; else { vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, &vmf->ptl); /* * Make sure this is not a temporary clearing of pte * by holding ptl and checking again. A R/M/W update * of pte involves: take ptl, clearing the pte so that * we don't have concurrent modification by hardware * followed by an update. */ if (unlikely(pte_none(*vmf->pte))) ret = VM_FAULT_SIGBUS; else ret = VM_FAULT_NOPAGE; pte_unmap_unlock(vmf->pte, vmf->ptl); } } else if (!(vmf->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(vmf); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(vmf); else ret = do_shared_fault(vmf); /* preallocated pagetable is unused: free it */ if (vmf->prealloc_pte) { pte_free(vm_mm, vmf->prealloc_pte); vmf->prealloc_pte = NULL; } return ret; } static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static vm_fault_t do_numa_page(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct page *page = NULL; int page_nid = NUMA_NO_NODE; int last_cpupid; int target_nid; bool migrated = false; pte_t pte, old_pte; bool was_writable = pte_savedwrite(vmf->orig_pte); int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. */ vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { pte_unmap_unlock(vmf->pte, vmf->ptl); goto out; } /* * Make it present again, Depending on how arch implementes non * accessible ptes, some can allow access by kernel mode. */ old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); pte = pte_modify(old_pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (was_writable) pte = pte_mkwrite(pte); ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); update_mmu_cache(vma, vmf->address, vmf->pte); page = vm_normal_page(vma, vmf->address, pte); if (!page) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) { pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!pte_write(pte)) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; last_cpupid = page_cpupid_last(page); page_nid = page_to_nid(page); target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, &flags); pte_unmap_unlock(vmf->pte, vmf->ptl); if (target_nid == NUMA_NO_NODE) { put_page(page); goto out; } /* Migrate to the requested node */ migrated = migrate_misplaced_page(page, vma, target_nid); if (migrated) { page_nid = target_nid; flags |= TNF_MIGRATED; } else flags |= TNF_MIGRATE_FAIL; out: if (page_nid != NUMA_NO_NODE) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) { if (vma_is_anonymous(vmf->vma)) return do_huge_pmd_anonymous_page(vmf); if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); return VM_FAULT_FALLBACK; } /* `inline' is required to avoid gcc 4.1.2 build error */ static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) { if (vma_is_anonymous(vmf->vma)) { if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) return handle_userfault(vmf, VM_UFFD_WP); return do_huge_pmd_wp_page(vmf, orig_pmd); } if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } /* COW or write-notify handled on pte level: split pmd. */ __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); return VM_FAULT_FALLBACK; } static vm_fault_t create_huge_pud(struct vm_fault *vmf) { #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) goto split; if (vmf->vma->vm_ops->huge_fault) { vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); if (!(ret & VM_FAULT_FALLBACK)) return ret; } split: /* COW or write-notify not handled on PUD level: split pud.*/ __split_huge_pud(vmf->vma, vmf->pud, vmf->address); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* No support for anonymous transparent PUD pages yet */ if (vma_is_anonymous(vmf->vma)) return VM_FAULT_FALLBACK; if (vmf->vma->vm_ops->huge_fault) return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ return VM_FAULT_FALLBACK; } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow * concurrent faults). * * The mmap_lock may have been released depending on flags and our return value. * See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t handle_pte_fault(struct vm_fault *vmf) { pte_t entry; if (unlikely(pmd_none(*vmf->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ vmf->pte = NULL; } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap_trans_unstable(vmf->pmd)) return 0; /* * A regular pmd is established and it can't morph into a huge * pmd from under us anymore at this point because we hold the * mmap_lock read mode and khugepaged takes it in write mode. * So now it's safe to run pte_offset_map(). */ vmf->pte = pte_offset_map(vmf->pmd, vmf->address); vmf->orig_pte = *vmf->pte; /* * some architectures can have larger ptes than wordsize, * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic * accesses. The code below just needs a consistent view * for the ifs and we later double check anyway with the * ptl lock held. So here a barrier will do. */ barrier(); if (pte_none(vmf->orig_pte)) { pte_unmap(vmf->pte); vmf->pte = NULL; } } if (!vmf->pte) { if (vma_is_anonymous(vmf->vma)) return do_anonymous_page(vmf); else return do_fault(vmf); } if (!pte_present(vmf->orig_pte)) return do_swap_page(vmf); if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) return do_numa_page(vmf); vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); spin_lock(vmf->ptl); entry = vmf->orig_pte; if (unlikely(!pte_same(*vmf->pte, entry))) { update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); goto unlock; } if (vmf->flags & FAULT_FLAG_WRITE) { if (!pte_write(entry)) return do_wp_page(vmf); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, vmf->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(vmf->vma, vmf->address, vmf->pte); } else { /* Skip spurious TLB flush for retried page fault */ if (vmf->flags & FAULT_FLAG_TRIED) goto unlock; /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (vmf->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); } unlock: pte_unmap_unlock(vmf->pte, vmf->ptl); return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct vm_fault vmf = { .vma = vma, .address = address & PAGE_MASK, .flags = flags, .pgoff = linear_page_index(vma, address), .gfp_mask = __get_fault_gfp_mask(vma), }; unsigned int dirty = flags & FAULT_FLAG_WRITE; struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; p4d_t *p4d; vm_fault_t ret; pgd = pgd_offset(mm, address); p4d = p4d_alloc(mm, pgd, address); if (!p4d) return VM_FAULT_OOM; vmf.pud = pud_alloc(mm, p4d, address); if (!vmf.pud) return VM_FAULT_OOM; retry_pud: if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pud(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pud_t orig_pud = *vmf.pud; barrier(); if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { /* NUMA case for anonymous PUDs would go here */ if (dirty && !pud_write(orig_pud)) { ret = wp_huge_pud(&vmf, orig_pud); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pud_set_accessed(&vmf, orig_pud); return 0; } } } vmf.pmd = pmd_alloc(mm, vmf.pud, address); if (!vmf.pmd) return VM_FAULT_OOM; /* Huge pud page fault raced with pmd_alloc? */ if (pud_trans_unstable(vmf.pud)) goto retry_pud; if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pmd_t orig_pmd = *vmf.pmd; barrier(); if (unlikely(is_swap_pmd(orig_pmd))) { VM_BUG_ON(thp_migration_supported() && !is_pmd_migration_entry(orig_pmd)); if (is_pmd_migration_entry(orig_pmd)) pmd_migration_entry_wait(mm, vmf.pmd); return 0; } if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&vmf, orig_pmd); if (dirty && !pmd_write(orig_pmd)) { ret = wp_huge_pmd(&vmf, orig_pmd); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&vmf, orig_pmd); return 0; } } } return handle_pte_fault(&vmf); } /** * mm_account_fault - Do page fault accountings * * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting * of perf event counters, but we'll still do the per-task accounting to * the task who triggered this page fault. * @address: the faulted address. * @flags: the fault flags. * @ret: the fault retcode. * * This will take care of most of the page fault accountings. Meanwhile, it * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should * still be in per-arch page fault handlers at the entry of page fault. */ static inline void mm_account_fault(struct pt_regs *regs, unsigned long address, unsigned int flags, vm_fault_t ret) { bool major; /* * We don't do accounting for some specific faults: * * - Unsuccessful faults (e.g. when the address wasn't valid). That * includes arch_vma_access_permitted() failing before reaching here. * So this is not a "this many hardware page faults" counter. We * should use the hw profiling for that. * * - Incomplete faults (VM_FAULT_RETRY). They will only be counted * once they're completed. */ if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) return; /* * We define the fault as a major fault when the final successful fault * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't * handle it immediately previously). */ major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); if (major) current->maj_flt++; else current->min_flt++; /* * If the fault is done for GUP, regs will be NULL. We only do the * accounting for the per thread fault counters who triggered the * fault, and we skip the perf event updates. */ if (!regs) return; if (major) perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); else perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } /* * By the time we get here, we already hold the mm semaphore * * The mmap_lock may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { vm_fault_t ret; __set_current_state(TASK_RUNNING); count_vm_event(PGFAULT); count_memcg_event_mm(vma->vm_mm, PGFAULT); /* do counter updates before entering really critical section. */ check_sync_rss_stat(current); if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) return VM_FAULT_SIGSEGV; /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_enter_user_fault(); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); if (flags & FAULT_FLAG_USER) { mem_cgroup_exit_user_fault(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } mm_account_fault(regs, address, flags, ret); return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifndef __PAGETABLE_P4D_FOLDED /* * Allocate p4d page table. * We've already handled the fast-path in-line. */ int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { p4d_t *new = p4d_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ p4d_free(mm, new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_P4D_FOLDED */ #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (!p4d_present(*p4d)) { mm_inc_nr_puds(mm); p4d_populate(mm, p4d, new); } else /* Another has populated it */ pud_free(mm, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { spinlock_t *ptl; pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ ptl = pud_lock(mm, pud); if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); spin_unlock(ptl); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; p4d = p4d_offset(pgd, address); if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) goto out; pud = pud_offset(p4d, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); if (pmd_huge(*pmd)) { if (!pmdpp) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PMD_MASK, (address & PMD_MASK) + PMD_SIZE); mmu_notifier_invalidate_range_start(range); } *ptlp = pmd_lock(mm, pmd); if (pmd_huge(*pmd)) { *pmdpp = pmd; return 0; } spin_unlock(*ptlp); if (range) mmu_notifier_invalidate_range_end(range); } if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto out; if (range) { mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, address & PAGE_MASK, (address & PAGE_MASK) + PAGE_SIZE); mmu_notifier_invalidate_range_start(range); } ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!pte_present(*ptep)) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); if (range) mmu_notifier_invalidate_range_end(range); out: return -EINVAL; } /** * follow_pte - look up PTE at a user virtual address * @mm: the mm_struct of the target address space * @address: user virtual address * @ptepp: location to store found PTE * @ptlp: location to store the lock for the PTE * * On a successful return, the pointer to the PTE is stored in @ptepp; * the corresponding lock is taken and its location is stored in @ptlp. * The contents of the PTE are only stable until @ptlp is released; * any further use, if any, must be protected against invalidation * with MMU notifiers. * * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore * should be taken for read. * * KVM uses this function. While it is arguably less bad than ``follow_pfn``, * it is not a good general-purpose API. * * Return: zero on success, -ve otherwise. */ int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp); } EXPORT_SYMBOL_GPL(follow_pte); /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * This function does not allow the caller to read the permissions * of the PTE. Do not use it. * * Return: zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = *ptep; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; int offset = addr & (PAGE_SIZE-1); if (follow_phys(vma, addr, write, &prot, &phys_addr)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); iounmap(maddr); return len; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. If non-NULL, use the * given task for page fault accounting. */ int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct vm_area_struct *vma; void *old_buf = buf; int write = gup_flags & FOLL_WRITE; if (mmap_read_lock_killable(mm)) return 0; /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, ret, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page, &vma, NULL); if (ret <= 0) { #ifndef CONFIG_HAVE_IOREMAP_PROT break; #else /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ vma = find_vma(mm, addr); if (!vma || vma->vm_start > addr) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, len, write); if (ret <= 0) break; bytes = ret; #endif } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } mmap_read_unlock(mm); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. * * Return: number of bytes copied from source to destination. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); mmput(mm); return ret; } EXPORT_SYMBOL_GPL(access_process_vm); /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * we might be running from an atomic context so we cannot sleep */ if (!mmap_read_trylock(mm)) return; vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_NOWAIT); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } mmap_read_unlock(mm); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { /* * Some code (nfs/sunrpc) uses socket ops on kernel memory while * holding the mmap_lock, this is safe because kernel memory doesn't * get paged out, therefore we'll never actually fault, and the * below annotations will generate false positives. */ if (uaccess_kernel()) return; if (pagefault_disabled()) return; __might_sleep(file, line, 0); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(&current->mm->mmap_lock); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) /* * Process all subpages of the specified huge page with the specified * operation. The target subpage will be processed last to keep its * cache lines hot. */ static inline void process_huge_page( unsigned long addr_hint, unsigned int pages_per_huge_page, void (*process_subpage)(unsigned long addr, int idx, void *arg), void *arg) { int i, n, base, l; unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); /* Process target subpage last to keep its cache lines hot */ might_sleep(); n = (addr_hint - addr) / PAGE_SIZE; if (2 * n <= pages_per_huge_page) { /* If target subpage in first half of huge page */ base = 0; l = n; /* Process subpages at the end of huge page */ for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } else { /* If target subpage in second half of huge page */ base = pages_per_huge_page - 2 * (pages_per_huge_page - n); l = pages_per_huge_page - n; /* Process subpages at the begin of huge page */ for (i = 0; i < base; i++) { cond_resched(); process_subpage(addr + i * PAGE_SIZE, i, arg); } } /* * Process remaining subpages in left-right-left-right pattern * towards the target subpage */ for (i = 0; i < l; i++) { int left_idx = base + i; int right_idx = base + 2 * l - 1 - i; cond_resched(); process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); cond_resched(); process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); } } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p = page; might_sleep(); for (i = 0; i < pages_per_huge_page; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static void clear_subpage(unsigned long addr, int idx, void *arg) { struct page *page = arg; clear_user_highpage(page + idx, addr); } void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); } static void copy_user_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_base = dst; struct page *src_base = src; for (i = 0; i < pages_per_huge_page; ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } struct copy_subpage_arg { struct page *dst; struct page *src; struct vm_area_struct *vma; }; static void copy_subpage(unsigned long addr, int idx, void *arg) { struct copy_subpage_arg *copy_arg = arg; copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, addr, copy_arg->vma); } void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { unsigned long addr = addr_hint & ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); struct copy_subpage_arg arg = { .dst = dst, .src = src, .vma = vma, }; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return; } process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); } long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault) { void *src = (void *)usr_src; void *page_kaddr; unsigned long i, rc = 0; unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; struct page *subpage = dst_page; for (i = 0; i < pages_per_huge_page; i++, subpage = mem_map_next(subpage, dst_page, i)) { if (allow_pagefault) page_kaddr = kmap(subpage); else page_kaddr = kmap_atomic(subpage); rc = copy_from_user(page_kaddr, (const void __user *)(src + i * PAGE_SIZE), PAGE_SIZE); if (allow_pagefault) kunmap(subpage); else kunmap_atomic(page_kaddr); ret_val -= (PAGE_SIZE - rc); if (rc) break; cond_resched(); } return ret_val; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct page *page) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; return true; } void ptlock_free(struct page *page) { kmem_cache_free(page_ptl_cachep, page->ptl); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_PGALLOC_H #define _ASM_X86_PGALLOC_H #include <linux/threads.h> #include <linux/mm.h> /* for struct page */ #include <linux/pagemap.h> #define __HAVE_ARCH_PTE_ALLOC_ONE #define __HAVE_ARCH_PGD_FREE #include <asm-generic/pgalloc.h> static inline int __paravirt_pgd_alloc(struct mm_struct *mm) { return 0; } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define paravirt_pgd_alloc(mm) __paravirt_pgd_alloc(mm) static inline void paravirt_pgd_free(struct mm_struct *mm, pgd_t *pgd) {} static inline void paravirt_alloc_pte(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_alloc_pmd(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_alloc_pmd_clone(unsigned long pfn, unsigned long clonepfn, unsigned long start, unsigned long count) {} static inline void paravirt_alloc_pud(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_alloc_p4d(struct mm_struct *mm, unsigned long pfn) {} static inline void paravirt_release_pte(unsigned long pfn) {} static inline void paravirt_release_pmd(unsigned long pfn) {} static inline void paravirt_release_pud(unsigned long pfn) {} static inline void paravirt_release_p4d(unsigned long pfn) {} #endif /* * Flags to use when allocating a user page table page. */ extern gfp_t __userpte_alloc_gfp; #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * Instead of one PGD, we acquire two PGDs. Being order-1, it is * both 8k in size and 8k-aligned. That lets us just flip bit 12 * in a pointer to swap between the two 4k halves. */ #define PGD_ALLOCATION_ORDER 1 #else #define PGD_ALLOCATION_ORDER 0 #endif /* * Allocate and free page tables. */ extern pgd_t *pgd_alloc(struct mm_struct *); extern void pgd_free(struct mm_struct *mm, pgd_t *pgd); extern pgtable_t pte_alloc_one(struct mm_struct *); extern void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte); static inline void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte, unsigned long address) { ___pte_free_tlb(tlb, pte); } static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, pte_t *pte) { paravirt_alloc_pte(mm, __pa(pte) >> PAGE_SHIFT); set_pmd(pmd, __pmd(__pa(pte) | _PAGE_TABLE)); } static inline void pmd_populate_kernel_safe(struct mm_struct *mm, pmd_t *pmd, pte_t *pte) { paravirt_alloc_pte(mm, __pa(pte) >> PAGE_SHIFT); set_pmd_safe(pmd, __pmd(__pa(pte) | _PAGE_TABLE)); } static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd, struct page *pte) { unsigned long pfn = page_to_pfn(pte); paravirt_alloc_pte(mm, pfn); set_pmd(pmd, __pmd(((pteval_t)pfn << PAGE_SHIFT) | _PAGE_TABLE)); } #define pmd_pgtable(pmd) pmd_page(pmd) #if CONFIG_PGTABLE_LEVELS > 2 extern void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd); static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd, unsigned long address) { ___pmd_free_tlb(tlb, pmd); } #ifdef CONFIG_X86_PAE extern void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd); #else /* !CONFIG_X86_PAE */ static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) { paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); set_pud(pud, __pud(_PAGE_TABLE | __pa(pmd))); } static inline void pud_populate_safe(struct mm_struct *mm, pud_t *pud, pmd_t *pmd) { paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT); set_pud_safe(pud, __pud(_PAGE_TABLE | __pa(pmd))); } #endif /* CONFIG_X86_PAE */ #if CONFIG_PGTABLE_LEVELS > 3 static inline void p4d_populate(struct mm_struct *mm, p4d_t *p4d, pud_t *pud) { paravirt_alloc_pud(mm, __pa(pud) >> PAGE_SHIFT); set_p4d(p4d, __p4d(_PAGE_TABLE | __pa(pud))); } static inline void p4d_populate_safe(struct mm_struct *mm, p4d_t *p4d, pud_t *pud) { paravirt_alloc_pud(mm, __pa(pud) >> PAGE_SHIFT); set_p4d_safe(p4d, __p4d(_PAGE_TABLE | __pa(pud))); } extern void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud); static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud, unsigned long address) { ___pud_free_tlb(tlb, pud); } #if CONFIG_PGTABLE_LEVELS > 4 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d) { if (!pgtable_l5_enabled()) return; paravirt_alloc_p4d(mm, __pa(p4d) >> PAGE_SHIFT); set_pgd(pgd, __pgd(_PAGE_TABLE | __pa(p4d))); } static inline void pgd_populate_safe(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d) { if (!pgtable_l5_enabled()) return; paravirt_alloc_p4d(mm, __pa(p4d) >> PAGE_SHIFT); set_pgd_safe(pgd, __pgd(_PAGE_TABLE | __pa(p4d))); } static inline p4d_t *p4d_alloc_one(struct mm_struct *mm, unsigned long addr) { gfp_t gfp = GFP_KERNEL_ACCOUNT; if (mm == &init_mm) gfp &= ~__GFP_ACCOUNT; return (p4d_t *)get_zeroed_page(gfp); } static inline void p4d_free(struct mm_struct *mm, p4d_t *p4d) { if (!pgtable_l5_enabled()) return; BUG_ON((unsigned long)p4d & (PAGE_SIZE-1)); free_page((unsigned long)p4d); } extern void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d); static inline void __p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d, unsigned long address) { if (pgtable_l5_enabled()) ___p4d_free_tlb(tlb, p4d); } #endif /* CONFIG_PGTABLE_LEVELS > 4 */ #endif /* CONFIG_PGTABLE_LEVELS > 3 */ #endif /* CONFIG_PGTABLE_LEVELS > 2 */ #endif /* _ASM_X86_PGALLOC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CLEANCACHE_H #define _LINUX_CLEANCACHE_H #include <linux/fs.h> #include <linux/exportfs.h> #include <linux/mm.h> #define CLEANCACHE_NO_POOL -1 #define CLEANCACHE_NO_BACKEND -2 #define CLEANCACHE_NO_BACKEND_SHARED -3 #define CLEANCACHE_KEY_MAX 6 /* * cleancache requires every file with a page in cleancache to have a * unique key unless/until the file is removed/truncated. For some * filesystems, the inode number is unique, but for "modern" filesystems * an exportable filehandle is required (see exportfs.h) */ struct cleancache_filekey { union { ino_t ino; __u32 fh[CLEANCACHE_KEY_MAX]; u32 key[CLEANCACHE_KEY_MAX]; } u; }; struct cleancache_ops { int (*init_fs)(size_t); int (*init_shared_fs)(uuid_t *uuid, size_t); int (*get_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*put_page)(int, struct cleancache_filekey, pgoff_t, struct page *); void (*invalidate_page)(int, struct cleancache_filekey, pgoff_t); void (*invalidate_inode)(int, struct cleancache_filekey); void (*invalidate_fs)(int); }; extern int cleancache_register_ops(const struct cleancache_ops *ops); extern void __cleancache_init_fs(struct super_block *); extern void __cleancache_init_shared_fs(struct super_block *); extern int __cleancache_get_page(struct page *); extern void __cleancache_put_page(struct page *); extern void __cleancache_invalidate_page(struct address_space *, struct page *); extern void __cleancache_invalidate_inode(struct address_space *); extern void __cleancache_invalidate_fs(struct super_block *); #ifdef CONFIG_CLEANCACHE #define cleancache_enabled (1) static inline bool cleancache_fs_enabled_mapping(struct address_space *mapping) { return mapping->host->i_sb->cleancache_poolid >= 0; } static inline bool cleancache_fs_enabled(struct page *page) { return cleancache_fs_enabled_mapping(page->mapping); } #else #define cleancache_enabled (0) #define cleancache_fs_enabled(_page) (0) #define cleancache_fs_enabled_mapping(_page) (0) #endif /* * The shim layer provided by these inline functions allows the compiler * to reduce all cleancache hooks to nothingness if CONFIG_CLEANCACHE * is disabled, to a single global variable check if CONFIG_CLEANCACHE * is enabled but no cleancache "backend" has dynamically enabled it, * and, for the most frequent cleancache ops, to a single global variable * check plus a superblock element comparison if CONFIG_CLEANCACHE is enabled * and a cleancache backend has dynamically enabled cleancache, but the * filesystem referenced by that cleancache op has not enabled cleancache. * As a result, CONFIG_CLEANCACHE can be enabled by default with essentially * no measurable performance impact. */ static inline void cleancache_init_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_fs(sb); } static inline void cleancache_init_shared_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_init_shared_fs(sb); } static inline int cleancache_get_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) return __cleancache_get_page(page); return -1; } static inline void cleancache_put_page(struct page *page) { if (cleancache_enabled && cleancache_fs_enabled(page)) __cleancache_put_page(page); } static inline void cleancache_invalidate_page(struct address_space *mapping, struct page *page) { /* careful... page->mapping is NULL sometimes when this is called */ if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_page(mapping, page); } static inline void cleancache_invalidate_inode(struct address_space *mapping) { if (cleancache_enabled && cleancache_fs_enabled_mapping(mapping)) __cleancache_invalidate_inode(mapping); } static inline void cleancache_invalidate_fs(struct super_block *sb) { if (cleancache_enabled) __cleancache_invalidate_fs(sb); } #endif /* _LINUX_CLEANCACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 /* SPDX-License-Identifier: GPL-2.0-only */ /* * include/linux/idr.h * * 2002-10-18 written by Jim Houston jim.houston@ccur.com * Copyright (C) 2002 by Concurrent Computer Corporation * * Small id to pointer translation service avoiding fixed sized * tables. */ #ifndef __IDR_H__ #define __IDR_H__ #include <linux/radix-tree.h> #include <linux/gfp.h> #include <linux/percpu.h> struct idr { struct radix_tree_root idr_rt; unsigned int idr_base; unsigned int idr_next; }; /* * The IDR API does not expose the tagging functionality of the radix tree * to users. Use tag 0 to track whether a node has free space below it. */ #define IDR_FREE 0 /* Set the IDR flag and the IDR_FREE tag */ #define IDR_RT_MARKER (ROOT_IS_IDR | (__force gfp_t) \ (1 << (ROOT_TAG_SHIFT + IDR_FREE))) #define IDR_INIT_BASE(name, base) { \ .idr_rt = RADIX_TREE_INIT(name, IDR_RT_MARKER), \ .idr_base = (base), \ .idr_next = 0, \ } /** * IDR_INIT() - Initialise an IDR. * @name: Name of IDR. * * A freshly-initialised IDR contains no IDs. */ #define IDR_INIT(name) IDR_INIT_BASE(name, 0) /** * DEFINE_IDR() - Define a statically-allocated IDR. * @name: Name of IDR. * * An IDR defined using this macro is ready for use with no additional * initialisation required. It contains no IDs. */ #define DEFINE_IDR(name) struct idr name = IDR_INIT(name) /** * idr_get_cursor - Return the current position of the cyclic allocator * @idr: idr handle * * The value returned is the value that will be next returned from * idr_alloc_cyclic() if it is free (otherwise the search will start from * this position). */ static inline unsigned int idr_get_cursor(const struct idr *idr) { return READ_ONCE(idr->idr_next); } /** * idr_set_cursor - Set the current position of the cyclic allocator * @idr: idr handle * @val: new position * * The next call to idr_alloc_cyclic() will return @val if it is free * (otherwise the search will start from this position). */ static inline void idr_set_cursor(struct idr *idr, unsigned int val) { WRITE_ONCE(idr->idr_next, val); } /** * DOC: idr sync * idr synchronization (stolen from radix-tree.h) * * idr_find() is able to be called locklessly, using RCU. The caller must * ensure calls to this function are made within rcu_read_lock() regions. * Other readers (lock-free or otherwise) and modifications may be running * concurrently. * * It is still required that the caller manage the synchronization and * lifetimes of the items. So if RCU lock-free lookups are used, typically * this would mean that the items have their own locks, or are amenable to * lock-free access; and that the items are freed by RCU (or only freed after * having been deleted from the idr tree *and* a synchronize_rcu() grace * period). */ #define idr_lock(idr) xa_lock(&(idr)->idr_rt) #define idr_unlock(idr) xa_unlock(&(idr)->idr_rt) #define idr_lock_bh(idr) xa_lock_bh(&(idr)->idr_rt) #define idr_unlock_bh(idr) xa_unlock_bh(&(idr)->idr_rt) #define idr_lock_irq(idr) xa_lock_irq(&(idr)->idr_rt) #define idr_unlock_irq(idr) xa_unlock_irq(&(idr)->idr_rt) #define idr_lock_irqsave(idr, flags) \ xa_lock_irqsave(&(idr)->idr_rt, flags) #define idr_unlock_irqrestore(idr, flags) \ xa_unlock_irqrestore(&(idr)->idr_rt, flags) void idr_preload(gfp_t gfp_mask); int idr_alloc(struct idr *, void *ptr, int start, int end, gfp_t); int __must_check idr_alloc_u32(struct idr *, void *ptr, u32 *id, unsigned long max, gfp_t); int idr_alloc_cyclic(struct idr *, void *ptr, int start, int end, gfp_t); void *idr_remove(struct idr *, unsigned long id); void *idr_find(const struct idr *, unsigned long id); int idr_for_each(const struct idr *, int (*fn)(int id, void *p, void *data), void *data); void *idr_get_next(struct idr *, int *nextid); void *idr_get_next_ul(struct idr *, unsigned long *nextid); void *idr_replace(struct idr *, void *, unsigned long id); void idr_destroy(struct idr *); /** * idr_init_base() - Initialise an IDR. * @idr: IDR handle. * @base: The base value for the IDR. * * This variation of idr_init() creates an IDR which will allocate IDs * starting at %base. */ static inline void idr_init_base(struct idr *idr, int base) { INIT_RADIX_TREE(&idr->idr_rt, IDR_RT_MARKER); idr->idr_base = base; idr->idr_next = 0; } /** * idr_init() - Initialise an IDR. * @idr: IDR handle. * * Initialise a dynamically allocated IDR. To initialise a * statically allocated IDR, use DEFINE_IDR(). */ static inline void idr_init(struct idr *idr) { idr_init_base(idr, 0); } /** * idr_is_empty() - Are there any IDs allocated? * @idr: IDR handle. * * Return: %true if any IDs have been allocated from this IDR. */ static inline bool idr_is_empty(const struct idr *idr) { return radix_tree_empty(&idr->idr_rt) && radix_tree_tagged(&idr->idr_rt, IDR_FREE); } /** * idr_preload_end - end preload section started with idr_preload() * * Each idr_preload() should be matched with an invocation of this * function. See idr_preload() for details. */ static inline void idr_preload_end(void) { local_unlock(&radix_tree_preloads.lock); } /** * idr_for_each_entry() - Iterate over an IDR's elements of a given type. * @idr: IDR handle. * @entry: The type * to use as cursor * @id: Entry ID. * * @entry and @id do not need to be initialized before the loop, and * after normal termination @entry is left with the value NULL. This * is convenient for a "not found" value. */ #define idr_for_each_entry(idr, entry, id) \ for (id = 0; ((entry) = idr_get_next(idr, &(id))) != NULL; id += 1U) /** * idr_for_each_entry_ul() - Iterate over an IDR's elements of a given type. * @idr: IDR handle. * @entry: The type * to use as cursor. * @tmp: A temporary placeholder for ID. * @id: Entry ID. * * @entry and @id do not need to be initialized before the loop, and * after normal termination @entry is left with the value NULL. This * is convenient for a "not found" value. */ #define idr_for_each_entry_ul(idr, entry, tmp, id) \ for (tmp = 0, id = 0; \ tmp <= id && ((entry) = idr_get_next_ul(idr, &(id))) != NULL; \ tmp = id, ++id) /** * idr_for_each_entry_continue() - Continue iteration over an IDR's elements of a given type * @idr: IDR handle. * @entry: The type * to use as a cursor. * @id: Entry ID. * * Continue to iterate over entries, continuing after the current position. */ #define idr_for_each_entry_continue(idr, entry, id) \ for ((entry) = idr_get_next((idr), &(id)); \ entry; \ ++id, (entry) = idr_get_next((idr), &(id))) /** * idr_for_each_entry_continue_ul() - Continue iteration over an IDR's elements of a given type * @idr: IDR handle. * @entry: The type * to use as a cursor. * @tmp: A temporary placeholder for ID. * @id: Entry ID. * * Continue to iterate over entries, continuing after the current position. */ #define idr_for_each_entry_continue_ul(idr, entry, tmp, id) \ for (tmp = id; \ tmp <= id && ((entry) = idr_get_next_ul(idr, &(id))) != NULL; \ tmp = id, ++id) /* * IDA - ID Allocator, use when translation from id to pointer isn't necessary. */ #define IDA_CHUNK_SIZE 128 /* 128 bytes per chunk */ #define IDA_BITMAP_LONGS (IDA_CHUNK_SIZE / sizeof(long)) #define IDA_BITMAP_BITS (IDA_BITMAP_LONGS * sizeof(long) * 8) struct ida_bitmap { unsigned long bitmap[IDA_BITMAP_LONGS]; }; struct ida { struct xarray xa; }; #define IDA_INIT_FLAGS (XA_FLAGS_LOCK_IRQ | XA_FLAGS_ALLOC) #define IDA_INIT(name) { \ .xa = XARRAY_INIT(name, IDA_INIT_FLAGS) \ } #define DEFINE_IDA(name) struct ida name = IDA_INIT(name) int ida_alloc_range(struct ida *, unsigned int min, unsigned int max, gfp_t); void ida_free(struct ida *, unsigned int id); void ida_destroy(struct ida *ida); /** * ida_alloc() - Allocate an unused ID. * @ida: IDA handle. * @gfp: Memory allocation flags. * * Allocate an ID between 0 and %INT_MAX, inclusive. * * Context: Any context. It is safe to call this function without * locking in your code. * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, * or %-ENOSPC if there are no free IDs. */ static inline int ida_alloc(struct ida *ida, gfp_t gfp) { return ida_alloc_range(ida, 0, ~0, gfp); } /** * ida_alloc_min() - Allocate an unused ID. * @ida: IDA handle. * @min: Lowest ID to allocate. * @gfp: Memory allocation flags. * * Allocate an ID between @min and %INT_MAX, inclusive. * * Context: Any context. It is safe to call this function without * locking in your code. * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, * or %-ENOSPC if there are no free IDs. */ static inline int ida_alloc_min(struct ida *ida, unsigned int min, gfp_t gfp) { return ida_alloc_range(ida, min, ~0, gfp); } /** * ida_alloc_max() - Allocate an unused ID. * @ida: IDA handle. * @max: Highest ID to allocate. * @gfp: Memory allocation flags. * * Allocate an ID between 0 and @max, inclusive. * * Context: Any context. It is safe to call this function without * locking in your code. * Return: The allocated ID, or %-ENOMEM if memory could not be allocated, * or %-ENOSPC if there are no free IDs. */ static inline int ida_alloc_max(struct ida *ida, unsigned int max, gfp_t gfp) { return ida_alloc_range(ida, 0, max, gfp); } static inline void ida_init(struct ida *ida) { xa_init_flags(&ida->xa, IDA_INIT_FLAGS); } /* * ida_simple_get() and ida_simple_remove() are deprecated. Use * ida_alloc() and ida_free() instead respectively. */ #define ida_simple_get(ida, start, end, gfp) \ ida_alloc_range(ida, start, (end) - 1, gfp) #define ida_simple_remove(ida, id) ida_free(ida, id) static inline bool ida_is_empty(const struct ida *ida) { return xa_empty(&ida->xa); } #endif /* __IDR_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __FS_NOTIFY_FSNOTIFY_H_ #define __FS_NOTIFY_FSNOTIFY_H_ #include <linux/list.h> #include <linux/fsnotify.h> #include <linux/srcu.h> #include <linux/types.h> #include "../mount.h" static inline struct inode *fsnotify_conn_inode( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct inode, i_fsnotify_marks); } static inline struct mount *fsnotify_conn_mount( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct mount, mnt_fsnotify_marks); } static inline struct super_block *fsnotify_conn_sb( struct fsnotify_mark_connector *conn) { return container_of(conn->obj, struct super_block, s_fsnotify_marks); } /* destroy all events sitting in this groups notification queue */ extern void fsnotify_flush_notify(struct fsnotify_group *group); /* protects reads of inode and vfsmount marks list */ extern struct srcu_struct fsnotify_mark_srcu; /* compare two groups for sorting of marks lists */ extern int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b); /* Destroy all marks attached to an object via connector */ extern void fsnotify_destroy_marks(fsnotify_connp_t *connp); /* run the list of all marks associated with inode and destroy them */ static inline void fsnotify_clear_marks_by_inode(struct inode *inode) { fsnotify_destroy_marks(&inode->i_fsnotify_marks); } /* run the list of all marks associated with vfsmount and destroy them */ static inline void fsnotify_clear_marks_by_mount(struct vfsmount *mnt) { fsnotify_destroy_marks(&real_mount(mnt)->mnt_fsnotify_marks); } /* run the list of all marks associated with sb and destroy them */ static inline void fsnotify_clear_marks_by_sb(struct super_block *sb) { fsnotify_destroy_marks(&sb->s_fsnotify_marks); } /* * update the dentry->d_flags of all of inode's children to indicate if inode cares * about events that happen to its children. */ extern void __fsnotify_update_child_dentry_flags(struct inode *inode); /* allocate and destroy and event holder to attach events to notification/access queues */ extern struct fsnotify_event_holder *fsnotify_alloc_event_holder(void); extern void fsnotify_destroy_event_holder(struct fsnotify_event_holder *holder); extern struct kmem_cache *fsnotify_mark_connector_cachep; #endif /* __FS_NOTIFY_FSNOTIFY_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0 */ /* * A security identifier table (sidtab) is a lookup table * of security context structures indexed by SID value. * * Original author: Stephen Smalley, <sds@tycho.nsa.gov> * Author: Ondrej Mosnacek, <omosnacek@gmail.com> * * Copyright (C) 2018 Red Hat, Inc. */ #ifndef _SS_SIDTAB_H_ #define _SS_SIDTAB_H_ #include <linux/spinlock_types.h> #include <linux/log2.h> #include <linux/hashtable.h> #include "context.h" struct sidtab_entry { u32 sid; u32 hash; struct context context; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 struct sidtab_str_cache __rcu *cache; #endif struct hlist_node list; }; union sidtab_entry_inner { struct sidtab_node_inner *ptr_inner; struct sidtab_node_leaf *ptr_leaf; }; /* align node size to page boundary */ #define SIDTAB_NODE_ALLOC_SHIFT PAGE_SHIFT #define SIDTAB_NODE_ALLOC_SIZE PAGE_SIZE #define size_to_shift(size) ((size) == 1 ? 1 : (const_ilog2((size) - 1) + 1)) #define SIDTAB_INNER_SHIFT \ (SIDTAB_NODE_ALLOC_SHIFT - size_to_shift(sizeof(union sidtab_entry_inner))) #define SIDTAB_INNER_ENTRIES ((size_t)1 << SIDTAB_INNER_SHIFT) #define SIDTAB_LEAF_ENTRIES \ (SIDTAB_NODE_ALLOC_SIZE / sizeof(struct sidtab_entry)) #define SIDTAB_MAX_BITS 32 #define SIDTAB_MAX U32_MAX /* ensure enough tree levels for SIDTAB_MAX entries */ #define SIDTAB_MAX_LEVEL \ DIV_ROUND_UP(SIDTAB_MAX_BITS - size_to_shift(SIDTAB_LEAF_ENTRIES), \ SIDTAB_INNER_SHIFT) struct sidtab_node_leaf { struct sidtab_entry entries[SIDTAB_LEAF_ENTRIES]; }; struct sidtab_node_inner { union sidtab_entry_inner entries[SIDTAB_INNER_ENTRIES]; }; struct sidtab_isid_entry { int set; struct sidtab_entry entry; }; struct sidtab_convert_params { int (*func)(struct context *oldc, struct context *newc, void *args); void *args; struct sidtab *target; }; #define SIDTAB_HASH_BITS CONFIG_SECURITY_SELINUX_SIDTAB_HASH_BITS #define SIDTAB_HASH_BUCKETS (1 << SIDTAB_HASH_BITS) struct sidtab { /* * lock-free read access only for as many items as a prior read of * 'count' */ union sidtab_entry_inner roots[SIDTAB_MAX_LEVEL + 1]; /* * access atomically via {READ|WRITE}_ONCE(); only increment under * spinlock */ u32 count; /* access only under spinlock */ struct sidtab_convert_params *convert; bool frozen; spinlock_t lock; #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 /* SID -> context string cache */ u32 cache_free_slots; struct list_head cache_lru_list; spinlock_t cache_lock; #endif /* index == SID - 1 (no entry for SECSID_NULL) */ struct sidtab_isid_entry isids[SECINITSID_NUM]; /* Hash table for fast reverse context-to-sid lookups. */ DECLARE_HASHTABLE(context_to_sid, SIDTAB_HASH_BITS); }; int sidtab_init(struct sidtab *s); int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context); struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid); struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid); static inline struct context *sidtab_search(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry(s, sid); return entry ? &entry->context : NULL; } static inline struct context *sidtab_search_force(struct sidtab *s, u32 sid) { struct sidtab_entry *entry = sidtab_search_entry_force(s, sid); return entry ? &entry->context : NULL; } int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params); void sidtab_cancel_convert(struct sidtab *s); void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock); void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock); int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid); void sidtab_destroy(struct sidtab *s); int sidtab_hash_stats(struct sidtab *sidtab, char *page); #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len); int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len); #else static inline void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry, const char *str, u32 str_len) { } static inline int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out, u32 *out_len) { return -ENOENT; } #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */ #endif /* _SS_SIDTAB_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_STRING_H_ #define _LINUX_STRING_H_ #include <linux/compiler.h> /* for inline */ #include <linux/types.h> /* for size_t */ #include <linux/stddef.h> /* for NULL */ #include <stdarg.h> #include <uapi/linux/string.h> extern char *strndup_user(const char __user *, long); extern void *memdup_user(const void __user *, size_t); extern void *vmemdup_user(const void __user *, size_t); extern void *memdup_user_nul(const void __user *, size_t); /* * Include machine specific inline routines */ #include <asm/string.h> #ifndef __HAVE_ARCH_STRCPY extern char * strcpy(char *,const char *); #endif #ifndef __HAVE_ARCH_STRNCPY extern char * strncpy(char *,const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRLCPY size_t strlcpy(char *, const char *, size_t); #endif #ifndef __HAVE_ARCH_STRSCPY ssize_t strscpy(char *, const char *, size_t); #endif /* Wraps calls to strscpy()/memset(), no arch specific code required */ ssize_t strscpy_pad(char *dest, const char *src, size_t count); #ifndef __HAVE_ARCH_STRCAT extern char * strcat(char *, const char *); #endif #ifndef __HAVE_ARCH_STRNCAT extern char * strncat(char *, const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRLCAT extern size_t strlcat(char *, const char *, __kernel_size_t); #endif #ifndef __HAVE_ARCH_STRCMP extern int strcmp(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRNCMP extern int strncmp(const char *,const char *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_STRCASECMP extern int strcasecmp(const char *s1, const char *s2); #endif #ifndef __HAVE_ARCH_STRNCASECMP extern int strncasecmp(const char *s1, const char *s2, size_t n); #endif #ifndef __HAVE_ARCH_STRCHR extern char * strchr(const char *,int); #endif #ifndef __HAVE_ARCH_STRCHRNUL extern char * strchrnul(const char *,int); #endif extern char * strnchrnul(const char *, size_t, int); #ifndef __HAVE_ARCH_STRNCHR extern char * strnchr(const char *, size_t, int); #endif #ifndef __HAVE_ARCH_STRRCHR extern char * strrchr(const char *,int); #endif extern char * __must_check skip_spaces(const char *); extern char *strim(char *); static inline __must_check char *strstrip(char *str) { return strim(str); } #ifndef __HAVE_ARCH_STRSTR extern char * strstr(const char *, const char *); #endif #ifndef __HAVE_ARCH_STRNSTR extern char * strnstr(const char *, const char *, size_t); #endif #ifndef __HAVE_ARCH_STRLEN extern __kernel_size_t strlen(const char *); #endif #ifndef __HAVE_ARCH_STRNLEN extern __kernel_size_t strnlen(const char *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_STRPBRK extern char * strpbrk(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRSEP extern char * strsep(char **,const char *); #endif #ifndef __HAVE_ARCH_STRSPN extern __kernel_size_t strspn(const char *,const char *); #endif #ifndef __HAVE_ARCH_STRCSPN extern __kernel_size_t strcspn(const char *,const char *); #endif #ifndef __HAVE_ARCH_MEMSET extern void * memset(void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET16 extern void *memset16(uint16_t *, uint16_t, __kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET32 extern void *memset32(uint32_t *, uint32_t, __kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSET64 extern void *memset64(uint64_t *, uint64_t, __kernel_size_t); #endif static inline void *memset_l(unsigned long *p, unsigned long v, __kernel_size_t n) { if (BITS_PER_LONG == 32) return memset32((uint32_t *)p, v, n); else return memset64((uint64_t *)p, v, n); } static inline void *memset_p(void **p, void *v, __kernel_size_t n) { if (BITS_PER_LONG == 32) return memset32((uint32_t *)p, (uintptr_t)v, n); else return memset64((uint64_t *)p, (uintptr_t)v, n); } extern void **__memcat_p(void **a, void **b); #define memcat_p(a, b) ({ \ BUILD_BUG_ON_MSG(!__same_type(*(a), *(b)), \ "type mismatch in memcat_p()"); \ (typeof(*a) *)__memcat_p((void **)(a), (void **)(b)); \ }) #ifndef __HAVE_ARCH_MEMCPY extern void * memcpy(void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMMOVE extern void * memmove(void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMSCAN extern void * memscan(void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCMP extern int memcmp(const void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_BCMP extern int bcmp(const void *,const void *,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCHR extern void * memchr(const void *,int,__kernel_size_t); #endif #ifndef __HAVE_ARCH_MEMCPY_FLUSHCACHE static inline void memcpy_flushcache(void *dst, const void *src, size_t cnt) { memcpy(dst, src, cnt); } #endif void *memchr_inv(const void *s, int c, size_t n); char *strreplace(char *s, char old, char new); extern void kfree_const(const void *x); extern char *kstrdup(const char *s, gfp_t gfp) __malloc; extern const char *kstrdup_const(const char *s, gfp_t gfp); extern char *kstrndup(const char *s, size_t len, gfp_t gfp); extern void *kmemdup(const void *src, size_t len, gfp_t gfp); extern char *kmemdup_nul(const char *s, size_t len, gfp_t gfp); extern char **argv_split(gfp_t gfp, const char *str, int *argcp); extern void argv_free(char **argv); extern bool sysfs_streq(const char *s1, const char *s2); extern int kstrtobool(const char *s, bool *res); static inline int strtobool(const char *s, bool *res) { return kstrtobool(s, res); } int match_string(const char * const *array, size_t n, const char *string); int __sysfs_match_string(const char * const *array, size_t n, const char *s); /** * sysfs_match_string - matches given string in an array * @_a: array of strings * @_s: string to match with * * Helper for __sysfs_match_string(). Calculates the size of @a automatically. */ #define sysfs_match_string(_a, _s) __sysfs_match_string(_a, ARRAY_SIZE(_a), _s) #ifdef CONFIG_BINARY_PRINTF int vbin_printf(u32 *bin_buf, size_t size, const char *fmt, va_list args); int bstr_printf(char *buf, size_t size, const char *fmt, const u32 *bin_buf); int bprintf(u32 *bin_buf, size_t size, const char *fmt, ...) __printf(3, 4); #endif extern ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, const void *from, size_t available); int ptr_to_hashval(const void *ptr, unsigned long *hashval_out); /** * strstarts - does @str start with @prefix? * @str: string to examine * @prefix: prefix to look for. */ static inline bool strstarts(const char *str, const char *prefix) { return strncmp(str, prefix, strlen(prefix)) == 0; } size_t memweight(const void *ptr, size_t bytes); /** * memzero_explicit - Fill a region of memory (e.g. sensitive * keying data) with 0s. * @s: Pointer to the start of the area. * @count: The size of the area. * * Note: usually using memset() is just fine (!), but in cases * where clearing out _local_ data at the end of a scope is * necessary, memzero_explicit() should be used instead in * order to prevent the compiler from optimising away zeroing. * * memzero_explicit() doesn't need an arch-specific version as * it just invokes the one of memset() implicitly. */ static inline void memzero_explicit(void *s, size_t count) { memset(s, 0, count); barrier_data(s); } /** * kbasename - return the last part of a pathname. * * @path: path to extract the filename from. */ static inline const char *kbasename(const char *path) { const char *tail = strrchr(path, '/'); return tail ? tail + 1 : path; } #define __FORTIFY_INLINE extern __always_inline __attribute__((gnu_inline)) #define __RENAME(x) __asm__(#x) void fortify_panic(const char *name) __noreturn __cold; void __read_overflow(void) __compiletime_error("detected read beyond size of object passed as 1st parameter"); void __read_overflow2(void) __compiletime_error("detected read beyond size of object passed as 2nd parameter"); void __read_overflow3(void) __compiletime_error("detected read beyond size of object passed as 3rd parameter"); void __write_overflow(void) __compiletime_error("detected write beyond size of object passed as 1st parameter"); #if !defined(__NO_FORTIFY) && defined(__OPTIMIZE__) && defined(CONFIG_FORTIFY_SOURCE) #ifdef CONFIG_KASAN extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr); extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp); extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy); extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove); extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset); extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat); extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy); extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen); extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat); extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy); #else #define __underlying_memchr __builtin_memchr #define __underlying_memcmp __builtin_memcmp #define __underlying_memcpy __builtin_memcpy #define __underlying_memmove __builtin_memmove #define __underlying_memset __builtin_memset #define __underlying_strcat __builtin_strcat #define __underlying_strcpy __builtin_strcpy #define __underlying_strlen __builtin_strlen #define __underlying_strncat __builtin_strncat #define __underlying_strncpy __builtin_strncpy #endif __FORTIFY_INLINE char *strncpy(char *p, const char *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __write_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_strncpy(p, q, size); } __FORTIFY_INLINE char *strcat(char *p, const char *q) { size_t p_size = __builtin_object_size(p, 0); if (p_size == (size_t)-1) return __underlying_strcat(p, q); if (strlcat(p, q, p_size) >= p_size) fortify_panic(__func__); return p; } __FORTIFY_INLINE __kernel_size_t strlen(const char *p) { __kernel_size_t ret; size_t p_size = __builtin_object_size(p, 0); /* Work around gcc excess stack consumption issue */ if (p_size == (size_t)-1 || (__builtin_constant_p(p[p_size - 1]) && p[p_size - 1] == '\0')) return __underlying_strlen(p); ret = strnlen(p, p_size); if (p_size <= ret) fortify_panic(__func__); return ret; } extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen); __FORTIFY_INLINE __kernel_size_t strnlen(const char *p, __kernel_size_t maxlen) { size_t p_size = __builtin_object_size(p, 0); __kernel_size_t ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size); if (p_size <= ret && maxlen != ret) fortify_panic(__func__); return ret; } /* defined after fortified strlen to reuse it */ extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy); __FORTIFY_INLINE size_t strlcpy(char *p, const char *q, size_t size) { size_t ret; size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __real_strlcpy(p, q, size); ret = strlen(q); if (size) { size_t len = (ret >= size) ? size - 1 : ret; if (__builtin_constant_p(len) && len >= p_size) __write_overflow(); if (len >= p_size) fortify_panic(__func__); __underlying_memcpy(p, q, len); p[len] = '\0'; } return ret; } /* defined after fortified strlen and strnlen to reuse them */ __FORTIFY_INLINE char *strncat(char *p, const char *q, __kernel_size_t count) { size_t p_len, copy_len; size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __underlying_strncat(p, q, count); p_len = strlen(p); copy_len = strnlen(q, count); if (p_size < p_len + copy_len + 1) fortify_panic(__func__); __underlying_memcpy(p + p_len, q, copy_len); p[p_len + copy_len] = '\0'; return p; } __FORTIFY_INLINE void *memset(void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __write_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_memset(p, c, size); } __FORTIFY_INLINE void *memcpy(void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __write_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memcpy(p, q, size); } __FORTIFY_INLINE void *memmove(void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __write_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memmove(p, q, size); } extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan); __FORTIFY_INLINE void *memscan(void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_memscan(p, c, size); } __FORTIFY_INLINE int memcmp(const void *p, const void *q, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (__builtin_constant_p(size)) { if (p_size < size) __read_overflow(); if (q_size < size) __read_overflow2(); } if (p_size < size || q_size < size) fortify_panic(__func__); return __underlying_memcmp(p, q, size); } __FORTIFY_INLINE void *memchr(const void *p, int c, __kernel_size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __underlying_memchr(p, c, size); } void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv); __FORTIFY_INLINE void *memchr_inv(const void *p, int c, size_t size) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_memchr_inv(p, c, size); } extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup); __FORTIFY_INLINE void *kmemdup(const void *p, size_t size, gfp_t gfp) { size_t p_size = __builtin_object_size(p, 0); if (__builtin_constant_p(size) && p_size < size) __read_overflow(); if (p_size < size) fortify_panic(__func__); return __real_kmemdup(p, size, gfp); } /* defined after fortified strlen and memcpy to reuse them */ __FORTIFY_INLINE char *strcpy(char *p, const char *q) { size_t p_size = __builtin_object_size(p, 0); size_t q_size = __builtin_object_size(q, 0); if (p_size == (size_t)-1 && q_size == (size_t)-1) return __underlying_strcpy(p, q); memcpy(p, q, strlen(q) + 1); return p; } /* Don't use these outside the FORITFY_SOURCE implementation */ #undef __underlying_memchr #undef __underlying_memcmp #undef __underlying_memcpy #undef __underlying_memmove #undef __underlying_memset #undef __underlying_strcat #undef __underlying_strcpy #undef __underlying_strlen #undef __underlying_strncat #undef __underlying_strncpy #endif /** * memcpy_and_pad - Copy one buffer to another with padding * @dest: Where to copy to * @dest_len: The destination buffer size * @src: Where to copy from * @count: The number of bytes to copy * @pad: Character to use for padding if space is left in destination. */ static inline void memcpy_and_pad(void *dest, size_t dest_len, const void *src, size_t count, int pad) { if (dest_len > count) { memcpy(dest, src, count); memset(dest + count, pad, dest_len - count); } else memcpy(dest, src, dest_len); } /** * str_has_prefix - Test if a string has a given prefix * @str: The string to test * @prefix: The string to see if @str starts with * * A common way to test a prefix of a string is to do: * strncmp(str, prefix, sizeof(prefix) - 1) * * But this can lead to bugs due to typos, or if prefix is a pointer * and not a constant. Instead use str_has_prefix(). * * Returns: * * strlen(@prefix) if @str starts with @prefix * * 0 if @str does not start with @prefix */ static __always_inline size_t str_has_prefix(const char *str, const char *prefix) { size_t len = strlen(prefix); return strncmp(str, prefix, len) == 0 ? len : 0; } #endif /* _LINUX_STRING_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 /* SPDX-License-Identifier: GPL-2.0-only */ /* * async.h: Asynchronous function calls for boot performance * * (C) Copyright 2009 Intel Corporation * Author: Arjan van de Ven <arjan@linux.intel.com> */ #ifndef __ASYNC_H__ #define __ASYNC_H__ #include <linux/types.h> #include <linux/list.h> #include <linux/numa.h> #include <linux/device.h> typedef u64 async_cookie_t; typedef void (*async_func_t) (void *data, async_cookie_t cookie); struct async_domain { struct list_head pending; unsigned registered:1; }; /* * domain participates in global async_synchronize_full */ #define ASYNC_DOMAIN(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 1 } /* * domain is free to go out of scope as soon as all pending work is * complete, this domain does not participate in async_synchronize_full */ #define ASYNC_DOMAIN_EXCLUSIVE(_name) \ struct async_domain _name = { .pending = LIST_HEAD_INIT(_name.pending), \ .registered = 0 } async_cookie_t async_schedule_node(async_func_t func, void *data, int node); async_cookie_t async_schedule_node_domain(async_func_t func, void *data, int node, struct async_domain *domain); /** * async_schedule - schedule a function for asynchronous execution * @func: function to execute asynchronously * @data: data pointer to pass to the function * * Returns an async_cookie_t that may be used for checkpointing later. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule(async_func_t func, void *data) { return async_schedule_node(func, data, NUMA_NO_NODE); } /** * async_schedule_domain - schedule a function for asynchronous execution within a certain domain * @func: function to execute asynchronously * @data: data pointer to pass to the function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_domain(async_func_t func, void *data, struct async_domain *domain) { return async_schedule_node_domain(func, data, NUMA_NO_NODE, domain); } /** * async_schedule_dev - A device specific version of async_schedule * @func: function to execute asynchronously * @dev: device argument to be passed to function * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev(async_func_t func, struct device *dev) { return async_schedule_node(func, dev, dev_to_node(dev)); } /** * async_schedule_dev_domain - A device specific version of async_schedule_domain * @func: function to execute asynchronously * @dev: device argument to be passed to function * @domain: the domain * * Returns an async_cookie_t that may be used for checkpointing later. * @dev is used as both the argument for the function and to provide NUMA * context for where to run the function. By doing this we can try to * provide for the best possible outcome by operating on the device on the * CPUs closest to the device. * @domain may be used in the async_synchronize_*_domain() functions to * wait within a certain synchronization domain rather than globally. * Note: This function may be called from atomic or non-atomic contexts. */ static inline async_cookie_t async_schedule_dev_domain(async_func_t func, struct device *dev, struct async_domain *domain) { return async_schedule_node_domain(func, dev, dev_to_node(dev), domain); } void async_unregister_domain(struct async_domain *domain); extern void async_synchronize_full(void); extern void async_synchronize_full_domain(struct async_domain *domain); extern void async_synchronize_cookie(async_cookie_t cookie); extern void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain); extern bool current_is_async(void); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PAGE_REF_H #define _LINUX_PAGE_REF_H #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/page-flags.h> #include <linux/tracepoint-defs.h> DECLARE_TRACEPOINT(page_ref_set); DECLARE_TRACEPOINT(page_ref_mod); DECLARE_TRACEPOINT(page_ref_mod_and_test); DECLARE_TRACEPOINT(page_ref_mod_and_return); DECLARE_TRACEPOINT(page_ref_mod_unless); DECLARE_TRACEPOINT(page_ref_freeze); DECLARE_TRACEPOINT(page_ref_unfreeze); #ifdef CONFIG_DEBUG_PAGE_REF /* * Ideally we would want to use the trace_<tracepoint>_enabled() helper * functions. But due to include header file issues, that is not * feasible. Instead we have to open code the static key functions. * * See trace_##name##_enabled(void) in include/linux/tracepoint.h */ #define page_ref_tracepoint_active(t) tracepoint_enabled(t) extern void __page_ref_set(struct page *page, int v); extern void __page_ref_mod(struct page *page, int v); extern void __page_ref_mod_and_test(struct page *page, int v, int ret); extern void __page_ref_mod_and_return(struct page *page, int v, int ret); extern void __page_ref_mod_unless(struct page *page, int v, int u); extern void __page_ref_freeze(struct page *page, int v, int ret); extern void __page_ref_unfreeze(struct page *page, int v); #else #define page_ref_tracepoint_active(t) false static inline void __page_ref_set(struct page *page, int v) { } static inline void __page_ref_mod(struct page *page, int v) { } static inline void __page_ref_mod_and_test(struct page *page, int v, int ret) { } static inline void __page_ref_mod_and_return(struct page *page, int v, int ret) { } static inline void __page_ref_mod_unless(struct page *page, int v, int u) { } static inline void __page_ref_freeze(struct page *page, int v, int ret) { } static inline void __page_ref_unfreeze(struct page *page, int v) { } #endif static inline int page_ref_count(struct page *page) { return atomic_read(&page->_refcount); } static inline int page_count(struct page *page) { return atomic_read(&compound_head(page)->_refcount); } static inline void set_page_count(struct page *page, int v) { atomic_set(&page->_refcount, v); if (page_ref_tracepoint_active(page_ref_set)) __page_ref_set(page, v); } /* * Setup the page count before being freed into the page allocator for * the first time (boot or memory hotplug) */ static inline void init_page_count(struct page *page) { set_page_count(page, 1); } static inline void page_ref_add(struct page *page, int nr) { atomic_add(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, nr); } static inline void page_ref_sub(struct page *page, int nr) { atomic_sub(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -nr); } static inline int page_ref_sub_return(struct page *page, int nr) { int ret = atomic_sub_return(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -nr, ret); return ret; } static inline void page_ref_inc(struct page *page) { atomic_inc(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, 1); } static inline void page_ref_dec(struct page *page) { atomic_dec(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod)) __page_ref_mod(page, -1); } static inline int page_ref_sub_and_test(struct page *page, int nr) { int ret = atomic_sub_and_test(nr, &page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -nr, ret); return ret; } static inline int page_ref_inc_return(struct page *page) { int ret = atomic_inc_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, 1, ret); return ret; } static inline int page_ref_dec_and_test(struct page *page) { int ret = atomic_dec_and_test(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_test)) __page_ref_mod_and_test(page, -1, ret); return ret; } static inline int page_ref_dec_return(struct page *page) { int ret = atomic_dec_return(&page->_refcount); if (page_ref_tracepoint_active(page_ref_mod_and_return)) __page_ref_mod_and_return(page, -1, ret); return ret; } static inline int page_ref_add_unless(struct page *page, int nr, int u) { int ret = atomic_add_unless(&page->_refcount, nr, u); if (page_ref_tracepoint_active(page_ref_mod_unless)) __page_ref_mod_unless(page, nr, ret); return ret; } static inline int page_ref_freeze(struct page *page, int count) { int ret = likely(atomic_cmpxchg(&page->_refcount, count, 0) == count); if (page_ref_tracepoint_active(page_ref_freeze)) __page_ref_freeze(page, count, ret); return ret; } static inline void page_ref_unfreeze(struct page *page, int count) { VM_BUG_ON_PAGE(page_count(page) != 0, page); VM_BUG_ON(count == 0); atomic_set_release(&page->_refcount, count); if (page_ref_tracepoint_active(page_ref_unfreeze)) __page_ref_unfreeze(page, count); } #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 // SPDX-License-Identifier: GPL-2.0 // Generated by scripts/atomic/gen-atomic-fallback.sh // DO NOT MODIFY THIS FILE DIRECTLY #ifndef _LINUX_ATOMIC_FALLBACK_H #define _LINUX_ATOMIC_FALLBACK_H #include <linux/compiler.h> #ifndef arch_xchg_relaxed #define arch_xchg_relaxed arch_xchg #define arch_xchg_acquire arch_xchg #define arch_xchg_release arch_xchg #else /* arch_xchg_relaxed */ #ifndef arch_xchg_acquire #define arch_xchg_acquire(...) \ __atomic_op_acquire(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg_release #define arch_xchg_release(...) \ __atomic_op_release(arch_xchg, __VA_ARGS__) #endif #ifndef arch_xchg #define arch_xchg(...) \ __atomic_op_fence(arch_xchg, __VA_ARGS__) #endif #endif /* arch_xchg_relaxed */ #ifndef arch_cmpxchg_relaxed #define arch_cmpxchg_relaxed arch_cmpxchg #define arch_cmpxchg_acquire arch_cmpxchg #define arch_cmpxchg_release arch_cmpxchg #else /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg_acquire #define arch_cmpxchg_acquire(...) \ __atomic_op_acquire(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg_release #define arch_cmpxchg_release(...) \ __atomic_op_release(arch_cmpxchg, __VA_ARGS__) #endif #ifndef arch_cmpxchg #define arch_cmpxchg(...) \ __atomic_op_fence(arch_cmpxchg, __VA_ARGS__) #endif #endif /* arch_cmpxchg_relaxed */ #ifndef arch_cmpxchg64_relaxed #define arch_cmpxchg64_relaxed arch_cmpxchg64 #define arch_cmpxchg64_acquire arch_cmpxchg64 #define arch_cmpxchg64_release arch_cmpxchg64 #else /* arch_cmpxchg64_relaxed */ #ifndef arch_cmpxchg64_acquire #define arch_cmpxchg64_acquire(...) \ __atomic_op_acquire(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64_release #define arch_cmpxchg64_release(...) \ __atomic_op_release(arch_cmpxchg64, __VA_ARGS__) #endif #ifndef arch_cmpxchg64 #define arch_cmpxchg64(...) \ __atomic_op_fence(arch_cmpxchg64, __VA_ARGS__) #endif #endif /* arch_cmpxchg64_relaxed */ #ifndef arch_atomic_read_acquire static __always_inline int arch_atomic_read_acquire(const atomic_t *v) { return smp_load_acquire(&(v)->counter); } #define arch_atomic_read_acquire arch_atomic_read_acquire #endif #ifndef arch_atomic_set_release static __always_inline void arch_atomic_set_release(atomic_t *v, int i) { smp_store_release(&(v)->counter, i); } #define arch_atomic_set_release arch_atomic_set_release #endif #ifndef arch_atomic_add_return_relaxed #define arch_atomic_add_return_acquire arch_atomic_add_return #define arch_atomic_add_return_release arch_atomic_add_return #define arch_atomic_add_return_relaxed arch_atomic_add_return #else /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_add_return_acquire static __always_inline int arch_atomic_add_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_add_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_add_return_acquire arch_atomic_add_return_acquire #endif #ifndef arch_atomic_add_return_release static __always_inline int arch_atomic_add_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_add_return_relaxed(i, v); } #define arch_atomic_add_return_release arch_atomic_add_return_release #endif #ifndef arch_atomic_add_return static __always_inline int arch_atomic_add_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_add_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_add_return arch_atomic_add_return #endif #endif /* arch_atomic_add_return_relaxed */ #ifndef arch_atomic_fetch_add_relaxed #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add #define arch_atomic_fetch_add_release arch_atomic_fetch_add #define arch_atomic_fetch_add_relaxed arch_atomic_fetch_add #else /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_fetch_add_acquire static __always_inline int arch_atomic_fetch_add_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_add_acquire arch_atomic_fetch_add_acquire #endif #ifndef arch_atomic_fetch_add_release static __always_inline int arch_atomic_fetch_add_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_add_relaxed(i, v); } #define arch_atomic_fetch_add_release arch_atomic_fetch_add_release #endif #ifndef arch_atomic_fetch_add static __always_inline int arch_atomic_fetch_add(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_add_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_add arch_atomic_fetch_add #endif #endif /* arch_atomic_fetch_add_relaxed */ #ifndef arch_atomic_sub_return_relaxed #define arch_atomic_sub_return_acquire arch_atomic_sub_return #define arch_atomic_sub_return_release arch_atomic_sub_return #define arch_atomic_sub_return_relaxed arch_atomic_sub_return #else /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_sub_return_acquire static __always_inline int arch_atomic_sub_return_acquire(int i, atomic_t *v) { int ret = arch_atomic_sub_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_sub_return_acquire arch_atomic_sub_return_acquire #endif #ifndef arch_atomic_sub_return_release static __always_inline int arch_atomic_sub_return_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_sub_return_relaxed(i, v); } #define arch_atomic_sub_return_release arch_atomic_sub_return_release #endif #ifndef arch_atomic_sub_return static __always_inline int arch_atomic_sub_return(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_sub_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_sub_return arch_atomic_sub_return #endif #endif /* arch_atomic_sub_return_relaxed */ #ifndef arch_atomic_fetch_sub_relaxed #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub #define arch_atomic_fetch_sub_relaxed arch_atomic_fetch_sub #else /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_fetch_sub_acquire static __always_inline int arch_atomic_fetch_sub_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_sub_acquire arch_atomic_fetch_sub_acquire #endif #ifndef arch_atomic_fetch_sub_release static __always_inline int arch_atomic_fetch_sub_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_sub_relaxed(i, v); } #define arch_atomic_fetch_sub_release arch_atomic_fetch_sub_release #endif #ifndef arch_atomic_fetch_sub static __always_inline int arch_atomic_fetch_sub(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_sub_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_sub arch_atomic_fetch_sub #endif #endif /* arch_atomic_fetch_sub_relaxed */ #ifndef arch_atomic_inc static __always_inline void arch_atomic_inc(atomic_t *v) { arch_atomic_add(1, v); } #define arch_atomic_inc arch_atomic_inc #endif #ifndef arch_atomic_inc_return_relaxed #ifdef arch_atomic_inc_return #define arch_atomic_inc_return_acquire arch_atomic_inc_return #define arch_atomic_inc_return_release arch_atomic_inc_return #define arch_atomic_inc_return_relaxed arch_atomic_inc_return #endif /* arch_atomic_inc_return */ #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { return arch_atomic_add_return(1, v); } #define arch_atomic_inc_return arch_atomic_inc_return #endif #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { return arch_atomic_add_return_acquire(1, v); } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { return arch_atomic_add_return_release(1, v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return_relaxed static __always_inline int arch_atomic_inc_return_relaxed(atomic_t *v) { return arch_atomic_add_return_relaxed(1, v); } #define arch_atomic_inc_return_relaxed arch_atomic_inc_return_relaxed #endif #else /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_inc_return_acquire static __always_inline int arch_atomic_inc_return_acquire(atomic_t *v) { int ret = arch_atomic_inc_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_inc_return_acquire arch_atomic_inc_return_acquire #endif #ifndef arch_atomic_inc_return_release static __always_inline int arch_atomic_inc_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_inc_return_relaxed(v); } #define arch_atomic_inc_return_release arch_atomic_inc_return_release #endif #ifndef arch_atomic_inc_return static __always_inline int arch_atomic_inc_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_inc_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_inc_return arch_atomic_inc_return #endif #endif /* arch_atomic_inc_return_relaxed */ #ifndef arch_atomic_fetch_inc_relaxed #ifdef arch_atomic_fetch_inc #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc #endif /* arch_atomic_fetch_inc */ #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { return arch_atomic_fetch_add(1, v); } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { return arch_atomic_fetch_add_acquire(1, v); } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { return arch_atomic_fetch_add_release(1, v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc_relaxed static __always_inline int arch_atomic_fetch_inc_relaxed(atomic_t *v) { return arch_atomic_fetch_add_relaxed(1, v); } #define arch_atomic_fetch_inc_relaxed arch_atomic_fetch_inc_relaxed #endif #else /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_fetch_inc_acquire static __always_inline int arch_atomic_fetch_inc_acquire(atomic_t *v) { int ret = arch_atomic_fetch_inc_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_inc_acquire arch_atomic_fetch_inc_acquire #endif #ifndef arch_atomic_fetch_inc_release static __always_inline int arch_atomic_fetch_inc_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_inc_relaxed(v); } #define arch_atomic_fetch_inc_release arch_atomic_fetch_inc_release #endif #ifndef arch_atomic_fetch_inc static __always_inline int arch_atomic_fetch_inc(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_inc_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_inc arch_atomic_fetch_inc #endif #endif /* arch_atomic_fetch_inc_relaxed */ #ifndef arch_atomic_dec static __always_inline void arch_atomic_dec(atomic_t *v) { arch_atomic_sub(1, v); } #define arch_atomic_dec arch_atomic_dec #endif #ifndef arch_atomic_dec_return_relaxed #ifdef arch_atomic_dec_return #define arch_atomic_dec_return_acquire arch_atomic_dec_return #define arch_atomic_dec_return_release arch_atomic_dec_return #define arch_atomic_dec_return_relaxed arch_atomic_dec_return #endif /* arch_atomic_dec_return */ #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { return arch_atomic_sub_return(1, v); } #define arch_atomic_dec_return arch_atomic_dec_return #endif #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { return arch_atomic_sub_return_acquire(1, v); } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { return arch_atomic_sub_return_release(1, v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return_relaxed static __always_inline int arch_atomic_dec_return_relaxed(atomic_t *v) { return arch_atomic_sub_return_relaxed(1, v); } #define arch_atomic_dec_return_relaxed arch_atomic_dec_return_relaxed #endif #else /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_dec_return_acquire static __always_inline int arch_atomic_dec_return_acquire(atomic_t *v) { int ret = arch_atomic_dec_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_dec_return_acquire arch_atomic_dec_return_acquire #endif #ifndef arch_atomic_dec_return_release static __always_inline int arch_atomic_dec_return_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_dec_return_relaxed(v); } #define arch_atomic_dec_return_release arch_atomic_dec_return_release #endif #ifndef arch_atomic_dec_return static __always_inline int arch_atomic_dec_return(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_dec_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_dec_return arch_atomic_dec_return #endif #endif /* arch_atomic_dec_return_relaxed */ #ifndef arch_atomic_fetch_dec_relaxed #ifdef arch_atomic_fetch_dec #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec #endif /* arch_atomic_fetch_dec */ #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { return arch_atomic_fetch_sub(1, v); } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { return arch_atomic_fetch_sub_acquire(1, v); } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { return arch_atomic_fetch_sub_release(1, v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec_relaxed static __always_inline int arch_atomic_fetch_dec_relaxed(atomic_t *v) { return arch_atomic_fetch_sub_relaxed(1, v); } #define arch_atomic_fetch_dec_relaxed arch_atomic_fetch_dec_relaxed #endif #else /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_dec_acquire static __always_inline int arch_atomic_fetch_dec_acquire(atomic_t *v) { int ret = arch_atomic_fetch_dec_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_dec_acquire arch_atomic_fetch_dec_acquire #endif #ifndef arch_atomic_fetch_dec_release static __always_inline int arch_atomic_fetch_dec_release(atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_dec_relaxed(v); } #define arch_atomic_fetch_dec_release arch_atomic_fetch_dec_release #endif #ifndef arch_atomic_fetch_dec static __always_inline int arch_atomic_fetch_dec(atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_dec_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_dec arch_atomic_fetch_dec #endif #endif /* arch_atomic_fetch_dec_relaxed */ #ifndef arch_atomic_fetch_and_relaxed #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and #define arch_atomic_fetch_and_release arch_atomic_fetch_and #define arch_atomic_fetch_and_relaxed arch_atomic_fetch_and #else /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_fetch_and_acquire static __always_inline int arch_atomic_fetch_and_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_and_acquire arch_atomic_fetch_and_acquire #endif #ifndef arch_atomic_fetch_and_release static __always_inline int arch_atomic_fetch_and_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_and_relaxed(i, v); } #define arch_atomic_fetch_and_release arch_atomic_fetch_and_release #endif #ifndef arch_atomic_fetch_and static __always_inline int arch_atomic_fetch_and(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_and_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_and arch_atomic_fetch_and #endif #endif /* arch_atomic_fetch_and_relaxed */ #ifndef arch_atomic_andnot static __always_inline void arch_atomic_andnot(int i, atomic_t *v) { arch_atomic_and(~i, v); } #define arch_atomic_andnot arch_atomic_andnot #endif #ifndef arch_atomic_fetch_andnot_relaxed #ifdef arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot #define arch_atomic_fetch_andnot_relaxed arch_atomic_fetch_andnot #endif /* arch_atomic_fetch_andnot */ #ifndef arch_atomic_fetch_andnot static __always_inline int arch_atomic_fetch_andnot(int i, atomic_t *v) { return arch_atomic_fetch_and(~i, v); } #define arch_atomic_fetch_andnot arch_atomic_fetch_andnot #endif #ifndef arch_atomic_fetch_andnot_acquire static __always_inline int arch_atomic_fetch_andnot_acquire(int i, atomic_t *v) { return arch_atomic_fetch_and_acquire(~i, v); } #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot_acquire #endif #ifndef arch_atomic_fetch_andnot_release static __always_inline int arch_atomic_fetch_andnot_release(int i, atomic_t *v) { return arch_atomic_fetch_and_release(~i, v); } #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot_release #endif #ifndef arch_atomic_fetch_andnot_relaxed static __always_inline int arch_atomic_fetch_andnot_relaxed(int i, atomic_t *v) { return arch_atomic_fetch_and_relaxed(~i, v); } #define arch_atomic_fetch_andnot_relaxed arch_atomic_fetch_andnot_relaxed #endif #else /* arch_atomic_fetch_andnot_relaxed */ #ifndef arch_atomic_fetch_andnot_acquire static __always_inline int arch_atomic_fetch_andnot_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_andnot_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_andnot_acquire arch_atomic_fetch_andnot_acquire #endif #ifndef arch_atomic_fetch_andnot_release static __always_inline int arch_atomic_fetch_andnot_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_andnot_relaxed(i, v); } #define arch_atomic_fetch_andnot_release arch_atomic_fetch_andnot_release #endif #ifndef arch_atomic_fetch_andnot static __always_inline int arch_atomic_fetch_andnot(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_andnot_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_andnot arch_atomic_fetch_andnot #endif #endif /* arch_atomic_fetch_andnot_relaxed */ #ifndef arch_atomic_fetch_or_relaxed #define arch_atomic_fetch_or_acquire arch_atomic_fetch_or #define arch_atomic_fetch_or_release arch_atomic_fetch_or #define arch_atomic_fetch_or_relaxed arch_atomic_fetch_or #else /* arch_atomic_fetch_or_relaxed */ #ifndef arch_atomic_fetch_or_acquire static __always_inline int arch_atomic_fetch_or_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_or_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_or_acquire arch_atomic_fetch_or_acquire #endif #ifndef arch_atomic_fetch_or_release static __always_inline int arch_atomic_fetch_or_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_or_relaxed(i, v); } #define arch_atomic_fetch_or_release arch_atomic_fetch_or_release #endif #ifndef arch_atomic_fetch_or static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_or_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_or arch_atomic_fetch_or #endif #endif /* arch_atomic_fetch_or_relaxed */ #ifndef arch_atomic_fetch_xor_relaxed #define arch_atomic_fetch_xor_acquire arch_atomic_fetch_xor #define arch_atomic_fetch_xor_release arch_atomic_fetch_xor #define arch_atomic_fetch_xor_relaxed arch_atomic_fetch_xor #else /* arch_atomic_fetch_xor_relaxed */ #ifndef arch_atomic_fetch_xor_acquire static __always_inline int arch_atomic_fetch_xor_acquire(int i, atomic_t *v) { int ret = arch_atomic_fetch_xor_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic_fetch_xor_acquire arch_atomic_fetch_xor_acquire #endif #ifndef arch_atomic_fetch_xor_release static __always_inline int arch_atomic_fetch_xor_release(int i, atomic_t *v) { __atomic_release_fence(); return arch_atomic_fetch_xor_relaxed(i, v); } #define arch_atomic_fetch_xor_release arch_atomic_fetch_xor_release #endif #ifndef arch_atomic_fetch_xor static __always_inline int arch_atomic_fetch_xor(int i, atomic_t *v) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_fetch_xor_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic_fetch_xor arch_atomic_fetch_xor #endif #endif /* arch_atomic_fetch_xor_relaxed */ #ifndef arch_atomic_xchg_relaxed #define arch_atomic_xchg_acquire arch_atomic_xchg #define arch_atomic_xchg_release arch_atomic_xchg #define arch_atomic_xchg_relaxed arch_atomic_xchg #else /* arch_atomic_xchg_relaxed */ #ifndef arch_atomic_xchg_acquire static __always_inline int arch_atomic_xchg_acquire(atomic_t *v, int i) { int ret = arch_atomic_xchg_relaxed(v, i); __atomic_acquire_fence(); return ret; } #define arch_atomic_xchg_acquire arch_atomic_xchg_acquire #endif #ifndef arch_atomic_xchg_release static __always_inline int arch_atomic_xchg_release(atomic_t *v, int i) { __atomic_release_fence(); return arch_atomic_xchg_relaxed(v, i); } #define arch_atomic_xchg_release arch_atomic_xchg_release #endif #ifndef arch_atomic_xchg static __always_inline int arch_atomic_xchg(atomic_t *v, int i) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_xchg_relaxed(v, i); __atomic_post_full_fence(); return ret; } #define arch_atomic_xchg arch_atomic_xchg #endif #endif /* arch_atomic_xchg_relaxed */ #ifndef arch_atomic_cmpxchg_relaxed #define arch_atomic_cmpxchg_acquire arch_atomic_cmpxchg #define arch_atomic_cmpxchg_release arch_atomic_cmpxchg #define arch_atomic_cmpxchg_relaxed arch_atomic_cmpxchg #else /* arch_atomic_cmpxchg_relaxed */ #ifndef arch_atomic_cmpxchg_acquire static __always_inline int arch_atomic_cmpxchg_acquire(atomic_t *v, int old, int new) { int ret = arch_atomic_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic_cmpxchg_acquire arch_atomic_cmpxchg_acquire #endif #ifndef arch_atomic_cmpxchg_release static __always_inline int arch_atomic_cmpxchg_release(atomic_t *v, int old, int new) { __atomic_release_fence(); return arch_atomic_cmpxchg_relaxed(v, old, new); } #define arch_atomic_cmpxchg_release arch_atomic_cmpxchg_release #endif #ifndef arch_atomic_cmpxchg static __always_inline int arch_atomic_cmpxchg(atomic_t *v, int old, int new) { int ret; __atomic_pre_full_fence(); ret = arch_atomic_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic_cmpxchg arch_atomic_cmpxchg #endif #endif /* arch_atomic_cmpxchg_relaxed */ #ifndef arch_atomic_try_cmpxchg_relaxed #ifdef arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg #define arch_atomic_try_cmpxchg_relaxed arch_atomic_try_cmpxchg #endif /* arch_atomic_try_cmpxchg */ #ifndef arch_atomic_try_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg #endif #ifndef arch_atomic_try_cmpxchg_acquire static __always_inline bool arch_atomic_try_cmpxchg_acquire(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_acquire(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg_acquire #endif #ifndef arch_atomic_try_cmpxchg_release static __always_inline bool arch_atomic_try_cmpxchg_release(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_release(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg_release #endif #ifndef arch_atomic_try_cmpxchg_relaxed static __always_inline bool arch_atomic_try_cmpxchg_relaxed(atomic_t *v, int *old, int new) { int r, o = *old; r = arch_atomic_cmpxchg_relaxed(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic_try_cmpxchg_relaxed arch_atomic_try_cmpxchg_relaxed #endif #else /* arch_atomic_try_cmpxchg_relaxed */ #ifndef arch_atomic_try_cmpxchg_acquire static __always_inline bool arch_atomic_try_cmpxchg_acquire(atomic_t *v, int *old, int new) { bool ret = arch_atomic_try_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic_try_cmpxchg_acquire arch_atomic_try_cmpxchg_acquire #endif #ifndef arch_atomic_try_cmpxchg_release static __always_inline bool arch_atomic_try_cmpxchg_release(atomic_t *v, int *old, int new) { __atomic_release_fence(); return arch_atomic_try_cmpxchg_relaxed(v, old, new); } #define arch_atomic_try_cmpxchg_release arch_atomic_try_cmpxchg_release #endif #ifndef arch_atomic_try_cmpxchg static __always_inline bool arch_atomic_try_cmpxchg(atomic_t *v, int *old, int new) { bool ret; __atomic_pre_full_fence(); ret = arch_atomic_try_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic_try_cmpxchg arch_atomic_try_cmpxchg #endif #endif /* arch_atomic_try_cmpxchg_relaxed */ #ifndef arch_atomic_sub_and_test /** * arch_atomic_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_sub_and_test(int i, atomic_t *v) { return arch_atomic_sub_return(i, v) == 0; } #define arch_atomic_sub_and_test arch_atomic_sub_and_test #endif #ifndef arch_atomic_dec_and_test /** * arch_atomic_dec_and_test - decrement and test * @v: pointer of type atomic_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic_dec_and_test(atomic_t *v) { return arch_atomic_dec_return(v) == 0; } #define arch_atomic_dec_and_test arch_atomic_dec_and_test #endif #ifndef arch_atomic_inc_and_test /** * arch_atomic_inc_and_test - increment and test * @v: pointer of type atomic_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic_inc_and_test(atomic_t *v) { return arch_atomic_inc_return(v) == 0; } #define arch_atomic_inc_and_test arch_atomic_inc_and_test #endif #ifndef arch_atomic_add_negative /** * arch_atomic_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic_add_negative(int i, atomic_t *v) { return arch_atomic_add_return(i, v) < 0; } #define arch_atomic_add_negative arch_atomic_add_negative #endif #ifndef arch_atomic_fetch_add_unless /** * arch_atomic_fetch_add_unless - add unless the number is already a given value * @v: pointer of type atomic_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, so long as @v was not already @u. * Returns original value of @v */ static __always_inline int arch_atomic_fetch_add_unless(atomic_t *v, int a, int u) { int c = arch_atomic_read(v); do { if (unlikely(c == u)) break; } while (!arch_atomic_try_cmpxchg(v, &c, c + a)); return c; } #define arch_atomic_fetch_add_unless arch_atomic_fetch_add_unless #endif #ifndef arch_atomic_add_unless /** * arch_atomic_add_unless - add unless the number is already a given value * @v: pointer of type atomic_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, if @v was not already @u. * Returns true if the addition was done. */ static __always_inline bool arch_atomic_add_unless(atomic_t *v, int a, int u) { return arch_atomic_fetch_add_unless(v, a, u) != u; } #define arch_atomic_add_unless arch_atomic_add_unless #endif #ifndef arch_atomic_inc_not_zero /** * arch_atomic_inc_not_zero - increment unless the number is zero * @v: pointer of type atomic_t * * Atomically increments @v by 1, if @v is non-zero. * Returns true if the increment was done. */ static __always_inline bool arch_atomic_inc_not_zero(atomic_t *v) { return arch_atomic_add_unless(v, 1, 0); } #define arch_atomic_inc_not_zero arch_atomic_inc_not_zero #endif #ifndef arch_atomic_inc_unless_negative static __always_inline bool arch_atomic_inc_unless_negative(atomic_t *v) { int c = arch_atomic_read(v); do { if (unlikely(c < 0)) return false; } while (!arch_atomic_try_cmpxchg(v, &c, c + 1)); return true; } #define arch_atomic_inc_unless_negative arch_atomic_inc_unless_negative #endif #ifndef arch_atomic_dec_unless_positive static __always_inline bool arch_atomic_dec_unless_positive(atomic_t *v) { int c = arch_atomic_read(v); do { if (unlikely(c > 0)) return false; } while (!arch_atomic_try_cmpxchg(v, &c, c - 1)); return true; } #define arch_atomic_dec_unless_positive arch_atomic_dec_unless_positive #endif #ifndef arch_atomic_dec_if_positive static __always_inline int arch_atomic_dec_if_positive(atomic_t *v) { int dec, c = arch_atomic_read(v); do { dec = c - 1; if (unlikely(dec < 0)) break; } while (!arch_atomic_try_cmpxchg(v, &c, dec)); return dec; } #define arch_atomic_dec_if_positive arch_atomic_dec_if_positive #endif #ifdef CONFIG_GENERIC_ATOMIC64 #include <asm-generic/atomic64.h> #endif #ifndef arch_atomic64_read_acquire static __always_inline s64 arch_atomic64_read_acquire(const atomic64_t *v) { return smp_load_acquire(&(v)->counter); } #define arch_atomic64_read_acquire arch_atomic64_read_acquire #endif #ifndef arch_atomic64_set_release static __always_inline void arch_atomic64_set_release(atomic64_t *v, s64 i) { smp_store_release(&(v)->counter, i); } #define arch_atomic64_set_release arch_atomic64_set_release #endif #ifndef arch_atomic64_add_return_relaxed #define arch_atomic64_add_return_acquire arch_atomic64_add_return #define arch_atomic64_add_return_release arch_atomic64_add_return #define arch_atomic64_add_return_relaxed arch_atomic64_add_return #else /* arch_atomic64_add_return_relaxed */ #ifndef arch_atomic64_add_return_acquire static __always_inline s64 arch_atomic64_add_return_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_add_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_add_return_acquire arch_atomic64_add_return_acquire #endif #ifndef arch_atomic64_add_return_release static __always_inline s64 arch_atomic64_add_return_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_add_return_relaxed(i, v); } #define arch_atomic64_add_return_release arch_atomic64_add_return_release #endif #ifndef arch_atomic64_add_return static __always_inline s64 arch_atomic64_add_return(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_add_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_add_return arch_atomic64_add_return #endif #endif /* arch_atomic64_add_return_relaxed */ #ifndef arch_atomic64_fetch_add_relaxed #define arch_atomic64_fetch_add_acquire arch_atomic64_fetch_add #define arch_atomic64_fetch_add_release arch_atomic64_fetch_add #define arch_atomic64_fetch_add_relaxed arch_atomic64_fetch_add #else /* arch_atomic64_fetch_add_relaxed */ #ifndef arch_atomic64_fetch_add_acquire static __always_inline s64 arch_atomic64_fetch_add_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_add_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_add_acquire arch_atomic64_fetch_add_acquire #endif #ifndef arch_atomic64_fetch_add_release static __always_inline s64 arch_atomic64_fetch_add_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_add_relaxed(i, v); } #define arch_atomic64_fetch_add_release arch_atomic64_fetch_add_release #endif #ifndef arch_atomic64_fetch_add static __always_inline s64 arch_atomic64_fetch_add(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_add_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_add arch_atomic64_fetch_add #endif #endif /* arch_atomic64_fetch_add_relaxed */ #ifndef arch_atomic64_sub_return_relaxed #define arch_atomic64_sub_return_acquire arch_atomic64_sub_return #define arch_atomic64_sub_return_release arch_atomic64_sub_return #define arch_atomic64_sub_return_relaxed arch_atomic64_sub_return #else /* arch_atomic64_sub_return_relaxed */ #ifndef arch_atomic64_sub_return_acquire static __always_inline s64 arch_atomic64_sub_return_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_sub_return_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_sub_return_acquire arch_atomic64_sub_return_acquire #endif #ifndef arch_atomic64_sub_return_release static __always_inline s64 arch_atomic64_sub_return_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_sub_return_relaxed(i, v); } #define arch_atomic64_sub_return_release arch_atomic64_sub_return_release #endif #ifndef arch_atomic64_sub_return static __always_inline s64 arch_atomic64_sub_return(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_sub_return_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_sub_return arch_atomic64_sub_return #endif #endif /* arch_atomic64_sub_return_relaxed */ #ifndef arch_atomic64_fetch_sub_relaxed #define arch_atomic64_fetch_sub_acquire arch_atomic64_fetch_sub #define arch_atomic64_fetch_sub_release arch_atomic64_fetch_sub #define arch_atomic64_fetch_sub_relaxed arch_atomic64_fetch_sub #else /* arch_atomic64_fetch_sub_relaxed */ #ifndef arch_atomic64_fetch_sub_acquire static __always_inline s64 arch_atomic64_fetch_sub_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_sub_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_sub_acquire arch_atomic64_fetch_sub_acquire #endif #ifndef arch_atomic64_fetch_sub_release static __always_inline s64 arch_atomic64_fetch_sub_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_sub_relaxed(i, v); } #define arch_atomic64_fetch_sub_release arch_atomic64_fetch_sub_release #endif #ifndef arch_atomic64_fetch_sub static __always_inline s64 arch_atomic64_fetch_sub(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_sub_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_sub arch_atomic64_fetch_sub #endif #endif /* arch_atomic64_fetch_sub_relaxed */ #ifndef arch_atomic64_inc static __always_inline void arch_atomic64_inc(atomic64_t *v) { arch_atomic64_add(1, v); } #define arch_atomic64_inc arch_atomic64_inc #endif #ifndef arch_atomic64_inc_return_relaxed #ifdef arch_atomic64_inc_return #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return #define arch_atomic64_inc_return_release arch_atomic64_inc_return #define arch_atomic64_inc_return_relaxed arch_atomic64_inc_return #endif /* arch_atomic64_inc_return */ #ifndef arch_atomic64_inc_return static __always_inline s64 arch_atomic64_inc_return(atomic64_t *v) { return arch_atomic64_add_return(1, v); } #define arch_atomic64_inc_return arch_atomic64_inc_return #endif #ifndef arch_atomic64_inc_return_acquire static __always_inline s64 arch_atomic64_inc_return_acquire(atomic64_t *v) { return arch_atomic64_add_return_acquire(1, v); } #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return_acquire #endif #ifndef arch_atomic64_inc_return_release static __always_inline s64 arch_atomic64_inc_return_release(atomic64_t *v) { return arch_atomic64_add_return_release(1, v); } #define arch_atomic64_inc_return_release arch_atomic64_inc_return_release #endif #ifndef arch_atomic64_inc_return_relaxed static __always_inline s64 arch_atomic64_inc_return_relaxed(atomic64_t *v) { return arch_atomic64_add_return_relaxed(1, v); } #define arch_atomic64_inc_return_relaxed arch_atomic64_inc_return_relaxed #endif #else /* arch_atomic64_inc_return_relaxed */ #ifndef arch_atomic64_inc_return_acquire static __always_inline s64 arch_atomic64_inc_return_acquire(atomic64_t *v) { s64 ret = arch_atomic64_inc_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_inc_return_acquire arch_atomic64_inc_return_acquire #endif #ifndef arch_atomic64_inc_return_release static __always_inline s64 arch_atomic64_inc_return_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_inc_return_relaxed(v); } #define arch_atomic64_inc_return_release arch_atomic64_inc_return_release #endif #ifndef arch_atomic64_inc_return static __always_inline s64 arch_atomic64_inc_return(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_inc_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_inc_return arch_atomic64_inc_return #endif #endif /* arch_atomic64_inc_return_relaxed */ #ifndef arch_atomic64_fetch_inc_relaxed #ifdef arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc #define arch_atomic64_fetch_inc_relaxed arch_atomic64_fetch_inc #endif /* arch_atomic64_fetch_inc */ #ifndef arch_atomic64_fetch_inc static __always_inline s64 arch_atomic64_fetch_inc(atomic64_t *v) { return arch_atomic64_fetch_add(1, v); } #define arch_atomic64_fetch_inc arch_atomic64_fetch_inc #endif #ifndef arch_atomic64_fetch_inc_acquire static __always_inline s64 arch_atomic64_fetch_inc_acquire(atomic64_t *v) { return arch_atomic64_fetch_add_acquire(1, v); } #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc_acquire #endif #ifndef arch_atomic64_fetch_inc_release static __always_inline s64 arch_atomic64_fetch_inc_release(atomic64_t *v) { return arch_atomic64_fetch_add_release(1, v); } #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc_release #endif #ifndef arch_atomic64_fetch_inc_relaxed static __always_inline s64 arch_atomic64_fetch_inc_relaxed(atomic64_t *v) { return arch_atomic64_fetch_add_relaxed(1, v); } #define arch_atomic64_fetch_inc_relaxed arch_atomic64_fetch_inc_relaxed #endif #else /* arch_atomic64_fetch_inc_relaxed */ #ifndef arch_atomic64_fetch_inc_acquire static __always_inline s64 arch_atomic64_fetch_inc_acquire(atomic64_t *v) { s64 ret = arch_atomic64_fetch_inc_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_inc_acquire arch_atomic64_fetch_inc_acquire #endif #ifndef arch_atomic64_fetch_inc_release static __always_inline s64 arch_atomic64_fetch_inc_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_inc_relaxed(v); } #define arch_atomic64_fetch_inc_release arch_atomic64_fetch_inc_release #endif #ifndef arch_atomic64_fetch_inc static __always_inline s64 arch_atomic64_fetch_inc(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_inc_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_inc arch_atomic64_fetch_inc #endif #endif /* arch_atomic64_fetch_inc_relaxed */ #ifndef arch_atomic64_dec static __always_inline void arch_atomic64_dec(atomic64_t *v) { arch_atomic64_sub(1, v); } #define arch_atomic64_dec arch_atomic64_dec #endif #ifndef arch_atomic64_dec_return_relaxed #ifdef arch_atomic64_dec_return #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return #define arch_atomic64_dec_return_release arch_atomic64_dec_return #define arch_atomic64_dec_return_relaxed arch_atomic64_dec_return #endif /* arch_atomic64_dec_return */ #ifndef arch_atomic64_dec_return static __always_inline s64 arch_atomic64_dec_return(atomic64_t *v) { return arch_atomic64_sub_return(1, v); } #define arch_atomic64_dec_return arch_atomic64_dec_return #endif #ifndef arch_atomic64_dec_return_acquire static __always_inline s64 arch_atomic64_dec_return_acquire(atomic64_t *v) { return arch_atomic64_sub_return_acquire(1, v); } #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return_acquire #endif #ifndef arch_atomic64_dec_return_release static __always_inline s64 arch_atomic64_dec_return_release(atomic64_t *v) { return arch_atomic64_sub_return_release(1, v); } #define arch_atomic64_dec_return_release arch_atomic64_dec_return_release #endif #ifndef arch_atomic64_dec_return_relaxed static __always_inline s64 arch_atomic64_dec_return_relaxed(atomic64_t *v) { return arch_atomic64_sub_return_relaxed(1, v); } #define arch_atomic64_dec_return_relaxed arch_atomic64_dec_return_relaxed #endif #else /* arch_atomic64_dec_return_relaxed */ #ifndef arch_atomic64_dec_return_acquire static __always_inline s64 arch_atomic64_dec_return_acquire(atomic64_t *v) { s64 ret = arch_atomic64_dec_return_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_dec_return_acquire arch_atomic64_dec_return_acquire #endif #ifndef arch_atomic64_dec_return_release static __always_inline s64 arch_atomic64_dec_return_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_dec_return_relaxed(v); } #define arch_atomic64_dec_return_release arch_atomic64_dec_return_release #endif #ifndef arch_atomic64_dec_return static __always_inline s64 arch_atomic64_dec_return(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_dec_return_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_dec_return arch_atomic64_dec_return #endif #endif /* arch_atomic64_dec_return_relaxed */ #ifndef arch_atomic64_fetch_dec_relaxed #ifdef arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec #define arch_atomic64_fetch_dec_relaxed arch_atomic64_fetch_dec #endif /* arch_atomic64_fetch_dec */ #ifndef arch_atomic64_fetch_dec static __always_inline s64 arch_atomic64_fetch_dec(atomic64_t *v) { return arch_atomic64_fetch_sub(1, v); } #define arch_atomic64_fetch_dec arch_atomic64_fetch_dec #endif #ifndef arch_atomic64_fetch_dec_acquire static __always_inline s64 arch_atomic64_fetch_dec_acquire(atomic64_t *v) { return arch_atomic64_fetch_sub_acquire(1, v); } #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec_acquire #endif #ifndef arch_atomic64_fetch_dec_release static __always_inline s64 arch_atomic64_fetch_dec_release(atomic64_t *v) { return arch_atomic64_fetch_sub_release(1, v); } #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec_release #endif #ifndef arch_atomic64_fetch_dec_relaxed static __always_inline s64 arch_atomic64_fetch_dec_relaxed(atomic64_t *v) { return arch_atomic64_fetch_sub_relaxed(1, v); } #define arch_atomic64_fetch_dec_relaxed arch_atomic64_fetch_dec_relaxed #endif #else /* arch_atomic64_fetch_dec_relaxed */ #ifndef arch_atomic64_fetch_dec_acquire static __always_inline s64 arch_atomic64_fetch_dec_acquire(atomic64_t *v) { s64 ret = arch_atomic64_fetch_dec_relaxed(v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_dec_acquire arch_atomic64_fetch_dec_acquire #endif #ifndef arch_atomic64_fetch_dec_release static __always_inline s64 arch_atomic64_fetch_dec_release(atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_dec_relaxed(v); } #define arch_atomic64_fetch_dec_release arch_atomic64_fetch_dec_release #endif #ifndef arch_atomic64_fetch_dec static __always_inline s64 arch_atomic64_fetch_dec(atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_dec_relaxed(v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_dec arch_atomic64_fetch_dec #endif #endif /* arch_atomic64_fetch_dec_relaxed */ #ifndef arch_atomic64_fetch_and_relaxed #define arch_atomic64_fetch_and_acquire arch_atomic64_fetch_and #define arch_atomic64_fetch_and_release arch_atomic64_fetch_and #define arch_atomic64_fetch_and_relaxed arch_atomic64_fetch_and #else /* arch_atomic64_fetch_and_relaxed */ #ifndef arch_atomic64_fetch_and_acquire static __always_inline s64 arch_atomic64_fetch_and_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_and_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_and_acquire arch_atomic64_fetch_and_acquire #endif #ifndef arch_atomic64_fetch_and_release static __always_inline s64 arch_atomic64_fetch_and_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_and_relaxed(i, v); } #define arch_atomic64_fetch_and_release arch_atomic64_fetch_and_release #endif #ifndef arch_atomic64_fetch_and static __always_inline s64 arch_atomic64_fetch_and(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_and_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_and arch_atomic64_fetch_and #endif #endif /* arch_atomic64_fetch_and_relaxed */ #ifndef arch_atomic64_andnot static __always_inline void arch_atomic64_andnot(s64 i, atomic64_t *v) { arch_atomic64_and(~i, v); } #define arch_atomic64_andnot arch_atomic64_andnot #endif #ifndef arch_atomic64_fetch_andnot_relaxed #ifdef arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot #define arch_atomic64_fetch_andnot_relaxed arch_atomic64_fetch_andnot #endif /* arch_atomic64_fetch_andnot */ #ifndef arch_atomic64_fetch_andnot static __always_inline s64 arch_atomic64_fetch_andnot(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and(~i, v); } #define arch_atomic64_fetch_andnot arch_atomic64_fetch_andnot #endif #ifndef arch_atomic64_fetch_andnot_acquire static __always_inline s64 arch_atomic64_fetch_andnot_acquire(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_acquire(~i, v); } #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot_acquire #endif #ifndef arch_atomic64_fetch_andnot_release static __always_inline s64 arch_atomic64_fetch_andnot_release(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_release(~i, v); } #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot_release #endif #ifndef arch_atomic64_fetch_andnot_relaxed static __always_inline s64 arch_atomic64_fetch_andnot_relaxed(s64 i, atomic64_t *v) { return arch_atomic64_fetch_and_relaxed(~i, v); } #define arch_atomic64_fetch_andnot_relaxed arch_atomic64_fetch_andnot_relaxed #endif #else /* arch_atomic64_fetch_andnot_relaxed */ #ifndef arch_atomic64_fetch_andnot_acquire static __always_inline s64 arch_atomic64_fetch_andnot_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_andnot_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_andnot_acquire arch_atomic64_fetch_andnot_acquire #endif #ifndef arch_atomic64_fetch_andnot_release static __always_inline s64 arch_atomic64_fetch_andnot_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_andnot_relaxed(i, v); } #define arch_atomic64_fetch_andnot_release arch_atomic64_fetch_andnot_release #endif #ifndef arch_atomic64_fetch_andnot static __always_inline s64 arch_atomic64_fetch_andnot(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_andnot_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_andnot arch_atomic64_fetch_andnot #endif #endif /* arch_atomic64_fetch_andnot_relaxed */ #ifndef arch_atomic64_fetch_or_relaxed #define arch_atomic64_fetch_or_acquire arch_atomic64_fetch_or #define arch_atomic64_fetch_or_release arch_atomic64_fetch_or #define arch_atomic64_fetch_or_relaxed arch_atomic64_fetch_or #else /* arch_atomic64_fetch_or_relaxed */ #ifndef arch_atomic64_fetch_or_acquire static __always_inline s64 arch_atomic64_fetch_or_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_or_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_or_acquire arch_atomic64_fetch_or_acquire #endif #ifndef arch_atomic64_fetch_or_release static __always_inline s64 arch_atomic64_fetch_or_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_or_relaxed(i, v); } #define arch_atomic64_fetch_or_release arch_atomic64_fetch_or_release #endif #ifndef arch_atomic64_fetch_or static __always_inline s64 arch_atomic64_fetch_or(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_or_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_or arch_atomic64_fetch_or #endif #endif /* arch_atomic64_fetch_or_relaxed */ #ifndef arch_atomic64_fetch_xor_relaxed #define arch_atomic64_fetch_xor_acquire arch_atomic64_fetch_xor #define arch_atomic64_fetch_xor_release arch_atomic64_fetch_xor #define arch_atomic64_fetch_xor_relaxed arch_atomic64_fetch_xor #else /* arch_atomic64_fetch_xor_relaxed */ #ifndef arch_atomic64_fetch_xor_acquire static __always_inline s64 arch_atomic64_fetch_xor_acquire(s64 i, atomic64_t *v) { s64 ret = arch_atomic64_fetch_xor_relaxed(i, v); __atomic_acquire_fence(); return ret; } #define arch_atomic64_fetch_xor_acquire arch_atomic64_fetch_xor_acquire #endif #ifndef arch_atomic64_fetch_xor_release static __always_inline s64 arch_atomic64_fetch_xor_release(s64 i, atomic64_t *v) { __atomic_release_fence(); return arch_atomic64_fetch_xor_relaxed(i, v); } #define arch_atomic64_fetch_xor_release arch_atomic64_fetch_xor_release #endif #ifndef arch_atomic64_fetch_xor static __always_inline s64 arch_atomic64_fetch_xor(s64 i, atomic64_t *v) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_fetch_xor_relaxed(i, v); __atomic_post_full_fence(); return ret; } #define arch_atomic64_fetch_xor arch_atomic64_fetch_xor #endif #endif /* arch_atomic64_fetch_xor_relaxed */ #ifndef arch_atomic64_xchg_relaxed #define arch_atomic64_xchg_acquire arch_atomic64_xchg #define arch_atomic64_xchg_release arch_atomic64_xchg #define arch_atomic64_xchg_relaxed arch_atomic64_xchg #else /* arch_atomic64_xchg_relaxed */ #ifndef arch_atomic64_xchg_acquire static __always_inline s64 arch_atomic64_xchg_acquire(atomic64_t *v, s64 i) { s64 ret = arch_atomic64_xchg_relaxed(v, i); __atomic_acquire_fence(); return ret; } #define arch_atomic64_xchg_acquire arch_atomic64_xchg_acquire #endif #ifndef arch_atomic64_xchg_release static __always_inline s64 arch_atomic64_xchg_release(atomic64_t *v, s64 i) { __atomic_release_fence(); return arch_atomic64_xchg_relaxed(v, i); } #define arch_atomic64_xchg_release arch_atomic64_xchg_release #endif #ifndef arch_atomic64_xchg static __always_inline s64 arch_atomic64_xchg(atomic64_t *v, s64 i) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_xchg_relaxed(v, i); __atomic_post_full_fence(); return ret; } #define arch_atomic64_xchg arch_atomic64_xchg #endif #endif /* arch_atomic64_xchg_relaxed */ #ifndef arch_atomic64_cmpxchg_relaxed #define arch_atomic64_cmpxchg_acquire arch_atomic64_cmpxchg #define arch_atomic64_cmpxchg_release arch_atomic64_cmpxchg #define arch_atomic64_cmpxchg_relaxed arch_atomic64_cmpxchg #else /* arch_atomic64_cmpxchg_relaxed */ #ifndef arch_atomic64_cmpxchg_acquire static __always_inline s64 arch_atomic64_cmpxchg_acquire(atomic64_t *v, s64 old, s64 new) { s64 ret = arch_atomic64_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic64_cmpxchg_acquire arch_atomic64_cmpxchg_acquire #endif #ifndef arch_atomic64_cmpxchg_release static __always_inline s64 arch_atomic64_cmpxchg_release(atomic64_t *v, s64 old, s64 new) { __atomic_release_fence(); return arch_atomic64_cmpxchg_relaxed(v, old, new); } #define arch_atomic64_cmpxchg_release arch_atomic64_cmpxchg_release #endif #ifndef arch_atomic64_cmpxchg static __always_inline s64 arch_atomic64_cmpxchg(atomic64_t *v, s64 old, s64 new) { s64 ret; __atomic_pre_full_fence(); ret = arch_atomic64_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic64_cmpxchg arch_atomic64_cmpxchg #endif #endif /* arch_atomic64_cmpxchg_relaxed */ #ifndef arch_atomic64_try_cmpxchg_relaxed #ifdef arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg #define arch_atomic64_try_cmpxchg_relaxed arch_atomic64_try_cmpxchg #endif /* arch_atomic64_try_cmpxchg */ #ifndef arch_atomic64_try_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg #endif #ifndef arch_atomic64_try_cmpxchg_acquire static __always_inline bool arch_atomic64_try_cmpxchg_acquire(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_acquire(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg_acquire #endif #ifndef arch_atomic64_try_cmpxchg_release static __always_inline bool arch_atomic64_try_cmpxchg_release(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_release(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg_release #endif #ifndef arch_atomic64_try_cmpxchg_relaxed static __always_inline bool arch_atomic64_try_cmpxchg_relaxed(atomic64_t *v, s64 *old, s64 new) { s64 r, o = *old; r = arch_atomic64_cmpxchg_relaxed(v, o, new); if (unlikely(r != o)) *old = r; return likely(r == o); } #define arch_atomic64_try_cmpxchg_relaxed arch_atomic64_try_cmpxchg_relaxed #endif #else /* arch_atomic64_try_cmpxchg_relaxed */ #ifndef arch_atomic64_try_cmpxchg_acquire static __always_inline bool arch_atomic64_try_cmpxchg_acquire(atomic64_t *v, s64 *old, s64 new) { bool ret = arch_atomic64_try_cmpxchg_relaxed(v, old, new); __atomic_acquire_fence(); return ret; } #define arch_atomic64_try_cmpxchg_acquire arch_atomic64_try_cmpxchg_acquire #endif #ifndef arch_atomic64_try_cmpxchg_release static __always_inline bool arch_atomic64_try_cmpxchg_release(atomic64_t *v, s64 *old, s64 new) { __atomic_release_fence(); return arch_atomic64_try_cmpxchg_relaxed(v, old, new); } #define arch_atomic64_try_cmpxchg_release arch_atomic64_try_cmpxchg_release #endif #ifndef arch_atomic64_try_cmpxchg static __always_inline bool arch_atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { bool ret; __atomic_pre_full_fence(); ret = arch_atomic64_try_cmpxchg_relaxed(v, old, new); __atomic_post_full_fence(); return ret; } #define arch_atomic64_try_cmpxchg arch_atomic64_try_cmpxchg #endif #endif /* arch_atomic64_try_cmpxchg_relaxed */ #ifndef arch_atomic64_sub_and_test /** * arch_atomic64_sub_and_test - subtract value from variable and test result * @i: integer value to subtract * @v: pointer of type atomic64_t * * Atomically subtracts @i from @v and returns * true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic64_sub_and_test(s64 i, atomic64_t *v) { return arch_atomic64_sub_return(i, v) == 0; } #define arch_atomic64_sub_and_test arch_atomic64_sub_and_test #endif #ifndef arch_atomic64_dec_and_test /** * arch_atomic64_dec_and_test - decrement and test * @v: pointer of type atomic64_t * * Atomically decrements @v by 1 and * returns true if the result is 0, or false for all other * cases. */ static __always_inline bool arch_atomic64_dec_and_test(atomic64_t *v) { return arch_atomic64_dec_return(v) == 0; } #define arch_atomic64_dec_and_test arch_atomic64_dec_and_test #endif #ifndef arch_atomic64_inc_and_test /** * arch_atomic64_inc_and_test - increment and test * @v: pointer of type atomic64_t * * Atomically increments @v by 1 * and returns true if the result is zero, or false for all * other cases. */ static __always_inline bool arch_atomic64_inc_and_test(atomic64_t *v) { return arch_atomic64_inc_return(v) == 0; } #define arch_atomic64_inc_and_test arch_atomic64_inc_and_test #endif #ifndef arch_atomic64_add_negative /** * arch_atomic64_add_negative - add and test if negative * @i: integer value to add * @v: pointer of type atomic64_t * * Atomically adds @i to @v and returns true * if the result is negative, or false when * result is greater than or equal to zero. */ static __always_inline bool arch_atomic64_add_negative(s64 i, atomic64_t *v) { return arch_atomic64_add_return(i, v) < 0; } #define arch_atomic64_add_negative arch_atomic64_add_negative #endif #ifndef arch_atomic64_fetch_add_unless /** * arch_atomic64_fetch_add_unless - add unless the number is already a given value * @v: pointer of type atomic64_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, so long as @v was not already @u. * Returns original value of @v */ static __always_inline s64 arch_atomic64_fetch_add_unless(atomic64_t *v, s64 a, s64 u) { s64 c = arch_atomic64_read(v); do { if (unlikely(c == u)) break; } while (!arch_atomic64_try_cmpxchg(v, &c, c + a)); return c; } #define arch_atomic64_fetch_add_unless arch_atomic64_fetch_add_unless #endif #ifndef arch_atomic64_add_unless /** * arch_atomic64_add_unless - add unless the number is already a given value * @v: pointer of type atomic64_t * @a: the amount to add to v... * @u: ...unless v is equal to u. * * Atomically adds @a to @v, if @v was not already @u. * Returns true if the addition was done. */ static __always_inline bool arch_atomic64_add_unless(atomic64_t *v, s64 a, s64 u) { return arch_atomic64_fetch_add_unless(v, a, u) != u; } #define arch_atomic64_add_unless arch_atomic64_add_unless #endif #ifndef arch_atomic64_inc_not_zero /** * arch_atomic64_inc_not_zero - increment unless the number is zero * @v: pointer of type atomic64_t * * Atomically increments @v by 1, if @v is non-zero. * Returns true if the increment was done. */ static __always_inline bool arch_atomic64_inc_not_zero(atomic64_t *v) { return arch_atomic64_add_unless(v, 1, 0); } #define arch_atomic64_inc_not_zero arch_atomic64_inc_not_zero #endif #ifndef arch_atomic64_inc_unless_negative static __always_inline bool arch_atomic64_inc_unless_negative(atomic64_t *v) { s64 c = arch_atomic64_read(v); do { if (unlikely(c < 0)) return false; } while (!arch_atomic64_try_cmpxchg(v, &c, c + 1)); return true; } #define arch_atomic64_inc_unless_negative arch_atomic64_inc_unless_negative #endif #ifndef arch_atomic64_dec_unless_positive static __always_inline bool arch_atomic64_dec_unless_positive(atomic64_t *v) { s64 c = arch_atomic64_read(v); do { if (unlikely(c > 0)) return false; } while (!arch_atomic64_try_cmpxchg(v, &c, c - 1)); return true; } #define arch_atomic64_dec_unless_positive arch_atomic64_dec_unless_positive #endif #ifndef arch_atomic64_dec_if_positive static __always_inline s64 arch_atomic64_dec_if_positive(atomic64_t *v) { s64 dec, c = arch_atomic64_read(v); do { dec = c - 1; if (unlikely(dec < 0)) break; } while (!arch_atomic64_try_cmpxchg(v, &c, dec)); return dec; } #define arch_atomic64_dec_if_positive arch_atomic64_dec_if_positive #endif #endif /* _LINUX_ATOMIC_FALLBACK_H */ // 90cd26cfd69d2250303d654955a0cc12620fb91b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NDISC_H #define _NDISC_H #include <net/ipv6_stubs.h> /* * ICMP codes for neighbour discovery messages */ #define NDISC_ROUTER_SOLICITATION 133 #define NDISC_ROUTER_ADVERTISEMENT 134 #define NDISC_NEIGHBOUR_SOLICITATION 135 #define NDISC_NEIGHBOUR_ADVERTISEMENT 136 #define NDISC_REDIRECT 137 /* * Router type: cross-layer information from link-layer to * IPv6 layer reported by certain link types (e.g., RFC4214). */ #define NDISC_NODETYPE_UNSPEC 0 /* unspecified (default) */ #define NDISC_NODETYPE_HOST 1 /* host or unauthorized router */ #define NDISC_NODETYPE_NODEFAULT 2 /* non-default router */ #define NDISC_NODETYPE_DEFAULT 3 /* default router */ /* * ndisc options */ enum { __ND_OPT_PREFIX_INFO_END = 0, ND_OPT_SOURCE_LL_ADDR = 1, /* RFC2461 */ ND_OPT_TARGET_LL_ADDR = 2, /* RFC2461 */ ND_OPT_PREFIX_INFO = 3, /* RFC2461 */ ND_OPT_REDIRECT_HDR = 4, /* RFC2461 */ ND_OPT_MTU = 5, /* RFC2461 */ ND_OPT_NONCE = 14, /* RFC7527 */ __ND_OPT_ARRAY_MAX, ND_OPT_ROUTE_INFO = 24, /* RFC4191 */ ND_OPT_RDNSS = 25, /* RFC5006 */ ND_OPT_DNSSL = 31, /* RFC6106 */ ND_OPT_6CO = 34, /* RFC6775 */ ND_OPT_CAPTIVE_PORTAL = 37, /* RFC7710 */ ND_OPT_PREF64 = 38, /* RFC8781 */ __ND_OPT_MAX }; #define MAX_RTR_SOLICITATION_DELAY HZ #define ND_REACHABLE_TIME (30*HZ) #define ND_RETRANS_TIMER HZ #include <linux/compiler.h> #include <linux/icmpv6.h> #include <linux/in6.h> #include <linux/types.h> #include <linux/if_arp.h> #include <linux/netdevice.h> #include <linux/hash.h> #include <net/neighbour.h> /* Set to 3 to get tracing... */ #define ND_DEBUG 1 #define ND_PRINTK(val, level, fmt, ...) \ do { \ if (val <= ND_DEBUG) \ net_##level##_ratelimited(fmt, ##__VA_ARGS__); \ } while (0) struct ctl_table; struct inet6_dev; struct net_device; struct net_proto_family; struct sk_buff; struct prefix_info; extern struct neigh_table nd_tbl; struct nd_msg { struct icmp6hdr icmph; struct in6_addr target; __u8 opt[]; }; struct rs_msg { struct icmp6hdr icmph; __u8 opt[]; }; struct ra_msg { struct icmp6hdr icmph; __be32 reachable_time; __be32 retrans_timer; }; struct rd_msg { struct icmp6hdr icmph; struct in6_addr target; struct in6_addr dest; __u8 opt[]; }; struct nd_opt_hdr { __u8 nd_opt_type; __u8 nd_opt_len; } __packed; /* ND options */ struct ndisc_options { struct nd_opt_hdr *nd_opt_array[__ND_OPT_ARRAY_MAX]; #ifdef CONFIG_IPV6_ROUTE_INFO struct nd_opt_hdr *nd_opts_ri; struct nd_opt_hdr *nd_opts_ri_end; #endif struct nd_opt_hdr *nd_useropts; struct nd_opt_hdr *nd_useropts_end; #if IS_ENABLED(CONFIG_IEEE802154_6LOWPAN) struct nd_opt_hdr *nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR + 1]; #endif }; #define nd_opts_src_lladdr nd_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_opts_tgt_lladdr nd_opt_array[ND_OPT_TARGET_LL_ADDR] #define nd_opts_pi nd_opt_array[ND_OPT_PREFIX_INFO] #define nd_opts_pi_end nd_opt_array[__ND_OPT_PREFIX_INFO_END] #define nd_opts_rh nd_opt_array[ND_OPT_REDIRECT_HDR] #define nd_opts_mtu nd_opt_array[ND_OPT_MTU] #define nd_opts_nonce nd_opt_array[ND_OPT_NONCE] #define nd_802154_opts_src_lladdr nd_802154_opt_array[ND_OPT_SOURCE_LL_ADDR] #define nd_802154_opts_tgt_lladdr nd_802154_opt_array[ND_OPT_TARGET_LL_ADDR] #define NDISC_OPT_SPACE(len) (((len)+2+7)&~7) struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, int data_len, int pad); #define NDISC_OPS_REDIRECT_DATA_SPACE 2 /* * This structure defines the hooks for IPv6 neighbour discovery. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*is_useropt)(u8 nd_opt_type): * This function is called when IPv6 decide RA userspace options. if * this function returns 1 then the option given by nd_opt_type will * be handled as userspace option additional to the IPv6 options. * * int (*parse_options)(const struct net_device *dev, * struct nd_opt_hdr *nd_opt, * struct ndisc_options *ndopts): * This function is called while parsing ndisc ops and put each position * as pointer into ndopts. If this function return unequal 0, then this * function took care about the ndisc option, if 0 then the IPv6 ndisc * option parser will take care about that option. * * void (*update)(const struct net_device *dev, struct neighbour *n, * u32 flags, u8 icmp6_type, * const struct ndisc_options *ndopts): * This function is called when IPv6 ndisc updates the neighbour cache * entry. Additional options which can be updated may be previously * parsed by parse_opts callback and accessible over ndopts parameter. * * int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, * struct neighbour *neigh, u8 *ha_buf, * u8 **ha): * This function is called when the necessary option space will be * calculated before allocating a skb. The parameters neigh, ha_buf * abd ha are available on NDISC_REDIRECT messages only. * * void (*fill_addr_option)(const struct net_device *dev, * struct sk_buff *skb, u8 icmp6_type, * const u8 *ha): * This function is called when the skb will finally fill the option * fields inside skb. NOTE: this callback should fill the option * fields to the skb which are previously indicated by opt_space * parameter. That means the decision to add such option should * not lost between these two callbacks, e.g. protected by interface * up state. * * void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, * const struct prefix_info *pinfo, * struct inet6_dev *in6_dev, * struct in6_addr *addr, * int addr_type, u32 addr_flags, * bool sllao, bool tokenized, * __u32 valid_lft, u32 prefered_lft, * bool dev_addr_generated): * This function is called when a RA messages is received with valid * PIO option fields and an IPv6 address will be added to the interface * for autoconfiguration. The parameter dev_addr_generated reports about * if the address was based on dev->dev_addr or not. This can be used * to add a second address if link-layer operates with two link layer * addresses. E.g. 802.15.4 6LoWPAN. */ struct ndisc_ops { int (*is_useropt)(u8 nd_opt_type); int (*parse_options)(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts); void (*update)(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts); int (*opt_addr_space)(const struct net_device *dev, u8 icmp6_type, struct neighbour *neigh, u8 *ha_buf, u8 **ha); void (*fill_addr_option)(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type, const u8 *ha); void (*prefix_rcv_add_addr)(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated); }; #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_ops_is_useropt(const struct net_device *dev, u8 nd_opt_type) { if (dev->ndisc_ops && dev->ndisc_ops->is_useropt) return dev->ndisc_ops->is_useropt(nd_opt_type); else return 0; } static inline int ndisc_ops_parse_options(const struct net_device *dev, struct nd_opt_hdr *nd_opt, struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->parse_options) return dev->ndisc_ops->parse_options(dev, nd_opt, ndopts); else return 0; } static inline void ndisc_ops_update(const struct net_device *dev, struct neighbour *n, u32 flags, u8 icmp6_type, const struct ndisc_options *ndopts) { if (dev->ndisc_ops && dev->ndisc_ops->update) dev->ndisc_ops->update(dev, n, flags, icmp6_type, ndopts); } static inline int ndisc_ops_opt_addr_space(const struct net_device *dev, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space && icmp6_type != NDISC_REDIRECT) return dev->ndisc_ops->opt_addr_space(dev, icmp6_type, NULL, NULL, NULL); else return 0; } static inline int ndisc_ops_redirect_opt_addr_space(const struct net_device *dev, struct neighbour *neigh, u8 *ha_buf, u8 **ha) { if (dev->ndisc_ops && dev->ndisc_ops->opt_addr_space) return dev->ndisc_ops->opt_addr_space(dev, NDISC_REDIRECT, neigh, ha_buf, ha); else return 0; } static inline void ndisc_ops_fill_addr_option(const struct net_device *dev, struct sk_buff *skb, u8 icmp6_type) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option && icmp6_type != NDISC_REDIRECT) dev->ndisc_ops->fill_addr_option(dev, skb, icmp6_type, NULL); } static inline void ndisc_ops_fill_redirect_addr_option(const struct net_device *dev, struct sk_buff *skb, const u8 *ha) { if (dev->ndisc_ops && dev->ndisc_ops->fill_addr_option) dev->ndisc_ops->fill_addr_option(dev, skb, NDISC_REDIRECT, ha); } static inline void ndisc_ops_prefix_rcv_add_addr(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft, bool dev_addr_generated) { if (dev->ndisc_ops && dev->ndisc_ops->prefix_rcv_add_addr) dev->ndisc_ops->prefix_rcv_add_addr(net, dev, pinfo, in6_dev, addr, addr_type, addr_flags, sllao, tokenized, valid_lft, prefered_lft, dev_addr_generated); } #endif /* * Return the padding between the option length and the start of the * link addr. Currently only IP-over-InfiniBand needs this, although * if RFC 3831 IPv6-over-Fibre Channel is ever implemented it may * also need a pad of 2. */ static inline int ndisc_addr_option_pad(unsigned short type) { switch (type) { case ARPHRD_INFINIBAND: return 2; default: return 0; } } static inline int __ndisc_opt_addr_space(unsigned char addr_len, int pad) { return NDISC_OPT_SPACE(addr_len + pad); } #if IS_ENABLED(CONFIG_IPV6) static inline int ndisc_opt_addr_space(struct net_device *dev, u8 icmp6_type) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_opt_addr_space(dev, icmp6_type); } static inline int ndisc_redirect_opt_addr_space(struct net_device *dev, struct neighbour *neigh, u8 *ops_data_buf, u8 **ops_data) { return __ndisc_opt_addr_space(dev->addr_len, ndisc_addr_option_pad(dev->type)) + ndisc_ops_redirect_opt_addr_space(dev, neigh, ops_data_buf, ops_data); } #endif static inline u8 *__ndisc_opt_addr_data(struct nd_opt_hdr *p, unsigned char addr_len, int prepad) { u8 *lladdr = (u8 *)(p + 1); int lladdrlen = p->nd_opt_len << 3; if (lladdrlen != __ndisc_opt_addr_space(addr_len, prepad)) return NULL; return lladdr + prepad; } static inline u8 *ndisc_opt_addr_data(struct nd_opt_hdr *p, struct net_device *dev) { return __ndisc_opt_addr_data(p, dev->addr_len, ndisc_addr_option_pad(dev->type)); } static inline u32 ndisc_hashfn(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { const u32 *p32 = pkey; return (((p32[0] ^ hash32_ptr(dev)) * hash_rnd[0]) + (p32[1] * hash_rnd[1]) + (p32[2] * hash_rnd[2]) + (p32[3] * hash_rnd[3])); } static inline struct neighbour *__ipv6_neigh_lookup_noref(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(&nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup_noref_stub(struct net_device *dev, const void *pkey) { return ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128, ndisc_hashfn, pkey, dev); } static inline struct neighbour *__ipv6_neigh_lookup(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n && !refcount_inc_not_zero(&n->refcnt)) n = NULL; rcu_read_unlock_bh(); return n; } static inline void __ipv6_confirm_neigh(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } static inline void __ipv6_confirm_neigh_stub(struct net_device *dev, const void *pkey) { struct neighbour *n; rcu_read_lock_bh(); n = __ipv6_neigh_lookup_noref_stub(dev, pkey); if (n) { unsigned long now = jiffies; /* avoid dirtying neighbour */ if (READ_ONCE(n->confirmed) != now) WRITE_ONCE(n->confirmed, now); } rcu_read_unlock_bh(); } /* uses ipv6_stub and is meant for use outside of IPv6 core */ static inline struct neighbour *ip_neigh_gw6(struct net_device *dev, const void *addr) { struct neighbour *neigh; neigh = __ipv6_neigh_lookup_noref_stub(dev, addr); if (unlikely(!neigh)) neigh = __neigh_create(ipv6_stub->nd_tbl, addr, dev, false); return neigh; } int ndisc_init(void); int ndisc_late_init(void); void ndisc_late_cleanup(void); void ndisc_cleanup(void); int ndisc_rcv(struct sk_buff *skb); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce); void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt); void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target); int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir); void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts); /* * IGMP */ int igmp6_init(void); int igmp6_late_init(void); void igmp6_cleanup(void); void igmp6_late_cleanup(void); int igmp6_event_query(struct sk_buff *skb); int igmp6_event_report(struct sk_buff *skb); #ifdef CONFIG_SYSCTL int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int ndisc_ifinfo_sysctl_strategy(struct ctl_table *ctl, void __user *oldval, size_t __user *oldlenp, void __user *newval, size_t newlen); #endif void inet6_ifinfo_notify(int event, struct inet6_dev *idev); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs */ #ifndef _ASM_X86_STACKTRACE_H #define _ASM_X86_STACKTRACE_H #include <linux/uaccess.h> #include <linux/ptrace.h> #include <asm/cpu_entry_area.h> #include <asm/switch_to.h> enum stack_type { STACK_TYPE_UNKNOWN, STACK_TYPE_TASK, STACK_TYPE_IRQ, STACK_TYPE_SOFTIRQ, STACK_TYPE_ENTRY, STACK_TYPE_EXCEPTION, STACK_TYPE_EXCEPTION_LAST = STACK_TYPE_EXCEPTION + N_EXCEPTION_STACKS-1, }; struct stack_info { enum stack_type type; unsigned long *begin, *end, *next_sp; }; bool in_task_stack(unsigned long *stack, struct task_struct *task, struct stack_info *info); bool in_entry_stack(unsigned long *stack, struct stack_info *info); int get_stack_info(unsigned long *stack, struct task_struct *task, struct stack_info *info, unsigned long *visit_mask); bool get_stack_info_noinstr(unsigned long *stack, struct task_struct *task, struct stack_info *info); const char *stack_type_name(enum stack_type type); static inline bool on_stack(struct stack_info *info, void *addr, size_t len) { void *begin = info->begin; void *end = info->end; return (info->type != STACK_TYPE_UNKNOWN && addr >= begin && addr < end && addr + len > begin && addr + len <= end); } #ifdef CONFIG_X86_32 #define STACKSLOTS_PER_LINE 8 #else #define STACKSLOTS_PER_LINE 4 #endif #ifdef CONFIG_FRAME_POINTER static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->bp; if (task == current) return __builtin_frame_address(0); return &((struct inactive_task_frame *)task->thread.sp)->bp; } #else static inline unsigned long * get_frame_pointer(struct task_struct *task, struct pt_regs *regs) { return NULL; } #endif /* CONFIG_FRAME_POINTER */ static inline unsigned long * get_stack_pointer(struct task_struct *task, struct pt_regs *regs) { if (regs) return (unsigned long *)regs->sp; if (task == current) return __builtin_frame_address(0); return (unsigned long *)task->thread.sp; } void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, unsigned long *stack, const char *log_lvl); /* The form of the top of the frame on the stack */ struct stack_frame { struct stack_frame *next_frame; unsigned long return_address; }; struct stack_frame_ia32 { u32 next_frame; u32 return_address; }; void show_opcodes(struct pt_regs *regs, const char *loglvl); void show_ip(struct pt_regs *regs, const char *loglvl); #endif /* _ASM_X86_STACKTRACE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _LINUX_IO_URING_H #define _LINUX_IO_URING_H #include <linux/sched.h> #include <linux/xarray.h> struct io_identity { struct files_struct *files; struct mm_struct *mm; #ifdef CONFIG_BLK_CGROUP struct cgroup_subsys_state *blkcg_css; #endif const struct cred *creds; struct nsproxy *nsproxy; struct fs_struct *fs; unsigned long fsize; #ifdef CONFIG_AUDIT kuid_t loginuid; unsigned int sessionid; #endif refcount_t count; }; struct io_uring_task { /* submission side */ struct xarray xa; struct wait_queue_head wait; struct file *last; struct percpu_counter inflight; struct io_identity __identity; struct io_identity *identity; atomic_t in_idle; bool sqpoll; }; #if defined(CONFIG_IO_URING) struct sock *io_uring_get_socket(struct file *file); void __io_uring_task_cancel(void); void __io_uring_files_cancel(struct files_struct *files); void __io_uring_free(struct task_struct *tsk); static inline void io_uring_task_cancel(void) { if (current->io_uring && !xa_empty(&current->io_uring->xa)) __io_uring_task_cancel(); } static inline void io_uring_files_cancel(struct files_struct *files) { if (current->io_uring && !xa_empty(&current->io_uring->xa)) __io_uring_files_cancel(files); } static inline void io_uring_free(struct task_struct *tsk) { if (tsk->io_uring) __io_uring_free(tsk); } #else static inline struct sock *io_uring_get_socket(struct file *file) { return NULL; } static inline void io_uring_task_cancel(void) { } static inline void io_uring_files_cancel(struct files_struct *files) { } static inline void io_uring_free(struct task_struct *tsk) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 /* Copyright (C) 2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * This file is provided under a dual BSD/GPLv2 license. * * SipHash: a fast short-input PRF * https://131002.net/siphash/ * * This implementation is specifically for SipHash2-4 for a secure PRF * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for * hashtables. */ #ifndef _LINUX_SIPHASH_H #define _LINUX_SIPHASH_H #include <linux/types.h> #include <linux/kernel.h> #define SIPHASH_ALIGNMENT __alignof__(u64) typedef struct { u64 key[2]; } siphash_key_t; static inline bool siphash_key_is_zero(const siphash_key_t *key) { return !(key->key[0] | key->key[1]); } u64 __siphash_aligned(const void *data, size_t len, const siphash_key_t *key); u64 __siphash_unaligned(const void *data, size_t len, const siphash_key_t *key); u64 siphash_1u64(const u64 a, const siphash_key_t *key); u64 siphash_2u64(const u64 a, const u64 b, const siphash_key_t *key); u64 siphash_3u64(const u64 a, const u64 b, const u64 c, const siphash_key_t *key); u64 siphash_4u64(const u64 a, const u64 b, const u64 c, const u64 d, const siphash_key_t *key); u64 siphash_1u32(const u32 a, const siphash_key_t *key); u64 siphash_3u32(const u32 a, const u32 b, const u32 c, const siphash_key_t *key); static inline u64 siphash_2u32(const u32 a, const u32 b, const siphash_key_t *key) { return siphash_1u64((u64)b << 32 | a, key); } static inline u64 siphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const siphash_key_t *key) { return siphash_2u64((u64)b << 32 | a, (u64)d << 32 | c, key); } static inline u64 ___siphash_aligned(const __le64 *data, size_t len, const siphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return siphash_1u32(le32_to_cpup((const __le32 *)data), key); if (__builtin_constant_p(len) && len == 8) return siphash_1u64(le64_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 16) return siphash_2u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 24) return siphash_3u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 32) return siphash_4u64(le64_to_cpu(data[0]), le64_to_cpu(data[1]), le64_to_cpu(data[2]), le64_to_cpu(data[3]), key); return __siphash_aligned(data, len, key); } /** * siphash - compute 64-bit siphash PRF value * @data: buffer to hash * @size: size of @data * @key: the siphash key */ static inline u64 siphash(const void *data, size_t len, const siphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, SIPHASH_ALIGNMENT)) return __siphash_unaligned(data, len, key); return ___siphash_aligned(data, len, key); } #define HSIPHASH_ALIGNMENT __alignof__(unsigned long) typedef struct { unsigned long key[2]; } hsiphash_key_t; u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key); u32 __hsiphash_unaligned(const void *data, size_t len, const hsiphash_key_t *key); u32 hsiphash_1u32(const u32 a, const hsiphash_key_t *key); u32 hsiphash_2u32(const u32 a, const u32 b, const hsiphash_key_t *key); u32 hsiphash_3u32(const u32 a, const u32 b, const u32 c, const hsiphash_key_t *key); u32 hsiphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d, const hsiphash_key_t *key); static inline u32 ___hsiphash_aligned(const __le32 *data, size_t len, const hsiphash_key_t *key) { if (__builtin_constant_p(len) && len == 4) return hsiphash_1u32(le32_to_cpu(data[0]), key); if (__builtin_constant_p(len) && len == 8) return hsiphash_2u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), key); if (__builtin_constant_p(len) && len == 12) return hsiphash_3u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), key); if (__builtin_constant_p(len) && len == 16) return hsiphash_4u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]), le32_to_cpu(data[2]), le32_to_cpu(data[3]), key); return __hsiphash_aligned(data, len, key); } /** * hsiphash - compute 32-bit hsiphash PRF value * @data: buffer to hash * @size: size of @data * @key: the hsiphash key */ static inline u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || !IS_ALIGNED((unsigned long)data, HSIPHASH_ALIGNMENT)) return __hsiphash_unaligned(data, len, key); return ___hsiphash_aligned(data, len, key); } #endif /* _LINUX_SIPHASH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 /* SPDX-License-Identifier: GPL-2.0 */ /* * Authors: ThiƩbaud Weksteen <tweek@google.com> * Peter Enderborg <Peter.Enderborg@sony.com> */ #undef TRACE_SYSTEM #define TRACE_SYSTEM avc #if !defined(_TRACE_SELINUX_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_SELINUX_H #include <linux/tracepoint.h> TRACE_EVENT(selinux_audited, TP_PROTO(struct selinux_audit_data *sad, char *scontext, char *tcontext, const char *tclass ), TP_ARGS(sad, scontext, tcontext, tclass), TP_STRUCT__entry( __field(u32, requested) __field(u32, denied) __field(u32, audited) __field(int, result) __string(scontext, scontext) __string(tcontext, tcontext) __string(tclass, tclass) ), TP_fast_assign( __entry->requested = sad->requested; __entry->denied = sad->denied; __entry->audited = sad->audited; __entry->result = sad->result; __assign_str(tcontext, tcontext); __assign_str(scontext, scontext); __assign_str(tclass, tclass); ), TP_printk("requested=0x%x denied=0x%x audited=0x%x result=%d scontext=%s tcontext=%s tclass=%s", __entry->requested, __entry->denied, __entry->audited, __entry->result, __get_str(scontext), __get_str(tcontext), __get_str(tclass) ) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 /* SPDX-License-Identifier: GPL-2.0 */ /* * sysctl.h: General linux system control interface * * Begun 24 March 1995, Stephen Tweedie * **************************************************************** **************************************************************** ** ** WARNING: ** The values in this file are exported to user space via ** the sysctl() binary interface. Do *NOT* change the ** numbering of any existing values here, and do not change ** any numbers within any one set of values. If you have to ** redefine an existing interface, use a new number for it. ** The kernel will then return -ENOTDIR to any application using ** the old binary interface. ** **************************************************************** **************************************************************** */ #ifndef _LINUX_SYSCTL_H #define _LINUX_SYSCTL_H #include <linux/list.h> #include <linux/rcupdate.h> #include <linux/wait.h> #include <linux/rbtree.h> #include <linux/uidgid.h> #include <uapi/linux/sysctl.h> /* For the /proc/sys support */ struct completion; struct ctl_table; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; /* Keep the same order as in fs/proc/proc_sysctl.c */ #define SYSCTL_ZERO ((void *)&sysctl_vals[0]) #define SYSCTL_ONE ((void *)&sysctl_vals[1]) #define SYSCTL_INT_MAX ((void *)&sysctl_vals[2]) extern const int sysctl_vals[]; typedef int proc_handler(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dostring(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_douintvec(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_minmax(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_douintvec_minmax(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_dointvec_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_userhz_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_dointvec_ms_jiffies(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_doulongvec_minmax(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int, void *, size_t *, loff_t *); int proc_do_large_bitmap(struct ctl_table *, int, void *, size_t *, loff_t *); int proc_do_static_key(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); /* * Register a set of sysctl names by calling register_sysctl_table * with an initialised array of struct ctl_table's. An entry with * NULL procname terminates the table. table->de will be * set up by the registration and need not be initialised in advance. * * sysctl names can be mirrored automatically under /proc/sys. The * procname supplied controls /proc naming. * * The table's mode will be honoured for proc-fs access. * * Leaf nodes in the sysctl tree will be represented by a single file * under /proc; non-leaf nodes will be represented by directories. A * null procname disables /proc mirroring at this node. * * The data and maxlen fields of the ctl_table * struct enable minimal validation of the values being written to be * performed, and the mode field allows minimal authentication. * * There must be a proc_handler routine for any terminal nodes * mirrored under /proc/sys (non-terminals are handled by a built-in * directory handler). Several default handlers are available to * cover common cases. */ /* Support for userspace poll() to watch for changes */ struct ctl_table_poll { atomic_t event; wait_queue_head_t wait; }; static inline void *proc_sys_poll_event(struct ctl_table_poll *poll) { return (void *)(unsigned long)atomic_read(&poll->event); } #define __CTL_TABLE_POLL_INITIALIZER(name) { \ .event = ATOMIC_INIT(0), \ .wait = __WAIT_QUEUE_HEAD_INITIALIZER(name.wait) } #define DEFINE_CTL_TABLE_POLL(name) \ struct ctl_table_poll name = __CTL_TABLE_POLL_INITIALIZER(name) /* A sysctl table is an array of struct ctl_table: */ struct ctl_table { const char *procname; /* Text ID for /proc/sys, or zero */ void *data; int maxlen; umode_t mode; struct ctl_table *child; /* Deprecated */ proc_handler *proc_handler; /* Callback for text formatting */ struct ctl_table_poll *poll; void *extra1; void *extra2; } __randomize_layout; struct ctl_node { struct rb_node node; struct ctl_table_header *header; }; /* struct ctl_table_header is used to maintain dynamic lists of struct ctl_table trees. */ struct ctl_table_header { union { struct { struct ctl_table *ctl_table; int used; int count; int nreg; }; struct rcu_head rcu; }; struct completion *unregistering; struct ctl_table *ctl_table_arg; struct ctl_table_root *root; struct ctl_table_set *set; struct ctl_dir *parent; struct ctl_node *node; struct hlist_head inodes; /* head for proc_inode->sysctl_inodes */ }; struct ctl_dir { /* Header must be at the start of ctl_dir */ struct ctl_table_header header; struct rb_root root; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set *); struct ctl_dir dir; }; struct ctl_table_root { struct ctl_table_set default_set; struct ctl_table_set *(*lookup)(struct ctl_table_root *root); void (*set_ownership)(struct ctl_table_header *head, struct ctl_table *table, kuid_t *uid, kgid_t *gid); int (*permissions)(struct ctl_table_header *head, struct ctl_table *table); }; /* struct ctl_path describes where in the hierarchy a table is added */ struct ctl_path { const char *procname; }; #ifdef CONFIG_SYSCTL void proc_sys_poll_notify(struct ctl_table_poll *poll); extern void setup_sysctl_set(struct ctl_table_set *p, struct ctl_table_root *root, int (*is_seen)(struct ctl_table_set *)); extern void retire_sysctl_set(struct ctl_table_set *set); struct ctl_table_header *__register_sysctl_table( struct ctl_table_set *set, const char *path, struct ctl_table *table); struct ctl_table_header *__register_sysctl_paths( struct ctl_table_set *set, const struct ctl_path *path, struct ctl_table *table); struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table); struct ctl_table_header *register_sysctl_table(struct ctl_table * table); struct ctl_table_header *register_sysctl_paths(const struct ctl_path *path, struct ctl_table *table); void unregister_sysctl_table(struct ctl_table_header * table); extern int sysctl_init(void); void do_sysctl_args(void); extern int pwrsw_enabled; extern int unaligned_enabled; extern int unaligned_dump_stack; extern int no_unaligned_warning; extern struct ctl_table sysctl_mount_point[]; extern struct ctl_table random_table[]; extern struct ctl_table firmware_config_table[]; extern struct ctl_table epoll_table[]; #else /* CONFIG_SYSCTL */ static inline struct ctl_table_header *register_sysctl_table(struct ctl_table * table) { return NULL; } static inline struct ctl_table_header *register_sysctl_paths( const struct ctl_path *path, struct ctl_table *table) { return NULL; } static inline struct ctl_table_header *register_sysctl(const char *path, struct ctl_table *table) { return NULL; } static inline void unregister_sysctl_table(struct ctl_table_header * table) { } static inline void setup_sysctl_set(struct ctl_table_set *p, struct ctl_table_root *root, int (*is_seen)(struct ctl_table_set *)) { } static inline void do_sysctl_args(void) { } #endif /* CONFIG_SYSCTL */ int sysctl_max_threads(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); #endif /* _LINUX_SYSCTL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 /* * DRBG based on NIST SP800-90A * * Copyright Stephan Mueller <smueller@chronox.de>, 2014 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, and the entire permission notice in its entirety, * including the disclaimer of warranties. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * ALTERNATIVELY, this product may be distributed under the terms of * the GNU General Public License, in which case the provisions of the GPL are * required INSTEAD OF the above restrictions. (This clause is * necessary due to a potential bad interaction between the GPL and * the restrictions contained in a BSD-style copyright.) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. */ #ifndef _DRBG_H #define _DRBG_H #include <linux/random.h> #include <linux/scatterlist.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/module.h> #include <linux/crypto.h> #include <linux/slab.h> #include <crypto/internal/rng.h> #include <crypto/rng.h> #include <linux/fips.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/workqueue.h> /* * Concatenation Helper and string operation helper * * SP800-90A requires the concatenation of different data. To avoid copying * buffers around or allocate additional memory, the following data structure * is used to point to the original memory with its size. In addition, it * is used to build a linked list. The linked list defines the concatenation * of individual buffers. The order of memory block referenced in that * linked list determines the order of concatenation. */ struct drbg_string { const unsigned char *buf; size_t len; struct list_head list; }; static inline void drbg_string_fill(struct drbg_string *string, const unsigned char *buf, size_t len) { string->buf = buf; string->len = len; INIT_LIST_HEAD(&string->list); } struct drbg_state; typedef uint32_t drbg_flag_t; struct drbg_core { drbg_flag_t flags; /* flags for the cipher */ __u8 statelen; /* maximum state length */ __u8 blocklen_bytes; /* block size of output in bytes */ char cra_name[CRYPTO_MAX_ALG_NAME]; /* mapping to kernel crypto API */ /* kernel crypto API backend cipher name */ char backend_cra_name[CRYPTO_MAX_ALG_NAME]; }; struct drbg_state_ops { int (*update)(struct drbg_state *drbg, struct list_head *seed, int reseed); int (*generate)(struct drbg_state *drbg, unsigned char *buf, unsigned int buflen, struct list_head *addtl); int (*crypto_init)(struct drbg_state *drbg); int (*crypto_fini)(struct drbg_state *drbg); }; struct drbg_test_data { struct drbg_string *testentropy; /* TEST PARAMETER: test entropy */ }; struct drbg_state { struct mutex drbg_mutex; /* lock around DRBG */ unsigned char *V; /* internal state 10.1.1.1 1a) */ unsigned char *Vbuf; /* hash: static value 10.1.1.1 1b) hmac / ctr: key */ unsigned char *C; unsigned char *Cbuf; /* Number of RNG requests since last reseed -- 10.1.1.1 1c) */ size_t reseed_ctr; size_t reseed_threshold; /* some memory the DRBG can use for its operation */ unsigned char *scratchpad; unsigned char *scratchpadbuf; void *priv_data; /* Cipher handle */ struct crypto_skcipher *ctr_handle; /* CTR mode cipher handle */ struct skcipher_request *ctr_req; /* CTR mode request handle */ __u8 *outscratchpadbuf; /* CTR mode output scratchpad */ __u8 *outscratchpad; /* CTR mode aligned outbuf */ struct crypto_wait ctr_wait; /* CTR mode async wait obj */ struct scatterlist sg_in, sg_out; /* CTR mode SGLs */ bool seeded; /* DRBG fully seeded? */ bool pr; /* Prediction resistance enabled? */ bool fips_primed; /* Continuous test primed? */ unsigned char *prev; /* FIPS 140-2 continuous test value */ struct work_struct seed_work; /* asynchronous seeding support */ struct crypto_rng *jent; const struct drbg_state_ops *d_ops; const struct drbg_core *core; struct drbg_string test_data; struct random_ready_callback random_ready; }; static inline __u8 drbg_statelen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->statelen; return 0; } static inline __u8 drbg_blocklen(struct drbg_state *drbg) { if (drbg && drbg->core) return drbg->core->blocklen_bytes; return 0; } static inline __u8 drbg_keylen(struct drbg_state *drbg) { if (drbg && drbg->core) return (drbg->core->statelen - drbg->core->blocklen_bytes); return 0; } static inline size_t drbg_max_request_bytes(struct drbg_state *drbg) { /* SP800-90A requires the limit 2**19 bits, but we return bytes */ return (1 << 16); } static inline size_t drbg_max_addtl(struct drbg_state *drbg) { /* SP800-90A requires 2**35 bytes additional info str / pers str */ #if (__BITS_PER_LONG == 32) /* * SP800-90A allows smaller maximum numbers to be returned -- we * return SIZE_MAX - 1 to allow the verification of the enforcement * of this value in drbg_healthcheck_sanity. */ return (SIZE_MAX - 1); #else return (1UL<<35); #endif } static inline size_t drbg_max_requests(struct drbg_state *drbg) { /* SP800-90A requires 2**48 maximum requests before reseeding */ return (1<<20); } /* * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data. * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl) { return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_generate() to allow the caller to provide additional data and * allow furnishing of test_data * * @drng DRBG handle -- see crypto_rng_get_bytes * @outbuf output buffer -- see crypto_rng_get_bytes * @outlen length of output buffer -- see crypto_rng_get_bytes * @addtl_input additional information string input buffer * @addtllen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_get_bytes */ static inline int crypto_drbg_get_bytes_addtl_test(struct crypto_rng *drng, unsigned char *outbuf, unsigned int outlen, struct drbg_string *addtl, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_generate(drng, addtl->buf, addtl->len, outbuf, outlen); } /* * TEST code * * This is a wrapper to the kernel crypto API function of * crypto_rng_reset() to allow the caller to provide test_data * * @drng DRBG handle -- see crypto_rng_reset * @pers personalization string input buffer * @perslen length of additional information string buffer * @test_data filled test data * * return * see crypto_rng_reset */ static inline int crypto_drbg_reset_test(struct crypto_rng *drng, struct drbg_string *pers, struct drbg_test_data *test_data) { crypto_rng_set_entropy(drng, test_data->testentropy->buf, test_data->testentropy->len); return crypto_rng_reset(drng, pers->buf, pers->len); } /* DRBG type flags */ #define DRBG_CTR ((drbg_flag_t)1<<0) #define DRBG_HMAC ((drbg_flag_t)1<<1) #define DRBG_HASH ((drbg_flag_t)1<<2) #define DRBG_TYPE_MASK (DRBG_CTR | DRBG_HMAC | DRBG_HASH) /* DRBG strength flags */ #define DRBG_STRENGTH128 ((drbg_flag_t)1<<3) #define DRBG_STRENGTH192 ((drbg_flag_t)1<<4) #define DRBG_STRENGTH256 ((drbg_flag_t)1<<5) #define DRBG_STRENGTH_MASK (DRBG_STRENGTH128 | DRBG_STRENGTH192 | \ DRBG_STRENGTH256) enum drbg_prefixes { DRBG_PREFIX0 = 0x00, DRBG_PREFIX1, DRBG_PREFIX2, DRBG_PREFIX3 }; #endif /* _DRBG_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM tlb #if !defined(_TRACE_TLB_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_TLB_H #include <linux/mm_types.h> #include <linux/tracepoint.h> #define TLB_FLUSH_REASON \ EM( TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" ) \ EM( TLB_REMOTE_SHOOTDOWN, "remote shootdown" ) \ EM( TLB_LOCAL_SHOOTDOWN, "local shootdown" ) \ EM( TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" ) \ EMe( TLB_REMOTE_SEND_IPI, "remote ipi send" ) /* * First define the enums in TLB_FLUSH_REASON to be exported to userspace * via TRACE_DEFINE_ENUM(). */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); TLB_FLUSH_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } TRACE_EVENT(tlb_flush, TP_PROTO(int reason, unsigned long pages), TP_ARGS(reason, pages), TP_STRUCT__entry( __field( int, reason) __field(unsigned long, pages) ), TP_fast_assign( __entry->reason = reason; __entry->pages = pages; ), TP_printk("pages:%ld reason:%s (%d)", __entry->pages, __print_symbolic(__entry->reason, TLB_FLUSH_REASON), __entry->reason) ); #endif /* _TRACE_TLB_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef IOPRIO_H #define IOPRIO_H #include <linux/sched.h> #include <linux/sched/rt.h> #include <linux/iocontext.h> /* * Gives us 8 prio classes with 13-bits of data for each class */ #define IOPRIO_CLASS_SHIFT (13) #define IOPRIO_PRIO_MASK ((1UL << IOPRIO_CLASS_SHIFT) - 1) #define IOPRIO_PRIO_CLASS(mask) ((mask) >> IOPRIO_CLASS_SHIFT) #define IOPRIO_PRIO_DATA(mask) ((mask) & IOPRIO_PRIO_MASK) #define IOPRIO_PRIO_VALUE(class, data) (((class) << IOPRIO_CLASS_SHIFT) | data) #define ioprio_valid(mask) (IOPRIO_PRIO_CLASS((mask)) != IOPRIO_CLASS_NONE) /* * These are the io priority groups as implemented by CFQ. RT is the realtime * class, it always gets premium service. BE is the best-effort scheduling * class, the default for any process. IDLE is the idle scheduling class, it * is only served when no one else is using the disk. */ enum { IOPRIO_CLASS_NONE, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE, }; /* * 8 best effort priority levels are supported */ #define IOPRIO_BE_NR (8) enum { IOPRIO_WHO_PROCESS = 1, IOPRIO_WHO_PGRP, IOPRIO_WHO_USER, }; /* * Fallback BE priority */ #define IOPRIO_NORM (4) /* * if process has set io priority explicitly, use that. if not, convert * the cpu scheduler nice value to an io priority */ static inline int task_nice_ioprio(struct task_struct *task) { return (task_nice(task) + 20) / 5; } /* * This is for the case where the task hasn't asked for a specific IO class. * Check for idle and rt task process, and return appropriate IO class. */ static inline int task_nice_ioclass(struct task_struct *task) { if (task->policy == SCHED_IDLE) return IOPRIO_CLASS_IDLE; else if (task_is_realtime(task)) return IOPRIO_CLASS_RT; else return IOPRIO_CLASS_BE; } /* * If the calling process has set an I/O priority, use that. Otherwise, return * the default I/O priority. */ static inline int get_current_ioprio(void) { struct io_context *ioc = current->io_context; if (ioc) return ioc->ioprio; return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); } /* * For inheritance, return the highest of the two given priorities */ extern int ioprio_best(unsigned short aprio, unsigned short bprio); extern int set_task_ioprio(struct task_struct *task, int ioprio); #ifdef CONFIG_BLOCK extern int ioprio_check_cap(int ioprio); #else static inline int ioprio_check_cap(int ioprio) { return -ENOTBLK; } #endif /* CONFIG_BLOCK */ #endif
1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion * * Copyright IBM Corporation, 2001 * * Author: Dipankar Sarma <dipankar@in.ibm.com> * * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #ifndef __LINUX_RCUPDATE_H #define __LINUX_RCUPDATE_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/atomic.h> #include <linux/irqflags.h> #include <linux/preempt.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/processor.h> #include <linux/cpumask.h> #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) #define ulong2long(a) (*(long *)(&(a))) #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) /* Exported common interfaces */ void call_rcu(struct rcu_head *head, rcu_callback_t func); void rcu_barrier_tasks(void); void rcu_barrier_tasks_rude(void); void synchronize_rcu(void); #ifdef CONFIG_PREEMPT_RCU void __rcu_read_lock(void); void __rcu_read_unlock(void); /* * Defined as a macro as it is a very low level header included from * areas that don't even know about current. This gives the rcu_read_lock() * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. */ #define rcu_preempt_depth() (current->rcu_read_lock_nesting) #else /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TINY_RCU #define rcu_read_unlock_strict() do { } while (0) #else void rcu_read_unlock_strict(void); #endif static inline void __rcu_read_lock(void) { preempt_disable(); } static inline void __rcu_read_unlock(void) { preempt_enable(); rcu_read_unlock_strict(); } static inline int rcu_preempt_depth(void) { return 0; } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* Internal to kernel */ void rcu_init(void); extern int rcu_scheduler_active __read_mostly; void rcu_sched_clock_irq(int user); void rcu_report_dead(unsigned int cpu); void rcutree_migrate_callbacks(int cpu); #ifdef CONFIG_TASKS_RCU_GENERIC void rcu_init_tasks_generic(void); #else static inline void rcu_init_tasks_generic(void) { } #endif #ifdef CONFIG_RCU_STALL_COMMON void rcu_sysrq_start(void); void rcu_sysrq_end(void); #else /* #ifdef CONFIG_RCU_STALL_COMMON */ static inline void rcu_sysrq_start(void) { } static inline void rcu_sysrq_end(void) { } #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ #ifdef CONFIG_NO_HZ_FULL void rcu_user_enter(void); void rcu_user_exit(void); #else static inline void rcu_user_enter(void) { } static inline void rcu_user_exit(void) { } #endif /* CONFIG_NO_HZ_FULL */ #ifdef CONFIG_RCU_NOCB_CPU void rcu_init_nohz(void); void rcu_nocb_flush_deferred_wakeup(void); #else /* #ifdef CONFIG_RCU_NOCB_CPU */ static inline void rcu_init_nohz(void) { } static inline void rcu_nocb_flush_deferred_wakeup(void) { } #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ /** * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers * @a: Code that RCU needs to pay attention to. * * RCU read-side critical sections are forbidden in the inner idle loop, * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU * will happily ignore any such read-side critical sections. However, * things like powertop need tracepoints in the inner idle loop. * * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) * will tell RCU that it needs to pay attention, invoke its argument * (in this example, calling the do_something_with_RCU() function), * and then tell RCU to go back to ignoring this CPU. It is permissible * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is * on the order of a million or so, even on 32-bit systems). It is * not legal to block within RCU_NONIDLE(), nor is it permissible to * transfer control either into or out of RCU_NONIDLE()'s statement. */ #define RCU_NONIDLE(a) \ do { \ rcu_irq_enter_irqson(); \ do { a; } while (0); \ rcu_irq_exit_irqson(); \ } while (0) /* * Note a quasi-voluntary context switch for RCU-tasks's benefit. * This is a macro rather than an inline function to avoid #include hell. */ #ifdef CONFIG_TASKS_RCU_GENERIC # ifdef CONFIG_TASKS_RCU # define rcu_tasks_classic_qs(t, preempt) \ do { \ if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ WRITE_ONCE((t)->rcu_tasks_holdout, false); \ } while (0) void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks(void); # else # define rcu_tasks_classic_qs(t, preempt) do { } while (0) # define call_rcu_tasks call_rcu # define synchronize_rcu_tasks synchronize_rcu # endif # ifdef CONFIG_TASKS_TRACE_RCU # define rcu_tasks_trace_qs(t) \ do { \ if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ smp_store_release(&(t)->trc_reader_checked, true); \ smp_mb(); /* Readers partitioned by store. */ \ } \ } while (0) # else # define rcu_tasks_trace_qs(t) do { } while (0) # endif #define rcu_tasks_qs(t, preempt) \ do { \ rcu_tasks_classic_qs((t), (preempt)); \ rcu_tasks_trace_qs((t)); \ } while (0) # ifdef CONFIG_TASKS_RUDE_RCU void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks_rude(void); # endif #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) void exit_tasks_rcu_start(void); void exit_tasks_rcu_finish(void); #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ #define rcu_tasks_qs(t, preempt) do { } while (0) #define rcu_note_voluntary_context_switch(t) do { } while (0) #define call_rcu_tasks call_rcu #define synchronize_rcu_tasks synchronize_rcu static inline void exit_tasks_rcu_start(void) { } static inline void exit_tasks_rcu_finish(void) { } #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ /** * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU * * This macro resembles cond_resched(), except that it is defined to * report potential quiescent states to RCU-tasks even if the cond_resched() * machinery were to be shut off, as some advocate for PREEMPTION kernels. */ #define cond_resched_tasks_rcu_qs() \ do { \ rcu_tasks_qs(current, false); \ cond_resched(); \ } while (0) /* * Infrastructure to implement the synchronize_() primitives in * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. */ #if defined(CONFIG_TREE_RCU) #include <linux/rcutree.h> #elif defined(CONFIG_TINY_RCU) #include <linux/rcutiny.h> #else #error "Unknown RCU implementation specified to kernel configuration" #endif /* * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls * are needed for dynamic initialization and destruction of rcu_head * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for * dynamic initialization and destruction of statically allocated rcu_head * structures. However, rcu_head structures allocated dynamically in the * heap don't need any initialization. */ #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD void init_rcu_head(struct rcu_head *head); void destroy_rcu_head(struct rcu_head *head); void init_rcu_head_on_stack(struct rcu_head *head); void destroy_rcu_head_on_stack(struct rcu_head *head); #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ static inline void init_rcu_head(struct rcu_head *head) { } static inline void destroy_rcu_head(struct rcu_head *head) { } static inline void init_rcu_head_on_stack(struct rcu_head *head) { } static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) bool rcu_lockdep_current_cpu_online(void); #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ static inline bool rcu_lockdep_current_cpu_online(void) { return true; } #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static inline void rcu_lock_acquire(struct lockdep_map *map) { lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); } static inline void rcu_lock_release(struct lockdep_map *map) { lock_release(map, _THIS_IP_); } extern struct lockdep_map rcu_lock_map; extern struct lockdep_map rcu_bh_lock_map; extern struct lockdep_map rcu_sched_lock_map; extern struct lockdep_map rcu_callback_map; int debug_lockdep_rcu_enabled(void); int rcu_read_lock_held(void); int rcu_read_lock_bh_held(void); int rcu_read_lock_sched_held(void); int rcu_read_lock_any_held(void); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ # define rcu_lock_acquire(a) do { } while (0) # define rcu_lock_release(a) do { } while (0) static inline int rcu_read_lock_held(void) { return 1; } static inline int rcu_read_lock_bh_held(void) { return 1; } static inline int rcu_read_lock_sched_held(void) { return !preemptible(); } static inline int rcu_read_lock_any_held(void) { return !preemptible(); } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_PROVE_RCU /** * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met * @c: condition to check * @s: informative message */ #define RCU_LOCKDEP_WARN(c, s) \ do { \ static bool __section(".data.unlikely") __warned; \ if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ __warned = true; \ lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ } \ } while (0) #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) static inline void rcu_preempt_sleep_check(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), "Illegal context switch in RCU read-side critical section"); } #else /* #ifdef CONFIG_PROVE_RCU */ static inline void rcu_preempt_sleep_check(void) { } #endif /* #else #ifdef CONFIG_PROVE_RCU */ #define rcu_sleep_check() \ do { \ rcu_preempt_sleep_check(); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ "Illegal context switch in RCU-bh read-side critical section"); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ "Illegal context switch in RCU-sched read-side critical section"); \ } while (0) #else /* #ifdef CONFIG_PROVE_RCU */ #define RCU_LOCKDEP_WARN(c, s) do { } while (0) #define rcu_sleep_check() do { } while (0) #endif /* #else #ifdef CONFIG_PROVE_RCU */ /* * Helper functions for rcu_dereference_check(), rcu_dereference_protected() * and rcu_assign_pointer(). Some of these could be folded into their * callers, but they are left separate in order to ease introduction of * multiple pointers markings to match different RCU implementations * (e.g., __srcu), should this make sense in the future. */ #ifdef __CHECKER__ #define rcu_check_sparse(p, space) \ ((void)(((typeof(*p) space *)p) == p)) #else /* #ifdef __CHECKER__ */ #define rcu_check_sparse(p, space) #endif /* #else #ifdef __CHECKER__ */ #define __rcu_access_pointer(p, space) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_dereference_check(p, c, space) \ ({ \ /* Dependency order vs. p above. */ \ typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) #define __rcu_dereference_protected(p, c, space) \ ({ \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(p)); \ }) #define rcu_dereference_raw(p) \ ({ \ /* Dependency order vs. p above. */ \ typeof(p) ________p1 = READ_ONCE(p); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) /** * RCU_INITIALIZER() - statically initialize an RCU-protected global variable * @v: The value to statically initialize with. */ #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) /** * rcu_assign_pointer() - assign to RCU-protected pointer * @p: pointer to assign to * @v: value to assign (publish) * * Assigns the specified value to the specified RCU-protected * pointer, ensuring that any concurrent RCU readers will see * any prior initialization. * * Inserts memory barriers on architectures that require them * (which is most of them), and also prevents the compiler from * reordering the code that initializes the structure after the pointer * assignment. More importantly, this call documents which pointers * will be dereferenced by RCU read-side code. * * In some special cases, you may use RCU_INIT_POINTER() instead * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due * to the fact that it does not constrain either the CPU or the compiler. * That said, using RCU_INIT_POINTER() when you should have used * rcu_assign_pointer() is a very bad thing that results in * impossible-to-diagnose memory corruption. So please be careful. * See the RCU_INIT_POINTER() comment header for details. * * Note that rcu_assign_pointer() evaluates each of its arguments only * once, appearances notwithstanding. One of the "extra" evaluations * is in typeof() and the other visible only to sparse (__CHECKER__), * neither of which actually execute the argument. As with most cpp * macros, this execute-arguments-only-once property is important, so * please be careful when making changes to rcu_assign_pointer() and the * other macros that it invokes. */ #define rcu_assign_pointer(p, v) \ do { \ uintptr_t _r_a_p__v = (uintptr_t)(v); \ rcu_check_sparse(p, __rcu); \ \ if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ else \ smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ } while (0) /** * rcu_replace_pointer() - replace an RCU pointer, returning its old value * @rcu_ptr: RCU pointer, whose old value is returned * @ptr: regular pointer * @c: the lockdep conditions under which the dereference will take place * * Perform a replacement, where @rcu_ptr is an RCU-annotated * pointer and @c is the lockdep argument that is passed to the * rcu_dereference_protected() call used to read that pointer. The old * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. */ #define rcu_replace_pointer(rcu_ptr, ptr, c) \ ({ \ typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ rcu_assign_pointer((rcu_ptr), (ptr)); \ __tmp; \ }) /** * rcu_access_pointer() - fetch RCU pointer with no dereferencing * @p: The pointer to read * * Return the value of the specified RCU-protected pointer, but omit the * lockdep checks for being in an RCU read-side critical section. This is * useful when the value of this pointer is accessed, but the pointer is * not dereferenced, for example, when testing an RCU-protected pointer * against NULL. Although rcu_access_pointer() may also be used in cases * where update-side locks prevent the value of the pointer from changing, * you should instead use rcu_dereference_protected() for this use case. * * It is also permissible to use rcu_access_pointer() when read-side * access to the pointer was removed at least one grace period ago, as * is the case in the context of the RCU callback that is freeing up * the data, or after a synchronize_rcu() returns. This can be useful * when tearing down multi-linked structures after a grace period * has elapsed. */ #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) /** * rcu_dereference_check() - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Do an rcu_dereference(), but check that the conditions under which the * dereference will take place are correct. Typically the conditions * indicate the various locking conditions that should be held at that * point. The check should return true if the conditions are satisfied. * An implicit check for being in an RCU read-side critical section * (rcu_read_lock()) is included. * * For example: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); * * could be used to indicate to lockdep that foo->bar may only be dereferenced * if either rcu_read_lock() is held, or that the lock required to replace * the bar struct at foo->bar is held. * * Note that the list of conditions may also include indications of when a lock * need not be held, for example during initialisation or destruction of the * target struct: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || * atomic_read(&foo->usage) == 0); * * Inserts memory barriers on architectures that require them * (currently only the Alpha), prevents the compiler from refetching * (and from merging fetches), and, more importantly, documents exactly * which pointers are protected by RCU and checks that the pointer is * annotated as __rcu. */ #define rcu_dereference_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) /** * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-bh counterpart to rcu_dereference_check(). */ #define rcu_dereference_bh_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) /** * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-sched counterpart to rcu_dereference_check(). */ #define rcu_dereference_sched_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ __rcu) /* * The tracing infrastructure traces RCU (we want that), but unfortunately * some of the RCU checks causes tracing to lock up the system. * * The no-tracing version of rcu_dereference_raw() must not call * rcu_read_lock_held(). */ #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) /** * rcu_dereference_protected() - fetch RCU pointer when updates prevented * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(). This is useful in cases where update-side locks * prevent the value of the pointer from changing. Please note that this * primitive does *not* prevent the compiler from repeating this reference * or combining it with other references, so it should not be used without * protection of appropriate locks. * * This function is only for update-side use. Using this function * when protected only by rcu_read_lock() will result in infrequent * but very ugly failures. */ #define rcu_dereference_protected(p, c) \ __rcu_dereference_protected((p), (c), __rcu) /** * rcu_dereference() - fetch RCU-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * This is a simple wrapper around rcu_dereference_check(). */ #define rcu_dereference(p) rcu_dereference_check(p, 0) /** * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) /** * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) /** * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism * @p: The pointer to hand off * * This is simply an identity function, but it documents where a pointer * is handed off from RCU to some other synchronization mechanism, for * example, reference counting or locking. In C11, it would map to * kill_dependency(). It could be used as follows:: * * rcu_read_lock(); * p = rcu_dereference(gp); * long_lived = is_long_lived(p); * if (long_lived) { * if (!atomic_inc_not_zero(p->refcnt)) * long_lived = false; * else * p = rcu_pointer_handoff(p); * } * rcu_read_unlock(); */ #define rcu_pointer_handoff(p) (p) /** * rcu_read_lock() - mark the beginning of an RCU read-side critical section * * When synchronize_rcu() is invoked on one CPU while other CPUs * are within RCU read-side critical sections, then the * synchronize_rcu() is guaranteed to block until after all the other * CPUs exit their critical sections. Similarly, if call_rcu() is invoked * on one CPU while other CPUs are within RCU read-side critical * sections, invocation of the corresponding RCU callback is deferred * until after the all the other CPUs exit their critical sections. * * Note, however, that RCU callbacks are permitted to run concurrently * with new RCU read-side critical sections. One way that this can happen * is via the following sequence of events: (1) CPU 0 enters an RCU * read-side critical section, (2) CPU 1 invokes call_rcu() to register * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU * callback is invoked. This is legal, because the RCU read-side critical * section that was running concurrently with the call_rcu() (and which * therefore might be referencing something that the corresponding RCU * callback would free up) has completed before the corresponding * RCU callback is invoked. * * RCU read-side critical sections may be nested. Any deferred actions * will be deferred until the outermost RCU read-side critical section * completes. * * You can avoid reading and understanding the next paragraph by * following this rule: don't put anything in an rcu_read_lock() RCU * read-side critical section that would block in a !PREEMPTION kernel. * But if you want the full story, read on! * * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), * it is illegal to block while in an RCU read-side critical section. * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION * kernel builds, RCU read-side critical sections may be preempted, * but explicit blocking is illegal. Finally, in preemptible RCU * implementations in real-time (with -rt patchset) kernel builds, RCU * read-side critical sections may be preempted and they may also block, but * only when acquiring spinlocks that are subject to priority inheritance. */ static __always_inline void rcu_read_lock(void) { __rcu_read_lock(); __acquire(RCU); rcu_lock_acquire(&rcu_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock() used illegally while idle"); } /* * So where is rcu_write_lock()? It does not exist, as there is no * way for writers to lock out RCU readers. This is a feature, not * a bug -- this property is what provides RCU's performance benefits. * Of course, writers must coordinate with each other. The normal * spinlock primitives work well for this, but any other technique may be * used as well. RCU does not care how the writers keep out of each * others' way, as long as they do so. */ /** * rcu_read_unlock() - marks the end of an RCU read-side critical section. * * In most situations, rcu_read_unlock() is immune from deadlock. * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() * is responsible for deboosting, which it does via rt_mutex_unlock(). * Unfortunately, this function acquires the scheduler's runqueue and * priority-inheritance spinlocks. This means that deadlock could result * if the caller of rcu_read_unlock() already holds one of these locks or * any lock that is ever acquired while holding them. * * That said, RCU readers are never priority boosted unless they were * preempted. Therefore, one way to avoid deadlock is to make sure * that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with one of * rt_mutex_unlock()'s locks held. Such preemption can be avoided in * a number of ways, for example, by invoking preempt_disable() before * critical section's outermost rcu_read_lock(). * * Given that the set of locks acquired by rt_mutex_unlock() might change * at any time, a somewhat more future-proofed approach is to make sure * that that preemption never happens within any RCU read-side critical * section whose outermost rcu_read_unlock() is called with irqs disabled. * This approach relies on the fact that rt_mutex_unlock() currently only * acquires irq-disabled locks. * * The second of these two approaches is best in most situations, * however, the first approach can also be useful, at least to those * developers willing to keep abreast of the set of locks acquired by * rt_mutex_unlock(). * * See rcu_read_lock() for more information. */ static inline void rcu_read_unlock(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock() used illegally while idle"); __release(RCU); __rcu_read_unlock(); rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ } /** * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section * * This is equivalent of rcu_read_lock(), but also disables softirqs. * Note that anything else that disables softirqs can also serve as * an RCU read-side critical section. * * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() * was invoked from some other task. */ static inline void rcu_read_lock_bh(void) { local_bh_disable(); __acquire(RCU_BH); rcu_lock_acquire(&rcu_bh_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_bh() used illegally while idle"); } /** * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section * * See rcu_read_lock_bh() for more information. */ static inline void rcu_read_unlock_bh(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_bh() used illegally while idle"); rcu_lock_release(&rcu_bh_lock_map); __release(RCU_BH); local_bh_enable(); } /** * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section * * This is equivalent of rcu_read_lock(), but disables preemption. * Read-side critical sections can also be introduced by anything else * that disables preemption, including local_irq_disable() and friends. * * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_sched() from process context if the matching * rcu_read_lock_sched() was invoked from an NMI handler. */ static inline void rcu_read_lock_sched(void) { preempt_disable(); __acquire(RCU_SCHED); rcu_lock_acquire(&rcu_sched_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_sched() used illegally while idle"); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_lock_sched_notrace(void) { preempt_disable_notrace(); __acquire(RCU_SCHED); } /** * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section * * See rcu_read_lock_sched() for more information. */ static inline void rcu_read_unlock_sched(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_sched() used illegally while idle"); rcu_lock_release(&rcu_sched_lock_map); __release(RCU_SCHED); preempt_enable(); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_unlock_sched_notrace(void) { __release(RCU_SCHED); preempt_enable_notrace(); } /** * RCU_INIT_POINTER() - initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * Initialize an RCU-protected pointer in special cases where readers * do not need ordering constraints on the CPU or the compiler. These * special cases are: * * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* * 2. The caller has taken whatever steps are required to prevent * RCU readers from concurrently accessing this pointer *or* * 3. The referenced data structure has already been exposed to * readers either at compile time or via rcu_assign_pointer() *and* * * a. You have not made *any* reader-visible changes to * this structure since then *or* * b. It is OK for readers accessing this structure from its * new location to see the old state of the structure. (For * example, the changes were to statistical counters or to * other state where exact synchronization is not required.) * * Failure to follow these rules governing use of RCU_INIT_POINTER() will * result in impossible-to-diagnose memory corruption. As in the structures * will look OK in crash dumps, but any concurrent RCU readers might * see pre-initialized values of the referenced data structure. So * please be very careful how you use RCU_INIT_POINTER()!!! * * If you are creating an RCU-protected linked structure that is accessed * by a single external-to-structure RCU-protected pointer, then you may * use RCU_INIT_POINTER() to initialize the internal RCU-protected * pointers, but you must use rcu_assign_pointer() to initialize the * external-to-structure pointer *after* you have completely initialized * the reader-accessible portions of the linked structure. * * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no * ordering guarantees for either the CPU or the compiler. */ #define RCU_INIT_POINTER(p, v) \ do { \ rcu_check_sparse(p, __rcu); \ WRITE_ONCE(p, RCU_INITIALIZER(v)); \ } while (0) /** * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * GCC-style initialization for an RCU-protected pointer in a structure field. */ #define RCU_POINTER_INITIALIZER(p, v) \ .p = RCU_INITIALIZER(v) /* * Does the specified offset indicate that the corresponding rcu_head * structure can be handled by kvfree_rcu()? */ #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) /* * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. */ #define __kvfree_rcu(head, offset) \ do { \ BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \ kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ } while (0) /** * kfree_rcu() - kfree an object after a grace period. * @ptr: pointer to kfree * @rhf: the name of the struct rcu_head within the type of @ptr. * * Many rcu callbacks functions just call kfree() on the base structure. * These functions are trivial, but their size adds up, and furthermore * when they are used in a kernel module, that module must invoke the * high-latency rcu_barrier() function at module-unload time. * * The kfree_rcu() function handles this issue. Rather than encoding a * function address in the embedded rcu_head structure, kfree_rcu() instead * encodes the offset of the rcu_head structure within the base structure. * Because the functions are not allowed in the low-order 4096 bytes of * kernel virtual memory, offsets up to 4095 bytes can be accommodated. * If the offset is larger than 4095 bytes, a compile-time error will * be generated in __kvfree_rcu(). If this error is triggered, you can * either fall back to use of call_rcu() or rearrange the structure to * position the rcu_head structure into the first 4096 bytes. * * Note that the allowable offset might decrease in the future, for example, * to allow something like kmem_cache_free_rcu(). * * The BUILD_BUG_ON check must not involve any function calls, hence the * checks are done in macros here. */ #define kfree_rcu(ptr, rhf) \ do { \ typeof (ptr) ___p = (ptr); \ \ if (___p) \ __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ } while (0) /** * kvfree_rcu() - kvfree an object after a grace period. * * This macro consists of one or two arguments and it is * based on whether an object is head-less or not. If it * has a head then a semantic stays the same as it used * to be before: * * kvfree_rcu(ptr, rhf); * * where @ptr is a pointer to kvfree(), @rhf is the name * of the rcu_head structure within the type of @ptr. * * When it comes to head-less variant, only one argument * is passed and that is just a pointer which has to be * freed after a grace period. Therefore the semantic is * * kvfree_rcu(ptr); * * where @ptr is a pointer to kvfree(). * * Please note, head-less way of freeing is permitted to * use from a context that has to follow might_sleep() * annotation. Otherwise, please switch and embed the * rcu_head structure within the type of @ptr. */ #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf) #define kvfree_rcu_arg_1(ptr) \ do { \ typeof(ptr) ___p = (ptr); \ \ if (___p) \ kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ } while (0) /* * Place this after a lock-acquisition primitive to guarantee that * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies * if the UNLOCK and LOCK are executed by the same CPU or if the * UNLOCK and LOCK operate on the same lock variable. */ #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ #define smp_mb__after_unlock_lock() do { } while (0) #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ /* Has the specified rcu_head structure been handed to call_rcu()? */ /** * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() * @rhp: The rcu_head structure to initialize. * * If you intend to invoke rcu_head_after_call_rcu() to test whether a * given rcu_head structure has already been passed to call_rcu(), then * you must also invoke this rcu_head_init() function on it just after * allocating that structure. Calls to this function must not race with * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. */ static inline void rcu_head_init(struct rcu_head *rhp) { rhp->func = (rcu_callback_t)~0L; } /** * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? * @rhp: The rcu_head structure to test. * @f: The function passed to call_rcu() along with @rhp. * * Returns @true if the @rhp has been passed to call_rcu() with @func, * and @false otherwise. Emits a warning in any other case, including * the case where @rhp has already been invoked after a grace period. * Calls to this function must not race with callback invocation. One way * to avoid such races is to enclose the call to rcu_head_after_call_rcu() * in an RCU read-side critical section that includes a read-side fetch * of the pointer to the structure containing @rhp. */ static inline bool rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) { rcu_callback_t func = READ_ONCE(rhp->func); if (func == f) return true; WARN_ON_ONCE(func != (rcu_callback_t)~0L); return false; } /* kernel/ksysfs.c definitions */ extern int rcu_expedited; extern int rcu_normal; #endif /* __LINUX_RCUPDATE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Sleepable Read-Copy Update mechanism for mutual exclusion * * Copyright (C) IBM Corporation, 2006 * Copyright (C) Fujitsu, 2012 * * Author: Paul McKenney <paulmck@linux.ibm.com> * Lai Jiangshan <laijs@cn.fujitsu.com> * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #ifndef _LINUX_SRCU_H #define _LINUX_SRCU_H #include <linux/mutex.h> #include <linux/rcupdate.h> #include <linux/workqueue.h> #include <linux/rcu_segcblist.h> struct srcu_struct; #ifdef CONFIG_DEBUG_LOCK_ALLOC int __init_srcu_struct(struct srcu_struct *ssp, const char *name, struct lock_class_key *key); #define init_srcu_struct(ssp) \ ({ \ static struct lock_class_key __srcu_key; \ \ __init_srcu_struct((ssp), #ssp, &__srcu_key); \ }) #define __SRCU_DEP_MAP_INIT(srcu_name) .dep_map = { .name = #srcu_name }, #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ int init_srcu_struct(struct srcu_struct *ssp); #define __SRCU_DEP_MAP_INIT(srcu_name) #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_TINY_SRCU #include <linux/srcutiny.h> #elif defined(CONFIG_TREE_SRCU) #include <linux/srcutree.h> #elif defined(CONFIG_SRCU) #error "Unknown SRCU implementation specified to kernel configuration" #else /* Dummy definition for things like notifiers. Actual use gets link error. */ struct srcu_struct { }; #endif void call_srcu(struct srcu_struct *ssp, struct rcu_head *head, void (*func)(struct rcu_head *head)); void cleanup_srcu_struct(struct srcu_struct *ssp); int __srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp); void __srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp); void synchronize_srcu(struct srcu_struct *ssp); unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp); unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp); bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie); #ifdef CONFIG_DEBUG_LOCK_ALLOC /** * srcu_read_lock_held - might we be in SRCU read-side critical section? * @ssp: The srcu_struct structure to check * * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an SRCU * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, * this assumes we are in an SRCU read-side critical section unless it can * prove otherwise. * * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot * and while lockdep is disabled. * * Note that SRCU is based on its own statemachine and it doesn't * relies on normal RCU, it can be called from the CPU which * is in the idle loop from an RCU point of view or offline. */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { if (!debug_lockdep_rcu_enabled()) return 1; return lock_is_held(&ssp->dep_map); } #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { return 1; } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /** * srcu_dereference_check - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * @c: condition to check for update-side use * * If PROVE_RCU is enabled, invoking this outside of an RCU read-side * critical section will result in an RCU-lockdep splat, unless @c evaluates * to 1. The @c argument will normally be a logical expression containing * lockdep_is_held() calls. */ #define srcu_dereference_check(p, ssp, c) \ __rcu_dereference_check((p), (c) || srcu_read_lock_held(ssp), __rcu) /** * srcu_dereference - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * * Makes rcu_dereference_check() do the dirty work. If PROVE_RCU * is enabled, invoking this outside of an RCU read-side critical * section will result in an RCU-lockdep splat. */ #define srcu_dereference(p, ssp) srcu_dereference_check((p), (ssp), 0) /** * srcu_dereference_notrace - no tracing and no lockdep calls from here * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. */ #define srcu_dereference_notrace(p, ssp) srcu_dereference_check((p), (ssp), 1) /** * srcu_read_lock - register a new reader for an SRCU-protected structure. * @ssp: srcu_struct in which to register the new reader. * * Enter an SRCU read-side critical section. Note that SRCU read-side * critical sections may be nested. However, it is illegal to * call anything that waits on an SRCU grace period for the same * srcu_struct, whether directly or indirectly. Please note that * one way to indirectly wait on an SRCU grace period is to acquire * a mutex that is held elsewhere while calling synchronize_srcu() or * synchronize_srcu_expedited(). * * Note that srcu_read_lock() and the matching srcu_read_unlock() must * occur in the same context, for example, it is illegal to invoke * srcu_read_unlock() in an irq handler if the matching srcu_read_lock() * was invoked in process context. */ static inline int srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); rcu_lock_acquire(&(ssp)->dep_map); return retval; } /* Used by tracing, cannot be traced and cannot invoke lockdep. */ static inline notrace int srcu_read_lock_notrace(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); return retval; } /** * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. * @ssp: srcu_struct in which to unregister the old reader. * @idx: return value from corresponding srcu_read_lock(). * * Exit an SRCU read-side critical section. */ static inline void srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp) { WARN_ON_ONCE(idx & ~0x1); rcu_lock_release(&(ssp)->dep_map); __srcu_read_unlock(ssp, idx); } /* Used by tracing, cannot be traced and cannot call lockdep. */ static inline notrace void srcu_read_unlock_notrace(struct srcu_struct *ssp, int idx) __releases(ssp) { __srcu_read_unlock(ssp, idx); } /** * smp_mb__after_srcu_read_unlock - ensure full ordering after srcu_read_unlock * * Converts the preceding srcu_read_unlock into a two-way memory barrier. * * Call this after srcu_read_unlock, to guarantee that all memory operations * that occur after smp_mb__after_srcu_read_unlock will appear to happen after * the preceding srcu_read_unlock. */ static inline void smp_mb__after_srcu_read_unlock(void) { /* __srcu_read_unlock has smp_mb() internally so nothing to do here. */ } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * AEAD: Authenticated Encryption with Associated Data * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_INTERNAL_AEAD_H #define _CRYPTO_INTERNAL_AEAD_H #include <crypto/aead.h> #include <crypto/algapi.h> #include <linux/stddef.h> #include <linux/types.h> struct rtattr; struct aead_instance { void (*free)(struct aead_instance *inst); union { struct { char head[offsetof(struct aead_alg, base)]; struct crypto_instance base; } s; struct aead_alg alg; }; }; struct crypto_aead_spawn { struct crypto_spawn base; }; struct aead_queue { struct crypto_queue base; }; static inline void *crypto_aead_ctx(struct crypto_aead *tfm) { return crypto_tfm_ctx(&tfm->base); } static inline struct crypto_instance *aead_crypto_instance( struct aead_instance *inst) { return container_of(&inst->alg.base, struct crypto_instance, alg); } static inline struct aead_instance *aead_instance(struct crypto_instance *inst) { return container_of(&inst->alg, struct aead_instance, alg.base); } static inline struct aead_instance *aead_alg_instance(struct crypto_aead *aead) { return aead_instance(crypto_tfm_alg_instance(&aead->base)); } static inline void *aead_instance_ctx(struct aead_instance *inst) { return crypto_instance_ctx(aead_crypto_instance(inst)); } static inline void *aead_request_ctx(struct aead_request *req) { return req->__ctx; } static inline void aead_request_complete(struct aead_request *req, int err) { req->base.complete(&req->base, err); } static inline u32 aead_request_flags(struct aead_request *req) { return req->base.flags; } static inline struct aead_request *aead_request_cast( struct crypto_async_request *req) { return container_of(req, struct aead_request, base); } int crypto_grab_aead(struct crypto_aead_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); static inline void crypto_drop_aead(struct crypto_aead_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct aead_alg *crypto_spawn_aead_alg( struct crypto_aead_spawn *spawn) { return container_of(spawn->base.alg, struct aead_alg, base); } static inline struct crypto_aead *crypto_spawn_aead( struct crypto_aead_spawn *spawn) { return crypto_spawn_tfm2(&spawn->base); } static inline void crypto_aead_set_reqsize(struct crypto_aead *aead, unsigned int reqsize) { aead->reqsize = reqsize; } static inline void aead_init_queue(struct aead_queue *queue, unsigned int max_qlen) { crypto_init_queue(&queue->base, max_qlen); } static inline int aead_enqueue_request(struct aead_queue *queue, struct aead_request *request) { return crypto_enqueue_request(&queue->base, &request->base); } static inline struct aead_request *aead_dequeue_request( struct aead_queue *queue) { struct crypto_async_request *req; req = crypto_dequeue_request(&queue->base); return req ? container_of(req, struct aead_request, base) : NULL; } static inline struct aead_request *aead_get_backlog(struct aead_queue *queue) { struct crypto_async_request *req; req = crypto_get_backlog(&queue->base); return req ? container_of(req, struct aead_request, base) : NULL; } static inline unsigned int crypto_aead_alg_chunksize(struct aead_alg *alg) { return alg->chunksize; } /** * crypto_aead_chunksize() - obtain chunk size * @tfm: cipher handle * * The block size is set to one for ciphers such as CCM. However, * you still need to provide incremental updates in multiples of * the underlying block size as the IV does not have sub-block * granularity. This is known in this API as the chunk size. * * Return: chunk size in bytes */ static inline unsigned int crypto_aead_chunksize(struct crypto_aead *tfm) { return crypto_aead_alg_chunksize(crypto_aead_alg(tfm)); } int crypto_register_aead(struct aead_alg *alg); void crypto_unregister_aead(struct aead_alg *alg); int crypto_register_aeads(struct aead_alg *algs, int count); void crypto_unregister_aeads(struct aead_alg *algs, int count); int aead_register_instance(struct crypto_template *tmpl, struct aead_instance *inst); #endif /* _CRYPTO_INTERNAL_AEAD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved. * Authors: David Chinner and Glauber Costa * * Generic LRU infrastructure */ #ifndef _LRU_LIST_H #define _LRU_LIST_H #include <linux/list.h> #include <linux/nodemask.h> #include <linux/shrinker.h> struct mem_cgroup; /* list_lru_walk_cb has to always return one of those */ enum lru_status { LRU_REMOVED, /* item removed from list */ LRU_REMOVED_RETRY, /* item removed, but lock has been dropped and reacquired */ LRU_ROTATE, /* item referenced, give another pass */ LRU_SKIP, /* item cannot be locked, skip */ LRU_RETRY, /* item not freeable. May drop the lock internally, but has to return locked. */ }; struct list_lru_one { struct list_head list; /* may become negative during memcg reparenting */ long nr_items; }; struct list_lru_memcg { struct rcu_head rcu; /* array of per cgroup lists, indexed by memcg_cache_id */ struct list_lru_one *lru[]; }; struct list_lru_node { /* protects all lists on the node, including per cgroup */ spinlock_t lock; /* global list, used for the root cgroup in cgroup aware lrus */ struct list_lru_one lru; #ifdef CONFIG_MEMCG_KMEM /* for cgroup aware lrus points to per cgroup lists, otherwise NULL */ struct list_lru_memcg __rcu *memcg_lrus; #endif long nr_items; } ____cacheline_aligned_in_smp; struct list_lru { struct list_lru_node *node; #ifdef CONFIG_MEMCG_KMEM struct list_head list; int shrinker_id; bool memcg_aware; #endif }; void list_lru_destroy(struct list_lru *lru); int __list_lru_init(struct list_lru *lru, bool memcg_aware, struct lock_class_key *key, struct shrinker *shrinker); #define list_lru_init(lru) \ __list_lru_init((lru), false, NULL, NULL) #define list_lru_init_key(lru, key) \ __list_lru_init((lru), false, (key), NULL) #define list_lru_init_memcg(lru, shrinker) \ __list_lru_init((lru), true, NULL, shrinker) int memcg_update_all_list_lrus(int num_memcgs); void memcg_drain_all_list_lrus(int src_idx, struct mem_cgroup *dst_memcg); /** * list_lru_add: add an element to the lru list's tail * @list_lru: the lru pointer * @item: the item to be added. * * If the element is already part of a list, this function returns doing * nothing. Therefore the caller does not need to keep state about whether or * not the element already belongs in the list and is allowed to lazy update * it. Note however that this is valid for *a* list, not *this* list. If * the caller organize itself in a way that elements can be in more than * one type of list, it is up to the caller to fully remove the item from * the previous list (with list_lru_del() for instance) before moving it * to @list_lru * * Return value: true if the list was updated, false otherwise */ bool list_lru_add(struct list_lru *lru, struct list_head *item); /** * list_lru_del: delete an element to the lru list * @list_lru: the lru pointer * @item: the item to be deleted. * * This function works analogously as list_lru_add in terms of list * manipulation. The comments about an element already pertaining to * a list are also valid for list_lru_del. * * Return value: true if the list was updated, false otherwise */ bool list_lru_del(struct list_lru *lru, struct list_head *item); /** * list_lru_count_one: return the number of objects currently held by @lru * @lru: the lru pointer. * @nid: the node id to count from. * @memcg: the cgroup to count from. * * Always return a non-negative number, 0 for empty lists. There is no * guarantee that the list is not updated while the count is being computed. * Callers that want such a guarantee need to provide an outer lock. */ unsigned long list_lru_count_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg); unsigned long list_lru_count_node(struct list_lru *lru, int nid); static inline unsigned long list_lru_shrink_count(struct list_lru *lru, struct shrink_control *sc) { return list_lru_count_one(lru, sc->nid, sc->memcg); } static inline unsigned long list_lru_count(struct list_lru *lru) { long count = 0; int nid; for_each_node_state(nid, N_NORMAL_MEMORY) count += list_lru_count_node(lru, nid); return count; } void list_lru_isolate(struct list_lru_one *list, struct list_head *item); void list_lru_isolate_move(struct list_lru_one *list, struct list_head *item, struct list_head *head); typedef enum lru_status (*list_lru_walk_cb)(struct list_head *item, struct list_lru_one *list, spinlock_t *lock, void *cb_arg); /** * list_lru_walk_one: walk a list_lru, isolating and disposing freeable items. * @lru: the lru pointer. * @nid: the node id to scan from. * @memcg: the cgroup to scan from. * @isolate: callback function that is resposible for deciding what to do with * the item currently being scanned * @cb_arg: opaque type that will be passed to @isolate * @nr_to_walk: how many items to scan. * * This function will scan all elements in a particular list_lru, calling the * @isolate callback for each of those items, along with the current list * spinlock and a caller-provided opaque. The @isolate callback can choose to * drop the lock internally, but *must* return with the lock held. The callback * will return an enum lru_status telling the list_lru infrastructure what to * do with the object being scanned. * * Please note that nr_to_walk does not mean how many objects will be freed, * just how many objects will be scanned. * * Return value: the number of objects effectively removed from the LRU. */ unsigned long list_lru_walk_one(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); /** * list_lru_walk_one_irq: walk a list_lru, isolating and disposing freeable items. * @lru: the lru pointer. * @nid: the node id to scan from. * @memcg: the cgroup to scan from. * @isolate: callback function that is resposible for deciding what to do with * the item currently being scanned * @cb_arg: opaque type that will be passed to @isolate * @nr_to_walk: how many items to scan. * * Same as @list_lru_walk_one except that the spinlock is acquired with * spin_lock_irq(). */ unsigned long list_lru_walk_one_irq(struct list_lru *lru, int nid, struct mem_cgroup *memcg, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); unsigned long list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate, void *cb_arg, unsigned long *nr_to_walk); static inline unsigned long list_lru_shrink_walk(struct list_lru *lru, struct shrink_control *sc, list_lru_walk_cb isolate, void *cb_arg) { return list_lru_walk_one(lru, sc->nid, sc->memcg, isolate, cb_arg, &sc->nr_to_scan); } static inline unsigned long list_lru_shrink_walk_irq(struct list_lru *lru, struct shrink_control *sc, list_lru_walk_cb isolate, void *cb_arg) { return list_lru_walk_one_irq(lru, sc->nid, sc->memcg, isolate, cb_arg, &sc->nr_to_scan); } static inline unsigned long list_lru_walk(struct list_lru *lru, list_lru_walk_cb isolate, void *cb_arg, unsigned long nr_to_walk) { long isolated = 0; int nid; for_each_node_state(nid, N_NORMAL_MEMORY) { isolated += list_lru_walk_node(lru, nid, isolate, cb_arg, &nr_to_walk); if (nr_to_walk <= 0) break; } return isolated; } #endif /* _LRU_LIST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 /* SPDX-License-Identifier: GPL-2.0 */ /* * fs-verity: read-only file-based authenticity protection * * This header declares the interface between the fs/verity/ support layer and * filesystems that support fs-verity. * * Copyright 2019 Google LLC */ #ifndef _LINUX_FSVERITY_H #define _LINUX_FSVERITY_H #include <linux/fs.h> #include <uapi/linux/fsverity.h> /* Verity operations for filesystems */ struct fsverity_operations { /** * Begin enabling verity on the given file. * * @filp: a readonly file descriptor for the file * * The filesystem must do any needed filesystem-specific preparations * for enabling verity, e.g. evicting inline data. It also must return * -EBUSY if verity is already being enabled on the given file. * * i_rwsem is held for write. * * Return: 0 on success, -errno on failure */ int (*begin_enable_verity)(struct file *filp); /** * End enabling verity on the given file. * * @filp: a readonly file descriptor for the file * @desc: the verity descriptor to write, or NULL on failure * @desc_size: size of verity descriptor, or 0 on failure * @merkle_tree_size: total bytes the Merkle tree took up * * If desc == NULL, then enabling verity failed and the filesystem only * must do any necessary cleanups. Else, it must also store the given * verity descriptor to a fs-specific location associated with the inode * and do any fs-specific actions needed to mark the inode as a verity * inode, e.g. setting a bit in the on-disk inode. The filesystem is * also responsible for setting the S_VERITY flag in the VFS inode. * * i_rwsem is held for write, but it may have been dropped between * ->begin_enable_verity() and ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*end_enable_verity)(struct file *filp, const void *desc, size_t desc_size, u64 merkle_tree_size); /** * Get the verity descriptor of the given inode. * * @inode: an inode with the S_VERITY flag set * @buf: buffer in which to place the verity descriptor * @bufsize: size of @buf, or 0 to retrieve the size only * * If bufsize == 0, then the size of the verity descriptor is returned. * Otherwise the verity descriptor is written to 'buf' and its actual * size is returned; -ERANGE is returned if it's too large. This may be * called by multiple processes concurrently on the same inode. * * Return: the size on success, -errno on failure */ int (*get_verity_descriptor)(struct inode *inode, void *buf, size_t bufsize); /** * Read a Merkle tree page of the given inode. * * @inode: the inode * @index: 0-based index of the page within the Merkle tree * @num_ra_pages: The number of Merkle tree pages that should be * prefetched starting at @index if the page at @index * isn't already cached. Implementations may ignore this * argument; it's only a performance optimization. * * This can be called at any time on an open verity file, as well as * between ->begin_enable_verity() and ->end_enable_verity(). It may be * called by multiple processes concurrently, even with the same page. * * Note that this must retrieve a *page*, not necessarily a *block*. * * Return: the page on success, ERR_PTR() on failure */ struct page *(*read_merkle_tree_page)(struct inode *inode, pgoff_t index, unsigned long num_ra_pages); /** * Write a Merkle tree block to the given inode. * * @inode: the inode for which the Merkle tree is being built * @buf: block to write * @index: 0-based index of the block within the Merkle tree * @log_blocksize: log base 2 of the Merkle tree block size * * This is only called between ->begin_enable_verity() and * ->end_enable_verity(). * * Return: 0 on success, -errno on failure */ int (*write_merkle_tree_block)(struct inode *inode, const void *buf, u64 index, int log_blocksize); }; #ifdef CONFIG_FS_VERITY static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { /* * Pairs with the cmpxchg_release() in fsverity_set_info(). * I.e., another task may publish ->i_verity_info concurrently, * executing a RELEASE barrier. We need to use smp_load_acquire() here * to safely ACQUIRE the memory the other task published. */ return smp_load_acquire(&inode->i_verity_info); } /* enable.c */ int fsverity_ioctl_enable(struct file *filp, const void __user *arg); /* measure.c */ int fsverity_ioctl_measure(struct file *filp, void __user *arg); /* open.c */ int fsverity_file_open(struct inode *inode, struct file *filp); int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr); void fsverity_cleanup_inode(struct inode *inode); /* verify.c */ bool fsverity_verify_page(struct page *page); void fsverity_verify_bio(struct bio *bio); void fsverity_enqueue_verify_work(struct work_struct *work); #else /* !CONFIG_FS_VERITY */ static inline struct fsverity_info *fsverity_get_info(const struct inode *inode) { return NULL; } /* enable.c */ static inline int fsverity_ioctl_enable(struct file *filp, const void __user *arg) { return -EOPNOTSUPP; } /* measure.c */ static inline int fsverity_ioctl_measure(struct file *filp, void __user *arg) { return -EOPNOTSUPP; } /* open.c */ static inline int fsverity_file_open(struct inode *inode, struct file *filp) { return IS_VERITY(inode) ? -EOPNOTSUPP : 0; } static inline int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) { return IS_VERITY(d_inode(dentry)) ? -EOPNOTSUPP : 0; } static inline void fsverity_cleanup_inode(struct inode *inode) { } /* verify.c */ static inline bool fsverity_verify_page(struct page *page) { WARN_ON(1); return false; } static inline void fsverity_verify_bio(struct bio *bio) { WARN_ON(1); } static inline void fsverity_enqueue_verify_work(struct work_struct *work) { WARN_ON(1); } #endif /* !CONFIG_FS_VERITY */ /** * fsverity_active() - do reads from the inode need to go through fs-verity? * @inode: inode to check * * This checks whether ->i_verity_info has been set. * * Filesystems call this from ->readpages() to check whether the pages need to * be verified or not. Don't use IS_VERITY() for this purpose; it's subject to * a race condition where the file is being read concurrently with * FS_IOC_ENABLE_VERITY completing. (S_VERITY is set before ->i_verity_info.) * * Return: true if reads need to go through fs-verity, otherwise false */ static inline bool fsverity_active(const struct inode *inode) { return fsverity_get_info(inode) != NULL; } #endif /* _LINUX_FSVERITY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/sunrpc/addr.h * * Various routines for copying and comparing sockaddrs and for * converting them to and from presentation format. */ #ifndef _LINUX_SUNRPC_ADDR_H #define _LINUX_SUNRPC_ADDR_H #include <linux/socket.h> #include <linux/in.h> #include <linux/in6.h> #include <net/ipv6.h> size_t rpc_ntop(const struct sockaddr *, char *, const size_t); size_t rpc_pton(struct net *, const char *, const size_t, struct sockaddr *, const size_t); char * rpc_sockaddr2uaddr(const struct sockaddr *, gfp_t); size_t rpc_uaddr2sockaddr(struct net *, const char *, const size_t, struct sockaddr *, const size_t); static inline unsigned short rpc_get_port(const struct sockaddr *sap) { switch (sap->sa_family) { case AF_INET: return ntohs(((struct sockaddr_in *)sap)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)sap)->sin6_port); } return 0; } static inline void rpc_set_port(struct sockaddr *sap, const unsigned short port) { switch (sap->sa_family) { case AF_INET: ((struct sockaddr_in *)sap)->sin_port = htons(port); break; case AF_INET6: ((struct sockaddr_in6 *)sap)->sin6_port = htons(port); break; } } #define IPV6_SCOPE_DELIMITER '%' #define IPV6_SCOPE_ID_LEN sizeof("%nnnnnnnnnn") static inline bool rpc_cmp_addr4(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in *sin1 = (const struct sockaddr_in *)sap1; const struct sockaddr_in *sin2 = (const struct sockaddr_in *)sap2; return sin1->sin_addr.s_addr == sin2->sin_addr.s_addr; } static inline bool __rpc_copy_addr4(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in *ssin = (struct sockaddr_in *) src; struct sockaddr_in *dsin = (struct sockaddr_in *) dst; dsin->sin_family = ssin->sin_family; dsin->sin_addr.s_addr = ssin->sin_addr.s_addr; return true; } #if IS_ENABLED(CONFIG_IPV6) static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in6 *sin1 = (const struct sockaddr_in6 *)sap1; const struct sockaddr_in6 *sin2 = (const struct sockaddr_in6 *)sap2; if (!ipv6_addr_equal(&sin1->sin6_addr, &sin2->sin6_addr)) return false; else if (ipv6_addr_type(&sin1->sin6_addr) & IPV6_ADDR_LINKLOCAL) return sin1->sin6_scope_id == sin2->sin6_scope_id; return true; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in6 *ssin6 = (const struct sockaddr_in6 *) src; struct sockaddr_in6 *dsin6 = (struct sockaddr_in6 *) dst; dsin6->sin6_family = ssin6->sin6_family; dsin6->sin6_addr = ssin6->sin6_addr; dsin6->sin6_scope_id = ssin6->sin6_scope_id; return true; } #else /* !(IS_ENABLED(CONFIG_IPV6) */ static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { return false; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { return false; } #endif /* !(IS_ENABLED(CONFIG_IPV6) */ /** * rpc_cmp_addr - compare the address portion of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr * * Just compares the family and address portion. Ignores port, but * compares the scope if it's a link-local address. * * Returns true if the addrs are equal, false if they aren't. */ static inline bool rpc_cmp_addr(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (sap1->sa_family == sap2->sa_family) { switch (sap1->sa_family) { case AF_INET: return rpc_cmp_addr4(sap1, sap2); case AF_INET6: return rpc_cmp_addr6(sap1, sap2); } } return false; } /** * rpc_cmp_addr_port - compare the address and port number of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr */ static inline bool rpc_cmp_addr_port(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (!rpc_cmp_addr(sap1, sap2)) return false; return rpc_get_port(sap1) == rpc_get_port(sap2); } /** * rpc_copy_addr - copy the address portion of one sockaddr to another * @dst: destination sockaddr * @src: source sockaddr * * Just copies the address portion and family. Ignores port, scope, etc. * Caller is responsible for making certain that dst is large enough to hold * the address in src. Returns true if address family is supported. Returns * false otherwise. */ static inline bool rpc_copy_addr(struct sockaddr *dst, const struct sockaddr *src) { switch (src->sa_family) { case AF_INET: return __rpc_copy_addr4(dst, src); case AF_INET6: return __rpc_copy_addr6(dst, src); } return false; } /** * rpc_get_scope_id - return scopeid for a given sockaddr * @sa: sockaddr to get scopeid from * * Returns the value of the sin6_scope_id for AF_INET6 addrs, or 0 if * not an AF_INET6 address. */ static inline u32 rpc_get_scope_id(const struct sockaddr *sa) { if (sa->sa_family != AF_INET6) return 0; return ((struct sockaddr_in6 *) sa)->sin6_scope_id; } #endif /* _LINUX_SUNRPC_ADDR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _X86_IRQFLAGS_H_ #define _X86_IRQFLAGS_H_ #include <asm/processor-flags.h> #ifndef __ASSEMBLY__ #include <asm/nospec-branch.h> /* Provide __cpuidle; we can't safely include <linux/cpu.h> */ #define __cpuidle __section(".cpuidle.text") /* * Interrupt control: */ /* Declaration required for gcc < 4.9 to prevent -Werror=missing-prototypes */ extern inline unsigned long native_save_fl(void); extern __always_inline unsigned long native_save_fl(void) { unsigned long flags; /* * "=rm" is safe here, because "pop" adjusts the stack before * it evaluates its effective address -- this is part of the * documented behavior of the "pop" instruction. */ asm volatile("# __raw_save_flags\n\t" "pushf ; pop %0" : "=rm" (flags) : /* no input */ : "memory"); return flags; } extern inline void native_restore_fl(unsigned long flags); extern inline void native_restore_fl(unsigned long flags) { asm volatile("push %0 ; popf" : /* no output */ :"g" (flags) :"memory", "cc"); } static __always_inline void native_irq_disable(void) { asm volatile("cli": : :"memory"); } static __always_inline void native_irq_enable(void) { asm volatile("sti": : :"memory"); } static inline __cpuidle void native_safe_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("sti; hlt": : :"memory"); } static inline __cpuidle void native_halt(void) { mds_idle_clear_cpu_buffers(); asm volatile("hlt": : :"memory"); } #endif #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #ifndef __ASSEMBLY__ #include <linux/types.h> static __always_inline unsigned long arch_local_save_flags(void) { return native_save_fl(); } static __always_inline void arch_local_irq_restore(unsigned long flags) { native_restore_fl(flags); } static __always_inline void arch_local_irq_disable(void) { native_irq_disable(); } static __always_inline void arch_local_irq_enable(void) { native_irq_enable(); } /* * Used in the idle loop; sti takes one instruction cycle * to complete: */ static inline __cpuidle void arch_safe_halt(void) { native_safe_halt(); } /* * Used when interrupts are already enabled or to * shutdown the processor: */ static inline __cpuidle void halt(void) { native_halt(); } /* * For spinlocks, etc: */ static __always_inline unsigned long arch_local_irq_save(void) { unsigned long flags = arch_local_save_flags(); arch_local_irq_disable(); return flags; } #else #define ENABLE_INTERRUPTS(x) sti #define DISABLE_INTERRUPTS(x) cli #ifdef CONFIG_X86_64 #ifdef CONFIG_DEBUG_ENTRY #define SAVE_FLAGS(x) pushfq; popq %rax #endif #define INTERRUPT_RETURN jmp native_iret #define USERGS_SYSRET64 \ swapgs; \ sysretq; #define USERGS_SYSRET32 \ swapgs; \ sysretl #else #define INTERRUPT_RETURN iret #endif #endif /* __ASSEMBLY__ */ #endif /* CONFIG_PARAVIRT_XXL */ #ifndef __ASSEMBLY__ static __always_inline int arch_irqs_disabled_flags(unsigned long flags) { return !(flags & X86_EFLAGS_IF); } static __always_inline int arch_irqs_disabled(void) { unsigned long flags = arch_local_save_flags(); return arch_irqs_disabled_flags(flags); } #else #ifdef CONFIG_X86_64 #ifdef CONFIG_XEN_PV #define SWAPGS ALTERNATIVE "swapgs", "", X86_FEATURE_XENPV #else #define SWAPGS swapgs #endif #endif #endif /* !__ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Berkeley style UIO structures - Alan Cox 1994. */ #ifndef __LINUX_UIO_H #define __LINUX_UIO_H #include <linux/kernel.h> #include <linux/thread_info.h> #include <uapi/linux/uio.h> struct page; struct pipe_inode_info; struct kvec { void *iov_base; /* and that should *never* hold a userland pointer */ size_t iov_len; }; enum iter_type { /* iter types */ ITER_IOVEC = 4, ITER_KVEC = 8, ITER_BVEC = 16, ITER_PIPE = 32, ITER_DISCARD = 64, }; struct iov_iter { /* * Bit 0 is the read/write bit, set if we're writing. * Bit 1 is the BVEC_FLAG_NO_REF bit, set if type is a bvec and * the caller isn't expecting to drop a page reference when done. */ unsigned int type; size_t iov_offset; size_t count; union { const struct iovec *iov; const struct kvec *kvec; const struct bio_vec *bvec; struct pipe_inode_info *pipe; }; union { unsigned long nr_segs; struct { unsigned int head; unsigned int start_head; }; }; }; static inline enum iter_type iov_iter_type(const struct iov_iter *i) { return i->type & ~(READ | WRITE); } static inline bool iter_is_iovec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_IOVEC; } static inline bool iov_iter_is_kvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_KVEC; } static inline bool iov_iter_is_bvec(const struct iov_iter *i) { return iov_iter_type(i) == ITER_BVEC; } static inline bool iov_iter_is_pipe(const struct iov_iter *i) { return iov_iter_type(i) == ITER_PIPE; } static inline bool iov_iter_is_discard(const struct iov_iter *i) { return iov_iter_type(i) == ITER_DISCARD; } static inline unsigned char iov_iter_rw(const struct iov_iter *i) { return i->type & (READ | WRITE); } /* * Total number of bytes covered by an iovec. * * NOTE that it is not safe to use this function until all the iovec's * segment lengths have been validated. Because the individual lengths can * overflow a size_t when added together. */ static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs) { unsigned long seg; size_t ret = 0; for (seg = 0; seg < nr_segs; seg++) ret += iov[seg].iov_len; return ret; } static inline struct iovec iov_iter_iovec(const struct iov_iter *iter) { return (struct iovec) { .iov_base = iter->iov->iov_base + iter->iov_offset, .iov_len = min(iter->count,