1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions and Declarations for tuple. * * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp> * - generalize L3 protocol dependent part. * * Derived from include/linux/netfiter_ipv4/ip_conntrack_tuple.h */ #ifndef _NF_CONNTRACK_TUPLE_H #define _NF_CONNTRACK_TUPLE_H #include <linux/netfilter/x_tables.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <linux/list_nulls.h> /* A `tuple' is a structure containing the information to uniquely identify a connection. ie. if two packets have the same tuple, they are in the same connection; if not, they are not. We divide the structure along "manipulatable" and "non-manipulatable" lines, for the benefit of the NAT code. */ #define NF_CT_TUPLE_L3SIZE ARRAY_SIZE(((union nf_inet_addr *)NULL)->all) /* The manipulable part of the tuple. */ struct nf_conntrack_man { union nf_inet_addr u3; union nf_conntrack_man_proto u; /* Layer 3 protocol */ u_int16_t l3num; }; /* This contains the information to distinguish a connection. */ struct nf_conntrack_tuple { struct nf_conntrack_man src; /* These are the parts of the tuple which are fixed. */ struct { union nf_inet_addr u3; union { /* Add other protocols here. */ __be16 all; struct { __be16 port; } tcp; struct { __be16 port; } udp; struct { u_int8_t type, code; } icmp; struct { __be16 port; } dccp; struct { __be16 port; } sctp; struct { __be16 key; } gre; } u; /* The protocol. */ u_int8_t protonum; /* The direction (for tuplehash) */ u_int8_t dir; } dst; }; struct nf_conntrack_tuple_mask { struct { union nf_inet_addr u3; union nf_conntrack_man_proto u; } src; }; static inline void nf_ct_dump_tuple_ip(const struct nf_conntrack_tuple *t) { #ifdef DEBUG printk("tuple %p: %u %pI4:%hu -> %pI4:%hu\n", t, t->dst.protonum, &t->src.u3.ip, ntohs(t->src.u.all), &t->dst.u3.ip, ntohs(t->dst.u.all)); #endif } static inline void nf_ct_dump_tuple_ipv6(const struct nf_conntrack_tuple *t) { #ifdef DEBUG printk("tuple %p: %u %pI6 %hu -> %pI6 %hu\n", t, t->dst.protonum, t->src.u3.all, ntohs(t->src.u.all), t->dst.u3.all, ntohs(t->dst.u.all)); #endif } static inline void nf_ct_dump_tuple(const struct nf_conntrack_tuple *t) { switch (t->src.l3num) { case AF_INET: nf_ct_dump_tuple_ip(t); break; case AF_INET6: nf_ct_dump_tuple_ipv6(t); break; } } /* If we're the first tuple, it's the original dir. */ #define NF_CT_DIRECTION(h) \ ((enum ip_conntrack_dir)(h)->tuple.dst.dir) /* Connections have two entries in the hash table: one for each way */ struct nf_conntrack_tuple_hash { struct hlist_nulls_node hnnode; struct nf_conntrack_tuple tuple; }; static inline bool __nf_ct_tuple_src_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return (nf_inet_addr_cmp(&t1->src.u3, &t2->src.u3) && t1->src.u.all == t2->src.u.all && t1->src.l3num == t2->src.l3num); } static inline bool __nf_ct_tuple_dst_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return (nf_inet_addr_cmp(&t1->dst.u3, &t2->dst.u3) && t1->dst.u.all == t2->dst.u.all && t1->dst.protonum == t2->dst.protonum); } static inline bool nf_ct_tuple_equal(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2) { return __nf_ct_tuple_src_equal(t1, t2) && __nf_ct_tuple_dst_equal(t1, t2); } static inline bool nf_ct_tuple_mask_equal(const struct nf_conntrack_tuple_mask *m1, const struct nf_conntrack_tuple_mask *m2) { return (nf_inet_addr_cmp(&m1->src.u3, &m2->src.u3) && m1->src.u.all == m2->src.u.all); } static inline bool nf_ct_tuple_src_mask_cmp(const struct nf_conntrack_tuple *t1, const struct nf_conntrack_tuple *t2, const struct nf_conntrack_tuple_mask *mask) { int count; for (count = 0; count < NF_CT_TUPLE_L3SIZE; count++) { if ((t1->src.u3.all[count] ^ t2->src.u3.all[count]) & mask->src.u3.all[count]) return false; } if ((t1->src.u.all ^ t2->src.u.all) & mask->src.u.all) return false; if (t1->src.l3num != t2->src.l3num || t1->dst.protonum != t2->dst.protonum) return false; return true; } static inline bool nf_ct_tuple_mask_cmp(const struct nf_conntrack_tuple *t, const struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple_mask *mask) { return nf_ct_tuple_src_mask_cmp(t, tuple, mask) && __nf_ct_tuple_dst_equal(t, tuple); } #endif /* _NF_CONNTRACK_TUPLE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr, int create); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif, int create) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr, create); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr, int create) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr, create); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 /* SPDX-License-Identifier: GPL-2.0 */ /* * This file provides wrappers with sanitizer instrumentation for non-atomic * bit operations. * * To use this functionality, an arch's bitops.h file needs to define each of * the below bit operations with an arch_ prefix (e.g. arch_set_bit(), * arch___set_bit(), etc.). */ #ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H #define _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H #include <linux/instrumented.h> /** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static inline void __set_bit(long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___set_bit(nr, addr); } /** * __clear_bit - Clears a bit in memory * @nr: the bit to clear * @addr: the address to start counting from * * Unlike clear_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static inline void __clear_bit(long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___clear_bit(nr, addr); } /** * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic. If it is called on the same * region of memory concurrently, the effect may be that only one operation * succeeds. */ static inline void __change_bit(long nr, volatile unsigned long *addr) { instrument_write(addr + BIT_WORD(nr), sizeof(long)); arch___change_bit(nr, addr); } static inline void __instrument_read_write_bitop(long nr, volatile unsigned long *addr) { if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC)) { /* * We treat non-atomic read-write bitops a little more special. * Given the operations here only modify a single bit, assuming * non-atomicity of the writer is sufficient may be reasonable * for certain usage (and follows the permissible nature of the * assume-plain-writes-atomic rule): * 1. report read-modify-write races -> check read; * 2. do not report races with marked readers, but do report * races with unmarked readers -> check "atomic" write. */ kcsan_check_read(addr + BIT_WORD(nr), sizeof(long)); /* * Use generic write instrumentation, in case other sanitizers * or tools are enabled alongside KCSAN. */ instrument_write(addr + BIT_WORD(nr), sizeof(long)); } else { instrument_read_write(addr + BIT_WORD(nr), sizeof(long)); } } /** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_set_bit(nr, addr); } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_clear_bit(nr, addr); } /** * __test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is non-atomic. If two instances of this operation race, one * can appear to succeed but actually fail. */ static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr) { __instrument_read_write_bitop(nr, addr); return arch___test_and_change_bit(nr, addr); } /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static inline bool test_bit(long nr, const volatile unsigned long *addr) { instrument_atomic_read(addr + BIT_WORD(nr), sizeof(long)); return arch_test_bit(nr, addr); } #endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright (C) 2018 Intel Corporation */ #ifndef __NET_WIRELESS_NL80211_H #define __NET_WIRELESS_NL80211_H #include "core.h" int nl80211_init(void); void nl80211_exit(void); void *nl80211hdr_put(struct sk_buff *skb, u32 portid, u32 seq, int flags, u8 cmd); bool nl80211_put_sta_rate(struct sk_buff *msg, struct rate_info *info, int attr); static inline u64 wdev_id(struct wireless_dev *wdev) { return (u64)wdev->identifier | ((u64)wiphy_to_rdev(wdev->wiphy)->wiphy_idx << 32); } int nl80211_prepare_wdev_dump(struct netlink_callback *cb, struct cfg80211_registered_device **rdev, struct wireless_dev **wdev); int nl80211_parse_chandef(struct cfg80211_registered_device *rdev, struct genl_info *info, struct cfg80211_chan_def *chandef); int nl80211_parse_random_mac(struct nlattr **attrs, u8 *mac_addr, u8 *mac_addr_mask); void nl80211_notify_wiphy(struct cfg80211_registered_device *rdev, enum nl80211_commands cmd); void nl80211_notify_iface(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, enum nl80211_commands cmd); void nl80211_send_scan_start(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct sk_buff *nl80211_build_scan_msg(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, bool aborted); void nl80211_send_scan_msg(struct cfg80211_registered_device *rdev, struct sk_buff *msg); void nl80211_send_sched_scan(struct cfg80211_sched_scan_request *req, u32 cmd); void nl80211_common_reg_change_event(enum nl80211_commands cmd_id, struct regulatory_request *request); static inline void nl80211_send_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_REG_CHANGE, request); } static inline void nl80211_send_wiphy_reg_change_event(struct regulatory_request *request) { nl80211_common_reg_change_event(NL80211_CMD_WIPHY_REG_CHANGE, request); } void nl80211_send_rx_auth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_rx_assoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp, int uapsd_queues, const u8 *req_ies, size_t req_ies_len); void nl80211_send_deauth(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_disassoc(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *buf, size_t len, gfp_t gfp); void nl80211_send_auth_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_assoc_timeout(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, gfp_t gfp); void nl80211_send_connect_result(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_connect_resp_params *params, gfp_t gfp); void nl80211_send_roamed(struct cfg80211_registered_device *rdev, struct net_device *netdev, struct cfg80211_roam_info *info, gfp_t gfp); void nl80211_send_port_authorized(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid); void nl80211_send_disconnected(struct cfg80211_registered_device *rdev, struct net_device *netdev, u16 reason, const u8 *ie, size_t ie_len, bool from_ap); void nl80211_michael_mic_failure(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *addr, enum nl80211_key_type key_type, int key_id, const u8 *tsc, gfp_t gfp); void nl80211_send_beacon_hint_event(struct wiphy *wiphy, struct ieee80211_channel *channel_before, struct ieee80211_channel *channel_after); void nl80211_send_ibss_bssid(struct cfg80211_registered_device *rdev, struct net_device *netdev, const u8 *bssid, gfp_t gfp); int nl80211_send_mgmt(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, u32 nlpid, int freq, int sig_dbm, const u8 *buf, size_t len, u32 flags, gfp_t gfp); void nl80211_radar_notify(struct cfg80211_registered_device *rdev, const struct cfg80211_chan_def *chandef, enum nl80211_radar_event event, struct net_device *netdev, gfp_t gfp); void nl80211_send_ap_stopped(struct wireless_dev *wdev); void cfg80211_rdev_free_coalesce(struct cfg80211_registered_device *rdev); /* peer measurement */ int nl80211_pmsr_start(struct sk_buff *skb, struct genl_info *info); int nl80211_pmsr_dump_results(struct sk_buff *skb, struct netlink_callback *cb); #endif /* __NET_WIRELESS_NL80211_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions of the Internet Protocol. * * Version: @(#)in.h 1.0.1 04/21/93 * * Authors: Original taken from the GNU Project <netinet/in.h> file. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> */ #ifndef _LINUX_IN_H #define _LINUX_IN_H #include <linux/errno.h> #include <uapi/linux/in.h> static inline int proto_ports_offset(int proto) { switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_DCCP: case IPPROTO_ESP: /* SPI */ case IPPROTO_SCTP: case IPPROTO_UDPLITE: return 0; case IPPROTO_AH: /* SPI */ return 4; default: return -EINVAL; } } static inline bool ipv4_is_loopback(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x7f000000); } static inline bool ipv4_is_multicast(__be32 addr) { return (addr & htonl(0xf0000000)) == htonl(0xe0000000); } static inline bool ipv4_is_local_multicast(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xe0000000); } static inline bool ipv4_is_lbcast(__be32 addr) { /* limited broadcast */ return addr == htonl(INADDR_BROADCAST); } static inline bool ipv4_is_all_snoopers(__be32 addr) { return addr == htonl(INADDR_ALLSNOOPERS_GROUP); } static inline bool ipv4_is_zeronet(__be32 addr) { return (addr == 0); } /* Special-Use IPv4 Addresses (RFC3330) */ static inline bool ipv4_is_private_10(__be32 addr) { return (addr & htonl(0xff000000)) == htonl(0x0a000000); } static inline bool ipv4_is_private_172(__be32 addr) { return (addr & htonl(0xfff00000)) == htonl(0xac100000); } static inline bool ipv4_is_private_192(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xc0a80000); } static inline bool ipv4_is_linklocal_169(__be32 addr) { return (addr & htonl(0xffff0000)) == htonl(0xa9fe0000); } static inline bool ipv4_is_anycast_6to4(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0586300); } static inline bool ipv4_is_test_192(__be32 addr) { return (addr & htonl(0xffffff00)) == htonl(0xc0000200); } static inline bool ipv4_is_test_198(__be32 addr) { return (addr & htonl(0xfffe0000)) == htonl(0xc6120000); } #endif /* _LINUX_IN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PID_H #define _LINUX_PID_H #include <linux/rculist.h> #include <linux/wait.h> #include <linux/refcount.h> enum pid_type { PIDTYPE_PID, PIDTYPE_TGID, PIDTYPE_PGID, PIDTYPE_SID, PIDTYPE_MAX, }; /* * What is struct pid? * * A struct pid is the kernel's internal notion of a process identifier. * It refers to individual tasks, process groups, and sessions. While * there are processes attached to it the struct pid lives in a hash * table, so it and then the processes that it refers to can be found * quickly from the numeric pid value. The attached processes may be * quickly accessed by following pointers from struct pid. * * Storing pid_t values in the kernel and referring to them later has a * problem. The process originally with that pid may have exited and the * pid allocator wrapped, and another process could have come along * and been assigned that pid. * * Referring to user space processes by holding a reference to struct * task_struct has a problem. When the user space process exits * the now useless task_struct is still kept. A task_struct plus a * stack consumes around 10K of low kernel memory. More precisely * this is THREAD_SIZE + sizeof(struct task_struct). By comparison * a struct pid is about 64 bytes. * * Holding a reference to struct pid solves both of these problems. * It is small so holding a reference does not consume a lot of * resources, and since a new struct pid is allocated when the numeric pid * value is reused (when pids wrap around) we don't mistakenly refer to new * processes. */ /* * struct upid is used to get the id of the struct pid, as it is * seen in particular namespace. Later the struct pid is found with * find_pid_ns() using the int nr and struct pid_namespace *ns. */ struct upid { int nr; struct pid_namespace *ns; }; struct pid { refcount_t count; unsigned int level; spinlock_t lock; /* lists of tasks that use this pid */ struct hlist_head tasks[PIDTYPE_MAX]; struct hlist_head inodes; /* wait queue for pidfd notifications */ wait_queue_head_t wait_pidfd; struct rcu_head rcu; struct upid numbers[1]; }; extern struct pid init_struct_pid; extern const struct file_operations pidfd_fops; struct file; extern struct pid *pidfd_pid(const struct file *file); struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); static inline struct pid *get_pid(struct pid *pid) { if (pid) refcount_inc(&pid->count); return pid; } extern void put_pid(struct pid *pid); extern struct task_struct *pid_task(struct pid *pid, enum pid_type); static inline bool pid_has_task(struct pid *pid, enum pid_type type) { return !hlist_empty(&pid->tasks[type]); } extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); /* * these helpers must be called with the tasklist_lock write-held. */ extern void attach_pid(struct task_struct *task, enum pid_type); extern void detach_pid(struct task_struct *task, enum pid_type); extern void change_pid(struct task_struct *task, enum pid_type, struct pid *pid); extern void exchange_tids(struct task_struct *task, struct task_struct *old); extern void transfer_pid(struct task_struct *old, struct task_struct *new, enum pid_type); struct pid_namespace; extern struct pid_namespace init_pid_ns; extern int pid_max; extern int pid_max_min, pid_max_max; /* * look up a PID in the hash table. Must be called with the tasklist_lock * or rcu_read_lock() held. * * find_pid_ns() finds the pid in the namespace specified * find_vpid() finds the pid by its virtual id, i.e. in the current namespace * * see also find_task_by_vpid() set in include/linux/sched.h */ extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); extern struct pid *find_vpid(int nr); /* * Lookup a PID in the hash table, and return with it's count elevated. */ extern struct pid *find_get_pid(int nr); extern struct pid *find_ge_pid(int nr, struct pid_namespace *); extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, size_t set_tid_size); extern void free_pid(struct pid *pid); extern void disable_pid_allocation(struct pid_namespace *ns); /* * ns_of_pid() returns the pid namespace in which the specified pid was * allocated. * * NOTE: * ns_of_pid() is expected to be called for a process (task) that has * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid * is expected to be non-NULL. If @pid is NULL, caller should handle * the resulting NULL pid-ns. */ static inline struct pid_namespace *ns_of_pid(struct pid *pid) { struct pid_namespace *ns = NULL; if (pid) ns = pid->numbers[pid->level].ns; return ns; } /* * is_child_reaper returns true if the pid is the init process * of the current namespace. As this one could be checked before * pid_ns->child_reaper is assigned in copy_process, we check * with the pid number. */ static inline bool is_child_reaper(struct pid *pid) { return pid->numbers[pid->level].nr == 1; } /* * the helpers to get the pid's id seen from different namespaces * * pid_nr() : global id, i.e. the id seen from the init namespace; * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * pid_nr_ns() : id seen from the ns specified. * * see also task_xid_nr() etc in include/linux/sched.h */ static inline pid_t pid_nr(struct pid *pid) { pid_t nr = 0; if (pid) nr = pid->numbers[0].nr; return nr; } pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); pid_t pid_vnr(struct pid *pid); #define do_each_pid_task(pid, type, task) \ do { \ if ((pid) != NULL) \ hlist_for_each_entry_rcu((task), \ &(pid)->tasks[type], pid_links[type]) { /* * Both old and new leaders may be attached to * the same pid in the middle of de_thread(). */ #define while_each_pid_task(pid, type, task) \ if (type == PIDTYPE_PID) \ break; \ } \ } while (0) #define do_each_pid_thread(pid, type, task) \ do_each_pid_task(pid, type, task) { \ struct task_struct *tg___ = task; \ for_each_thread(tg___, task) { #define while_each_pid_thread(pid, type, task) \ } \ task = tg___; \ } while_each_pid_task(pid, type, task) #endif /* _LINUX_PID_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_DST_METADATA_H #define __NET_DST_METADATA_H 1 #include <linux/skbuff.h> #include <net/ip_tunnels.h> #include <net/dst.h> enum metadata_type { METADATA_IP_TUNNEL, METADATA_HW_PORT_MUX, }; struct hw_port_info { struct net_device *lower_dev; u32 port_id; }; struct metadata_dst { struct dst_entry dst; enum metadata_type type; union { struct ip_tunnel_info tun_info; struct hw_port_info port_info; } u; }; static inline struct metadata_dst *skb_metadata_dst(const struct sk_buff *skb) { struct metadata_dst *md_dst = (struct metadata_dst *) skb_dst(skb); if (md_dst && md_dst->dst.flags & DST_METADATA) return md_dst; return NULL; } static inline struct ip_tunnel_info * skb_tunnel_info(const struct sk_buff *skb) { struct metadata_dst *md_dst = skb_metadata_dst(skb); struct dst_entry *dst; if (md_dst && md_dst->type == METADATA_IP_TUNNEL) return &md_dst->u.tun_info; dst = skb_dst(skb); if (dst && dst->lwtstate && (dst->lwtstate->type == LWTUNNEL_ENCAP_IP || dst->lwtstate->type == LWTUNNEL_ENCAP_IP6)) return lwt_tun_info(dst->lwtstate); return NULL; } static inline bool skb_valid_dst(const struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); return dst && !(dst->flags & DST_METADATA); } static inline int skb_metadata_dst_cmp(const struct sk_buff *skb_a, const struct sk_buff *skb_b) { const struct metadata_dst *a, *b; if (!(skb_a->_skb_refdst | skb_b->_skb_refdst)) return 0; a = (const struct metadata_dst *) skb_dst(skb_a); b = (const struct metadata_dst *) skb_dst(skb_b); if (!a != !b || a->type != b->type) return 1; switch (a->type) { case METADATA_HW_PORT_MUX: return memcmp(&a->u.port_info, &b->u.port_info, sizeof(a->u.port_info)); case METADATA_IP_TUNNEL: return memcmp(&a->u.tun_info, &b->u.tun_info, sizeof(a->u.tun_info) + a->u.tun_info.options_len); default: return 1; } } void metadata_dst_free(struct metadata_dst *); struct metadata_dst *metadata_dst_alloc(u8 optslen, enum metadata_type type, gfp_t flags); void metadata_dst_free_percpu(struct metadata_dst __percpu *md_dst); struct metadata_dst __percpu * metadata_dst_alloc_percpu(u8 optslen, enum metadata_type type, gfp_t flags); static inline struct metadata_dst *tun_rx_dst(int md_size) { struct metadata_dst *tun_dst; tun_dst = metadata_dst_alloc(md_size, METADATA_IP_TUNNEL, GFP_ATOMIC); if (!tun_dst) return NULL; tun_dst->u.tun_info.options_len = 0; tun_dst->u.tun_info.mode = 0; return tun_dst; } static inline struct metadata_dst *tun_dst_unclone(struct sk_buff *skb) { struct metadata_dst *md_dst = skb_metadata_dst(skb); int md_size; struct metadata_dst *new_md; if (!md_dst || md_dst->type != METADATA_IP_TUNNEL) return ERR_PTR(-EINVAL); md_size = md_dst->u.tun_info.options_len; new_md = metadata_dst_alloc(md_size, METADATA_IP_TUNNEL, GFP_ATOMIC); if (!new_md) return ERR_PTR(-ENOMEM); memcpy(&new_md->u.tun_info, &md_dst->u.tun_info, sizeof(struct ip_tunnel_info) + md_size); skb_dst_drop(skb); dst_hold(&new_md->dst); skb_dst_set(skb, &new_md->dst); return new_md; } static inline struct ip_tunnel_info *skb_tunnel_info_unclone(struct sk_buff *skb) { struct metadata_dst *dst; dst = tun_dst_unclone(skb); if (IS_ERR(dst)) return NULL; return &dst->u.tun_info; } static inline struct metadata_dst *__ip_tun_set_dst(__be32 saddr, __be32 daddr, __u8 tos, __u8 ttl, __be16 tp_dst, __be16 flags, __be64 tunnel_id, int md_size) { struct metadata_dst *tun_dst; tun_dst = tun_rx_dst(md_size); if (!tun_dst) return NULL; ip_tunnel_key_init(&tun_dst->u.tun_info.key, saddr, daddr, tos, ttl, 0, 0, tp_dst, tunnel_id, flags); return tun_dst; } static inline struct metadata_dst *ip_tun_rx_dst(struct sk_buff *skb, __be16 flags, __be64 tunnel_id, int md_size) { const struct iphdr *iph = ip_hdr(skb); return __ip_tun_set_dst(iph->saddr, iph->daddr, iph->tos, iph->ttl, 0, flags, tunnel_id, md_size); } static inline struct metadata_dst *__ipv6_tun_set_dst(const struct in6_addr *saddr, const struct in6_addr *daddr, __u8 tos, __u8 ttl, __be16 tp_dst, __be32 label, __be16 flags, __be64 tunnel_id, int md_size) { struct metadata_dst *tun_dst; struct ip_tunnel_info *info; tun_dst = tun_rx_dst(md_size); if (!tun_dst) return NULL; info = &tun_dst->u.tun_info; info->mode = IP_TUNNEL_INFO_IPV6; info->key.tun_flags = flags; info->key.tun_id = tunnel_id; info->key.tp_src = 0; info->key.tp_dst = tp_dst; info->key.u.ipv6.src = *saddr; info->key.u.ipv6.dst = *daddr; info->key.tos = tos; info->key.ttl = ttl; info->key.label = label; return tun_dst; } static inline struct metadata_dst *ipv6_tun_rx_dst(struct sk_buff *skb, __be16 flags, __be64 tunnel_id, int md_size) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); return __ipv6_tun_set_dst(&ip6h->saddr, &ip6h->daddr, ipv6_get_dsfield(ip6h), ip6h->hop_limit, 0, ip6_flowlabel(ip6h), flags, tunnel_id, md_size); } #endif /* __NET_DST_METADATA_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DELAY_H #define _LINUX_DELAY_H /* * Copyright (C) 1993 Linus Torvalds * * Delay routines, using a pre-computed "loops_per_jiffy" value. * * Please note that ndelay(), udelay() and mdelay() may return early for * several reasons: * 1. computed loops_per_jiffy too low (due to the time taken to * execute the timer interrupt.) * 2. cache behaviour affecting the time it takes to execute the * loop function. * 3. CPU clock rate changes. * * Please see this thread: * https://lists.openwall.net/linux-kernel/2011/01/09/56 */ #include <linux/kernel.h> extern unsigned long loops_per_jiffy; #include <asm/delay.h> /* * Using udelay() for intervals greater than a few milliseconds can * risk overflow for high loops_per_jiffy (high bogomips) machines. The * mdelay() provides a wrapper to prevent this. For delays greater * than MAX_UDELAY_MS milliseconds, the wrapper is used. Architecture * specific values can be defined in asm-???/delay.h as an override. * The 2nd mdelay() definition ensures GCC will optimize away the * while loop for the common cases where n <= MAX_UDELAY_MS -- Paul G. */ #ifndef MAX_UDELAY_MS #define MAX_UDELAY_MS 5 #endif #ifndef mdelay #define mdelay(n) (\ (__builtin_constant_p(n) && (n)<=MAX_UDELAY_MS) ? udelay((n)*1000) : \ ({unsigned long __ms=(n); while (__ms--) udelay(1000);})) #endif #ifndef ndelay static inline void ndelay(unsigned long x) { udelay(DIV_ROUND_UP(x, 1000)); } #define ndelay(x) ndelay(x) #endif extern unsigned long lpj_fine; void calibrate_delay(void); void __attribute__((weak)) calibration_delay_done(void); void msleep(unsigned int msecs); unsigned long msleep_interruptible(unsigned int msecs); void usleep_range(unsigned long min, unsigned long max); static inline void ssleep(unsigned int seconds) { msleep(seconds * 1000); } /* see Documentation/timers/timers-howto.rst for the thresholds */ static inline void fsleep(unsigned long usecs) { if (usecs <= 10) udelay(usecs); else if (usecs <= 20000) usleep_range(usecs, 2 * usecs); else msleep(DIV_ROUND_UP(usecs, 1000)); } #endif /* defined(_LINUX_DELAY_H) */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_LWTUNNEL_H #define __NET_LWTUNNEL_H 1 #include <linux/lwtunnel.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/types.h> #include <net/route.h> #define LWTUNNEL_HASH_BITS 7 #define LWTUNNEL_HASH_SIZE (1 << LWTUNNEL_HASH_BITS) /* lw tunnel state flags */ #define LWTUNNEL_STATE_OUTPUT_REDIRECT BIT(0) #define LWTUNNEL_STATE_INPUT_REDIRECT BIT(1) #define LWTUNNEL_STATE_XMIT_REDIRECT BIT(2) enum { LWTUNNEL_XMIT_DONE, LWTUNNEL_XMIT_CONTINUE, }; struct lwtunnel_state { __u16 type; __u16 flags; __u16 headroom; atomic_t refcnt; int (*orig_output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*orig_input)(struct sk_buff *); struct rcu_head rcu; __u8 data[]; }; struct lwtunnel_encap_ops { int (*build_state)(struct net *net, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **ts, struct netlink_ext_ack *extack); void (*destroy_state)(struct lwtunnel_state *lws); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); int (*input)(struct sk_buff *skb); int (*fill_encap)(struct sk_buff *skb, struct lwtunnel_state *lwtstate); int (*get_encap_size)(struct lwtunnel_state *lwtstate); int (*cmp_encap)(struct lwtunnel_state *a, struct lwtunnel_state *b); int (*xmit)(struct sk_buff *skb); struct module *owner; }; #ifdef CONFIG_LWTUNNEL void lwtstate_free(struct lwtunnel_state *lws); static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { if (lws) atomic_inc(&lws->refcnt); return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { if (!lws) return; if (atomic_dec_and_test(&lws->refcnt)) lwtstate_free(lws); } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_OUTPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_INPUT_REDIRECT)) return true; return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { if (lwtstate && (lwtstate->flags & LWTUNNEL_STATE_XMIT_REDIRECT)) return true; return false; } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { if ((lwtunnel_xmit_redirect(lwtstate) || lwtunnel_output_redirect(lwtstate)) && lwtstate->headroom < mtu) return lwtstate->headroom; return 0; } int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num); int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack); int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack); int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack); int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr); int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate); struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len); int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b); int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb); int lwtunnel_input(struct sk_buff *skb); int lwtunnel_xmit(struct sk_buff *skb); int bpf_lwt_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress); static inline void lwtunnel_set_redirect(struct dst_entry *dst) { if (lwtunnel_output_redirect(dst->lwtstate)) { dst->lwtstate->orig_output = dst->output; dst->output = lwtunnel_output; } if (lwtunnel_input_redirect(dst->lwtstate)) { dst->lwtstate->orig_input = dst->input; dst->input = lwtunnel_input; } } #else static inline void lwtstate_free(struct lwtunnel_state *lws) { } static inline struct lwtunnel_state * lwtstate_get(struct lwtunnel_state *lws) { return lws; } static inline void lwtstate_put(struct lwtunnel_state *lws) { } static inline bool lwtunnel_output_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_input_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline bool lwtunnel_xmit_redirect(struct lwtunnel_state *lwtstate) { return false; } static inline void lwtunnel_set_redirect(struct dst_entry *dst) { } static inline unsigned int lwtunnel_headroom(struct lwtunnel_state *lwtstate, unsigned int mtu) { return 0; } static inline int lwtunnel_encap_add_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_encap_del_ops(const struct lwtunnel_encap_ops *op, unsigned int num) { return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type(u16 encap_type, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG(extack, "CONFIG_LWTUNNEL is not enabled in this kernel"); return -EOPNOTSUPP; } static inline int lwtunnel_valid_encap_type_attr(struct nlattr *attr, int len, struct netlink_ext_ack *extack) { /* return 0 since we are not walking attr looking for * RTA_ENCAP_TYPE attribute on nexthops. */ return 0; } static inline int lwtunnel_build_state(struct net *net, u16 encap_type, struct nlattr *encap, unsigned int family, const void *cfg, struct lwtunnel_state **lws, struct netlink_ext_ack *extack) { return -EOPNOTSUPP; } static inline int lwtunnel_fill_encap(struct sk_buff *skb, struct lwtunnel_state *lwtstate, int encap_attr, int encap_type_attr) { return 0; } static inline int lwtunnel_get_encap_size(struct lwtunnel_state *lwtstate) { return 0; } static inline struct lwtunnel_state *lwtunnel_state_alloc(int hdr_len) { return NULL; } static inline int lwtunnel_cmp_encap(struct lwtunnel_state *a, struct lwtunnel_state *b) { return 0; } static inline int lwtunnel_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_input(struct sk_buff *skb) { return -EOPNOTSUPP; } static inline int lwtunnel_xmit(struct sk_buff *skb) { return -EOPNOTSUPP; } #endif /* CONFIG_LWTUNNEL */ #define MODULE_ALIAS_RTNL_LWT(encap_type) MODULE_ALIAS("rtnl-lwt-" __stringify(encap_type)) #endif /* __NET_LWTUNNEL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic API for algorithms (i.e., low-level API). * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_ALGAPI_H #define _CRYPTO_ALGAPI_H #include <linux/crypto.h> #include <linux/list.h> #include <linux/kernel.h> /* * Maximum values for blocksize and alignmask, used to allocate * static buffers that are big enough for any combination of * algs and architectures. Ciphers have a lower maximum size. */ #define MAX_ALGAPI_BLOCKSIZE 160 #define MAX_ALGAPI_ALIGNMASK 63 #define MAX_CIPHER_BLOCKSIZE 16 #define MAX_CIPHER_ALIGNMASK 15 struct crypto_aead; struct crypto_instance; struct module; struct rtattr; struct seq_file; struct sk_buff; struct crypto_type { unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); unsigned int (*extsize)(struct crypto_alg *alg); int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask); int (*init_tfm)(struct crypto_tfm *tfm); void (*show)(struct seq_file *m, struct crypto_alg *alg); int (*report)(struct sk_buff *skb, struct crypto_alg *alg); void (*free)(struct crypto_instance *inst); unsigned int type; unsigned int maskclear; unsigned int maskset; unsigned int tfmsize; }; struct crypto_instance { struct crypto_alg alg; struct crypto_template *tmpl; union { /* Node in list of instances after registration. */ struct hlist_node list; /* List of attached spawns before registration. */ struct crypto_spawn *spawns; }; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_template { struct list_head list; struct hlist_head instances; struct module *module; int (*create)(struct crypto_template *tmpl, struct rtattr **tb); char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_spawn { struct list_head list; struct crypto_alg *alg; union { /* Back pointer to instance after registration.*/ struct crypto_instance *inst; /* Spawn list pointer prior to registration. */ struct crypto_spawn *next; }; const struct crypto_type *frontend; u32 mask; bool dead; bool registered; }; struct crypto_queue { struct list_head list; struct list_head *backlog; unsigned int qlen; unsigned int max_qlen; }; struct scatter_walk { struct scatterlist *sg; unsigned int offset; }; void crypto_mod_put(struct crypto_alg *alg); int crypto_register_template(struct crypto_template *tmpl); int crypto_register_templates(struct crypto_template *tmpls, int count); void crypto_unregister_template(struct crypto_template *tmpl); void crypto_unregister_templates(struct crypto_template *tmpls, int count); struct crypto_template *crypto_lookup_template(const char *name); int crypto_register_instance(struct crypto_template *tmpl, struct crypto_instance *inst); void crypto_unregister_instance(struct crypto_instance *inst); int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); void crypto_drop_spawn(struct crypto_spawn *spawn); struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, u32 mask); void *crypto_spawn_tfm2(struct crypto_spawn *spawn); struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret); const char *crypto_attr_alg_name(struct rtattr *rta); int crypto_attr_u32(struct rtattr *rta, u32 *num); int crypto_inst_setname(struct crypto_instance *inst, const char *name, struct crypto_alg *alg); void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); int crypto_enqueue_request(struct crypto_queue *queue, struct crypto_async_request *request); void crypto_enqueue_request_head(struct crypto_queue *queue, struct crypto_async_request *request); struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); static inline unsigned int crypto_queue_len(struct crypto_queue *queue) { return queue->qlen; } void crypto_inc(u8 *a, unsigned int size); void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size); static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && __builtin_constant_p(size) && (size % sizeof(unsigned long)) == 0) { unsigned long *d = (unsigned long *)dst; unsigned long *s = (unsigned long *)src; while (size > 0) { *d++ ^= *s++; size -= sizeof(unsigned long); } } else { __crypto_xor(dst, dst, src, size); } } static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && __builtin_constant_p(size) && (size % sizeof(unsigned long)) == 0) { unsigned long *d = (unsigned long *)dst; unsigned long *s1 = (unsigned long *)src1; unsigned long *s2 = (unsigned long *)src2; while (size > 0) { *d++ = *s1++ ^ *s2++; size -= sizeof(unsigned long); } } else { __crypto_xor(dst, src1, src2, size); } } static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm) { return PTR_ALIGN(crypto_tfm_ctx(tfm), crypto_tfm_alg_alignmask(tfm) + 1); } static inline struct crypto_instance *crypto_tfm_alg_instance( struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct crypto_instance, alg); } static inline void *crypto_instance_ctx(struct crypto_instance *inst) { return inst->__ctx; } struct crypto_cipher_spawn { struct crypto_spawn base; }; static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct crypto_alg *crypto_spawn_cipher_alg( struct crypto_cipher_spawn *spawn) { return spawn->base.alg; } static inline struct crypto_cipher *crypto_spawn_cipher( struct crypto_cipher_spawn *spawn) { u32 type = CRYPTO_ALG_TYPE_CIPHER; u32 mask = CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask)); } static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm) { return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher; } static inline struct crypto_async_request *crypto_get_backlog( struct crypto_queue *queue) { return queue->backlog == &queue->list ? NULL : container_of(queue->backlog, struct crypto_async_request, list); } static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off) { return (algt->type ^ off) & algt->mask & off; } /* * When an algorithm uses another algorithm (e.g., if it's an instance of a * template), these are the flags that should always be set on the "outer" * algorithm if any "inner" algorithm has them set. */ #define CRYPTO_ALG_INHERITED_FLAGS \ (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \ CRYPTO_ALG_ALLOCATES_MEMORY) /* * Given the type and mask that specify the flags restrictions on a template * instance being created, return the mask that should be passed to * crypto_grab_*() (along with type=0) to honor any request the user made to * have any of the CRYPTO_ALG_INHERITED_FLAGS clear. */ static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt) { return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS); } noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size); /** * crypto_memneq - Compare two areas of memory without leaking * timing information. * * @a: One area of memory * @b: Another area of memory * @size: The size of the area. * * Returns 0 when data is equal, 1 otherwise. */ static inline int crypto_memneq(const void *a, const void *b, size_t size) { return __crypto_memneq(a, b, size) != 0UL ? 1 : 0; } int crypto_register_notifier(struct notifier_block *nb); int crypto_unregister_notifier(struct notifier_block *nb); /* Crypto notification events. */ enum { CRYPTO_MSG_ALG_REQUEST, CRYPTO_MSG_ALG_REGISTER, CRYPTO_MSG_ALG_LOADED, }; #endif /* _CRYPTO_ALGAPI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * include/linux/eventpoll.h ( Efficient event polling implementation ) * Copyright (C) 2001,...,2006 Davide Libenzi * * Davide Libenzi <davidel@xmailserver.org> */ #ifndef _LINUX_EVENTPOLL_H #define _LINUX_EVENTPOLL_H #include <uapi/linux/eventpoll.h> #include <uapi/linux/kcmp.h> /* Forward declarations to avoid compiler errors */ struct file; #ifdef CONFIG_EPOLL #ifdef CONFIG_KCMP struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff); #endif /* Used to initialize the epoll bits inside the "struct file" */ static inline void eventpoll_init_file(struct file *file) { INIT_LIST_HEAD(&file->f_ep_links); INIT_LIST_HEAD(&file->f_tfile_llink); } /* Used to release the epoll bits inside the "struct file" */ void eventpoll_release_file(struct file *file); /* * This is called from inside fs/file_table.c:__fput() to unlink files * from the eventpoll interface. We need to have this facility to cleanup * correctly files that are closed without being removed from the eventpoll * interface. */ static inline void eventpoll_release(struct file *file) { /* * Fast check to avoid the get/release of the semaphore. Since * we're doing this outside the semaphore lock, it might return * false negatives, but we don't care. It'll help in 99.99% of cases * to avoid the semaphore lock. False positives simply cannot happen * because the file in on the way to be removed and nobody ( but * eventpoll ) has still a reference to this file. */ if (likely(list_empty(&file->f_ep_links))) return; /* * The file is being closed while it is still linked to an epoll * descriptor. We need to handle this by correctly unlinking it * from its containers. */ eventpoll_release_file(file); } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock); /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ static inline int ep_op_has_event(int op) { return op != EPOLL_CTL_DEL; } #else static inline void eventpoll_init_file(struct file *file) {} static inline void eventpoll_release(struct file *file) {} #endif #endif /* #ifndef _LINUX_EVENTPOLL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 /* SPDX-License-Identifier: GPL-2.0 */ /* * A hash table (hashtab) maintains associations between * key values and datum values. The type of the key values * and the type of the datum values is arbitrary. The * functions for hash computation and key comparison are * provided by the creator of the table. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> */ #ifndef _SS_HASHTAB_H_ #define _SS_HASHTAB_H_ #include <linux/types.h> #include <linux/errno.h> #include <linux/sched.h> #define HASHTAB_MAX_NODES U32_MAX struct hashtab_key_params { u32 (*hash)(const void *key); /* hash function */ int (*cmp)(const void *key1, const void *key2); /* key comparison function */ }; struct hashtab_node { void *key; void *datum; struct hashtab_node *next; }; struct hashtab { struct hashtab_node **htable; /* hash table */ u32 size; /* number of slots in hash table */ u32 nel; /* number of elements in hash table */ }; struct hashtab_info { u32 slots_used; u32 max_chain_len; }; /* * Initializes a new hash table with the specified characteristics. * * Returns -ENOMEM if insufficient space is available or 0 otherwise. */ int hashtab_init(struct hashtab *h, u32 nel_hint); int __hashtab_insert(struct hashtab *h, struct hashtab_node **dst, void *key, void *datum); /* * Inserts the specified (key, datum) pair into the specified hash table. * * Returns -ENOMEM on memory allocation error, * -EEXIST if there is already an entry with the same key, * -EINVAL for general errors or 0 otherwise. */ static inline int hashtab_insert(struct hashtab *h, void *key, void *datum, struct hashtab_key_params key_params) { u32 hvalue; struct hashtab_node *prev, *cur; cond_resched(); if (!h->size || h->nel == HASHTAB_MAX_NODES) return -EINVAL; hvalue = key_params.hash(key) & (h->size - 1); prev = NULL; cur = h->htable[hvalue]; while (cur) { int cmp = key_params.cmp(key, cur->key); if (cmp == 0) return -EEXIST; if (cmp < 0) break; prev = cur; cur = cur->next; } return __hashtab_insert(h, prev ? &prev->next : &h->htable[hvalue], key, datum); } /* * Searches for the entry with the specified key in the hash table. * * Returns NULL if no entry has the specified key or * the datum of the entry otherwise. */ static inline void *hashtab_search(struct hashtab *h, const void *key, struct hashtab_key_params key_params) { u32 hvalue; struct hashtab_node *cur; if (!h->size) return NULL; hvalue = key_params.hash(key) & (h->size - 1); cur = h->htable[hvalue]; while (cur) { int cmp = key_params.cmp(key, cur->key); if (cmp == 0) return cur->datum; if (cmp < 0) break; cur = cur->next; } return NULL; } /* * Destroys the specified hash table. */ void hashtab_destroy(struct hashtab *h); /* * Applies the specified apply function to (key,datum,args) * for each entry in the specified hash table. * * The order in which the function is applied to the entries * is dependent upon the internal structure of the hash table. * * If apply returns a non-zero status, then hashtab_map will cease * iterating through the hash table and will propagate the error * return to its caller. */ int hashtab_map(struct hashtab *h, int (*apply)(void *k, void *d, void *args), void *args); int hashtab_duplicate(struct hashtab *new, struct hashtab *orig, int (*copy)(struct hashtab_node *new, struct hashtab_node *orig, void *args), int (*destroy)(void *k, void *d, void *args), void *args); /* Fill info with some hash table statistics */ void hashtab_stat(struct hashtab *h, struct hashtab_info *info); #endif /* _SS_HASHTAB_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_DESC_H #define _ASM_X86_DESC_H #include <asm/desc_defs.h> #include <asm/ldt.h> #include <asm/mmu.h> #include <asm/fixmap.h> #include <asm/irq_vectors.h> #include <asm/cpu_entry_area.h> #include <linux/smp.h> #include <linux/percpu.h> static inline void fill_ldt(struct desc_struct *desc, const struct user_desc *info) { desc->limit0 = info->limit & 0x0ffff; desc->base0 = (info->base_addr & 0x0000ffff); desc->base1 = (info->base_addr & 0x00ff0000) >> 16; desc->type = (info->read_exec_only ^ 1) << 1; desc->type |= info->contents << 2; /* Set the ACCESS bit so it can be mapped RO */ desc->type |= 1; desc->s = 1; desc->dpl = 0x3; desc->p = info->seg_not_present ^ 1; desc->limit1 = (info->limit & 0xf0000) >> 16; desc->avl = info->useable; desc->d = info->seg_32bit; desc->g = info->limit_in_pages; desc->base2 = (info->base_addr & 0xff000000) >> 24; /* * Don't allow setting of the lm bit. It would confuse * user_64bit_mode and would get overridden by sysret anyway. */ desc->l = 0; } struct gdt_page { struct desc_struct gdt[GDT_ENTRIES]; } __attribute__((aligned(PAGE_SIZE))); DECLARE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page); /* Provide the original GDT */ static inline struct desc_struct *get_cpu_gdt_rw(unsigned int cpu) { return per_cpu(gdt_page, cpu).gdt; } /* Provide the current original GDT */ static inline struct desc_struct *get_current_gdt_rw(void) { return this_cpu_ptr(&gdt_page)->gdt; } /* Provide the fixmap address of the remapped GDT */ static inline struct desc_struct *get_cpu_gdt_ro(int cpu) { return (struct desc_struct *)&get_cpu_entry_area(cpu)->gdt; } /* Provide the current read-only GDT */ static inline struct desc_struct *get_current_gdt_ro(void) { return get_cpu_gdt_ro(smp_processor_id()); } /* Provide the physical address of the GDT page. */ static inline phys_addr_t get_cpu_gdt_paddr(unsigned int cpu) { return per_cpu_ptr_to_phys(get_cpu_gdt_rw(cpu)); } static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func, unsigned dpl, unsigned ist, unsigned seg) { gate->offset_low = (u16) func; gate->bits.p = 1; gate->bits.dpl = dpl; gate->bits.zero = 0; gate->bits.type = type; gate->offset_middle = (u16) (func >> 16); #ifdef CONFIG_X86_64 gate->segment = __KERNEL_CS; gate->bits.ist = ist; gate->reserved = 0; gate->offset_high = (u32) (func >> 32); #else gate->segment = seg; gate->bits.ist = 0; #endif } static inline int desc_empty(const void *ptr) { const u32 *desc = ptr; return !(desc[0] | desc[1]); } #ifdef CONFIG_PARAVIRT_XXL #include <asm/paravirt.h> #else #define load_TR_desc() native_load_tr_desc() #define load_gdt(dtr) native_load_gdt(dtr) #define load_idt(dtr) native_load_idt(dtr) #define load_tr(tr) asm volatile("ltr %0"::"m" (tr)) #define load_ldt(ldt) asm volatile("lldt %0"::"m" (ldt)) #define store_gdt(dtr) native_store_gdt(dtr) #define store_tr(tr) (tr = native_store_tr()) #define load_TLS(t, cpu) native_load_tls(t, cpu) #define set_ldt native_set_ldt #define write_ldt_entry(dt, entry, desc) native_write_ldt_entry(dt, entry, desc) #define write_gdt_entry(dt, entry, desc, type) native_write_gdt_entry(dt, entry, desc, type) #define write_idt_entry(dt, entry, g) native_write_idt_entry(dt, entry, g) static inline void paravirt_alloc_ldt(struct desc_struct *ldt, unsigned entries) { } static inline void paravirt_free_ldt(struct desc_struct *ldt, unsigned entries) { } #endif /* CONFIG_PARAVIRT_XXL */ #define store_ldt(ldt) asm("sldt %0" : "=m"(ldt)) static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate) { memcpy(&idt[entry], gate, sizeof(*gate)); } static inline void native_write_ldt_entry(struct desc_struct *ldt, int entry, const void *desc) { memcpy(&ldt[entry], desc, 8); } static inline void native_write_gdt_entry(struct desc_struct *gdt, int entry, const void *desc, int type) { unsigned int size; switch (type) { case DESC_TSS: size = sizeof(tss_desc); break; case DESC_LDT: size = sizeof(ldt_desc); break; default: size = sizeof(*gdt); break; } memcpy(&gdt[entry], desc, size); } static inline void set_tssldt_descriptor(void *d, unsigned long addr, unsigned type, unsigned size) { struct ldttss_desc *desc = d; memset(desc, 0, sizeof(*desc)); desc->limit0 = (u16) size; desc->base0 = (u16) addr; desc->base1 = (addr >> 16) & 0xFF; desc->type = type; desc->p = 1; desc->limit1 = (size >> 16) & 0xF; desc->base2 = (addr >> 24) & 0xFF; #ifdef CONFIG_X86_64 desc->base3 = (u32) (addr >> 32); #endif } static inline void __set_tss_desc(unsigned cpu, unsigned int entry, struct x86_hw_tss *addr) { struct desc_struct *d = get_cpu_gdt_rw(cpu); tss_desc tss; set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS, __KERNEL_TSS_LIMIT); write_gdt_entry(d, entry, &tss, DESC_TSS); } #define set_tss_desc(cpu, addr) __set_tss_desc(cpu, GDT_ENTRY_TSS, addr) static inline void native_set_ldt(const void *addr, unsigned int entries) { if (likely(entries == 0)) asm volatile("lldt %w0"::"q" (0)); else { unsigned cpu = smp_processor_id(); ldt_desc ldt; set_tssldt_descriptor(&ldt, (unsigned long)addr, DESC_LDT, entries * LDT_ENTRY_SIZE - 1); write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_LDT, &ldt, DESC_LDT); asm volatile("lldt %w0"::"q" (GDT_ENTRY_LDT*8)); } } static inline void native_load_gdt(const struct desc_ptr *dtr) { asm volatile("lgdt %0"::"m" (*dtr)); } static __always_inline void native_load_idt(const struct desc_ptr *dtr) { asm volatile("lidt %0"::"m" (*dtr)); } static inline void native_store_gdt(struct desc_ptr *dtr) { asm volatile("sgdt %0":"=m" (*dtr)); } static inline void store_idt(struct desc_ptr *dtr) { asm volatile("sidt %0":"=m" (*dtr)); } /* * The LTR instruction marks the TSS GDT entry as busy. On 64-bit, the GDT is * a read-only remapping. To prevent a page fault, the GDT is switched to the * original writeable version when needed. */ #ifdef CONFIG_X86_64 static inline void native_load_tr_desc(void) { struct desc_ptr gdt; int cpu = raw_smp_processor_id(); bool restore = 0; struct desc_struct *fixmap_gdt; native_store_gdt(&gdt); fixmap_gdt = get_cpu_gdt_ro(cpu); /* * If the current GDT is the read-only fixmap, swap to the original * writeable version. Swap back at the end. */ if (gdt.address == (unsigned long)fixmap_gdt) { load_direct_gdt(cpu); restore = 1; } asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); if (restore) load_fixmap_gdt(cpu); } #else static inline void native_load_tr_desc(void) { asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8)); } #endif static inline unsigned long native_store_tr(void) { unsigned long tr; asm volatile("str %0":"=r" (tr)); return tr; } static inline void native_load_tls(struct thread_struct *t, unsigned int cpu) { struct desc_struct *gdt = get_cpu_gdt_rw(cpu); unsigned int i; for (i = 0; i < GDT_ENTRY_TLS_ENTRIES; i++) gdt[GDT_ENTRY_TLS_MIN + i] = t->tls_array[i]; } DECLARE_PER_CPU(bool, __tss_limit_invalid); static inline void force_reload_TR(void) { struct desc_struct *d = get_current_gdt_rw(); tss_desc tss; memcpy(&tss, &d[GDT_ENTRY_TSS], sizeof(tss_desc)); /* * LTR requires an available TSS, and the TSS is currently * busy. Make it be available so that LTR will work. */ tss.type = DESC_TSS; write_gdt_entry(d, GDT_ENTRY_TSS, &tss, DESC_TSS); load_TR_desc(); this_cpu_write(__tss_limit_invalid, false); } /* * Call this if you need the TSS limit to be correct, which should be the case * if and only if you have TIF_IO_BITMAP set or you're switching to a task * with TIF_IO_BITMAP set. */ static inline void refresh_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(this_cpu_read(__tss_limit_invalid))) force_reload_TR(); } /* * If you do something evil that corrupts the cached TSS limit (I'm looking * at you, VMX exits), call this function. * * The optimization here is that the TSS limit only matters for Linux if the * IO bitmap is in use. If the TSS limit gets forced to its minimum value, * everything works except that IO bitmap will be ignored and all CPL 3 IO * instructions will #GP, which is exactly what we want for normal tasks. */ static inline void invalidate_tss_limit(void) { DEBUG_LOCKS_WARN_ON(preemptible()); if (unlikely(test_thread_flag(TIF_IO_BITMAP))) force_reload_TR(); else this_cpu_write(__tss_limit_invalid, true); } /* This intentionally ignores lm, since 32-bit apps don't have that field. */ #define LDT_empty(info) \ ((info)->base_addr == 0 && \ (info)->limit == 0 && \ (info)->contents == 0 && \ (info)->read_exec_only == 1 && \ (info)->seg_32bit == 0 && \ (info)->limit_in_pages == 0 && \ (info)->seg_not_present == 1 && \ (info)->useable == 0) /* Lots of programs expect an all-zero user_desc to mean "no segment at all". */ static inline bool LDT_zero(const struct user_desc *info) { return (info->base_addr == 0 && info->limit == 0 && info->contents == 0 && info->read_exec_only == 0 && info->seg_32bit == 0 && info->limit_in_pages == 0 && info->seg_not_present == 0 && info->useable == 0); } static inline void clear_LDT(void) { set_ldt(NULL, 0); } static inline unsigned long get_desc_base(const struct desc_struct *desc) { return (unsigned)(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); } static inline void set_desc_base(struct desc_struct *desc, unsigned long base) { desc->base0 = base & 0xffff; desc->base1 = (base >> 16) & 0xff; desc->base2 = (base >> 24) & 0xff; } static inline unsigned long get_desc_limit(const struct desc_struct *desc) { return desc->limit0 | (desc->limit1 << 16); } static inline void set_desc_limit(struct desc_struct *desc, unsigned long limit) { desc->limit0 = limit & 0xffff; desc->limit1 = (limit >> 16) & 0xf; } void alloc_intr_gate(unsigned int n, const void *addr); static inline void init_idt_data(struct idt_data *data, unsigned int n, const void *addr) { BUG_ON(n > 0xFF); memset(data, 0, sizeof(*data)); data->vector = n; data->addr = addr; data->segment = __KERNEL_CS; data->bits.type = GATE_INTERRUPT; data->bits.p = 1; } static inline void idt_init_desc(gate_desc *gate, const struct idt_data *d) { unsigned long addr = (unsigned long) d->addr; gate->offset_low = (u16) addr; gate->segment = (u16) d->segment; gate->bits = d->bits; gate->offset_middle = (u16) (addr >> 16); #ifdef CONFIG_X86_64 gate->offset_high = (u32) (addr >> 32); gate->reserved = 0; #endif } extern unsigned long system_vectors[]; extern void load_current_idt(void); extern void idt_setup_early_handler(void); extern void idt_setup_early_traps(void); extern void idt_setup_traps(void); extern void idt_setup_apic_and_irq_gates(void); extern bool idt_is_f00f_address(unsigned long address); #ifdef CONFIG_X86_64 extern void idt_setup_early_pf(void); extern void idt_setup_ist_traps(void); #else static inline void idt_setup_early_pf(void) { } static inline void idt_setup_ist_traps(void) { } #endif extern void idt_invalidate(void *addr); #endif /* _ASM_X86_DESC_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MBCACHE_H #define _LINUX_MBCACHE_H #include <linux/hash.h> #include <linux/list_bl.h> #include <linux/list.h> #include <linux/atomic.h> #include <linux/fs.h> struct mb_cache; struct mb_cache_entry { /* List of entries in cache - protected by cache->c_list_lock */ struct list_head e_list; /* Hash table list - protected by hash chain bitlock */ struct hlist_bl_node e_hash_list; atomic_t e_refcnt; /* Key in hash - stable during lifetime of the entry */ u32 e_key; u32 e_referenced:1; u32 e_reusable:1; /* User provided value - stable during lifetime of the entry */ u64 e_value; }; struct mb_cache *mb_cache_create(int bucket_bits); void mb_cache_destroy(struct mb_cache *cache); int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, u64 value, bool reusable); void __mb_cache_entry_free(struct mb_cache_entry *entry); static inline int mb_cache_entry_put(struct mb_cache *cache, struct mb_cache_entry *entry) { if (!atomic_dec_and_test(&entry->e_refcnt)) return 0; __mb_cache_entry_free(entry); return 1; } void mb_cache_entry_delete(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, u64 value); struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, u32 key); struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, struct mb_cache_entry *entry); void mb_cache_entry_touch(struct mb_cache *cache, struct mb_cache_entry *entry); #endif /* _LINUX_MBCACHE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include <linux/sched.h> #include <linux/uaccess.h> struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; struct cgroup *cgrp; struct css_set *cset; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *, unsigned long); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *fork_idle(int); struct mm_struct *copy_init_mm(void); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (refcount_dec_and_test(&t->usage)) __put_task_struct(t); } static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPAT_H #define _LINUX_COMPAT_H /* * These are the type definitions for the architecture specific * syscall compatibility layer. */ #include <linux/types.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/param.h> /* for HZ */ #include <linux/sem.h> #include <linux/socket.h> #include <linux/if.h> #include <linux/fs.h> #include <linux/aio_abi.h> /* for aio_context_t */ #include <linux/uaccess.h> #include <linux/unistd.h> #include <asm/compat.h> #ifdef CONFIG_COMPAT #include <asm/siginfo.h> #include <asm/signal.h> #endif #ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER /* * It may be useful for an architecture to override the definitions of the * COMPAT_SYSCALL_DEFINE0 and COMPAT_SYSCALL_DEFINEx() macros, in particular * to use a different calling convention for syscalls. To allow for that, + the prototypes for the compat_sys_*() functions below will *not* be included * if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #include <asm/syscall_wrapper.h> #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ #ifndef COMPAT_USE_64BIT_TIME #define COMPAT_USE_64BIT_TIME 0 #endif #ifndef __SC_DELOUSE #define __SC_DELOUSE(t,v) ((__force t)(unsigned long)(v)) #endif #ifndef COMPAT_SYSCALL_DEFINE0 #define COMPAT_SYSCALL_DEFINE0(name) \ asmlinkage long compat_sys_##name(void); \ ALLOW_ERROR_INJECTION(compat_sys_##name, ERRNO); \ asmlinkage long compat_sys_##name(void) #endif /* COMPAT_SYSCALL_DEFINE0 */ #define COMPAT_SYSCALL_DEFINE1(name, ...) \ COMPAT_SYSCALL_DEFINEx(1, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE2(name, ...) \ COMPAT_SYSCALL_DEFINEx(2, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE3(name, ...) \ COMPAT_SYSCALL_DEFINEx(3, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE4(name, ...) \ COMPAT_SYSCALL_DEFINEx(4, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE5(name, ...) \ COMPAT_SYSCALL_DEFINEx(5, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE6(name, ...) \ COMPAT_SYSCALL_DEFINEx(6, _##name, __VA_ARGS__) /* * The asmlinkage stub is aliased to a function named __se_compat_sys_*() which * sign-extends 32-bit ints to longs whenever needed. The actual work is * done within __do_compat_sys_*(). */ #ifndef COMPAT_SYSCALL_DEFINEx #define COMPAT_SYSCALL_DEFINEx(x, name, ...) \ __diag_push(); \ __diag_ignore(GCC, 8, "-Wattribute-alias", \ "Type aliasing is used to sanitize syscall arguments");\ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) \ __attribute__((alias(__stringify(__se_compat_sys##name)))); \ ALLOW_ERROR_INJECTION(compat_sys##name, ERRNO); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__));\ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \ { \ long ret = __do_compat_sys##name(__MAP(x,__SC_DELOUSE,__VA_ARGS__));\ __MAP(x,__SC_TEST,__VA_ARGS__); \ return ret; \ } \ __diag_pop(); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) #endif /* COMPAT_SYSCALL_DEFINEx */ struct compat_iovec { compat_uptr_t iov_base; compat_size_t iov_len; }; #ifdef CONFIG_COMPAT #ifndef compat_user_stack_pointer #define compat_user_stack_pointer() current_user_stack_pointer() #endif #ifndef compat_sigaltstack /* we'll need that for MIPS */ typedef struct compat_sigaltstack { compat_uptr_t ss_sp; int ss_flags; compat_size_t ss_size; } compat_stack_t; #endif #ifndef COMPAT_MINSIGSTKSZ #define COMPAT_MINSIGSTKSZ MINSIGSTKSZ #endif #define compat_jiffies_to_clock_t(x) \ (((unsigned long)(x) * COMPAT_USER_HZ) / HZ) typedef __compat_uid32_t compat_uid_t; typedef __compat_gid32_t compat_gid_t; struct compat_sel_arg_struct; struct rusage; struct old_itimerval32; struct compat_tms { compat_clock_t tms_utime; compat_clock_t tms_stime; compat_clock_t tms_cutime; compat_clock_t tms_cstime; }; #define _COMPAT_NSIG_WORDS (_COMPAT_NSIG / _COMPAT_NSIG_BPW) typedef struct { compat_sigset_word sig[_COMPAT_NSIG_WORDS]; } compat_sigset_t; int set_compat_user_sigmask(const compat_sigset_t __user *umask, size_t sigsetsize); struct compat_sigaction { #ifndef __ARCH_HAS_IRIX_SIGACTION compat_uptr_t sa_handler; compat_ulong_t sa_flags; #else compat_uint_t sa_flags; compat_uptr_t sa_handler; #endif #ifdef __ARCH_HAS_SA_RESTORER compat_uptr_t sa_restorer; #endif compat_sigset_t sa_mask __packed; }; typedef union compat_sigval { compat_int_t sival_int; compat_uptr_t sival_ptr; } compat_sigval_t; typedef struct compat_siginfo { int si_signo; #ifndef __ARCH_HAS_SWAPPED_SIGINFO int si_errno; int si_code; #else int si_code; int si_errno; #endif union { int _pad[128/sizeof(int) - 3]; /* kill() */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ } _kill; /* POSIX.1b timers */ struct { compat_timer_t _tid; /* timer id */ int _overrun; /* overrun count */ compat_sigval_t _sigval; /* same as below */ } _timer; /* POSIX.1b signals */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ compat_sigval_t _sigval; } _rt; /* SIGCHLD */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_clock_t _utime; compat_clock_t _stime; } _sigchld; #ifdef CONFIG_X86_X32_ABI /* SIGCHLD (x32 version) */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_s64 _utime; compat_s64 _stime; } _sigchld_x32; #endif /* SIGILL, SIGFPE, SIGSEGV, SIGBUS, SIGTRAP, SIGEMT */ struct { compat_uptr_t _addr; /* faulting insn/memory ref. */ #ifdef __ARCH_SI_TRAPNO int _trapno; /* TRAP # which caused the signal */ #endif #define __COMPAT_ADDR_BND_PKEY_PAD (__alignof__(compat_uptr_t) < sizeof(short) ? \ sizeof(short) : __alignof__(compat_uptr_t)) union { /* * used when si_code=BUS_MCEERR_AR or * used when si_code=BUS_MCEERR_AO */ short int _addr_lsb; /* Valid LSB of the reported address. */ /* used when si_code=SEGV_BNDERR */ struct { char _dummy_bnd[__COMPAT_ADDR_BND_PKEY_PAD]; compat_uptr_t _lower; compat_uptr_t _upper; } _addr_bnd; /* used when si_code=SEGV_PKUERR */ struct { char _dummy_pkey[__COMPAT_ADDR_BND_PKEY_PAD]; u32 _pkey; } _addr_pkey; }; } _sigfault; /* SIGPOLL */ struct { compat_long_t _band; /* POLL_IN, POLL_OUT, POLL_MSG */ int _fd; } _sigpoll; struct { compat_uptr_t _call_addr; /* calling user insn */ int _syscall; /* triggering system call number */ unsigned int _arch; /* AUDIT_ARCH_* of syscall */ } _sigsys; } _sifields; } compat_siginfo_t; struct compat_rlimit { compat_ulong_t rlim_cur; compat_ulong_t rlim_max; }; struct compat_rusage { struct old_timeval32 ru_utime; struct old_timeval32 ru_stime; compat_long_t ru_maxrss; compat_long_t ru_ixrss; compat_long_t ru_idrss; compat_long_t ru_isrss; compat_long_t ru_minflt; compat_long_t ru_majflt; compat_long_t ru_nswap; compat_long_t ru_inblock; compat_long_t ru_oublock; compat_long_t ru_msgsnd; compat_long_t ru_msgrcv; compat_long_t ru_nsignals; compat_long_t ru_nvcsw; compat_long_t ru_nivcsw; }; extern int put_compat_rusage(const struct rusage *, struct compat_rusage __user *); struct compat_siginfo; struct __compat_aio_sigset; struct compat_dirent { u32 d_ino; compat_off_t d_off; u16 d_reclen; char d_name[256]; }; struct compat_ustat { compat_daddr_t f_tfree; compat_ino_t f_tinode; char f_fname[6]; char f_fpack[6]; }; #define COMPAT_SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int)) - 3) typedef struct compat_sigevent { compat_sigval_t sigev_value; compat_int_t sigev_signo; compat_int_t sigev_notify; union { compat_int_t _pad[COMPAT_SIGEV_PAD_SIZE]; compat_int_t _tid; struct { compat_uptr_t _function; compat_uptr_t _attribute; } _sigev_thread; } _sigev_un; } compat_sigevent_t; struct compat_ifmap { compat_ulong_t mem_start; compat_ulong_t mem_end; unsigned short base_addr; unsigned char irq; unsigned char dma; unsigned char port; }; struct compat_if_settings { unsigned int type; /* Type of physical device or protocol */ unsigned int size; /* Size of the data allocated by the caller */ compat_uptr_t ifs_ifsu; /* union of pointers */ }; struct compat_ifreq { union { char ifrn_name[IFNAMSIZ]; /* if name, e.g. "en0" */ } ifr_ifrn; union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct sockaddr ifru_netmask; struct sockaddr ifru_hwaddr; short ifru_flags; compat_int_t ifru_ivalue; compat_int_t ifru_mtu; struct compat_ifmap ifru_map; char ifru_slave[IFNAMSIZ]; /* Just fits the size */ char ifru_newname[IFNAMSIZ]; compat_caddr_t ifru_data; struct compat_if_settings ifru_settings; } ifr_ifru; }; struct compat_ifconf { compat_int_t ifc_len; /* size of buffer */ compat_caddr_t ifcbuf; }; struct compat_robust_list { compat_uptr_t next; }; struct compat_robust_list_head { struct compat_robust_list list; compat_long_t futex_offset; compat_uptr_t list_op_pending; }; #ifdef CONFIG_COMPAT_OLD_SIGACTION struct compat_old_sigaction { compat_uptr_t sa_handler; compat_old_sigset_t sa_mask; compat_ulong_t sa_flags; compat_uptr_t sa_restorer; }; #endif struct compat_keyctl_kdf_params { compat_uptr_t hashname; compat_uptr_t otherinfo; __u32 otherinfolen; __u32 __spare[8]; }; struct compat_statfs; struct compat_statfs64; struct compat_old_linux_dirent; struct compat_linux_dirent; struct linux_dirent64; struct compat_msghdr; struct compat_mmsghdr; struct compat_sysinfo; struct compat_sysctl_args; struct compat_kexec_segment; struct compat_mq_attr; struct compat_msgbuf; #define BITS_PER_COMPAT_LONG (8*sizeof(compat_long_t)) #define BITS_TO_COMPAT_LONGS(bits) DIV_ROUND_UP(bits, BITS_PER_COMPAT_LONG) long compat_get_bitmap(unsigned long *mask, const compat_ulong_t __user *umask, unsigned long bitmap_size); long compat_put_bitmap(compat_ulong_t __user *umask, unsigned long *mask, unsigned long bitmap_size); void copy_siginfo_to_external32(struct compat_siginfo *to, const struct kernel_siginfo *from); int copy_siginfo_from_user32(kernel_siginfo_t *to, const struct compat_siginfo __user *from); int __copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #ifndef copy_siginfo_to_user32 #define copy_siginfo_to_user32 __copy_siginfo_to_user32 #endif int get_compat_sigevent(struct sigevent *event, const struct compat_sigevent __user *u_event); extern int get_compat_sigset(sigset_t *set, const compat_sigset_t __user *compat); /* * Defined inline such that size can be compile time constant, which avoids * CONFIG_HARDENED_USERCOPY complaining about copies from task_struct */ static inline int put_compat_sigset(compat_sigset_t __user *compat, const sigset_t *set, unsigned int size) { /* size <= sizeof(compat_sigset_t) <= sizeof(sigset_t) */ #ifdef __BIG_ENDIAN compat_sigset_t v; switch (_NSIG_WORDS) { case 4: v.sig[7] = (set->sig[3] >> 32); v.sig[6] = set->sig[3]; fallthrough; case 3: v.sig[5] = (set->sig[2] >> 32); v.sig[4] = set->sig[2]; fallthrough; case 2: v.sig[3] = (set->sig[1] >> 32); v.sig[2] = set->sig[1]; fallthrough; case 1: v.sig[1] = (set->sig[0] >> 32); v.sig[0] = set->sig[0]; } return copy_to_user(compat, &v, size) ? -EFAULT : 0; #else return copy_to_user(compat, set, size) ? -EFAULT : 0; #endif } extern int compat_ptrace_request(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); extern long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); struct epoll_event; /* fortunately, this one is fixed-layout */ extern void __user *compat_alloc_user_space(unsigned long len); int compat_restore_altstack(const compat_stack_t __user *uss); int __compat_save_altstack(compat_stack_t __user *, unsigned long); #define unsafe_compat_save_altstack(uss, sp, label) do { \ compat_stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user(ptr_to_compat((void __user *)t->sas_ss_sp), \ &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); /* * These syscall function prototypes are kept in the same order as * include/uapi/asm-generic/unistd.h. Deprecated or obsolete system calls * go below. * * Please note that these prototypes here are only provided for information * purposes, for static analysis, and for linking from the syscall table. * These functions should not be called elsewhere from kernel code. * * As the syscall calling convention may be different from the default * for architectures overriding the syscall calling convention, do not * include the prototypes if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #ifndef CONFIG_ARCH_HAS_SYSCALL_WRAPPER asmlinkage long compat_sys_io_setup(unsigned nr_reqs, u32 __user *ctx32p); asmlinkage long compat_sys_io_submit(compat_aio_context_t ctx_id, int nr, u32 __user *iocb); asmlinkage long compat_sys_io_pgetevents(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct old_timespec32 __user *timeout, const struct __compat_aio_sigset __user *usig); asmlinkage long compat_sys_io_pgetevents_time64(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct __kernel_timespec __user *timeout, const struct __compat_aio_sigset __user *usig); /* fs/cookies.c */ asmlinkage long compat_sys_lookup_dcookie(u32, u32, char __user *, compat_size_t); /* fs/eventpoll.c */ asmlinkage long compat_sys_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, int timeout, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/fcntl.c */ asmlinkage long compat_sys_fcntl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); asmlinkage long compat_sys_fcntl64(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/ioctl.c */ asmlinkage long compat_sys_ioctl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/open.c */ asmlinkage long compat_sys_statfs(const char __user *pathname, struct compat_statfs __user *buf); asmlinkage long compat_sys_statfs64(const char __user *pathname, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_fstatfs(unsigned int fd, struct compat_statfs __user *buf); asmlinkage long compat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_truncate(const char __user *, compat_off_t); asmlinkage long compat_sys_ftruncate(unsigned int, compat_ulong_t); /* No generic prototype for truncate64, ftruncate64, fallocate */ asmlinkage long compat_sys_openat(int dfd, const char __user *filename, int flags, umode_t mode); /* fs/readdir.c */ asmlinkage long compat_sys_getdents(unsigned int fd, struct compat_linux_dirent __user *dirent, unsigned int count); /* fs/read_write.c */ asmlinkage long compat_sys_lseek(unsigned int, compat_off_t, unsigned int); /* No generic prototype for pread64 and pwrite64 */ asmlinkage ssize_t compat_sys_preadv(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); asmlinkage ssize_t compat_sys_pwritev(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64 asmlinkage long compat_sys_preadv64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64 asmlinkage long compat_sys_pwritev64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif /* fs/sendfile.c */ asmlinkage long compat_sys_sendfile(int out_fd, int in_fd, compat_off_t __user *offset, compat_size_t count); asmlinkage long compat_sys_sendfile64(int out_fd, int in_fd, compat_loff_t __user *offset, compat_size_t count); /* fs/select.c */ asmlinkage long compat_sys_pselect6_time32(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timespec32 __user *tsp, void __user *sig); asmlinkage long compat_sys_pselect6_time64(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct __kernel_timespec __user *tsp, void __user *sig); asmlinkage long compat_sys_ppoll_time32(struct pollfd __user *ufds, unsigned int nfds, struct old_timespec32 __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); asmlinkage long compat_sys_ppoll_time64(struct pollfd __user *ufds, unsigned int nfds, struct __kernel_timespec __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/signalfd.c */ asmlinkage long compat_sys_signalfd4(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize, int flags); /* fs/stat.c */ asmlinkage long compat_sys_newfstatat(unsigned int dfd, const char __user *filename, struct compat_stat __user *statbuf, int flag); asmlinkage long compat_sys_newfstat(unsigned int fd, struct compat_stat __user *statbuf); /* fs/sync.c: No generic prototype for sync_file_range and sync_file_range2 */ /* kernel/exit.c */ asmlinkage long compat_sys_waitid(int, compat_pid_t, struct compat_siginfo __user *, int, struct compat_rusage __user *); /* kernel/futex.c */ asmlinkage long compat_sys_set_robust_list(struct compat_robust_list_head __user *head, compat_size_t len); asmlinkage long compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, compat_size_t __user *len_ptr); /* kernel/itimer.c */ asmlinkage long compat_sys_getitimer(int which, struct old_itimerval32 __user *it); asmlinkage long compat_sys_setitimer(int which, struct old_itimerval32 __user *in, struct old_itimerval32 __user *out); /* kernel/kexec.c */ asmlinkage long compat_sys_kexec_load(compat_ulong_t entry, compat_ulong_t nr_segments, struct compat_kexec_segment __user *, compat_ulong_t flags); /* kernel/posix-timers.c */ asmlinkage long compat_sys_timer_create(clockid_t which_clock, struct compat_sigevent __user *timer_event_spec, timer_t __user *created_timer_id); /* kernel/ptrace.c */ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, compat_long_t addr, compat_long_t data); /* kernel/sched/core.c */ asmlinkage long compat_sys_sched_setaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); /* kernel/signal.c */ asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr, compat_stack_t __user *uoss_ptr); asmlinkage long compat_sys_rt_sigsuspend(compat_sigset_t __user *unewset, compat_size_t sigsetsize); #ifndef CONFIG_ODD_RT_SIGACTION asmlinkage long compat_sys_rt_sigaction(int, const struct compat_sigaction __user *, struct compat_sigaction __user *, compat_size_t); #endif asmlinkage long compat_sys_rt_sigprocmask(int how, compat_sigset_t __user *set, compat_sigset_t __user *oset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigpending(compat_sigset_t __user *uset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time32(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct old_timespec32 __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time64(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct __kernel_timespec __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigqueueinfo(compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); /* No generic prototype for rt_sigreturn */ /* kernel/sys.c */ asmlinkage long compat_sys_times(struct compat_tms __user *tbuf); asmlinkage long compat_sys_getrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_setrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_getrusage(int who, struct compat_rusage __user *ru); /* kernel/time.c */ asmlinkage long compat_sys_gettimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); asmlinkage long compat_sys_settimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); /* kernel/timer.c */ asmlinkage long compat_sys_sysinfo(struct compat_sysinfo __user *info); /* ipc/mqueue.c */ asmlinkage long compat_sys_mq_open(const char __user *u_name, int oflag, compat_mode_t mode, struct compat_mq_attr __user *u_attr); asmlinkage long compat_sys_mq_notify(mqd_t mqdes, const struct compat_sigevent __user *u_notification); asmlinkage long compat_sys_mq_getsetattr(mqd_t mqdes, const struct compat_mq_attr __user *u_mqstat, struct compat_mq_attr __user *u_omqstat); /* ipc/msg.c */ asmlinkage long compat_sys_msgctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); asmlinkage long compat_sys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); /* ipc/sem.c */ asmlinkage long compat_sys_semctl(int semid, int semnum, int cmd, int arg); /* ipc/shm.c */ asmlinkage long compat_sys_shmctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_shmat(int shmid, compat_uptr_t shmaddr, int shmflg); /* net/socket.c */ asmlinkage long compat_sys_recvfrom(int fd, void __user *buf, compat_size_t len, unsigned flags, struct sockaddr __user *addr, int __user *addrlen); asmlinkage long compat_sys_sendmsg(int fd, struct compat_msghdr __user *msg, unsigned flags); asmlinkage long compat_sys_recvmsg(int fd, struct compat_msghdr __user *msg, unsigned int flags); /* mm/filemap.c: No generic prototype for readahead */ /* security/keys/keyctl.c */ asmlinkage long compat_sys_keyctl(u32 option, u32 arg2, u32 arg3, u32 arg4, u32 arg5); /* arch/example/kernel/sys_example.c */ asmlinkage long compat_sys_execve(const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp); /* mm/fadvise.c: No generic prototype for fadvise64_64 */ /* mm/, CONFIG_MMU only */ asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, compat_ulong_t mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t flags); asmlinkage long compat_sys_get_mempolicy(int __user *policy, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t addr, compat_ulong_t flags); asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode); asmlinkage long compat_sys_migrate_pages(compat_pid_t pid, compat_ulong_t maxnode, const compat_ulong_t __user *old_nodes, const compat_ulong_t __user *new_nodes); asmlinkage long compat_sys_move_pages(pid_t pid, compat_ulong_t nr_pages, __u32 __user *pages, const int __user *nodes, int __user *status, int flags); asmlinkage long compat_sys_rt_tgsigqueueinfo(compat_pid_t tgid, compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); asmlinkage long compat_sys_recvmmsg_time64(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct __kernel_timespec __user *timeout); asmlinkage long compat_sys_recvmmsg_time32(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct old_timespec32 __user *timeout); asmlinkage long compat_sys_wait4(compat_pid_t pid, compat_uint_t __user *stat_addr, int options, struct compat_rusage __user *ru); asmlinkage long compat_sys_fanotify_mark(int, unsigned int, __u32, __u32, int, const char __user *); asmlinkage long compat_sys_open_by_handle_at(int mountdirfd, struct file_handle __user *handle, int flags); asmlinkage long compat_sys_sendmmsg(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags); asmlinkage long compat_sys_execveat(int dfd, const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp, int flags); asmlinkage ssize_t compat_sys_preadv2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); asmlinkage ssize_t compat_sys_pwritev2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64V2 asmlinkage long compat_sys_preadv64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64V2 asmlinkage long compat_sys_pwritev64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif /* * Deprecated system calls which are still defined in * include/uapi/asm-generic/unistd.h and wanted by >= 1 arch */ /* __ARCH_WANT_SYSCALL_NO_AT */ asmlinkage long compat_sys_open(const char __user *filename, int flags, umode_t mode); /* __ARCH_WANT_SYSCALL_NO_FLAGS */ asmlinkage long compat_sys_signalfd(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* __ARCH_WANT_SYSCALL_OFF_T */ asmlinkage long compat_sys_newstat(const char __user *filename, struct compat_stat __user *statbuf); asmlinkage long compat_sys_newlstat(const char __user *filename, struct compat_stat __user *statbuf); /* __ARCH_WANT_SYSCALL_DEPRECATED */ asmlinkage long compat_sys_select(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timeval32 __user *tvp); asmlinkage long compat_sys_ustat(unsigned dev, struct compat_ustat __user *u32); asmlinkage long compat_sys_recv(int fd, void __user *buf, compat_size_t len, unsigned flags); /* obsolete: fs/readdir.c */ asmlinkage long compat_sys_old_readdir(unsigned int fd, struct compat_old_linux_dirent __user *, unsigned int count); /* obsolete: fs/select.c */ asmlinkage long compat_sys_old_select(struct compat_sel_arg_struct __user *arg); /* obsolete: ipc */ asmlinkage long compat_sys_ipc(u32, int, int, u32, compat_uptr_t, u32); /* obsolete: kernel/signal.c */ #ifdef __ARCH_WANT_SYS_SIGPENDING asmlinkage long compat_sys_sigpending(compat_old_sigset_t __user *set); #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *nset, compat_old_sigset_t __user *oset); #endif #ifdef CONFIG_COMPAT_OLD_SIGACTION asmlinkage long compat_sys_sigaction(int sig, const struct compat_old_sigaction __user *act, struct compat_old_sigaction __user *oact); #endif /* obsolete: net/socket.c */ asmlinkage long compat_sys_socketcall(int call, u32 __user *args); #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ /* * For most but not all architectures, "am I in a compat syscall?" and * "am I a compat task?" are the same question. For architectures on which * they aren't the same question, arch code can override in_compat_syscall. */ #ifndef in_compat_syscall static inline bool in_compat_syscall(void) { return is_compat_task(); } #endif /** * ns_to_old_timeval32 - Compat version of ns_to_timeval * @nsec: the nanoseconds value to be converted * * Returns the old_timeval32 representation of the nsec parameter. */ static inline struct old_timeval32 ns_to_old_timeval32(s64 nsec) { struct __kernel_old_timeval tv; struct old_timeval32 ctv; tv = ns_to_kernel_old_timeval(nsec); ctv.tv_sec = tv.tv_sec; ctv.tv_usec = tv.tv_usec; return ctv; } /* * Kernel code should not call compat syscalls (i.e., compat_sys_xyzyyz()) * directly. Instead, use one of the functions which work equivalently, such * as the kcompat_sys_xyzyyz() functions prototyped below. */ int kcompat_sys_statfs64(const char __user * pathname, compat_size_t sz, struct compat_statfs64 __user * buf); int kcompat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user * buf); #else /* !CONFIG_COMPAT */ #define is_compat_task() (0) /* Ensure no one redefines in_compat_syscall() under !CONFIG_COMPAT */ #define in_compat_syscall in_compat_syscall static inline bool in_compat_syscall(void) { return false; } #endif /* CONFIG_COMPAT */ /* * Some legacy ABIs like the i386 one use less than natural alignment for 64-bit * types, and will need special compat treatment for that. Most architectures * don't need that special handling even for compat syscalls. */ #ifndef compat_need_64bit_alignment_fixup #define compat_need_64bit_alignment_fixup() false #endif /* * A pointer passed in from user mode. This should not * be used for syscall parameters, just declare them * as pointers because the syscall entry code will have * appropriately converted them already. */ #ifndef compat_ptr static inline void __user *compat_ptr(compat_uptr_t uptr) { return (void __user *)(unsigned long)uptr; } #endif static inline compat_uptr_t ptr_to_compat(void __user *uptr) { return (u32)(unsigned long)uptr; } #endif /* _LINUX_COMPAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FS_H #define _LINUX_FS_H #include <linux/linkage.h> #include <linux/wait_bit.h> #include <linux/kdev_t.h> #include <linux/dcache.h> #include <linux/path.h> #include <linux/stat.h> #include <linux/cache.h> #include <linux/list.h> #include <linux/list_lru.h> #include <linux/llist.h> #include <linux/radix-tree.h> #include <linux/xarray.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/pid.h> #include <linux/bug.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/mm_types.h> #include <linux/capability.h> #include <linux/semaphore.h> #include <linux/fcntl.h> #include <linux/rculist_bl.h> #include <linux/atomic.h> #include <linux/shrinker.h> #include <linux/migrate_mode.h> #include <linux/uidgid.h> #include <linux/lockdep.h> #include <linux/percpu-rwsem.h> #include <linux/workqueue.h> #include <linux/delayed_call.h> #include <linux/uuid.h> #include <linux/errseq.h> #include <linux/ioprio.h> #include <linux/fs_types.h> #include <linux/build_bug.h> #include <linux/stddef.h> #include <asm/byteorder.h> #include <uapi/linux/fs.h> struct backing_dev_info; struct bdi_writeback; struct bio; struct export_operations; struct fiemap_extent_info; struct hd_geometry; struct iovec; struct kiocb; struct kobject; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct vm_area_struct; struct vfsmount; struct cred; struct swap_info_struct; struct seq_file; struct workqueue_struct; struct iov_iter; struct fscrypt_info; struct fscrypt_operations; struct fsverity_info; struct fsverity_operations; struct fs_context; struct fs_parameter_spec; extern void __init inode_init(void); extern void __init inode_init_early(void); extern void __init files_init(void); extern void __init files_maxfiles_init(void); extern struct files_stat_struct files_stat; extern unsigned long get_max_files(void); extern unsigned int sysctl_nr_open; extern struct inodes_stat_t inodes_stat; extern int leases_enable, lease_break_time; extern int sysctl_protected_symlinks; extern int sysctl_protected_hardlinks; extern int sysctl_protected_fifos; extern int sysctl_protected_regular; typedef __kernel_rwf_t rwf_t; struct buffer_head; typedef int (get_block_t)(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, ssize_t bytes, void *private); #define MAY_EXEC 0x00000001 #define MAY_WRITE 0x00000002 #define MAY_READ 0x00000004 #define MAY_APPEND 0x00000008 #define MAY_ACCESS 0x00000010 #define MAY_OPEN 0x00000020 #define MAY_CHDIR 0x00000040 /* called from RCU mode, don't block */ #define MAY_NOT_BLOCK 0x00000080 /* * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() */ /* file is open for reading */ #define FMODE_READ ((__force fmode_t)0x1) /* file is open for writing */ #define FMODE_WRITE ((__force fmode_t)0x2) /* file is seekable */ #define FMODE_LSEEK ((__force fmode_t)0x4) /* file can be accessed using pread */ #define FMODE_PREAD ((__force fmode_t)0x8) /* file can be accessed using pwrite */ #define FMODE_PWRITE ((__force fmode_t)0x10) /* File is opened for execution with sys_execve / sys_uselib */ #define FMODE_EXEC ((__force fmode_t)0x20) /* File is opened with O_NDELAY (only set for block devices) */ #define FMODE_NDELAY ((__force fmode_t)0x40) /* File is opened with O_EXCL (only set for block devices) */ #define FMODE_EXCL ((__force fmode_t)0x80) /* File is opened using open(.., 3, ..) and is writeable only for ioctls (specialy hack for floppy.c) */ #define FMODE_WRITE_IOCTL ((__force fmode_t)0x100) /* 32bit hashes as llseek() offset (for directories) */ #define FMODE_32BITHASH ((__force fmode_t)0x200) /* 64bit hashes as llseek() offset (for directories) */ #define FMODE_64BITHASH ((__force fmode_t)0x400) /* * Don't update ctime and mtime. * * Currently a special hack for the XFS open_by_handle ioctl, but we'll * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. */ #define FMODE_NOCMTIME ((__force fmode_t)0x800) /* Expect random access pattern */ #define FMODE_RANDOM ((__force fmode_t)0x1000) /* File is huge (eg. /dev/kmem): treat loff_t as unsigned */ #define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) /* File is opened with O_PATH; almost nothing can be done with it */ #define FMODE_PATH ((__force fmode_t)0x4000) /* File needs atomic accesses to f_pos */ #define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) /* Write access to underlying fs */ #define FMODE_WRITER ((__force fmode_t)0x10000) /* Has read method(s) */ #define FMODE_CAN_READ ((__force fmode_t)0x20000) /* Has write method(s) */ #define FMODE_CAN_WRITE ((__force fmode_t)0x40000) #define FMODE_OPENED ((__force fmode_t)0x80000) #define FMODE_CREATED ((__force fmode_t)0x100000) /* File is stream-like */ #define FMODE_STREAM ((__force fmode_t)0x200000) /* File was opened by fanotify and shouldn't generate fanotify events */ #define FMODE_NONOTIFY ((__force fmode_t)0x4000000) /* File is capable of returning -EAGAIN if I/O will block */ #define FMODE_NOWAIT ((__force fmode_t)0x8000000) /* File represents mount that needs unmounting */ #define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) /* File does not contribute to nr_files count */ #define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) /* File supports async buffered reads */ #define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) /* * Attribute flags. These should be or-ed together to figure out what * has been changed! */ #define ATTR_MODE (1 << 0) #define ATTR_UID (1 << 1) #define ATTR_GID (1 << 2) #define ATTR_SIZE (1 << 3) #define ATTR_ATIME (1 << 4) #define ATTR_MTIME (1 << 5) #define ATTR_CTIME (1 << 6) #define ATTR_ATIME_SET (1 << 7) #define ATTR_MTIME_SET (1 << 8) #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ #define ATTR_KILL_SUID (1 << 11) #define ATTR_KILL_SGID (1 << 12) #define ATTR_FILE (1 << 13) #define ATTR_KILL_PRIV (1 << 14) #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ #define ATTR_TIMES_SET (1 << 16) #define ATTR_TOUCH (1 << 17) /* * Whiteout is represented by a char device. The following constants define the * mode and device number to use. */ #define WHITEOUT_MODE 0 #define WHITEOUT_DEV 0 /* * This is the Inode Attributes structure, used for notify_change(). It * uses the above definitions as flags, to know which values have changed. * Also, in this manner, a Filesystem can look at only the values it cares * about. Basically, these are the attributes that the VFS layer can * request to change from the FS layer. * * Derek Atkins <warlord@MIT.EDU> 94-10-20 */ struct iattr { unsigned int ia_valid; umode_t ia_mode; kuid_t ia_uid; kgid_t ia_gid; loff_t ia_size; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; /* * Not an attribute, but an auxiliary info for filesystems wanting to * implement an ftruncate() like method. NOTE: filesystem should * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). */ struct file *ia_file; }; /* * Includes for diskquotas. */ #include <linux/quota.h> /* * Maximum number of layers of fs stack. Needs to be limited to * prevent kernel stack overflow */ #define FILESYSTEM_MAX_STACK_DEPTH 2 /** * enum positive_aop_returns - aop return codes with specific semantics * * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has * completed, that the page is still locked, and * should be considered active. The VM uses this hint * to return the page to the active list -- it won't * be a candidate for writeback again in the near * future. Other callers must be careful to unlock * the page if they get this return. Returned by * writepage(); * * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has * unlocked it and the page might have been truncated. * The caller should back up to acquiring a new page and * trying again. The aop will be taking reasonable * precautions not to livelock. If the caller held a page * reference, it should drop it before retrying. Returned * by readpage(). * * address_space_operation functions return these large constants to indicate * special semantics to the caller. These are much larger than the bytes in a * page to allow for functions that return the number of bytes operated on in a * given page. */ enum positive_aop_returns { AOP_WRITEPAGE_ACTIVATE = 0x80000, AOP_TRUNCATED_PAGE = 0x80001, }; #define AOP_FLAG_CONT_EXPAND 0x0001 /* called from cont_expand */ #define AOP_FLAG_NOFS 0x0002 /* used by filesystem to direct * helper code (eg buffer layer) * to clear GFP_FS from alloc */ /* * oh the beauties of C type declarations. */ struct page; struct address_space; struct writeback_control; struct readahead_control; /* * Write life time hint values. * Stored in struct inode as u8. */ enum rw_hint { WRITE_LIFE_NOT_SET = 0, WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE, WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT, WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM, WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG, WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME, }; /* Match RWF_* bits to IOCB bits */ #define IOCB_HIPRI (__force int) RWF_HIPRI #define IOCB_DSYNC (__force int) RWF_DSYNC #define IOCB_SYNC (__force int) RWF_SYNC #define IOCB_NOWAIT (__force int) RWF_NOWAIT #define IOCB_APPEND (__force int) RWF_APPEND /* non-RWF related bits - start at 16 */ #define IOCB_EVENTFD (1 << 16) #define IOCB_DIRECT (1 << 17) #define IOCB_WRITE (1 << 18) /* iocb->ki_waitq is valid */ #define IOCB_WAITQ (1 << 19) #define IOCB_NOIO (1 << 20) struct kiocb { struct file *ki_filp; /* The 'ki_filp' pointer is shared in a union for aio */ randomized_struct_fields_start loff_t ki_pos; void (*ki_complete)(struct kiocb *iocb, long ret, long ret2); void *private; int ki_flags; u16 ki_hint; u16 ki_ioprio; /* See linux/ioprio.h */ union { unsigned int ki_cookie; /* for ->iopoll */ struct wait_page_queue *ki_waitq; /* for async buffered IO */ }; randomized_struct_fields_end }; static inline bool is_sync_kiocb(struct kiocb *kiocb) { return kiocb->ki_complete == NULL; } /* * "descriptor" for what we're up to with a read. * This allows us to use the same read code yet * have multiple different users of the data that * we read from a file. * * The simplest case just copies the data to user * mode. */ typedef struct { size_t written; size_t count; union { char __user *buf; void *data; } arg; int error; } read_descriptor_t; typedef int (*read_actor_t)(read_descriptor_t *, struct page *, unsigned long, unsigned long); struct address_space_operations { int (*writepage)(struct page *page, struct writeback_control *wbc); int (*readpage)(struct file *, struct page *); /* Write back some dirty pages from this mapping. */ int (*writepages)(struct address_space *, struct writeback_control *); /* Set a page dirty. Return true if this dirtied it */ int (*set_page_dirty)(struct page *page); /* * Reads in the requested pages. Unlike ->readpage(), this is * PURELY used for read-ahead!. */ int (*readpages)(struct file *filp, struct address_space *mapping, struct list_head *pages, unsigned nr_pages); void (*readahead)(struct readahead_control *); int (*write_begin)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ sector_t (*bmap)(struct address_space *, sector_t); void (*invalidatepage) (struct page *, unsigned int, unsigned int); int (*releasepage) (struct page *, gfp_t); void (*freepage)(struct page *); ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); /* * migrate the contents of a page to the specified target. If * migrate_mode is MIGRATE_ASYNC, it must not block. */ int (*migratepage) (struct address_space *, struct page *, struct page *, enum migrate_mode); bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); int (*launder_page) (struct page *); int (*is_partially_uptodate) (struct page *, unsigned long, unsigned long); void (*is_dirty_writeback) (struct page *, bool *, bool *); int (*error_remove_page)(struct address_space *, struct page *); /* swapfile support */ int (*swap_activate)(struct swap_info_struct *sis, struct file *file, sector_t *span); void (*swap_deactivate)(struct file *file); }; extern const struct address_space_operations empty_aops; /* * pagecache_write_begin/pagecache_write_end must be used by general code * to write into the pagecache. */ int pagecache_write_begin(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); int pagecache_write_end(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); /** * struct address_space - Contents of a cacheable, mappable object. * @host: Owner, either the inode or the block_device. * @i_pages: Cached pages. * @gfp_mask: Memory allocation flags to use for allocating pages. * @i_mmap_writable: Number of VM_SHARED mappings. * @nr_thps: Number of THPs in the pagecache (non-shmem only). * @i_mmap: Tree of private and shared mappings. * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. * @nrpages: Number of page entries, protected by the i_pages lock. * @nrexceptional: Shadow or DAX entries, protected by the i_pages lock. * @writeback_index: Writeback starts here. * @a_ops: Methods. * @flags: Error bits and flags (AS_*). * @wb_err: The most recent error which has occurred. * @private_lock: For use by the owner of the address_space. * @private_list: For use by the owner of the address_space. * @private_data: For use by the owner of the address_space. */ struct address_space { struct inode *host; struct xarray i_pages; gfp_t gfp_mask; atomic_t i_mmap_writable; #ifdef CONFIG_READ_ONLY_THP_FOR_FS /* number of thp, only for non-shmem files */ atomic_t nr_thps; #endif struct rb_root_cached i_mmap; struct rw_semaphore i_mmap_rwsem; unsigned long nrpages; unsigned long nrexceptional; pgoff_t writeback_index; const struct address_space_operations *a_ops; unsigned long flags; errseq_t wb_err; spinlock_t private_lock; struct list_head private_list; void *private_data; } __attribute__((aligned(sizeof(long)))) __randomize_layout; /* * On most architectures that alignment is already the case; but * must be enforced here for CRIS, to let the least significant bit * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. */ /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ #define PAGECACHE_TAG_DIRTY XA_MARK_0 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 /* * Returns true if any of the pages in the mapping are marked with the tag. */ static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) { return xa_marked(&mapping->i_pages, tag); } static inline void i_mmap_lock_write(struct address_space *mapping) { down_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_write(struct address_space *mapping) { return down_write_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_write(struct address_space *mapping) { up_write(&mapping->i_mmap_rwsem); } static inline void i_mmap_lock_read(struct address_space *mapping) { down_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_read(struct address_space *mapping) { up_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_locked(struct address_space *mapping) { lockdep_assert_held(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_write_locked(struct address_space *mapping) { lockdep_assert_held_write(&mapping->i_mmap_rwsem); } /* * Might pages of this file be mapped into userspace? */ static inline int mapping_mapped(struct address_space *mapping) { return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); } /* * Might pages of this file have been modified in userspace? * Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap * marks vma as VM_SHARED if it is shared, and the file was opened for * writing i.e. vma may be mprotected writable even if now readonly. * * If i_mmap_writable is negative, no new writable mappings are allowed. You * can only deny writable mappings, if none exists right now. */ static inline int mapping_writably_mapped(struct address_space *mapping) { return atomic_read(&mapping->i_mmap_writable) > 0; } static inline int mapping_map_writable(struct address_space *mapping) { return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 0 : -EPERM; } static inline void mapping_unmap_writable(struct address_space *mapping) { atomic_dec(&mapping->i_mmap_writable); } static inline int mapping_deny_writable(struct address_space *mapping) { return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 0 : -EBUSY; } static inline void mapping_allow_writable(struct address_space *mapping) { atomic_inc(&mapping->i_mmap_writable); } /* * Use sequence counter to get consistent i_size on 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include <linux/seqlock.h> #define __NEED_I_SIZE_ORDERED #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) #else #define i_size_ordered_init(inode) do { } while (0) #endif struct posix_acl; #define ACL_NOT_CACHED ((void *)(-1)) #define ACL_DONT_CACHE ((void *)(-3)) static inline struct posix_acl * uncached_acl_sentinel(struct task_struct *task) { return (void *)task + 1; } static inline bool is_uncached_acl(struct posix_acl *acl) { return (long)acl & 1; } #define IOP_FASTPERM 0x0001 #define IOP_LOOKUP 0x0002 #define IOP_NOFOLLOW 0x0004 #define IOP_XATTR 0x0008 #define IOP_DEFAULT_READLINK 0x0010 struct fsnotify_mark_connector; /* * Keep mostly read-only and often accessed (especially for * the RCU path lookup and 'stat' data) fields at the beginning * of the 'struct inode' */ struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *i_acl; struct posix_acl *i_default_acl; #endif const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; #ifdef CONFIG_SECURITY void *i_security; #endif /* Stat data, not accessed from path walking */ unsigned long i_ino; /* * Filesystems may only read i_nlink directly. They shall use the * following functions for modification: * * (set|clear|inc|drop)_nlink * inode_(inc|dec)_link_count */ union { const unsigned int i_nlink; unsigned int __i_nlink; }; dev_t i_rdev; loff_t i_size; struct timespec64 i_atime; struct timespec64 i_mtime; struct timespec64 i_ctime; spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ unsigned short i_bytes; u8 i_blkbits; u8 i_write_hint; blkcnt_t i_blocks; #ifdef __NEED_I_SIZE_ORDERED seqcount_t i_size_seqcount; #endif /* Misc */ unsigned long i_state; struct rw_semaphore i_rwsem; unsigned long dirtied_when; /* jiffies of first dirtying */ unsigned long dirtied_time_when; struct hlist_node i_hash; struct list_head i_io_list; /* backing dev IO list */ #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *i_wb; /* the associated cgroup wb */ /* foreign inode detection, see wbc_detach_inode() */ int i_wb_frn_winner; u16 i_wb_frn_avg_time; u16 i_wb_frn_history; #endif struct list_head i_lru; /* inode LRU list */ struct list_head i_sb_list; struct list_head i_wb_list; /* backing dev writeback list */ union { struct hlist_head i_dentry; struct rcu_head i_rcu; }; atomic64_t i_version; atomic64_t i_sequence; /* see futex */ atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) atomic_t i_readcount; /* struct files open RO */ #endif union { const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ void (*free_inode)(struct inode *); }; struct file_lock_context *i_flctx; struct address_space i_data; struct list_head i_devices; union { struct pipe_inode_info *i_pipe; struct block_device *i_bdev; struct cdev *i_cdev; char *i_link; unsigned i_dir_seq; }; __u32 i_generation; #ifdef CONFIG_FSNOTIFY __u32 i_fsnotify_mask; /* all events this inode cares about */ struct fsnotify_mark_connector __rcu *i_fsnotify_marks; #endif #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_info *i_crypt_info; #endif #ifdef CONFIG_FS_VERITY struct fsverity_info *i_verity_info; #endif void *i_private; /* fs or device private pointer */ } __randomize_layout; struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); static inline unsigned int i_blocksize(const struct inode *node) { return (1 << node->i_blkbits); } static inline int inode_unhashed(struct inode *inode) { return hlist_unhashed(&inode->i_hash); } /* * __mark_inode_dirty expects inodes to be hashed. Since we don't * want special inodes in the fileset inode space, we make them * appear hashed, but do not put on any lists. hlist_del() * will work fine and require no locking. */ static inline void inode_fake_hash(struct inode *inode) { hlist_add_fake(&inode->i_hash); } /* * inode->i_mutex nesting subclasses for the lock validator: * * 0: the object of the current VFS operation * 1: parent * 2: child/target * 3: xattr * 4: second non-directory * 5: second parent (when locking independent directories in rename) * * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two * non-directories at once. * * The locking order between these classes is * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory */ enum inode_i_mutex_lock_class { I_MUTEX_NORMAL, I_MUTEX_PARENT, I_MUTEX_CHILD, I_MUTEX_XATTR, I_MUTEX_NONDIR2, I_MUTEX_PARENT2, }; static inline void inode_lock(struct inode *inode) { down_write(&inode->i_rwsem); } static inline void inode_unlock(struct inode *inode) { up_write(&inode->i_rwsem); } static inline void inode_lock_shared(struct inode *inode) { down_read(&inode->i_rwsem); } static inline void inode_unlock_shared(struct inode *inode) { up_read(&inode->i_rwsem); } static inline int inode_trylock(struct inode *inode) { return down_write_trylock(&inode->i_rwsem); } static inline int inode_trylock_shared(struct inode *inode) { return down_read_trylock(&inode->i_rwsem); } static inline int inode_is_locked(struct inode *inode) { return rwsem_is_locked(&inode->i_rwsem); } static inline void inode_lock_nested(struct inode *inode, unsigned subclass) { down_write_nested(&inode->i_rwsem, subclass); } static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) { down_read_nested(&inode->i_rwsem, subclass); } void lock_two_nondirectories(struct inode *, struct inode*); void unlock_two_nondirectories(struct inode *, struct inode*); /* * NOTE: in a 32bit arch with a preemptable kernel and * an UP compile the i_size_read/write must be atomic * with respect to the local cpu (unlike with preempt disabled), * but they don't need to be atomic with respect to other cpus like in * true SMP (so they need either to either locally disable irq around * the read or for example on x86 they can be still implemented as a * cmpxchg8b without the need of the lock prefix). For SMP compiles * and 64bit archs it makes no difference if preempt is enabled or not. */ static inline loff_t i_size_read(const struct inode *inode) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) loff_t i_size; unsigned int seq; do { seq = read_seqcount_begin(&inode->i_size_seqcount); i_size = inode->i_size; } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); return i_size; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) loff_t i_size; preempt_disable(); i_size = inode->i_size; preempt_enable(); return i_size; #else return inode->i_size; #endif } /* * NOTE: unlike i_size_read(), i_size_write() does need locking around it * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount * can be lost, resulting in subsequent i_size_read() calls spinning forever. */ static inline void i_size_write(struct inode *inode, loff_t i_size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&inode->i_size_seqcount); inode->i_size = i_size; write_seqcount_end(&inode->i_size_seqcount); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); inode->i_size = i_size; preempt_enable(); #else inode->i_size = i_size; #endif } static inline unsigned iminor(const struct inode *inode) { return MINOR(inode->i_rdev); } static inline unsigned imajor(const struct inode *inode) { return MAJOR(inode->i_rdev); } struct fown_struct { rwlock_t lock; /* protects pid, uid, euid fields */ struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ kuid_t uid, euid; /* uid/euid of process setting the owner */ int signum; /* posix.1b rt signal to be delivered on IO */ }; /* * Track a single file's readahead state */ struct file_ra_state { pgoff_t start; /* where readahead started */ unsigned int size; /* # of readahead pages */ unsigned int async_size; /* do asynchronous readahead when there are only # of pages ahead */ unsigned int ra_pages; /* Maximum readahead window */ unsigned int mmap_miss; /* Cache miss stat for mmap accesses */ loff_t prev_pos; /* Cache last read() position */ }; /* * Check if @index falls in the readahead windows. */ static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) { return (index >= ra->start && index < ra->start + ra->size); } struct file { union { struct llist_node fu_llist; struct rcu_head fu_rcuhead; } f_u; struct path f_path; struct inode *f_inode; /* cached value */ const struct file_operations *f_op; /* * Protects f_ep_links, f_flags. * Must not be taken from IRQ context. */ spinlock_t f_lock; enum rw_hint f_write_hint; atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; #ifdef CONFIG_SECURITY void *f_security; #endif /* needed for tty driver, and maybe others */ void *private_data; #ifdef CONFIG_EPOLL /* Used by fs/eventpoll.c to link all the hooks to this file */ struct list_head f_ep_links; struct list_head f_tfile_llink; #endif /* #ifdef CONFIG_EPOLL */ struct address_space *f_mapping; errseq_t f_wb_err; errseq_t f_sb_err; /* for syncfs */ } __randomize_layout __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ struct file_handle { __u32 handle_bytes; int handle_type; /* file identifier */ unsigned char f_handle[]; }; static inline struct file *get_file(struct file *f) { atomic_long_inc(&f->f_count); return f; } #define get_file_rcu_many(x, cnt) \ atomic_long_add_unless(&(x)->f_count, (cnt), 0) #define get_file_rcu(x) get_file_rcu_many((x), 1) #define file_count(x) atomic_long_read(&(x)->f_count) #define MAX_NON_LFS ((1UL<<31) - 1) /* Page cache limit. The filesystems should put that into their s_maxbytes limits, otherwise bad things can happen in VM. */ #if BITS_PER_LONG==32 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) #elif BITS_PER_LONG==64 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) #endif #define FL_POSIX 1 #define FL_FLOCK 2 #define FL_DELEG 4 /* NFSv4 delegation */ #define FL_ACCESS 8 /* not trying to lock, just looking */ #define FL_EXISTS 16 /* when unlocking, test for existence */ #define FL_LEASE 32 /* lease held on this file */ #define FL_CLOSE 64 /* unlock on close */ #define FL_SLEEP 128 /* A blocking lock */ #define FL_DOWNGRADE_PENDING 256 /* Lease is being downgraded */ #define FL_UNLOCK_PENDING 512 /* Lease is being broken */ #define FL_OFDLCK 1024 /* lock is "owned" by struct file */ #define FL_LAYOUT 2048 /* outstanding pNFS layout */ #define FL_CLOSE_POSIX (FL_POSIX | FL_CLOSE) /* * Special return value from posix_lock_file() and vfs_lock_file() for * asynchronous locking. */ #define FILE_LOCK_DEFERRED 1 /* legacy typedef, should eventually be removed */ typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock *, struct file_lock *); void (*fl_release_private)(struct file_lock *); }; struct lock_manager_operations { fl_owner_t (*lm_get_owner)(fl_owner_t); void (*lm_put_owner)(fl_owner_t); void (*lm_notify)(struct file_lock *); /* unblock callback */ int (*lm_grant)(struct file_lock *, int); bool (*lm_break)(struct file_lock *); int (*lm_change)(struct file_lock *, int, struct list_head *); void (*lm_setup)(struct file_lock *, void **); bool (*lm_breaker_owns_lease)(struct file_lock *); }; struct lock_manager { struct list_head list; /* * NFSv4 and up also want opens blocked during the grace period; * NLM doesn't care: */ bool block_opens; }; struct net; void locks_start_grace(struct net *, struct lock_manager *); void locks_end_grace(struct lock_manager *); bool locks_in_grace(struct net *); bool opens_in_grace(struct net *); /* that will die - we need it for nfs_lock_info */ #include <linux/nfs_fs_i.h> /* * struct file_lock represents a generic "file lock". It's used to represent * POSIX byte range locks, BSD (flock) locks, and leases. It's important to * note that the same struct is used to represent both a request for a lock and * the lock itself, but the same object is never used for both. * * FIXME: should we create a separate "struct lock_request" to help distinguish * these two uses? * * The varous i_flctx lists are ordered by: * * 1) lock owner * 2) lock range start * 3) lock range end * * Obviously, the last two criteria only matter for POSIX locks. */ struct file_lock { struct file_lock *fl_blocker; /* The lock, that is blocking us */ struct list_head fl_list; /* link into file_lock_context */ struct hlist_node fl_link; /* node in global lists */ struct list_head fl_blocked_requests; /* list of requests with * ->fl_blocker pointing here */ struct list_head fl_blocked_member; /* node in * ->fl_blocker->fl_blocked_requests */ fl_owner_t fl_owner; unsigned int fl_flags; unsigned char fl_type; unsigned int fl_pid; int fl_link_cpu; /* what cpu's list is this on? */ wait_queue_head_t fl_wait; struct file *fl_file; loff_t fl_start; loff_t fl_end; struct fasync_struct * fl_fasync; /* for lease break notifications */ /* for lease breaks: */ unsigned long fl_break_time; unsigned long fl_downgrade_time; const struct file_lock_operations *fl_ops; /* Callbacks for filesystems */ const struct lock_manager_operations *fl_lmops; /* Callbacks for lockmanagers */ union { struct nfs_lock_info nfs_fl; struct nfs4_lock_info nfs4_fl; struct { struct list_head link; /* link in AFS vnode's pending_locks list */ int state; /* state of grant or error if -ve */ unsigned int debug_id; } afs; } fl_u; } __randomize_layout; struct file_lock_context { spinlock_t flc_lock; struct list_head flc_flock; struct list_head flc_posix; struct list_head flc_lease; }; /* The following constant reflects the upper bound of the file/locking space */ #ifndef OFFSET_MAX #define INT_LIMIT(x) (~((x)1 << (sizeof(x)*8 - 1))) #define OFFSET_MAX INT_LIMIT(loff_t) #define OFFT_OFFSET_MAX INT_LIMIT(off_t) #endif extern void send_sigio(struct fown_struct *fown, int fd, int band); #define locks_inode(f) file_inode(f) #ifdef CONFIG_FILE_LOCKING extern int fcntl_getlk(struct file *, unsigned int, struct flock *); extern int fcntl_setlk(unsigned int, struct file *, unsigned int, struct flock *); #if BITS_PER_LONG == 32 extern int fcntl_getlk64(struct file *, unsigned int, struct flock64 *); extern int fcntl_setlk64(unsigned int, struct file *, unsigned int, struct flock64 *); #endif extern int fcntl_setlease(unsigned int fd, struct file *filp, long arg); extern int fcntl_getlease(struct file *filp); /* fs/locks.c */ void locks_free_lock_context(struct inode *inode); void locks_free_lock(struct file_lock *fl); extern void locks_init_lock(struct file_lock *); extern struct file_lock * locks_alloc_lock(void); extern void locks_copy_lock(struct file_lock *, struct file_lock *); extern void locks_copy_conflock(struct file_lock *, struct file_lock *); extern void locks_remove_posix(struct file *, fl_owner_t); extern void locks_remove_file(struct file *); extern void locks_release_private(struct file_lock *); extern void posix_test_lock(struct file *, struct file_lock *); extern int posix_lock_file(struct file *, struct file_lock *, struct file_lock *); extern int locks_delete_block(struct file_lock *); extern int vfs_test_lock(struct file *, struct file_lock *); extern int vfs_lock_file(struct file *, unsigned int, struct file_lock *, struct file_lock *); extern int vfs_cancel_lock(struct file *filp, struct file_lock *fl); extern int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl); extern int __break_lease(struct inode *inode, unsigned int flags, unsigned int type); extern void lease_get_mtime(struct inode *, struct timespec64 *time); extern int generic_setlease(struct file *, long, struct file_lock **, void **priv); extern int vfs_setlease(struct file *, long, struct file_lock **, void **); extern int lease_modify(struct file_lock *, int, struct list_head *); struct notifier_block; extern int lease_register_notifier(struct notifier_block *); extern void lease_unregister_notifier(struct notifier_block *); struct files_struct; extern void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files); #else /* !CONFIG_FILE_LOCKING */ static inline int fcntl_getlk(struct file *file, unsigned int cmd, struct flock __user *user) { return -EINVAL; } static inline int fcntl_setlk(unsigned int fd, struct file *file, unsigned int cmd, struct flock __user *user) { return -EACCES; } #if BITS_PER_LONG == 32 static inline int fcntl_getlk64(struct file *file, unsigned int cmd, struct flock64 __user *user) { return -EINVAL; } static inline int fcntl_setlk64(unsigned int fd, struct file *file, unsigned int cmd, struct flock64 __user *user) { return -EACCES; } #endif static inline int fcntl_setlease(unsigned int fd, struct file *filp, long arg) { return -EINVAL; } static inline int fcntl_getlease(struct file *filp) { return F_UNLCK; } static inline void locks_free_lock_context(struct inode *inode) { } static inline void locks_init_lock(struct file_lock *fl) { return; } static inline void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_copy_lock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_remove_posix(struct file *filp, fl_owner_t owner) { return; } static inline void locks_remove_file(struct file *filp) { return; } static inline void posix_test_lock(struct file *filp, struct file_lock *fl) { return; } static inline int posix_lock_file(struct file *filp, struct file_lock *fl, struct file_lock *conflock) { return -ENOLCK; } static inline int locks_delete_block(struct file_lock *waiter) { return -ENOENT; } static inline int vfs_test_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) { return -ENOLCK; } static inline int vfs_cancel_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) { return -ENOLCK; } static inline int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) { return 0; } static inline void lease_get_mtime(struct inode *inode, struct timespec64 *time) { return; } static inline int generic_setlease(struct file *filp, long arg, struct file_lock **flp, void **priv) { return -EINVAL; } static inline int vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) { return -EINVAL; } static inline int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) { return -EINVAL; } struct files_struct; static inline void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files) {} #endif /* !CONFIG_FILE_LOCKING */ static inline struct inode *file_inode(const struct file *f) { return f->f_inode; } static inline struct dentry *file_dentry(const struct file *file) { return d_real(file->f_path.dentry, file_inode(file)); } static inline int locks_lock_file_wait(struct file *filp, struct file_lock *fl) { return locks_lock_inode_wait(locks_inode(filp), fl); } struct fasync_struct { rwlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; /* singly linked list */ struct file *fa_file; struct rcu_head fa_rcu; }; #define FASYNC_MAGIC 0x4601 /* SMP safe fasync helpers: */ extern int fasync_helper(int, struct file *, int, struct fasync_struct **); extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); extern int fasync_remove_entry(struct file *, struct fasync_struct **); extern struct fasync_struct *fasync_alloc(void); extern void fasync_free(struct fasync_struct *); /* can be called from interrupts */ extern void kill_fasync(struct fasync_struct **, int, int); extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); extern int f_setown(struct file *filp, unsigned long arg, int force); extern void f_delown(struct file *filp); extern pid_t f_getown(struct file *filp); extern int send_sigurg(struct fown_struct *fown); /* * sb->s_flags. Note that these mirror the equivalent MS_* flags where * represented in both. */ #define SB_RDONLY 1 /* Mount read-only */ #define SB_NOSUID 2 /* Ignore suid and sgid bits */ #define SB_NODEV 4 /* Disallow access to device special files */ #define SB_NOEXEC 8 /* Disallow program execution */ #define SB_SYNCHRONOUS 16 /* Writes are synced at once */ #define SB_MANDLOCK 64 /* Allow mandatory locks on an FS */ #define SB_DIRSYNC 128 /* Directory modifications are synchronous */ #define SB_NOATIME 1024 /* Do not update access times. */ #define SB_NODIRATIME 2048 /* Do not update directory access times */ #define SB_SILENT 32768 #define SB_POSIXACL (1<<16) /* VFS does not apply the umask */ #define SB_INLINECRYPT (1<<17) /* Use blk-crypto for encrypted files */ #define SB_KERNMOUNT (1<<22) /* this is a kern_mount call */ #define SB_I_VERSION (1<<23) /* Update inode I_version field */ #define SB_LAZYTIME (1<<25) /* Update the on-disk [acm]times lazily */ /* These sb flags are internal to the kernel */ #define SB_SUBMOUNT (1<<26) #define SB_FORCE (1<<27) #define SB_NOSEC (1<<28) #define SB_BORN (1<<29) #define SB_ACTIVE (1<<30) #define SB_NOUSER (1<<31) /* These flags relate to encoding and casefolding */ #define SB_ENC_STRICT_MODE_FL (1 << 0) #define sb_has_strict_encoding(sb) \ (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) /* * Umount options */ #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ #define MNT_DETACH 0x00000002 /* Just detach from the tree */ #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ /* sb->s_iflags */ #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ /* sb->s_iflags to limit user namespace mounts */ #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ /* Possible states of 'frozen' field */ enum { SB_UNFROZEN = 0, /* FS is unfrozen */ SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop * internal threads if needed) */ SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ }; #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) struct sb_writers { int frozen; /* Is sb frozen? */ wait_queue_head_t wait_unfrozen; /* for get_super_thawed() */ struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; }; struct super_block { struct list_head s_list; /* Keep this first */ dev_t s_dev; /* search index; _not_ kdev_t */ unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; /* Max file size */ struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_iflags; /* internal SB_I_* flags */ unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; #ifdef CONFIG_SECURITY void *s_security; #endif const struct xattr_handler **s_xattr; #ifdef CONFIG_FS_ENCRYPTION const struct fscrypt_operations *s_cop; struct key *s_master_keys; /* master crypto keys in use */ #endif #ifdef CONFIG_FS_VERITY const struct fsverity_operations *s_vop; #endif #ifdef CONFIG_UNICODE struct unicode_map *s_encoding; __u16 s_encoding_flags; #endif struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ struct list_head s_mounts; /* list of mounts; _not_ for fs use */ struct block_device *s_bdev; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; unsigned int s_quota_types; /* Bitmask of supported quota types */ struct quota_info s_dquot; /* Diskquota specific options */ struct sb_writers s_writers; /* * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and * s_fsnotify_marks together for cache efficiency. They are frequently * accessed and rarely modified. */ void *s_fs_info; /* Filesystem private info */ /* Granularity of c/m/atime in ns (cannot be worse than a second) */ u32 s_time_gran; /* Time limits for c/m/atime in seconds */ time64_t s_time_min; time64_t s_time_max; #ifdef CONFIG_FSNOTIFY __u32 s_fsnotify_mask; struct fsnotify_mark_connector __rcu *s_fsnotify_marks; #endif char s_id[32]; /* Informational name */ uuid_t s_uuid; /* UUID */ unsigned int s_max_links; fmode_t s_mode; /* * The next field is for VFS *only*. No filesystems have any business * even looking at it. You had been warned. */ struct mutex s_vfs_rename_mutex; /* Kludge */ /* * Filesystem subtype. If non-empty the filesystem type field * in /proc/mounts will be "type.subtype" */ const char *s_subtype; const struct dentry_operations *s_d_op; /* default d_op for dentries */ /* * Saved pool identifier for cleancache (-1 means none) */ int cleancache_poolid; struct shrinker s_shrink; /* per-sb shrinker handle */ /* Number of inodes with nlink == 0 but still referenced */ atomic_long_t s_remove_count; /* Pending fsnotify inode refs */ atomic_long_t s_fsnotify_inode_refs; /* Being remounted read-only */ int s_readonly_remount; /* per-sb errseq_t for reporting writeback errors via syncfs */ errseq_t s_wb_err; /* AIO completions deferred from interrupt context */ struct workqueue_struct *s_dio_done_wq; struct hlist_head s_pins; /* * Owning user namespace and default context in which to * interpret filesystem uids, gids, quotas, device nodes, * xattrs and security labels. */ struct user_namespace *s_user_ns; /* * The list_lru structure is essentially just a pointer to a table * of per-node lru lists, each of which has its own spinlock. * There is no need to put them into separate cachelines. */ struct list_lru s_dentry_lru; struct list_lru s_inode_lru; struct rcu_head rcu; struct work_struct destroy_work; struct mutex s_sync_lock; /* sync serialisation lock */ /* * Indicates how deep in a filesystem stack this SB is */ int s_stack_depth; /* s_inode_list_lock protects s_inodes */ spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; struct list_head s_inodes; /* all inodes */ spinlock_t s_inode_wblist_lock; struct list_head s_inodes_wb; /* writeback inodes */ } __randomize_layout; /* Helper functions so that in most cases filesystems will * not need to deal directly with kuid_t and kgid_t and can * instead deal with the raw numeric values that are stored * in the filesystem. */ static inline uid_t i_uid_read(const struct inode *inode) { return from_kuid(inode->i_sb->s_user_ns, inode->i_uid); } static inline gid_t i_gid_read(const struct inode *inode) { return from_kgid(inode->i_sb->s_user_ns, inode->i_gid); } static inline void i_uid_write(struct inode *inode, uid_t uid) { inode->i_uid = make_kuid(inode->i_sb->s_user_ns, uid); } static inline void i_gid_write(struct inode *inode, gid_t gid) { inode->i_gid = make_kgid(inode->i_sb->s_user_ns, gid); } extern struct timespec64 current_time(struct inode *inode); /* * Snapshotting support. */ /* * These are internal functions, please use sb_start_{write,pagefault,intwrite} * instead. */ static inline void __sb_end_write(struct super_block *sb, int level) { percpu_up_read(sb->s_writers.rw_sem + level-1); } static inline void __sb_start_write(struct super_block *sb, int level) { percpu_down_read(sb->s_writers.rw_sem + level - 1); } static inline bool __sb_start_write_trylock(struct super_block *sb, int level) { return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); } #define __sb_writers_acquired(sb, lev) \ percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) #define __sb_writers_release(sb, lev) \ percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) /** * sb_end_write - drop write access to a superblock * @sb: the super we wrote to * * Decrement number of writers to the filesystem. Wake up possible waiters * wanting to freeze the filesystem. */ static inline void sb_end_write(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_WRITE); } /** * sb_end_pagefault - drop write access to a superblock from a page fault * @sb: the super we wrote to * * Decrement number of processes handling write page fault to the filesystem. * Wake up possible waiters wanting to freeze the filesystem. */ static inline void sb_end_pagefault(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_end_intwrite - drop write access to a superblock for internal fs purposes * @sb: the super we wrote to * * Decrement fs-internal number of writers to the filesystem. Wake up possible * waiters wanting to freeze the filesystem. */ static inline void sb_end_intwrite(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_FS); } /** * sb_start_write - get write access to a superblock * @sb: the super we write to * * When a process wants to write data or metadata to a file system (i.e. dirty * a page or an inode), it should embed the operation in a sb_start_write() - * sb_end_write() pair to get exclusion against file system freezing. This * function increments number of writers preventing freezing. If the file * system is already frozen, the function waits until the file system is * thawed. * * Since freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. Generally, * freeze protection should be the outermost lock. In particular, we have: * * sb_start_write * -> i_mutex (write path, truncate, directory ops, ...) * -> s_umount (freeze_super, thaw_super) */ static inline void sb_start_write(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_WRITE); } static inline bool sb_start_write_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); } /** * sb_start_pagefault - get write access to a superblock from a page fault * @sb: the super we write to * * When a process starts handling write page fault, it should embed the * operation into sb_start_pagefault() - sb_end_pagefault() pair to get * exclusion against file system freezing. This is needed since the page fault * is going to dirty a page. This function increments number of running page * faults preventing freezing. If the file system is already frozen, the * function waits until the file system is thawed. * * Since page fault freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. It is advised to * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault * handling code implies lock dependency: * * mmap_lock * -> sb_start_pagefault */ static inline void sb_start_pagefault(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_PAGEFAULT); } /* * sb_start_intwrite - get write access to a superblock for internal fs purposes * @sb: the super we write to * * This is the third level of protection against filesystem freezing. It is * free for use by a filesystem. The only requirement is that it must rank * below sb_start_pagefault. * * For example filesystem can call sb_start_intwrite() when starting a * transaction which somewhat eases handling of freezing for internal sources * of filesystem changes (internal fs threads, discarding preallocation on file * close, etc.). */ static inline void sb_start_intwrite(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_FS); } static inline bool sb_start_intwrite_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_FS); } extern bool inode_owner_or_capable(const struct inode *inode); /* * VFS helper functions.. */ extern int vfs_create(struct inode *, struct dentry *, umode_t, bool); extern int vfs_mkdir(struct inode *, struct dentry *, umode_t); extern int vfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); extern int vfs_symlink(struct inode *, struct dentry *, const char *); extern int vfs_link(struct dentry *, struct inode *, struct dentry *, struct inode **); extern int vfs_rmdir(struct inode *, struct dentry *); extern int vfs_unlink(struct inode *, struct dentry *, struct inode **); extern int vfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, struct inode **, unsigned int); static inline int vfs_whiteout(struct inode *dir, struct dentry *dentry) { return vfs_mknod(dir, dentry, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); } extern struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag); int vfs_mkobj(struct dentry *, umode_t, int (*f)(struct dentry *, umode_t, void *), void *); int vfs_fchown(struct file *file, uid_t user, gid_t group); int vfs_fchmod(struct file *file, umode_t mode); int vfs_utimes(const struct path *path, struct timespec64 *times); extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #else #define compat_ptr_ioctl NULL #endif /* * VFS file helper functions. */ extern void inode_init_owner(struct inode *inode, const struct inode *dir, umode_t mode); extern bool may_open_dev(const struct path *path); /* * This is the "filldir" function type, used by readdir() to let * the kernel specify what kind of dirent layout it wants to have. * This allows the kernel to read directories into kernel space or * to have different dirent layouts depending on the binary type. */ struct dir_context; typedef int (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, unsigned); struct dir_context { filldir_t actor; loff_t pos; }; /* * These flags let !MMU mmap() govern direct device mapping vs immediate * copying more easily for MAP_PRIVATE, especially for ROM filesystems. * * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) * NOMMU_MAP_READ: Can be mapped for reading * NOMMU_MAP_WRITE: Can be mapped for writing * NOMMU_MAP_EXEC: Can be mapped for execution */ #define NOMMU_MAP_COPY 0x00000001 #define NOMMU_MAP_DIRECT 0x00000008 #define NOMMU_MAP_READ VM_MAYREAD #define NOMMU_MAP_WRITE VM_MAYWRITE #define NOMMU_MAP_EXEC VM_MAYEXEC #define NOMMU_VMFLAGS \ (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) /* * These flags control the behavior of the remap_file_range function pointer. * If it is called with len == 0 that means "remap to end of source file". * See Documentation/filesystems/vfs.rst for more details about this call. * * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request */ #define REMAP_FILE_DEDUP (1 << 0) #define REMAP_FILE_CAN_SHORTEN (1 << 1) /* * These flags signal that the caller is ok with altering various aspects of * the behavior of the remap operation. The changes must be made by the * implementation; the vfs remap helper functions can take advantage of them. * Flags in this category exist to preserve the quirky behavior of the hoisted * btrfs clone/dedupe ioctls. */ #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) struct iov_iter; struct file_operations { struct module *owner; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); int (*iopoll)(struct kiocb *kiocb, bool spin); int (*iterate) (struct file *, struct dir_context *); int (*iterate_shared) (struct file *, struct dir_context *); __poll_t (*poll) (struct file *, struct poll_table_struct *); long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); long (*compat_ioctl) (struct file *, unsigned int, unsigned long); int (*mmap) (struct file *, struct vm_area_struct *); unsigned long mmap_supported_flags; int (*open) (struct inode *, struct file *); int (*flush) (struct file *, fl_owner_t id); int (*release) (struct inode *, struct file *); int (*fsync) (struct file *, loff_t, loff_t, int datasync); int (*fasync) (int, struct file *, int); int (*lock) (struct file *, int, struct file_lock *); ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock) (struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); int (*setlease)(struct file *, long, struct file_lock **, void **); long (*fallocate)(struct file *file, int mode, loff_t offset, loff_t len); void (*show_fdinfo)(struct seq_file *m, struct file *f); #ifndef CONFIG_MMU unsigned (*mmap_capabilities)(struct file *); #endif ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int); loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); int (*fadvise)(struct file *, loff_t, loff_t, int); } __randomize_layout; struct inode_operations { struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); int (*permission) (struct inode *, int); struct posix_acl * (*get_acl)(struct inode *, int); int (*readlink) (struct dentry *, char __user *,int); int (*create) (struct inode *,struct dentry *, umode_t, bool); int (*link) (struct dentry *,struct inode *,struct dentry *); int (*unlink) (struct inode *,struct dentry *); int (*symlink) (struct inode *,struct dentry *,const char *); int (*mkdir) (struct inode *,struct dentry *,umode_t); int (*rmdir) (struct inode *,struct dentry *); int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t); int (*rename) (struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*setattr) (struct dentry *, struct iattr *); int (*getattr) (const struct path *, struct kstat *, u32, unsigned int); ssize_t (*listxattr) (struct dentry *, char *, size_t); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len); int (*update_time)(struct inode *, struct timespec64 *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned open_flag, umode_t create_mode); int (*tmpfile) (struct inode *, struct dentry *, umode_t); int (*set_acl)(struct inode *, struct posix_acl *, int); } ____cacheline_aligned; static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->read_iter(kio, iter); } static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->write_iter(kio, iter); } static inline int call_mmap(struct file *file, struct vm_area_struct *vma) { return file->f_op->mmap(file, vma); } extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, loff_t, size_t, unsigned int); extern ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len, unsigned int flags); extern int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *count, unsigned int remap_flags); extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern int vfs_dedupe_file_range(struct file *file, struct file_dedupe_range *same); extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, struct file *dst_file, loff_t dst_pos, loff_t len, unsigned int remap_flags); struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); void (*free_inode)(struct inode *); void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, struct writeback_control *wbc); int (*drop_inode) (struct inode *); void (*evict_inode) (struct inode *); void (*put_super) (struct super_block *); int (*sync_fs)(struct super_block *sb, int wait); int (*freeze_super) (struct super_block *); int (*freeze_fs) (struct super_block *); int (*thaw_super) (struct super_block *); int (*unfreeze_fs) (struct super_block *); int (*statfs) (struct dentry *, struct kstatfs *); int (*remount_fs) (struct super_block *, int *, char *); void (*umount_begin) (struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); #ifdef CONFIG_QUOTA ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); struct dquot **(*get_dquots)(struct inode *); #endif int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t); long (*nr_cached_objects)(struct super_block *, struct shrink_control *); long (*free_cached_objects)(struct super_block *, struct shrink_control *); }; /* * Inode flags - they have no relation to superblock flags now */ #define S_SYNC (1 << 0) /* Writes are synced at once */ #define S_NOATIME (1 << 1) /* Do not update access times */ #define S_APPEND (1 << 2) /* Append-only file */ #define S_IMMUTABLE (1 << 3) /* Immutable file */ #define S_DEAD (1 << 4) /* removed, but still open directory */ #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ #ifdef CONFIG_FS_DAX #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ #else #define S_DAX 0 /* Make all the DAX code disappear */ #endif #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ #define S_CASEFOLD (1 << 15) /* Casefolded file */ #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ /* * Note that nosuid etc flags are inode-specific: setting some file-system * flags just means all the inodes inherit those flags by default. It might be * possible to override it selectively if you really wanted to with some * ioctl() that is not currently implemented. * * Exception: SB_RDONLY is always applied to the entire file system. * * Unfortunately, it is possible to change a filesystems flags with it mounted * with files in use. This means that all of the inodes will not have their * i_flags updated. Hence, i_flags no longer inherit the superblock mount * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org */ #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ ((inode)->i_flags & S_SYNC)) #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) #define IS_IMA(inode) ((inode)->i_flags & S_IMA) #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) #define IS_DAX(inode) ((inode)->i_flags & S_DAX) #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ (inode)->i_rdev == WHITEOUT_DEV) static inline bool HAS_UNMAPPED_ID(struct inode *inode) { return !uid_valid(inode->i_uid) || !gid_valid(inode->i_gid); } static inline enum rw_hint file_write_hint(struct file *file) { if (file->f_write_hint != WRITE_LIFE_NOT_SET) return file->f_write_hint; return file_inode(file)->i_write_hint; } static inline int iocb_flags(struct file *file); static inline u16 ki_hint_validate(enum rw_hint hint) { typeof(((struct kiocb *)0)->ki_hint) max_hint = -1; if (hint <= max_hint) return hint; return 0; } static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = iocb_flags(filp), .ki_hint = ki_hint_validate(file_write_hint(filp)), .ki_ioprio = get_current_ioprio(), }; } static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = kiocb_src->ki_flags, .ki_hint = kiocb_src->ki_hint, .ki_ioprio = kiocb_src->ki_ioprio, .ki_pos = kiocb_src->ki_pos, }; } /* * Inode state bits. Protected by inode->i_lock * * Three bits determine the dirty state of the inode, I_DIRTY_SYNC, * I_DIRTY_DATASYNC and I_DIRTY_PAGES. * * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at * various stages of removing an inode. * * Two bits are used for locking and completion notification, I_NEW and I_SYNC. * * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on * fdatasync(). i_atime is the usual cause. * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of * these changes separately from I_DIRTY_SYNC so that we * don't have to write inode on fdatasync() when only * mtime has changed in it. * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. * I_NEW Serves as both a mutex and completion notification. * New inodes set I_NEW. If two processes both create * the same inode, one of them will release its inode and * wait for I_NEW to be released before returning. * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can * also cause waiting on I_NEW, without I_NEW actually * being set. find_inode() uses this to prevent returning * nearly-dead inodes. * I_WILL_FREE Must be set when calling write_inode_now() if i_count * is zero. I_FREEING must be set when I_WILL_FREE is * cleared. * I_FREEING Set when inode is about to be freed but still has dirty * pages or buffers attached or the inode itself is still * dirty. * I_CLEAR Added by clear_inode(). In this state the inode is * clean and can be destroyed. Inode keeps I_FREEING. * * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are * prohibited for many purposes. iget() must wait for * the inode to be completely released, then create it * anew. Other functions will just ignore such inodes, * if appropriate. I_NEW is used for waiting. * * I_SYNC Writeback of inode is running. The bit is set during * data writeback, and cleared with a wakeup on the bit * address once it is done. The bit is also used to pin * the inode in memory for flusher thread. * * I_REFERENCED Marks the inode as recently references on the LRU list. * * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). * * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to * synchronize competing switching instances and to tell * wb stat updates to grab the i_pages lock. See * inode_switch_wbs_work_fn() for details. * * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper * and work dirs among overlayfs mounts. * * I_CREATING New object's inode in the middle of setting up. * * I_DONTCACHE Evict inode as soon as it is not used anymore. * * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. * Used to detect that mark_inode_dirty() should not move * inode between dirty lists. * * Q: What is the difference between I_WILL_FREE and I_FREEING? */ #define I_DIRTY_SYNC (1 << 0) #define I_DIRTY_DATASYNC (1 << 1) #define I_DIRTY_PAGES (1 << 2) #define __I_NEW 3 #define I_NEW (1 << __I_NEW) #define I_WILL_FREE (1 << 4) #define I_FREEING (1 << 5) #define I_CLEAR (1 << 6) #define __I_SYNC 7 #define I_SYNC (1 << __I_SYNC) #define I_REFERENCED (1 << 8) #define __I_DIO_WAKEUP 9 #define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) #define I_LINKABLE (1 << 10) #define I_DIRTY_TIME (1 << 11) #define I_WB_SWITCH (1 << 13) #define I_OVL_INUSE (1 << 14) #define I_CREATING (1 << 15) #define I_DONTCACHE (1 << 16) #define I_SYNC_QUEUED (1 << 17) #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) extern void __mark_inode_dirty(struct inode *, int); static inline void mark_inode_dirty(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY); } static inline void mark_inode_dirty_sync(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY_SYNC); } extern void inc_nlink(struct inode *inode); extern void drop_nlink(struct inode *inode); extern void clear_nlink(struct inode *inode); extern void set_nlink(struct inode *inode, unsigned int nlink); static inline void inode_inc_link_count(struct inode *inode) { inc_nlink(inode); mark_inode_dirty(inode); } static inline void inode_dec_link_count(struct inode *inode) { drop_nlink(inode); mark_inode_dirty(inode); } enum file_time_flags { S_ATIME = 1, S_MTIME = 2, S_CTIME = 4, S_VERSION = 8, }; extern bool atime_needs_update(const struct path *, struct inode *); extern void touch_atime(const struct path *); int inode_update_time(struct inode *inode, struct timespec64 *time, int flags); static inline void file_accessed(struct file *file) { if (!(file->f_flags & O_NOATIME)) touch_atime(&file->f_path); } extern int file_modified(struct file *file); int sync_inode(struct inode *inode, struct writeback_control *wbc); int sync_inode_metadata(struct inode *inode, int wait); struct file_system_type { const char *name; int fs_flags; #define FS_REQUIRES_DEV 1 #define FS_BINARY_MOUNTDATA 2 #define FS_HAS_SUBTYPE 4 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ #define FS_THP_SUPPORT 8192 /* Remove once all fs converted */ #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ int (*init_fs_context)(struct fs_context *); const struct fs_parameter_spec *parameters; struct dentry *(*mount) (struct file_system_type *, int, const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key i_mutex_dir_key; }; #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) extern struct dentry *mount_bdev(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_single(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); void generic_shutdown_super(struct super_block *sb); void kill_block_super(struct super_block *sb); void kill_anon_super(struct super_block *sb); void kill_litter_super(struct super_block *sb); void deactivate_super(struct super_block *sb); void deactivate_locked_super(struct super_block *sb); int set_anon_super(struct super_block *s, void *data); int set_anon_super_fc(struct super_block *s, struct fs_context *fc); int get_anon_bdev(dev_t *); void free_anon_bdev(dev_t); struct super_block *sget_fc(struct fs_context *fc, int (*test)(struct super_block *, struct fs_context *), int (*set)(struct super_block *, struct fs_context *)); struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, void *data); /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ #define fops_get(fops) \ (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) #define fops_put(fops) \ do { if (fops) module_put((fops)->owner); } while(0) /* * This one is to be used *ONLY* from ->open() instances. * fops must be non-NULL, pinned down *and* module dependencies * should be sufficient to pin the caller down as well. */ #define replace_fops(f, fops) \ do { \ struct file *__file = (f); \ fops_put(__file->f_op); \ BUG_ON(!(__file->f_op = (fops))); \ } while(0) extern int register_filesystem(struct file_system_type *); extern int unregister_filesystem(struct file_system_type *); extern struct vfsmount *kern_mount(struct file_system_type *); extern void kern_unmount(struct vfsmount *mnt); extern int may_umount_tree(struct vfsmount *); extern int may_umount(struct vfsmount *); extern long do_mount(const char *, const char __user *, const char *, unsigned long, void *); extern struct vfsmount *collect_mounts(const struct path *); extern void drop_collected_mounts(struct vfsmount *); extern int iterate_mounts(int (*)(struct vfsmount *, void *), void *, struct vfsmount *); extern int vfs_statfs(const struct path *, struct kstatfs *); extern int user_statfs(const char __user *, struct kstatfs *); extern int fd_statfs(int, struct kstatfs *); extern int freeze_super(struct super_block *super); extern int thaw_super(struct super_block *super); extern bool our_mnt(struct vfsmount *mnt); extern __printf(2, 3) int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); extern int super_setup_bdi(struct super_block *sb); extern int current_umask(void); extern void ihold(struct inode * inode); extern void iput(struct inode *); extern int generic_update_time(struct inode *, struct timespec64 *, int); /* /sys/fs */ extern struct kobject *fs_kobj; #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) #ifdef CONFIG_MANDATORY_FILE_LOCKING extern int locks_mandatory_locked(struct file *); extern int locks_mandatory_area(struct inode *, struct file *, loff_t, loff_t, unsigned char); /* * Candidates for mandatory locking have the setgid bit set * but no group execute bit - an otherwise meaningless combination. */ static inline int __mandatory_lock(struct inode *ino) { return (ino->i_mode & (S_ISGID | S_IXGRP)) == S_ISGID; } /* * ... and these candidates should be on SB_MANDLOCK mounted fs, * otherwise these will be advisory locks */ static inline int mandatory_lock(struct inode *ino) { return IS_MANDLOCK(ino) && __mandatory_lock(ino); } static inline int locks_verify_locked(struct file *file) { if (mandatory_lock(locks_inode(file))) return locks_mandatory_locked(file); return 0; } static inline int locks_verify_truncate(struct inode *inode, struct file *f, loff_t size) { if (!inode->i_flctx || !mandatory_lock(inode)) return 0; if (size < inode->i_size) { return locks_mandatory_area(inode, f, size, inode->i_size - 1, F_WRLCK); } else { return locks_mandatory_area(inode, f, inode->i_size, size - 1, F_WRLCK); } } #else /* !CONFIG_MANDATORY_FILE_LOCKING */ static inline int locks_mandatory_locked(struct file *file) { return 0; } static inline int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start, loff_t end, unsigned char type) { return 0; } static inline int __mandatory_lock(struct inode *inode) { return 0; } static inline int mandatory_lock(struct inode *inode) { return 0; } static inline int locks_verify_locked(struct file *file) { return 0; } static inline int locks_verify_truncate(struct inode *inode, struct file *filp, size_t size) { return 0; } #endif /* CONFIG_MANDATORY_FILE_LOCKING */ #ifdef CONFIG_FILE_LOCKING static inline int break_lease(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_LEASE); return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_DELEG); return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { int ret; ret = break_deleg(inode, O_WRONLY|O_NONBLOCK); if (ret == -EWOULDBLOCK && delegated_inode) { *delegated_inode = inode; ihold(inode); } return ret; } static inline int break_deleg_wait(struct inode **delegated_inode) { int ret; ret = break_deleg(*delegated_inode, O_WRONLY); iput(*delegated_inode); *delegated_inode = NULL; return ret; } static inline int break_layout(struct inode *inode, bool wait) { smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, wait ? O_WRONLY : O_WRONLY | O_NONBLOCK, FL_LAYOUT); return 0; } #else /* !CONFIG_FILE_LOCKING */ static inline int break_lease(struct inode *inode, unsigned int mode) { return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { return 0; } static inline int break_deleg_wait(struct inode **delegated_inode) { BUG(); return 0; } static inline int break_layout(struct inode *inode, bool wait) { return 0; } #endif /* CONFIG_FILE_LOCKING */ /* fs/open.c */ struct audit_names; struct filename { const char *name; /* pointer to actual string */ const __user char *uptr; /* original userland pointer */ int refcnt; struct audit_names *aname; const char iname[]; }; static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); extern long vfs_truncate(const struct path *, loff_t); extern int do_truncate(struct dentry *, loff_t start, unsigned int time_attrs, struct file *filp); extern int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode); extern struct file *file_open_name(struct filename *, int, umode_t); extern struct file *filp_open(const char *, int, umode_t); extern struct file *file_open_root(struct dentry *, struct vfsmount *, const char *, int, umode_t); extern struct file * dentry_open(const struct path *, int, const struct cred *); extern struct file * open_with_fake_path(const struct path *, int, struct inode*, const struct cred *); static inline struct file *file_clone_open(struct file *file) { return dentry_open(&file->f_path, file->f_flags, file->f_cred); } extern int filp_close(struct file *, fl_owner_t id); extern struct filename *getname_flags(const char __user *, int, int *); extern struct filename *getname(const char __user *); extern struct filename *getname_kernel(const char *); extern void putname(struct filename *name); extern int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)); extern int finish_no_open(struct file *file, struct dentry *dentry); /* fs/dcache.c */ extern void __init vfs_caches_init_early(void); extern void __init vfs_caches_init(void); extern struct kmem_cache *names_cachep; #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) extern struct super_block *blockdev_superblock; static inline bool sb_is_blkdev_sb(struct super_block *sb) { return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; } void emergency_thaw_all(void); extern int sync_filesystem(struct super_block *); extern const struct file_operations def_blk_fops; extern const struct file_operations def_chr_fops; /* fs/char_dev.c */ #define CHRDEV_MAJOR_MAX 512 /* Marks the bottom of the first segment of free char majors */ #define CHRDEV_MAJOR_DYN_END 234 /* Marks the top and bottom of the second segment of free char majors */ #define CHRDEV_MAJOR_DYN_EXT_START 511 #define CHRDEV_MAJOR_DYN_EXT_END 384 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); extern int register_chrdev_region(dev_t, unsigned, const char *); extern int __register_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name, const struct file_operations *fops); extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name); extern void unregister_chrdev_region(dev_t, unsigned); extern void chrdev_show(struct seq_file *,off_t); static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops) { return __register_chrdev(major, 0, 256, name, fops); } static inline void unregister_chrdev(unsigned int major, const char *name) { __unregister_chrdev(major, 0, 256, name); } extern void init_special_inode(struct inode *, umode_t, dev_t); /* Invalid inode operations -- fs/bad_inode.c */ extern void make_bad_inode(struct inode *); extern bool is_bad_inode(struct inode *); unsigned long invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end); void invalidate_mapping_pagevec(struct address_space *mapping, pgoff_t start, pgoff_t end, unsigned long *nr_pagevec); static inline void invalidate_remote_inode(struct inode *inode) { if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) invalidate_mapping_pages(inode->i_mapping, 0, -1); } extern int invalidate_inode_pages2(struct address_space *mapping); extern int invalidate_inode_pages2_range(struct address_space *mapping, pgoff_t start, pgoff_t end); extern int write_inode_now(struct inode *, int); extern int filemap_fdatawrite(struct address_space *); extern int filemap_flush(struct address_space *); extern int filemap_fdatawait_keep_errors(struct address_space *mapping); extern int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); extern int filemap_fdatawait_range_keep_errors(struct address_space *mapping, loff_t start_byte, loff_t end_byte); static inline int filemap_fdatawait(struct address_space *mapping) { return filemap_fdatawait_range(mapping, 0, LLONG_MAX); } extern bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); extern int filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); extern int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end, int sync_mode); extern int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end); extern int filemap_check_errors(struct address_space *mapping); extern void __filemap_set_wb_err(struct address_space *mapping, int err); static inline int filemap_write_and_wait(struct address_space *mapping) { return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); } extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, loff_t lend); extern int __must_check file_check_and_advance_wb_err(struct file *file); extern int __must_check file_write_and_wait_range(struct file *file, loff_t start, loff_t end); static inline int file_write_and_wait(struct file *file) { return file_write_and_wait_range(file, 0, LLONG_MAX); } /** * filemap_set_wb_err - set a writeback error on an address_space * @mapping: mapping in which to set writeback error * @err: error to be set in mapping * * When writeback fails in some way, we must record that error so that * userspace can be informed when fsync and the like are called. We endeavor * to report errors on any file that was open at the time of the error. Some * internal callers also need to know when writeback errors have occurred. * * When a writeback error occurs, most filesystems will want to call * filemap_set_wb_err to record the error in the mapping so that it will be * automatically reported whenever fsync is called on the file. */ static inline void filemap_set_wb_err(struct address_space *mapping, int err) { /* Fastpath for common case of no error */ if (unlikely(err)) __filemap_set_wb_err(mapping, err); } /** * filemap_check_wb_err - has an error occurred since the mark was sampled? * @mapping: mapping to check for writeback errors * @since: previously-sampled errseq_t * * Grab the errseq_t value from the mapping, and see if it has changed "since" * the given value was sampled. * * If it has then report the latest error set, otherwise return 0. */ static inline int filemap_check_wb_err(struct address_space *mapping, errseq_t since) { return errseq_check(&mapping->wb_err, since); } /** * filemap_sample_wb_err - sample the current errseq_t to test for later errors * @mapping: mapping to be sampled * * Writeback errors are always reported relative to a particular sample point * in the past. This function provides those sample points. */ static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) { return errseq_sample(&mapping->wb_err); } /** * file_sample_sb_err - sample the current errseq_t to test for later errors * @file: file pointer to be sampled * * Grab the most current superblock-level errseq_t value for the given * struct file. */ static inline errseq_t file_sample_sb_err(struct file *file) { return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); } extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync); extern int vfs_fsync(struct file *file, int datasync); extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, unsigned int flags); /* * Sync the bytes written if this was a synchronous write. Expect ki_pos * to already be updated for the write, and will return either the amount * of bytes passed in, or an error if syncing the file failed. */ static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) { if (iocb->ki_flags & IOCB_DSYNC) { int ret = vfs_fsync_range(iocb->ki_filp, iocb->ki_pos - count, iocb->ki_pos - 1, (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); if (ret) return ret; } return count; } extern void emergency_sync(void); extern void emergency_remount(void); #ifdef CONFIG_BLOCK extern int bmap(struct inode *inode, sector_t *block); #else static inline int bmap(struct inode *inode, sector_t *block) { return -EINVAL; } #endif extern int notify_change(struct dentry *, struct iattr *, struct inode **); extern int inode_permission(struct inode *, int); extern int generic_permission(struct inode *, int); extern int __check_sticky(struct inode *dir, struct inode *inode); static inline bool execute_ok(struct inode *inode) { return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); } static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) { return (inode->i_mode ^ mode) & S_IFMT; } static inline void file_start_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; sb_start_write(file_inode(file)->i_sb); } static inline bool file_start_write_trylock(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return sb_start_write_trylock(file_inode(file)->i_sb); } static inline void file_end_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; __sb_end_write(file_inode(file)->i_sb, SB_FREEZE_WRITE); } /* * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * This is used for regular files. * We cannot support write (and maybe mmap read-write shared) accesses and * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode * can have the following values: * 0: no writers, no VM_DENYWRITE mappings * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist * > 0: (i_writecount) users are writing to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. */ static inline int get_write_access(struct inode *inode) { return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline int deny_write_access(struct file *file) { struct inode *inode = file_inode(file); return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline void put_write_access(struct inode * inode) { atomic_dec(&inode->i_writecount); } static inline void allow_write_access(struct file *file) { if (file) atomic_inc(&file_inode(file)->i_writecount); } static inline bool inode_is_open_for_write(const struct inode *inode) { return atomic_read(&inode->i_writecount) > 0; } #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) static inline void i_readcount_dec(struct inode *inode) { BUG_ON(!atomic_read(&inode->i_readcount)); atomic_dec(&inode->i_readcount); } static inline void i_readcount_inc(struct inode *inode) { atomic_inc(&inode->i_readcount); } #else static inline void i_readcount_dec(struct inode *inode) { return; } static inline void i_readcount_inc(struct inode *inode) { return; } #endif extern int do_pipe_flags(int *, int); extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); extern struct file * open_exec(const char *); /* fs/dcache.c -- generic fs support functions */ extern bool is_subdir(struct dentry *, struct dentry *); extern bool path_is_under(const struct path *, const struct path *); extern char *file_path(struct file *, char *, int); #include <linux/err.h> /* needed for stackable file system support */ extern loff_t default_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); extern int inode_init_always(struct super_block *, struct inode *); extern void inode_init_once(struct inode *); extern void address_space_init_once(struct address_space *mapping); extern struct inode * igrab(struct inode *); extern ino_t iunique(struct super_block *, ino_t); extern int inode_needs_sync(struct inode *inode); extern int generic_delete_inode(struct inode *inode); static inline int generic_drop_inode(struct inode *inode) { return !inode->i_nlink || inode_unhashed(inode); } extern void d_mark_dontcache(struct inode *inode); extern struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup(struct super_block *sb, unsigned long ino); extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data); extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); extern struct inode * iget_locked(struct super_block *, unsigned long); extern struct inode *find_inode_nowait(struct super_block *, unsigned long, int (*match)(struct inode *, unsigned long, void *), void *data); extern struct inode *find_inode_rcu(struct super_block *, unsigned long, int (*)(struct inode *, void *), void *); extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); extern int insert_inode_locked(struct inode *); #ifdef CONFIG_DEBUG_LOCK_ALLOC extern void lockdep_annotate_inode_mutex_key(struct inode *inode); #else static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; #endif extern void unlock_new_inode(struct inode *); extern void discard_new_inode(struct inode *); extern unsigned int get_next_ino(void); extern void evict_inodes(struct super_block *sb); /* * Userspace may rely on the the inode number being non-zero. For example, glibc * simply ignores files with zero i_ino in unlink() and other places. * * As an additional complication, if userspace was compiled with * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the * lower 32 bits, so we need to check that those aren't zero explicitly. With * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but * better safe than sorry. */ static inline bool is_zero_ino(ino_t ino) { return (u32)ino == 0; } extern void __iget(struct inode * inode); extern void iget_failed(struct inode *); extern void clear_inode(struct inode *); extern void __destroy_inode(struct inode *); extern struct inode *new_inode_pseudo(struct super_block *sb); extern struct inode *new_inode(struct super_block *sb); extern void free_inode_nonrcu(struct inode *inode); extern int should_remove_suid(struct dentry *); extern int file_remove_privs(struct file *); extern void __insert_inode_hash(struct inode *, unsigned long hashval); static inline void insert_inode_hash(struct inode *inode) { __insert_inode_hash(inode, inode->i_ino); } extern void __remove_inode_hash(struct inode *); static inline void remove_inode_hash(struct inode *inode) { if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) __remove_inode_hash(inode); } extern void inode_sb_list_add(struct inode *inode); extern int sb_set_blocksize(struct super_block *, int); extern int sb_min_blocksize(struct super_block *, int); extern int generic_file_mmap(struct file *, struct vm_area_struct *); extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); extern int generic_write_check_limits(struct file *file, loff_t pos, loff_t *count); extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); extern ssize_t generic_file_buffered_read(struct kiocb *iocb, struct iov_iter *to, ssize_t already_read); extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); extern ssize_t generic_perform_write(struct file *, struct iov_iter *, loff_t); ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, struct iov_iter *iter); ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, struct iov_iter *iter); /* fs/block_dev.c */ extern ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to); extern ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from); extern int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync); extern void block_sync_page(struct page *page); /* fs/splice.c */ extern ssize_t generic_file_splice_read(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); extern ssize_t iter_file_splice_write(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); extern ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, loff_t *, size_t len, unsigned int flags); extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, loff_t *opos, size_t len, unsigned int flags); extern void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); extern loff_t no_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, int whence, loff_t maxsize, loff_t eof); extern loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size); extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); extern loff_t no_seek_end_llseek(struct file *, loff_t, int); extern int generic_file_open(struct inode * inode, struct file * filp); extern int nonseekable_open(struct inode * inode, struct file * filp); extern int stream_open(struct inode * inode, struct file * filp); #ifdef CONFIG_BLOCK typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, loff_t file_offset); enum { /* need locking between buffered and direct access */ DIO_LOCKING = 0x01, /* filesystem does not support filling holes */ DIO_SKIP_HOLES = 0x02, }; ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct block_device *bdev, struct iov_iter *iter, get_block_t get_block, dio_iodone_t end_io, dio_submit_t submit_io, int flags); static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct iov_iter *iter, get_block_t get_block) { return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, get_block, NULL, NULL, DIO_LOCKING | DIO_SKIP_HOLES); } #endif void inode_dio_wait(struct inode *inode); /* * inode_dio_begin - signal start of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_begin(struct inode *inode) { atomic_inc(&inode->i_dio_count); } /* * inode_dio_end - signal finish of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_end(struct inode *inode) { if (atomic_dec_and_test(&inode->i_dio_count)) wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); } /* * Warn about a page cache invalidation failure diring a direct I/O write. */ void dio_warn_stale_pagecache(struct file *filp); extern void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask); extern const struct file_operations generic_ro_fops; #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) extern int readlink_copy(char __user *, int, const char *); extern int page_readlink(struct dentry *, char __user *, int); extern const char *page_get_link(struct dentry *, struct inode *, struct delayed_call *); extern void page_put_link(void *); extern int __page_symlink(struct inode *inode, const char *symname, int len, int nofs); extern int page_symlink(struct inode *inode, const char *symname, int len); extern const struct inode_operations page_symlink_inode_operations; extern void kfree_link(void *); extern void generic_fillattr(struct inode *, struct kstat *); extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); void __inode_add_bytes(struct inode *inode, loff_t bytes); void inode_add_bytes(struct inode *inode, loff_t bytes); void __inode_sub_bytes(struct inode *inode, loff_t bytes); void inode_sub_bytes(struct inode *inode, loff_t bytes); static inline loff_t __inode_get_bytes(struct inode *inode) { return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; } loff_t inode_get_bytes(struct inode *inode); void inode_set_bytes(struct inode *inode, loff_t bytes); const char *simple_get_link(struct dentry *, struct inode *, struct delayed_call *); extern const struct inode_operations simple_symlink_inode_operations; extern int iterate_dir(struct file *, struct dir_context *); int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, int flags); int vfs_fstat(int fd, struct kstat *stat); static inline int vfs_stat(const char __user *filename, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, filename, stat, 0); } static inline int vfs_lstat(const char __user *name, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); } extern const char *vfs_get_link(struct dentry *, struct delayed_call *); extern int vfs_readlink(struct dentry *, char __user *, int); extern struct file_system_type *get_filesystem(struct file_system_type *fs); extern void put_filesystem(struct file_system_type *fs); extern struct file_system_type *get_fs_type(const char *name); extern struct super_block *get_super(struct block_device *); extern struct super_block *get_super_thawed(struct block_device *); extern struct super_block *get_super_exclusive_thawed(struct block_device *bdev); extern struct super_block *get_active_super(struct block_device *bdev); extern void drop_super(struct super_block *sb); extern void drop_super_exclusive(struct super_block *sb); extern void iterate_supers(void (*)(struct super_block *, void *), void *); extern void iterate_supers_type(struct file_system_type *, void (*)(struct super_block *, void *), void *); extern int dcache_dir_open(struct inode *, struct file *); extern int dcache_dir_close(struct inode *, struct file *); extern loff_t dcache_dir_lseek(struct file *, loff_t, int); extern int dcache_readdir(struct file *, struct dir_context *); extern int simple_setattr(struct dentry *, struct iattr *); extern int simple_getattr(const struct path *, struct kstat *, u32, unsigned int); extern int simple_statfs(struct dentry *, struct kstatfs *); extern int simple_open(struct inode *inode, struct file *file); extern int simple_link(struct dentry *, struct inode *, struct dentry *); extern int simple_unlink(struct inode *, struct dentry *); extern int simple_rmdir(struct inode *, struct dentry *); extern int simple_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); extern void simple_recursive_removal(struct dentry *, void (*callback)(struct dentry *)); extern int noop_fsync(struct file *, loff_t, loff_t, int); extern int noop_set_page_dirty(struct page *page); extern void noop_invalidatepage(struct page *page, unsigned int offset, unsigned int length); extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); extern int simple_empty(struct dentry *); extern int simple_readpage(struct file *file, struct page *page); extern int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); extern int simple_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); extern int always_delete_dentry(const struct dentry *); extern struct inode *alloc_anon_inode(struct super_block *); extern int simple_nosetlease(struct file *, long, struct file_lock **, void **); extern const struct dentry_operations simple_dentry_operations; extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); extern const struct file_operations simple_dir_operations; extern const struct inode_operations simple_dir_inode_operations; extern void make_empty_dir_inode(struct inode *inode); extern bool is_empty_dir_inode(struct inode *inode); struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; struct dentry *d_alloc_name(struct dentry *, const char *); extern int simple_fill_super(struct super_block *, unsigned long, const struct tree_descr *); extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); extern void simple_release_fs(struct vfsmount **mount, int *count); extern ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available); extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count); extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_check_addressable(unsigned, u64); #ifdef CONFIG_UNICODE extern int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str); extern int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, const char *str, const struct qstr *name); #endif #ifdef CONFIG_MIGRATION extern int buffer_migrate_page(struct address_space *, struct page *, struct page *, enum migrate_mode); extern int buffer_migrate_page_norefs(struct address_space *, struct page *, struct page *, enum migrate_mode); #else #define buffer_migrate_page NULL #define buffer_migrate_page_norefs NULL #endif extern int setattr_prepare(struct dentry *, struct iattr *); extern int inode_newsize_ok(const struct inode *, loff_t offset); extern void setattr_copy(struct inode *inode, const struct iattr *attr); extern int file_update_time(struct file *file); static inline bool vma_is_dax(const struct vm_area_struct *vma) { return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); } static inline bool vma_is_fsdax(struct vm_area_struct *vma) { struct inode *inode; if (!vma->vm_file) return false; if (!vma_is_dax(vma)) return false; inode = file_inode(vma->vm_file); if (S_ISCHR(inode->i_mode)) return false; /* device-dax */ return true; } static inline int iocb_flags(struct file *file) { int res = 0; if (file->f_flags & O_APPEND) res |= IOCB_APPEND; if (file->f_flags & O_DIRECT) res |= IOCB_DIRECT; if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) res |= IOCB_DSYNC; if (file->f_flags & __O_SYNC) res |= IOCB_SYNC; return res; } static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) { int kiocb_flags = 0; /* make sure there's no overlap between RWF and private IOCB flags */ BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); if (!flags) return 0; if (unlikely(flags & ~RWF_SUPPORTED)) return -EOPNOTSUPP; if (flags & RWF_NOWAIT) { if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) return -EOPNOTSUPP; kiocb_flags |= IOCB_NOIO; } kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); if (flags & RWF_SYNC) kiocb_flags |= IOCB_DSYNC; ki->ki_flags |= kiocb_flags; return 0; } static inline ino_t parent_ino(struct dentry *dentry) { ino_t res; /* * Don't strictly need d_lock here? If the parent ino could change * then surely we'd have a deeper race in the caller? */ spin_lock(&dentry->d_lock); res = dentry->d_parent->d_inode->i_ino; spin_unlock(&dentry->d_lock); return res; } /* Transaction based IO helpers */ /* * An argresp is stored in an allocated page and holds the * size of the argument or response, along with its content */ struct simple_transaction_argresp { ssize_t size; char data[]; }; #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) char *simple_transaction_get(struct file *file, const char __user *buf, size_t size); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos); int simple_transaction_release(struct inode *inode, struct file *file); void simple_transaction_set(struct file *file, size_t n); /* * simple attribute files * * These attributes behave similar to those in sysfs: * * Writing to an attribute immediately sets a value, an open file can be * written to multiple times. * * Reading from an attribute creates a buffer from the value that might get * read with multiple read calls. When the attribute has been read * completely, no further read calls are possible until the file is opened * again. * * All attributes contain a text representation of a numeric value * that are accessed with the get() and set() functions. */ #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ static int __fops ## _open(struct inode *inode, struct file *file) \ { \ __simple_attr_check_format(__fmt, 0ull); \ return simple_attr_open(inode, file, __get, __set, __fmt); \ } \ static const struct file_operations __fops = { \ .owner = THIS_MODULE, \ .open = __fops ## _open, \ .release = simple_attr_release, \ .read = simple_attr_read, \ .write = simple_attr_write, \ .llseek = generic_file_llseek, \ } static inline __printf(1, 2) void __simple_attr_check_format(const char *fmt, ...) { /* don't do anything, just let the compiler check the arguments; */ } int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt); int simple_attr_release(struct inode *inode, struct file *file); ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos); struct ctl_table; int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int __init get_filesystem_list(char *buf); #define __FMODE_EXEC ((__force int) FMODE_EXEC) #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ (flag & __FMODE_NONOTIFY))) static inline bool is_sxid(umode_t mode) { return (mode & S_ISUID) || ((mode & S_ISGID) && (mode & S_IXGRP)); } static inline int check_sticky(struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; return __check_sticky(dir, inode); } static inline void inode_has_no_xattr(struct inode *inode) { if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) inode->i_flags |= S_NOSEC; } static inline bool is_root_inode(struct inode *inode) { return inode == inode->i_sb->s_root->d_inode; } static inline bool dir_emit(struct dir_context *ctx, const char *name, int namelen, u64 ino, unsigned type) { return ctx->actor(ctx, name, namelen, ctx->pos, ino, type) == 0; } static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, ".", 1, ctx->pos, file->f_path.dentry->d_inode->i_ino, DT_DIR) == 0; } static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, "..", 2, ctx->pos, parent_ino(file->f_path.dentry), DT_DIR) == 0; } static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) { if (ctx->pos == 0) { if (!dir_emit_dot(file, ctx)) return false; ctx->pos = 1; } if (ctx->pos == 1) { if (!dir_emit_dotdot(file, ctx)) return false; ctx->pos = 2; } return true; } static inline bool dir_relax(struct inode *inode) { inode_unlock(inode); inode_lock(inode); return !IS_DEADDIR(inode); } static inline bool dir_relax_shared(struct inode *inode) { inode_unlock_shared(inode); inode_lock_shared(inode); return !IS_DEADDIR(inode); } extern bool path_noexec(const struct path *path); extern void inode_nohighmem(struct inode *inode); /* mm/fadvise.c */ extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, int advice); extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, int advice); int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags, unsigned int flags); int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa, struct fsxattr *fa); static inline void simple_fill_fsxattr(struct fsxattr *fa, __u32 xflags) { memset(fa, 0, sizeof(*fa)); fa->fsx_xflags = xflags; } /* * Flush file data before changing attributes. Caller must hold any locks * required to prevent further writes to this file until we're done setting * flags. */ static inline int inode_drain_writes(struct inode *inode) { inode_dio_wait(inode); return filemap_write_and_wait(inode->i_mapping); } #endif /* _LINUX_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 2003-2005 Red Hat, Inc. All rights reserved. * Copyright 2003-2005 Jeff Garzik * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/driver-api/libata.rst */ #ifndef __LINUX_LIBATA_H__ #define __LINUX_LIBATA_H__ #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/io.h> #include <linux/ata.h> #include <linux/workqueue.h> #include <scsi/scsi_host.h> #include <linux/acpi.h> #include <linux/cdrom.h> #include <linux/sched.h> #include <linux/async.h> /* * Define if arch has non-standard setup. This is a _PCI_ standard * not a legacy or ISA standard. */ #ifdef CONFIG_ATA_NONSTANDARD #include <asm/libata-portmap.h> #else #define ATA_PRIMARY_IRQ(dev) 14 #define ATA_SECONDARY_IRQ(dev) 15 #endif /* * compile-time options: to be removed as soon as all the drivers are * converted to the new debugging mechanism */ #undef ATA_DEBUG /* debugging output */ #undef ATA_VERBOSE_DEBUG /* yet more debugging output */ #undef ATA_IRQ_TRAP /* define to ack screaming irqs */ #undef ATA_NDEBUG /* define to disable quick runtime checks */ /* note: prints function name for you */ #ifdef ATA_DEBUG #define DPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #ifdef ATA_VERBOSE_DEBUG #define VPRINTK(fmt, args...) printk(KERN_ERR "%s: " fmt, __func__, ## args) #else #define VPRINTK(fmt, args...) #endif /* ATA_VERBOSE_DEBUG */ #else #define DPRINTK(fmt, args...) #define VPRINTK(fmt, args...) #endif /* ATA_DEBUG */ #define ata_print_version_once(dev, version) \ ({ \ static bool __print_once; \ \ if (!__print_once) { \ __print_once = true; \ ata_print_version(dev, version); \ } \ }) /* NEW: debug levels */ #define HAVE_LIBATA_MSG 1 enum { ATA_MSG_DRV = 0x0001, ATA_MSG_INFO = 0x0002, ATA_MSG_PROBE = 0x0004, ATA_MSG_WARN = 0x0008, ATA_MSG_MALLOC = 0x0010, ATA_MSG_CTL = 0x0020, ATA_MSG_INTR = 0x0040, ATA_MSG_ERR = 0x0080, }; #define ata_msg_drv(p) ((p)->msg_enable & ATA_MSG_DRV) #define ata_msg_info(p) ((p)->msg_enable & ATA_MSG_INFO) #define ata_msg_probe(p) ((p)->msg_enable & ATA_MSG_PROBE) #define ata_msg_warn(p) ((p)->msg_enable & ATA_MSG_WARN) #define ata_msg_malloc(p) ((p)->msg_enable & ATA_MSG_MALLOC) #define ata_msg_ctl(p) ((p)->msg_enable & ATA_MSG_CTL) #define ata_msg_intr(p) ((p)->msg_enable & ATA_MSG_INTR) #define ata_msg_err(p) ((p)->msg_enable & ATA_MSG_ERR) static inline u32 ata_msg_init(int dval, int default_msg_enable_bits) { if (dval < 0 || dval >= (sizeof(u32) * 8)) return default_msg_enable_bits; /* should be 0x1 - only driver info msgs */ if (!dval) return 0; return (1 << dval) - 1; } /* defines only for the constants which don't work well as enums */ #define ATA_TAG_POISON 0xfafbfcfdU enum { /* various global constants */ LIBATA_MAX_PRD = ATA_MAX_PRD / 2, LIBATA_DUMB_MAX_PRD = ATA_MAX_PRD / 4, /* Worst case */ ATA_DEF_QUEUE = 1, ATA_MAX_QUEUE = 32, ATA_TAG_INTERNAL = ATA_MAX_QUEUE, ATA_SHORT_PAUSE = 16, ATAPI_MAX_DRAIN = 16 << 10, ATA_ALL_DEVICES = (1 << ATA_MAX_DEVICES) - 1, ATA_SHT_EMULATED = 1, ATA_SHT_THIS_ID = -1, /* struct ata_taskfile flags */ ATA_TFLAG_LBA48 = (1 << 0), /* enable 48-bit LBA and "HOB" */ ATA_TFLAG_ISADDR = (1 << 1), /* enable r/w to nsect/lba regs */ ATA_TFLAG_DEVICE = (1 << 2), /* enable r/w to device reg */ ATA_TFLAG_WRITE = (1 << 3), /* data dir: host->dev==1 (write) */ ATA_TFLAG_LBA = (1 << 4), /* enable LBA */ ATA_TFLAG_FUA = (1 << 5), /* enable FUA */ ATA_TFLAG_POLLING = (1 << 6), /* set nIEN to 1 and use polling */ /* struct ata_device stuff */ ATA_DFLAG_LBA = (1 << 0), /* device supports LBA */ ATA_DFLAG_LBA48 = (1 << 1), /* device supports LBA48 */ ATA_DFLAG_CDB_INTR = (1 << 2), /* device asserts INTRQ when ready for CDB */ ATA_DFLAG_NCQ = (1 << 3), /* device supports NCQ */ ATA_DFLAG_FLUSH_EXT = (1 << 4), /* do FLUSH_EXT instead of FLUSH */ ATA_DFLAG_ACPI_PENDING = (1 << 5), /* ACPI resume action pending */ ATA_DFLAG_ACPI_FAILED = (1 << 6), /* ACPI on devcfg has failed */ ATA_DFLAG_AN = (1 << 7), /* AN configured */ ATA_DFLAG_TRUSTED = (1 << 8), /* device supports trusted send/recv */ ATA_DFLAG_DMADIR = (1 << 10), /* device requires DMADIR */ ATA_DFLAG_CFG_MASK = (1 << 12) - 1, ATA_DFLAG_PIO = (1 << 12), /* device limited to PIO mode */ ATA_DFLAG_NCQ_OFF = (1 << 13), /* device limited to non-NCQ mode */ ATA_DFLAG_SLEEPING = (1 << 15), /* device is sleeping */ ATA_DFLAG_DUBIOUS_XFER = (1 << 16), /* data transfer not verified */ ATA_DFLAG_NO_UNLOAD = (1 << 17), /* device doesn't support unload */ ATA_DFLAG_UNLOCK_HPA = (1 << 18), /* unlock HPA */ ATA_DFLAG_NCQ_SEND_RECV = (1 << 19), /* device supports NCQ SEND and RECV */ ATA_DFLAG_NCQ_PRIO = (1 << 20), /* device supports NCQ priority */ ATA_DFLAG_NCQ_PRIO_ENABLE = (1 << 21), /* Priority cmds sent to dev */ ATA_DFLAG_INIT_MASK = (1 << 24) - 1, ATA_DFLAG_DETACH = (1 << 24), ATA_DFLAG_DETACHED = (1 << 25), ATA_DFLAG_DA = (1 << 26), /* device supports Device Attention */ ATA_DFLAG_DEVSLP = (1 << 27), /* device supports Device Sleep */ ATA_DFLAG_ACPI_DISABLED = (1 << 28), /* ACPI for the device is disabled */ ATA_DFLAG_D_SENSE = (1 << 29), /* Descriptor sense requested */ ATA_DFLAG_ZAC = (1 << 30), /* ZAC device */ ATA_DEV_UNKNOWN = 0, /* unknown device */ ATA_DEV_ATA = 1, /* ATA device */ ATA_DEV_ATA_UNSUP = 2, /* ATA device (unsupported) */ ATA_DEV_ATAPI = 3, /* ATAPI device */ ATA_DEV_ATAPI_UNSUP = 4, /* ATAPI device (unsupported) */ ATA_DEV_PMP = 5, /* SATA port multiplier */ ATA_DEV_PMP_UNSUP = 6, /* SATA port multiplier (unsupported) */ ATA_DEV_SEMB = 7, /* SEMB */ ATA_DEV_SEMB_UNSUP = 8, /* SEMB (unsupported) */ ATA_DEV_ZAC = 9, /* ZAC device */ ATA_DEV_ZAC_UNSUP = 10, /* ZAC device (unsupported) */ ATA_DEV_NONE = 11, /* no device */ /* struct ata_link flags */ /* NOTE: struct ata_force_param currently stores lflags in u16 */ ATA_LFLAG_NO_HRST = (1 << 1), /* avoid hardreset */ ATA_LFLAG_NO_SRST = (1 << 2), /* avoid softreset */ ATA_LFLAG_ASSUME_ATA = (1 << 3), /* assume ATA class */ ATA_LFLAG_ASSUME_SEMB = (1 << 4), /* assume SEMB class */ ATA_LFLAG_ASSUME_CLASS = ATA_LFLAG_ASSUME_ATA | ATA_LFLAG_ASSUME_SEMB, ATA_LFLAG_NO_RETRY = (1 << 5), /* don't retry this link */ ATA_LFLAG_DISABLED = (1 << 6), /* link is disabled */ ATA_LFLAG_SW_ACTIVITY = (1 << 7), /* keep activity stats */ ATA_LFLAG_NO_LPM = (1 << 8), /* disable LPM on this link */ ATA_LFLAG_RST_ONCE = (1 << 9), /* limit recovery to one reset */ ATA_LFLAG_CHANGED = (1 << 10), /* LPM state changed on this link */ ATA_LFLAG_NO_DB_DELAY = (1 << 11), /* no debounce delay on link resume */ /* struct ata_port flags */ ATA_FLAG_SLAVE_POSS = (1 << 0), /* host supports slave dev */ /* (doesn't imply presence) */ ATA_FLAG_SATA = (1 << 1), ATA_FLAG_NO_LPM = (1 << 2), /* host not happy with LPM */ ATA_FLAG_NO_LOG_PAGE = (1 << 5), /* do not issue log page read */ ATA_FLAG_NO_ATAPI = (1 << 6), /* No ATAPI support */ ATA_FLAG_PIO_DMA = (1 << 7), /* PIO cmds via DMA */ ATA_FLAG_PIO_LBA48 = (1 << 8), /* Host DMA engine is LBA28 only */ ATA_FLAG_PIO_POLLING = (1 << 9), /* use polling PIO if LLD * doesn't handle PIO interrupts */ ATA_FLAG_NCQ = (1 << 10), /* host supports NCQ */ ATA_FLAG_NO_POWEROFF_SPINDOWN = (1 << 11), /* don't spindown before poweroff */ ATA_FLAG_NO_HIBERNATE_SPINDOWN = (1 << 12), /* don't spindown before hibernation */ ATA_FLAG_DEBUGMSG = (1 << 13), ATA_FLAG_FPDMA_AA = (1 << 14), /* driver supports Auto-Activate */ ATA_FLAG_IGN_SIMPLEX = (1 << 15), /* ignore SIMPLEX */ ATA_FLAG_NO_IORDY = (1 << 16), /* controller lacks iordy */ ATA_FLAG_ACPI_SATA = (1 << 17), /* need native SATA ACPI layout */ ATA_FLAG_AN = (1 << 18), /* controller supports AN */ ATA_FLAG_PMP = (1 << 19), /* controller supports PMP */ ATA_FLAG_FPDMA_AUX = (1 << 20), /* controller supports H2DFIS aux field */ ATA_FLAG_EM = (1 << 21), /* driver supports enclosure * management */ ATA_FLAG_SW_ACTIVITY = (1 << 22), /* driver supports sw activity * led */ ATA_FLAG_NO_DIPM = (1 << 23), /* host not happy with DIPM */ ATA_FLAG_SAS_HOST = (1 << 24), /* SAS host */ /* bits 24:31 of ap->flags are reserved for LLD specific flags */ /* struct ata_port pflags */ ATA_PFLAG_EH_PENDING = (1 << 0), /* EH pending */ ATA_PFLAG_EH_IN_PROGRESS = (1 << 1), /* EH in progress */ ATA_PFLAG_FROZEN = (1 << 2), /* port is frozen */ ATA_PFLAG_RECOVERED = (1 << 3), /* recovery action performed */ ATA_PFLAG_LOADING = (1 << 4), /* boot/loading probe */ ATA_PFLAG_SCSI_HOTPLUG = (1 << 6), /* SCSI hotplug scheduled */ ATA_PFLAG_INITIALIZING = (1 << 7), /* being initialized, don't touch */ ATA_PFLAG_RESETTING = (1 << 8), /* reset in progress */ ATA_PFLAG_UNLOADING = (1 << 9), /* driver is being unloaded */ ATA_PFLAG_UNLOADED = (1 << 10), /* driver is unloaded */ ATA_PFLAG_SUSPENDED = (1 << 17), /* port is suspended (power) */ ATA_PFLAG_PM_PENDING = (1 << 18), /* PM operation pending */ ATA_PFLAG_INIT_GTM_VALID = (1 << 19), /* initial gtm data valid */ ATA_PFLAG_PIO32 = (1 << 20), /* 32bit PIO */ ATA_PFLAG_PIO32CHANGE = (1 << 21), /* 32bit PIO can be turned on/off */ ATA_PFLAG_EXTERNAL = (1 << 22), /* eSATA/external port */ /* struct ata_queued_cmd flags */ ATA_QCFLAG_ACTIVE = (1 << 0), /* cmd not yet ack'd to scsi lyer */ ATA_QCFLAG_DMAMAP = (1 << 1), /* SG table is DMA mapped */ ATA_QCFLAG_IO = (1 << 3), /* standard IO command */ ATA_QCFLAG_RESULT_TF = (1 << 4), /* result TF requested */ ATA_QCFLAG_CLEAR_EXCL = (1 << 5), /* clear excl_link on completion */ ATA_QCFLAG_QUIET = (1 << 6), /* don't report device error */ ATA_QCFLAG_RETRY = (1 << 7), /* retry after failure */ ATA_QCFLAG_FAILED = (1 << 16), /* cmd failed and is owned by EH */ ATA_QCFLAG_SENSE_VALID = (1 << 17), /* sense data valid */ ATA_QCFLAG_EH_SCHEDULED = (1 << 18), /* EH scheduled (obsolete) */ /* host set flags */ ATA_HOST_SIMPLEX = (1 << 0), /* Host is simplex, one DMA channel per host only */ ATA_HOST_STARTED = (1 << 1), /* Host started */ ATA_HOST_PARALLEL_SCAN = (1 << 2), /* Ports on this host can be scanned in parallel */ ATA_HOST_IGNORE_ATA = (1 << 3), /* Ignore ATA devices on this host. */ /* bits 24:31 of host->flags are reserved for LLD specific flags */ /* various lengths of time */ ATA_TMOUT_BOOT = 30000, /* heuristic */ ATA_TMOUT_BOOT_QUICK = 7000, /* heuristic */ ATA_TMOUT_INTERNAL_QUICK = 5000, ATA_TMOUT_MAX_PARK = 30000, /* * GoVault needs 2s and iVDR disk HHD424020F7SV00 800ms. 2s * is too much without parallel probing. Use 2s if parallel * probing is available, 800ms otherwise. */ ATA_TMOUT_FF_WAIT_LONG = 2000, ATA_TMOUT_FF_WAIT = 800, /* Spec mandates to wait for ">= 2ms" before checking status * after reset. We wait 150ms, because that was the magic * delay used for ATAPI devices in Hale Landis's ATADRVR, for * the period of time between when the ATA command register is * written, and then status is checked. Because waiting for * "a while" before checking status is fine, post SRST, we * perform this magic delay here as well. * * Old drivers/ide uses the 2mS rule and then waits for ready. */ ATA_WAIT_AFTER_RESET = 150, /* If PMP is supported, we have to do follow-up SRST. As some * PMPs don't send D2H Reg FIS after hardreset, LLDs are * advised to wait only for the following duration before * doing SRST. */ ATA_TMOUT_PMP_SRST_WAIT = 5000, /* When the LPM policy is set to ATA_LPM_MAX_POWER, there might * be a spurious PHY event, so ignore the first PHY event that * occurs within 10s after the policy change. */ ATA_TMOUT_SPURIOUS_PHY = 10000, /* ATA bus states */ BUS_UNKNOWN = 0, BUS_DMA = 1, BUS_IDLE = 2, BUS_NOINTR = 3, BUS_NODATA = 4, BUS_TIMER = 5, BUS_PIO = 6, BUS_EDD = 7, BUS_IDENTIFY = 8, BUS_PACKET = 9, /* SATA port states */ PORT_UNKNOWN = 0, PORT_ENABLED = 1, PORT_DISABLED = 2, /* encoding various smaller bitmaps into a single * unsigned long bitmap */ ATA_NR_PIO_MODES = 7, ATA_NR_MWDMA_MODES = 5, ATA_NR_UDMA_MODES = 8, ATA_SHIFT_PIO = 0, ATA_SHIFT_MWDMA = ATA_SHIFT_PIO + ATA_NR_PIO_MODES, ATA_SHIFT_UDMA = ATA_SHIFT_MWDMA + ATA_NR_MWDMA_MODES, ATA_SHIFT_PRIO = 6, ATA_PRIO_HIGH = 2, /* size of buffer to pad xfers ending on unaligned boundaries */ ATA_DMA_PAD_SZ = 4, /* ering size */ ATA_ERING_SIZE = 32, /* return values for ->qc_defer */ ATA_DEFER_LINK = 1, ATA_DEFER_PORT = 2, /* desc_len for ata_eh_info and context */ ATA_EH_DESC_LEN = 80, /* reset / recovery action types */ ATA_EH_REVALIDATE = (1 << 0), ATA_EH_SOFTRESET = (1 << 1), /* meaningful only in ->prereset */ ATA_EH_HARDRESET = (1 << 2), /* meaningful only in ->prereset */ ATA_EH_RESET = ATA_EH_SOFTRESET | ATA_EH_HARDRESET, ATA_EH_ENABLE_LINK = (1 << 3), ATA_EH_PARK = (1 << 5), /* unload heads and stop I/O */ ATA_EH_PERDEV_MASK = ATA_EH_REVALIDATE | ATA_EH_PARK, ATA_EH_ALL_ACTIONS = ATA_EH_REVALIDATE | ATA_EH_RESET | ATA_EH_ENABLE_LINK, /* ata_eh_info->flags */ ATA_EHI_HOTPLUGGED = (1 << 0), /* could have been hotplugged */ ATA_EHI_NO_AUTOPSY = (1 << 2), /* no autopsy */ ATA_EHI_QUIET = (1 << 3), /* be quiet */ ATA_EHI_NO_RECOVERY = (1 << 4), /* no recovery */ ATA_EHI_DID_SOFTRESET = (1 << 16), /* already soft-reset this port */ ATA_EHI_DID_HARDRESET = (1 << 17), /* already soft-reset this port */ ATA_EHI_PRINTINFO = (1 << 18), /* print configuration info */ ATA_EHI_SETMODE = (1 << 19), /* configure transfer mode */ ATA_EHI_POST_SETMODE = (1 << 20), /* revalidating after setmode */ ATA_EHI_DID_RESET = ATA_EHI_DID_SOFTRESET | ATA_EHI_DID_HARDRESET, /* mask of flags to transfer *to* the slave link */ ATA_EHI_TO_SLAVE_MASK = ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, /* max tries if error condition is still set after ->error_handler */ ATA_EH_MAX_TRIES = 5, /* sometimes resuming a link requires several retries */ ATA_LINK_RESUME_TRIES = 5, /* how hard are we gonna try to probe/recover devices */ ATA_PROBE_MAX_TRIES = 3, ATA_EH_DEV_TRIES = 3, ATA_EH_PMP_TRIES = 5, ATA_EH_PMP_LINK_TRIES = 3, SATA_PMP_RW_TIMEOUT = 3000, /* PMP read/write timeout */ /* This should match the actual table size of * ata_eh_cmd_timeout_table in libata-eh.c. */ ATA_EH_CMD_TIMEOUT_TABLE_SIZE = 7, /* Horkage types. May be set by libata or controller on drives (some horkage may be drive/controller pair dependent */ ATA_HORKAGE_DIAGNOSTIC = (1 << 0), /* Failed boot diag */ ATA_HORKAGE_NODMA = (1 << 1), /* DMA problems */ ATA_HORKAGE_NONCQ = (1 << 2), /* Don't use NCQ */ ATA_HORKAGE_MAX_SEC_128 = (1 << 3), /* Limit max sects to 128 */ ATA_HORKAGE_BROKEN_HPA = (1 << 4), /* Broken HPA */ ATA_HORKAGE_DISABLE = (1 << 5), /* Disable it */ ATA_HORKAGE_HPA_SIZE = (1 << 6), /* native size off by one */ ATA_HORKAGE_IVB = (1 << 8), /* cbl det validity bit bugs */ ATA_HORKAGE_STUCK_ERR = (1 << 9), /* stuck ERR on next PACKET */ ATA_HORKAGE_BRIDGE_OK = (1 << 10), /* no bridge limits */ ATA_HORKAGE_ATAPI_MOD16_DMA = (1 << 11), /* use ATAPI DMA for commands not multiple of 16 bytes */ ATA_HORKAGE_FIRMWARE_WARN = (1 << 12), /* firmware update warning */ ATA_HORKAGE_1_5_GBPS = (1 << 13), /* force 1.5 Gbps */ ATA_HORKAGE_NOSETXFER = (1 << 14), /* skip SETXFER, SATA only */ ATA_HORKAGE_BROKEN_FPDMA_AA = (1 << 15), /* skip AA */ ATA_HORKAGE_DUMP_ID = (1 << 16), /* dump IDENTIFY data */ ATA_HORKAGE_MAX_SEC_LBA48 = (1 << 17), /* Set max sects to 65535 */ ATA_HORKAGE_ATAPI_DMADIR = (1 << 18), /* device requires dmadir */ ATA_HORKAGE_NO_NCQ_TRIM = (1 << 19), /* don't use queued TRIM */ ATA_HORKAGE_NOLPM = (1 << 20), /* don't use LPM */ ATA_HORKAGE_WD_BROKEN_LPM = (1 << 21), /* some WDs have broken LPM */ ATA_HORKAGE_ZERO_AFTER_TRIM = (1 << 22),/* guarantees zero after trim */ ATA_HORKAGE_NO_DMA_LOG = (1 << 23), /* don't use DMA for log read */ ATA_HORKAGE_NOTRIM = (1 << 24), /* don't use TRIM */ ATA_HORKAGE_MAX_SEC_1024 = (1 << 25), /* Limit max sects to 1024 */ ATA_HORKAGE_MAX_TRIM_128M = (1 << 26), /* Limit max trim size to 128M */ ATA_HORKAGE_NO_NCQ_ON_ATI = (1 << 27), /* Disable NCQ on ATI chipset */ /* DMA mask for user DMA control: User visible values; DO NOT renumber */ ATA_DMA_MASK_ATA = (1 << 0), /* DMA on ATA Disk */ ATA_DMA_MASK_ATAPI = (1 << 1), /* DMA on ATAPI */ ATA_DMA_MASK_CFA = (1 << 2), /* DMA on CF Card */ /* ATAPI command types */ ATAPI_READ = 0, /* READs */ ATAPI_WRITE = 1, /* WRITEs */ ATAPI_READ_CD = 2, /* READ CD [MSF] */ ATAPI_PASS_THRU = 3, /* SAT pass-thru */ ATAPI_MISC = 4, /* the rest */ /* Timing constants */ ATA_TIMING_SETUP = (1 << 0), ATA_TIMING_ACT8B = (1 << 1), ATA_TIMING_REC8B = (1 << 2), ATA_TIMING_CYC8B = (1 << 3), ATA_TIMING_8BIT = ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B, ATA_TIMING_ACTIVE = (1 << 4), ATA_TIMING_RECOVER = (1 << 5), ATA_TIMING_DMACK_HOLD = (1 << 6), ATA_TIMING_CYCLE = (1 << 7), ATA_TIMING_UDMA = (1 << 8), ATA_TIMING_ALL = ATA_TIMING_SETUP | ATA_TIMING_ACT8B | ATA_TIMING_REC8B | ATA_TIMING_CYC8B | ATA_TIMING_ACTIVE | ATA_TIMING_RECOVER | ATA_TIMING_DMACK_HOLD | ATA_TIMING_CYCLE | ATA_TIMING_UDMA, /* ACPI constants */ ATA_ACPI_FILTER_SETXFER = 1 << 0, ATA_ACPI_FILTER_LOCK = 1 << 1, ATA_ACPI_FILTER_DIPM = 1 << 2, ATA_ACPI_FILTER_FPDMA_OFFSET = 1 << 3, /* FPDMA non-zero offset */ ATA_ACPI_FILTER_FPDMA_AA = 1 << 4, /* FPDMA auto activate */ ATA_ACPI_FILTER_DEFAULT = ATA_ACPI_FILTER_SETXFER | ATA_ACPI_FILTER_LOCK | ATA_ACPI_FILTER_DIPM, }; enum ata_xfer_mask { ATA_MASK_PIO = ((1LU << ATA_NR_PIO_MODES) - 1) << ATA_SHIFT_PIO, ATA_MASK_MWDMA = ((1LU << ATA_NR_MWDMA_MODES) - 1) << ATA_SHIFT_MWDMA, ATA_MASK_UDMA = ((1LU << ATA_NR_UDMA_MODES) - 1) << ATA_SHIFT_UDMA, }; enum hsm_task_states { HSM_ST_IDLE, /* no command on going */ HSM_ST_FIRST, /* (waiting the device to) write CDB or first data block */ HSM_ST, /* (waiting the device to) transfer data */ HSM_ST_LAST, /* (waiting the device to) complete command */ HSM_ST_ERR, /* error */ }; enum ata_completion_errors { AC_ERR_OK = 0, /* no error */ AC_ERR_DEV = (1 << 0), /* device reported error */ AC_ERR_HSM = (1 << 1), /* host state machine violation */ AC_ERR_TIMEOUT = (1 << 2), /* timeout */ AC_ERR_MEDIA = (1 << 3), /* media error */ AC_ERR_ATA_BUS = (1 << 4), /* ATA bus error */ AC_ERR_HOST_BUS = (1 << 5), /* host bus error */ AC_ERR_SYSTEM = (1 << 6), /* system error */ AC_ERR_INVALID = (1 << 7), /* invalid argument */ AC_ERR_OTHER = (1 << 8), /* unknown */ AC_ERR_NODEV_HINT = (1 << 9), /* polling device detection hint */ AC_ERR_NCQ = (1 << 10), /* marker for offending NCQ qc */ }; /* * Link power management policy: If you alter this, you also need to * alter libata-scsi.c (for the ascii descriptions) */ enum ata_lpm_policy { ATA_LPM_UNKNOWN, ATA_LPM_MAX_POWER, ATA_LPM_MED_POWER, ATA_LPM_MED_POWER_WITH_DIPM, /* Med power + DIPM as win IRST does */ ATA_LPM_MIN_POWER_WITH_PARTIAL, /* Min Power + partial and slumber */ ATA_LPM_MIN_POWER, /* Min power + no partial (slumber only) */ }; enum ata_lpm_hints { ATA_LPM_EMPTY = (1 << 0), /* port empty/probing */ ATA_LPM_HIPM = (1 << 1), /* may use HIPM */ ATA_LPM_WAKE_ONLY = (1 << 2), /* only wake up link */ }; /* forward declarations */ struct scsi_device; struct ata_port_operations; struct ata_port; struct ata_link; struct ata_queued_cmd; /* typedefs */ typedef void (*ata_qc_cb_t) (struct ata_queued_cmd *qc); typedef int (*ata_prereset_fn_t)(struct ata_link *link, unsigned long deadline); typedef int (*ata_reset_fn_t)(struct ata_link *link, unsigned int *classes, unsigned long deadline); typedef void (*ata_postreset_fn_t)(struct ata_link *link, unsigned int *classes); extern struct device_attribute dev_attr_unload_heads; #ifdef CONFIG_SATA_HOST extern struct device_attribute dev_attr_link_power_management_policy; extern struct device_attribute dev_attr_ncq_prio_enable; extern struct device_attribute dev_attr_em_message_type; extern struct device_attribute dev_attr_em_message; extern struct device_attribute dev_attr_sw_activity; #endif enum sw_activity { OFF, BLINK_ON, BLINK_OFF, }; struct ata_taskfile { unsigned long flags; /* ATA_TFLAG_xxx */ u8 protocol; /* ATA_PROT_xxx */ u8 ctl; /* control reg */ u8 hob_feature; /* additional data */ u8 hob_nsect; /* to support LBA48 */ u8 hob_lbal; u8 hob_lbam; u8 hob_lbah; u8 feature; u8 nsect; u8 lbal; u8 lbam; u8 lbah; u8 device; u8 command; /* IO operation */ u32 auxiliary; /* auxiliary field */ /* from SATA 3.1 and */ /* ATA-8 ACS-3 */ }; #ifdef CONFIG_ATA_SFF struct ata_ioports { void __iomem *cmd_addr; void __iomem *data_addr; void __iomem *error_addr; void __iomem *feature_addr; void __iomem *nsect_addr; void __iomem *lbal_addr; void __iomem *lbam_addr; void __iomem *lbah_addr; void __iomem *device_addr; void __iomem *status_addr; void __iomem *command_addr; void __iomem *altstatus_addr; void __iomem *ctl_addr; #ifdef CONFIG_ATA_BMDMA void __iomem *bmdma_addr; #endif /* CONFIG_ATA_BMDMA */ void __iomem *scr_addr; }; #endif /* CONFIG_ATA_SFF */ struct ata_host { spinlock_t lock; struct device *dev; void __iomem * const *iomap; unsigned int n_ports; unsigned int n_tags; /* nr of NCQ tags */ void *private_data; struct ata_port_operations *ops; unsigned long flags; struct kref kref; struct mutex eh_mutex; struct task_struct *eh_owner; struct ata_port *simplex_claimed; /* channel owning the DMA */ struct ata_port *ports[]; }; struct ata_queued_cmd { struct ata_port *ap; struct ata_device *dev; struct scsi_cmnd *scsicmd; void (*scsidone)(struct scsi_cmnd *); struct ata_taskfile tf; u8 cdb[ATAPI_CDB_LEN]; unsigned long flags; /* ATA_QCFLAG_xxx */ unsigned int tag; /* libata core tag */ unsigned int hw_tag; /* driver tag */ unsigned int n_elem; unsigned int orig_n_elem; int dma_dir; unsigned int sect_size; unsigned int nbytes; unsigned int extrabytes; unsigned int curbytes; struct scatterlist sgent; struct scatterlist *sg; struct scatterlist *cursg; unsigned int cursg_ofs; unsigned int err_mask; struct ata_taskfile result_tf; ata_qc_cb_t complete_fn; void *private_data; void *lldd_task; }; struct ata_port_stats { unsigned long unhandled_irq; unsigned long idle_irq; unsigned long rw_reqbuf; }; struct ata_ering_entry { unsigned int eflags; unsigned int err_mask; u64 timestamp; }; struct ata_ering { int cursor; struct ata_ering_entry ring[ATA_ERING_SIZE]; }; struct ata_device { struct ata_link *link; unsigned int devno; /* 0 or 1 */ unsigned int horkage; /* List of broken features */ unsigned long flags; /* ATA_DFLAG_xxx */ struct scsi_device *sdev; /* attached SCSI device */ void *private_data; #ifdef CONFIG_ATA_ACPI union acpi_object *gtf_cache; unsigned int gtf_filter; #endif #ifdef CONFIG_SATA_ZPODD void *zpodd; #endif struct device tdev; /* n_sector is CLEAR_BEGIN, read comment above CLEAR_BEGIN */ u64 n_sectors; /* size of device, if ATA */ u64 n_native_sectors; /* native size, if ATA */ unsigned int class; /* ATA_DEV_xxx */ unsigned long unpark_deadline; u8 pio_mode; u8 dma_mode; u8 xfer_mode; unsigned int xfer_shift; /* ATA_SHIFT_xxx */ unsigned int multi_count; /* sectors count for READ/WRITE MULTIPLE */ unsigned int max_sectors; /* per-device max sectors */ unsigned int cdb_len; /* per-dev xfer mask */ unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; /* for CHS addressing */ u16 cylinders; /* Number of cylinders */ u16 heads; /* Number of heads */ u16 sectors; /* Number of sectors per track */ union { u16 id[ATA_ID_WORDS]; /* IDENTIFY xxx DEVICE data */ u32 gscr[SATA_PMP_GSCR_DWORDS]; /* PMP GSCR block */ } ____cacheline_aligned; /* DEVSLP Timing Variables from Identify Device Data Log */ u8 devslp_timing[ATA_LOG_DEVSLP_SIZE]; /* NCQ send and receive log subcommand support */ u8 ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_SIZE]; u8 ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_SIZE]; /* ZAC zone configuration */ u32 zac_zoned_cap; u32 zac_zones_optimal_open; u32 zac_zones_optimal_nonseq; u32 zac_zones_max_open; /* error history */ int spdn_cnt; /* ering is CLEAR_END, read comment above CLEAR_END */ struct ata_ering ering; }; /* Fields between ATA_DEVICE_CLEAR_BEGIN and ATA_DEVICE_CLEAR_END are * cleared to zero on ata_dev_init(). */ #define ATA_DEVICE_CLEAR_BEGIN offsetof(struct ata_device, n_sectors) #define ATA_DEVICE_CLEAR_END offsetof(struct ata_device, ering) struct ata_eh_info { struct ata_device *dev; /* offending device */ u32 serror; /* SError from LLDD */ unsigned int err_mask; /* port-wide err_mask */ unsigned int action; /* ATA_EH_* action mask */ unsigned int dev_action[ATA_MAX_DEVICES]; /* dev EH action */ unsigned int flags; /* ATA_EHI_* flags */ unsigned int probe_mask; char desc[ATA_EH_DESC_LEN]; int desc_len; }; struct ata_eh_context { struct ata_eh_info i; int tries[ATA_MAX_DEVICES]; int cmd_timeout_idx[ATA_MAX_DEVICES] [ATA_EH_CMD_TIMEOUT_TABLE_SIZE]; unsigned int classes[ATA_MAX_DEVICES]; unsigned int did_probe_mask; unsigned int unloaded_mask; unsigned int saved_ncq_enabled; u8 saved_xfer_mode[ATA_MAX_DEVICES]; /* timestamp for the last reset attempt or success */ unsigned long last_reset; }; struct ata_acpi_drive { u32 pio; u32 dma; } __packed; struct ata_acpi_gtm { struct ata_acpi_drive drive[2]; u32 flags; } __packed; struct ata_link { struct ata_port *ap; int pmp; /* port multiplier port # */ struct device tdev; unsigned int active_tag; /* active tag on this link */ u32 sactive; /* active NCQ commands */ unsigned int flags; /* ATA_LFLAG_xxx */ u32 saved_scontrol; /* SControl on probe */ unsigned int hw_sata_spd_limit; unsigned int sata_spd_limit; unsigned int sata_spd; /* current SATA PHY speed */ enum ata_lpm_policy lpm_policy; /* record runtime error info, protected by host_set lock */ struct ata_eh_info eh_info; /* EH context */ struct ata_eh_context eh_context; struct ata_device device[ATA_MAX_DEVICES]; unsigned long last_lpm_change; /* when last LPM change happened */ }; #define ATA_LINK_CLEAR_BEGIN offsetof(struct ata_link, active_tag) #define ATA_LINK_CLEAR_END offsetof(struct ata_link, device[0]) struct ata_port { struct Scsi_Host *scsi_host; /* our co-allocated scsi host */ struct ata_port_operations *ops; spinlock_t *lock; /* Flags owned by the EH context. Only EH should touch these once the port is active */ unsigned long flags; /* ATA_FLAG_xxx */ /* Flags that change dynamically, protected by ap->lock */ unsigned int pflags; /* ATA_PFLAG_xxx */ unsigned int print_id; /* user visible unique port ID */ unsigned int local_port_no; /* host local port num */ unsigned int port_no; /* 0 based port no. inside the host */ #ifdef CONFIG_ATA_SFF struct ata_ioports ioaddr; /* ATA cmd/ctl/dma register blocks */ u8 ctl; /* cache of ATA control register */ u8 last_ctl; /* Cache last written value */ struct ata_link* sff_pio_task_link; /* link currently used */ struct delayed_work sff_pio_task; #ifdef CONFIG_ATA_BMDMA struct ata_bmdma_prd *bmdma_prd; /* BMDMA SG list */ dma_addr_t bmdma_prd_dma; /* and its DMA mapping */ #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ unsigned int pio_mask; unsigned int mwdma_mask; unsigned int udma_mask; unsigned int cbl; /* cable type; ATA_CBL_xxx */ struct ata_queued_cmd qcmd[ATA_MAX_QUEUE + 1]; unsigned long sas_tag_allocated; /* for sas tag allocation only */ u64 qc_active; int nr_active_links; /* #links with active qcs */ unsigned int sas_last_tag; /* track next tag hw expects */ struct ata_link link; /* host default link */ struct ata_link *slave_link; /* see ata_slave_link_init() */ int nr_pmp_links; /* nr of available PMP links */ struct ata_link *pmp_link; /* array of PMP links */ struct ata_link *excl_link; /* for PMP qc exclusion */ struct ata_port_stats stats; struct ata_host *host; struct device *dev; struct device tdev; struct mutex scsi_scan_mutex; struct delayed_work hotplug_task; struct work_struct scsi_rescan_task; unsigned int hsm_task_state; u32 msg_enable; struct list_head eh_done_q; wait_queue_head_t eh_wait_q; int eh_tries; struct completion park_req_pending; pm_message_t pm_mesg; enum ata_lpm_policy target_lpm_policy; struct timer_list fastdrain_timer; unsigned long fastdrain_cnt; async_cookie_t cookie; int em_message_type; void *private_data; #ifdef CONFIG_ATA_ACPI struct ata_acpi_gtm __acpi_init_gtm; /* use ata_acpi_init_gtm() */ #endif /* owned by EH */ u8 sector_buf[ATA_SECT_SIZE] ____cacheline_aligned; }; /* The following initializer overrides a method to NULL whether one of * its parent has the method defined or not. This is equivalent to * ERR_PTR(-ENOENT). Unfortunately, ERR_PTR doesn't render a constant * expression and thus can't be used as an initializer. */ #define ATA_OP_NULL (void *)(unsigned long)(-ENOENT) struct ata_port_operations { /* * Command execution */ int (*qc_defer)(struct ata_queued_cmd *qc); int (*check_atapi_dma)(struct ata_queued_cmd *qc); enum ata_completion_errors (*qc_prep)(struct ata_queued_cmd *qc); unsigned int (*qc_issue)(struct ata_queued_cmd *qc); bool (*qc_fill_rtf)(struct ata_queued_cmd *qc); /* * Configuration and exception handling */ int (*cable_detect)(struct ata_port *ap); unsigned long (*mode_filter)(struct ata_device *dev, unsigned long xfer_mask); void (*set_piomode)(struct ata_port *ap, struct ata_device *dev); void (*set_dmamode)(struct ata_port *ap, struct ata_device *dev); int (*set_mode)(struct ata_link *link, struct ata_device **r_failed_dev); unsigned int (*read_id)(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); void (*dev_config)(struct ata_device *dev); void (*freeze)(struct ata_port *ap); void (*thaw)(struct ata_port *ap); ata_prereset_fn_t prereset; ata_reset_fn_t softreset; ata_reset_fn_t hardreset; ata_postreset_fn_t postreset; ata_prereset_fn_t pmp_prereset; ata_reset_fn_t pmp_softreset; ata_reset_fn_t pmp_hardreset; ata_postreset_fn_t pmp_postreset; void (*error_handler)(struct ata_port *ap); void (*lost_interrupt)(struct ata_port *ap); void (*post_internal_cmd)(struct ata_queued_cmd *qc); void (*sched_eh)(struct ata_port *ap); void (*end_eh)(struct ata_port *ap); /* * Optional features */ int (*scr_read)(struct ata_link *link, unsigned int sc_reg, u32 *val); int (*scr_write)(struct ata_link *link, unsigned int sc_reg, u32 val); void (*pmp_attach)(struct ata_port *ap); void (*pmp_detach)(struct ata_port *ap); int (*set_lpm)(struct ata_link *link, enum ata_lpm_policy policy, unsigned hints); /* * Start, stop, suspend and resume */ int (*port_suspend)(struct ata_port *ap, pm_message_t mesg); int (*port_resume)(struct ata_port *ap); int (*port_start)(struct ata_port *ap); void (*port_stop)(struct ata_port *ap); void (*host_stop)(struct ata_host *host); #ifdef CONFIG_ATA_SFF /* * SFF / taskfile oriented ops */ void (*sff_dev_select)(struct ata_port *ap, unsigned int device); void (*sff_set_devctl)(struct ata_port *ap, u8 ctl); u8 (*sff_check_status)(struct ata_port *ap); u8 (*sff_check_altstatus)(struct ata_port *ap); void (*sff_tf_load)(struct ata_port *ap, const struct ata_taskfile *tf); void (*sff_tf_read)(struct ata_port *ap, struct ata_taskfile *tf); void (*sff_exec_command)(struct ata_port *ap, const struct ata_taskfile *tf); unsigned int (*sff_data_xfer)(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); void (*sff_irq_on)(struct ata_port *); bool (*sff_irq_check)(struct ata_port *); void (*sff_irq_clear)(struct ata_port *); void (*sff_drain_fifo)(struct ata_queued_cmd *qc); #ifdef CONFIG_ATA_BMDMA void (*bmdma_setup)(struct ata_queued_cmd *qc); void (*bmdma_start)(struct ata_queued_cmd *qc); void (*bmdma_stop)(struct ata_queued_cmd *qc); u8 (*bmdma_status)(struct ata_port *ap); #endif /* CONFIG_ATA_BMDMA */ #endif /* CONFIG_ATA_SFF */ ssize_t (*em_show)(struct ata_port *ap, char *buf); ssize_t (*em_store)(struct ata_port *ap, const char *message, size_t size); ssize_t (*sw_activity_show)(struct ata_device *dev, char *buf); ssize_t (*sw_activity_store)(struct ata_device *dev, enum sw_activity val); ssize_t (*transmit_led_message)(struct ata_port *ap, u32 state, ssize_t size); /* * Obsolete */ void (*phy_reset)(struct ata_port *ap); void (*eng_timeout)(struct ata_port *ap); /* * ->inherits must be the last field and all the preceding * fields must be pointers. */ const struct ata_port_operations *inherits; }; struct ata_port_info { unsigned long flags; unsigned long link_flags; unsigned long pio_mask; unsigned long mwdma_mask; unsigned long udma_mask; struct ata_port_operations *port_ops; void *private_data; }; struct ata_timing { unsigned short mode; /* ATA mode */ unsigned short setup; /* t1 */ unsigned short act8b; /* t2 for 8-bit I/O */ unsigned short rec8b; /* t2i for 8-bit I/O */ unsigned short cyc8b; /* t0 for 8-bit I/O */ unsigned short active; /* t2 or tD */ unsigned short recover; /* t2i or tK */ unsigned short dmack_hold; /* tj */ unsigned short cycle; /* t0 */ unsigned short udma; /* t2CYCTYP/2 */ }; /* * Core layer - drivers/ata/libata-core.c */ extern struct ata_port_operations ata_dummy_port_ops; extern const struct ata_port_info ata_dummy_port_info; static inline bool ata_is_atapi(u8 prot) { return prot & ATA_PROT_FLAG_ATAPI; } static inline bool ata_is_pio(u8 prot) { return prot & ATA_PROT_FLAG_PIO; } static inline bool ata_is_dma(u8 prot) { return prot & ATA_PROT_FLAG_DMA; } static inline bool ata_is_ncq(u8 prot) { return prot & ATA_PROT_FLAG_NCQ; } static inline bool ata_is_data(u8 prot) { return prot & (ATA_PROT_FLAG_PIO | ATA_PROT_FLAG_DMA); } static inline int is_multi_taskfile(struct ata_taskfile *tf) { return (tf->command == ATA_CMD_READ_MULTI) || (tf->command == ATA_CMD_WRITE_MULTI) || (tf->command == ATA_CMD_READ_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_EXT) || (tf->command == ATA_CMD_WRITE_MULTI_FUA_EXT); } static inline int ata_port_is_dummy(struct ata_port *ap) { return ap->ops == &ata_dummy_port_ops; } extern int ata_std_prereset(struct ata_link *link, unsigned long deadline); extern int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, int (*check_ready)(struct ata_link *link)); extern int sata_std_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_std_postreset(struct ata_link *link, unsigned int *classes); extern struct ata_host *ata_host_alloc(struct device *dev, int max_ports); extern struct ata_host *ata_host_alloc_pinfo(struct device *dev, const struct ata_port_info * const * ppi, int n_ports); extern void ata_host_get(struct ata_host *host); extern void ata_host_put(struct ata_host *host); extern int ata_host_start(struct ata_host *host); extern int ata_host_register(struct ata_host *host, struct scsi_host_template *sht); extern int ata_host_activate(struct ata_host *host, int irq, irq_handler_t irq_handler, unsigned long irq_flags, struct scsi_host_template *sht); extern void ata_host_detach(struct ata_host *host); extern void ata_host_init(struct ata_host *, struct device *, struct ata_port_operations *); extern int ata_scsi_detect(struct scsi_host_template *sht); extern int ata_scsi_ioctl(struct scsi_device *dev, unsigned int cmd, void __user *arg); #ifdef CONFIG_COMPAT #define ATA_SCSI_COMPAT_IOCTL .compat_ioctl = ata_scsi_ioctl, #else #define ATA_SCSI_COMPAT_IOCTL /* empty */ #endif extern int ata_scsi_queuecmd(struct Scsi_Host *h, struct scsi_cmnd *cmd); #if IS_REACHABLE(CONFIG_ATA) bool ata_scsi_dma_need_drain(struct request *rq); #else #define ata_scsi_dma_need_drain NULL #endif extern int ata_sas_scsi_ioctl(struct ata_port *ap, struct scsi_device *dev, unsigned int cmd, void __user *arg); extern bool ata_link_online(struct ata_link *link); extern bool ata_link_offline(struct ata_link *link); #ifdef CONFIG_PM extern int ata_host_suspend(struct ata_host *host, pm_message_t mesg); extern void ata_host_resume(struct ata_host *host); extern void ata_sas_port_suspend(struct ata_port *ap); extern void ata_sas_port_resume(struct ata_port *ap); #else static inline void ata_sas_port_suspend(struct ata_port *ap) { } static inline void ata_sas_port_resume(struct ata_port *ap) { } #endif extern int ata_ratelimit(void); extern void ata_msleep(struct ata_port *ap, unsigned int msecs); extern u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, unsigned long interval, unsigned long timeout); extern int atapi_cmd_type(u8 opcode); extern unsigned long ata_pack_xfermask(unsigned long pio_mask, unsigned long mwdma_mask, unsigned long udma_mask); extern void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, unsigned long *mwdma_mask, unsigned long *udma_mask); extern u8 ata_xfer_mask2mode(unsigned long xfer_mask); extern unsigned long ata_xfer_mode2mask(u8 xfer_mode); extern int ata_xfer_mode2shift(unsigned long xfer_mode); extern const char *ata_mode_string(unsigned long xfer_mask); extern unsigned long ata_id_xfermask(const u16 *id); extern int ata_std_qc_defer(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc); extern void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, unsigned int n_elem); extern unsigned int ata_dev_classify(const struct ata_taskfile *tf); extern void ata_dev_disable(struct ata_device *adev); extern void ata_id_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern void ata_id_c_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len); extern unsigned int ata_do_dev_read_id(struct ata_device *dev, struct ata_taskfile *tf, u16 *id); extern void ata_qc_complete(struct ata_queued_cmd *qc); extern u64 ata_qc_get_active(struct ata_port *ap); extern void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd); extern int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]); extern void ata_scsi_unlock_native_capacity(struct scsi_device *sdev); extern int ata_scsi_slave_config(struct scsi_device *sdev); extern void ata_scsi_slave_destroy(struct scsi_device *sdev); extern int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth); extern int __ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev, int queue_depth); extern struct ata_device *ata_dev_pair(struct ata_device *adev); extern int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev); extern void ata_scsi_port_error_handler(struct Scsi_Host *host, struct ata_port *ap); extern void ata_scsi_cmd_error_handler(struct Scsi_Host *host, struct ata_port *ap, struct list_head *eh_q); /* * SATA specific code - drivers/ata/libata-sata.c */ #ifdef CONFIG_SATA_HOST extern const unsigned long sata_deb_timing_normal[]; extern const unsigned long sata_deb_timing_hotplug[]; extern const unsigned long sata_deb_timing_long[]; static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { if (ehc->i.flags & ATA_EHI_HOTPLUGGED) return sata_deb_timing_hotplug; else return sata_deb_timing_normal; } extern int sata_scr_valid(struct ata_link *link); extern int sata_scr_read(struct ata_link *link, int reg, u32 *val); extern int sata_scr_write(struct ata_link *link, int reg, u32 val); extern int sata_scr_write_flush(struct ata_link *link, int reg, u32 val); extern int sata_set_spd(struct ata_link *link); extern int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)); extern int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern void ata_eh_analyze_ncq_error(struct ata_link *link); #else static inline const unsigned long * sata_ehc_deb_timing(struct ata_eh_context *ehc) { return NULL; } static inline int sata_scr_valid(struct ata_link *link) { return 0; } static inline int sata_scr_read(struct ata_link *link, int reg, u32 *val) { return -EOPNOTSUPP; } static inline int sata_scr_write(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) { return -EOPNOTSUPP; } static inline int sata_set_spd(struct ata_link *link) { return -EOPNOTSUPP; } static inline int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, unsigned long deadline, bool *online, int (*check_ready)(struct ata_link *)) { if (online) *online = false; return -EOPNOTSUPP; } static inline int sata_link_resume(struct ata_link *link, const unsigned long *params, unsigned long deadline) { return -EOPNOTSUPP; } static inline void ata_eh_analyze_ncq_error(struct ata_link *link) { } #endif extern int sata_link_debounce(struct ata_link *link, const unsigned long *params, unsigned long deadline); extern int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, bool spm_wakeup); extern int ata_slave_link_init(struct ata_port *ap); extern void ata_sas_port_destroy(struct ata_port *); extern struct ata_port *ata_sas_port_alloc(struct ata_host *, struct ata_port_info *, struct Scsi_Host *); extern void ata_sas_async_probe(struct ata_port *ap); extern int ata_sas_sync_probe(struct ata_port *ap); extern int ata_sas_port_init(struct ata_port *); extern int ata_sas_port_start(struct ata_port *ap); extern int ata_sas_tport_add(struct device *parent, struct ata_port *ap); extern void ata_sas_tport_delete(struct ata_port *ap); extern void ata_sas_port_stop(struct ata_port *ap); extern int ata_sas_slave_configure(struct scsi_device *, struct ata_port *); extern int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap); extern void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis); extern void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf); extern int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active); extern bool sata_lpm_ignore_phy_events(struct ata_link *link); extern int sata_async_notification(struct ata_port *ap); extern int ata_cable_40wire(struct ata_port *ap); extern int ata_cable_80wire(struct ata_port *ap); extern int ata_cable_sata(struct ata_port *ap); extern int ata_cable_ignore(struct ata_port *ap); extern int ata_cable_unknown(struct ata_port *ap); /* Timing helpers */ extern unsigned int ata_pio_need_iordy(const struct ata_device *); extern u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle); /* PCI */ #ifdef CONFIG_PCI struct pci_dev; struct pci_bits { unsigned int reg; /* PCI config register to read */ unsigned int width; /* 1 (8 bit), 2 (16 bit), 4 (32 bit) */ unsigned long mask; unsigned long val; }; extern int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits); extern void ata_pci_shutdown_one(struct pci_dev *pdev); extern void ata_pci_remove_one(struct pci_dev *pdev); #ifdef CONFIG_PM extern void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int __must_check ata_pci_device_do_resume(struct pci_dev *pdev); extern int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg); extern int ata_pci_device_resume(struct pci_dev *pdev); #endif /* CONFIG_PM */ #endif /* CONFIG_PCI */ struct platform_device; extern int ata_platform_remove_one(struct platform_device *pdev); /* * ACPI - drivers/ata/libata-acpi.c */ #ifdef CONFIG_ATA_ACPI static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { if (ap->pflags & ATA_PFLAG_INIT_GTM_VALID) return &ap->__acpi_init_gtm; return NULL; } int ata_acpi_stm(struct ata_port *ap, const struct ata_acpi_gtm *stm); int ata_acpi_gtm(struct ata_port *ap, struct ata_acpi_gtm *stm); unsigned long ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm); int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm); #else static inline const struct ata_acpi_gtm *ata_acpi_init_gtm(struct ata_port *ap) { return NULL; } static inline int ata_acpi_stm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline int ata_acpi_gtm(const struct ata_port *ap, struct ata_acpi_gtm *stm) { return -ENOSYS; } static inline unsigned int ata_acpi_gtm_xfermask(struct ata_device *dev, const struct ata_acpi_gtm *gtm) { return 0; } static inline int ata_acpi_cbl_80wire(struct ata_port *ap, const struct ata_acpi_gtm *gtm) { return 0; } #endif /* * EH - drivers/ata/libata-eh.c */ extern void ata_port_schedule_eh(struct ata_port *ap); extern void ata_port_wait_eh(struct ata_port *ap); extern int ata_link_abort(struct ata_link *link); extern int ata_port_abort(struct ata_port *ap); extern int ata_port_freeze(struct ata_port *ap); extern void ata_eh_freeze_port(struct ata_port *ap); extern void ata_eh_thaw_port(struct ata_port *ap); extern void ata_eh_qc_complete(struct ata_queued_cmd *qc); extern void ata_eh_qc_retry(struct ata_queued_cmd *qc); extern void ata_do_eh(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset); extern void ata_std_error_handler(struct ata_port *ap); extern void ata_std_sched_eh(struct ata_port *ap); extern void ata_std_end_eh(struct ata_port *ap); extern int ata_link_nr_enabled(struct ata_link *link); /* * Base operations to inherit from and initializers for sht * * Operations * * base : Common to all libata drivers. * sata : SATA controllers w/ native interface. * pmp : SATA controllers w/ PMP support. * sff : SFF ATA controllers w/o BMDMA support. * bmdma : SFF ATA controllers w/ BMDMA support. * * sht initializers * * BASE : Common to all libata drivers. The user must set * sg_tablesize and dma_boundary. * PIO : SFF ATA controllers w/ only PIO support. * BMDMA : SFF ATA controllers w/ BMDMA support. sg_tablesize and * dma_boundary are set to BMDMA limits. * NCQ : SATA controllers supporting NCQ. The user must set * sg_tablesize, dma_boundary and can_queue. */ extern const struct ata_port_operations ata_base_port_ops; extern const struct ata_port_operations sata_port_ops; extern struct device_attribute *ata_common_sdev_attrs[]; /* * All sht initializers (BASE, PIO, BMDMA, NCQ) must be instantiated * by the edge drivers. Because the 'module' field of sht must be the * edge driver's module reference, otherwise the driver can be unloaded * even if the scsi_device is being accessed. */ #define __ATA_BASE_SHT(drv_name) \ .module = THIS_MODULE, \ .name = drv_name, \ .ioctl = ata_scsi_ioctl, \ ATA_SCSI_COMPAT_IOCTL \ .queuecommand = ata_scsi_queuecmd, \ .dma_need_drain = ata_scsi_dma_need_drain, \ .can_queue = ATA_DEF_QUEUE, \ .tag_alloc_policy = BLK_TAG_ALLOC_RR, \ .this_id = ATA_SHT_THIS_ID, \ .emulated = ATA_SHT_EMULATED, \ .proc_name = drv_name, \ .slave_configure = ata_scsi_slave_config, \ .slave_destroy = ata_scsi_slave_destroy, \ .bios_param = ata_std_bios_param, \ .unlock_native_capacity = ata_scsi_unlock_native_capacity #define ATA_BASE_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_common_sdev_attrs #ifdef CONFIG_SATA_HOST extern struct device_attribute *ata_ncq_sdev_attrs[]; #define ATA_NCQ_SHT(drv_name) \ __ATA_BASE_SHT(drv_name), \ .sdev_attrs = ata_ncq_sdev_attrs, \ .change_queue_depth = ata_scsi_change_queue_depth #endif /* * PMP helpers */ #ifdef CONFIG_SATA_PMP static inline bool sata_pmp_supported(struct ata_port *ap) { return ap->flags & ATA_FLAG_PMP; } static inline bool sata_pmp_attached(struct ata_port *ap) { return ap->nr_pmp_links != 0; } static inline bool ata_is_host_link(const struct ata_link *link) { return link == &link->ap->link || link == link->ap->slave_link; } #else /* CONFIG_SATA_PMP */ static inline bool sata_pmp_supported(struct ata_port *ap) { return false; } static inline bool sata_pmp_attached(struct ata_port *ap) { return false; } static inline bool ata_is_host_link(const struct ata_link *link) { return 1; } #endif /* CONFIG_SATA_PMP */ static inline int sata_srst_pmp(struct ata_link *link) { if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) return SATA_PMP_CTRL_PORT; return link->pmp; } /* * printk helpers */ __printf(3, 4) void ata_port_printk(const struct ata_port *ap, const char *level, const char *fmt, ...); __printf(3, 4) void ata_link_printk(const struct ata_link *link, const char *level, const char *fmt, ...); __printf(3, 4) void ata_dev_printk(const struct ata_device *dev, const char *level, const char *fmt, ...); #define ata_port_err(ap, fmt, ...) \ ata_port_printk(ap, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_port_warn(ap, fmt, ...) \ ata_port_printk(ap, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_port_notice(ap, fmt, ...) \ ata_port_printk(ap, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_port_info(ap, fmt, ...) \ ata_port_printk(ap, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_port_dbg(ap, fmt, ...) \ ata_port_printk(ap, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_link_err(link, fmt, ...) \ ata_link_printk(link, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_link_warn(link, fmt, ...) \ ata_link_printk(link, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_link_notice(link, fmt, ...) \ ata_link_printk(link, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_link_info(link, fmt, ...) \ ata_link_printk(link, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_link_dbg(link, fmt, ...) \ ata_link_printk(link, KERN_DEBUG, fmt, ##__VA_ARGS__) #define ata_dev_err(dev, fmt, ...) \ ata_dev_printk(dev, KERN_ERR, fmt, ##__VA_ARGS__) #define ata_dev_warn(dev, fmt, ...) \ ata_dev_printk(dev, KERN_WARNING, fmt, ##__VA_ARGS__) #define ata_dev_notice(dev, fmt, ...) \ ata_dev_printk(dev, KERN_NOTICE, fmt, ##__VA_ARGS__) #define ata_dev_info(dev, fmt, ...) \ ata_dev_printk(dev, KERN_INFO, fmt, ##__VA_ARGS__) #define ata_dev_dbg(dev, fmt, ...) \ ata_dev_printk(dev, KERN_DEBUG, fmt, ##__VA_ARGS__) void ata_print_version(const struct device *dev, const char *version); /* * ata_eh_info helpers */ extern __printf(2, 3) void __ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern __printf(2, 3) void ata_ehi_push_desc(struct ata_eh_info *ehi, const char *fmt, ...); extern void ata_ehi_clear_desc(struct ata_eh_info *ehi); static inline void ata_ehi_hotplugged(struct ata_eh_info *ehi) { ehi->probe_mask |= (1 << ATA_MAX_DEVICES) - 1; ehi->flags |= ATA_EHI_HOTPLUGGED; ehi->action |= ATA_EH_RESET | ATA_EH_ENABLE_LINK; ehi->err_mask |= AC_ERR_ATA_BUS; } /* * port description helpers */ extern __printf(2, 3) void ata_port_desc(struct ata_port *ap, const char *fmt, ...); #ifdef CONFIG_PCI extern void ata_port_pbar_desc(struct ata_port *ap, int bar, ssize_t offset, const char *name); #endif static inline bool ata_tag_internal(unsigned int tag) { return tag == ATA_TAG_INTERNAL; } static inline bool ata_tag_valid(unsigned int tag) { return tag < ATA_MAX_QUEUE || ata_tag_internal(tag); } #define __ata_qc_for_each(ap, qc, tag, max_tag, fn) \ for ((tag) = 0; (tag) < (max_tag) && \ ({ qc = fn((ap), (tag)); 1; }); (tag)++) \ /* * Internal use only, iterate commands ignoring error handling and * status of 'qc'. */ #define ata_qc_for_each_raw(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, __ata_qc_from_tag) /* * Iterate all potential commands that can be queued */ #define ata_qc_for_each(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE, ata_qc_from_tag) /* * Like ata_qc_for_each, but with the internal tag included */ #define ata_qc_for_each_with_internal(ap, qc, tag) \ __ata_qc_for_each(ap, qc, tag, ATA_MAX_QUEUE + 1, ata_qc_from_tag) /* * device helpers */ static inline unsigned int ata_class_enabled(unsigned int class) { return class == ATA_DEV_ATA || class == ATA_DEV_ATAPI || class == ATA_DEV_PMP || class == ATA_DEV_SEMB || class == ATA_DEV_ZAC; } static inline unsigned int ata_class_disabled(unsigned int class) { return class == ATA_DEV_ATA_UNSUP || class == ATA_DEV_ATAPI_UNSUP || class == ATA_DEV_PMP_UNSUP || class == ATA_DEV_SEMB_UNSUP || class == ATA_DEV_ZAC_UNSUP; } static inline unsigned int ata_class_absent(unsigned int class) { return !ata_class_enabled(class) && !ata_class_disabled(class); } static inline unsigned int ata_dev_enabled(const struct ata_device *dev) { return ata_class_enabled(dev->class); } static inline unsigned int ata_dev_disabled(const struct ata_device *dev) { return ata_class_disabled(dev->class); } static inline unsigned int ata_dev_absent(const struct ata_device *dev) { return ata_class_absent(dev->class); } /* * link helpers */ static inline int ata_link_max_devices(const struct ata_link *link) { if (ata_is_host_link(link) && link->ap->flags & ATA_FLAG_SLAVE_POSS) return 2; return 1; } static inline int ata_link_active(struct ata_link *link) { return ata_tag_valid(link->active_tag) || link->sactive; } /* * Iterators * * ATA_LITER_* constants are used to select link iteration mode and * ATA_DITER_* device iteration mode. * * For a custom iteration directly using ata_{link|dev}_next(), if * @link or @dev, respectively, is NULL, the first element is * returned. @dev and @link can be any valid device or link and the * next element according to the iteration mode will be returned. * After the last element, NULL is returned. */ enum ata_link_iter_mode { ATA_LITER_EDGE, /* if present, PMP links only; otherwise, * host link. no slave link */ ATA_LITER_HOST_FIRST, /* host link followed by PMP or slave links */ ATA_LITER_PMP_FIRST, /* PMP links followed by host link, * slave link still comes after host link */ }; enum ata_dev_iter_mode { ATA_DITER_ENABLED, ATA_DITER_ENABLED_REVERSE, ATA_DITER_ALL, ATA_DITER_ALL_REVERSE, }; extern struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, enum ata_link_iter_mode mode); extern struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, enum ata_dev_iter_mode mode); /* * Shortcut notation for iterations * * ata_for_each_link() iterates over each link of @ap according to * @mode. @link points to the current link in the loop. @link is * NULL after loop termination. ata_for_each_dev() works the same way * except that it iterates over each device of @link. * * Note that the mode prefixes ATA_{L|D}ITER_ shouldn't need to be * specified when using the following shorthand notations. Only the * mode itself (EDGE, HOST_FIRST, ENABLED, etc...) should be * specified. This not only increases brevity but also makes it * impossible to use ATA_LITER_* for device iteration or vice-versa. */ #define ata_for_each_link(link, ap, mode) \ for ((link) = ata_link_next(NULL, (ap), ATA_LITER_##mode); (link); \ (link) = ata_link_next((link), (ap), ATA_LITER_##mode)) #define ata_for_each_dev(dev, link, mode) \ for ((dev) = ata_dev_next(NULL, (link), ATA_DITER_##mode); (dev); \ (dev) = ata_dev_next((dev), (link), ATA_DITER_##mode)) /** * ata_ncq_enabled - Test whether NCQ is enabled * @dev: ATA device to test for * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 1 if NCQ is enabled for @dev, 0 otherwise. */ static inline int ata_ncq_enabled(struct ata_device *dev) { if (!IS_ENABLED(CONFIG_SATA_HOST)) return 0; return (dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF | ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ; } static inline bool ata_fpdma_dsm_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] & ATA_LOG_NCQ_SEND_RECV_DSM_TRIM); } static inline bool ata_fpdma_read_log_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_RD_LOG_OFFSET] & ATA_LOG_NCQ_SEND_RECV_RD_LOG_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_in_supported(struct ata_device *dev) { return (dev->flags & ATA_DFLAG_NCQ_SEND_RECV) && (dev->ncq_send_recv_cmds[ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_SEND_RECV_ZAC_MGMT_IN_SUPPORTED); } static inline bool ata_fpdma_zac_mgmt_out_supported(struct ata_device *dev) { return (dev->ncq_non_data_cmds[ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OFFSET] & ATA_LOG_NCQ_NON_DATA_ZAC_MGMT_OUT); } static inline void ata_qc_set_polling(struct ata_queued_cmd *qc) { qc->tf.ctl |= ATA_NIEN; } static inline struct ata_queued_cmd *__ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { if (ata_tag_valid(tag)) return &ap->qcmd[tag]; return NULL; } static inline struct ata_queued_cmd *ata_qc_from_tag(struct ata_port *ap, unsigned int tag) { struct ata_queued_cmd *qc = __ata_qc_from_tag(ap, tag); if (unlikely(!qc) || !ap->ops->error_handler) return qc; if ((qc->flags & (ATA_QCFLAG_ACTIVE | ATA_QCFLAG_FAILED)) == ATA_QCFLAG_ACTIVE) return qc; return NULL; } static inline unsigned int ata_qc_raw_nbytes(struct ata_queued_cmd *qc) { return qc->nbytes - min(qc->extrabytes, qc->nbytes); } static inline void ata_tf_init(struct ata_device *dev, struct ata_taskfile *tf) { memset(tf, 0, sizeof(*tf)); #ifdef CONFIG_ATA_SFF tf->ctl = dev->link->ap->ctl; #else tf->ctl = ATA_DEVCTL_OBS; #endif if (dev->devno == 0) tf->device = ATA_DEVICE_OBS; else tf->device = ATA_DEVICE_OBS | ATA_DEV1; } static inline void ata_qc_reinit(struct ata_queued_cmd *qc) { qc->dma_dir = DMA_NONE; qc->sg = NULL; qc->flags = 0; qc->cursg = NULL; qc->cursg_ofs = 0; qc->nbytes = qc->extrabytes = qc->curbytes = 0; qc->n_elem = 0; qc->err_mask = 0; qc->sect_size = ATA_SECT_SIZE; ata_tf_init(qc->dev, &qc->tf); /* init result_tf such that it indicates normal completion */ qc->result_tf.command = ATA_DRDY; qc->result_tf.feature = 0; } static inline int ata_try_flush_cache(const struct ata_device *dev) { return ata_id_wcache_enabled(dev->id) || ata_id_has_flush(dev->id) || ata_id_has_flush_ext(dev->id); } static inline unsigned int ac_err_mask(u8 status) { if (status & (ATA_BUSY | ATA_DRQ)) return AC_ERR_HSM; if (status & (ATA_ERR | ATA_DF)) return AC_ERR_DEV; return 0; } static inline unsigned int __ac_err_mask(u8 status) { unsigned int mask = ac_err_mask(status); if (mask == 0) return AC_ERR_OTHER; return mask; } static inline struct ata_port *ata_shost_to_port(struct Scsi_Host *host) { return *(struct ata_port **)&host->hostdata[0]; } static inline int ata_check_ready(u8 status) { if (!(status & ATA_BUSY)) return 1; /* 0xff indicates either no device or device not ready */ if (status == 0xff) return -ENODEV; return 0; } static inline unsigned long ata_deadline(unsigned long from_jiffies, unsigned long timeout_msecs) { return from_jiffies + msecs_to_jiffies(timeout_msecs); } /* Don't open code these in drivers as there are traps. Firstly the range may change in future hardware and specs, secondly 0xFF means 'no DMA' but is > UDMA_0. Dyma ddreigiau */ static inline int ata_using_mwdma(struct ata_device *adev) { if (adev->dma_mode >= XFER_MW_DMA_0 && adev->dma_mode <= XFER_MW_DMA_4) return 1; return 0; } static inline int ata_using_udma(struct ata_device *adev) { if (adev->dma_mode >= XFER_UDMA_0 && adev->dma_mode <= XFER_UDMA_7) return 1; return 0; } static inline int ata_dma_enabled(struct ata_device *adev) { return (adev->dma_mode == 0xFF ? 0 : 1); } /************************************************************************** * PATA timings - drivers/ata/libata-pata-timings.c */ extern const struct ata_timing *ata_timing_find_mode(u8 xfer_mode); extern int ata_timing_compute(struct ata_device *, unsigned short, struct ata_timing *, int, int); extern void ata_timing_merge(const struct ata_timing *, const struct ata_timing *, struct ata_timing *, unsigned int); /************************************************************************** * PMP - drivers/ata/libata-pmp.c */ #ifdef CONFIG_SATA_PMP extern const struct ata_port_operations sata_pmp_port_ops; extern int sata_pmp_qc_defer_cmd_switch(struct ata_queued_cmd *qc); extern void sata_pmp_error_handler(struct ata_port *ap); #else /* CONFIG_SATA_PMP */ #define sata_pmp_port_ops sata_port_ops #define sata_pmp_qc_defer_cmd_switch ata_std_qc_defer #define sata_pmp_error_handler ata_std_error_handler #endif /* CONFIG_SATA_PMP */ /************************************************************************** * SFF - drivers/ata/libata-sff.c */ #ifdef CONFIG_ATA_SFF extern const struct ata_port_operations ata_sff_port_ops; extern const struct ata_port_operations ata_bmdma32_port_ops; /* PIO only, sg_tablesize and dma_boundary limits can be removed */ #define ATA_PIO_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern void ata_sff_dev_select(struct ata_port *ap, unsigned int device); extern u8 ata_sff_check_status(struct ata_port *ap); extern void ata_sff_pause(struct ata_port *ap); extern void ata_sff_dma_pause(struct ata_port *ap); extern int ata_sff_busy_sleep(struct ata_port *ap, unsigned long timeout_pat, unsigned long timeout); extern int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline); extern void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf); extern void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf); extern void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf); extern unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, unsigned int buflen, int rw); extern void ata_sff_irq_on(struct ata_port *ap); extern void ata_sff_irq_clear(struct ata_port *ap); extern int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, u8 status, int in_wq); extern void ata_sff_queue_work(struct work_struct *work); extern void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay); extern void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay); extern unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc); extern bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc); extern unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_sff_interrupt(int irq, void *dev_instance); extern void ata_sff_lost_interrupt(struct ata_port *ap); extern void ata_sff_freeze(struct ata_port *ap); extern void ata_sff_thaw(struct ata_port *ap); extern int ata_sff_prereset(struct ata_link *link, unsigned long deadline); extern unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, u8 *r_err); extern int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, unsigned long deadline); extern int ata_sff_softreset(struct ata_link *link, unsigned int *classes, unsigned long deadline); extern int sata_sff_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline); extern void ata_sff_postreset(struct ata_link *link, unsigned int *classes); extern void ata_sff_drain_fifo(struct ata_queued_cmd *qc); extern void ata_sff_error_handler(struct ata_port *ap); extern void ata_sff_std_ports(struct ata_ioports *ioaddr); #ifdef CONFIG_PCI extern int ata_pci_sff_init_host(struct ata_host *host); extern int ata_pci_sff_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_sff_activate_host(struct ata_host *host, irq_handler_t irq_handler, struct scsi_host_template *sht); extern int ata_pci_sff_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #ifdef CONFIG_ATA_BMDMA extern const struct ata_port_operations ata_bmdma_port_ops; #define ATA_BMDMA_SHT(drv_name) \ ATA_BASE_SHT(drv_name), \ .sg_tablesize = LIBATA_MAX_PRD, \ .dma_boundary = ATA_DMA_BOUNDARY extern enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc); extern enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc); extern unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc); extern irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance); extern void ata_bmdma_error_handler(struct ata_port *ap); extern void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc); extern void ata_bmdma_irq_clear(struct ata_port *ap); extern void ata_bmdma_setup(struct ata_queued_cmd *qc); extern void ata_bmdma_start(struct ata_queued_cmd *qc); extern void ata_bmdma_stop(struct ata_queued_cmd *qc); extern u8 ata_bmdma_status(struct ata_port *ap); extern int ata_bmdma_port_start(struct ata_port *ap); extern int ata_bmdma_port_start32(struct ata_port *ap); #ifdef CONFIG_PCI extern int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev); extern void ata_pci_bmdma_init(struct ata_host *host); extern int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct ata_host **r_host); extern int ata_pci_bmdma_init_one(struct pci_dev *pdev, const struct ata_port_info * const * ppi, struct scsi_host_template *sht, void *host_priv, int hflags); #endif /* CONFIG_PCI */ #endif /* CONFIG_ATA_BMDMA */ /** * ata_sff_busy_wait - Wait for a port status register * @ap: Port to wait for. * @bits: bits that must be clear * @max: number of 10uS waits to perform * * Waits up to max*10 microseconds for the selected bits in the port's * status register to be cleared. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_sff_busy_wait(struct ata_port *ap, unsigned int bits, unsigned int max) { u8 status; do { udelay(10); status = ap->ops->sff_check_status(ap); max--; } while (status != 0xff && (status & bits) && (max > 0)); return status; } /** * ata_wait_idle - Wait for a port to be idle. * @ap: Port to wait for. * * Waits up to 10ms for port's BUSY and DRQ signals to clear. * Returns final value of status register. * * LOCKING: * Inherited from caller. */ static inline u8 ata_wait_idle(struct ata_port *ap) { u8 status = ata_sff_busy_wait(ap, ATA_BUSY | ATA_DRQ, 1000); #ifdef ATA_DEBUG if (status != 0xff && (status & (ATA_BUSY | ATA_DRQ))) ata_port_printk(ap, KERN_DEBUG, "abnormal Status 0x%X\n", status); #endif return status; } #endif /* CONFIG_ATA_SFF */ #endif /* __LINUX_LIBATA_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/ipc/util.h * Copyright (C) 1999 Christoph Rohland * * ipc helper functions (c) 1999 Manfred Spraul <manfred@colorfullife.com> * namespaces support. 2006 OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #ifndef _IPC_UTIL_H #define _IPC_UTIL_H #include <linux/unistd.h> #include <linux/err.h> #include <linux/ipc_namespace.h> /* * The IPC ID contains 2 separate numbers - index and sequence number. * By default, * bits 0-14: index (32k, 15 bits) * bits 15-30: sequence number (64k, 16 bits) * * When IPCMNI extension mode is turned on, the composition changes: * bits 0-23: index (16M, 24 bits) * bits 24-30: sequence number (128, 7 bits) */ #define IPCMNI_SHIFT 15 #define IPCMNI_EXTEND_SHIFT 24 #define IPCMNI_EXTEND_MIN_CYCLE (RADIX_TREE_MAP_SIZE * RADIX_TREE_MAP_SIZE) #define IPCMNI (1 << IPCMNI_SHIFT) #define IPCMNI_EXTEND (1 << IPCMNI_EXTEND_SHIFT) #ifdef CONFIG_SYSVIPC_SYSCTL extern int ipc_mni; extern int ipc_mni_shift; extern int ipc_min_cycle; #define ipcmni_seq_shift() ipc_mni_shift #define IPCMNI_IDX_MASK ((1 << ipc_mni_shift) - 1) #else /* CONFIG_SYSVIPC_SYSCTL */ #define ipc_mni IPCMNI #define ipc_min_cycle ((int)RADIX_TREE_MAP_SIZE) #define ipcmni_seq_shift() IPCMNI_SHIFT #define IPCMNI_IDX_MASK ((1 << IPCMNI_SHIFT) - 1) #endif /* CONFIG_SYSVIPC_SYSCTL */ void sem_init(void); void msg_init(void); void shm_init(void); struct ipc_namespace; struct pid_namespace; #ifdef CONFIG_POSIX_MQUEUE extern void mq_clear_sbinfo(struct ipc_namespace *ns); extern void mq_put_mnt(struct ipc_namespace *ns); #else static inline void mq_clear_sbinfo(struct ipc_namespace *ns) { } static inline void mq_put_mnt(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_SYSVIPC void sem_init_ns(struct ipc_namespace *ns); void msg_init_ns(struct ipc_namespace *ns); void shm_init_ns(struct ipc_namespace *ns); void sem_exit_ns(struct ipc_namespace *ns); void msg_exit_ns(struct ipc_namespace *ns); void shm_exit_ns(struct ipc_namespace *ns); #else static inline void sem_init_ns(struct ipc_namespace *ns) { } static inline void msg_init_ns(struct ipc_namespace *ns) { } static inline void shm_init_ns(struct ipc_namespace *ns) { } static inline void sem_exit_ns(struct ipc_namespace *ns) { } static inline void msg_exit_ns(struct ipc_namespace *ns) { } static inline void shm_exit_ns(struct ipc_namespace *ns) { } #endif /* * Structure that holds the parameters needed by the ipc operations * (see after) */ struct ipc_params { key_t key; int flg; union { size_t size; /* for shared memories */ int nsems; /* for semaphores */ } u; /* holds the getnew() specific param */ }; /* * Structure that holds some ipc operations. This structure is used to unify * the calls to sys_msgget(), sys_semget(), sys_shmget() * . routine to call to create a new ipc object. Can be one of newque, * newary, newseg * . routine to call to check permissions for a new ipc object. * Can be one of security_msg_associate, security_sem_associate, * security_shm_associate * . routine to call for an extra check if needed */ struct ipc_ops { int (*getnew)(struct ipc_namespace *, struct ipc_params *); int (*associate)(struct kern_ipc_perm *, int); int (*more_checks)(struct kern_ipc_perm *, struct ipc_params *); }; struct seq_file; struct ipc_ids; void ipc_init_ids(struct ipc_ids *ids); #ifdef CONFIG_PROC_FS void __init ipc_init_proc_interface(const char *path, const char *header, int ids, int (*show)(struct seq_file *, void *)); struct pid_namespace *ipc_seq_pid_ns(struct seq_file *); #else #define ipc_init_proc_interface(path, header, ids, show) do {} while (0) #endif #define IPC_SEM_IDS 0 #define IPC_MSG_IDS 1 #define IPC_SHM_IDS 2 #define ipcid_to_idx(id) ((id) & IPCMNI_IDX_MASK) #define ipcid_to_seqx(id) ((id) >> ipcmni_seq_shift()) #define ipcid_seq_max() (INT_MAX >> ipcmni_seq_shift()) /* must be called with ids->rwsem acquired for writing */ int ipc_addid(struct ipc_ids *, struct kern_ipc_perm *, int); /* must be called with both locks acquired. */ void ipc_rmid(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with both locks acquired. */ void ipc_set_key_private(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with ipcp locked */ int ipcperms(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp, short flg); /** * ipc_get_maxidx - get the highest assigned index * @ids: ipc identifier set * * Called with ipc_ids.rwsem held for reading. */ static inline int ipc_get_maxidx(struct ipc_ids *ids) { if (ids->in_use == 0) return -1; if (ids->in_use == ipc_mni) return ipc_mni - 1; return ids->max_idx; } /* * For allocation that need to be freed by RCU. * Objects are reference counted, they start with reference count 1. * getref increases the refcount, the putref call that reduces the recount * to 0 schedules the rcu destruction. Caller must guarantee locking. * * refcount is initialized by ipc_addid(), before that point call_rcu() * must be used. */ bool ipc_rcu_getref(struct kern_ipc_perm *ptr); void ipc_rcu_putref(struct kern_ipc_perm *ptr, void (*func)(struct rcu_head *head)); struct kern_ipc_perm *ipc_obtain_object_idr(struct ipc_ids *ids, int id); void kernel_to_ipc64_perm(struct kern_ipc_perm *in, struct ipc64_perm *out); void ipc64_perm_to_ipc_perm(struct ipc64_perm *in, struct ipc_perm *out); int ipc_update_perm(struct ipc64_perm *in, struct kern_ipc_perm *out); struct kern_ipc_perm *ipcctl_obtain_check(struct ipc_namespace *ns, struct ipc_ids *ids, int id, int cmd, struct ipc64_perm *perm, int extra_perm); static inline void ipc_update_pid(struct pid **pos, struct pid *pid) { struct pid *old = *pos; if (old != pid) { *pos = get_pid(pid); put_pid(old); } } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION int ipc_parse_version(int *cmd); #endif extern void free_msg(struct msg_msg *msg); extern struct msg_msg *load_msg(const void __user *src, size_t len); extern struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst); extern int store_msg(void __user *dest, struct msg_msg *msg, size_t len); static inline int ipc_checkid(struct kern_ipc_perm *ipcp, int id) { return ipcid_to_seqx(id) != ipcp->seq; } static inline void ipc_lock_object(struct kern_ipc_perm *perm) { spin_lock(&perm->lock); } static inline void ipc_unlock_object(struct kern_ipc_perm *perm) { spin_unlock(&perm->lock); } static inline void ipc_assert_locked_object(struct kern_ipc_perm *perm) { assert_spin_locked(&perm->lock); } static inline void ipc_unlock(struct kern_ipc_perm *perm) { ipc_unlock_object(perm); rcu_read_unlock(); } /* * ipc_valid_object() - helper to sort out IPC_RMID races for codepaths * where the respective ipc_ids.rwsem is not being held down. * Checks whether the ipc object is still around or if it's gone already, as * ipc_rmid() may have already freed the ID while the ipc lock was spinning. * Needs to be called with kern_ipc_perm.lock held -- exception made for one * checkpoint case at sys_semtimedop() as noted in code commentary. */ static inline bool ipc_valid_object(struct kern_ipc_perm *perm) { return !perm->deleted; } struct kern_ipc_perm *ipc_obtain_object_check(struct ipc_ids *ids, int id); int ipcget(struct ipc_namespace *ns, struct ipc_ids *ids, const struct ipc_ops *ops, struct ipc_params *params); void free_ipcs(struct ipc_namespace *ns, struct ipc_ids *ids, void (*free)(struct ipc_namespace *, struct kern_ipc_perm *)); static inline int sem_check_semmni(struct ipc_namespace *ns) { /* * Check semmni range [0, ipc_mni] * semmni is the last element of sem_ctls[4] array */ return ((ns->sem_ctls[3] < 0) || (ns->sem_ctls[3] > ipc_mni)) ? -ERANGE : 0; } #ifdef CONFIG_COMPAT #include <linux/compat.h> struct compat_ipc_perm { key_t key; __compat_uid_t uid; __compat_gid_t gid; __compat_uid_t cuid; __compat_gid_t cgid; compat_mode_t mode; unsigned short seq; }; void to_compat_ipc_perm(struct compat_ipc_perm *, struct ipc64_perm *); void to_compat_ipc64_perm(struct compat_ipc64_perm *, struct ipc64_perm *); int get_compat_ipc_perm(struct ipc64_perm *, struct compat_ipc_perm __user *); int get_compat_ipc64_perm(struct ipc64_perm *, struct compat_ipc64_perm __user *); static inline int compat_ipc_parse_version(int *cmd) { int version = *cmd & IPC_64; *cmd &= ~IPC_64; return version; } long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg); long compat_ksys_old_msgctl(int msqid, int cmd, void __user *uptr); long compat_ksys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); long compat_ksys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); long compat_ksys_old_shmctl(int shmid, int cmd, void __user *uptr); #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 /* SPDX-License-Identifier: GPL-2.0+ */ /* * Sleepable Read-Copy Update mechanism for mutual exclusion * * Copyright (C) IBM Corporation, 2006 * Copyright (C) Fujitsu, 2012 * * Author: Paul McKenney <paulmck@linux.ibm.com> * Lai Jiangshan <laijs@cn.fujitsu.com> * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #ifndef _LINUX_SRCU_H #define _LINUX_SRCU_H #include <linux/mutex.h> #include <linux/rcupdate.h> #include <linux/workqueue.h> #include <linux/rcu_segcblist.h> struct srcu_struct; #ifdef CONFIG_DEBUG_LOCK_ALLOC int __init_srcu_struct(struct srcu_struct *ssp, const char *name, struct lock_class_key *key); #define init_srcu_struct(ssp) \ ({ \ static struct lock_class_key __srcu_key; \ \ __init_srcu_struct((ssp), #ssp, &__srcu_key); \ }) #define __SRCU_DEP_MAP_INIT(srcu_name) .dep_map = { .name = #srcu_name }, #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ int init_srcu_struct(struct srcu_struct *ssp); #define __SRCU_DEP_MAP_INIT(srcu_name) #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_TINY_SRCU #include <linux/srcutiny.h> #elif defined(CONFIG_TREE_SRCU) #include <linux/srcutree.h> #elif defined(CONFIG_SRCU) #error "Unknown SRCU implementation specified to kernel configuration" #else /* Dummy definition for things like notifiers. Actual use gets link error. */ struct srcu_struct { }; #endif void call_srcu(struct srcu_struct *ssp, struct rcu_head *head, void (*func)(struct rcu_head *head)); void cleanup_srcu_struct(struct srcu_struct *ssp); int __srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp); void __srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp); void synchronize_srcu(struct srcu_struct *ssp); unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp); unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp); bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie); #ifdef CONFIG_DEBUG_LOCK_ALLOC /** * srcu_read_lock_held - might we be in SRCU read-side critical section? * @ssp: The srcu_struct structure to check * * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an SRCU * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, * this assumes we are in an SRCU read-side critical section unless it can * prove otherwise. * * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot * and while lockdep is disabled. * * Note that SRCU is based on its own statemachine and it doesn't * relies on normal RCU, it can be called from the CPU which * is in the idle loop from an RCU point of view or offline. */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { if (!debug_lockdep_rcu_enabled()) return 1; return lock_is_held(&ssp->dep_map); } #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ static inline int srcu_read_lock_held(const struct srcu_struct *ssp) { return 1; } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /** * srcu_dereference_check - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * @c: condition to check for update-side use * * If PROVE_RCU is enabled, invoking this outside of an RCU read-side * critical section will result in an RCU-lockdep splat, unless @c evaluates * to 1. The @c argument will normally be a logical expression containing * lockdep_is_held() calls. */ #define srcu_dereference_check(p, ssp, c) \ __rcu_dereference_check((p), (c) || srcu_read_lock_held(ssp), __rcu) /** * srcu_dereference - fetch SRCU-protected pointer for later dereferencing * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. * * Makes rcu_dereference_check() do the dirty work. If PROVE_RCU * is enabled, invoking this outside of an RCU read-side critical * section will result in an RCU-lockdep splat. */ #define srcu_dereference(p, ssp) srcu_dereference_check((p), (ssp), 0) /** * srcu_dereference_notrace - no tracing and no lockdep calls from here * @p: the pointer to fetch and protect for later dereferencing * @ssp: pointer to the srcu_struct, which is used to check that we * really are in an SRCU read-side critical section. */ #define srcu_dereference_notrace(p, ssp) srcu_dereference_check((p), (ssp), 1) /** * srcu_read_lock - register a new reader for an SRCU-protected structure. * @ssp: srcu_struct in which to register the new reader. * * Enter an SRCU read-side critical section. Note that SRCU read-side * critical sections may be nested. However, it is illegal to * call anything that waits on an SRCU grace period for the same * srcu_struct, whether directly or indirectly. Please note that * one way to indirectly wait on an SRCU grace period is to acquire * a mutex that is held elsewhere while calling synchronize_srcu() or * synchronize_srcu_expedited(). * * Note that srcu_read_lock() and the matching srcu_read_unlock() must * occur in the same context, for example, it is illegal to invoke * srcu_read_unlock() in an irq handler if the matching srcu_read_lock() * was invoked in process context. */ static inline int srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); rcu_lock_acquire(&(ssp)->dep_map); return retval; } /* Used by tracing, cannot be traced and cannot invoke lockdep. */ static inline notrace int srcu_read_lock_notrace(struct srcu_struct *ssp) __acquires(ssp) { int retval; retval = __srcu_read_lock(ssp); return retval; } /** * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. * @ssp: srcu_struct in which to unregister the old reader. * @idx: return value from corresponding srcu_read_lock(). * * Exit an SRCU read-side critical section. */ static inline void srcu_read_unlock(struct srcu_struct *ssp, int idx) __releases(ssp) { WARN_ON_ONCE(idx & ~0x1); rcu_lock_release(&(ssp)->dep_map); __srcu_read_unlock(ssp, idx); } /* Used by tracing, cannot be traced and cannot call lockdep. */ static inline notrace void srcu_read_unlock_notrace(struct srcu_struct *ssp, int idx) __releases(ssp) { __srcu_read_unlock(ssp, idx); } /** * smp_mb__after_srcu_read_unlock - ensure full ordering after srcu_read_unlock * * Converts the preceding srcu_read_unlock into a two-way memory barrier. * * Call this after srcu_read_unlock, to guarantee that all memory operations * that occur after smp_mb__after_srcu_read_unlock will appear to happen after * the preceding srcu_read_unlock. */ static inline void smp_mb__after_srcu_read_unlock(void) { /* __srcu_read_unlock has smp_mb() internally so nothing to do here. */ } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 // SPDX-License-Identifier: GPL-2.0 /* File: fs/ext4/acl.h (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #include <linux/posix_acl_xattr.h> #define EXT4_ACL_VERSION 0x0001 typedef struct { __le16 e_tag; __le16 e_perm; __le32 e_id; } ext4_acl_entry; typedef struct { __le16 e_tag; __le16 e_perm; } ext4_acl_entry_short; typedef struct { __le32 a_version; } ext4_acl_header; static inline size_t ext4_acl_size(int count) { if (count <= 4) { return sizeof(ext4_acl_header) + count * sizeof(ext4_acl_entry_short); } else { return sizeof(ext4_acl_header) + 4 * sizeof(ext4_acl_entry_short) + (count - 4) * sizeof(ext4_acl_entry); } } static inline int ext4_acl_count(size_t size) { ssize_t s; size -= sizeof(ext4_acl_header); s = size - 4 * sizeof(ext4_acl_entry_short); if (s < 0) { if (size % sizeof(ext4_acl_entry_short)) return -1; return size / sizeof(ext4_acl_entry_short); } else { if (s % sizeof(ext4_acl_entry)) return -1; return s / sizeof(ext4_acl_entry) + 4; } } #ifdef CONFIG_EXT4_FS_POSIX_ACL /* acl.c */ struct posix_acl *ext4_get_acl(struct inode *inode, int type); int ext4_set_acl(struct inode *inode, struct posix_acl *acl, int type); extern int ext4_init_acl(handle_t *, struct inode *, struct inode *); #else /* CONFIG_EXT4_FS_POSIX_ACL */ #include <linux/sched.h> #define ext4_get_acl NULL #define ext4_set_acl NULL static inline int ext4_init_acl(handle_t *handle, struct inode *inode, struct inode *dir) { return 0; } #endif /* CONFIG_EXT4_FS_POSIX_ACL */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PIPE_FS_I_H #define _LINUX_PIPE_FS_I_H #define PIPE_DEF_BUFFERS 16 #define PIPE_BUF_FLAG_LRU 0x01 /* page is on the LRU */ #define PIPE_BUF_FLAG_ATOMIC 0x02 /* was atomically mapped */ #define PIPE_BUF_FLAG_GIFT 0x04 /* page is a gift */ #define PIPE_BUF_FLAG_PACKET 0x08 /* read() as a packet */ #define PIPE_BUF_FLAG_CAN_MERGE 0x10 /* can merge buffers */ #define PIPE_BUF_FLAG_WHOLE 0x20 /* read() must return entire buffer or error */ #ifdef CONFIG_WATCH_QUEUE #define PIPE_BUF_FLAG_LOSS 0x40 /* Message loss happened after this buffer */ #endif /** * struct pipe_buffer - a linux kernel pipe buffer * @page: the page containing the data for the pipe buffer * @offset: offset of data inside the @page * @len: length of data inside the @page * @ops: operations associated with this buffer. See @pipe_buf_operations. * @flags: pipe buffer flags. See above. * @private: private data owned by the ops. **/ struct pipe_buffer { struct page *page; unsigned int offset, len; const struct pipe_buf_operations *ops; unsigned int flags; unsigned long private; }; /** * struct pipe_inode_info - a linux kernel pipe * @mutex: mutex protecting the whole thing * @rd_wait: reader wait point in case of empty pipe * @wr_wait: writer wait point in case of full pipe * @head: The point of buffer production * @tail: The point of buffer consumption * @note_loss: The next read() should insert a data-lost message * @max_usage: The maximum number of slots that may be used in the ring * @ring_size: total number of buffers (should be a power of 2) * @nr_accounted: The amount this pipe accounts for in user->pipe_bufs * @tmp_page: cached released page * @readers: number of current readers of this pipe * @writers: number of current writers of this pipe * @files: number of struct file referring this pipe (protected by ->i_lock) * @r_counter: reader counter * @w_counter: writer counter * @poll_usage: is this pipe used for epoll, which has crazy wakeups? * @fasync_readers: reader side fasync * @fasync_writers: writer side fasync * @bufs: the circular array of pipe buffers * @user: the user who created this pipe * @watch_queue: If this pipe is a watch_queue, this is the stuff for that **/ struct pipe_inode_info { struct mutex mutex; wait_queue_head_t rd_wait, wr_wait; unsigned int head; unsigned int tail; unsigned int max_usage; unsigned int ring_size; #ifdef CONFIG_WATCH_QUEUE bool note_loss; #endif unsigned int nr_accounted; unsigned int readers; unsigned int writers; unsigned int files; unsigned int r_counter; unsigned int w_counter; unsigned int poll_usage; struct page *tmp_page; struct fasync_struct *fasync_readers; struct fasync_struct *fasync_writers; struct pipe_buffer *bufs; struct user_struct *user; #ifdef CONFIG_WATCH_QUEUE struct watch_queue *watch_queue; #endif }; /* * Note on the nesting of these functions: * * ->confirm() * ->try_steal() * * That is, ->try_steal() must be called on a confirmed buffer. See below for * the meaning of each operation. Also see the kerneldoc in fs/pipe.c for the * pipe and generic variants of these hooks. */ struct pipe_buf_operations { /* * ->confirm() verifies that the data in the pipe buffer is there * and that the contents are good. If the pages in the pipe belong * to a file system, we may need to wait for IO completion in this * hook. Returns 0 for good, or a negative error value in case of * error. If not present all pages are considered good. */ int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *); /* * When the contents of this pipe buffer has been completely * consumed by a reader, ->release() is called. */ void (*release)(struct pipe_inode_info *, struct pipe_buffer *); /* * Attempt to take ownership of the pipe buffer and its contents. * ->try_steal() returns %true for success, in which case the contents * of the pipe (the buf->page) is locked and now completely owned by the * caller. The page may then be transferred to a different mapping, the * most often used case is insertion into different file address space * cache. */ bool (*try_steal)(struct pipe_inode_info *, struct pipe_buffer *); /* * Get a reference to the pipe buffer. */ bool (*get)(struct pipe_inode_info *, struct pipe_buffer *); }; /** * pipe_empty - Return true if the pipe is empty * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline bool pipe_empty(unsigned int head, unsigned int tail) { return head == tail; } /** * pipe_occupancy - Return number of slots used in the pipe * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer */ static inline unsigned int pipe_occupancy(unsigned int head, unsigned int tail) { return head - tail; } /** * pipe_full - Return true if the pipe is full * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @limit: The maximum amount of slots available. */ static inline bool pipe_full(unsigned int head, unsigned int tail, unsigned int limit) { return pipe_occupancy(head, tail) >= limit; } /** * pipe_space_for_user - Return number of slots available to userspace * @head: The pipe ring head pointer * @tail: The pipe ring tail pointer * @pipe: The pipe info structure */ static inline unsigned int pipe_space_for_user(unsigned int head, unsigned int tail, struct pipe_inode_info *pipe) { unsigned int p_occupancy, p_space; p_occupancy = pipe_occupancy(head, tail); if (p_occupancy >= pipe->max_usage) return 0; p_space = pipe->ring_size - p_occupancy; if (p_space > pipe->max_usage) p_space = pipe->max_usage; return p_space; } /** * pipe_buf_get - get a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to get a reference to * * Return: %true if the reference was successfully obtained. */ static inline __must_check bool pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { return buf->ops->get(pipe, buf); } /** * pipe_buf_release - put a reference to a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to put a reference to */ static inline void pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { const struct pipe_buf_operations *ops = buf->ops; buf->ops = NULL; ops->release(pipe, buf); } /** * pipe_buf_confirm - verify contents of the pipe buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to confirm */ static inline int pipe_buf_confirm(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->confirm) return 0; return buf->ops->confirm(pipe, buf); } /** * pipe_buf_try_steal - attempt to take ownership of a pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to attempt to steal */ static inline bool pipe_buf_try_steal(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { if (!buf->ops->try_steal) return false; return buf->ops->try_steal(pipe, buf); } /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual memory allocation, whereas PIPE_BUF makes atomicity guarantees. */ #define PIPE_SIZE PAGE_SIZE /* Pipe lock and unlock operations */ void pipe_lock(struct pipe_inode_info *); void pipe_unlock(struct pipe_inode_info *); void pipe_double_lock(struct pipe_inode_info *, struct pipe_inode_info *); extern unsigned int pipe_max_size; extern unsigned long pipe_user_pages_hard; extern unsigned long pipe_user_pages_soft; /* Wait for a pipe to be readable/writable while dropping the pipe lock */ void pipe_wait_readable(struct pipe_inode_info *); void pipe_wait_writable(struct pipe_inode_info *); struct pipe_inode_info *alloc_pipe_info(void); void free_pipe_info(struct pipe_inode_info *); /* Generic pipe buffer ops functions */ bool generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *); bool generic_pipe_buf_try_steal(struct pipe_inode_info *, struct pipe_buffer *); void generic_pipe_buf_release(struct pipe_inode_info *, struct pipe_buffer *); extern const struct pipe_buf_operations nosteal_pipe_buf_ops; #ifdef CONFIG_WATCH_QUEUE unsigned long account_pipe_buffers(struct user_struct *user, unsigned long old, unsigned long new); bool too_many_pipe_buffers_soft(unsigned long user_bufs); bool too_many_pipe_buffers_hard(unsigned long user_bufs); bool pipe_is_unprivileged_user(void); #endif /* for F_SETPIPE_SZ and F_GETPIPE_SZ */ #ifdef CONFIG_WATCH_QUEUE int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots); #endif long pipe_fcntl(struct file *, unsigned int, unsigned long arg); struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice); int create_pipe_files(struct file **, int); unsigned int round_pipe_size(unsigned long size); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 // SPDX-License-Identifier: GPL-2.0 /* * kobject.h - generic kernel object infrastructure. * * Copyright (c) 2002-2003 Patrick Mochel * Copyright (c) 2002-2003 Open Source Development Labs * Copyright (c) 2006-2008 Greg Kroah-Hartman <greg@kroah.com> * Copyright (c) 2006-2008 Novell Inc. * * Please read Documentation/core-api/kobject.rst before using the kobject * interface, ESPECIALLY the parts about reference counts and object * destructors. */ #ifndef _KOBJECT_H_ #define _KOBJECT_H_ #include <linux/types.h> #include <linux/list.h> #include <linux/sysfs.h> #include <linux/compiler.h> #include <linux/spinlock.h> #include <linux/kref.h> #include <linux/kobject_ns.h> #include <linux/kernel.h> #include <linux/wait.h> #include <linux/atomic.h> #include <linux/workqueue.h> #include <linux/uidgid.h> #define UEVENT_HELPER_PATH_LEN 256 #define UEVENT_NUM_ENVP 64 /* number of env pointers */ #define UEVENT_BUFFER_SIZE 2048 /* buffer for the variables */ #ifdef CONFIG_UEVENT_HELPER /* path to the userspace helper executed on an event */ extern char uevent_helper[]; #endif /* counter to tag the uevent, read only except for the kobject core */ extern u64 uevent_seqnum; /* * The actions here must match the index to the string array * in lib/kobject_uevent.c * * Do not add new actions here without checking with the driver-core * maintainers. Action strings are not meant to express subsystem * or device specific properties. In most cases you want to send a * kobject_uevent_env(kobj, KOBJ_CHANGE, env) with additional event * specific variables added to the event environment. */ enum kobject_action { KOBJ_ADD, KOBJ_REMOVE, KOBJ_CHANGE, KOBJ_MOVE, KOBJ_ONLINE, KOBJ_OFFLINE, KOBJ_BIND, KOBJ_UNBIND, }; struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct kernfs_node *sd; /* sysfs directory entry */ struct kref kref; #ifdef CONFIG_DEBUG_KOBJECT_RELEASE struct delayed_work release; #endif unsigned int state_initialized:1; unsigned int state_in_sysfs:1; unsigned int state_add_uevent_sent:1; unsigned int state_remove_uevent_sent:1; unsigned int uevent_suppress:1; }; extern __printf(2, 3) int kobject_set_name(struct kobject *kobj, const char *name, ...); extern __printf(2, 0) int kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list vargs); static inline const char *kobject_name(const struct kobject *kobj) { return kobj->name; } extern void kobject_init(struct kobject *kobj, struct kobj_type *ktype); extern __printf(3, 4) __must_check int kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...); extern __printf(4, 5) __must_check int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype, struct kobject *parent, const char *fmt, ...); extern void kobject_del(struct kobject *kobj); extern struct kobject * __must_check kobject_create(void); extern struct kobject * __must_check kobject_create_and_add(const char *name, struct kobject *parent); extern int __must_check kobject_rename(struct kobject *, const char *new_name); extern int __must_check kobject_move(struct kobject *, struct kobject *); extern struct kobject *kobject_get(struct kobject *kobj); extern struct kobject * __must_check kobject_get_unless_zero( struct kobject *kobj); extern void kobject_put(struct kobject *kobj); extern const void *kobject_namespace(struct kobject *kobj); extern void kobject_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid); extern char *kobject_get_path(struct kobject *kobj, gfp_t flag); /** * kobject_has_children - Returns whether a kobject has children. * @kobj: the object to test * * This will return whether a kobject has other kobjects as children. * * It does NOT account for the presence of attribute files, only sub * directories. It also assumes there is no concurrent addition or * removal of such children, and thus relies on external locking. */ static inline bool kobject_has_children(struct kobject *kobj) { WARN_ON_ONCE(kref_read(&kobj->kref) == 0); return kobj->sd && kobj->sd->dir.subdirs; } struct kobj_type { void (*release)(struct kobject *kobj); const struct sysfs_ops *sysfs_ops; struct attribute **default_attrs; /* use default_groups instead */ const struct attribute_group **default_groups; const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj); const void *(*namespace)(struct kobject *kobj); void (*get_ownership)(struct kobject *kobj, kuid_t *uid, kgid_t *gid); }; struct kobj_uevent_env { char *argv[3]; char *envp[UEVENT_NUM_ENVP]; int envp_idx; char buf[UEVENT_BUFFER_SIZE]; int buflen; }; struct kset_uevent_ops { int (* const filter)(struct kset *kset, struct kobject *kobj); const char *(* const name)(struct kset *kset, struct kobject *kobj); int (* const uevent)(struct kset *kset, struct kobject *kobj, struct kobj_uevent_env *env); }; struct kobj_attribute { struct attribute attr; ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr, char *buf); ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count); }; extern const struct sysfs_ops kobj_sysfs_ops; struct sock; /** * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem. * * A kset defines a group of kobjects. They can be individually * different "types" but overall these kobjects all want to be grouped * together and operated on in the same manner. ksets are used to * define the attribute callbacks and other common events that happen to * a kobject. * * @list: the list of all kobjects for this kset * @list_lock: a lock for iterating over the kobjects * @kobj: the embedded kobject for this kset (recursion, isn't it fun...) * @uevent_ops: the set of uevent operations for this kset. These are * called whenever a kobject has something happen to it so that the kset * can add new environment variables, or filter out the uevents if so * desired. */ struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; const struct kset_uevent_ops *uevent_ops; } __randomize_layout; extern void kset_init(struct kset *kset); extern int __must_check kset_register(struct kset *kset); extern void kset_unregister(struct kset *kset); extern struct kset * __must_check kset_create_and_add(const char *name, const struct kset_uevent_ops *u, struct kobject *parent_kobj); static inline struct kset *to_kset(struct kobject *kobj) { return kobj ? container_of(kobj, struct kset, kobj) : NULL; } static inline struct kset *kset_get(struct kset *k) { return k ? to_kset(kobject_get(&k->kobj)) : NULL; } static inline void kset_put(struct kset *k) { kobject_put(&k->kobj); } static inline struct kobj_type *get_ktype(struct kobject *kobj) { return kobj->ktype; } extern struct kobject *kset_find_obj(struct kset *, const char *); /* The global /sys/kernel/ kobject for people to chain off of */ extern struct kobject *kernel_kobj; /* The global /sys/kernel/mm/ kobject for people to chain off of */ extern struct kobject *mm_kobj; /* The global /sys/hypervisor/ kobject for people to chain off of */ extern struct kobject *hypervisor_kobj; /* The global /sys/power/ kobject for people to chain off of */ extern struct kobject *power_kobj; /* The global /sys/firmware/ kobject for people to chain off of */ extern struct kobject *firmware_kobj; int kobject_uevent(struct kobject *kobj, enum kobject_action action); int kobject_uevent_env(struct kobject *kobj, enum kobject_action action, char *envp[]); int kobject_synth_uevent(struct kobject *kobj, const char *buf, size_t count); __printf(2, 3) int add_uevent_var(struct kobj_uevent_env *env, const char *format, ...); #endif /* _KOBJECT_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef INT_BLK_MQ_TAG_H #define INT_BLK_MQ_TAG_H /* * Tag address space map. */ struct blk_mq_tags { unsigned int nr_tags; unsigned int nr_reserved_tags; atomic_t active_queues; struct sbitmap_queue *bitmap_tags; struct sbitmap_queue *breserved_tags; struct sbitmap_queue __bitmap_tags; struct sbitmap_queue __breserved_tags; struct request **rqs; struct request **static_rqs; struct list_head page_list; /* * used to clear request reference in rqs[] before freeing one * request pool */ spinlock_t lock; }; extern struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags, unsigned int reserved_tags, int node, unsigned int flags); extern void blk_mq_free_tags(struct blk_mq_tags *tags, unsigned int flags); extern int blk_mq_init_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int flags); extern void blk_mq_exit_shared_sbitmap(struct blk_mq_tag_set *set); extern unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data); extern void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx, unsigned int tag); extern int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx, struct blk_mq_tags **tags, unsigned int depth, bool can_grow); extern void blk_mq_tag_resize_shared_sbitmap(struct blk_mq_tag_set *set, unsigned int size); extern void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool); void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, void *priv); void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, void *priv); static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt, struct blk_mq_hw_ctx *hctx) { if (!hctx) return &bt->ws[0]; return sbq_wait_ptr(bt, &hctx->wait_index); } enum { BLK_MQ_NO_TAG = -1U, BLK_MQ_TAG_MIN = 1, BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1, }; extern bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *); extern void __blk_mq_tag_idle(struct blk_mq_hw_ctx *); static inline bool blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return false; return __blk_mq_tag_busy(hctx); } static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) return; __blk_mq_tag_idle(hctx); } static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags, unsigned int tag) { return tag < tags->nr_reserved_tags; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0-only */ /* * This file is part of the Linux kernel. * * Copyright (c) 2011-2014, Intel Corporation * Authors: Fenghua Yu <fenghua.yu@intel.com>, * H. Peter Anvin <hpa@linux.intel.com> */ #ifndef ASM_X86_ARCHRANDOM_H #define ASM_X86_ARCHRANDOM_H #include <asm/processor.h> #include <asm/cpufeature.h> #define RDRAND_RETRY_LOOPS 10 /* Unconditional execution of RDRAND and RDSEED */ static inline bool __must_check rdrand_long(unsigned long *v) { bool ok; unsigned int retry = RDRAND_RETRY_LOOPS; do { asm volatile("rdrand %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); if (ok) return true; } while (--retry); return false; } static inline bool __must_check rdrand_int(unsigned int *v) { bool ok; unsigned int retry = RDRAND_RETRY_LOOPS; do { asm volatile("rdrand %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); if (ok) return true; } while (--retry); return false; } static inline bool __must_check rdseed_long(unsigned long *v) { bool ok; asm volatile("rdseed %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); return ok; } static inline bool __must_check rdseed_int(unsigned int *v) { bool ok; asm volatile("rdseed %[out]" CC_SET(c) : CC_OUT(c) (ok), [out] "=r" (*v)); return ok; } /* * These are the generic interfaces; they must not be declared if the * stubs in <linux/random.h> are to be invoked, * i.e. CONFIG_ARCH_RANDOM is not defined. */ #ifdef CONFIG_ARCH_RANDOM static inline bool __must_check arch_get_random_long(unsigned long *v) { return static_cpu_has(X86_FEATURE_RDRAND) ? rdrand_long(v) : false; } static inline bool __must_check arch_get_random_int(unsigned int *v) { return static_cpu_has(X86_FEATURE_RDRAND) ? rdrand_int(v) : false; } static inline bool __must_check arch_get_random_seed_long(unsigned long *v) { return static_cpu_has(X86_FEATURE_RDSEED) ? rdseed_long(v) : false; } static inline bool __must_check arch_get_random_seed_int(unsigned int *v) { return static_cpu_has(X86_FEATURE_RDSEED) ? rdseed_int(v) : false; } extern void x86_init_rdrand(struct cpuinfo_x86 *c); #else /* !CONFIG_ARCH_RANDOM */ static inline void x86_init_rdrand(struct cpuinfo_x86 *c) { } #endif /* !CONFIG_ARCH_RANDOM */ #endif /* ASM_X86_ARCHRANDOM_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 #undef TRACE_SYSTEM #define TRACE_SYSTEM rtc #if !defined(_TRACE_RTC_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RTC_H #include <linux/rtc.h> #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(rtc_time_alarm_class, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err), TP_STRUCT__entry( __field(time64_t, secs) __field(int, err) ), TP_fast_assign( __entry->secs = secs; __entry->err = err; ), TP_printk("UTC (%lld) (%d)", __entry->secs, __entry->err ) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_time, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_set_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); DEFINE_EVENT(rtc_time_alarm_class, rtc_read_alarm, TP_PROTO(time64_t secs, int err), TP_ARGS(secs, err) ); TRACE_EVENT(rtc_irq_set_freq, TP_PROTO(int freq, int err), TP_ARGS(freq, err), TP_STRUCT__entry( __field(int, freq) __field(int, err) ), TP_fast_assign( __entry->freq = freq; __entry->err = err; ), TP_printk("set RTC periodic IRQ frequency:%u (%d)", __entry->freq, __entry->err ) ); TRACE_EVENT(rtc_irq_set_state, TP_PROTO(int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC 2^N Hz periodic IRQs (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); TRACE_EVENT(rtc_alarm_irq_enable, TP_PROTO(unsigned int enabled, int err), TP_ARGS(enabled, err), TP_STRUCT__entry( __field(unsigned int, enabled) __field(int, err) ), TP_fast_assign( __entry->enabled = enabled; __entry->err = err; ), TP_printk("%s RTC alarm IRQ (%d)", __entry->enabled ? "enable" : "disable", __entry->err ) ); DECLARE_EVENT_CLASS(rtc_offset_class, TP_PROTO(long offset, int err), TP_ARGS(offset, err), TP_STRUCT__entry( __field(long, offset) __field(int, err) ), TP_fast_assign( __entry->offset = offset; __entry->err = err; ), TP_printk("RTC offset: %ld (%d)", __entry->offset, __entry->err ) ); DEFINE_EVENT(rtc_offset_class, rtc_set_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DEFINE_EVENT(rtc_offset_class, rtc_read_offset, TP_PROTO(long offset, int err), TP_ARGS(offset, err) ); DECLARE_EVENT_CLASS(rtc_timer_class, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer), TP_STRUCT__entry( __field(struct rtc_timer *, timer) __field(ktime_t, expires) __field(ktime_t, period) ), TP_fast_assign( __entry->timer = timer; __entry->expires = timer->node.expires; __entry->period = timer->period; ), TP_printk("RTC timer:(%p) expires:%lld period:%lld", __entry->timer, __entry->expires, __entry->period ) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_enqueue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_dequeue, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); DEFINE_EVENT(rtc_timer_class, rtc_timer_fired, TP_PROTO(struct rtc_timer *timer), TP_ARGS(timer) ); #endif /* _TRACE_RTC_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_PREEMPT_H #define __ASM_PREEMPT_H #include <asm/rmwcc.h> #include <asm/percpu.h> #include <linux/thread_info.h> DECLARE_PER_CPU(int, __preempt_count); /* We use the MSB mostly because its available */ #define PREEMPT_NEED_RESCHED 0x80000000 /* * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such * that a decrement hitting 0 means we can and should reschedule. */ #define PREEMPT_ENABLED (0 + PREEMPT_NEED_RESCHED) /* * We mask the PREEMPT_NEED_RESCHED bit so as not to confuse all current users * that think a non-zero value indicates we cannot preempt. */ static __always_inline int preempt_count(void) { return raw_cpu_read_4(__preempt_count) & ~PREEMPT_NEED_RESCHED; } static __always_inline void preempt_count_set(int pc) { int old, new; do { old = raw_cpu_read_4(__preempt_count); new = (old & PREEMPT_NEED_RESCHED) | (pc & ~PREEMPT_NEED_RESCHED); } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old); } /* * must be macros to avoid header recursion hell */ #define init_task_preempt_count(p) do { } while (0) #define init_idle_preempt_count(p, cpu) do { \ per_cpu(__preempt_count, (cpu)) = PREEMPT_DISABLED; \ } while (0) /* * We fold the NEED_RESCHED bit into the preempt count such that * preempt_enable() can decrement and test for needing to reschedule with a * single instruction. * * We invert the actual bit, so that when the decrement hits 0 we know we both * need to resched (the bit is cleared) and can resched (no preempt count). */ static __always_inline void set_preempt_need_resched(void) { raw_cpu_and_4(__preempt_count, ~PREEMPT_NEED_RESCHED); } static __always_inline void clear_preempt_need_resched(void) { raw_cpu_or_4(__preempt_count, PREEMPT_NEED_RESCHED); } static __always_inline bool test_preempt_need_resched(void) { return !(raw_cpu_read_4(__preempt_count) & PREEMPT_NEED_RESCHED); } /* * The various preempt_count add/sub methods */ static __always_inline void __preempt_count_add(int val) { raw_cpu_add_4(__preempt_count, val); } static __always_inline void __preempt_count_sub(int val) { raw_cpu_add_4(__preempt_count, -val); } /* * Because we keep PREEMPT_NEED_RESCHED set when we do _not_ need to reschedule * a decrement which hits zero means we have no preempt_count and should * reschedule. */ static __always_inline bool __preempt_count_dec_and_test(void) { return GEN_UNARY_RMWcc("decl", __preempt_count, e, __percpu_arg([var])); } /* * Returns true when we need to resched and can (barring IRQ state). */ static __always_inline bool should_resched(int preempt_offset) { return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset); } #ifdef CONFIG_PREEMPTION extern asmlinkage void preempt_schedule_thunk(void); # define __preempt_schedule() \ asm volatile ("call preempt_schedule_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule(void); extern asmlinkage void preempt_schedule_notrace_thunk(void); # define __preempt_schedule_notrace() \ asm volatile ("call preempt_schedule_notrace_thunk" : ASM_CALL_CONSTRAINT) extern asmlinkage void preempt_schedule_notrace(void); #endif #endif /* __ASM_PREEMPT_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 // SPDX-License-Identifier: GPL-2.0-or-later /* * Kernel Probes (KProbes) * kernel/kprobes.c * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation (includes suggestions from * Rusty Russell). * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with * hlists and exceptions notifier as suggested by Andi Kleen. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes * exceptions notifier to be first on the priority list. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> added function-return probes. */ #include <linux/kprobes.h> #include <linux/hash.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/stddef.h> #include <linux/export.h> #include <linux/moduleloader.h> #include <linux/kallsyms.h> #include <linux/freezer.h> #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/sysctl.h> #include <linux/kdebug.h> #include <linux/memory.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/jump_label.h> #include <linux/perf_event.h> #include <linux/static_call.h> #include <asm/sections.h> #include <asm/cacheflush.h> #include <asm/errno.h> #include <linux/uaccess.h> #define KPROBE_HASH_BITS 6 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) static int kprobes_initialized; /* kprobe_table can be accessed by * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. * Or * - RCU hlist traversal under disabling preempt (breakpoint handlers) */ static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_all_disarmed; /* This protects kprobe_table and optimizing_list */ static DEFINE_MUTEX(kprobe_mutex); static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; static struct { raw_spinlock_t lock ____cacheline_aligned_in_smp; } kretprobe_table_locks[KPROBE_TABLE_SIZE]; kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, unsigned int __unused) { return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); } static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) { return &(kretprobe_table_locks[hash].lock); } /* Blacklist -- list of struct kprobe_blacklist_entry */ static LIST_HEAD(kprobe_blacklist); #ifdef __ARCH_WANT_KPROBES_INSN_SLOT /* * kprobe->ainsn.insn points to the copy of the instruction to be * single-stepped. x86_64, POWER4 and above have no-exec support and * stepping on the instruction on a vmalloced/kmalloced/data page * is a recipe for disaster */ struct kprobe_insn_page { struct list_head list; kprobe_opcode_t *insns; /* Page of instruction slots */ struct kprobe_insn_cache *cache; int nused; int ngarbage; char slot_used[]; }; #define KPROBE_INSN_PAGE_SIZE(slots) \ (offsetof(struct kprobe_insn_page, slot_used) + \ (sizeof(char) * (slots))) static int slots_per_page(struct kprobe_insn_cache *c) { return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); } enum kprobe_slot_state { SLOT_CLEAN = 0, SLOT_DIRTY = 1, SLOT_USED = 2, }; void __weak *alloc_insn_page(void) { return module_alloc(PAGE_SIZE); } void __weak free_insn_page(void *page) { module_memfree(page); } struct kprobe_insn_cache kprobe_insn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), .alloc = alloc_insn_page, .free = free_insn_page, .sym = KPROBE_INSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), .insn_size = MAX_INSN_SIZE, .nr_garbage = 0, }; static int collect_garbage_slots(struct kprobe_insn_cache *c); /** * __get_insn_slot() - Find a slot on an executable page for an instruction. * We allocate an executable page if there's no room on existing ones. */ kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip; kprobe_opcode_t *slot = NULL; /* Since the slot array is not protected by rcu, we need a mutex */ mutex_lock(&c->mutex); retry: rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (kip->nused < slots_per_page(c)) { int i; for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_CLEAN) { kip->slot_used[i] = SLOT_USED; kip->nused++; slot = kip->insns + (i * c->insn_size); rcu_read_unlock(); goto out; } } /* kip->nused is broken. Fix it. */ kip->nused = slots_per_page(c); WARN_ON(1); } } rcu_read_unlock(); /* If there are any garbage slots, collect it and try again. */ if (c->nr_garbage && collect_garbage_slots(c) == 0) goto retry; /* All out of space. Need to allocate a new page. */ kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); if (!kip) goto out; /* * Use module_alloc so this page is within +/- 2GB of where the * kernel image and loaded module images reside. This is required * so x86_64 can correctly handle the %rip-relative fixups. */ kip->insns = c->alloc(); if (!kip->insns) { kfree(kip); goto out; } INIT_LIST_HEAD(&kip->list); memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); kip->slot_used[0] = SLOT_USED; kip->nused = 1; kip->ngarbage = 0; kip->cache = c; list_add_rcu(&kip->list, &c->pages); slot = kip->insns; /* Record the perf ksymbol register event after adding the page */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, false, c->sym); out: mutex_unlock(&c->mutex); return slot; } /* Return 1 if all garbages are collected, otherwise 0. */ static int collect_one_slot(struct kprobe_insn_page *kip, int idx) { kip->slot_used[idx] = SLOT_CLEAN; kip->nused--; if (kip->nused == 0) { /* * Page is no longer in use. Free it unless * it's the last one. We keep the last one * so as not to have to set it up again the * next time somebody inserts a probe. */ if (!list_is_singular(&kip->list)) { /* * Record perf ksymbol unregister event before removing * the page. */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, true, kip->cache->sym); list_del_rcu(&kip->list); synchronize_rcu(); kip->cache->free(kip->insns); kfree(kip); } return 1; } return 0; } static int collect_garbage_slots(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip, *next; /* Ensure no-one is interrupted on the garbages */ synchronize_rcu(); list_for_each_entry_safe(kip, next, &c->pages, list) { int i; if (kip->ngarbage == 0) continue; kip->ngarbage = 0; /* we will collect all garbages */ for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) break; } } c->nr_garbage = 0; return 0; } void __free_insn_slot(struct kprobe_insn_cache *c, kprobe_opcode_t *slot, int dirty) { struct kprobe_insn_page *kip; long idx; mutex_lock(&c->mutex); rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { idx = ((long)slot - (long)kip->insns) / (c->insn_size * sizeof(kprobe_opcode_t)); if (idx >= 0 && idx < slots_per_page(c)) goto out; } /* Could not find this slot. */ WARN_ON(1); kip = NULL; out: rcu_read_unlock(); /* Mark and sweep: this may sleep */ if (kip) { /* Check double free */ WARN_ON(kip->slot_used[idx] != SLOT_USED); if (dirty) { kip->slot_used[idx] = SLOT_DIRTY; kip->ngarbage++; if (++c->nr_garbage > slots_per_page(c)) collect_garbage_slots(c); } else { collect_one_slot(kip, idx); } } mutex_unlock(&c->mutex); } /* * Check given address is on the page of kprobe instruction slots. * This will be used for checking whether the address on a stack * is on a text area or not. */ bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) { struct kprobe_insn_page *kip; bool ret = false; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (addr >= (unsigned long)kip->insns && addr < (unsigned long)kip->insns + PAGE_SIZE) { ret = true; break; } } rcu_read_unlock(); return ret; } int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, unsigned long *value, char *type, char *sym) { struct kprobe_insn_page *kip; int ret = -ERANGE; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if ((*symnum)--) continue; strlcpy(sym, c->sym, KSYM_NAME_LEN); *type = 't'; *value = (unsigned long)kip->insns; ret = 0; break; } rcu_read_unlock(); return ret; } #ifdef CONFIG_OPTPROBES /* For optimized_kprobe buffer */ struct kprobe_insn_cache kprobe_optinsn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), .alloc = alloc_insn_page, .free = free_insn_page, .sym = KPROBE_OPTINSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), /* .insn_size is initialized later */ .nr_garbage = 0, }; #endif #endif /* We have preemption disabled.. so it is safe to use __ versions */ static inline void set_kprobe_instance(struct kprobe *kp) { __this_cpu_write(kprobe_instance, kp); } static inline void reset_kprobe_instance(void) { __this_cpu_write(kprobe_instance, NULL); } /* * This routine is called either: * - under the kprobe_mutex - during kprobe_[un]register() * OR * - with preemption disabled - from arch/xxx/kernel/kprobes.c */ struct kprobe *get_kprobe(void *addr) { struct hlist_head *head; struct kprobe *p; head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; hlist_for_each_entry_rcu(p, head, hlist, lockdep_is_held(&kprobe_mutex)) { if (p->addr == addr) return p; } return NULL; } NOKPROBE_SYMBOL(get_kprobe); static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); /* Return true if the kprobe is an aggregator */ static inline int kprobe_aggrprobe(struct kprobe *p) { return p->pre_handler == aggr_pre_handler; } /* Return true(!0) if the kprobe is unused */ static inline int kprobe_unused(struct kprobe *p) { return kprobe_aggrprobe(p) && kprobe_disabled(p) && list_empty(&p->list); } /* * Keep all fields in the kprobe consistent */ static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) { memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); } #ifdef CONFIG_OPTPROBES /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_allow_optimization; /* * Call all pre_handler on the list, but ignores its return value. * This must be called from arch-dep optimized caller. */ void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->pre_handler(kp, regs); } reset_kprobe_instance(); } } NOKPROBE_SYMBOL(opt_pre_handler); /* Free optimized instructions and optimized_kprobe */ static void free_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); arch_remove_optimized_kprobe(op); arch_remove_kprobe(p); kfree(op); } /* Return true(!0) if the kprobe is ready for optimization. */ static inline int kprobe_optready(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); return arch_prepared_optinsn(&op->optinsn); } return 0; } /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ static inline int kprobe_disarmed(struct kprobe *p) { struct optimized_kprobe *op; /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ if (!kprobe_aggrprobe(p)) return kprobe_disabled(p); op = container_of(p, struct optimized_kprobe, kp); return kprobe_disabled(p) && list_empty(&op->list); } /* Return true(!0) if the probe is queued on (un)optimizing lists */ static int kprobe_queued(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) return 1; } return 0; } /* * Return an optimized kprobe whose optimizing code replaces * instructions including addr (exclude breakpoint). */ static struct kprobe *get_optimized_kprobe(unsigned long addr) { int i; struct kprobe *p = NULL; struct optimized_kprobe *op; /* Don't check i == 0, since that is a breakpoint case. */ for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) p = get_kprobe((void *)(addr - i)); if (p && kprobe_optready(p)) { op = container_of(p, struct optimized_kprobe, kp); if (arch_within_optimized_kprobe(op, addr)) return p; } return NULL; } /* Optimization staging list, protected by kprobe_mutex */ static LIST_HEAD(optimizing_list); static LIST_HEAD(unoptimizing_list); static LIST_HEAD(freeing_list); static void kprobe_optimizer(struct work_struct *work); static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); #define OPTIMIZE_DELAY 5 /* * Optimize (replace a breakpoint with a jump) kprobes listed on * optimizing_list. */ static void do_optimize_kprobes(void) { lockdep_assert_held(&text_mutex); /* * The optimization/unoptimization refers online_cpus via * stop_machine() and cpu-hotplug modifies online_cpus. * And same time, text_mutex will be held in cpu-hotplug and here. * This combination can cause a deadlock (cpu-hotplug try to lock * text_mutex but stop_machine can not be done because online_cpus * has been changed) * To avoid this deadlock, caller must have locked cpu hotplug * for preventing cpu-hotplug outside of text_mutex locking. */ lockdep_assert_cpus_held(); /* Optimization never be done when disarmed */ if (kprobes_all_disarmed || !kprobes_allow_optimization || list_empty(&optimizing_list)) return; arch_optimize_kprobes(&optimizing_list); } /* * Unoptimize (replace a jump with a breakpoint and remove the breakpoint * if need) kprobes listed on unoptimizing_list. */ static void do_unoptimize_kprobes(void) { struct optimized_kprobe *op, *tmp; lockdep_assert_held(&text_mutex); /* See comment in do_optimize_kprobes() */ lockdep_assert_cpus_held(); /* Unoptimization must be done anytime */ if (list_empty(&unoptimizing_list)) return; arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); /* Loop free_list for disarming */ list_for_each_entry_safe(op, tmp, &freeing_list, list) { /* Switching from detour code to origin */ op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; /* Disarm probes if marked disabled */ if (kprobe_disabled(&op->kp)) arch_disarm_kprobe(&op->kp); if (kprobe_unused(&op->kp)) { /* * Remove unused probes from hash list. After waiting * for synchronization, these probes are reclaimed. * (reclaiming is done by do_free_cleaned_kprobes.) */ hlist_del_rcu(&op->kp.hlist); } else list_del_init(&op->list); } } /* Reclaim all kprobes on the free_list */ static void do_free_cleaned_kprobes(void) { struct optimized_kprobe *op, *tmp; list_for_each_entry_safe(op, tmp, &freeing_list, list) { list_del_init(&op->list); if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { /* * This must not happen, but if there is a kprobe * still in use, keep it on kprobes hash list. */ continue; } free_aggr_kprobe(&op->kp); } } /* Start optimizer after OPTIMIZE_DELAY passed */ static void kick_kprobe_optimizer(void) { schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); } /* Kprobe jump optimizer */ static void kprobe_optimizer(struct work_struct *work) { mutex_lock(&kprobe_mutex); cpus_read_lock(); mutex_lock(&text_mutex); /* * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) * kprobes before waiting for quiesence period. */ do_unoptimize_kprobes(); /* * Step 2: Wait for quiesence period to ensure all potentially * preempted tasks to have normally scheduled. Because optprobe * may modify multiple instructions, there is a chance that Nth * instruction is preempted. In that case, such tasks can return * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. * Note that on non-preemptive kernel, this is transparently converted * to synchronoze_sched() to wait for all interrupts to have completed. */ synchronize_rcu_tasks(); /* Step 3: Optimize kprobes after quiesence period */ do_optimize_kprobes(); /* Step 4: Free cleaned kprobes after quiesence period */ do_free_cleaned_kprobes(); mutex_unlock(&text_mutex); cpus_read_unlock(); /* Step 5: Kick optimizer again if needed */ if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) kick_kprobe_optimizer(); mutex_unlock(&kprobe_mutex); } /* Wait for completing optimization and unoptimization */ void wait_for_kprobe_optimizer(void) { mutex_lock(&kprobe_mutex); while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { mutex_unlock(&kprobe_mutex); /* this will also make optimizing_work execute immmediately */ flush_delayed_work(&optimizing_work); /* @optimizing_work might not have been queued yet, relax */ cpu_relax(); mutex_lock(&kprobe_mutex); } mutex_unlock(&kprobe_mutex); } static bool optprobe_queued_unopt(struct optimized_kprobe *op) { struct optimized_kprobe *_op; list_for_each_entry(_op, &unoptimizing_list, list) { if (op == _op) return true; } return false; } /* Optimize kprobe if p is ready to be optimized */ static void optimize_kprobe(struct kprobe *p) { struct optimized_kprobe *op; /* Check if the kprobe is disabled or not ready for optimization. */ if (!kprobe_optready(p) || !kprobes_allow_optimization || (kprobe_disabled(p) || kprobes_all_disarmed)) return; /* kprobes with post_handler can not be optimized */ if (p->post_handler) return; op = container_of(p, struct optimized_kprobe, kp); /* Check there is no other kprobes at the optimized instructions */ if (arch_check_optimized_kprobe(op) < 0) return; /* Check if it is already optimized. */ if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { if (optprobe_queued_unopt(op)) { /* This is under unoptimizing. Just dequeue the probe */ list_del_init(&op->list); } return; } op->kp.flags |= KPROBE_FLAG_OPTIMIZED; /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ if (WARN_ON_ONCE(!list_empty(&op->list))) return; list_add(&op->list, &optimizing_list); kick_kprobe_optimizer(); } /* Short cut to direct unoptimizing */ static void force_unoptimize_kprobe(struct optimized_kprobe *op) { lockdep_assert_cpus_held(); arch_unoptimize_kprobe(op); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } /* Unoptimize a kprobe if p is optimized */ static void unoptimize_kprobe(struct kprobe *p, bool force) { struct optimized_kprobe *op; if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) return; /* This is not an optprobe nor optimized */ op = container_of(p, struct optimized_kprobe, kp); if (!kprobe_optimized(p)) return; if (!list_empty(&op->list)) { if (optprobe_queued_unopt(op)) { /* Queued in unoptimizing queue */ if (force) { /* * Forcibly unoptimize the kprobe here, and queue it * in the freeing list for release afterwards. */ force_unoptimize_kprobe(op); list_move(&op->list, &freeing_list); } } else { /* Dequeue from the optimizing queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } return; } /* Optimized kprobe case */ if (force) { /* Forcibly update the code: this is a special case */ force_unoptimize_kprobe(op); } else { list_add(&op->list, &unoptimizing_list); kick_kprobe_optimizer(); } } /* Cancel unoptimizing for reusing */ static int reuse_unused_kprobe(struct kprobe *ap) { struct optimized_kprobe *op; /* * Unused kprobe MUST be on the way of delayed unoptimizing (means * there is still a relative jump) and disabled. */ op = container_of(ap, struct optimized_kprobe, kp); WARN_ON_ONCE(list_empty(&op->list)); /* Enable the probe again */ ap->flags &= ~KPROBE_FLAG_DISABLED; /* Optimize it again (remove from op->list) */ if (!kprobe_optready(ap)) return -EINVAL; optimize_kprobe(ap); return 0; } /* Remove optimized instructions */ static void kill_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) /* Dequeue from the (un)optimization queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; if (kprobe_unused(p)) { /* Enqueue if it is unused */ list_add(&op->list, &freeing_list); /* * Remove unused probes from the hash list. After waiting * for synchronization, this probe is reclaimed. * (reclaiming is done by do_free_cleaned_kprobes().) */ hlist_del_rcu(&op->kp.hlist); } /* Don't touch the code, because it is already freed. */ arch_remove_optimized_kprobe(op); } static inline void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) { if (!kprobe_ftrace(p)) arch_prepare_optimized_kprobe(op, p); } /* Try to prepare optimized instructions */ static void prepare_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); __prepare_optimized_kprobe(op, p); } /* Allocate new optimized_kprobe and try to prepare optimized instructions */ static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); if (!op) return NULL; INIT_LIST_HEAD(&op->list); op->kp.addr = p->addr; __prepare_optimized_kprobe(op, p); return &op->kp; } static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); /* * Prepare an optimized_kprobe and optimize it * NOTE: p must be a normal registered kprobe */ static void try_to_optimize_kprobe(struct kprobe *p) { struct kprobe *ap; struct optimized_kprobe *op; /* Impossible to optimize ftrace-based kprobe */ if (kprobe_ftrace(p)) return; /* For preparing optimization, jump_label_text_reserved() is called */ cpus_read_lock(); jump_label_lock(); mutex_lock(&text_mutex); ap = alloc_aggr_kprobe(p); if (!ap) goto out; op = container_of(ap, struct optimized_kprobe, kp); if (!arch_prepared_optinsn(&op->optinsn)) { /* If failed to setup optimizing, fallback to kprobe */ arch_remove_optimized_kprobe(op); kfree(op); goto out; } init_aggr_kprobe(ap, p); optimize_kprobe(ap); /* This just kicks optimizer thread */ out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); } static void optimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already allowed, just return */ if (kprobes_allow_optimization) goto out; cpus_read_lock(); kprobes_allow_optimization = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) if (!kprobe_disabled(p)) optimize_kprobe(p); } cpus_read_unlock(); printk(KERN_INFO "Kprobes globally optimized\n"); out: mutex_unlock(&kprobe_mutex); } #ifdef CONFIG_SYSCTL static void unoptimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already prohibited, just return */ if (!kprobes_allow_optimization) { mutex_unlock(&kprobe_mutex); return; } cpus_read_lock(); kprobes_allow_optimization = false; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (!kprobe_disabled(p)) unoptimize_kprobe(p, false); } } cpus_read_unlock(); mutex_unlock(&kprobe_mutex); /* Wait for unoptimizing completion */ wait_for_kprobe_optimizer(); printk(KERN_INFO "Kprobes globally unoptimized\n"); } static DEFINE_MUTEX(kprobe_sysctl_mutex); int sysctl_kprobes_optimization; int proc_kprobes_optimization_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { int ret; mutex_lock(&kprobe_sysctl_mutex); sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; ret = proc_dointvec_minmax(table, write, buffer, length, ppos); if (sysctl_kprobes_optimization) optimize_all_kprobes(); else unoptimize_all_kprobes(); mutex_unlock(&kprobe_sysctl_mutex); return ret; } #endif /* CONFIG_SYSCTL */ /* Put a breakpoint for a probe. Must be called with text_mutex locked */ static void __arm_kprobe(struct kprobe *p) { struct kprobe *_p; /* Check collision with other optimized kprobes */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p)) /* Fallback to unoptimized kprobe */ unoptimize_kprobe(_p, true); arch_arm_kprobe(p); optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ } /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ static void __disarm_kprobe(struct kprobe *p, bool reopt) { struct kprobe *_p; /* Try to unoptimize */ unoptimize_kprobe(p, kprobes_all_disarmed); if (!kprobe_queued(p)) { arch_disarm_kprobe(p); /* If another kprobe was blocked, optimize it. */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p) && reopt) optimize_kprobe(_p); } /* TODO: reoptimize others after unoptimized this probe */ } #else /* !CONFIG_OPTPROBES */ #define optimize_kprobe(p) do {} while (0) #define unoptimize_kprobe(p, f) do {} while (0) #define kill_optimized_kprobe(p) do {} while (0) #define prepare_optimized_kprobe(p) do {} while (0) #define try_to_optimize_kprobe(p) do {} while (0) #define __arm_kprobe(p) arch_arm_kprobe(p) #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) #define kprobe_disarmed(p) kprobe_disabled(p) #define wait_for_kprobe_optimizer() do {} while (0) static int reuse_unused_kprobe(struct kprobe *ap) { /* * If the optimized kprobe is NOT supported, the aggr kprobe is * released at the same time that the last aggregated kprobe is * unregistered. * Thus there should be no chance to reuse unused kprobe. */ printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); return -EINVAL; } static void free_aggr_kprobe(struct kprobe *p) { arch_remove_kprobe(p); kfree(p); } static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { return kzalloc(sizeof(struct kprobe), GFP_KERNEL); } #endif /* CONFIG_OPTPROBES */ #ifdef CONFIG_KPROBES_ON_FTRACE static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS, }; static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, }; static int kprobe_ipmodify_enabled; static int kprobe_ftrace_enabled; /* Must ensure p->addr is really on ftrace */ static int prepare_kprobe(struct kprobe *p) { if (!kprobe_ftrace(p)) return arch_prepare_kprobe(p); return arch_prepare_kprobe_ftrace(p); } /* Caller must lock kprobe_mutex */ static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret = 0; ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); if (ret) { pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", p->addr, ret); return ret; } if (*cnt == 0) { ret = register_ftrace_function(ops); if (ret) { pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); goto err_ftrace; } } (*cnt)++; return ret; err_ftrace: /* * At this point, sinec ops is not registered, we should be sefe from * registering empty filter. */ ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); return ret; } static int arm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __arm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } /* Caller must lock kprobe_mutex */ static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret = 0; if (*cnt == 1) { ret = unregister_ftrace_function(ops); if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) return ret; } (*cnt)--; ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", p->addr, ret); return ret; } static int disarm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __disarm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } #else /* !CONFIG_KPROBES_ON_FTRACE */ static inline int prepare_kprobe(struct kprobe *p) { return arch_prepare_kprobe(p); } static inline int arm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } static inline int disarm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } #endif /* Arm a kprobe with text_mutex */ static int arm_kprobe(struct kprobe *kp) { if (unlikely(kprobe_ftrace(kp))) return arm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __arm_kprobe(kp); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } /* Disarm a kprobe with text_mutex */ static int disarm_kprobe(struct kprobe *kp, bool reopt) { if (unlikely(kprobe_ftrace(kp))) return disarm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __disarm_kprobe(kp, reopt); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } /* * Aggregate handlers for multiple kprobes support - these handlers * take care of invoking the individual kprobe handlers on p->list */ static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); if (kp->pre_handler(kp, regs)) return 1; } reset_kprobe_instance(); } return 0; } NOKPROBE_SYMBOL(aggr_pre_handler); static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->post_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->post_handler(kp, regs, flags); reset_kprobe_instance(); } } } NOKPROBE_SYMBOL(aggr_post_handler); static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr) { struct kprobe *cur = __this_cpu_read(kprobe_instance); /* * if we faulted "during" the execution of a user specified * probe handler, invoke just that probe's fault handler */ if (cur && cur->fault_handler) { if (cur->fault_handler(cur, regs, trapnr)) return 1; } return 0; } NOKPROBE_SYMBOL(aggr_fault_handler); /* Walks the list and increments nmissed count for multiprobe case */ void kprobes_inc_nmissed_count(struct kprobe *p) { struct kprobe *kp; if (!kprobe_aggrprobe(p)) { p->nmissed++; } else { list_for_each_entry_rcu(kp, &p->list, list) kp->nmissed++; } return; } NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); static void recycle_rp_inst(struct kretprobe_instance *ri) { struct kretprobe *rp = ri->rp; /* remove rp inst off the rprobe_inst_table */ hlist_del(&ri->hlist); INIT_HLIST_NODE(&ri->hlist); if (likely(rp)) { raw_spin_lock(&rp->lock); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock(&rp->lock); } else kfree_rcu(ri, rcu); } NOKPROBE_SYMBOL(recycle_rp_inst); static void kretprobe_hash_lock(struct task_struct *tsk, struct hlist_head **head, unsigned long *flags) __acquires(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; *head = &kretprobe_inst_table[hash]; hlist_lock = kretprobe_table_lock_ptr(hash); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. * Differentiate when it is taken in NMI context. */ raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); } NOKPROBE_SYMBOL(kretprobe_hash_lock); static void kretprobe_table_lock(unsigned long hash, unsigned long *flags) __acquires(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. * Differentiate when it is taken in NMI context. */ raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); } NOKPROBE_SYMBOL(kretprobe_table_lock); static void kretprobe_hash_unlock(struct task_struct *tsk, unsigned long *flags) __releases(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } NOKPROBE_SYMBOL(kretprobe_hash_unlock); static void kretprobe_table_unlock(unsigned long hash, unsigned long *flags) __releases(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } NOKPROBE_SYMBOL(kretprobe_table_unlock); static struct kprobe kprobe_busy = { .addr = (void *) get_kprobe, }; void kprobe_busy_begin(void) { struct kprobe_ctlblk *kcb; preempt_disable(); __this_cpu_write(current_kprobe, &kprobe_busy); kcb = get_kprobe_ctlblk(); kcb->kprobe_status = KPROBE_HIT_ACTIVE; } void kprobe_busy_end(void) { __this_cpu_write(current_kprobe, NULL); preempt_enable(); } /* * This function is called from finish_task_switch when task tk becomes dead, * so that we can recycle any function-return probe instances associated * with this task. These left over instances represent probed functions * that have been called but will never return. */ void kprobe_flush_task(struct task_struct *tk) { struct kretprobe_instance *ri; struct hlist_head *head; struct hlist_node *tmp; unsigned long hash, flags = 0; if (unlikely(!kprobes_initialized)) /* Early boot. kretprobe_table_locks not yet initialized. */ return; kprobe_busy_begin(); hash = hash_ptr(tk, KPROBE_HASH_BITS); head = &kretprobe_inst_table[hash]; kretprobe_table_lock(hash, &flags); hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task == tk) recycle_rp_inst(ri); } kretprobe_table_unlock(hash, &flags); kprobe_busy_end(); } NOKPROBE_SYMBOL(kprobe_flush_task); static inline void free_rp_inst(struct kretprobe *rp) { struct kretprobe_instance *ri; struct hlist_node *next; hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { hlist_del(&ri->hlist); kfree(ri); } } static void cleanup_rp_inst(struct kretprobe *rp) { unsigned long flags, hash; struct kretprobe_instance *ri; struct hlist_node *next; struct hlist_head *head; /* To avoid recursive kretprobe by NMI, set kprobe busy here */ kprobe_busy_begin(); for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { kretprobe_table_lock(hash, &flags); head = &kretprobe_inst_table[hash]; hlist_for_each_entry_safe(ri, next, head, hlist) { if (ri->rp == rp) ri->rp = NULL; } kretprobe_table_unlock(hash, &flags); } kprobe_busy_end(); free_rp_inst(rp); } NOKPROBE_SYMBOL(cleanup_rp_inst); /* Add the new probe to ap->list */ static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) { if (p->post_handler) unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ list_add_rcu(&p->list, &ap->list); if (p->post_handler && !ap->post_handler) ap->post_handler = aggr_post_handler; return 0; } /* * Fill in the required fields of the "manager kprobe". Replace the * earlier kprobe in the hlist with the manager kprobe */ static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) { /* Copy p's insn slot to ap */ copy_kprobe(p, ap); flush_insn_slot(ap); ap->addr = p->addr; ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; ap->pre_handler = aggr_pre_handler; ap->fault_handler = aggr_fault_handler; /* We don't care the kprobe which has gone. */ if (p->post_handler && !kprobe_gone(p)) ap->post_handler = aggr_post_handler; INIT_LIST_HEAD(&ap->list); INIT_HLIST_NODE(&ap->hlist); list_add_rcu(&p->list, &ap->list); hlist_replace_rcu(&p->hlist, &ap->hlist); } /* * This is the second or subsequent kprobe at the address - handle * the intricacies */ static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) { int ret = 0; struct kprobe *ap = orig_p; cpus_read_lock(); /* For preparing optimization, jump_label_text_reserved() is called */ jump_label_lock(); mutex_lock(&text_mutex); if (!kprobe_aggrprobe(orig_p)) { /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ ap = alloc_aggr_kprobe(orig_p); if (!ap) { ret = -ENOMEM; goto out; } init_aggr_kprobe(ap, orig_p); } else if (kprobe_unused(ap)) { /* This probe is going to die. Rescue it */ ret = reuse_unused_kprobe(ap); if (ret) goto out; } if (kprobe_gone(ap)) { /* * Attempting to insert new probe at the same location that * had a probe in the module vaddr area which already * freed. So, the instruction slot has already been * released. We need a new slot for the new probe. */ ret = arch_prepare_kprobe(ap); if (ret) /* * Even if fail to allocate new slot, don't need to * free aggr_probe. It will be used next time, or * freed by unregister_kprobe. */ goto out; /* Prepare optimized instructions if possible. */ prepare_optimized_kprobe(ap); /* * Clear gone flag to prevent allocating new slot again, and * set disabled flag because it is not armed yet. */ ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) | KPROBE_FLAG_DISABLED; } /* Copy ap's insn slot to p */ copy_kprobe(ap, p); ret = add_new_kprobe(ap, p); out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { ap->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed) { /* Arm the breakpoint again. */ ret = arm_kprobe(ap); if (ret) { ap->flags |= KPROBE_FLAG_DISABLED; list_del_rcu(&p->list); synchronize_rcu(); } } } return ret; } bool __weak arch_within_kprobe_blacklist(unsigned long addr) { /* The __kprobes marked functions and entry code must not be probed */ return addr >= (unsigned long)__kprobes_text_start && addr < (unsigned long)__kprobes_text_end; } static bool __within_kprobe_blacklist(unsigned long addr) { struct kprobe_blacklist_entry *ent; if (arch_within_kprobe_blacklist(addr)) return true; /* * If there exists a kprobe_blacklist, verify and * fail any probe registration in the prohibited area */ list_for_each_entry(ent, &kprobe_blacklist, list) { if (addr >= ent->start_addr && addr < ent->end_addr) return true; } return false; } bool within_kprobe_blacklist(unsigned long addr) { char symname[KSYM_NAME_LEN], *p; if (__within_kprobe_blacklist(addr)) return true; /* Check if the address is on a suffixed-symbol */ if (!lookup_symbol_name(addr, symname)) { p = strchr(symname, '.'); if (!p) return false; *p = '\0'; addr = (unsigned long)kprobe_lookup_name(symname, 0); if (addr) return __within_kprobe_blacklist(addr); } return false; } /* * If we have a symbol_name argument, look it up and add the offset field * to it. This way, we can specify a relative address to a symbol. * This returns encoded errors if it fails to look up symbol or invalid * combination of parameters. */ static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, unsigned int offset) { if ((symbol_name && addr) || (!symbol_name && !addr)) goto invalid; if (symbol_name) { addr = kprobe_lookup_name(symbol_name, offset); if (!addr) return ERR_PTR(-ENOENT); } addr = (kprobe_opcode_t *)(((char *)addr) + offset); if (addr) return addr; invalid: return ERR_PTR(-EINVAL); } static kprobe_opcode_t *kprobe_addr(struct kprobe *p) { return _kprobe_addr(p->addr, p->symbol_name, p->offset); } /* Check passed kprobe is valid and return kprobe in kprobe_table. */ static struct kprobe *__get_valid_kprobe(struct kprobe *p) { struct kprobe *ap, *list_p; lockdep_assert_held(&kprobe_mutex); ap = get_kprobe(p->addr); if (unlikely(!ap)) return NULL; if (p != ap) { list_for_each_entry(list_p, &ap->list, list) if (list_p == p) /* kprobe p is a valid probe */ goto valid; return NULL; } valid: return ap; } /* Return error if the kprobe is being re-registered */ static inline int check_kprobe_rereg(struct kprobe *p) { int ret = 0; mutex_lock(&kprobe_mutex); if (__get_valid_kprobe(p)) ret = -EINVAL; mutex_unlock(&kprobe_mutex); return ret; } int __weak arch_check_ftrace_location(struct kprobe *p) { unsigned long ftrace_addr; ftrace_addr = ftrace_location((unsigned long)p->addr); if (ftrace_addr) { #ifdef CONFIG_KPROBES_ON_FTRACE /* Given address is not on the instruction boundary */ if ((unsigned long)p->addr != ftrace_addr) return -EILSEQ; p->flags |= KPROBE_FLAG_FTRACE; #else /* !CONFIG_KPROBES_ON_FTRACE */ return -EINVAL; #endif } return 0; } static int check_kprobe_address_safe(struct kprobe *p, struct module **probed_mod) { int ret; ret = arch_check_ftrace_location(p); if (ret) return ret; jump_label_lock(); preempt_disable(); /* Ensure it is not in reserved area nor out of text */ if (!kernel_text_address((unsigned long) p->addr) || within_kprobe_blacklist((unsigned long) p->addr) || jump_label_text_reserved(p->addr, p->addr) || static_call_text_reserved(p->addr, p->addr) || find_bug((unsigned long)p->addr)) { ret = -EINVAL; goto out; } /* Check if are we probing a module */ *probed_mod = __module_text_address((unsigned long) p->addr); if (*probed_mod) { /* * We must hold a refcount of the probed module while updating * its code to prohibit unexpected unloading. */ if (unlikely(!try_module_get(*probed_mod))) { ret = -ENOENT; goto out; } /* * If the module freed .init.text, we couldn't insert * kprobes in there. */ if (within_module_init((unsigned long)p->addr, *probed_mod) && (*probed_mod)->state != MODULE_STATE_COMING) { module_put(*probed_mod); *probed_mod = NULL; ret = -ENOENT; } } out: preempt_enable(); jump_label_unlock(); return ret; } int register_kprobe(struct kprobe *p) { int ret; struct kprobe *old_p; struct module *probed_mod; kprobe_opcode_t *addr; /* Adjust probe address from symbol */ addr = kprobe_addr(p); if (IS_ERR(addr)) return PTR_ERR(addr); p->addr = addr; ret = check_kprobe_rereg(p); if (ret) return ret; /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ p->flags &= KPROBE_FLAG_DISABLED; p->nmissed = 0; INIT_LIST_HEAD(&p->list); ret = check_kprobe_address_safe(p, &probed_mod); if (ret) return ret; mutex_lock(&kprobe_mutex); old_p = get_kprobe(p->addr); if (old_p) { /* Since this may unoptimize old_p, locking text_mutex. */ ret = register_aggr_kprobe(old_p, p); goto out; } cpus_read_lock(); /* Prevent text modification */ mutex_lock(&text_mutex); ret = prepare_kprobe(p); mutex_unlock(&text_mutex); cpus_read_unlock(); if (ret) goto out; INIT_HLIST_NODE(&p->hlist); hlist_add_head_rcu(&p->hlist, &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); if (!kprobes_all_disarmed && !kprobe_disabled(p)) { ret = arm_kprobe(p); if (ret) { hlist_del_rcu(&p->hlist); synchronize_rcu(); goto out; } } /* Try to optimize kprobe */ try_to_optimize_kprobe(p); out: mutex_unlock(&kprobe_mutex); if (probed_mod) module_put(probed_mod); return ret; } EXPORT_SYMBOL_GPL(register_kprobe); /* Check if all probes on the aggrprobe are disabled */ static int aggr_kprobe_disabled(struct kprobe *ap) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); list_for_each_entry(kp, &ap->list, list) if (!kprobe_disabled(kp)) /* * There is an active probe on the list. * We can't disable this ap. */ return 0; return 1; } /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ static struct kprobe *__disable_kprobe(struct kprobe *p) { struct kprobe *orig_p; int ret; /* Get an original kprobe for return */ orig_p = __get_valid_kprobe(p); if (unlikely(orig_p == NULL)) return ERR_PTR(-EINVAL); if (!kprobe_disabled(p)) { /* Disable probe if it is a child probe */ if (p != orig_p) p->flags |= KPROBE_FLAG_DISABLED; /* Try to disarm and disable this/parent probe */ if (p == orig_p || aggr_kprobe_disabled(orig_p)) { /* * If kprobes_all_disarmed is set, orig_p * should have already been disarmed, so * skip unneed disarming process. */ if (!kprobes_all_disarmed) { ret = disarm_kprobe(orig_p, true); if (ret) { p->flags &= ~KPROBE_FLAG_DISABLED; return ERR_PTR(ret); } } orig_p->flags |= KPROBE_FLAG_DISABLED; } } return orig_p; } /* * Unregister a kprobe without a scheduler synchronization. */ static int __unregister_kprobe_top(struct kprobe *p) { struct kprobe *ap, *list_p; /* Disable kprobe. This will disarm it if needed. */ ap = __disable_kprobe(p); if (IS_ERR(ap)) return PTR_ERR(ap); if (ap == p) /* * This probe is an independent(and non-optimized) kprobe * (not an aggrprobe). Remove from the hash list. */ goto disarmed; /* Following process expects this probe is an aggrprobe */ WARN_ON(!kprobe_aggrprobe(ap)); if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) /* * !disarmed could be happen if the probe is under delayed * unoptimizing. */ goto disarmed; else { /* If disabling probe has special handlers, update aggrprobe */ if (p->post_handler && !kprobe_gone(p)) { list_for_each_entry(list_p, &ap->list, list) { if ((list_p != p) && (list_p->post_handler)) goto noclean; } ap->post_handler = NULL; } noclean: /* * Remove from the aggrprobe: this path will do nothing in * __unregister_kprobe_bottom(). */ list_del_rcu(&p->list); if (!kprobe_disabled(ap) && !kprobes_all_disarmed) /* * Try to optimize this probe again, because post * handler may have been changed. */ optimize_kprobe(ap); } return 0; disarmed: hlist_del_rcu(&ap->hlist); return 0; } static void __unregister_kprobe_bottom(struct kprobe *p) { struct kprobe *ap; if (list_empty(&p->list)) /* This is an independent kprobe */ arch_remove_kprobe(p); else if (list_is_singular(&p->list)) { /* This is the last child of an aggrprobe */ ap = list_entry(p->list.next, struct kprobe, list); list_del(&p->list); free_aggr_kprobe(ap); } /* Otherwise, do nothing. */ } int register_kprobes(struct kprobe **kps, int num) { int i, ret = 0; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kprobe(kps[i]); if (ret < 0) { if (i > 0) unregister_kprobes(kps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kprobes); void unregister_kprobe(struct kprobe *p) { unregister_kprobes(&p, 1); } EXPORT_SYMBOL_GPL(unregister_kprobe); void unregister_kprobes(struct kprobe **kps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(kps[i]) < 0) kps[i]->addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) if (kps[i]->addr) __unregister_kprobe_bottom(kps[i]); } EXPORT_SYMBOL_GPL(unregister_kprobes); int __weak kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { return NOTIFY_DONE; } NOKPROBE_SYMBOL(kprobe_exceptions_notify); static struct notifier_block kprobe_exceptions_nb = { .notifier_call = kprobe_exceptions_notify, .priority = 0x7fffffff /* we need to be notified first */ }; unsigned long __weak arch_deref_entry_point(void *entry) { return (unsigned long)entry; } #ifdef CONFIG_KRETPROBES unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, void *trampoline_address, void *frame_pointer) { struct kretprobe_instance *ri = NULL, *last = NULL; struct hlist_head *head; struct hlist_node *tmp; unsigned long flags; kprobe_opcode_t *correct_ret_addr = NULL; bool skipped = false; kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because multiple functions in the call path have * return probes installed on them, and/or more than one * return probe was registered for a target function. * * We can handle this because: * - instances are always pushed into the head of the list * - when multiple return probes are registered for the same * function, the (chronologically) first instance's ret_addr * will be the real return address, and all the rest will * point to kretprobe_trampoline. */ hlist_for_each_entry(ri, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; /* * Return probes must be pushed on this hash list correct * order (same as return order) so that it can be popped * correctly. However, if we find it is pushed it incorrect * order, this means we find a function which should not be * probed, because the wrong order entry is pushed on the * path of processing other kretprobe itself. */ if (ri->fp != frame_pointer) { if (!skipped) pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); skipped = true; continue; } correct_ret_addr = ri->ret_addr; if (skipped) pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", ri->rp->kp.addr); if (correct_ret_addr != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address)); last = ri; hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->fp != frame_pointer) continue; if (ri->rp && ri->rp->handler) { struct kprobe *prev = kprobe_running(); __this_cpu_write(current_kprobe, &ri->rp->kp); ri->ret_addr = correct_ret_addr; ri->rp->handler(ri, regs); __this_cpu_write(current_kprobe, prev); } recycle_rp_inst(ri); if (ri == last) break; } kretprobe_hash_unlock(current, &flags); return (unsigned long)correct_ret_addr; } NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) /* * This kprobe pre_handler is registered with every kretprobe. When probe * hits it will set up the return probe. */ static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { struct kretprobe *rp = container_of(p, struct kretprobe, kp); unsigned long hash, flags = 0; struct kretprobe_instance *ri; /* TODO: consider to only swap the RA after the last pre_handler fired */ hash = hash_ptr(current, KPROBE_HASH_BITS); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. */ raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); if (!hlist_empty(&rp->free_instances)) { ri = hlist_entry(rp->free_instances.first, struct kretprobe_instance, hlist); hlist_del(&ri->hlist); raw_spin_unlock_irqrestore(&rp->lock, flags); ri->rp = rp; ri->task = current; if (rp->entry_handler && rp->entry_handler(ri, regs)) { raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock_irqrestore(&rp->lock, flags); return 0; } arch_prepare_kretprobe(ri, regs); /* XXX(hch): why is there no hlist_move_head? */ INIT_HLIST_NODE(&ri->hlist); kretprobe_table_lock(hash, &flags); hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); kretprobe_table_unlock(hash, &flags); } else { rp->nmissed++; raw_spin_unlock_irqrestore(&rp->lock, flags); } return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); bool __weak arch_kprobe_on_func_entry(unsigned long offset) { return !offset; } /** * kprobe_on_func_entry() -- check whether given address is function entry * @addr: Target address * @sym: Target symbol name * @offset: The offset from the symbol or the address * * This checks whether the given @addr+@offset or @sym+@offset is on the * function entry address or not. * This returns 0 if it is the function entry, or -EINVAL if it is not. * And also it returns -ENOENT if it fails the symbol or address lookup. * Caller must pass @addr or @sym (either one must be NULL), or this * returns -EINVAL. */ int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) { kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); if (IS_ERR(kp_addr)) return PTR_ERR(kp_addr); if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) return -ENOENT; if (!arch_kprobe_on_func_entry(offset)) return -EINVAL; return 0; } int register_kretprobe(struct kretprobe *rp) { int ret; struct kretprobe_instance *inst; int i; void *addr; ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); if (ret) return ret; /* If only rp->kp.addr is specified, check reregistering kprobes */ if (rp->kp.addr && check_kprobe_rereg(&rp->kp)) return -EINVAL; if (kretprobe_blacklist_size) { addr = kprobe_addr(&rp->kp); if (IS_ERR(addr)) return PTR_ERR(addr); for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { if (kretprobe_blacklist[i].addr == addr) return -EINVAL; } } if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) return -E2BIG; rp->kp.pre_handler = pre_handler_kretprobe; rp->kp.post_handler = NULL; rp->kp.fault_handler = NULL; /* Pre-allocate memory for max kretprobe instances */ if (rp->maxactive <= 0) { #ifdef CONFIG_PREEMPTION rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); #else rp->maxactive = num_possible_cpus(); #endif } raw_spin_lock_init(&rp->lock); INIT_HLIST_HEAD(&rp->free_instances); for (i = 0; i < rp->maxactive; i++) { inst = kmalloc(sizeof(struct kretprobe_instance) + rp->data_size, GFP_KERNEL); if (inst == NULL) { free_rp_inst(rp); return -ENOMEM; } INIT_HLIST_NODE(&inst->hlist); hlist_add_head(&inst->hlist, &rp->free_instances); } rp->nmissed = 0; /* Establish function entry probe point */ ret = register_kprobe(&rp->kp); if (ret != 0) free_rp_inst(rp); return ret; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { int ret = 0, i; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kretprobe(rps[i]); if (ret < 0) { if (i > 0) unregister_kretprobes(rps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { unregister_kretprobes(&rp, 1); } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(&rps[i]->kp) < 0) rps[i]->kp.addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) { if (rps[i]->kp.addr) { __unregister_kprobe_bottom(&rps[i]->kp); cleanup_rp_inst(rps[i]); } } } EXPORT_SYMBOL_GPL(unregister_kretprobes); #else /* CONFIG_KRETPROBES */ int register_kretprobe(struct kretprobe *rp) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { } EXPORT_SYMBOL_GPL(unregister_kretprobes); static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); #endif /* CONFIG_KRETPROBES */ /* Set the kprobe gone and remove its instruction buffer. */ static void kill_kprobe(struct kprobe *p) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); if (WARN_ON_ONCE(kprobe_gone(p))) return; p->flags |= KPROBE_FLAG_GONE; if (kprobe_aggrprobe(p)) { /* * If this is an aggr_kprobe, we have to list all the * chained probes and mark them GONE. */ list_for_each_entry(kp, &p->list, list) kp->flags |= KPROBE_FLAG_GONE; p->post_handler = NULL; kill_optimized_kprobe(p); } /* * Here, we can remove insn_slot safely, because no thread calls * the original probed function (which will be freed soon) any more. */ arch_remove_kprobe(p); /* * The module is going away. We should disarm the kprobe which * is using ftrace, because ftrace framework is still available at * MODULE_STATE_GOING notification. */ if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) disarm_kprobe_ftrace(p); } /* Disable one kprobe */ int disable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Disable this kprobe */ p = __disable_kprobe(kp); if (IS_ERR(p)) ret = PTR_ERR(p); mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(disable_kprobe); /* Enable one kprobe */ int enable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Check whether specified probe is valid. */ p = __get_valid_kprobe(kp); if (unlikely(p == NULL)) { ret = -EINVAL; goto out; } if (kprobe_gone(kp)) { /* This kprobe has gone, we couldn't enable it. */ ret = -EINVAL; goto out; } if (p != kp) kp->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed && kprobe_disabled(p)) { p->flags &= ~KPROBE_FLAG_DISABLED; ret = arm_kprobe(p); if (ret) p->flags |= KPROBE_FLAG_DISABLED; } out: mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(enable_kprobe); /* Caller must NOT call this in usual path. This is only for critical case */ void dump_kprobe(struct kprobe *kp) { pr_err("Dumping kprobe:\n"); pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", kp->symbol_name, kp->offset, kp->addr); } NOKPROBE_SYMBOL(dump_kprobe); int kprobe_add_ksym_blacklist(unsigned long entry) { struct kprobe_blacklist_entry *ent; unsigned long offset = 0, size = 0; if (!kernel_text_address(entry) || !kallsyms_lookup_size_offset(entry, &size, &offset)) return -EINVAL; ent = kmalloc(sizeof(*ent), GFP_KERNEL); if (!ent) return -ENOMEM; ent->start_addr = entry; ent->end_addr = entry + size; INIT_LIST_HEAD(&ent->list); list_add_tail(&ent->list, &kprobe_blacklist); return (int)size; } /* Add all symbols in given area into kprobe blacklist */ int kprobe_add_area_blacklist(unsigned long start, unsigned long end) { unsigned long entry; int ret = 0; for (entry = start; entry < end; entry += ret) { ret = kprobe_add_ksym_blacklist(entry); if (ret < 0) return ret; if (ret == 0) /* In case of alias symbol */ ret = 1; } return 0; } /* Remove all symbols in given area from kprobe blacklist */ static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) { struct kprobe_blacklist_entry *ent, *n; list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { if (ent->start_addr < start || ent->start_addr >= end) continue; list_del(&ent->list); kfree(ent); } } static void kprobe_remove_ksym_blacklist(unsigned long entry) { kprobe_remove_area_blacklist(entry, entry + 1); } int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { #ifdef __ARCH_WANT_KPROBES_INSN_SLOT if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) return 0; #ifdef CONFIG_OPTPROBES if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) return 0; #endif #endif if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) return 0; return -ERANGE; } int __init __weak arch_populate_kprobe_blacklist(void) { return 0; } /* * Lookup and populate the kprobe_blacklist. * * Unlike the kretprobe blacklist, we'll need to determine * the range of addresses that belong to the said functions, * since a kprobe need not necessarily be at the beginning * of a function. */ static int __init populate_kprobe_blacklist(unsigned long *start, unsigned long *end) { unsigned long entry; unsigned long *iter; int ret; for (iter = start; iter < end; iter++) { entry = arch_deref_entry_point((void *)*iter); ret = kprobe_add_ksym_blacklist(entry); if (ret == -EINVAL) continue; if (ret < 0) return ret; } /* Symbols in __kprobes_text are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, (unsigned long)__kprobes_text_end); if (ret) return ret; /* Symbols in noinstr section are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, (unsigned long)__noinstr_text_end);