1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * pm_wakeup.h - Power management wakeup interface * * Copyright (C) 2008 Alan Stern * Copyright (C) 2010 Rafael J. Wysocki, Novell Inc. */ #ifndef _LINUX_PM_WAKEUP_H #define _LINUX_PM_WAKEUP_H #ifndef _DEVICE_H_ # error "please don't include this file directly" #endif #include <linux/types.h> struct wake_irq; /** * struct wakeup_source - Representation of wakeup sources * * @name: Name of the wakeup source * @id: Wakeup source id * @entry: Wakeup source list entry * @lock: Wakeup source lock * @wakeirq: Optional device specific wakeirq * @timer: Wakeup timer list * @timer_expires: Wakeup timer expiration * @total_time: Total time this wakeup source has been active. * @max_time: Maximum time this wakeup source has been continuously active. * @last_time: Monotonic clock when the wakeup source's was touched last time. * @prevent_sleep_time: Total time this source has been preventing autosleep. * @event_count: Number of signaled wakeup events. * @active_count: Number of times the wakeup source was activated. * @relax_count: Number of times the wakeup source was deactivated. * @expire_count: Number of times the wakeup source's timeout has expired. * @wakeup_count: Number of times the wakeup source might abort suspend. * @dev: Struct device for sysfs statistics about the wakeup source. * @active: Status of the wakeup source. * @autosleep_enabled: Autosleep is active, so update @prevent_sleep_time. */ struct wakeup_source { const char *name; int id; struct list_head entry; spinlock_t lock; struct wake_irq *wakeirq; struct timer_list timer; unsigned long timer_expires; ktime_t total_time; ktime_t max_time; ktime_t last_time; ktime_t start_prevent_time; ktime_t prevent_sleep_time; unsigned long event_count; unsigned long active_count; unsigned long relax_count; unsigned long expire_count; unsigned long wakeup_count; struct device *dev; bool active:1; bool autosleep_enabled:1; }; #define for_each_wakeup_source(ws) \ for ((ws) = wakeup_sources_walk_start(); \ (ws); \ (ws) = wakeup_sources_walk_next((ws))) #ifdef CONFIG_PM_SLEEP /* * Changes to device_may_wakeup take effect on the next pm state change. */ static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && !!dev->power.wakeup; } static inline void device_set_wakeup_path(struct device *dev) { dev->power.wakeup_path = true; } /* drivers/base/power/wakeup.c */ extern struct wakeup_source *wakeup_source_create(const char *name); extern void wakeup_source_destroy(struct wakeup_source *ws); extern void wakeup_source_add(struct wakeup_source *ws); extern void wakeup_source_remove(struct wakeup_source *ws); extern struct wakeup_source *wakeup_source_register(struct device *dev, const char *name); extern void wakeup_source_unregister(struct wakeup_source *ws); extern int wakeup_sources_read_lock(void); extern void wakeup_sources_read_unlock(int idx); extern struct wakeup_source *wakeup_sources_walk_start(void); extern struct wakeup_source *wakeup_sources_walk_next(struct wakeup_source *ws); extern int device_wakeup_enable(struct device *dev); extern int device_wakeup_disable(struct device *dev); extern void device_set_wakeup_capable(struct device *dev, bool capable); extern int device_init_wakeup(struct device *dev, bool val); extern int device_set_wakeup_enable(struct device *dev, bool enable); extern void __pm_stay_awake(struct wakeup_source *ws); extern void pm_stay_awake(struct device *dev); extern void __pm_relax(struct wakeup_source *ws); extern void pm_relax(struct device *dev); extern void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard); extern void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard); #else /* !CONFIG_PM_SLEEP */ static inline void device_set_wakeup_capable(struct device *dev, bool capable) { dev->power.can_wakeup = capable; } static inline bool device_can_wakeup(struct device *dev) { return dev->power.can_wakeup; } static inline struct wakeup_source *wakeup_source_create(const char *name) { return NULL; } static inline void wakeup_source_destroy(struct wakeup_source *ws) {} static inline void wakeup_source_add(struct wakeup_source *ws) {} static inline void wakeup_source_remove(struct wakeup_source *ws) {} static inline struct wakeup_source *wakeup_source_register(struct device *dev, const char *name) { return NULL; } static inline void wakeup_source_unregister(struct wakeup_source *ws) {} static inline int device_wakeup_enable(struct device *dev) { dev->power.should_wakeup = true; return 0; } static inline int device_wakeup_disable(struct device *dev) { dev->power.should_wakeup = false; return 0; } static inline int device_set_wakeup_enable(struct device *dev, bool enable) { dev->power.should_wakeup = enable; return 0; } static inline int device_init_wakeup(struct device *dev, bool val) { device_set_wakeup_capable(dev, val); device_set_wakeup_enable(dev, val); return 0; } static inline bool device_may_wakeup(struct device *dev) { return dev->power.can_wakeup && dev->power.should_wakeup; } static inline void device_set_wakeup_path(struct device *dev) {} static inline void __pm_stay_awake(struct wakeup_source *ws) {} static inline void pm_stay_awake(struct device *dev) {} static inline void __pm_relax(struct wakeup_source *ws) {} static inline void pm_relax(struct device *dev) {} static inline void pm_wakeup_ws_event(struct wakeup_source *ws, unsigned int msec, bool hard) {} static inline void pm_wakeup_dev_event(struct device *dev, unsigned int msec, bool hard) {} #endif /* !CONFIG_PM_SLEEP */ static inline void __pm_wakeup_event(struct wakeup_source *ws, unsigned int msec) { return pm_wakeup_ws_event(ws, msec, false); } static inline void pm_wakeup_event(struct device *dev, unsigned int msec) { return pm_wakeup_dev_event(dev, msec, false); } static inline void pm_wakeup_hard_event(struct device *dev) { return pm_wakeup_dev_event(dev, 0, true); } #endif /* _LINUX_PM_WAKEUP_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2006, Johannes Berg <johannes@sipsolutions.net> */ #include <linux/list.h> #include <linux/spinlock.h> #include <linux/leds.h> #include "ieee80211_i.h" #define MAC80211_BLINK_DELAY 50 /* ms */ static inline void ieee80211_led_rx(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_LEDS unsigned long led_delay = MAC80211_BLINK_DELAY; if (!atomic_read(&local->rx_led_active)) return; led_trigger_blink_oneshot(&local->rx_led, &led_delay, &led_delay, 0); #endif } static inline void ieee80211_led_tx(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_LEDS unsigned long led_delay = MAC80211_BLINK_DELAY; if (!atomic_read(&local->tx_led_active)) return; led_trigger_blink_oneshot(&local->tx_led, &led_delay, &led_delay, 0); #endif } #ifdef CONFIG_MAC80211_LEDS void ieee80211_led_assoc(struct ieee80211_local *local, bool associated); void ieee80211_led_radio(struct ieee80211_local *local, bool enabled); void ieee80211_alloc_led_names(struct ieee80211_local *local); void ieee80211_free_led_names(struct ieee80211_local *local); void ieee80211_led_init(struct ieee80211_local *local); void ieee80211_led_exit(struct ieee80211_local *local); void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off); #else static inline void ieee80211_led_assoc(struct ieee80211_local *local, bool associated) { } static inline void ieee80211_led_radio(struct ieee80211_local *local, bool enabled) { } static inline void ieee80211_alloc_led_names(struct ieee80211_local *local) { } static inline void ieee80211_free_led_names(struct ieee80211_local *local) { } static inline void ieee80211_led_init(struct ieee80211_local *local) { } static inline void ieee80211_led_exit(struct ieee80211_local *local) { } static inline void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off) { } #endif static inline void ieee80211_tpt_led_trig_tx(struct ieee80211_local *local, __le16 fc, int bytes) { #ifdef CONFIG_MAC80211_LEDS if (ieee80211_is_data(fc) && atomic_read(&local->tpt_led_active)) local->tpt_led_trigger->tx_bytes += bytes; #endif } static inline void ieee80211_tpt_led_trig_rx(struct ieee80211_local *local, __le16 fc, int bytes) { #ifdef CONFIG_MAC80211_LEDS if (ieee80211_is_data(fc) && atomic_read(&local->tpt_led_active)) local->tpt_led_trigger->rx_bytes += bytes; #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2009-2019 Christoph Hellwig * * NOTE: none of these tracepoints shall be consider a stable kernel ABI * as they can change at any time. */ #undef TRACE_SYSTEM #define TRACE_SYSTEM iomap #if !defined(_IOMAP_TRACE_H) || defined(TRACE_HEADER_MULTI_READ) #define _IOMAP_TRACE_H #include <linux/tracepoint.h> struct inode; DECLARE_EVENT_CLASS(iomap_readpage_class, TP_PROTO(struct inode *inode, int nr_pages), TP_ARGS(inode, nr_pages), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(int, nr_pages) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->nr_pages = nr_pages; ), TP_printk("dev %d:%d ino 0x%llx nr_pages %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->nr_pages) ) #define DEFINE_READPAGE_EVENT(name) \ DEFINE_EVENT(iomap_readpage_class, name, \ TP_PROTO(struct inode *inode, int nr_pages), \ TP_ARGS(inode, nr_pages)) DEFINE_READPAGE_EVENT(iomap_readpage); DEFINE_READPAGE_EVENT(iomap_readahead); DECLARE_EVENT_CLASS(iomap_range_class, TP_PROTO(struct inode *inode, unsigned long off, unsigned int len), TP_ARGS(inode, off, len), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(loff_t, size) __field(unsigned long, offset) __field(unsigned int, length) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->size = i_size_read(inode); __entry->offset = off; __entry->length = len; ), TP_printk("dev %d:%d ino 0x%llx size 0x%llx offset %lx " "length %x", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->size, __entry->offset, __entry->length) ) #define DEFINE_RANGE_EVENT(name) \ DEFINE_EVENT(iomap_range_class, name, \ TP_PROTO(struct inode *inode, unsigned long off, unsigned int len),\ TP_ARGS(inode, off, len)) DEFINE_RANGE_EVENT(iomap_writepage); DEFINE_RANGE_EVENT(iomap_releasepage); DEFINE_RANGE_EVENT(iomap_invalidatepage); DEFINE_RANGE_EVENT(iomap_dio_invalidate_fail); #define IOMAP_TYPE_STRINGS \ { IOMAP_HOLE, "HOLE" }, \ { IOMAP_DELALLOC, "DELALLOC" }, \ { IOMAP_MAPPED, "MAPPED" }, \ { IOMAP_UNWRITTEN, "UNWRITTEN" }, \ { IOMAP_INLINE, "INLINE" } #define IOMAP_FLAGS_STRINGS \ { IOMAP_WRITE, "WRITE" }, \ { IOMAP_ZERO, "ZERO" }, \ { IOMAP_REPORT, "REPORT" }, \ { IOMAP_FAULT, "FAULT" }, \ { IOMAP_DIRECT, "DIRECT" }, \ { IOMAP_NOWAIT, "NOWAIT" } #define IOMAP_F_FLAGS_STRINGS \ { IOMAP_F_NEW, "NEW" }, \ { IOMAP_F_DIRTY, "DIRTY" }, \ { IOMAP_F_SHARED, "SHARED" }, \ { IOMAP_F_MERGED, "MERGED" }, \ { IOMAP_F_BUFFER_HEAD, "BH" }, \ { IOMAP_F_SIZE_CHANGED, "SIZE_CHANGED" } DECLARE_EVENT_CLASS(iomap_class, TP_PROTO(struct inode *inode, struct iomap *iomap), TP_ARGS(inode, iomap), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(u64, addr) __field(loff_t, offset) __field(u64, length) __field(u16, type) __field(u16, flags) __field(dev_t, bdev) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->addr = iomap->addr; __entry->offset = iomap->offset; __entry->length = iomap->length; __entry->type = iomap->type; __entry->flags = iomap->flags; __entry->bdev = iomap->bdev ? iomap->bdev->bd_dev : 0; ), TP_printk("dev %d:%d ino 0x%llx bdev %d:%d addr %lld offset %lld " "length %llu type %s flags %s", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, MAJOR(__entry->bdev), MINOR(__entry->bdev), __entry->addr, __entry->offset, __entry->length, __print_symbolic(__entry->type, IOMAP_TYPE_STRINGS), __print_flags(__entry->flags, "|", IOMAP_F_FLAGS_STRINGS)) ) #define DEFINE_IOMAP_EVENT(name) \ DEFINE_EVENT(iomap_class, name, \ TP_PROTO(struct inode *inode, struct iomap *iomap), \ TP_ARGS(inode, iomap)) DEFINE_IOMAP_EVENT(iomap_apply_dstmap); DEFINE_IOMAP_EVENT(iomap_apply_srcmap); TRACE_EVENT(iomap_apply, TP_PROTO(struct inode *inode, loff_t pos, loff_t length, unsigned int flags, const void *ops, void *actor, unsigned long caller), TP_ARGS(inode, pos, length, flags, ops, actor, caller), TP_STRUCT__entry( __field(dev_t, dev) __field(u64, ino) __field(loff_t, pos) __field(loff_t, length) __field(unsigned int, flags) __field(const void *, ops) __field(void *, actor) __field(unsigned long, caller) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->pos = pos; __entry->length = length; __entry->flags = flags; __entry->ops = ops; __entry->actor = actor; __entry->caller = caller; ), TP_printk("dev %d:%d ino 0x%llx pos %lld length %lld flags %s (0x%x) " "ops %ps caller %pS actor %ps", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->ino, __entry->pos, __entry->length, __print_flags(__entry->flags, "|", IOMAP_FLAGS_STRINGS), __entry->flags, __entry->ops, (void *)__entry->caller, __entry->actor) ); #endif /* _IOMAP_TRACE_H */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NETFILTER_INGRESS_H_ #define _NETFILTER_INGRESS_H_ #include <linux/netfilter.h> #include <linux/netdevice.h> #ifdef CONFIG_NETFILTER_INGRESS static inline bool nf_hook_ingress_active(const struct sk_buff *skb) { #ifdef CONFIG_JUMP_LABEL if (!static_key_false(&nf_hooks_needed[NFPROTO_NETDEV][NF_NETDEV_INGRESS])) return false; #endif return rcu_access_pointer(skb->dev->nf_hooks_ingress); } /* caller must hold rcu_read_lock */ static inline int nf_hook_ingress(struct sk_buff *skb) { struct nf_hook_entries *e = rcu_dereference(skb->dev->nf_hooks_ingress); struct nf_hook_state state; int ret; /* Must recheck the ingress hook head, in the event it became NULL * after the check in nf_hook_ingress_active evaluated to true. */ if (unlikely(!e)) return 0; nf_hook_state_init(&state, NF_NETDEV_INGRESS, NFPROTO_NETDEV, skb->dev, NULL, NULL, dev_net(skb->dev), NULL); ret = nf_hook_slow(skb, &state, e, 0); if (ret == 0) return -1; return ret; } static inline void nf_hook_ingress_init(struct net_device *dev) { RCU_INIT_POINTER(dev->nf_hooks_ingress, NULL); } #else /* CONFIG_NETFILTER_INGRESS */ static inline int nf_hook_ingress_active(struct sk_buff *skb) { return 0; } static inline int nf_hook_ingress(struct sk_buff *skb) { return 0; } static inline void nf_hook_ingress_init(struct net_device *dev) {} #endif /* CONFIG_NETFILTER_INGRESS */ #endif /* _NETFILTER_INGRESS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NetLabel Network Address Lists * * This file contains network address list functions used to manage ordered * lists of network addresses for use by the NetLabel subsystem. The NetLabel * system manages static and dynamic label mappings for network protocols such * as CIPSO and RIPSO. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2008 */ #ifndef _NETLABEL_ADDRLIST_H #define _NETLABEL_ADDRLIST_H #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/list.h> #include <linux/in6.h> #include <linux/audit.h> /** * struct netlbl_af4list - NetLabel IPv4 address list * @addr: IPv4 address * @mask: IPv4 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af4list { __be32 addr; __be32 mask; u32 valid; struct list_head list; }; /** * struct netlbl_af6list - NetLabel IPv6 address list * @addr: IPv6 address * @mask: IPv6 address mask * @valid: valid flag * @list: list structure, used internally */ struct netlbl_af6list { struct in6_addr addr; struct in6_addr mask; u32 valid; struct list_head list; }; #define __af4list_entry(ptr) container_of(ptr, struct netlbl_af4list, list) static inline struct netlbl_af4list *__af4list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af4list_entry(i); } return n; } static inline struct netlbl_af4list *__af4list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af4list *n = __af4list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af4list_entry(i); } return n; } #define netlbl_af4list_foreach(iter, head) \ for (iter = __af4list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid(iter->list.next, head)) #define netlbl_af4list_foreach_rcu(iter, head) \ for (iter = __af4list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af4list_valid_rcu(iter->list.next, head)) #define netlbl_af4list_foreach_safe(iter, tmp, head) \ for (iter = __af4list_valid((head)->next, head), \ tmp = __af4list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af4list_valid(iter->list.next, head)) int netlbl_af4list_add(struct netlbl_af4list *entry, struct list_head *head); struct netlbl_af4list *netlbl_af4list_remove(__be32 addr, __be32 mask, struct list_head *head); void netlbl_af4list_remove_entry(struct netlbl_af4list *entry); struct netlbl_af4list *netlbl_af4list_search(__be32 addr, struct list_head *head); struct netlbl_af4list *netlbl_af4list_search_exact(__be32 addr, __be32 mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask); #else static inline void netlbl_af4list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, __be32 addr, __be32 mask) { } #endif #if IS_ENABLED(CONFIG_IPV6) #define __af6list_entry(ptr) container_of(ptr, struct netlbl_af6list, list) static inline struct netlbl_af6list *__af6list_valid(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = i->next; n = __af6list_entry(i); } return n; } static inline struct netlbl_af6list *__af6list_valid_rcu(struct list_head *s, struct list_head *h) { struct list_head *i = s; struct netlbl_af6list *n = __af6list_entry(s); while (i != h && !n->valid) { i = rcu_dereference(list_next_rcu(i)); n = __af6list_entry(i); } return n; } #define netlbl_af6list_foreach(iter, head) \ for (iter = __af6list_valid((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid(iter->list.next, head)) #define netlbl_af6list_foreach_rcu(iter, head) \ for (iter = __af6list_valid_rcu((head)->next, head); \ &iter->list != (head); \ iter = __af6list_valid_rcu(iter->list.next, head)) #define netlbl_af6list_foreach_safe(iter, tmp, head) \ for (iter = __af6list_valid((head)->next, head), \ tmp = __af6list_valid(iter->list.next, head); \ &iter->list != (head); \ iter = tmp, tmp = __af6list_valid(iter->list.next, head)) int netlbl_af6list_add(struct netlbl_af6list *entry, struct list_head *head); struct netlbl_af6list *netlbl_af6list_remove(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); void netlbl_af6list_remove_entry(struct netlbl_af6list *entry); struct netlbl_af6list *netlbl_af6list_search(const struct in6_addr *addr, struct list_head *head); struct netlbl_af6list *netlbl_af6list_search_exact(const struct in6_addr *addr, const struct in6_addr *mask, struct list_head *head); #ifdef CONFIG_AUDIT void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask); #else static inline void netlbl_af6list_audit_addr(struct audit_buffer *audit_buf, int src, const char *dev, const struct in6_addr *addr, const struct in6_addr *mask) { } #endif #endif /* IPV6 */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_PRINTK_RINGBUFFER_H #define _KERNEL_PRINTK_RINGBUFFER_H #include <linux/atomic.h> #include <linux/dev_printk.h> /* * Meta information about each stored message. * * All fields are set by the printk code except for @seq, which is * set by the ringbuffer code. */ struct printk_info { u64 seq; /* sequence number */ u64 ts_nsec; /* timestamp in nanoseconds */ u16 text_len; /* length of text message */ u8 facility; /* syslog facility */ u8 flags:5; /* internal record flags */ u8 level:3; /* syslog level */ u32 caller_id; /* thread id or processor id */ struct dev_printk_info dev_info; }; /* * A structure providing the buffers, used by writers and readers. * * Writers: * Using prb_rec_init_wr(), a writer sets @text_buf_size before calling * prb_reserve(). On success, prb_reserve() sets @info and @text_buf to * buffers reserved for that writer. * * Readers: * Using prb_rec_init_rd(), a reader sets all fields before calling * prb_read_valid(). Note that the reader provides the @info and @text_buf, * buffers. On success, the struct pointed to by @info will be filled and * the char array pointed to by @text_buf will be filled with text data. */ struct printk_record { struct printk_info *info; char *text_buf; unsigned int text_buf_size; }; /* Specifies the logical position and span of a data block. */ struct prb_data_blk_lpos { unsigned long begin; unsigned long next; }; /* * A descriptor: the complete meta-data for a record. * * @state_var: A bitwise combination of descriptor ID and descriptor state. */ struct prb_desc { atomic_long_t state_var; struct prb_data_blk_lpos text_blk_lpos; }; /* A ringbuffer of "ID + data" elements. */ struct prb_data_ring { unsigned int size_bits; char *data; atomic_long_t head_lpos; atomic_long_t tail_lpos; }; /* A ringbuffer of "struct prb_desc" elements. */ struct prb_desc_ring { unsigned int count_bits; struct prb_desc *descs; struct printk_info *infos; atomic_long_t head_id; atomic_long_t tail_id; }; /* * The high level structure representing the printk ringbuffer. * * @fail: Count of failed prb_reserve() calls where not even a data-less * record was created. */ struct printk_ringbuffer { struct prb_desc_ring desc_ring; struct prb_data_ring text_data_ring; atomic_long_t fail; }; /* * Used by writers as a reserve/commit handle. * * @rb: Ringbuffer where the entry is reserved. * @irqflags: Saved irq flags to restore on entry commit. * @id: ID of the reserved descriptor. * @text_space: Total occupied buffer space in the text data ring, including * ID, alignment padding, and wrapping data blocks. * * This structure is an opaque handle for writers. Its contents are only * to be used by the ringbuffer implementation. */ struct prb_reserved_entry { struct printk_ringbuffer *rb; unsigned long irqflags; unsigned long id; unsigned int text_space; }; /* The possible responses of a descriptor state-query. */ enum desc_state { desc_miss = -1, /* ID mismatch (pseudo state) */ desc_reserved = 0x0, /* reserved, in use by writer */ desc_committed = 0x1, /* committed by writer, could get reopened */ desc_finalized = 0x2, /* committed, no further modification allowed */ desc_reusable = 0x3, /* free, not yet used by any writer */ }; #define _DATA_SIZE(sz_bits) (1UL << (sz_bits)) #define _DESCS_COUNT(ct_bits) (1U << (ct_bits)) #define DESC_SV_BITS (sizeof(unsigned long) * 8) #define DESC_FLAGS_SHIFT (DESC_SV_BITS - 2) #define DESC_FLAGS_MASK (3UL << DESC_FLAGS_SHIFT) #define DESC_STATE(sv) (3UL & (sv >> DESC_FLAGS_SHIFT)) #define DESC_SV(id, state) (((unsigned long)state << DESC_FLAGS_SHIFT) | id) #define DESC_ID_MASK (~DESC_FLAGS_MASK) #define DESC_ID(sv) ((sv) & DESC_ID_MASK) #define FAILED_LPOS 0x1 #define NO_LPOS 0x3 #define FAILED_BLK_LPOS \ { \ .begin = FAILED_LPOS, \ .next = FAILED_LPOS, \ } /* * Descriptor Bootstrap * * The descriptor array is minimally initialized to allow immediate usage * by readers and writers. The requirements that the descriptor array * initialization must satisfy: * * Req1 * The tail must point to an existing (committed or reusable) descriptor. * This is required by the implementation of prb_first_seq(). * * Req2 * Readers must see that the ringbuffer is initially empty. * * Req3 * The first record reserved by a writer is assigned sequence number 0. * * To satisfy Req1, the tail initially points to a descriptor that is * minimally initialized (having no data block, i.e. data-less with the * data block's lpos @begin and @next values set to FAILED_LPOS). * * To satisfy Req2, the initial tail descriptor is initialized to the * reusable state. Readers recognize reusable descriptors as existing * records, but skip over them. * * To satisfy Req3, the last descriptor in the array is used as the initial * head (and tail) descriptor. This allows the first record reserved by a * writer (head + 1) to be the first descriptor in the array. (Only the first * descriptor in the array could have a valid sequence number of 0.) * * The first time a descriptor is reserved, it is assigned a sequence number * with the value of the array index. A "first time reserved" descriptor can * be recognized because it has a sequence number of 0 but does not have an * index of 0. (Only the first descriptor in the array could have a valid * sequence number of 0.) After the first reservation, all future reservations * (recycling) simply involve incrementing the sequence number by the array * count. * * Hack #1 * Only the first descriptor in the array is allowed to have the sequence * number 0. In this case it is not possible to recognize if it is being * reserved the first time (set to index value) or has been reserved * previously (increment by the array count). This is handled by _always_ * incrementing the sequence number by the array count when reserving the * first descriptor in the array. In order to satisfy Req3, the sequence * number of the first descriptor in the array is initialized to minus * the array count. Then, upon the first reservation, it is incremented * to 0, thus satisfying Req3. * * Hack #2 * prb_first_seq() can be called at any time by readers to retrieve the * sequence number of the tail descriptor. However, due to Req2 and Req3, * initially there are no records to report the sequence number of * (sequence numbers are u64 and there is nothing less than 0). To handle * this, the sequence number of the initial tail descriptor is initialized * to 0. Technically this is incorrect, because there is no record with * sequence number 0 (yet) and the tail descriptor is not the first * descriptor in the array. But it allows prb_read_valid() to correctly * report the existence of a record for _any_ given sequence number at all * times. Bootstrapping is complete when the tail is pushed the first * time, thus finally pointing to the first descriptor reserved by a * writer, which has the assigned sequence number 0. */ /* * Initiating Logical Value Overflows * * Both logical position (lpos) and ID values can be mapped to array indexes * but may experience overflows during the lifetime of the system. To ensure * that printk_ringbuffer can handle the overflows for these types, initial * values are chosen that map to the correct initial array indexes, but will * result in overflows soon. * * BLK0_LPOS * The initial @head_lpos and @tail_lpos for data rings. It is at index * 0 and the lpos value is such that it will overflow on the first wrap. * * DESC0_ID * The initial @head_id and @tail_id for the desc ring. It is at the last * index of the descriptor array (see Req3 above) and the ID value is such * that it will overflow on the second wrap. */ #define BLK0_LPOS(sz_bits) (-(_DATA_SIZE(sz_bits))) #define DESC0_ID(ct_bits) DESC_ID(-(_DESCS_COUNT(ct_bits) + 1)) #define DESC0_SV(ct_bits) DESC_SV(DESC0_ID(ct_bits), desc_reusable) /* * Define a ringbuffer with an external text data buffer. The same as * DEFINE_PRINTKRB() but requires specifying an external buffer for the * text data. * * Note: The specified external buffer must be of the size: * 2 ^ (descbits + avgtextbits) */ #define _DEFINE_PRINTKRB(name, descbits, avgtextbits, text_buf) \ static struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = { \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reusable */ \ .state_var = ATOMIC_INIT(DESC0_SV(descbits)), \ /* no associated data block */ \ .text_blk_lpos = FAILED_BLK_LPOS, \ }, \ }; \ static struct printk_info _##name##_infos[_DESCS_COUNT(descbits)] = { \ /* this will be the first record reserved by a writer */ \ [0] = { \ /* will be incremented to 0 on the first reservation */ \ .seq = -(u64)_DESCS_COUNT(descbits), \ }, \ /* the initial head and tail */ \ [_DESCS_COUNT(descbits) - 1] = { \ /* reports the first seq value during the bootstrap phase */ \ .seq = 0, \ }, \ }; \ static struct printk_ringbuffer name = { \ .desc_ring = { \ .count_bits = descbits, \ .descs = &_##name##_descs[0], \ .infos = &_##name##_infos[0], \ .head_id = ATOMIC_INIT(DESC0_ID(descbits)), \ .tail_id = ATOMIC_INIT(DESC0_ID(descbits)), \ }, \ .text_data_ring = { \ .size_bits = (avgtextbits) + (descbits), \ .data = text_buf, \ .head_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ .tail_lpos = ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))), \ }, \ .fail = ATOMIC_LONG_INIT(0), \ } /** * DEFINE_PRINTKRB() - Define a ringbuffer. * * @name: The name of the ringbuffer variable. * @descbits: The number of descriptors as a power-of-2 value. * @avgtextbits: The average text data size per record as a power-of-2 value. * * This is a macro for defining a ringbuffer and all internal structures * such that it is ready for immediate use. See _DEFINE_PRINTKRB() for a * variant where the text data buffer can be specified externally. */ #define DEFINE_PRINTKRB(name, descbits, avgtextbits) \ static char _##name##_text[1U << ((avgtextbits) + (descbits))] \ __aligned(__alignof__(unsigned long)); \ _DEFINE_PRINTKRB(name, descbits, avgtextbits, &_##name##_text[0]) /* Writer Interface */ /** * prb_rec_init_wd() - Initialize a buffer for writing records. * * @r: The record to initialize. * @text_buf_size: The needed text buffer size. */ static inline void prb_rec_init_wr(struct printk_record *r, unsigned int text_buf_size) { r->info = NULL; r->text_buf = NULL; r->text_buf_size = text_buf_size; } bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r); bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb, struct printk_record *r, u32 caller_id, unsigned int max_size); void prb_commit(struct prb_reserved_entry *e); void prb_final_commit(struct prb_reserved_entry *e); void prb_init(struct printk_ringbuffer *rb, char *text_buf, unsigned int text_buf_size, struct prb_desc *descs, unsigned int descs_count_bits, struct printk_info *infos); unsigned int prb_record_text_space(struct prb_reserved_entry *e); /* Reader Interface */ /** * prb_rec_init_rd() - Initialize a buffer for reading records. * * @r: The record to initialize. * @info: A buffer to store record meta-data. * @text_buf: A buffer to store text data. * @text_buf_size: The size of @text_buf. * * Initialize all the fields that a reader is interested in. All arguments * (except @r) are optional. Only record data for arguments that are * non-NULL or non-zero will be read. */ static inline void prb_rec_init_rd(struct printk_record *r, struct printk_info *info, char *text_buf, unsigned int text_buf_size) { r->info = info; r->text_buf = text_buf; r->text_buf_size = text_buf_size; } /** * prb_for_each_record() - Iterate over the records of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @r: A printk_record to store the record on each iteration. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_record(from, rb, s, r) \ for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1) /** * prb_for_each_info() - Iterate over the meta data of a ringbuffer. * * @from: The sequence number to begin with. * @rb: The ringbuffer to iterate over. * @s: A u64 to store the sequence number on each iteration. * @i: A printk_info to store the record meta data on each iteration. * @lc: An unsigned int to store the text line count of each record. * * This is a macro for conveniently iterating over a ringbuffer. * Note that @s may not be the sequence number of the record on each * iteration. For the sequence number, @r->info->seq should be checked. * * Context: Any context. */ #define prb_for_each_info(from, rb, s, i, lc) \ for ((s) = from; prb_read_valid_info(rb, s, i, lc); (s) = (i)->seq + 1) bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq, struct printk_record *r); bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq, struct printk_info *info, unsigned int *line_count); u64 prb_first_valid_seq(struct printk_ringbuffer *rb); u64 prb_next_seq(struct printk_ringbuffer *rb); #endif /* _KERNEL_PRINTK_RINGBUFFER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: low-level thread information * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds and Dave Miller */ #ifndef _ASM_X86_THREAD_INFO_H #define _ASM_X86_THREAD_INFO_H #include <linux/compiler.h> #include <asm/page.h> #include <asm/percpu.h> #include <asm/types.h> /* * TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we * reserve at the top of the kernel stack. We do it because of a nasty * 32-bit corner case. On x86_32, the hardware stack frame is * variable-length. Except for vm86 mode, struct pt_regs assumes a * maximum-length frame. If we enter from CPL 0, the top 8 bytes of * pt_regs don't actually exist. Ordinarily this doesn't matter, but it * does in at least one case: * * If we take an NMI early enough in SYSENTER, then we can end up with * pt_regs that extends above sp0. On the way out, in the espfix code, * we can read the saved SS value, but that value will be above sp0. * Without this offset, that can result in a page fault. (We are * careful that, in this case, the value we read doesn't matter.) * * In vm86 mode, the hardware frame is much longer still, so add 16 * bytes to make room for the real-mode segments. * * x86_64 has a fixed-length stack frame. */ #ifdef CONFIG_X86_32 # ifdef CONFIG_VM86 # define TOP_OF_KERNEL_STACK_PADDING 16 # else # define TOP_OF_KERNEL_STACK_PADDING 8 # endif #else # define TOP_OF_KERNEL_STACK_PADDING 0 #endif /* * low level task data that entry.S needs immediate access to * - this struct should fit entirely inside of one cache line * - this struct shares the supervisor stack pages */ #ifndef __ASSEMBLY__ struct task_struct; #include <asm/cpufeature.h> #include <linux/atomic.h> struct thread_info { unsigned long flags; /* low level flags */ u32 status; /* thread synchronous flags */ }; #define INIT_THREAD_INFO(tsk) \ { \ .flags = 0, \ } #else /* !__ASSEMBLY__ */ #include <asm/asm-offsets.h> #endif /* * thread information flags * - these are process state flags that various assembly files * may need to access */ #define TIF_SYSCALL_TRACE 0 /* syscall trace active */ #define TIF_NOTIFY_RESUME 1 /* callback before returning to user */ #define TIF_SIGPENDING 2 /* signal pending */ #define TIF_NEED_RESCHED 3 /* rescheduling necessary */ #define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/ #define TIF_SSBD 5 /* Speculative store bypass disable */ #define TIF_SYSCALL_EMU 6 /* syscall emulation active */ #define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */ #define TIF_SECCOMP 8 /* secure computing */ #define TIF_SPEC_IB 9 /* Indirect branch speculation mitigation */ #define TIF_SPEC_FORCE_UPDATE 10 /* Force speculation MSR update in context switch */ #define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */ #define TIF_UPROBE 12 /* breakpointed or singlestepping */ #define TIF_PATCH_PENDING 13 /* pending live patching update */ #define TIF_NEED_FPU_LOAD 14 /* load FPU on return to userspace */ #define TIF_NOCPUID 15 /* CPUID is not accessible in userland */ #define TIF_NOTSC 16 /* TSC is not accessible in userland */ #define TIF_IA32 17 /* IA32 compatibility process */ #define TIF_SLD 18 /* Restore split lock detection on context switch */ #define TIF_MEMDIE 20 /* is terminating due to OOM killer */ #define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */ #define TIF_IO_BITMAP 22 /* uses I/O bitmap */ #define TIF_FORCED_TF 24 /* true if TF in eflags artificially */ #define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF */ #define TIF_LAZY_MMU_UPDATES 27 /* task is updating the mmu lazily */ #define TIF_SYSCALL_TRACEPOINT 28 /* syscall tracepoint instrumentation */ #define TIF_ADDR32 29 /* 32-bit address space on 64 bits */ #define TIF_X32 30 /* 32-bit native x86-64 binary */ #define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE) #define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME) #define _TIF_SIGPENDING (1 << TIF_SIGPENDING) #define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED) #define _TIF_SINGLESTEP (1 << TIF_SINGLESTEP) #define _TIF_SSBD (1 << TIF_SSBD) #define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU) #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) #define _TIF_SECCOMP (1 << TIF_SECCOMP) #define _TIF_SPEC_IB (1 << TIF_SPEC_IB) #define _TIF_SPEC_FORCE_UPDATE (1 << TIF_SPEC_FORCE_UPDATE) #define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY) #define _TIF_UPROBE (1 << TIF_UPROBE) #define _TIF_PATCH_PENDING (1 << TIF_PATCH_PENDING) #define _TIF_NEED_FPU_LOAD (1 << TIF_NEED_FPU_LOAD) #define _TIF_NOCPUID (1 << TIF_NOCPUID) #define _TIF_NOTSC (1 << TIF_NOTSC) #define _TIF_IA32 (1 << TIF_IA32) #define _TIF_SLD (1 << TIF_SLD) #define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG) #define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP) #define _TIF_FORCED_TF (1 << TIF_FORCED_TF) #define _TIF_BLOCKSTEP (1 << TIF_BLOCKSTEP) #define _TIF_LAZY_MMU_UPDATES (1 << TIF_LAZY_MMU_UPDATES) #define _TIF_SYSCALL_TRACEPOINT (1 << TIF_SYSCALL_TRACEPOINT) #define _TIF_ADDR32 (1 << TIF_ADDR32) #define _TIF_X32 (1 << TIF_X32) /* flags to check in __switch_to() */ #define _TIF_WORK_CTXSW_BASE \ (_TIF_NOCPUID | _TIF_NOTSC | _TIF_BLOCKSTEP | \ _TIF_SSBD | _TIF_SPEC_FORCE_UPDATE | _TIF_SLD) /* * Avoid calls to __switch_to_xtra() on UP as STIBP is not evaluated. */ #ifdef CONFIG_SMP # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE | _TIF_SPEC_IB) #else # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE) #endif #ifdef CONFIG_X86_IOPL_IOPERM # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY | \ _TIF_IO_BITMAP) #else # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY) #endif #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW) #define STACK_WARN (THREAD_SIZE/8) /* * macros/functions for gaining access to the thread information structure * * preempt_count needs to be 1 initially, until the scheduler is functional. */ #ifndef __ASSEMBLY__ /* * Walks up the stack frames to make sure that the specified object is * entirely contained by a single stack frame. * * Returns: * GOOD_FRAME if within a frame * BAD_STACK if placed across a frame boundary (or outside stack) * NOT_STACK unable to determine (no frame pointers, etc) */ static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { #if defined(CONFIG_FRAME_POINTER) const void *frame = NULL; const void *oldframe; oldframe = __builtin_frame_address(1); if (oldframe) frame = __builtin_frame_address(2); /* * low ----------------------------------------------> high * [saved bp][saved ip][args][local vars][saved bp][saved ip] * ^----------------^ * allow copies only within here */ while (stack <= frame && frame < stackend) { /* * If obj + len extends past the last frame, this * check won't pass and the next frame will be 0, * causing us to bail out and correctly report * the copy as invalid. */ if (obj + len <= frame) return obj >= oldframe + 2 * sizeof(void *) ? GOOD_FRAME : BAD_STACK; oldframe = frame; frame = *(const void * const *)frame; } return BAD_STACK; #else return NOT_STACK; #endif } #else /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_64 # define cpu_current_top_of_stack (cpu_tss_rw + TSS_sp1) #endif #endif /* * Thread-synchronous status. * * This is different from the flags in that nobody else * ever touches our thread-synchronous status, so we don't * have to worry about atomic accesses. */ #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ #ifndef __ASSEMBLY__ #ifdef CONFIG_COMPAT #define TS_I386_REGS_POKED 0x0004 /* regs poked by 32-bit ptracer */ #define TS_COMPAT_RESTART 0x0008 #define arch_set_restart_data arch_set_restart_data static inline void arch_set_restart_data(struct restart_block *restart) { struct thread_info *ti = current_thread_info(); if (ti->status & TS_COMPAT) ti->status |= TS_COMPAT_RESTART; else ti->status &= ~TS_COMPAT_RESTART; } #endif #ifdef CONFIG_X86_32 #define in_ia32_syscall() true #else #define in_ia32_syscall() (IS_ENABLED(CONFIG_IA32_EMULATION) && \ current_thread_info()->status & TS_COMPAT) #endif extern void arch_task_cache_init(void); extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src); extern void arch_release_task_struct(struct task_struct *tsk); extern void arch_setup_new_exec(void); #define arch_setup_new_exec arch_setup_new_exec #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_THREAD_INFO_H */
1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 // SPDX-License-Identifier: GPL-2.0 /* * fs/ext4/fast_commit.c * * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com> * * Ext4 fast commits routines. */ #include "ext4.h" #include "ext4_jbd2.h" #include "ext4_extents.h" #include "mballoc.h" /* * Ext4 Fast Commits * ----------------- * * Ext4 fast commits implement fine grained journalling for Ext4. * * Fast commits are organized as a log of tag-length-value (TLV) structs. (See * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by * TLV during the recovery phase. For the scenarios for which we currently * don't have replay code, fast commit falls back to full commits. * Fast commits record delta in one of the following three categories. * * (A) Directory entry updates: * * - EXT4_FC_TAG_UNLINK - records directory entry unlink * - EXT4_FC_TAG_LINK - records directory entry link * - EXT4_FC_TAG_CREAT - records inode and directory entry creation * * (B) File specific data range updates: * * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode * * (C) Inode metadata (mtime / ctime etc): * * - EXT4_FC_TAG_INODE - record the inode that should be replayed * during recovery. Note that iblocks field is * not replayed and instead derived during * replay. * Commit Operation * ---------------- * With fast commits, we maintain all the directory entry operations in the * order in which they are issued in an in-memory queue. This queue is flushed * to disk during the commit operation. We also maintain a list of inodes * that need to be committed during a fast commit in another in memory queue of * inodes. During the commit operation, we commit in the following order: * * [1] Lock inodes for any further data updates by setting COMMITTING state * [2] Submit data buffers of all the inodes * [3] Wait for [2] to complete * [4] Commit all the directory entry updates in the fast commit space * [5] Commit all the changed inode structures * [6] Write tail tag (this tag ensures the atomicity, please read the following * section for more details). * [7] Wait for [4], [5] and [6] to complete. * * All the inode updates must call ext4_fc_start_update() before starting an * update. If such an ongoing update is present, fast commit waits for it to * complete. The completion of such an update is marked by * ext4_fc_stop_update(). * * Fast Commit Ineligibility * ------------------------- * Not all operations are supported by fast commits today (e.g extended * attributes). Fast commit ineligiblity is marked by calling one of the * two following functions: * * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall * back to full commit. This is useful in case of transient errors. * * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all * the fast commits happening between ext4_fc_start_ineligible() and * ext4_fc_stop_ineligible() and one fast commit after the call to * ext4_fc_stop_ineligible() to fall back to full commits. It is important to * make one more fast commit to fall back to full commit after stop call so * that it guaranteed that the fast commit ineligible operation contained * within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is * followed by at least 1 full commit. * * Atomicity of commits * -------------------- * In order to guarantee atomicity during the commit operation, fast commit * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail * tag contains CRC of the contents and TID of the transaction after which * this fast commit should be applied. Recovery code replays fast commit * logs only if there's at least 1 valid tail present. For every fast commit * operation, there is 1 tail. This means, we may end up with multiple tails * in the fast commit space. Here's an example: * * - Create a new file A and remove existing file B * - fsync() * - Append contents to file A * - Truncate file A * - fsync() * * The fast commit space at the end of above operations would look like this: * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL] * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->| * * Replay code should thus check for all the valid tails in the FC area. * * TODOs * ----- * 1) Make fast commit atomic updates more fine grained. Today, a fast commit * eligible update must be protected within ext4_fc_start_update() and * ext4_fc_stop_update(). These routines are called at much higher * routines. This can be made more fine grained by combining with * ext4_journal_start(). * * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() * * 3) Handle more ineligible cases. */ #include <trace/events/ext4.h> static struct kmem_cache *ext4_fc_dentry_cachep; static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate) { BUFFER_TRACE(bh, ""); if (uptodate) { ext4_debug("%s: Block %lld up-to-date", __func__, bh->b_blocknr); set_buffer_uptodate(bh); } else { ext4_debug("%s: Block %lld not up-to-date", __func__, bh->b_blocknr); clear_buffer_uptodate(bh); } unlock_buffer(bh); } static inline void ext4_fc_reset_inode(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); ei->i_fc_lblk_start = 0; ei->i_fc_lblk_len = 0; } void ext4_fc_init_inode(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); ext4_fc_reset_inode(inode); ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING); INIT_LIST_HEAD(&ei->i_fc_list); init_waitqueue_head(&ei->i_fc_wait); atomic_set(&ei->i_fc_updates, 0); } /* This function must be called with sbi->s_fc_lock held. */ static void ext4_fc_wait_committing_inode(struct inode *inode) __releases(&EXT4_SB(inode->i_sb)->s_fc_lock) { wait_queue_head_t *wq; struct ext4_inode_info *ei = EXT4_I(inode); #if (BITS_PER_LONG < 64) DEFINE_WAIT_BIT(wait, &ei->i_state_flags, EXT4_STATE_FC_COMMITTING); wq = bit_waitqueue(&ei->i_state_flags, EXT4_STATE_FC_COMMITTING); #else DEFINE_WAIT_BIT(wait, &ei->i_flags, EXT4_STATE_FC_COMMITTING); wq = bit_waitqueue(&ei->i_flags, EXT4_STATE_FC_COMMITTING); #endif lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock); prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); schedule(); finish_wait(wq, &wait.wq_entry); } /* * Inform Ext4's fast about start of an inode update * * This function is called by the high level call VFS callbacks before * performing any inode update. This function blocks if there's an ongoing * fast commit on the inode in question. */ void ext4_fc_start_update(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) return; restart: spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); if (list_empty(&ei->i_fc_list)) goto out; if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { ext4_fc_wait_committing_inode(inode); goto restart; } out: atomic_inc(&ei->i_fc_updates); spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); } /* * Stop inode update and wake up waiting fast commits if any. */ void ext4_fc_stop_update(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) return; if (atomic_dec_and_test(&ei->i_fc_updates)) wake_up_all(&ei->i_fc_wait); } /* * Remove inode from fast commit list. If the inode is being committed * we wait until inode commit is done. */ void ext4_fc_del(struct inode *inode) { struct ext4_inode_info *ei = EXT4_I(inode); if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)) return; restart: spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock); if (list_empty(&ei->i_fc_list)) { spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); return; } if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) { ext4_fc_wait_committing_inode(inode); goto restart; } list_del_init(&ei->i_fc_list); spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock); } /* * Mark file system as fast commit ineligible. This means that next commit * operation would result in a full jbd2 commit. */ void ext4_fc_mark_ineligible(struct super_block *sb, int reason) { struct ext4_sb_info *sbi = EXT4_SB(sb); if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) return; ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); WARN_ON(reason >= EXT4_FC_REASON_MAX); sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; } /* * Start a fast commit ineligible update. Any commits that happen while * such an operation is in progress fall back to full commits. */ void ext4_fc_start_ineligible(struct super_block *sb, int reason) { struct ext4_sb_info *sbi = EXT4_SB(sb); if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) return; WARN_ON(reason >= EXT4_FC_REASON_MAX); sbi->s_fc_stats.fc_ineligible_reason_count[reason]++; atomic_inc(&sbi->s_fc_ineligible_updates); } /* * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here * to ensure that after stopping the ineligible update, at least one full * commit takes place. */ void ext4_fc_stop_ineligible(struct super_block *sb) { if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)) return; ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates); } static inline int ext4_fc_is_ineligible(struct super_block *sb) { return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) || atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates)); } /* * Generic fast commit tracking function. If this is the first time this we are * called after a full commit, we initialize fast commit fields and then call * __fc_track_fn() with update = 0. If we have already been called after a full * commit, we pass update = 1. Based on that, the track function can determine * if it needs to track a field for the first time or if it needs to just * update the previously tracked value. * * If enqueue is set, this function enqueues the inode in fast commit list. */ static int ext4_fc_track_template( handle_t *handle, struct inode *inode, int (*__fc_track_fn)(struct inode *, void *, bool), void *args, int enqueue) { bool update = false; struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); tid_t tid = 0; int ret; if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) || (sbi->s_mount_state & EXT4_FC_REPLAY)) return -EOPNOTSUPP; if (ext4_fc_is_ineligible(inode->i_sb)) return -EINVAL; tid = handle->h_transaction->t_tid; mutex_lock(&ei->i_fc_lock); if (tid == ei->i_sync_tid) { update = true; } else { ext4_fc_reset_inode(inode); ei->i_sync_tid = tid; } ret = __fc_track_fn(inode, args, update); mutex_unlock(&ei->i_fc_lock); if (!enqueue) return ret; spin_lock(&sbi->s_fc_lock); if (list_empty(&EXT4_I(inode)->i_fc_list)) list_add_tail(&EXT4_I(inode)->i_fc_list, (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ? &sbi->s_fc_q[FC_Q_STAGING] : &sbi->s_fc_q[FC_Q_MAIN]); spin_unlock(&sbi->s_fc_lock); return ret; } struct __track_dentry_update_args { struct dentry *dentry; int op; }; /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */ static int __track_dentry_update(struct inode *inode, void *arg, bool update) { struct ext4_fc_dentry_update *node; struct ext4_inode_info *ei = EXT4_I(inode); struct __track_dentry_update_args *dentry_update = (struct __track_dentry_update_args *)arg; struct dentry *dentry = dentry_update->dentry; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); mutex_unlock(&ei->i_fc_lock); node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS); if (!node) { ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); mutex_lock(&ei->i_fc_lock); return -ENOMEM; } node->fcd_op = dentry_update->op; node->fcd_parent = dentry->d_parent->d_inode->i_ino; node->fcd_ino = inode->i_ino; if (dentry->d_name.len > DNAME_INLINE_LEN) { node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS); if (!node->fcd_name.name) { kmem_cache_free(ext4_fc_dentry_cachep, node); ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM); mutex_lock(&ei->i_fc_lock); return -ENOMEM; } memcpy((u8 *)node->fcd_name.name, dentry->d_name.name, dentry->d_name.len); } else { memcpy(node->fcd_iname, dentry->d_name.name, dentry->d_name.len); node->fcd_name.name = node->fcd_iname; } node->fcd_name.len = dentry->d_name.len; spin_lock(&sbi->s_fc_lock); if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_STAGING]); else list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]); spin_unlock(&sbi->s_fc_lock); mutex_lock(&ei->i_fc_lock); return 0; } void __ext4_fc_track_unlink(handle_t *handle, struct inode *inode, struct dentry *dentry) { struct __track_dentry_update_args args; int ret; args.dentry = dentry; args.op = EXT4_FC_TAG_UNLINK; ret = ext4_fc_track_template(handle, inode, __track_dentry_update, (void *)&args, 0); trace_ext4_fc_track_unlink(inode, dentry, ret); } void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry) { __ext4_fc_track_unlink(handle, d_inode(dentry), dentry); } void __ext4_fc_track_link(handle_t *handle, struct inode *inode, struct dentry *dentry) { struct __track_dentry_update_args args; int ret; args.dentry = dentry; args.op = EXT4_FC_TAG_LINK; ret = ext4_fc_track_template(handle, inode, __track_dentry_update, (void *)&args, 0); trace_ext4_fc_track_link(inode, dentry, ret); } void ext4_fc_track_link(handle_t *handle, struct dentry *dentry) { __ext4_fc_track_link(handle, d_inode(dentry), dentry); } void __ext4_fc_track_create(handle_t *handle, struct inode *inode, struct dentry *dentry) { struct __track_dentry_update_args args; int ret; args.dentry = dentry; args.op = EXT4_FC_TAG_CREAT; ret = ext4_fc_track_template(handle, inode, __track_dentry_update, (void *)&args, 0); trace_ext4_fc_track_create(inode, dentry, ret); } void ext4_fc_track_create(handle_t *handle, struct dentry *dentry) { __ext4_fc_track_create(handle, d_inode(dentry), dentry); } /* __track_fn for inode tracking */ static int __track_inode(struct inode *inode, void *arg, bool update) { if (update) return -EEXIST; EXT4_I(inode)->i_fc_lblk_len = 0; return 0; } void ext4_fc_track_inode(handle_t *handle, struct inode *inode) { int ret; if (S_ISDIR(inode->i_mode)) return; if (ext4_should_journal_data(inode)) { ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_INODE_JOURNAL_DATA); return; } ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1); trace_ext4_fc_track_inode(inode, ret); } struct __track_range_args { ext4_lblk_t start, end; }; /* __track_fn for tracking data updates */ static int __track_range(struct inode *inode, void *arg, bool update) { struct ext4_inode_info *ei = EXT4_I(inode); ext4_lblk_t oldstart; struct __track_range_args *__arg = (struct __track_range_args *)arg; if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) { ext4_debug("Special inode %ld being modified\n", inode->i_ino); return -ECANCELED; } oldstart = ei->i_fc_lblk_start; if (update && ei->i_fc_lblk_len > 0) { ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start); ei->i_fc_lblk_len = max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) - ei->i_fc_lblk_start + 1; } else { ei->i_fc_lblk_start = __arg->start; ei->i_fc_lblk_len = __arg->end - __arg->start + 1; } return 0; } void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, ext4_lblk_t end) { struct __track_range_args args; int ret; if (S_ISDIR(inode->i_mode)) return; args.start = start; args.end = end; ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1); trace_ext4_fc_track_range(inode, start, end, ret); } static void ext4_fc_submit_bh(struct super_block *sb) { int write_flags = REQ_SYNC; struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh; /* TODO: REQ_FUA | REQ_PREFLUSH is unnecessarily expensive. */ if (test_opt(sb, BARRIER)) write_flags |= REQ_FUA | REQ_PREFLUSH; lock_buffer(bh); set_buffer_dirty(bh); set_buffer_uptodate(bh); bh->b_end_io = ext4_end_buffer_io_sync; submit_bh(REQ_OP_WRITE, write_flags, bh); EXT4_SB(sb)->s_fc_bh = NULL; } /* Ext4 commit path routines */ /* memzero and update CRC */ static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len, u32 *crc) { void *ret; ret = memset(dst, 0, len); if (crc) *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len); return ret; } /* * Allocate len bytes on a fast commit buffer. * * During the commit time this function is used to manage fast commit * block space. We don't split a fast commit log onto different * blocks. So this function makes sure that if there's not enough space * on the current block, the remaining space in the current block is * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case, * new block is from jbd2 and CRC is updated to reflect the padding * we added. */ static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc) { struct ext4_fc_tl *tl; struct ext4_sb_info *sbi = EXT4_SB(sb); struct buffer_head *bh; int bsize = sbi->s_journal->j_blocksize; int ret, off = sbi->s_fc_bytes % bsize; int pad_len; /* * After allocating len, we should have space at least for a 0 byte * padding. */ if (len + sizeof(struct ext4_fc_tl) > bsize) return NULL; if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) { /* * Only allocate from current buffer if we have enough space for * this request AND we have space to add a zero byte padding. */ if (!sbi->s_fc_bh) { ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); if (ret) return NULL; sbi->s_fc_bh = bh; } sbi->s_fc_bytes += len; return sbi->s_fc_bh->b_data + off; } /* Need to add PAD tag */ tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off); tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD); pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl); tl->fc_len = cpu_to_le16(pad_len); if (crc) *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl)); if (pad_len > 0) ext4_fc_memzero(sb, tl + 1, pad_len, crc); ext4_fc_submit_bh(sb); ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh); if (ret) return NULL; sbi->s_fc_bh = bh; sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len; return sbi->s_fc_bh->b_data; } /* memcpy to fc reserved space and update CRC */ static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src, int len, u32 *crc) { if (crc) *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len); return memcpy(dst, src, len); } /* * Complete a fast commit by writing tail tag. * * Writing tail tag marks the end of a fast commit. In order to guarantee * atomicity, after writing tail tag, even if there's space remaining * in the block, next commit shouldn't use it. That's why tail tag * has the length as that of the remaining space on the block. */ static int ext4_fc_write_tail(struct super_block *sb, u32 crc) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_tl tl; struct ext4_fc_tail tail; int off, bsize = sbi->s_journal->j_blocksize; u8 *dst; /* * ext4_fc_reserve_space takes care of allocating an extra block if * there's no enough space on this block for accommodating this tail. */ dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc); if (!dst) return -ENOSPC; off = sbi->s_fc_bytes % bsize; tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL); tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail)); sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize); ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc); dst += sizeof(tl); tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid); ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc); dst += sizeof(tail.fc_tid); tail.fc_crc = cpu_to_le32(crc); ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL); ext4_fc_submit_bh(sb); return 0; } /* * Adds tag, length, value and updates CRC. Returns true if tlv was added. * Returns false if there's not enough space. */ static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val, u32 *crc) { struct ext4_fc_tl tl; u8 *dst; dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc); if (!dst) return false; tl.fc_tag = cpu_to_le16(tag); tl.fc_len = cpu_to_le16(len); ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc); return true; } /* Same as above, but adds dentry tlv. */ static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag, int parent_ino, int ino, int dlen, const unsigned char *dname, u32 *crc) { struct ext4_fc_dentry_info fcd; struct ext4_fc_tl tl; u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen, crc); if (!dst) return false; fcd.fc_parent_ino = cpu_to_le32(parent_ino); fcd.fc_ino = cpu_to_le32(ino); tl.fc_tag = cpu_to_le16(tag); tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen); ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc); dst += sizeof(tl); ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc); dst += sizeof(fcd); ext4_fc_memcpy(sb, dst, dname, dlen, crc); dst += dlen; return true; } /* * Writes inode in the fast commit space under TLV with tag @tag. * Returns 0 on success, error on failure. */ static int ext4_fc_write_inode(struct inode *inode, u32 *crc) { struct ext4_inode_info *ei = EXT4_I(inode); int inode_len = EXT4_GOOD_OLD_INODE_SIZE; int ret; struct ext4_iloc iloc; struct ext4_fc_inode fc_inode; struct ext4_fc_tl tl; u8 *dst; ret = ext4_get_inode_loc(inode, &iloc); if (ret) return ret; if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) inode_len += ei->i_extra_isize; fc_inode.fc_ino = cpu_to_le32(inode->i_ino); tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE); tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino)); dst = ext4_fc_reserve_space(inode->i_sb, sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc); if (!dst) return -ECANCELED; if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc)) return -ECANCELED; dst += sizeof(tl); if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc)) return -ECANCELED; dst += sizeof(fc_inode); if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc), inode_len, crc)) return -ECANCELED; return 0; } /* * Writes updated data ranges for the inode in question. Updates CRC. * Returns 0 on success, error otherwise. */ static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc) { ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size; struct ext4_inode_info *ei = EXT4_I(inode); struct ext4_map_blocks map; struct ext4_fc_add_range fc_ext; struct ext4_fc_del_range lrange; struct ext4_extent *ex; int ret; mutex_lock(&ei->i_fc_lock); if (ei->i_fc_lblk_len == 0) { mutex_unlock(&ei->i_fc_lock); return 0; } old_blk_size = ei->i_fc_lblk_start; new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1; ei->i_fc_lblk_len = 0; mutex_unlock(&ei->i_fc_lock); cur_lblk_off = old_blk_size; jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n", __func__, cur_lblk_off, new_blk_size, inode->i_ino); while (cur_lblk_off <= new_blk_size) { map.m_lblk = cur_lblk_off; map.m_len = new_blk_size - cur_lblk_off + 1; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) return -ECANCELED; if (map.m_len == 0) { cur_lblk_off++; continue; } if (ret == 0) { lrange.fc_ino = cpu_to_le32(inode->i_ino); lrange.fc_lblk = cpu_to_le32(map.m_lblk); lrange.fc_len = cpu_to_le32(map.m_len); if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE, sizeof(lrange), (u8 *)&lrange, crc)) return -ENOSPC; } else { unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ? EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN; /* Limit the number of blocks in one extent */ map.m_len = min(max, map.m_len); fc_ext.fc_ino = cpu_to_le32(inode->i_ino); ex = (struct ext4_extent *)&fc_ext.fc_ex; ex->ee_block = cpu_to_le32(map.m_lblk); ex->ee_len = cpu_to_le16(map.m_len); ext4_ext_store_pblock(ex, map.m_pblk); if (map.m_flags & EXT4_MAP_UNWRITTEN) ext4_ext_mark_unwritten(ex); else ext4_ext_mark_initialized(ex); if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE, sizeof(fc_ext), (u8 *)&fc_ext, crc)) return -ENOSPC; } cur_lblk_off += map.m_len; } return 0; } /* Submit data for all the fast commit inodes */ static int ext4_fc_submit_inode_data_all(journal_t *journal) { struct super_block *sb = (struct super_block *)(journal->j_private); struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *ei; struct list_head *pos; int ret = 0; spin_lock(&sbi->s_fc_lock); ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING); list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) { ei = list_entry(pos, struct ext4_inode_info, i_fc_list); ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING); while (atomic_read(&ei->i_fc_updates)) { DEFINE_WAIT(wait); prepare_to_wait(&ei->i_fc_wait, &wait, TASK_UNINTERRUPTIBLE); if (atomic_read(&ei->i_fc_updates)) { spin_unlock(&sbi->s_fc_lock); schedule(); spin_lock(&sbi->s_fc_lock); } finish_wait(&ei->i_fc_wait, &wait); } spin_unlock(&sbi->s_fc_lock); ret = jbd2_submit_inode_data(ei->jinode); if (ret) return ret; spin_lock(&sbi->s_fc_lock); } spin_unlock(&sbi->s_fc_lock); return ret; } /* Wait for completion of data for all the fast commit inodes */ static int ext4_fc_wait_inode_data_all(journal_t *journal) { struct super_block *sb = (struct super_block *)(journal->j_private); struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *pos, *n; int ret = 0; spin_lock(&sbi->s_fc_lock); list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) { if (!ext4_test_inode_state(&pos->vfs_inode, EXT4_STATE_FC_COMMITTING)) continue; spin_unlock(&sbi->s_fc_lock); ret = jbd2_wait_inode_data(journal, pos->jinode); if (ret) return ret; spin_lock(&sbi->s_fc_lock); } spin_unlock(&sbi->s_fc_lock); return 0; } /* Commit all the directory entry updates */ static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc) __acquires(&sbi->s_fc_lock) __releases(&sbi->s_fc_lock) { struct super_block *sb = (struct super_block *)(journal->j_private); struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_dentry_update *fc_dentry; struct inode *inode; struct list_head *pos, *n, *fcd_pos, *fcd_n; struct ext4_inode_info *ei; int ret; if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) return 0; list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) { fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update, fcd_list); if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) { spin_unlock(&sbi->s_fc_lock); if (!ext4_fc_add_dentry_tlv( sb, fc_dentry->fcd_op, fc_dentry->fcd_parent, fc_dentry->fcd_ino, fc_dentry->fcd_name.len, fc_dentry->fcd_name.name, crc)) { ret = -ENOSPC; goto lock_and_exit; } spin_lock(&sbi->s_fc_lock); continue; } inode = NULL; list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) { ei = list_entry(pos, struct ext4_inode_info, i_fc_list); if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) { inode = &ei->vfs_inode; break; } } /* * If we don't find inode in our list, then it was deleted, * in which case, we don't need to record it's create tag. */ if (!inode) continue; spin_unlock(&sbi->s_fc_lock); /* * We first write the inode and then the create dirent. This * allows the recovery code to create an unnamed inode first * and then link it to a directory entry. This allows us * to use namei.c routines almost as is and simplifies * the recovery code. */ ret = ext4_fc_write_inode(inode, crc); if (ret) goto lock_and_exit; ret = ext4_fc_write_inode_data(inode, crc); if (ret) goto lock_and_exit; if (!ext4_fc_add_dentry_tlv( sb, fc_dentry->fcd_op, fc_dentry->fcd_parent, fc_dentry->fcd_ino, fc_dentry->fcd_name.len, fc_dentry->fcd_name.name, crc)) { ret = -ENOSPC; goto lock_and_exit; } spin_lock(&sbi->s_fc_lock); } return 0; lock_and_exit: spin_lock(&sbi->s_fc_lock); return ret; } static int ext4_fc_perform_commit(journal_t *journal) { struct super_block *sb = (struct super_block *)(journal->j_private); struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *iter; struct ext4_fc_head head; struct list_head *pos; struct inode *inode; struct blk_plug plug; int ret = 0; u32 crc = 0; ret = ext4_fc_submit_inode_data_all(journal); if (ret) return ret; ret = ext4_fc_wait_inode_data_all(journal); if (ret) return ret; /* * If file system device is different from journal device, issue a cache * flush before we start writing fast commit blocks. */ if (journal->j_fs_dev != journal->j_dev) blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS); blk_start_plug(&plug); if (sbi->s_fc_bytes == 0) { /* * Add a head tag only if this is the first fast commit * in this TID. */ head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES); head.fc_tid = cpu_to_le32( sbi->s_journal->j_running_transaction->t_tid); if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head), (u8 *)&head, &crc)) { ret = -ENOSPC; goto out; } } spin_lock(&sbi->s_fc_lock); ret = ext4_fc_commit_dentry_updates(journal, &crc); if (ret) { spin_unlock(&sbi->s_fc_lock); goto out; } list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) { iter = list_entry(pos, struct ext4_inode_info, i_fc_list); inode = &iter->vfs_inode; if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) continue; spin_unlock(&sbi->s_fc_lock); ret = ext4_fc_write_inode_data(inode, &crc); if (ret) goto out; ret = ext4_fc_write_inode(inode, &crc); if (ret) goto out; spin_lock(&sbi->s_fc_lock); } spin_unlock(&sbi->s_fc_lock); ret = ext4_fc_write_tail(sb, crc); out: blk_finish_plug(&plug); return ret; } /* * The main commit entry point. Performs a fast commit for transaction * commit_tid if needed. If it's not possible to perform a fast commit * due to various reasons, we fall back to full commit. Returns 0 * on success, error otherwise. */ int ext4_fc_commit(journal_t *journal, tid_t commit_tid) { struct super_block *sb = (struct super_block *)(journal->j_private); struct ext4_sb_info *sbi = EXT4_SB(sb); int nblks = 0, ret, bsize = journal->j_blocksize; int subtid = atomic_read(&sbi->s_fc_subtid); int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0; ktime_t start_time, commit_time; trace_ext4_fc_commit_start(sb); start_time = ktime_get(); if (!test_opt2(sb, JOURNAL_FAST_COMMIT) || (ext4_fc_is_ineligible(sb))) { reason = EXT4_FC_REASON_INELIGIBLE; goto out; } restart_fc: ret = jbd2_fc_begin_commit(journal, commit_tid); if (ret == -EALREADY) { /* There was an ongoing commit, check if we need to restart */ if (atomic_read(&sbi->s_fc_subtid) <= subtid && commit_tid > journal->j_commit_sequence) goto restart_fc; reason = EXT4_FC_REASON_ALREADY_COMMITTED; goto out; } else if (ret) { sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; reason = EXT4_FC_REASON_FC_START_FAILED; goto out; } fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize; ret = ext4_fc_perform_commit(journal); if (ret < 0) { sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; reason = EXT4_FC_REASON_FC_FAILED; goto out; } nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before; ret = jbd2_fc_wait_bufs(journal, nblks); if (ret < 0) { sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; reason = EXT4_FC_REASON_FC_FAILED; goto out; } atomic_inc(&sbi->s_fc_subtid); jbd2_fc_end_commit(journal); out: /* Has any ineligible update happened since we started? */ if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) { sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++; reason = EXT4_FC_REASON_INELIGIBLE; } spin_lock(&sbi->s_fc_lock); if (reason != EXT4_FC_REASON_OK && reason != EXT4_FC_REASON_ALREADY_COMMITTED) { sbi->s_fc_stats.fc_ineligible_commits++; } else { sbi->s_fc_stats.fc_num_commits++; sbi->s_fc_stats.fc_numblks += nblks; } spin_unlock(&sbi->s_fc_lock); nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0; trace_ext4_fc_commit_stop(sb, nblks, reason); commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time)); /* * weight the commit time higher than the average time so we don't * react too strongly to vast changes in the commit time */ if (likely(sbi->s_fc_avg_commit_time)) sbi->s_fc_avg_commit_time = (commit_time + sbi->s_fc_avg_commit_time * 3) / 4; else sbi->s_fc_avg_commit_time = commit_time; jbd_debug(1, "Fast commit ended with blks = %d, reason = %d, subtid - %d", nblks, reason, subtid); if (reason == EXT4_FC_REASON_FC_FAILED) return jbd2_fc_end_commit_fallback(journal); if (reason == EXT4_FC_REASON_FC_START_FAILED || reason == EXT4_FC_REASON_INELIGIBLE) return jbd2_complete_transaction(journal, commit_tid); return 0; } /* * Fast commit cleanup routine. This is called after every fast commit and * full commit. full is true if we are called after a full commit. */ static void ext4_fc_cleanup(journal_t *journal, int full) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_inode_info *iter; struct ext4_fc_dentry_update *fc_dentry; struct list_head *pos, *n; if (full && sbi->s_fc_bh) sbi->s_fc_bh = NULL; jbd2_fc_release_bufs(journal); spin_lock(&sbi->s_fc_lock); list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) { iter = list_entry(pos, struct ext4_inode_info, i_fc_list); list_del_init(&iter->i_fc_list); ext4_clear_inode_state(&iter->vfs_inode, EXT4_STATE_FC_COMMITTING); ext4_fc_reset_inode(&iter->vfs_inode); /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */ smp_mb(); #if (BITS_PER_LONG < 64) wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING); #else wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING); #endif } while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) { fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN], struct ext4_fc_dentry_update, fcd_list); list_del_init(&fc_dentry->fcd_list); spin_unlock(&sbi->s_fc_lock); if (fc_dentry->fcd_name.name && fc_dentry->fcd_name.len > DNAME_INLINE_LEN) kfree(fc_dentry->fcd_name.name); kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry); spin_lock(&sbi->s_fc_lock); } list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING], &sbi->s_fc_dentry_q[FC_Q_MAIN]); list_splice_init(&sbi->s_fc_q[FC_Q_STAGING], &sbi->s_fc_q[FC_Q_MAIN]); ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); if (full) sbi->s_fc_bytes = 0; spin_unlock(&sbi->s_fc_lock); trace_ext4_fc_stats(sb); } /* Ext4 Replay Path Routines */ /* Helper struct for dentry replay routines */ struct dentry_info_args { int parent_ino, dname_len, ino, inode_len; char *dname; }; static inline void tl_to_darg(struct dentry_info_args *darg, struct ext4_fc_tl *tl, u8 *val) { struct ext4_fc_dentry_info fcd; memcpy(&fcd, val, sizeof(fcd)); darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino); darg->ino = le32_to_cpu(fcd.fc_ino); darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname); darg->dname_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_dentry_info); } /* Unlink replay function */ static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl, u8 *val) { struct inode *inode, *old_parent; struct qstr entry; struct dentry_info_args darg; int ret = 0; tl_to_darg(&darg, tl, val); trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino, darg.parent_ino, darg.dname_len); entry.name = darg.dname; entry.len = darg.dname_len; inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { jbd_debug(1, "Inode %d not found", darg.ino); return 0; } old_parent = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); if (IS_ERR(old_parent)) { jbd_debug(1, "Dir with inode %d not found", darg.parent_ino); iput(inode); return 0; } ret = __ext4_unlink(NULL, old_parent, &entry, inode); /* -ENOENT ok coz it might not exist anymore. */ if (ret == -ENOENT) ret = 0; iput(old_parent); iput(inode); return ret; } static int ext4_fc_replay_link_internal(struct super_block *sb, struct dentry_info_args *darg, struct inode *inode) { struct inode *dir = NULL; struct dentry *dentry_dir = NULL, *dentry_inode = NULL; struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len); int ret = 0; dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL); if (IS_ERR(dir)) { jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino); dir = NULL; goto out; } dentry_dir = d_obtain_alias(dir); if (IS_ERR(dentry_dir)) { jbd_debug(1, "Failed to obtain dentry"); dentry_dir = NULL; goto out; } dentry_inode = d_alloc(dentry_dir, &qstr_dname); if (!dentry_inode) { jbd_debug(1, "Inode dentry not created."); ret = -ENOMEM; goto out; } ret = __ext4_link(dir, inode, dentry_inode); /* * It's possible that link already existed since data blocks * for the dir in question got persisted before we crashed OR * we replayed this tag and crashed before the entire replay * could complete. */ if (ret && ret != -EEXIST) { jbd_debug(1, "Failed to link\n"); goto out; } ret = 0; out: if (dentry_dir) { d_drop(dentry_dir); dput(dentry_dir); } else if (dir) { iput(dir); } if (dentry_inode) { d_drop(dentry_inode); dput(dentry_inode); } return ret; } /* Link replay function */ static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl, u8 *val) { struct inode *inode; struct dentry_info_args darg; int ret = 0; tl_to_darg(&darg, tl, val); trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino, darg.parent_ino, darg.dname_len); inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { jbd_debug(1, "Inode not found."); return 0; } ret = ext4_fc_replay_link_internal(sb, &darg, inode); iput(inode); return ret; } /* * Record all the modified inodes during replay. We use this later to setup * block bitmaps correctly. */ static int ext4_fc_record_modified_inode(struct super_block *sb, int ino) { struct ext4_fc_replay_state *state; int i; state = &EXT4_SB(sb)->s_fc_replay_state; for (i = 0; i < state->fc_modified_inodes_used; i++) if (state->fc_modified_inodes[i] == ino) return 0; if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) { state->fc_modified_inodes_size += EXT4_FC_REPLAY_REALLOC_INCREMENT; state->fc_modified_inodes = krealloc( state->fc_modified_inodes, sizeof(int) * state->fc_modified_inodes_size, GFP_KERNEL); if (!state->fc_modified_inodes) return -ENOMEM; } state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino; return 0; } /* * Inode replay function */ static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl, u8 *val) { struct ext4_fc_inode fc_inode; struct ext4_inode *raw_inode; struct ext4_inode *raw_fc_inode; struct inode *inode = NULL; struct ext4_iloc iloc; int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag); struct ext4_extent_header *eh; memcpy(&fc_inode, val, sizeof(fc_inode)); ino = le32_to_cpu(fc_inode.fc_ino); trace_ext4_fc_replay(sb, tag, ino, 0, 0); inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); if (!IS_ERR(inode)) { ext4_ext_clear_bb(inode); iput(inode); } inode = NULL; ext4_fc_record_modified_inode(sb, ino); raw_fc_inode = (struct ext4_inode *) (val + offsetof(struct ext4_fc_inode, fc_raw_inode)); ret = ext4_get_fc_inode_loc(sb, ino, &iloc); if (ret) goto out; inode_len = le16_to_cpu(tl->fc_len) - sizeof(struct ext4_fc_inode); raw_inode = ext4_raw_inode(&iloc); memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block)); memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation, inode_len - offsetof(struct ext4_inode, i_generation)); if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) { eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]); if (eh->eh_magic != EXT4_EXT_MAGIC) { memset(eh, 0, sizeof(*eh)); eh->eh_magic = EXT4_EXT_MAGIC; eh->eh_max = cpu_to_le16( (sizeof(raw_inode->i_block) - sizeof(struct ext4_extent_header)) / sizeof(struct ext4_extent)); } } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) { memcpy(raw_inode->i_block, raw_fc_inode->i_block, sizeof(raw_inode->i_block)); } /* Immediately update the inode on disk. */ ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); if (ret) goto out; ret = sync_dirty_buffer(iloc.bh); if (ret) goto out; ret = ext4_mark_inode_used(sb, ino); if (ret) goto out; /* Given that we just wrote the inode on disk, this SHOULD succeed. */ inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { jbd_debug(1, "Inode not found."); return -EFSCORRUPTED; } /* * Our allocator could have made different decisions than before * crashing. This should be fixed but until then, we calculate * the number of blocks the inode. */ ext4_ext_replay_set_iblocks(inode); inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation); ext4_reset_inode_seed(inode); ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode)); ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh); sync_dirty_buffer(iloc.bh); brelse(iloc.bh); out: iput(inode); if (!ret) blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); return 0; } /* * Dentry create replay function. * * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the * inode for which we are trying to create a dentry here, should already have * been replayed before we start here. */ static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl, u8 *val) { int ret = 0; struct inode *inode = NULL; struct inode *dir = NULL; struct dentry_info_args darg; tl_to_darg(&darg, tl, val); trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino, darg.parent_ino, darg.dname_len); /* This takes care of update group descriptor and other metadata */ ret = ext4_mark_inode_used(sb, darg.ino); if (ret) goto out; inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL); if (IS_ERR(inode)) { jbd_debug(1, "inode %d not found.", darg.ino); inode = NULL; ret = -EINVAL; goto out; } if (S_ISDIR(inode->i_mode)) { /* * If we are creating a directory, we need to make sure that the * dot and dot dot dirents are setup properly. */ dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL); if (IS_ERR(dir)) { jbd_debug(1, "Dir %d not found.", darg.ino); goto out; } ret = ext4_init_new_dir(NULL, dir, inode); iput(dir); if (ret) { ret = 0; goto out; } } ret = ext4_fc_replay_link_internal(sb, &darg, inode); if (ret) goto out; set_nlink(inode, 1); ext4_mark_inode_dirty(NULL, inode); out: if (inode) iput(inode); return ret; } /* * Record physical disk regions which are in use as per fast commit area. Our * simple replay phase allocator excludes these regions from allocation. */ static int ext4_fc_record_regions(struct super_block *sb, int ino, ext4_lblk_t lblk, ext4_fsblk_t pblk, int len) { struct ext4_fc_replay_state *state; struct ext4_fc_alloc_region *region; state = &EXT4_SB(sb)->s_fc_replay_state; if (state->fc_regions_used == state->fc_regions_size) { state->fc_regions_size += EXT4_FC_REPLAY_REALLOC_INCREMENT; state->fc_regions = krealloc( state->fc_regions, state->fc_regions_size * sizeof(struct ext4_fc_alloc_region), GFP_KERNEL); if (!state->fc_regions) return -ENOMEM; } region = &state->fc_regions[state->fc_regions_used++]; region->ino = ino; region->lblk = lblk; region->pblk = pblk; region->len = len; return 0; } /* Replay add range tag */ static int ext4_fc_replay_add_range(struct super_block *sb, struct ext4_fc_tl *tl, u8 *val) { struct ext4_fc_add_range fc_add_ex; struct ext4_extent newex, *ex; struct inode *inode; ext4_lblk_t start, cur; int remaining, len; ext4_fsblk_t start_pblk; struct ext4_map_blocks map; struct ext4_ext_path *path = NULL; int ret; memcpy(&fc_add_ex, val, sizeof(fc_add_ex)); ex = (struct ext4_extent *)&fc_add_ex.fc_ex; trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE, le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block), ext4_ext_get_actual_len(ex)); inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL); if (IS_ERR(inode)) { jbd_debug(1, "Inode not found."); return 0; } ret = ext4_fc_record_modified_inode(sb, inode->i_ino); start = le32_to_cpu(ex->ee_block); start_pblk = ext4_ext_pblock(ex); len = ext4_ext_get_actual_len(ex); cur = start; remaining = len; jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n", start, start_pblk, len, ext4_ext_is_unwritten(ex), inode->i_ino); while (remaining > 0) { map.m_lblk = cur; map.m_len = remaining; map.m_pblk = 0; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) { iput(inode); return 0; } if (ret == 0) { /* Range is not mapped */ path = ext4_find_extent(inode, cur, NULL, 0); if (IS_ERR(path)) { iput(inode); return 0; } memset(&newex, 0, sizeof(newex)); newex.ee_block = cpu_to_le32(cur); ext4_ext_store_pblock( &newex, start_pblk + cur - start); newex.ee_len = cpu_to_le16(map.m_len); if (ext4_ext_is_unwritten(ex)) ext4_ext_mark_unwritten(&newex); down_write(&EXT4_I(inode)->i_data_sem); ret = ext4_ext_insert_extent( NULL, inode, &path, &newex, 0); up_write((&EXT4_I(inode)->i_data_sem)); ext4_ext_drop_refs(path); kfree(path); if (ret) { iput(inode); return 0; } goto next; } if (start_pblk + cur - start != map.m_pblk) { /* * Logical to physical mapping changed. This can happen * if this range was removed and then reallocated to * map to new physical blocks during a fast commit. */ ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, ext4_ext_is_unwritten(ex), start_pblk + cur - start); if (ret) { iput(inode); return 0; } /* * Mark the old blocks as free since they aren't used * anymore. We maintain an array of all the modified * inodes. In case these blocks are still used at either * a different logical range in the same inode or in * some different inode, we will mark them as allocated * at the end of the FC replay using our array of * modified inodes. */ ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); goto next; } /* Range is mapped and needs a state change */ jbd_debug(1, "Converting from %ld to %d %lld", map.m_flags & EXT4_MAP_UNWRITTEN, ext4_ext_is_unwritten(ex), map.m_pblk); ret = ext4_ext_replay_update_ex(inode, cur, map.m_len, ext4_ext_is_unwritten(ex), map.m_pblk); if (ret) { iput(inode); return 0; } /* * We may have split the extent tree while toggling the state. * Try to shrink the extent tree now. */ ext4_ext_replay_shrink_inode(inode, start + len); next: cur += map.m_len; remaining -= map.m_len; } ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> sb->s_blocksize_bits); iput(inode); return 0; } /* Replay DEL_RANGE tag */ static int ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl, u8 *val) { struct inode *inode; struct ext4_fc_del_range lrange; struct ext4_map_blocks map; ext4_lblk_t cur, remaining; int ret; memcpy(&lrange, val, sizeof(lrange)); cur = le32_to_cpu(lrange.fc_lblk); remaining = le32_to_cpu(lrange.fc_len); trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE, le32_to_cpu(lrange.fc_ino), cur, remaining); inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL); if (IS_ERR(inode)) { jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange.fc_ino)); return 0; } ret = ext4_fc_record_modified_inode(sb, inode->i_ino); jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n", inode->i_ino, le32_to_cpu(lrange.fc_lblk), le32_to_cpu(lrange.fc_len)); while (remaining > 0) { map.m_lblk = cur; map.m_len = remaining; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) { iput(inode); return 0; } if (ret > 0) { remaining -= ret; cur += ret; ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0); } else { remaining -= map.m_len; cur += map.m_len; } } ret = ext4_punch_hole(inode, le32_to_cpu(lrange.fc_lblk) << sb->s_blocksize_bits, le32_to_cpu(lrange.fc_len) << sb->s_blocksize_bits); if (ret) jbd_debug(1, "ext4_punch_hole returned %d", ret); ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >> sb->s_blocksize_bits); ext4_mark_inode_dirty(NULL, inode); iput(inode); return 0; } static inline const char *tag2str(u16 tag) { switch (tag) { case EXT4_FC_TAG_LINK: return "TAG_ADD_ENTRY"; case EXT4_FC_TAG_UNLINK: return "TAG_DEL_ENTRY"; case EXT4_FC_TAG_ADD_RANGE: return "TAG_ADD_RANGE"; case EXT4_FC_TAG_CREAT: return "TAG_CREAT_DENTRY"; case EXT4_FC_TAG_DEL_RANGE: return "TAG_DEL_RANGE"; case EXT4_FC_TAG_INODE: return "TAG_INODE"; case EXT4_FC_TAG_PAD: return "TAG_PAD"; case EXT4_FC_TAG_TAIL: return "TAG_TAIL"; case EXT4_FC_TAG_HEAD: return "TAG_HEAD"; default: return "TAG_ERROR"; } } static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb) { struct ext4_fc_replay_state *state; struct inode *inode; struct ext4_ext_path *path = NULL; struct ext4_map_blocks map; int i, ret, j; ext4_lblk_t cur, end; state = &EXT4_SB(sb)->s_fc_replay_state; for (i = 0; i < state->fc_modified_inodes_used; i++) { inode = ext4_iget(sb, state->fc_modified_inodes[i], EXT4_IGET_NORMAL); if (IS_ERR(inode)) { jbd_debug(1, "Inode %d not found.", state->fc_modified_inodes[i]); continue; } cur = 0; end = EXT_MAX_BLOCKS; while (cur < end) { map.m_lblk = cur; map.m_len = end - cur; ret = ext4_map_blocks(NULL, inode, &map, 0); if (ret < 0) break; if (ret > 0) { path = ext4_find_extent(inode, map.m_lblk, NULL, 0); if (!IS_ERR(path)) { for (j = 0; j < path->p_depth; j++) ext4_mb_mark_bb(inode->i_sb, path[j].p_block, 1, 1); ext4_ext_drop_refs(path); kfree(path); } cur += ret; ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 1); } else { cur = cur + (map.m_len ? map.m_len : 1); } } iput(inode); } } /* * Check if block is in excluded regions for block allocation. The simple * allocator that runs during replay phase is calls this function to see * if it is okay to use a block. */ bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk) { int i; struct ext4_fc_replay_state *state; state = &EXT4_SB(sb)->s_fc_replay_state; for (i = 0; i < state->fc_regions_valid; i++) { if (state->fc_regions[i].ino == 0 || state->fc_regions[i].len == 0) continue; if (blk >= state->fc_regions[i].pblk && blk < state->fc_regions[i].pblk + state->fc_regions[i].len) return true; } return false; } /* Cleanup function called after replay */ void ext4_fc_replay_cleanup(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); sbi->s_mount_state &= ~EXT4_FC_REPLAY; kfree(sbi->s_fc_replay_state.fc_regions); kfree(sbi->s_fc_replay_state.fc_modified_inodes); } /* * Recovery Scan phase handler * * This function is called during the scan phase and is responsible * for doing following things: * - Make sure the fast commit area has valid tags for replay * - Count number of tags that need to be replayed by the replay handler * - Verify CRC * - Create a list of excluded blocks for allocation during replay phase * * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP * to indicate that scan has finished and JBD2 can now start replay phase. * It returns a negative error to indicate that there was an error. At the end * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set * to indicate the number of tags that need to replayed during the replay phase. */ static int ext4_fc_replay_scan(journal_t *journal, struct buffer_head *bh, int off, tid_t expected_tid) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_replay_state *state; int ret = JBD2_FC_REPLAY_CONTINUE; struct ext4_fc_add_range ext; struct ext4_fc_tl tl; struct ext4_fc_tail tail; __u8 *start, *end, *cur, *val; struct ext4_fc_head head; struct ext4_extent *ex; state = &sbi->s_fc_replay_state; start = (u8 *)bh->b_data; end = (__u8 *)bh->b_data + journal->j_blocksize - 1; if (state->fc_replay_expected_off == 0) { state->fc_cur_tag = 0; state->fc_replay_num_tags = 0; state->fc_crc = 0; state->fc_regions = NULL; state->fc_regions_valid = state->fc_regions_used = state->fc_regions_size = 0; /* Check if we can stop early */ if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag) != EXT4_FC_TAG_HEAD) return 0; } if (off != state->fc_replay_expected_off) { ret = -EFSCORRUPTED; goto out_err; } state->fc_replay_expected_off++; for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { memcpy(&tl, cur, sizeof(tl)); val = cur + sizeof(tl); jbd_debug(3, "Scan phase, tag:%s, blk %lld\n", tag2str(le16_to_cpu(tl.fc_tag)), bh->b_blocknr); switch (le16_to_cpu(tl.fc_tag)) { case EXT4_FC_TAG_ADD_RANGE: memcpy(&ext, val, sizeof(ext)); ex = (struct ext4_extent *)&ext.fc_ex; ret = ext4_fc_record_regions(sb, le32_to_cpu(ext.fc_ino), le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex), ext4_ext_get_actual_len(ex)); if (ret < 0) break; ret = JBD2_FC_REPLAY_CONTINUE; fallthrough; case EXT4_FC_TAG_DEL_RANGE: case EXT4_FC_TAG_LINK: case EXT4_FC_TAG_UNLINK: case EXT4_FC_TAG_CREAT: case EXT4_FC_TAG_INODE: case EXT4_FC_TAG_PAD: state->fc_cur_tag++; state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, sizeof(tl) + le16_to_cpu(tl.fc_len)); break; case EXT4_FC_TAG_TAIL: state->fc_cur_tag++; memcpy(&tail, val, sizeof(tail)); state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, sizeof(tl) + offsetof(struct ext4_fc_tail, fc_crc)); if (le32_to_cpu(tail.fc_tid) == expected_tid && le32_to_cpu(tail.fc_crc) == state->fc_crc) { state->fc_replay_num_tags = state->fc_cur_tag; state->fc_regions_valid = state->fc_regions_used; } else { ret = state->fc_replay_num_tags ? JBD2_FC_REPLAY_STOP : -EFSBADCRC; } state->fc_crc = 0; break; case EXT4_FC_TAG_HEAD: memcpy(&head, val, sizeof(head)); if (le32_to_cpu(head.fc_features) & ~EXT4_FC_SUPPORTED_FEATURES) { ret = -EOPNOTSUPP; break; } if (le32_to_cpu(head.fc_tid) != expected_tid) { ret = JBD2_FC_REPLAY_STOP; break; } state->fc_cur_tag++; state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur, sizeof(tl) + le16_to_cpu(tl.fc_len)); break; default: ret = state->fc_replay_num_tags ? JBD2_FC_REPLAY_STOP : -ECANCELED; } if (ret < 0 || ret == JBD2_FC_REPLAY_STOP) break; } out_err: trace_ext4_fc_replay_scan(sb, ret, off); return ret; } /* * Main recovery path entry point. * The meaning of return codes is similar as above. */ static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh, enum passtype pass, int off, tid_t expected_tid) { struct super_block *sb = journal->j_private; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_fc_tl tl; __u8 *start, *end, *cur, *val; int ret = JBD2_FC_REPLAY_CONTINUE; struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state; struct ext4_fc_tail tail; if (pass == PASS_SCAN) { state->fc_current_pass = PASS_SCAN; return ext4_fc_replay_scan(journal, bh, off, expected_tid); } if (state->fc_current_pass != pass) { state->fc_current_pass = pass; sbi->s_mount_state |= EXT4_FC_REPLAY; } if (!sbi->s_fc_replay_state.fc_replay_num_tags) { jbd_debug(1, "Replay stops\n"); ext4_fc_set_bitmaps_and_counters(sb); return 0; } #ifdef CONFIG_EXT4_DEBUG if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) { pr_warn("Dropping fc block %d because max_replay set\n", off); return JBD2_FC_REPLAY_STOP; } #endif start = (u8 *)bh->b_data; end = (__u8 *)bh->b_data + journal->j_blocksize - 1; for (cur = start; cur < end; cur = cur + sizeof(tl) + le16_to_cpu(tl.fc_len)) { memcpy(&tl, cur, sizeof(tl)); val = cur + sizeof(tl); if (state->fc_replay_num_tags == 0) { ret = JBD2_FC_REPLAY_STOP; ext4_fc_set_bitmaps_and_counters(sb); break; } jbd_debug(3, "Replay phase, tag:%s\n", tag2str(le16_to_cpu(tl.fc_tag))); state->fc_replay_num_tags--; switch (le16_to_cpu(tl.fc_tag)) { case EXT4_FC_TAG_LINK: ret = ext4_fc_replay_link(sb, &tl, val); break; case EXT4_FC_TAG_UNLINK: ret = ext4_fc_replay_unlink(sb, &tl, val); break; case EXT4_FC_TAG_ADD_RANGE: ret = ext4_fc_replay_add_range(sb, &tl, val); break; case EXT4_FC_TAG_CREAT: ret = ext4_fc_replay_create(sb, &tl, val); break; case EXT4_FC_TAG_DEL_RANGE: ret = ext4_fc_replay_del_range(sb, &tl, val); break; case EXT4_FC_TAG_INODE: ret = ext4_fc_replay_inode(sb, &tl, val); break; case EXT4_FC_TAG_PAD: trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0, le16_to_cpu(tl.fc_len), 0); break; case EXT4_FC_TAG_TAIL: trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0, le16_to_cpu(tl.fc_len), 0); memcpy(&tail, val, sizeof(tail)); WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid); break; case EXT4_FC_TAG_HEAD: break; default: trace_ext4_fc_replay(sb, le16_to_cpu(tl.fc_tag), 0, le16_to_cpu(tl.fc_len), 0); ret = -ECANCELED; break; } if (ret < 0) break; ret = JBD2_FC_REPLAY_CONTINUE; } return ret; } void ext4_fc_init(struct super_block *sb, journal_t *journal) { /* * We set replay callback even if fast commit disabled because we may * could still have fast commit blocks that need to be replayed even if * fast commit has now been turned off. */ journal->j_fc_replay_callback = ext4_fc_replay; if (!test_opt2(sb, JOURNAL_FAST_COMMIT)) return; journal->j_fc_cleanup_callback = ext4_fc_cleanup; } static const char *fc_ineligible_reasons[] = { "Extended attributes changed", "Cross rename", "Journal flag changed", "Insufficient memory", "Swap boot", "Resize", "Dir renamed", "Falloc range op", "Data journalling", "FC Commit Failed" }; int ext4_fc_info_show(struct seq_file *seq, void *v) { struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private); struct ext4_fc_stats *stats = &sbi->s_fc_stats; int i; if (v != SEQ_START_TOKEN) return 0; seq_printf(seq, "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n", stats->fc_num_commits, stats->fc_ineligible_commits, stats->fc_numblks, div_u64(sbi->s_fc_avg_commit_time, 1000)); seq_puts(seq, "Ineligible reasons:\n"); for (i = 0; i < EXT4_FC_REASON_MAX; i++) seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i], stats->fc_ineligible_reason_count[i]); return 0; } int __init ext4_fc_init_dentry_cache(void) { ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update, SLAB_RECLAIM_ACCOUNT); if (ext4_fc_dentry_cachep == NULL) return -ENOMEM; return 0; }
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_UACCESS_H #define _ASM_X86_UACCESS_H /* * User space memory access functions */ #include <linux/compiler.h> #include <linux/kasan-checks.h> #include <linux/string.h> #include <asm/asm.h> #include <asm/page.h> #include <asm/smap.h> #include <asm/extable.h> /* * Test whether a block of memory is a valid user space address. * Returns 0 if the range is valid, nonzero otherwise. */ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, unsigned long limit) { /* * If we have used "sizeof()" for the size, * we know it won't overflow the limit (but * it might overflow the 'addr', so it's * important to subtract the size from the * limit, not add it to the address). */ if (__builtin_constant_p(size)) return unlikely(addr > limit - size); /* Arbitrary sizes? Be careful about overflow */ addr += size; if (unlikely(addr < size)) return true; return unlikely(addr > limit); } #define __range_not_ok(addr, size, limit) \ ({ \ __chk_user_ptr(addr); \ __chk_range_not_ok((unsigned long __force)(addr), size, limit); \ }) #ifdef CONFIG_DEBUG_ATOMIC_SLEEP static inline bool pagefault_disabled(void); # define WARN_ON_IN_IRQ() \ WARN_ON_ONCE(!in_task() && !pagefault_disabled()) #else # define WARN_ON_IN_IRQ() #endif /** * access_ok - Checks if a user space pointer is valid * @addr: User space pointer to start of block to check * @size: Size of block to check * * Context: User context only. This function may sleep if pagefaults are * enabled. * * Checks if a pointer to a block of memory in user space is valid. * * Note that, depending on architecture, this function probably just * checks that the pointer is in the user space range - after calling * this function, memory access functions may still return -EFAULT. * * Return: true (nonzero) if the memory block may be valid, false (zero) * if it is definitely invalid. */ #define access_ok(addr, size) \ ({ \ WARN_ON_IN_IRQ(); \ likely(!__range_not_ok(addr, size, TASK_SIZE_MAX)); \ }) extern int __get_user_1(void); extern int __get_user_2(void); extern int __get_user_4(void); extern int __get_user_8(void); extern int __get_user_nocheck_1(void); extern int __get_user_nocheck_2(void); extern int __get_user_nocheck_4(void); extern int __get_user_nocheck_8(void); extern int __get_user_bad(void); #define __uaccess_begin() stac() #define __uaccess_end() clac() #define __uaccess_begin_nospec() \ ({ \ stac(); \ barrier_nospec(); \ }) /* * This is the smallest unsigned integer type that can fit a value * (up to 'long long') */ #define __inttype(x) __typeof__( \ __typefits(x,char, \ __typefits(x,short, \ __typefits(x,int, \ __typefits(x,long,0ULL))))) #define __typefits(x,type,not) \ __builtin_choose_expr(sizeof(x)<=sizeof(type),(unsigned type)0,not) /* * This is used for both get_user() and __get_user() to expand to * the proper special function call that has odd calling conventions * due to returning both a value and an error, and that depends on * the size of the pointer passed in. * * Careful: we have to cast the result to the type of the pointer * for sign reasons. * * The use of _ASM_DX as the register specifier is a bit of a * simplification, as gcc only cares about it as the starting point * and not size: for a 64-bit value it will use %ecx:%edx on 32 bits * (%ecx being the next register in gcc's x86 register sequence), and * %rdx on 64 bits. * * Clang/LLVM cares about the size of the register, but still wants * the base register for something that ends up being a pair. */ #define do_get_user_call(fn,x,ptr) \ ({ \ int __ret_gu; \ register __inttype(*(ptr)) __val_gu asm("%"_ASM_DX); \ __chk_user_ptr(ptr); \ asm volatile("call __" #fn "_%P4" \ : "=a" (__ret_gu), "=r" (__val_gu), \ ASM_CALL_CONSTRAINT \ : "0" (ptr), "i" (sizeof(*(ptr)))); \ (x) = (__force __typeof__(*(ptr))) __val_gu; \ __builtin_expect(__ret_gu, 0); \ }) /** * get_user - Get a simple variable from user space. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Return: zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define get_user(x,ptr) ({ might_fault(); do_get_user_call(get_user,x,ptr); }) /** * __get_user - Get a simple variable from user space, with less checking. * @x: Variable to store result. * @ptr: Source address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple variable from user space to kernel * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and the result of * dereferencing @ptr must be assignable to @x without a cast. * * Caller must check the pointer with access_ok() before calling this * function. * * Return: zero on success, or -EFAULT on error. * On error, the variable @x is set to zero. */ #define __get_user(x,ptr) do_get_user_call(get_user_nocheck,x,ptr) #ifdef CONFIG_X86_32 #define __put_user_goto_u64(x, addr, label) \ asm_volatile_goto("\n" \ "1: movl %%eax,0(%1)\n" \ "2: movl %%edx,4(%1)\n" \ _ASM_EXTABLE_UA(1b, %l2) \ _ASM_EXTABLE_UA(2b, %l2) \ : : "A" (x), "r" (addr) \ : : label) #else #define __put_user_goto_u64(x, ptr, label) \ __put_user_goto(x, ptr, "q", "er", label) #endif extern void __put_user_bad(void); /* * Strange magic calling convention: pointer in %ecx, * value in %eax(:%edx), return value in %ecx. clobbers %rbx */ extern void __put_user_1(void); extern void __put_user_2(void); extern void __put_user_4(void); extern void __put_user_8(void); extern void __put_user_nocheck_1(void); extern void __put_user_nocheck_2(void); extern void __put_user_nocheck_4(void); extern void __put_user_nocheck_8(void); /* * ptr must be evaluated and assigned to the temporary __ptr_pu before * the assignment of x to __val_pu, to avoid any function calls * involved in the ptr expression (possibly implicitly generated due * to KASAN) from clobbering %ax. */ #define do_put_user_call(fn,x,ptr) \ ({ \ int __ret_pu; \ void __user *__ptr_pu; \ register __typeof__(*(ptr)) __val_pu asm("%"_ASM_AX); \ __chk_user_ptr(ptr); \ __ptr_pu = (ptr); \ __val_pu = (x); \ asm volatile("call __" #fn "_%P[size]" \ : "=c" (__ret_pu), \ ASM_CALL_CONSTRAINT \ : "0" (__ptr_pu), \ "r" (__val_pu), \ [size] "i" (sizeof(*(ptr))) \ :"ebx"); \ __builtin_expect(__ret_pu, 0); \ }) /** * put_user - Write a simple value into user space. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Return: zero on success, or -EFAULT on error. */ #define put_user(x, ptr) ({ might_fault(); do_put_user_call(put_user,x,ptr); }) /** * __put_user - Write a simple value into user space, with less checking. * @x: Value to copy to user space. * @ptr: Destination address, in user space. * * Context: User context only. This function may sleep if pagefaults are * enabled. * * This macro copies a single simple value from kernel space to user * space. It supports simple types like char and int, but not larger * data types like structures or arrays. * * @ptr must have pointer-to-simple-variable type, and @x must be assignable * to the result of dereferencing @ptr. * * Caller must check the pointer with access_ok() before calling this * function. * * Return: zero on success, or -EFAULT on error. */ #define __put_user(x, ptr) do_put_user_call(put_user_nocheck,x,ptr) #define __put_user_size(x, ptr, size, label) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __put_user_goto(x, ptr, "b", "iq", label); \ break; \ case 2: \ __put_user_goto(x, ptr, "w", "ir", label); \ break; \ case 4: \ __put_user_goto(x, ptr, "l", "ir", label); \ break; \ case 8: \ __put_user_goto_u64(x, ptr, label); \ break; \ default: \ __put_user_bad(); \ } \ } while (0) #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #ifdef CONFIG_X86_32 #define __get_user_asm_u64(x, ptr, label) do { \ unsigned int __gu_low, __gu_high; \ const unsigned int __user *__gu_ptr; \ __gu_ptr = (const void __user *)(ptr); \ __get_user_asm(__gu_low, __gu_ptr, "l", "=r", label); \ __get_user_asm(__gu_high, __gu_ptr+1, "l", "=r", label); \ (x) = ((unsigned long long)__gu_high << 32) | __gu_low; \ } while (0) #else #define __get_user_asm_u64(x, ptr, label) \ __get_user_asm(x, ptr, "q", "=r", label) #endif #define __get_user_size(x, ptr, size, label) \ do { \ __chk_user_ptr(ptr); \ switch (size) { \ unsigned char x_u8__; \ case 1: \ __get_user_asm(x_u8__, ptr, "b", "=q", label); \ (x) = x_u8__; \ break; \ case 2: \ __get_user_asm(x, ptr, "w", "=r", label); \ break; \ case 4: \ __get_user_asm(x, ptr, "l", "=r", label); \ break; \ case 8: \ __get_user_asm_u64(x, ptr, label); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, itype, ltype, label) \ asm_volatile_goto("\n" \ "1: mov"itype" %[umem],%[output]\n" \ _ASM_EXTABLE_UA(1b, %l2) \ : [output] ltype(x) \ : [umem] "m" (__m(addr)) \ : : label) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #ifdef CONFIG_X86_32 #define __get_user_asm_u64(x, ptr, retval) \ ({ \ __typeof__(ptr) __ptr = (ptr); \ asm volatile("\n" \ "1: movl %[lowbits],%%eax\n" \ "2: movl %[highbits],%%edx\n" \ "3:\n" \ ".section .fixup,\"ax\"\n" \ "4: mov %[efault],%[errout]\n" \ " xorl %%eax,%%eax\n" \ " xorl %%edx,%%edx\n" \ " jmp 3b\n" \ ".previous\n" \ _ASM_EXTABLE_UA(1b, 4b) \ _ASM_EXTABLE_UA(2b, 4b) \ : [errout] "=r" (retval), \ [output] "=&A"(x) \ : [lowbits] "m" (__m(__ptr)), \ [highbits] "m" __m(((u32 __user *)(__ptr)) + 1), \ [efault] "i" (-EFAULT), "0" (retval)); \ }) #else #define __get_user_asm_u64(x, ptr, retval) \ __get_user_asm(x, ptr, retval, "q", "=r") #endif #define __get_user_size(x, ptr, size, retval) \ do { \ unsigned char x_u8__; \ \ retval = 0; \ __chk_user_ptr(ptr); \ switch (size) { \ case 1: \ __get_user_asm(x_u8__, ptr, retval, "b", "=q"); \ (x) = x_u8__; \ break; \ case 2: \ __get_user_asm(x, ptr, retval, "w", "=r"); \ break; \ case 4: \ __get_user_asm(x, ptr, retval, "l", "=r"); \ break; \ case 8: \ __get_user_asm_u64(x, ptr, retval); \ break; \ default: \ (x) = __get_user_bad(); \ } \ } while (0) #define __get_user_asm(x, addr, err, itype, ltype) \ asm volatile("\n" \ "1: mov"itype" %[umem],%[output]\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: mov %[efault],%[errout]\n" \ " xorl %k[output],%k[output]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_UA(1b, 3b) \ : [errout] "=r" (err), \ [output] ltype(x) \ : [umem] "m" (__m(addr)), \ [efault] "i" (-EFAULT), "0" (err)) #endif // CONFIG_CC_ASM_GOTO_OUTPUT /* FIXME: this hack is definitely wrong -AK */ struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct __user *)(x)) /* * Tell gcc we read from memory instead of writing: this is because * we do not write to any memory gcc knows about, so there are no * aliasing issues. */ #define __put_user_goto(x, addr, itype, ltype, label) \ asm_volatile_goto("\n" \ "1: mov"itype" %0,%1\n" \ _ASM_EXTABLE_UA(1b, %l2) \ : : ltype(x), "m" (__m(addr)) \ : : label) extern unsigned long copy_from_user_nmi(void *to, const void __user *from, unsigned long n); extern __must_check long strncpy_from_user(char *dst, const char __user *src, long count); extern __must_check long strnlen_user(const char __user *str, long n); unsigned long __must_check clear_user(void __user *mem, unsigned long len); unsigned long __must_check __clear_user(void __user *mem, unsigned long len); #ifdef CONFIG_ARCH_HAS_COPY_MC unsigned long __must_check copy_mc_to_kernel(void *to, const void *from, unsigned len); #define copy_mc_to_kernel copy_mc_to_kernel unsigned long __must_check copy_mc_to_user(void *to, const void *from, unsigned len); #endif /* * movsl can be slow when source and dest are not both 8-byte aligned */ #ifdef CONFIG_X86_INTEL_USERCOPY extern struct movsl_mask { int mask; } ____cacheline_aligned_in_smp movsl_mask; #endif #define ARCH_HAS_NOCACHE_UACCESS 1 #ifdef CONFIG_X86_32 # include <asm/uaccess_32.h> #else # include <asm/uaccess_64.h> #endif /* * The "unsafe" user accesses aren't really "unsafe", but the naming * is a big fat warning: you have to not only do the access_ok() * checking before using them, but you have to surround them with the * user_access_begin/end() pair. */ static __must_check __always_inline bool user_access_begin(const void __user *ptr, size_t len) { if (unlikely(!access_ok(ptr,len))) return 0; __uaccess_begin_nospec(); return 1; } #define user_access_begin(a,b) user_access_begin(a,b) #define user_access_end() __uaccess_end() #define user_access_save() smap_save() #define user_access_restore(x) smap_restore(x) #define unsafe_put_user(x, ptr, label) \ __put_user_size((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)), label) #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define unsafe_get_user(x, ptr, err_label) \ do { \ __inttype(*(ptr)) __gu_val; \ __get_user_size(__gu_val, (ptr), sizeof(*(ptr)), err_label); \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ } while (0) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define unsafe_get_user(x, ptr, err_label) \ do { \ int __gu_err; \ __inttype(*(ptr)) __gu_val; \ __get_user_size(__gu_val, (ptr), sizeof(*(ptr)), __gu_err); \ (x) = (__force __typeof__(*(ptr)))__gu_val; \ if (unlikely(__gu_err)) goto err_label; \ } while (0) #endif // CONFIG_CC_HAS_ASM_GOTO_OUTPUT /* * We want the unsafe accessors to always be inlined and use * the error labels - thus the macro games. */ #define unsafe_copy_loop(dst, src, len, type, label) \ while (len >= sizeof(type)) { \ unsafe_put_user(*(type *)(src),(type __user *)(dst),label); \ dst += sizeof(type); \ src += sizeof(type); \ len -= sizeof(type); \ } #define unsafe_copy_to_user(_dst,_src,_len,label) \ do { \ char __user *__ucu_dst = (_dst); \ const char *__ucu_src = (_src); \ size_t __ucu_len = (_len); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u64, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u32, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u16, label); \ unsafe_copy_loop(__ucu_dst, __ucu_src, __ucu_len, u8, label); \ } while (0) #define HAVE_GET_KERNEL_NOFAULT #ifdef CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __get_kernel_nofault(dst, src, type, err_label) \ __get_user_size(*((type *)(dst)), (__force type __user *)(src), \ sizeof(type), err_label) #else // !CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __get_kernel_nofault(dst, src, type, err_label) \ do { \ int __kr_err; \ \ __get_user_size(*((type *)(dst)), (__force type __user *)(src), \ sizeof(type), __kr_err); \ if (unlikely(__kr_err)) \ goto err_label; \ } while (0) #endif // CONFIG_CC_HAS_ASM_GOTO_OUTPUT #define __put_kernel_nofault(dst, src, type, err_label) \ __put_user_size(*((type *)(src)), (__force type __user *)(dst), \ sizeof(type), err_label) #endif /* _ASM_X86_UACCESS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _linux_POSIX_TIMERS_H #define _linux_POSIX_TIMERS_H #include <linux/spinlock.h> #include <linux/list.h> #include <linux/alarmtimer.h> #include <linux/timerqueue.h> #include <linux/task_work.h> struct kernel_siginfo; struct task_struct; /* * Bit fields within a clockid: * * The most significant 29 bits hold either a pid or a file descriptor. * * Bit 2 indicates whether a cpu clock refers to a thread or a process. * * Bits 1 and 0 give the type: PROF=0, VIRT=1, SCHED=2, or FD=3. * * A clockid is invalid if bits 2, 1, and 0 are all set. */ #define CPUCLOCK_PID(clock) ((pid_t) ~((clock) >> 3)) #define CPUCLOCK_PERTHREAD(clock) \ (((clock) & (clockid_t) CPUCLOCK_PERTHREAD_MASK) != 0) #define CPUCLOCK_PERTHREAD_MASK 4 #define CPUCLOCK_WHICH(clock) ((clock) & (clockid_t) CPUCLOCK_CLOCK_MASK) #define CPUCLOCK_CLOCK_MASK 3 #define CPUCLOCK_PROF 0 #define CPUCLOCK_VIRT 1 #define CPUCLOCK_SCHED 2 #define CPUCLOCK_MAX 3 #define CLOCKFD CPUCLOCK_MAX #define CLOCKFD_MASK (CPUCLOCK_PERTHREAD_MASK|CPUCLOCK_CLOCK_MASK) static inline clockid_t make_process_cpuclock(const unsigned int pid, const clockid_t clock) { return ((~pid) << 3) | clock; } static inline clockid_t make_thread_cpuclock(const unsigned int tid, const clockid_t clock) { return make_process_cpuclock(tid, clock | CPUCLOCK_PERTHREAD_MASK); } static inline clockid_t fd_to_clockid(const int fd) { return make_process_cpuclock((unsigned int) fd, CLOCKFD); } static inline int clockid_to_fd(const clockid_t clk) { return ~(clk >> 3); } #ifdef CONFIG_POSIX_TIMERS /** * cpu_timer - Posix CPU timer representation for k_itimer * @node: timerqueue node to queue in the task/sig * @head: timerqueue head on which this timer is queued * @task: Pointer to target task * @elist: List head for the expiry list * @firing: Timer is currently firing */ struct cpu_timer { struct timerqueue_node node; struct timerqueue_head *head; struct pid *pid; struct list_head elist; int firing; }; static inline bool cpu_timer_enqueue(struct timerqueue_head *head, struct cpu_timer *ctmr) { ctmr->head = head; return timerqueue_add(head, &ctmr->node); } static inline void cpu_timer_dequeue(struct cpu_timer *ctmr) { if (ctmr->head) { timerqueue_del(ctmr->head, &ctmr->node); ctmr->head = NULL; } } static inline u64 cpu_timer_getexpires(struct cpu_timer *ctmr) { return ctmr->node.expires; } static inline void cpu_timer_setexpires(struct cpu_timer *ctmr, u64 exp) { ctmr->node.expires = exp; } /** * posix_cputimer_base - Container per posix CPU clock * @nextevt: Earliest-expiration cache * @tqhead: timerqueue head for cpu_timers */ struct posix_cputimer_base { u64 nextevt; struct timerqueue_head tqhead; }; /** * posix_cputimers - Container for posix CPU timer related data * @bases: Base container for posix CPU clocks * @timers_active: Timers are queued. * @expiry_active: Timer expiry is active. Used for * process wide timers to avoid multiple * task trying to handle expiry concurrently * * Used in task_struct and signal_struct */ struct posix_cputimers { struct posix_cputimer_base bases[CPUCLOCK_MAX]; unsigned int timers_active; unsigned int expiry_active; }; /** * posix_cputimers_work - Container for task work based posix CPU timer expiry * @work: The task work to be scheduled * @scheduled: @work has been scheduled already, no further processing */ struct posix_cputimers_work { struct callback_head work; unsigned int scheduled; }; static inline void posix_cputimers_init(struct posix_cputimers *pct) { memset(pct, 0, sizeof(*pct)); pct->bases[0].nextevt = U64_MAX; pct->bases[1].nextevt = U64_MAX; pct->bases[2].nextevt = U64_MAX; } void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit); static inline void posix_cputimers_rt_watchdog(struct posix_cputimers *pct, u64 runtime) { pct->bases[CPUCLOCK_SCHED].nextevt = runtime; } /* Init task static initializer */ #define INIT_CPU_TIMERBASE(b) { \ .nextevt = U64_MAX, \ } #define INIT_CPU_TIMERBASES(b) { \ INIT_CPU_TIMERBASE(b[0]), \ INIT_CPU_TIMERBASE(b[1]), \ INIT_CPU_TIMERBASE(b[2]), \ } #define INIT_CPU_TIMERS(s) \ .posix_cputimers = { \ .bases = INIT_CPU_TIMERBASES(s.posix_cputimers.bases), \ }, #else struct posix_cputimers { }; struct cpu_timer { }; #define INIT_CPU_TIMERS(s) static inline void posix_cputimers_init(struct posix_cputimers *pct) { } static inline void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) { } #endif #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK void clear_posix_cputimers_work(struct task_struct *p); void posix_cputimers_init_work(void); #else static inline void clear_posix_cputimers_work(struct task_struct *p) { } static inline void posix_cputimers_init_work(void) { } #endif #define REQUEUE_PENDING 1 /** * struct k_itimer - POSIX.1b interval timer structure. * @list: List head for binding the timer to signals->posix_timers * @t_hash: Entry in the posix timer hash table * @it_lock: Lock protecting the timer * @kclock: Pointer to the k_clock struct handling this timer * @it_clock: The posix timer clock id * @it_id: The posix timer id for identifying the timer * @it_active: Marker that timer is active * @it_overrun: The overrun counter for pending signals * @it_overrun_last: The overrun at the time of the last delivered signal * @it_requeue_pending: Indicator that timer waits for being requeued on * signal delivery * @it_sigev_notify: The notify word of sigevent struct for signal delivery * @it_interval: The interval for periodic timers * @it_signal: Pointer to the creators signal struct * @it_pid: The pid of the process/task targeted by the signal * @it_process: The task to wakeup on clock_nanosleep (CPU timers) * @sigq: Pointer to preallocated sigqueue * @it: Union representing the various posix timer type * internals. * @rcu: RCU head for freeing the timer. */ struct k_itimer { struct list_head list; struct hlist_node t_hash; spinlock_t it_lock; const struct k_clock *kclock; clockid_t it_clock; timer_t it_id; int it_active; s64 it_overrun; s64 it_overrun_last; int it_requeue_pending; int it_sigev_notify; ktime_t it_interval; struct signal_struct *it_signal; union { struct pid *it_pid; struct task_struct *it_process; }; struct sigqueue *sigq; union { struct { struct hrtimer timer; } real; struct cpu_timer cpu; struct { struct alarm alarmtimer; } alarm; } it; struct rcu_head rcu; }; void run_posix_cpu_timers(void); void posix_cpu_timers_exit(struct task_struct *task); void posix_cpu_timers_exit_group(struct task_struct *task); void set_process_cpu_timer(struct task_struct *task, unsigned int clock_idx, u64 *newval, u64 *oldval); void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new); void posixtimer_rearm(struct kernel_siginfo *info); #endif
1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 // SPDX-License-Identifier: GPL-2.0-only /* * Implementation of the kernel access vector cache (AVC). * * Authors: Stephen Smalley, <sds@tycho.nsa.gov> * James Morris <jmorris@redhat.com> * * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> * Replaced the avc_lock spinlock by RCU. * * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> */ #include <linux/types.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/dcache.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/percpu.h> #include <linux/list.h> #include <net/sock.h> #include <linux/un.h> #include <net/af_unix.h> #include <linux/ip.h> #include <linux/audit.h> #include <linux/ipv6.h> #include <net/ipv6.h> #include "avc.h" #include "avc_ss.h" #include "classmap.h" #define CREATE_TRACE_POINTS #include <trace/events/avc.h> #define AVC_CACHE_SLOTS 512 #define AVC_DEF_CACHE_THRESHOLD 512 #define AVC_CACHE_RECLAIM 16 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) #else #define avc_cache_stats_incr(field) do {} while (0) #endif struct avc_entry { u32 ssid; u32 tsid; u16 tclass; struct av_decision avd; struct avc_xperms_node *xp_node; }; struct avc_node { struct avc_entry ae; struct hlist_node list; /* anchored in avc_cache->slots[i] */ struct rcu_head rhead; }; struct avc_xperms_decision_node { struct extended_perms_decision xpd; struct list_head xpd_list; /* list of extended_perms_decision */ }; struct avc_xperms_node { struct extended_perms xp; struct list_head xpd_head; /* list head of extended_perms_decision */ }; struct avc_cache { struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ atomic_t lru_hint; /* LRU hint for reclaim scan */ atomic_t active_nodes; u32 latest_notif; /* latest revocation notification */ }; struct avc_callback_node { int (*callback) (u32 event); u32 events; struct avc_callback_node *next; }; #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; #endif struct selinux_avc { unsigned int avc_cache_threshold; struct avc_cache avc_cache; }; static struct selinux_avc selinux_avc; void selinux_avc_init(struct selinux_avc **avc) { int i; selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; for (i = 0; i < AVC_CACHE_SLOTS; i++) { INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); } atomic_set(&selinux_avc.avc_cache.active_nodes, 0); atomic_set(&selinux_avc.avc_cache.lru_hint, 0); *avc = &selinux_avc; } unsigned int avc_get_cache_threshold(struct selinux_avc *avc) { return avc->avc_cache_threshold; } void avc_set_cache_threshold(struct selinux_avc *avc, unsigned int cache_threshold) { avc->avc_cache_threshold = cache_threshold; } static struct avc_callback_node *avc_callbacks; static struct kmem_cache *avc_node_cachep; static struct kmem_cache *avc_xperms_data_cachep; static struct kmem_cache *avc_xperms_decision_cachep; static struct kmem_cache *avc_xperms_cachep; static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) { return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); } /** * avc_init - Initialize the AVC. * * Initialize the access vector cache. */ void __init avc_init(void) { avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 0, SLAB_PANIC, NULL); avc_xperms_cachep = kmem_cache_create("avc_xperms_node", sizeof(struct avc_xperms_node), 0, SLAB_PANIC, NULL); avc_xperms_decision_cachep = kmem_cache_create( "avc_xperms_decision_node", sizeof(struct avc_xperms_decision_node), 0, SLAB_PANIC, NULL); avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data", sizeof(struct extended_perms_data), 0, SLAB_PANIC, NULL); } int avc_get_hash_stats(struct selinux_avc *avc, char *page) { int i, chain_len, max_chain_len, slots_used; struct avc_node *node; struct hlist_head *head; rcu_read_lock(); slots_used = 0; max_chain_len = 0; for (i = 0; i < AVC_CACHE_SLOTS; i++) { head = &avc->avc_cache.slots[i]; if (!hlist_empty(head)) { slots_used++; chain_len = 0; hlist_for_each_entry_rcu(node, head, list) chain_len++; if (chain_len > max_chain_len) max_chain_len = chain_len; } } rcu_read_unlock(); return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" "longest chain: %d\n", atomic_read(&avc->avc_cache.active_nodes), slots_used, AVC_CACHE_SLOTS, max_chain_len); } /* * using a linked list for extended_perms_decision lookup because the list is * always small. i.e. less than 5, typically 1 */ static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, struct avc_xperms_node *xp_node) { struct avc_xperms_decision_node *xpd_node; list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { if (xpd_node->xpd.driver == driver) return &xpd_node->xpd; } return NULL; } static inline unsigned int avc_xperms_has_perm(struct extended_perms_decision *xpd, u8 perm, u8 which) { unsigned int rc = 0; if ((which == XPERMS_ALLOWED) && (xpd->used & XPERMS_ALLOWED)) rc = security_xperm_test(xpd->allowed->p, perm); else if ((which == XPERMS_AUDITALLOW) && (xpd->used & XPERMS_AUDITALLOW)) rc = security_xperm_test(xpd->auditallow->p, perm); else if ((which == XPERMS_DONTAUDIT) && (xpd->used & XPERMS_DONTAUDIT)) rc = security_xperm_test(xpd->dontaudit->p, perm); return rc; } static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, u8 driver, u8 perm) { struct extended_perms_decision *xpd; security_xperm_set(xp_node->xp.drivers.p, driver); xpd = avc_xperms_decision_lookup(driver, xp_node); if (xpd && xpd->allowed) security_xperm_set(xpd->allowed->p, perm); } static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) { struct extended_perms_decision *xpd; xpd = &xpd_node->xpd; if (xpd->allowed) kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); if (xpd->auditallow) kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); if (xpd->dontaudit) kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); kmem_cache_free(avc_xperms_decision_cachep, xpd_node); } static void avc_xperms_free(struct avc_xperms_node *xp_node) { struct avc_xperms_decision_node *xpd_node, *tmp; if (!xp_node) return; list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { list_del(&xpd_node->xpd_list); avc_xperms_decision_free(xpd_node); } kmem_cache_free(avc_xperms_cachep, xp_node); } static void avc_copy_xperms_decision(struct extended_perms_decision *dest, struct extended_perms_decision *src) { dest->driver = src->driver; dest->used = src->used; if (dest->used & XPERMS_ALLOWED) memcpy(dest->allowed->p, src->allowed->p, sizeof(src->allowed->p)); if (dest->used & XPERMS_AUDITALLOW) memcpy(dest->auditallow->p, src->auditallow->p, sizeof(src->auditallow->p)); if (dest->used & XPERMS_DONTAUDIT) memcpy(dest->dontaudit->p, src->dontaudit->p, sizeof(src->dontaudit->p)); } /* * similar to avc_copy_xperms_decision, but only copy decision * information relevant to this perm */ static inline void avc_quick_copy_xperms_decision(u8 perm, struct extended_perms_decision *dest, struct extended_perms_decision *src) { /* * compute index of the u32 of the 256 bits (8 u32s) that contain this * command permission */ u8 i = perm >> 5; dest->used = src->used; if (dest->used & XPERMS_ALLOWED) dest->allowed->p[i] = src->allowed->p[i]; if (dest->used & XPERMS_AUDITALLOW) dest->auditallow->p[i] = src->auditallow->p[i]; if (dest->used & XPERMS_DONTAUDIT) dest->dontaudit->p[i] = src->dontaudit->p[i]; } static struct avc_xperms_decision_node *avc_xperms_decision_alloc(u8 which) { struct avc_xperms_decision_node *xpd_node; struct extended_perms_decision *xpd; xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd_node) return NULL; xpd = &xpd_node->xpd; if (which & XPERMS_ALLOWED) { xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd->allowed) goto error; } if (which & XPERMS_AUDITALLOW) { xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd->auditallow) goto error; } if (which & XPERMS_DONTAUDIT) { xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xpd->dontaudit) goto error; } return xpd_node; error: avc_xperms_decision_free(xpd_node); return NULL; } static int avc_add_xperms_decision(struct avc_node *node, struct extended_perms_decision *src) { struct avc_xperms_decision_node *dest_xpd; node->ae.xp_node->xp.len++; dest_xpd = avc_xperms_decision_alloc(src->used); if (!dest_xpd) return -ENOMEM; avc_copy_xperms_decision(&dest_xpd->xpd, src); list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); return 0; } static struct avc_xperms_node *avc_xperms_alloc(void) { struct avc_xperms_node *xp_node; xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!xp_node) return xp_node; INIT_LIST_HEAD(&xp_node->xpd_head); return xp_node; } static int avc_xperms_populate(struct avc_node *node, struct avc_xperms_node *src) { struct avc_xperms_node *dest; struct avc_xperms_decision_node *dest_xpd; struct avc_xperms_decision_node *src_xpd; if (src->xp.len == 0) return 0; dest = avc_xperms_alloc(); if (!dest) return -ENOMEM; memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); dest->xp.len = src->xp.len; /* for each source xpd allocate a destination xpd and copy */ list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); if (!dest_xpd) goto error; avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); list_add(&dest_xpd->xpd_list, &dest->xpd_head); } node->ae.xp_node = dest; return 0; error: avc_xperms_free(dest); return -ENOMEM; } static inline u32 avc_xperms_audit_required(u32 requested, struct av_decision *avd, struct extended_perms_decision *xpd, u8 perm, int result, u32 *deniedp) { u32 denied, audited; denied = requested & ~avd->allowed; if (unlikely(denied)) { audited = denied & avd->auditdeny; if (audited && xpd) { if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) audited &= ~requested; } } else if (result) { audited = denied = requested; } else { audited = requested & avd->auditallow; if (audited && xpd) { if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) audited &= ~requested; } } *deniedp = denied; return audited; } static inline int avc_xperms_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, struct extended_perms_decision *xpd, u8 perm, int result, struct common_audit_data *ad) { u32 audited, denied; audited = avc_xperms_audit_required( requested, avd, xpd, perm, result, &denied); if (likely(!audited)) return 0; return slow_avc_audit(state, ssid, tsid, tclass, requested, audited, denied, result, ad); } static void avc_node_free(struct rcu_head *rhead) { struct avc_node *node = container_of(rhead, struct avc_node, rhead); avc_xperms_free(node->ae.xp_node); kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); } static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node) { hlist_del_rcu(&node->list); call_rcu(&node->rhead, avc_node_free); atomic_dec(&avc->avc_cache.active_nodes); } static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node) { avc_xperms_free(node->ae.xp_node); kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); atomic_dec(&avc->avc_cache.active_nodes); } static void avc_node_replace(struct selinux_avc *avc, struct avc_node *new, struct avc_node *old) { hlist_replace_rcu(&old->list, &new->list); call_rcu(&old->rhead, avc_node_free); atomic_dec(&avc->avc_cache.active_nodes); } static inline int avc_reclaim_node(struct selinux_avc *avc) { struct avc_node *node; int hvalue, try, ecx; unsigned long flags; struct hlist_head *head; spinlock_t *lock; for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); head = &avc->avc_cache.slots[hvalue]; lock = &avc->avc_cache.slots_lock[hvalue]; if (!spin_trylock_irqsave(lock, flags)) continue; rcu_read_lock(); hlist_for_each_entry(node, head, list) { avc_node_delete(avc, node); avc_cache_stats_incr(reclaims); ecx++; if (ecx >= AVC_CACHE_RECLAIM) { rcu_read_unlock(); spin_unlock_irqrestore(lock, flags); goto out; } } rcu_read_unlock(); spin_unlock_irqrestore(lock, flags); } out: return ecx; } static struct avc_node *avc_alloc_node(struct selinux_avc *avc) { struct avc_node *node; node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN); if (!node) goto out; INIT_HLIST_NODE(&node->list); avc_cache_stats_incr(allocations); if (atomic_inc_return(&avc->avc_cache.active_nodes) > avc->avc_cache_threshold) avc_reclaim_node(avc); out: return node; } static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) { node->ae.ssid = ssid; node->ae.tsid = tsid; node->ae.tclass = tclass; memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); } static inline struct avc_node *avc_search_node(struct selinux_avc *avc, u32 ssid, u32 tsid, u16 tclass) { struct avc_node *node, *ret = NULL; int hvalue; struct hlist_head *head; hvalue = avc_hash(ssid, tsid, tclass); head = &avc->avc_cache.slots[hvalue]; hlist_for_each_entry_rcu(node, head, list) { if (ssid == node->ae.ssid && tclass == node->ae.tclass && tsid == node->ae.tsid) { ret = node; break; } } return ret; } /** * avc_lookup - Look up an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * * Look up an AVC entry that is valid for the * (@ssid, @tsid), interpreting the permissions * based on @tclass. If a valid AVC entry exists, * then this function returns the avc_node. * Otherwise, this function returns NULL. */ static struct avc_node *avc_lookup(struct selinux_avc *avc, u32 ssid, u32 tsid, u16 tclass) { struct avc_node *node; avc_cache_stats_incr(lookups); node = avc_search_node(avc, ssid, tsid, tclass); if (node) return node; avc_cache_stats_incr(misses); return NULL; } static int avc_latest_notif_update(struct selinux_avc *avc, int seqno, int is_insert) { int ret = 0; static DEFINE_SPINLOCK(notif_lock); unsigned long flag; spin_lock_irqsave(&notif_lock, flag); if (is_insert) { if (seqno < avc->avc_cache.latest_notif) { pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", seqno, avc->avc_cache.latest_notif); ret = -EAGAIN; } } else { if (seqno > avc->avc_cache.latest_notif) avc->avc_cache.latest_notif = seqno; } spin_unlock_irqrestore(&notif_lock, flag); return ret; } /** * avc_insert - Insert an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @avd: resulting av decision * @xp_node: resulting extended permissions * * Insert an AVC entry for the SID pair * (@ssid, @tsid) and class @tclass. * The access vectors and the sequence number are * normally provided by the security server in * response to a security_compute_av() call. If the * sequence number @avd->seqno is not less than the latest * revocation notification, then the function copies * the access vectors into a cache entry, returns * avc_node inserted. Otherwise, this function returns NULL. */ static struct avc_node *avc_insert(struct selinux_avc *avc, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct avc_xperms_node *xp_node) { struct avc_node *pos, *node = NULL; int hvalue; unsigned long flag; spinlock_t *lock; struct hlist_head *head; if (avc_latest_notif_update(avc, avd->seqno, 1)) return NULL; node = avc_alloc_node(avc); if (!node) return NULL; avc_node_populate(node, ssid, tsid, tclass, avd); if (avc_xperms_populate(node, xp_node)) { avc_node_kill(avc, node); return NULL; } hvalue = avc_hash(ssid, tsid, tclass); head = &avc->avc_cache.slots[hvalue]; lock = &avc->avc_cache.slots_lock[hvalue]; spin_lock_irqsave(lock, flag); hlist_for_each_entry(pos, head, list) { if (pos->ae.ssid == ssid && pos->ae.tsid == tsid && pos->ae.tclass == tclass) { avc_node_replace(avc, node, pos); goto found; } } hlist_add_head_rcu(&node->list, head); found: spin_unlock_irqrestore(lock, flag); return node; } /** * avc_audit_pre_callback - SELinux specific information * will be called by generic audit code * @ab: the audit buffer * @a: audit_data */ static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) { struct common_audit_data *ad = a; struct selinux_audit_data *sad = ad->selinux_audit_data; u32 av = sad->audited; const char **perms; int i, perm; audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); if (av == 0) { audit_log_format(ab, " null"); return; } perms = secclass_map[sad->tclass-1].perms; audit_log_format(ab, " {"); i = 0; perm = 1; while (i < (sizeof(av) * 8)) { if ((perm & av) && perms[i]) { audit_log_format(ab, " %s", perms[i]); av &= ~perm; } i++; perm <<= 1; } if (av) audit_log_format(ab, " 0x%x", av); audit_log_format(ab, " } for "); } /** * avc_audit_post_callback - SELinux specific information * will be called by generic audit code * @ab: the audit buffer * @a: audit_data */ static void avc_audit_post_callback(struct audit_buffer *ab, void *a) { struct common_audit_data *ad = a; struct selinux_audit_data *sad = ad->selinux_audit_data; char *scontext = NULL; char *tcontext = NULL; const char *tclass = NULL; u32 scontext_len; u32 tcontext_len; int rc; rc = security_sid_to_context(sad->state, sad->ssid, &scontext, &scontext_len); if (rc) audit_log_format(ab, " ssid=%d", sad->ssid); else audit_log_format(ab, " scontext=%s", scontext); rc = security_sid_to_context(sad->state, sad->tsid, &tcontext, &tcontext_len); if (rc) audit_log_format(ab, " tsid=%d", sad->tsid); else audit_log_format(ab, " tcontext=%s", tcontext); tclass = secclass_map[sad->tclass-1].name; audit_log_format(ab, " tclass=%s", tclass); if (sad->denied) audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); trace_selinux_audited(sad, scontext, tcontext, tclass); kfree(tcontext); kfree(scontext); /* in case of invalid context report also the actual context string */ rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext, &scontext_len); if (!rc && scontext) { if (scontext_len && scontext[scontext_len - 1] == '\0') scontext_len--; audit_log_format(ab, " srawcon="); audit_log_n_untrustedstring(ab, scontext, scontext_len); kfree(scontext); } rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext, &scontext_len); if (!rc && scontext) { if (scontext_len && scontext[scontext_len - 1] == '\0') scontext_len--; audit_log_format(ab, " trawcon="); audit_log_n_untrustedstring(ab, scontext, scontext_len); kfree(scontext); } } /* This is the slow part of avc audit with big stack footprint */ noinline int slow_avc_audit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u32 audited, u32 denied, int result, struct common_audit_data *a) { struct common_audit_data stack_data; struct selinux_audit_data sad; if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) return -EINVAL; if (!a) { a = &stack_data; a->type = LSM_AUDIT_DATA_NONE; } sad.tclass = tclass; sad.requested = requested; sad.ssid = ssid; sad.tsid = tsid; sad.audited = audited; sad.denied = denied; sad.result = result; sad.state = state; a->selinux_audit_data = &sad; common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); return 0; } /** * avc_add_callback - Register a callback for security events. * @callback: callback function * @events: security events * * Register a callback function for events in the set @events. * Returns %0 on success or -%ENOMEM if insufficient memory * exists to add the callback. */ int __init avc_add_callback(int (*callback)(u32 event), u32 events) { struct avc_callback_node *c; int rc = 0; c = kmalloc(sizeof(*c), GFP_KERNEL); if (!c) { rc = -ENOMEM; goto out; } c->callback = callback; c->events = events; c->next = avc_callbacks; avc_callbacks = c; out: return rc; } /** * avc_update_node Update an AVC entry * @event : Updating event * @perms : Permission mask bits * @ssid,@tsid,@tclass : identifier of an AVC entry * @seqno : sequence number when decision was made * @xpd: extended_perms_decision to be added to the node * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0. * * if a valid AVC entry doesn't exist,this function returns -ENOENT. * if kmalloc() called internal returns NULL, this function returns -ENOMEM. * otherwise, this function updates the AVC entry. The original AVC-entry object * will release later by RCU. */ static int avc_update_node(struct selinux_avc *avc, u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno, struct extended_perms_decision *xpd, u32 flags) { int hvalue, rc = 0; unsigned long flag; struct avc_node *pos, *node, *orig = NULL; struct hlist_head *head; spinlock_t *lock; /* * If we are in a non-blocking code path, e.g. VFS RCU walk, * then we must not add permissions to a cache entry * because we will not audit the denial. Otherwise, * during the subsequent blocking retry (e.g. VFS ref walk), we * will find the permissions already granted in the cache entry * and won't audit anything at all, leading to silent denials in * permissive mode that only appear when in enforcing mode. * * See the corresponding handling of MAY_NOT_BLOCK in avc_audit() * and selinux_inode_permission(). */ if (flags & AVC_NONBLOCKING) return 0; node = avc_alloc_node(avc); if (!node) { rc = -ENOMEM; goto out; } /* Lock the target slot */ hvalue = avc_hash(ssid, tsid, tclass); head = &avc->avc_cache.slots[hvalue]; lock = &avc->avc_cache.slots_lock[hvalue]; spin_lock_irqsave(lock, flag); hlist_for_each_entry(pos, head, list) { if (ssid == pos->ae.ssid && tsid == pos->ae.tsid && tclass == pos->ae.tclass && seqno == pos->ae.avd.seqno){ orig = pos; break; } } if (!orig) { rc = -ENOENT; avc_node_kill(avc, node); goto out_unlock; } /* * Copy and replace original node. */ avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); if (orig->ae.xp_node) { rc = avc_xperms_populate(node, orig->ae.xp_node); if (rc) { avc_node_kill(avc, node); goto out_unlock; } } switch (event) { case AVC_CALLBACK_GRANT: node->ae.avd.allowed |= perms; if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); break; case AVC_CALLBACK_TRY_REVOKE: case AVC_CALLBACK_REVOKE: node->ae.avd.allowed &= ~perms; break; case AVC_CALLBACK_AUDITALLOW_ENABLE: node->ae.avd.auditallow |= perms; break; case AVC_CALLBACK_AUDITALLOW_DISABLE: node->ae.avd.auditallow &= ~perms; break; case AVC_CALLBACK_AUDITDENY_ENABLE: node->ae.avd.auditdeny |= perms; break; case AVC_CALLBACK_AUDITDENY_DISABLE: node->ae.avd.auditdeny &= ~perms; break; case AVC_CALLBACK_ADD_XPERMS: avc_add_xperms_decision(node, xpd); break; } avc_node_replace(avc, node, orig); out_unlock: spin_unlock_irqrestore(lock, flag); out: return rc; } /** * avc_flush - Flush the cache */ static void avc_flush(struct selinux_avc *avc) { struct hlist_head *head; struct avc_node *node; spinlock_t *lock; unsigned long flag; int i; for (i = 0; i < AVC_CACHE_SLOTS; i++) { head = &avc->avc_cache.slots[i]; lock = &avc->avc_cache.slots_lock[i]; spin_lock_irqsave(lock, flag); /* * With preemptable RCU, the outer spinlock does not * prevent RCU grace periods from ending. */ rcu_read_lock(); hlist_for_each_entry(node, head, list) avc_node_delete(avc, node); rcu_read_unlock(); spin_unlock_irqrestore(lock, flag); } } /** * avc_ss_reset - Flush the cache and revalidate migrated permissions. * @seqno: policy sequence number */ int avc_ss_reset(struct selinux_avc *avc, u32 seqno) { struct avc_callback_node *c; int rc = 0, tmprc; avc_flush(avc); for (c = avc_callbacks; c; c = c->next) { if (c->events & AVC_CALLBACK_RESET) { tmprc = c->callback(AVC_CALLBACK_RESET); /* save the first error encountered for the return value and continue processing the callbacks */ if (!rc) rc = tmprc; } } avc_latest_notif_update(avc, seqno, 0); return rc; } /* * Slow-path helper function for avc_has_perm_noaudit, * when the avc_node lookup fails. We get called with * the RCU read lock held, and need to return with it * still held, but drop if for the security compute. * * Don't inline this, since it's the slow-path and just * results in a bigger stack frame. */ static noinline struct avc_node *avc_compute_av(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct avc_xperms_node *xp_node) { rcu_read_unlock(); INIT_LIST_HEAD(&xp_node->xpd_head); security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp); rcu_read_lock(); return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node); } static noinline int avc_denied(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u8 driver, u8 xperm, unsigned int flags, struct av_decision *avd) { if (flags & AVC_STRICT) return -EACCES; if (enforcing_enabled(state) && !(avd->flags & AVD_FLAGS_PERMISSIVE)) return -EACCES; avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver, xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); return 0; } /* * The avc extended permissions logic adds an additional 256 bits of * permissions to an avc node when extended permissions for that node are * specified in the avtab. If the additional 256 permissions is not adequate, * as-is the case with ioctls, then multiple may be chained together and the * driver field is used to specify which set contains the permission. */ int avc_has_extended_perms(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, u8 driver, u8 xperm, struct common_audit_data *ad) { struct avc_node *node; struct av_decision avd; u32 denied; struct extended_perms_decision local_xpd; struct extended_perms_decision *xpd = NULL; struct extended_perms_data allowed; struct extended_perms_data auditallow; struct extended_perms_data dontaudit; struct avc_xperms_node local_xp_node; struct avc_xperms_node *xp_node; int rc = 0, rc2; xp_node = &local_xp_node; if (WARN_ON(!requested)) return -EACCES; rcu_read_lock(); node = avc_lookup(state->avc, ssid, tsid, tclass); if (unlikely(!node)) { node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node); } else { memcpy(&avd, &node->ae.avd, sizeof(avd)); xp_node = node->ae.xp_node; } /* if extended permissions are not defined, only consider av_decision */ if (!xp_node || !xp_node->xp.len) goto decision; local_xpd.allowed = &allowed; local_xpd.auditallow = &auditallow; local_xpd.dontaudit = &dontaudit; xpd = avc_xperms_decision_lookup(driver, xp_node); if (unlikely(!xpd)) { /* * Compute the extended_perms_decision only if the driver * is flagged */ if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { avd.allowed &= ~requested; goto decision; } rcu_read_unlock(); security_compute_xperms_decision(state, ssid, tsid, tclass, driver, &local_xpd); rcu_read_lock(); avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm, ssid, tsid, tclass, avd.seqno, &local_xpd, 0); } else { avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); } xpd = &local_xpd; if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) avd.allowed &= ~requested; decision: denied = requested & ~(avd.allowed); if (unlikely(denied)) rc = avc_denied(state, ssid, tsid, tclass, requested, driver, xperm, AVC_EXTENDED_PERMS, &avd); rcu_read_unlock(); rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested, &avd, xpd, xperm, rc, ad); if (rc2) return rc2; return rc; } /** * avc_has_perm_noaudit - Check permissions but perform no auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0 * @avd: access vector decisions * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Return a copy of the decisions * in @avd. Return %0 if all @requested permissions are granted, * -%EACCES if any permissions are denied, or another -errno upon * other errors. This function is typically called by avc_has_perm(), * but may also be called directly to separate permission checking from * auditing, e.g. in cases where a lock must be held for the check but * should be released for the auditing. */ inline int avc_has_perm_noaudit(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, unsigned int flags, struct av_decision *avd) { struct avc_node *node; struct avc_xperms_node xp_node; int rc = 0; u32 denied; if (WARN_ON(!requested)) return -EACCES; rcu_read_lock(); node = avc_lookup(state->avc, ssid, tsid, tclass); if (unlikely(!node)) node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node); else memcpy(avd, &node->ae.avd, sizeof(*avd)); denied = requested & ~(avd->allowed); if (unlikely(denied)) rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0, flags, avd); rcu_read_unlock(); return rc; } /** * avc_has_perm - Check permissions and perform any appropriate auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @auditdata: auxiliary audit data * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Audit the granting or denial of * permissions in accordance with the policy. Return %0 if all @requested * permissions are granted, -%EACCES if any permissions are denied, or * another -errno upon other errors. */ int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata) { struct av_decision avd; int rc, rc2; rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0, &avd); rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, auditdata, 0); if (rc2) return rc2; return rc; } int avc_has_perm_flags(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata, int flags) { struct av_decision avd; int rc, rc2; rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0, &avd); rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc, auditdata, flags); if (rc2) return rc2; return rc; } u32 avc_policy_seqno(struct selinux_state *state) { return state->avc->avc_cache.latest_notif; } void avc_disable(void) { /* * If you are looking at this because you have realized that we are * not destroying the avc_node_cachep it might be easy to fix, but * I don't know the memory barrier semantics well enough to know. It's * possible that some other task dereferenced security_ops when * it still pointed to selinux operations. If that is the case it's * possible that it is about to use the avc and is about to need the * avc_node_cachep. I know I could wrap the security.c security_ops call * in an rcu_lock, but seriously, it's not worth it. Instead I just flush * the cache and get that memory back. */ if (avc_node_cachep) { avc_flush(selinux_state.avc); /* kmem_cache_destroy(avc_node_cachep); */ } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2020 ARM Ltd. */ #ifndef __ASM_VDSO_PROCESSOR_H #define __ASM_VDSO_PROCESSOR_H #ifndef __ASSEMBLY__ /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ static __always_inline void rep_nop(void) { asm volatile("rep; nop" ::: "memory"); } static __always_inline void cpu_relax(void) { rep_nop(); } #endif /* __ASSEMBLY__ */ #endif /* __ASM_VDSO_PROCESSOR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 /* SPDX-License-Identifier: GPL-2.0 */ /* * include/linux/writeback.h */ #ifndef WRITEBACK_H #define WRITEBACK_H #include <linux/sched.h> #include <linux/workqueue.h> #include <linux/fs.h> #include <linux/flex_proportions.h> #include <linux/backing-dev-defs.h> #include <linux/blk_types.h> #include <linux/blk-cgroup.h> struct bio; DECLARE_PER_CPU(int, dirty_throttle_leaks); /* * The 1/4 region under the global dirty thresh is for smooth dirty throttling: * * (thresh - thresh/DIRTY_FULL_SCOPE, thresh) * * Further beyond, all dirtier tasks will enter a loop waiting (possibly long * time) for the dirty pages to drop, unless written enough pages. * * The global dirty threshold is normally equal to the global dirty limit, * except when the system suddenly allocates a lot of anonymous memory and * knocks down the global dirty threshold quickly, in which case the global * dirty limit will follow down slowly to prevent livelocking all dirtier tasks. */ #define DIRTY_SCOPE 8 #define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2) struct backing_dev_info; /* * fs/fs-writeback.c */ enum writeback_sync_modes { WB_SYNC_NONE, /* Don't wait on anything */ WB_SYNC_ALL, /* Wait on every mapping */ }; /* * A control structure which tells the writeback code what to do. These are * always on the stack, and hence need no locking. They are always initialised * in a manner such that unspecified fields are set to zero. */ struct writeback_control { long nr_to_write; /* Write this many pages, and decrement this for each page written */ long pages_skipped; /* Pages which were not written */ /* * For a_ops->writepages(): if start or end are non-zero then this is * a hint that the filesystem need only write out the pages inside that * byterange. The byte at `end' is included in the writeout request. */ loff_t range_start; loff_t range_end; enum writeback_sync_modes sync_mode; unsigned for_kupdate:1; /* A kupdate writeback */ unsigned for_background:1; /* A background writeback */ unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */ unsigned for_reclaim:1; /* Invoked from the page allocator */ unsigned range_cyclic:1; /* range_start is cyclic */ unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ /* * When writeback IOs are bounced through async layers, only the * initial synchronous phase should be accounted towards inode * cgroup ownership arbitration to avoid confusion. Later stages * can set the following flag to disable the accounting. */ unsigned no_cgroup_owner:1; unsigned punt_to_cgroup:1; /* cgrp punting, see __REQ_CGROUP_PUNT */ #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *wb; /* wb this writeback is issued under */ struct inode *inode; /* inode being written out */ /* foreign inode detection, see wbc_detach_inode() */ int wb_id; /* current wb id */ int wb_lcand_id; /* last foreign candidate wb id */ int wb_tcand_id; /* this foreign candidate wb id */ size_t wb_bytes; /* bytes written by current wb */ size_t wb_lcand_bytes; /* bytes written by last candidate */ size_t wb_tcand_bytes; /* bytes written by this candidate */ #endif }; static inline int wbc_to_write_flags(struct writeback_control *wbc) { int flags = 0; if (wbc->punt_to_cgroup) flags = REQ_CGROUP_PUNT; if (wbc->sync_mode == WB_SYNC_ALL) flags |= REQ_SYNC; else if (wbc->for_kupdate || wbc->for_background) flags |= REQ_BACKGROUND; return flags; } static inline struct cgroup_subsys_state * wbc_blkcg_css(struct writeback_control *wbc) { #ifdef CONFIG_CGROUP_WRITEBACK if (wbc->wb) return wbc->wb->blkcg_css; #endif return blkcg_root_css; } /* * A wb_domain represents a domain that wb's (bdi_writeback's) belong to * and are measured against each other in. There always is one global * domain, global_wb_domain, that every wb in the system is a member of. * This allows measuring the relative bandwidth of each wb to distribute * dirtyable memory accordingly. */ struct wb_domain { spinlock_t lock; /* * Scale the writeback cache size proportional to the relative * writeout speed. * * We do this by keeping a floating proportion between BDIs, based * on page writeback completions [end_page_writeback()]. Those * devices that write out pages fastest will get the larger share, * while the slower will get a smaller share. * * We use page writeout completions because we are interested in * getting rid of dirty pages. Having them written out is the * primary goal. * * We introduce a concept of time, a period over which we measure * these events, because demand can/will vary over time. The length * of this period itself is measured in page writeback completions. */ struct fprop_global completions; struct timer_list period_timer; /* timer for aging of completions */ unsigned long period_time; /* * The dirtyable memory and dirty threshold could be suddenly * knocked down by a large amount (eg. on the startup of KVM in a * swapless system). This may throw the system into deep dirty * exceeded state and throttle heavy/light dirtiers alike. To * retain good responsiveness, maintain global_dirty_limit for * tracking slowly down to the knocked down dirty threshold. * * Both fields are protected by ->lock. */ unsigned long dirty_limit_tstamp; unsigned long dirty_limit; }; /** * wb_domain_size_changed - memory available to a wb_domain has changed * @dom: wb_domain of interest * * This function should be called when the amount of memory available to * @dom has changed. It resets @dom's dirty limit parameters to prevent * the past values which don't match the current configuration from skewing * dirty throttling. Without this, when memory size of a wb_domain is * greatly reduced, the dirty throttling logic may allow too many pages to * be dirtied leading to consecutive unnecessary OOMs and may get stuck in * that situation. */ static inline void wb_domain_size_changed(struct wb_domain *dom) { spin_lock(&dom->lock); dom->dirty_limit_tstamp = jiffies; dom->dirty_limit = 0; spin_unlock(&dom->lock); } /* * fs/fs-writeback.c */ struct bdi_writeback; void writeback_inodes_sb(struct super_block *, enum wb_reason reason); void writeback_inodes_sb_nr(struct super_block *, unsigned long nr, enum wb_reason reason); void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason); void sync_inodes_sb(struct super_block *); void wakeup_flusher_threads(enum wb_reason reason); void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, enum wb_reason reason); void inode_wait_for_writeback(struct inode *inode); void inode_io_list_del(struct inode *inode); /* writeback.h requires fs.h; it, too, is not included from here. */ static inline void wait_on_inode(struct inode *inode) { might_sleep(); wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE); } #ifdef CONFIG_CGROUP_WRITEBACK #include <linux/cgroup.h> #include <linux/bio.h> void __inode_attach_wb(struct inode *inode, struct page *page); void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) __releases(&inode->i_lock); void wbc_detach_inode(struct writeback_control *wbc); void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, size_t bytes); int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr_pages, enum wb_reason reason, struct wb_completion *done); void cgroup_writeback_umount(void); /** * inode_attach_wb - associate an inode with its wb * @inode: inode of interest * @page: page being dirtied (may be NULL) * * If @inode doesn't have its wb, associate it with the wb matching the * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o * @inode->i_lock. */ static inline void inode_attach_wb(struct inode *inode, struct page *page) { if (!inode->i_wb) __inode_attach_wb(inode, page); } /** * inode_detach_wb - disassociate an inode from its wb * @inode: inode of interest * * @inode is being freed. Detach from its wb. */ static inline void inode_detach_wb(struct inode *inode) { if (inode->i_wb) { WARN_ON_ONCE(!(inode->i_state & I_CLEAR)); wb_put(inode->i_wb); inode->i_wb = NULL; } } /** * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite * @wbc: writeback_control of interest * @inode: target inode * * This function is to be used by __filemap_fdatawrite_range(), which is an * alternative entry point into writeback code, and first ensures @inode is * associated with a bdi_writeback and attaches it to @wbc. */ static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, struct inode *inode) { spin_lock(&inode->i_lock); inode_attach_wb(inode, NULL); wbc_attach_and_unlock_inode(wbc, inode); } /** * wbc_init_bio - writeback specific initializtion of bio * @wbc: writeback_control for the writeback in progress * @bio: bio to be initialized * * @bio is a part of the writeback in progress controlled by @wbc. Perform * writeback specific initialization. This is used to apply the cgroup * writeback context. Must be called after the bio has been associated with * a device. */ static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) { /* * pageout() path doesn't attach @wbc to the inode being written * out. This is intentional as we don't want the function to block * behind a slow cgroup. Ultimately, we want pageout() to kick off * regular writeback instead of writing things out itself. */ if (wbc->wb) bio_associate_blkg_from_css(bio, wbc->wb->blkcg_css); } #else /* CONFIG_CGROUP_WRITEBACK */ static inline void inode_attach_wb(struct inode *inode, struct page *page) { } static inline void inode_detach_wb(struct inode *inode) { } static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) __releases(&inode->i_lock) { spin_unlock(&inode->i_lock); } static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, struct inode *inode) { } static inline void wbc_detach_inode(struct writeback_control *wbc) { } static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) { } static inline void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, size_t bytes) { } static inline void cgroup_writeback_umount(void) { } #endif /* CONFIG_CGROUP_WRITEBACK */ /* * mm/page-writeback.c */ #ifdef CONFIG_BLOCK void laptop_io_completion(struct backing_dev_info *info); void laptop_sync_completion(void); void laptop_mode_sync(struct work_struct *work); void laptop_mode_timer_fn(struct timer_list *t); #else static inline void laptop_sync_completion(void) { } #endif bool node_dirty_ok(struct pglist_data *pgdat); int wb_domain_init(struct wb_domain *dom, gfp_t gfp); #ifdef CONFIG_CGROUP_WRITEBACK void wb_domain_exit(struct wb_domain *dom); #endif extern struct wb_domain global_wb_domain; /* These are exported to sysctl. */ extern int dirty_background_ratio; extern unsigned long dirty_background_bytes; extern int vm_dirty_ratio; extern unsigned long vm_dirty_bytes; extern unsigned int dirty_writeback_interval; extern unsigned int dirty_expire_interval; extern unsigned int dirtytime_expire_interval; extern int vm_highmem_is_dirtyable; extern int block_dump; extern int laptop_mode; int dirty_background_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_background_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_bytes_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirtytime_interval_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos); void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty); unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh); void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time); void balance_dirty_pages_ratelimited(struct address_space *mapping); bool wb_over_bg_thresh(struct bdi_writeback *wb); typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, void *data); int generic_writepages(struct address_space *mapping, struct writeback_control *wbc); void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end); int write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, writepage_t writepage, void *data); int do_writepages(struct address_space *mapping, struct writeback_control *wbc); void writeback_set_ratelimit(void); void tag_pages_for_writeback(struct address_space *mapping, pgoff_t start, pgoff_t end); void account_page_redirty(struct page *page); void sb_mark_inode_writeback(struct inode *inode); void sb_clear_inode_writeback(struct inode *inode); #endif /* WRITEBACK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Asymmetric Public-key cryptography key type interface * * See Documentation/crypto/asymmetric-keys.rst * * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _KEYS_ASYMMETRIC_TYPE_H #define _KEYS_ASYMMETRIC_TYPE_H #include <linux/key-type.h> #include <linux/verification.h> extern struct key_type key_type_asymmetric; /* * The key payload is four words. The asymmetric-type key uses them as * follows: */ enum asymmetric_payload_bits { asym_crypto, /* The data representing the key */ asym_subtype, /* Pointer to an asymmetric_key_subtype struct */ asym_key_ids, /* Pointer to an asymmetric_key_ids struct */ asym_auth /* The key's authorisation (signature, parent key ID) */ }; /* * Identifiers for an asymmetric key ID. We have three ways of looking up a * key derived from an X.509 certificate: * * (1) Serial Number & Issuer. Non-optional. This is the only valid way to * map a PKCS#7 signature to an X.509 certificate. * * (2) Issuer & Subject Unique IDs. Optional. These were the original way to * match X.509 certificates, but have fallen into disuse in favour of (3). * * (3) Auth & Subject Key Identifiers. Optional. SKIDs are only provided on * CA keys that are intended to sign other keys, so don't appear in end * user certificates unless forced. * * We could also support an PGP key identifier, which is just a SHA1 sum of the * public key and certain parameters, but since we don't support PGP keys at * the moment, we shall ignore those. * * What we actually do is provide a place where binary identifiers can be * stashed and then compare against them when checking for an id match. */ struct asymmetric_key_id { unsigned short len; unsigned char data[]; }; struct asymmetric_key_ids { void *id[2]; }; extern bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1, const struct asymmetric_key_id *kid2); extern bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1, const struct asymmetric_key_id *kid2); extern struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1, size_t len_1, const void *val_2, size_t len_2); static inline const struct asymmetric_key_ids *asymmetric_key_ids(const struct key *key) { return key->payload.data[asym_key_ids]; } extern struct key *find_asymmetric_key(struct key *keyring, const struct asymmetric_key_id *id_0, const struct asymmetric_key_id *id_1, bool partial); /* * The payload is at the discretion of the subtype. */ #endif /* _KEYS_ASYMMETRIC_TYPE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 /* SPDX-License-Identifier: GPL-2.0 */ /* * net/dst.h Protocol independent destination cache definitions. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * */ #ifndef _NET_DST_H #define _NET_DST_H #include <net/dst_ops.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/rcupdate.h> #include <linux/bug.h> #include <linux/jiffies.h> #include <linux/refcount.h> #include <net/neighbour.h> #include <asm/processor.h> struct sk_buff; struct dst_entry { struct net_device *dev; struct dst_ops *ops; unsigned long _metrics; unsigned long expires; #ifdef CONFIG_XFRM struct xfrm_state *xfrm; #else void *__pad1; #endif int (*input)(struct sk_buff *); int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); unsigned short flags; #define DST_NOXFRM 0x0002 #define DST_NOPOLICY 0x0004 #define DST_NOCOUNT 0x0008 #define DST_FAKE_RTABLE 0x0010 #define DST_XFRM_TUNNEL 0x0020 #define DST_XFRM_QUEUE 0x0040 #define DST_METADATA 0x0080 /* A non-zero value of dst->obsolete forces by-hand validation * of the route entry. Positive values are set by the generic * dst layer to indicate that the entry has been forcefully * destroyed. * * Negative values are used by the implementation layer code to * force invocation of the dst_ops->check() method. */ short obsolete; #define DST_OBSOLETE_NONE 0 #define DST_OBSOLETE_DEAD 2 #define DST_OBSOLETE_FORCE_CHK -1 #define DST_OBSOLETE_KILL -2 unsigned short header_len; /* more space at head required */ unsigned short trailer_len; /* space to reserve at tail */ /* * __refcnt wants to be on a different cache line from * input/output/ops or performance tanks badly */ #ifdef CONFIG_64BIT atomic_t __refcnt; /* 64-bit offset 64 */ #endif int __use; unsigned long lastuse; struct lwtunnel_state *lwtstate; struct rcu_head rcu_head; short error; short __pad; __u32 tclassid; #ifndef CONFIG_64BIT atomic_t __refcnt; /* 32-bit offset 64 */ #endif }; struct dst_metrics { u32 metrics[RTAX_MAX]; refcount_t refcnt; } __aligned(4); /* Low pointer bits contain DST_METRICS_FLAGS */ extern const struct dst_metrics dst_default_metrics; u32 *dst_cow_metrics_generic(struct dst_entry *dst, unsigned long old); #define DST_METRICS_READ_ONLY 0x1UL #define DST_METRICS_REFCOUNTED 0x2UL #define DST_METRICS_FLAGS 0x3UL #define __DST_METRICS_PTR(Y) \ ((u32 *)((Y) & ~DST_METRICS_FLAGS)) #define DST_METRICS_PTR(X) __DST_METRICS_PTR((X)->_metrics) static inline bool dst_metrics_read_only(const struct dst_entry *dst) { return dst->_metrics & DST_METRICS_READ_ONLY; } void __dst_destroy_metrics_generic(struct dst_entry *dst, unsigned long old); static inline void dst_destroy_metrics_generic(struct dst_entry *dst) { unsigned long val = dst->_metrics; if (!(val & DST_METRICS_READ_ONLY)) __dst_destroy_metrics_generic(dst, val); } static inline u32 *dst_metrics_write_ptr(struct dst_entry *dst) { unsigned long p = dst->_metrics; BUG_ON(!p); if (p & DST_METRICS_READ_ONLY) return dst->ops->cow_metrics(dst, p); return __DST_METRICS_PTR(p); } /* This may only be invoked before the entry has reached global * visibility. */ static inline void dst_init_metrics(struct dst_entry *dst, const u32 *src_metrics, bool read_only) { dst->_metrics = ((unsigned long) src_metrics) | (read_only ? DST_METRICS_READ_ONLY : 0); } static inline void dst_copy_metrics(struct dst_entry *dest, const struct dst_entry *src) { u32 *dst_metrics = dst_metrics_write_ptr(dest); if (dst_metrics) { u32 *src_metrics = DST_METRICS_PTR(src); memcpy(dst_metrics, src_metrics, RTAX_MAX * sizeof(u32)); } } static inline u32 *dst_metrics_ptr(struct dst_entry *dst) { return DST_METRICS_PTR(dst); } static inline u32 dst_metric_raw(const struct dst_entry *dst, const int metric) { u32 *p = DST_METRICS_PTR(dst); return p[metric-1]; } static inline u32 dst_metric(const struct dst_entry *dst, const int metric) { WARN_ON_ONCE(metric == RTAX_HOPLIMIT || metric == RTAX_ADVMSS || metric == RTAX_MTU); return dst_metric_raw(dst, metric); } static inline u32 dst_metric_advmss(const struct dst_entry *dst) { u32 advmss = dst_metric_raw(dst, RTAX_ADVMSS); if (!advmss) advmss = dst->ops->default_advmss(dst); return advmss; } static inline void dst_metric_set(struct dst_entry *dst, int metric, u32 val) { u32 *p = dst_metrics_write_ptr(dst); if (p) p[metric-1] = val; } /* Kernel-internal feature bits that are unallocated in user space. */ #define DST_FEATURE_ECN_CA (1U << 31) #define DST_FEATURE_MASK (DST_FEATURE_ECN_CA) #define DST_FEATURE_ECN_MASK (DST_FEATURE_ECN_CA | RTAX_FEATURE_ECN) static inline u32 dst_feature(const struct dst_entry *dst, u32 feature) { return dst_metric(dst, RTAX_FEATURES) & feature; } static inline u32 dst_mtu(const struct dst_entry *dst) { return dst->ops->mtu(dst); } /* RTT metrics are stored in milliseconds for user ABI, but used as jiffies */ static inline unsigned long dst_metric_rtt(const struct dst_entry *dst, int metric) { return msecs_to_jiffies(dst_metric(dst, metric)); } static inline u32 dst_allfrag(const struct dst_entry *dst) { int ret = dst_feature(dst, RTAX_FEATURE_ALLFRAG); return ret; } static inline int dst_metric_locked(const struct dst_entry *dst, int metric) { return dst_metric(dst, RTAX_LOCK) & (1 << metric); } static inline void dst_hold(struct dst_entry *dst) { /* * If your kernel compilation stops here, please check * the placement of __refcnt in struct dst_entry */ BUILD_BUG_ON(offsetof(struct dst_entry, __refcnt) & 63); WARN_ON(atomic_inc_not_zero(&dst->__refcnt) == 0); } static inline void dst_use_noref(struct dst_entry *dst, unsigned long time) { if (unlikely(time != dst->lastuse)) { dst->__use++; dst->lastuse = time; } } static inline void dst_hold_and_use(struct dst_entry *dst, unsigned long time) { dst_hold(dst); dst_use_noref(dst, time); } static inline struct dst_entry *dst_clone(struct dst_entry *dst) { if (dst) dst_hold(dst); return dst; } void dst_release(struct dst_entry *dst); void dst_release_immediate(struct dst_entry *dst); static inline void refdst_drop(unsigned long refdst) { if (!(refdst & SKB_DST_NOREF)) dst_release((struct dst_entry *)(refdst & SKB_DST_PTRMASK)); } /** * skb_dst_drop - drops skb dst * @skb: buffer * * Drops dst reference count if a reference was taken. */ static inline void skb_dst_drop(struct sk_buff *skb) { if (skb->_skb_refdst) { refdst_drop(skb->_skb_refdst); skb->_skb_refdst = 0UL; } } static inline void __skb_dst_copy(struct sk_buff *nskb, unsigned long refdst) { nskb->_skb_refdst = refdst; if (!(nskb->_skb_refdst & SKB_DST_NOREF)) dst_clone(skb_dst(nskb)); } static inline void skb_dst_copy(struct sk_buff *nskb, const struct sk_buff *oskb) { __skb_dst_copy(nskb, oskb->_skb_refdst); } /** * dst_hold_safe - Take a reference on a dst if possible * @dst: pointer to dst entry * * This helper returns false if it could not safely * take a reference on a dst. */ static inline bool dst_hold_safe(struct dst_entry *dst) { return atomic_inc_not_zero(&dst->__refcnt); } /** * skb_dst_force - makes sure skb dst is refcounted * @skb: buffer * * If dst is not yet refcounted and not destroyed, grab a ref on it. * Returns true if dst is refcounted. */ static inline bool skb_dst_force(struct sk_buff *skb) { if (skb_dst_is_noref(skb)) { struct dst_entry *dst = skb_dst(skb); WARN_ON(!rcu_read_lock_held()); if (!dst_hold_safe(dst)) dst = NULL; skb->_skb_refdst = (unsigned long)dst; } return skb->_skb_refdst != 0UL; } /** * __skb_tunnel_rx - prepare skb for rx reinsert * @skb: buffer * @dev: tunnel device * @net: netns for packet i/o * * After decapsulation, packet is going to re-enter (netif_rx()) our stack, * so make some cleanups. (no accounting done) */ static inline void __skb_tunnel_rx(struct sk_buff *skb, struct net_device *dev, struct net *net) { skb->dev = dev; /* * Clear hash so that we can recalulate the hash for the * encapsulated packet, unless we have already determine the hash * over the L4 4-tuple. */ skb_clear_hash_if_not_l4(skb); skb_set_queue_mapping(skb, 0); skb_scrub_packet(skb, !net_eq(net, dev_net(dev))); } /** * skb_tunnel_rx - prepare skb for rx reinsert * @skb: buffer * @dev: tunnel device * @net: netns for packet i/o * * After decapsulation, packet is going to re-enter (netif_rx()) our stack, * so make some cleanups, and perform accounting. * Note: this accounting is not SMP safe. */ static inline void skb_tunnel_rx(struct sk_buff *skb, struct net_device *dev, struct net *net) { /* TODO : stats should be SMP safe */ dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; __skb_tunnel_rx(skb, dev, net); } static inline u32 dst_tclassid(const struct sk_buff *skb) { #ifdef CONFIG_IP_ROUTE_CLASSID const struct dst_entry *dst; dst = skb_dst(skb); if (dst) return dst->tclassid; #endif return 0; } int dst_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); static inline int dst_discard(struct sk_buff *skb) { return dst_discard_out(&init_net, skb->sk, skb); } void *dst_alloc(struct dst_ops *ops, struct net_device *dev, int initial_ref, int initial_obsolete, unsigned short flags); void dst_init(struct dst_entry *dst, struct dst_ops *ops, struct net_device *dev, int initial_ref, int initial_obsolete, unsigned short flags); struct dst_entry *dst_destroy(struct dst_entry *dst); void dst_dev_put(struct dst_entry *dst); static inline void dst_confirm(struct dst_entry *dst) { } static inline struct neighbour *dst_neigh_lookup(const struct dst_entry *dst, const void *daddr) { struct neighbour *n = dst->ops->neigh_lookup(dst, NULL, daddr); return IS_ERR(n) ? NULL : n; } static inline struct neighbour *dst_neigh_lookup_skb(const struct dst_entry *dst, struct sk_buff *skb) { struct neighbour *n = NULL; /* The packets from tunnel devices (eg bareudp) may have only * metadata in the dst pointer of skb. Hence a pointer check of * neigh_lookup is needed. */ if (dst->ops->neigh_lookup) n = dst->ops->neigh_lookup(dst, skb, NULL); return IS_ERR(n) ? NULL : n; } static inline void dst_confirm_neigh(const struct dst_entry *dst, const void *daddr) { if (dst->ops->confirm_neigh) dst->ops->confirm_neigh(dst, daddr); } static inline void dst_link_failure(struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); if (dst && dst->ops && dst->ops->link_failure) dst->ops->link_failure(skb); } static inline void dst_set_expires(struct dst_entry *dst, int timeout) { unsigned long expires = jiffies + timeout; if (expires == 0) expires = 1; if (dst->expires == 0 || time_before(expires, dst->expires)) dst->expires = expires; } /* Output packet to network from transport. */ static inline int dst_output(struct net *net, struct sock *sk, struct sk_buff *skb) { return skb_dst(skb)->output(net, sk, skb); } /* Input packet from network to transport. */ static inline int dst_input(struct sk_buff *skb) { return skb_dst(skb)->input(skb); } static inline struct dst_entry *dst_check(struct dst_entry *dst, u32 cookie) { if (dst->obsolete) dst = dst->ops->check(dst, cookie); return dst; } /* Flags for xfrm_lookup flags argument. */ enum { XFRM_LOOKUP_ICMP = 1 << 0, XFRM_LOOKUP_QUEUE = 1 << 1, XFRM_LOOKUP_KEEP_DST_REF = 1 << 2, }; struct flowi; #ifndef CONFIG_XFRM static inline struct dst_entry *xfrm_lookup(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags) { return dst_orig; } static inline struct dst_entry * xfrm_lookup_with_ifid(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags, u32 if_id) { return dst_orig; } static inline struct dst_entry *xfrm_lookup_route(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags) { return dst_orig; } static inline struct xfrm_state *dst_xfrm(const struct dst_entry *dst) { return NULL; } #else struct dst_entry *xfrm_lookup(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags); struct dst_entry *xfrm_lookup_with_ifid(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags, u32 if_id); struct dst_entry *xfrm_lookup_route(struct net *net, struct dst_entry *dst_orig, const struct flowi *fl, const struct sock *sk, int flags); /* skb attached with this dst needs transformation if dst->xfrm is valid */ static inline struct xfrm_state *dst_xfrm(const struct dst_entry *dst) { return dst->xfrm; } #endif static inline void skb_dst_update_pmtu(struct sk_buff *skb, u32 mtu) { struct dst_entry *dst = skb_dst(skb); if (dst && dst->ops->update_pmtu) dst->ops->update_pmtu(dst, NULL, skb, mtu, true); } /* update dst pmtu but not do neighbor confirm */ static inline void skb_dst_update_pmtu_no_confirm(struct sk_buff *skb, u32 mtu) { struct dst_entry *dst = skb_dst(skb); if (dst && dst->ops->update_pmtu) dst->ops->update_pmtu(dst, NULL, skb, mtu, false); } struct dst_entry *dst_blackhole_check(struct dst_entry *dst, u32 cookie); void dst_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh); void dst_blackhole_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb); u32 *dst_blackhole_cow_metrics(struct dst_entry *dst, unsigned long old); struct neighbour *dst_blackhole_neigh_lookup(const struct dst_entry *dst, struct sk_buff *skb, const void *daddr); unsigned int dst_blackhole_mtu(const struct dst_entry *dst); #endif /* _NET_DST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_UIDGID_H #define _LINUX_UIDGID_H /* * A set of types for the internal kernel types representing uids and gids. * * The types defined in this header allow distinguishing which uids and gids in * the kernel are values used by userspace and which uid and gid values are * the internal kernel values. With the addition of user namespaces the values * can be different. Using the type system makes it possible for the compiler * to detect when we overlook these differences. * */ #include <linux/types.h> #include <linux/highuid.h> struct user_namespace; extern struct user_namespace init_user_ns; typedef struct { uid_t val; } kuid_t; typedef struct { gid_t val; } kgid_t; #define KUIDT_INIT(value) (kuid_t){ value } #define KGIDT_INIT(value) (kgid_t){ value } #ifdef CONFIG_MULTIUSER static inline uid_t __kuid_val(kuid_t uid) { return uid.val; } static inline gid_t __kgid_val(kgid_t gid) { return gid.val; } #else static inline uid_t __kuid_val(kuid_t uid) { return 0; } static inline gid_t __kgid_val(kgid_t gid) { return 0; } #endif #define GLOBAL_ROOT_UID KUIDT_INIT(0) #define GLOBAL_ROOT_GID KGIDT_INIT(0) #define INVALID_UID KUIDT_INIT(-1) #define INVALID_GID KGIDT_INIT(-1) static inline bool uid_eq(kuid_t left, kuid_t right) { return __kuid_val(left) == __kuid_val(right); } static inline bool gid_eq(kgid_t left, kgid_t right) { return __kgid_val(left) == __kgid_val(right); } static inline bool uid_gt(kuid_t left, kuid_t right) { return __kuid_val(left) > __kuid_val(right); } static inline bool gid_gt(kgid_t left, kgid_t right) { return __kgid_val(left) > __kgid_val(right); } static inline bool uid_gte(kuid_t left, kuid_t right) { return __kuid_val(left) >= __kuid_val(right); } static inline bool gid_gte(kgid_t left, kgid_t right) { return __kgid_val(left) >= __kgid_val(right); } static inline bool uid_lt(kuid_t left, kuid_t right) { return __kuid_val(left) < __kuid_val(right); } static inline bool gid_lt(kgid_t left, kgid_t right) { return __kgid_val(left) < __kgid_val(right); } static inline bool uid_lte(kuid_t left, kuid_t right) { return __kuid_val(left) <= __kuid_val(right); } static inline bool gid_lte(kgid_t left, kgid_t right) { return __kgid_val(left) <= __kgid_val(right); } static inline bool uid_valid(kuid_t uid) { return __kuid_val(uid) != (uid_t) -1; } static inline bool gid_valid(kgid_t gid) { return __kgid_val(gid) != (gid_t) -1; } #ifdef CONFIG_USER_NS extern kuid_t make_kuid(struct user_namespace *from, uid_t uid); extern kgid_t make_kgid(struct user_namespace *from, gid_t gid); extern uid_t from_kuid(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid(struct user_namespace *to, kgid_t gid); extern uid_t from_kuid_munged(struct user_namespace *to, kuid_t uid); extern gid_t from_kgid_munged(struct user_namespace *to, kgid_t gid); static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return from_kuid(ns, uid) != (uid_t) -1; } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return from_kgid(ns, gid) != (gid_t) -1; } #else static inline kuid_t make_kuid(struct user_namespace *from, uid_t uid) { return KUIDT_INIT(uid); } static inline kgid_t make_kgid(struct user_namespace *from, gid_t gid) { return KGIDT_INIT(gid); } static inline uid_t from_kuid(struct user_namespace *to, kuid_t kuid) { return __kuid_val(kuid); } static inline gid_t from_kgid(struct user_namespace *to, kgid_t kgid) { return __kgid_val(kgid); } static inline uid_t from_kuid_munged(struct user_namespace *to, kuid_t kuid) { uid_t uid = from_kuid(to, kuid); if (uid == (uid_t)-1) uid = overflowuid; return uid; } static inline gid_t from_kgid_munged(struct user_namespace *to, kgid_t kgid) { gid_t gid = from_kgid(to, kgid); if (gid == (gid_t)-1) gid = overflowgid; return gid; } static inline bool kuid_has_mapping(struct user_namespace *ns, kuid_t uid) { return uid_valid(uid); } static inline bool kgid_has_mapping(struct user_namespace *ns, kgid_t gid) { return gid_valid(gid); } #endif /* CONFIG_USER_NS */ #endif /* _LINUX_UIDGID_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 // SPDX-License-Identifier: GPL-2.0-or-later /* * Kernel Probes (KProbes) * kernel/kprobes.c * * Copyright (C) IBM Corporation, 2002, 2004 * * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel * Probes initial implementation (includes suggestions from * Rusty Russell). * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with * hlists and exceptions notifier as suggested by Andi Kleen. * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes * interface to access function arguments. * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes * exceptions notifier to be first on the priority list. * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi * <prasanna@in.ibm.com> added function-return probes. */ #include <linux/kprobes.h> #include <linux/hash.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/stddef.h> #include <linux/export.h> #include <linux/moduleloader.h> #include <linux/kallsyms.h> #include <linux/freezer.h> #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/sysctl.h> #include <linux/kdebug.h> #include <linux/memory.h> #include <linux/ftrace.h> #include <linux/cpu.h> #include <linux/jump_label.h> #include <linux/perf_event.h> #include <linux/static_call.h> #include <asm/sections.h> #include <asm/cacheflush.h> #include <asm/errno.h> #include <linux/uaccess.h> #define KPROBE_HASH_BITS 6 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) static int kprobes_initialized; /* kprobe_table can be accessed by * - Normal hlist traversal and RCU add/del under kprobe_mutex is held. * Or * - RCU hlist traversal under disabling preempt (breakpoint handlers) */ static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_all_disarmed; /* This protects kprobe_table and optimizing_list */ static DEFINE_MUTEX(kprobe_mutex); static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; static struct { raw_spinlock_t lock ____cacheline_aligned_in_smp; } kretprobe_table_locks[KPROBE_TABLE_SIZE]; kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, unsigned int __unused) { return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); } static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) { return &(kretprobe_table_locks[hash].lock); } /* Blacklist -- list of struct kprobe_blacklist_entry */ static LIST_HEAD(kprobe_blacklist); #ifdef __ARCH_WANT_KPROBES_INSN_SLOT /* * kprobe->ainsn.insn points to the copy of the instruction to be * single-stepped. x86_64, POWER4 and above have no-exec support and * stepping on the instruction on a vmalloced/kmalloced/data page * is a recipe for disaster */ struct kprobe_insn_page { struct list_head list; kprobe_opcode_t *insns; /* Page of instruction slots */ struct kprobe_insn_cache *cache; int nused; int ngarbage; char slot_used[]; }; #define KPROBE_INSN_PAGE_SIZE(slots) \ (offsetof(struct kprobe_insn_page, slot_used) + \ (sizeof(char) * (slots))) static int slots_per_page(struct kprobe_insn_cache *c) { return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); } enum kprobe_slot_state { SLOT_CLEAN = 0, SLOT_DIRTY = 1, SLOT_USED = 2, }; void __weak *alloc_insn_page(void) { return module_alloc(PAGE_SIZE); } void __weak free_insn_page(void *page) { module_memfree(page); } struct kprobe_insn_cache kprobe_insn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), .alloc = alloc_insn_page, .free = free_insn_page, .sym = KPROBE_INSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), .insn_size = MAX_INSN_SIZE, .nr_garbage = 0, }; static int collect_garbage_slots(struct kprobe_insn_cache *c); /** * __get_insn_slot() - Find a slot on an executable page for an instruction. * We allocate an executable page if there's no room on existing ones. */ kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip; kprobe_opcode_t *slot = NULL; /* Since the slot array is not protected by rcu, we need a mutex */ mutex_lock(&c->mutex); retry: rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (kip->nused < slots_per_page(c)) { int i; for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_CLEAN) { kip->slot_used[i] = SLOT_USED; kip->nused++; slot = kip->insns + (i * c->insn_size); rcu_read_unlock(); goto out; } } /* kip->nused is broken. Fix it. */ kip->nused = slots_per_page(c); WARN_ON(1); } } rcu_read_unlock(); /* If there are any garbage slots, collect it and try again. */ if (c->nr_garbage && collect_garbage_slots(c) == 0) goto retry; /* All out of space. Need to allocate a new page. */ kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); if (!kip) goto out; /* * Use module_alloc so this page is within +/- 2GB of where the * kernel image and loaded module images reside. This is required * so x86_64 can correctly handle the %rip-relative fixups. */ kip->insns = c->alloc(); if (!kip->insns) { kfree(kip); goto out; } INIT_LIST_HEAD(&kip->list); memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); kip->slot_used[0] = SLOT_USED; kip->nused = 1; kip->ngarbage = 0; kip->cache = c; list_add_rcu(&kip->list, &c->pages); slot = kip->insns; /* Record the perf ksymbol register event after adding the page */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, false, c->sym); out: mutex_unlock(&c->mutex); return slot; } /* Return 1 if all garbages are collected, otherwise 0. */ static int collect_one_slot(struct kprobe_insn_page *kip, int idx) { kip->slot_used[idx] = SLOT_CLEAN; kip->nused--; if (kip->nused == 0) { /* * Page is no longer in use. Free it unless * it's the last one. We keep the last one * so as not to have to set it up again the * next time somebody inserts a probe. */ if (!list_is_singular(&kip->list)) { /* * Record perf ksymbol unregister event before removing * the page. */ perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, PAGE_SIZE, true, kip->cache->sym); list_del_rcu(&kip->list); synchronize_rcu(); kip->cache->free(kip->insns); kfree(kip); } return 1; } return 0; } static int collect_garbage_slots(struct kprobe_insn_cache *c) { struct kprobe_insn_page *kip, *next; /* Ensure no-one is interrupted on the garbages */ synchronize_rcu(); list_for_each_entry_safe(kip, next, &c->pages, list) { int i; if (kip->ngarbage == 0) continue; kip->ngarbage = 0; /* we will collect all garbages */ for (i = 0; i < slots_per_page(c); i++) { if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) break; } } c->nr_garbage = 0; return 0; } void __free_insn_slot(struct kprobe_insn_cache *c, kprobe_opcode_t *slot, int dirty) { struct kprobe_insn_page *kip; long idx; mutex_lock(&c->mutex); rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { idx = ((long)slot - (long)kip->insns) / (c->insn_size * sizeof(kprobe_opcode_t)); if (idx >= 0 && idx < slots_per_page(c)) goto out; } /* Could not find this slot. */ WARN_ON(1); kip = NULL; out: rcu_read_unlock(); /* Mark and sweep: this may sleep */ if (kip) { /* Check double free */ WARN_ON(kip->slot_used[idx] != SLOT_USED); if (dirty) { kip->slot_used[idx] = SLOT_DIRTY; kip->ngarbage++; if (++c->nr_garbage > slots_per_page(c)) collect_garbage_slots(c); } else { collect_one_slot(kip, idx); } } mutex_unlock(&c->mutex); } /* * Check given address is on the page of kprobe instruction slots. * This will be used for checking whether the address on a stack * is on a text area or not. */ bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) { struct kprobe_insn_page *kip; bool ret = false; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if (addr >= (unsigned long)kip->insns && addr < (unsigned long)kip->insns + PAGE_SIZE) { ret = true; break; } } rcu_read_unlock(); return ret; } int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, unsigned long *value, char *type, char *sym) { struct kprobe_insn_page *kip; int ret = -ERANGE; rcu_read_lock(); list_for_each_entry_rcu(kip, &c->pages, list) { if ((*symnum)--) continue; strlcpy(sym, c->sym, KSYM_NAME_LEN); *type = 't'; *value = (unsigned long)kip->insns; ret = 0; break; } rcu_read_unlock(); return ret; } #ifdef CONFIG_OPTPROBES /* For optimized_kprobe buffer */ struct kprobe_insn_cache kprobe_optinsn_slots = { .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), .alloc = alloc_insn_page, .free = free_insn_page, .sym = KPROBE_OPTINSN_PAGE_SYM, .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), /* .insn_size is initialized later */ .nr_garbage = 0, }; #endif #endif /* We have preemption disabled.. so it is safe to use __ versions */ static inline void set_kprobe_instance(struct kprobe *kp) { __this_cpu_write(kprobe_instance, kp); } static inline void reset_kprobe_instance(void) { __this_cpu_write(kprobe_instance, NULL); } /* * This routine is called either: * - under the kprobe_mutex - during kprobe_[un]register() * OR * - with preemption disabled - from arch/xxx/kernel/kprobes.c */ struct kprobe *get_kprobe(void *addr) { struct hlist_head *head; struct kprobe *p; head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; hlist_for_each_entry_rcu(p, head, hlist, lockdep_is_held(&kprobe_mutex)) { if (p->addr == addr) return p; } return NULL; } NOKPROBE_SYMBOL(get_kprobe); static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); /* Return true if the kprobe is an aggregator */ static inline int kprobe_aggrprobe(struct kprobe *p) { return p->pre_handler == aggr_pre_handler; } /* Return true(!0) if the kprobe is unused */ static inline int kprobe_unused(struct kprobe *p) { return kprobe_aggrprobe(p) && kprobe_disabled(p) && list_empty(&p->list); } /* * Keep all fields in the kprobe consistent */ static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) { memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); } #ifdef CONFIG_OPTPROBES /* NOTE: change this value only with kprobe_mutex held */ static bool kprobes_allow_optimization; /* * Call all pre_handler on the list, but ignores its return value. * This must be called from arch-dep optimized caller. */ void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->pre_handler(kp, regs); } reset_kprobe_instance(); } } NOKPROBE_SYMBOL(opt_pre_handler); /* Free optimized instructions and optimized_kprobe */ static void free_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); arch_remove_optimized_kprobe(op); arch_remove_kprobe(p); kfree(op); } /* Return true(!0) if the kprobe is ready for optimization. */ static inline int kprobe_optready(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); return arch_prepared_optinsn(&op->optinsn); } return 0; } /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ static inline int kprobe_disarmed(struct kprobe *p) { struct optimized_kprobe *op; /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ if (!kprobe_aggrprobe(p)) return kprobe_disabled(p); op = container_of(p, struct optimized_kprobe, kp); return kprobe_disabled(p) && list_empty(&op->list); } /* Return true(!0) if the probe is queued on (un)optimizing lists */ static int kprobe_queued(struct kprobe *p) { struct optimized_kprobe *op; if (kprobe_aggrprobe(p)) { op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) return 1; } return 0; } /* * Return an optimized kprobe whose optimizing code replaces * instructions including addr (exclude breakpoint). */ static struct kprobe *get_optimized_kprobe(unsigned long addr) { int i; struct kprobe *p = NULL; struct optimized_kprobe *op; /* Don't check i == 0, since that is a breakpoint case. */ for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) p = get_kprobe((void *)(addr - i)); if (p && kprobe_optready(p)) { op = container_of(p, struct optimized_kprobe, kp); if (arch_within_optimized_kprobe(op, addr)) return p; } return NULL; } /* Optimization staging list, protected by kprobe_mutex */ static LIST_HEAD(optimizing_list); static LIST_HEAD(unoptimizing_list); static LIST_HEAD(freeing_list); static void kprobe_optimizer(struct work_struct *work); static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); #define OPTIMIZE_DELAY 5 /* * Optimize (replace a breakpoint with a jump) kprobes listed on * optimizing_list. */ static void do_optimize_kprobes(void) { lockdep_assert_held(&text_mutex); /* * The optimization/unoptimization refers online_cpus via * stop_machine() and cpu-hotplug modifies online_cpus. * And same time, text_mutex will be held in cpu-hotplug and here. * This combination can cause a deadlock (cpu-hotplug try to lock * text_mutex but stop_machine can not be done because online_cpus * has been changed) * To avoid this deadlock, caller must have locked cpu hotplug * for preventing cpu-hotplug outside of text_mutex locking. */ lockdep_assert_cpus_held(); /* Optimization never be done when disarmed */ if (kprobes_all_disarmed || !kprobes_allow_optimization || list_empty(&optimizing_list)) return; arch_optimize_kprobes(&optimizing_list); } /* * Unoptimize (replace a jump with a breakpoint and remove the breakpoint * if need) kprobes listed on unoptimizing_list. */ static void do_unoptimize_kprobes(void) { struct optimized_kprobe *op, *tmp; lockdep_assert_held(&text_mutex); /* See comment in do_optimize_kprobes() */ lockdep_assert_cpus_held(); /* Unoptimization must be done anytime */ if (list_empty(&unoptimizing_list)) return; arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); /* Loop free_list for disarming */ list_for_each_entry_safe(op, tmp, &freeing_list, list) { /* Switching from detour code to origin */ op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; /* Disarm probes if marked disabled */ if (kprobe_disabled(&op->kp)) arch_disarm_kprobe(&op->kp); if (kprobe_unused(&op->kp)) { /* * Remove unused probes from hash list. After waiting * for synchronization, these probes are reclaimed. * (reclaiming is done by do_free_cleaned_kprobes.) */ hlist_del_rcu(&op->kp.hlist); } else list_del_init(&op->list); } } /* Reclaim all kprobes on the free_list */ static void do_free_cleaned_kprobes(void) { struct optimized_kprobe *op, *tmp; list_for_each_entry_safe(op, tmp, &freeing_list, list) { list_del_init(&op->list); if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { /* * This must not happen, but if there is a kprobe * still in use, keep it on kprobes hash list. */ continue; } free_aggr_kprobe(&op->kp); } } /* Start optimizer after OPTIMIZE_DELAY passed */ static void kick_kprobe_optimizer(void) { schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); } /* Kprobe jump optimizer */ static void kprobe_optimizer(struct work_struct *work) { mutex_lock(&kprobe_mutex); cpus_read_lock(); mutex_lock(&text_mutex); /* * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) * kprobes before waiting for quiesence period. */ do_unoptimize_kprobes(); /* * Step 2: Wait for quiesence period to ensure all potentially * preempted tasks to have normally scheduled. Because optprobe * may modify multiple instructions, there is a chance that Nth * instruction is preempted. In that case, such tasks can return * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. * Note that on non-preemptive kernel, this is transparently converted * to synchronoze_sched() to wait for all interrupts to have completed. */ synchronize_rcu_tasks(); /* Step 3: Optimize kprobes after quiesence period */ do_optimize_kprobes(); /* Step 4: Free cleaned kprobes after quiesence period */ do_free_cleaned_kprobes(); mutex_unlock(&text_mutex); cpus_read_unlock(); /* Step 5: Kick optimizer again if needed */ if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) kick_kprobe_optimizer(); mutex_unlock(&kprobe_mutex); } /* Wait for completing optimization and unoptimization */ void wait_for_kprobe_optimizer(void) { mutex_lock(&kprobe_mutex); while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { mutex_unlock(&kprobe_mutex); /* this will also make optimizing_work execute immmediately */ flush_delayed_work(&optimizing_work); /* @optimizing_work might not have been queued yet, relax */ cpu_relax(); mutex_lock(&kprobe_mutex); } mutex_unlock(&kprobe_mutex); } static bool optprobe_queued_unopt(struct optimized_kprobe *op) { struct optimized_kprobe *_op; list_for_each_entry(_op, &unoptimizing_list, list) { if (op == _op) return true; } return false; } /* Optimize kprobe if p is ready to be optimized */ static void optimize_kprobe(struct kprobe *p) { struct optimized_kprobe *op; /* Check if the kprobe is disabled or not ready for optimization. */ if (!kprobe_optready(p) || !kprobes_allow_optimization || (kprobe_disabled(p) || kprobes_all_disarmed)) return; /* kprobes with post_handler can not be optimized */ if (p->post_handler) return; op = container_of(p, struct optimized_kprobe, kp); /* Check there is no other kprobes at the optimized instructions */ if (arch_check_optimized_kprobe(op) < 0) return; /* Check if it is already optimized. */ if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { if (optprobe_queued_unopt(op)) { /* This is under unoptimizing. Just dequeue the probe */ list_del_init(&op->list); } return; } op->kp.flags |= KPROBE_FLAG_OPTIMIZED; /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */ if (WARN_ON_ONCE(!list_empty(&op->list))) return; list_add(&op->list, &optimizing_list); kick_kprobe_optimizer(); } /* Short cut to direct unoptimizing */ static void force_unoptimize_kprobe(struct optimized_kprobe *op) { lockdep_assert_cpus_held(); arch_unoptimize_kprobe(op); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } /* Unoptimize a kprobe if p is optimized */ static void unoptimize_kprobe(struct kprobe *p, bool force) { struct optimized_kprobe *op; if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) return; /* This is not an optprobe nor optimized */ op = container_of(p, struct optimized_kprobe, kp); if (!kprobe_optimized(p)) return; if (!list_empty(&op->list)) { if (optprobe_queued_unopt(op)) { /* Queued in unoptimizing queue */ if (force) { /* * Forcibly unoptimize the kprobe here, and queue it * in the freeing list for release afterwards. */ force_unoptimize_kprobe(op); list_move(&op->list, &freeing_list); } } else { /* Dequeue from the optimizing queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; } return; } /* Optimized kprobe case */ if (force) { /* Forcibly update the code: this is a special case */ force_unoptimize_kprobe(op); } else { list_add(&op->list, &unoptimizing_list); kick_kprobe_optimizer(); } } /* Cancel unoptimizing for reusing */ static int reuse_unused_kprobe(struct kprobe *ap) { struct optimized_kprobe *op; /* * Unused kprobe MUST be on the way of delayed unoptimizing (means * there is still a relative jump) and disabled. */ op = container_of(ap, struct optimized_kprobe, kp); WARN_ON_ONCE(list_empty(&op->list)); /* Enable the probe again */ ap->flags &= ~KPROBE_FLAG_DISABLED; /* Optimize it again (remove from op->list) */ if (!kprobe_optready(ap)) return -EINVAL; optimize_kprobe(ap); return 0; } /* Remove optimized instructions */ static void kill_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); if (!list_empty(&op->list)) /* Dequeue from the (un)optimization queue */ list_del_init(&op->list); op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; if (kprobe_unused(p)) { /* Enqueue if it is unused */ list_add(&op->list, &freeing_list); /* * Remove unused probes from the hash list. After waiting * for synchronization, this probe is reclaimed. * (reclaiming is done by do_free_cleaned_kprobes().) */ hlist_del_rcu(&op->kp.hlist); } /* Don't touch the code, because it is already freed. */ arch_remove_optimized_kprobe(op); } static inline void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) { if (!kprobe_ftrace(p)) arch_prepare_optimized_kprobe(op, p); } /* Try to prepare optimized instructions */ static void prepare_optimized_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = container_of(p, struct optimized_kprobe, kp); __prepare_optimized_kprobe(op, p); } /* Allocate new optimized_kprobe and try to prepare optimized instructions */ static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { struct optimized_kprobe *op; op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); if (!op) return NULL; INIT_LIST_HEAD(&op->list); op->kp.addr = p->addr; __prepare_optimized_kprobe(op, p); return &op->kp; } static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); /* * Prepare an optimized_kprobe and optimize it * NOTE: p must be a normal registered kprobe */ static void try_to_optimize_kprobe(struct kprobe *p) { struct kprobe *ap; struct optimized_kprobe *op; /* Impossible to optimize ftrace-based kprobe */ if (kprobe_ftrace(p)) return; /* For preparing optimization, jump_label_text_reserved() is called */ cpus_read_lock(); jump_label_lock(); mutex_lock(&text_mutex); ap = alloc_aggr_kprobe(p); if (!ap) goto out; op = container_of(ap, struct optimized_kprobe, kp); if (!arch_prepared_optinsn(&op->optinsn)) { /* If failed to setup optimizing, fallback to kprobe */ arch_remove_optimized_kprobe(op); kfree(op); goto out; } init_aggr_kprobe(ap, p); optimize_kprobe(ap); /* This just kicks optimizer thread */ out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); } static void optimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already allowed, just return */ if (kprobes_allow_optimization) goto out; cpus_read_lock(); kprobes_allow_optimization = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) if (!kprobe_disabled(p)) optimize_kprobe(p); } cpus_read_unlock(); printk(KERN_INFO "Kprobes globally optimized\n"); out: mutex_unlock(&kprobe_mutex); } #ifdef CONFIG_SYSCTL static void unoptimize_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i; mutex_lock(&kprobe_mutex); /* If optimization is already prohibited, just return */ if (!kprobes_allow_optimization) { mutex_unlock(&kprobe_mutex); return; } cpus_read_lock(); kprobes_allow_optimization = false; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (!kprobe_disabled(p)) unoptimize_kprobe(p, false); } } cpus_read_unlock(); mutex_unlock(&kprobe_mutex); /* Wait for unoptimizing completion */ wait_for_kprobe_optimizer(); printk(KERN_INFO "Kprobes globally unoptimized\n"); } static DEFINE_MUTEX(kprobe_sysctl_mutex); int sysctl_kprobes_optimization; int proc_kprobes_optimization_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos) { int ret; mutex_lock(&kprobe_sysctl_mutex); sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; ret = proc_dointvec_minmax(table, write, buffer, length, ppos); if (sysctl_kprobes_optimization) optimize_all_kprobes(); else unoptimize_all_kprobes(); mutex_unlock(&kprobe_sysctl_mutex); return ret; } #endif /* CONFIG_SYSCTL */ /* Put a breakpoint for a probe. Must be called with text_mutex locked */ static void __arm_kprobe(struct kprobe *p) { struct kprobe *_p; /* Check collision with other optimized kprobes */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p)) /* Fallback to unoptimized kprobe */ unoptimize_kprobe(_p, true); arch_arm_kprobe(p); optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ } /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ static void __disarm_kprobe(struct kprobe *p, bool reopt) { struct kprobe *_p; /* Try to unoptimize */ unoptimize_kprobe(p, kprobes_all_disarmed); if (!kprobe_queued(p)) { arch_disarm_kprobe(p); /* If another kprobe was blocked, optimize it. */ _p = get_optimized_kprobe((unsigned long)p->addr); if (unlikely(_p) && reopt) optimize_kprobe(_p); } /* TODO: reoptimize others after unoptimized this probe */ } #else /* !CONFIG_OPTPROBES */ #define optimize_kprobe(p) do {} while (0) #define unoptimize_kprobe(p, f) do {} while (0) #define kill_optimized_kprobe(p) do {} while (0) #define prepare_optimized_kprobe(p) do {} while (0) #define try_to_optimize_kprobe(p) do {} while (0) #define __arm_kprobe(p) arch_arm_kprobe(p) #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) #define kprobe_disarmed(p) kprobe_disabled(p) #define wait_for_kprobe_optimizer() do {} while (0) static int reuse_unused_kprobe(struct kprobe *ap) { /* * If the optimized kprobe is NOT supported, the aggr kprobe is * released at the same time that the last aggregated kprobe is * unregistered. * Thus there should be no chance to reuse unused kprobe. */ printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); return -EINVAL; } static void free_aggr_kprobe(struct kprobe *p) { arch_remove_kprobe(p); kfree(p); } static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) { return kzalloc(sizeof(struct kprobe), GFP_KERNEL); } #endif /* CONFIG_OPTPROBES */ #ifdef CONFIG_KPROBES_ON_FTRACE static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS, }; static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { .func = kprobe_ftrace_handler, .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, }; static int kprobe_ipmodify_enabled; static int kprobe_ftrace_enabled; /* Must ensure p->addr is really on ftrace */ static int prepare_kprobe(struct kprobe *p) { if (!kprobe_ftrace(p)) return arch_prepare_kprobe(p); return arch_prepare_kprobe_ftrace(p); } /* Caller must lock kprobe_mutex */ static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret = 0; ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); if (ret) { pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n", p->addr, ret); return ret; } if (*cnt == 0) { ret = register_ftrace_function(ops); if (ret) { pr_debug("Failed to init kprobe-ftrace (%d)\n", ret); goto err_ftrace; } } (*cnt)++; return ret; err_ftrace: /* * At this point, sinec ops is not registered, we should be sefe from * registering empty filter. */ ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); return ret; } static int arm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __arm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } /* Caller must lock kprobe_mutex */ static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, int *cnt) { int ret = 0; if (*cnt == 1) { ret = unregister_ftrace_function(ops); if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret)) return ret; } (*cnt)--; ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", p->addr, ret); return ret; } static int disarm_kprobe_ftrace(struct kprobe *p) { bool ipmodify = (p->post_handler != NULL); return __disarm_kprobe_ftrace(p, ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); } #else /* !CONFIG_KPROBES_ON_FTRACE */ static inline int prepare_kprobe(struct kprobe *p) { return arch_prepare_kprobe(p); } static inline int arm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } static inline int disarm_kprobe_ftrace(struct kprobe *p) { return -ENODEV; } #endif /* Arm a kprobe with text_mutex */ static int arm_kprobe(struct kprobe *kp) { if (unlikely(kprobe_ftrace(kp))) return arm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __arm_kprobe(kp); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } /* Disarm a kprobe with text_mutex */ static int disarm_kprobe(struct kprobe *kp, bool reopt) { if (unlikely(kprobe_ftrace(kp))) return disarm_kprobe_ftrace(kp); cpus_read_lock(); mutex_lock(&text_mutex); __disarm_kprobe(kp, reopt); mutex_unlock(&text_mutex); cpus_read_unlock(); return 0; } /* * Aggregate handlers for multiple kprobes support - these handlers * take care of invoking the individual kprobe handlers on p->list */ static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->pre_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); if (kp->pre_handler(kp, regs)) return 1; } reset_kprobe_instance(); } return 0; } NOKPROBE_SYMBOL(aggr_pre_handler); static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, unsigned long flags) { struct kprobe *kp; list_for_each_entry_rcu(kp, &p->list, list) { if (kp->post_handler && likely(!kprobe_disabled(kp))) { set_kprobe_instance(kp); kp->post_handler(kp, regs, flags); reset_kprobe_instance(); } } } NOKPROBE_SYMBOL(aggr_post_handler); static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr) { struct kprobe *cur = __this_cpu_read(kprobe_instance); /* * if we faulted "during" the execution of a user specified * probe handler, invoke just that probe's fault handler */ if (cur && cur->fault_handler) { if (cur->fault_handler(cur, regs, trapnr)) return 1; } return 0; } NOKPROBE_SYMBOL(aggr_fault_handler); /* Walks the list and increments nmissed count for multiprobe case */ void kprobes_inc_nmissed_count(struct kprobe *p) { struct kprobe *kp; if (!kprobe_aggrprobe(p)) { p->nmissed++; } else { list_for_each_entry_rcu(kp, &p->list, list) kp->nmissed++; } return; } NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); static void recycle_rp_inst(struct kretprobe_instance *ri) { struct kretprobe *rp = ri->rp; /* remove rp inst off the rprobe_inst_table */ hlist_del(&ri->hlist); INIT_HLIST_NODE(&ri->hlist); if (likely(rp)) { raw_spin_lock(&rp->lock); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock(&rp->lock); } else kfree_rcu(ri, rcu); } NOKPROBE_SYMBOL(recycle_rp_inst); static void kretprobe_hash_lock(struct task_struct *tsk, struct hlist_head **head, unsigned long *flags) __acquires(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; *head = &kretprobe_inst_table[hash]; hlist_lock = kretprobe_table_lock_ptr(hash); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. * Differentiate when it is taken in NMI context. */ raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); } NOKPROBE_SYMBOL(kretprobe_hash_lock); static void kretprobe_table_lock(unsigned long hash, unsigned long *flags) __acquires(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. * Differentiate when it is taken in NMI context. */ raw_spin_lock_irqsave_nested(hlist_lock, *flags, !!in_nmi()); } NOKPROBE_SYMBOL(kretprobe_table_lock); static void kretprobe_hash_unlock(struct task_struct *tsk, unsigned long *flags) __releases(hlist_lock) { unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); raw_spinlock_t *hlist_lock; hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } NOKPROBE_SYMBOL(kretprobe_hash_unlock); static void kretprobe_table_unlock(unsigned long hash, unsigned long *flags) __releases(hlist_lock) { raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); raw_spin_unlock_irqrestore(hlist_lock, *flags); } NOKPROBE_SYMBOL(kretprobe_table_unlock); static struct kprobe kprobe_busy = { .addr = (void *) get_kprobe, }; void kprobe_busy_begin(void) { struct kprobe_ctlblk *kcb; preempt_disable(); __this_cpu_write(current_kprobe, &kprobe_busy); kcb = get_kprobe_ctlblk(); kcb->kprobe_status = KPROBE_HIT_ACTIVE; } void kprobe_busy_end(void) { __this_cpu_write(current_kprobe, NULL); preempt_enable(); } /* * This function is called from finish_task_switch when task tk becomes dead, * so that we can recycle any function-return probe instances associated * with this task. These left over instances represent probed functions * that have been called but will never return. */ void kprobe_flush_task(struct task_struct *tk) { struct kretprobe_instance *ri; struct hlist_head *head; struct hlist_node *tmp; unsigned long hash, flags = 0; if (unlikely(!kprobes_initialized)) /* Early boot. kretprobe_table_locks not yet initialized. */ return; kprobe_busy_begin(); hash = hash_ptr(tk, KPROBE_HASH_BITS); head = &kretprobe_inst_table[hash]; kretprobe_table_lock(hash, &flags); hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task == tk) recycle_rp_inst(ri); } kretprobe_table_unlock(hash, &flags); kprobe_busy_end(); } NOKPROBE_SYMBOL(kprobe_flush_task); static inline void free_rp_inst(struct kretprobe *rp) { struct kretprobe_instance *ri; struct hlist_node *next; hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { hlist_del(&ri->hlist); kfree(ri); } } static void cleanup_rp_inst(struct kretprobe *rp) { unsigned long flags, hash; struct kretprobe_instance *ri; struct hlist_node *next; struct hlist_head *head; /* To avoid recursive kretprobe by NMI, set kprobe busy here */ kprobe_busy_begin(); for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { kretprobe_table_lock(hash, &flags); head = &kretprobe_inst_table[hash]; hlist_for_each_entry_safe(ri, next, head, hlist) { if (ri->rp == rp) ri->rp = NULL; } kretprobe_table_unlock(hash, &flags); } kprobe_busy_end(); free_rp_inst(rp); } NOKPROBE_SYMBOL(cleanup_rp_inst); /* Add the new probe to ap->list */ static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) { if (p->post_handler) unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ list_add_rcu(&p->list, &ap->list); if (p->post_handler && !ap->post_handler) ap->post_handler = aggr_post_handler; return 0; } /* * Fill in the required fields of the "manager kprobe". Replace the * earlier kprobe in the hlist with the manager kprobe */ static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) { /* Copy p's insn slot to ap */ copy_kprobe(p, ap); flush_insn_slot(ap); ap->addr = p->addr; ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; ap->pre_handler = aggr_pre_handler; ap->fault_handler = aggr_fault_handler; /* We don't care the kprobe which has gone. */ if (p->post_handler && !kprobe_gone(p)) ap->post_handler = aggr_post_handler; INIT_LIST_HEAD(&ap->list); INIT_HLIST_NODE(&ap->hlist); list_add_rcu(&p->list, &ap->list); hlist_replace_rcu(&p->hlist, &ap->hlist); } /* * This is the second or subsequent kprobe at the address - handle * the intricacies */ static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) { int ret = 0; struct kprobe *ap = orig_p; cpus_read_lock(); /* For preparing optimization, jump_label_text_reserved() is called */ jump_label_lock(); mutex_lock(&text_mutex); if (!kprobe_aggrprobe(orig_p)) { /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ ap = alloc_aggr_kprobe(orig_p); if (!ap) { ret = -ENOMEM; goto out; } init_aggr_kprobe(ap, orig_p); } else if (kprobe_unused(ap)) { /* This probe is going to die. Rescue it */ ret = reuse_unused_kprobe(ap); if (ret) goto out; } if (kprobe_gone(ap)) { /* * Attempting to insert new probe at the same location that * had a probe in the module vaddr area which already * freed. So, the instruction slot has already been * released. We need a new slot for the new probe. */ ret = arch_prepare_kprobe(ap); if (ret) /* * Even if fail to allocate new slot, don't need to * free aggr_probe. It will be used next time, or * freed by unregister_kprobe. */ goto out; /* Prepare optimized instructions if possible. */ prepare_optimized_kprobe(ap); /* * Clear gone flag to prevent allocating new slot again, and * set disabled flag because it is not armed yet. */ ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) | KPROBE_FLAG_DISABLED; } /* Copy ap's insn slot to p */ copy_kprobe(ap, p); ret = add_new_kprobe(ap, p); out: mutex_unlock(&text_mutex); jump_label_unlock(); cpus_read_unlock(); if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { ap->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed) { /* Arm the breakpoint again. */ ret = arm_kprobe(ap); if (ret) { ap->flags |= KPROBE_FLAG_DISABLED; list_del_rcu(&p->list); synchronize_rcu(); } } } return ret; } bool __weak arch_within_kprobe_blacklist(unsigned long addr) { /* The __kprobes marked functions and entry code must not be probed */ return addr >= (unsigned long)__kprobes_text_start && addr < (unsigned long)__kprobes_text_end; } static bool __within_kprobe_blacklist(unsigned long addr) { struct kprobe_blacklist_entry *ent; if (arch_within_kprobe_blacklist(addr)) return true; /* * If there exists a kprobe_blacklist, verify and * fail any probe registration in the prohibited area */ list_for_each_entry(ent, &kprobe_blacklist, list) { if (addr >= ent->start_addr && addr < ent->end_addr) return true; } return false; } bool within_kprobe_blacklist(unsigned long addr) { char symname[KSYM_NAME_LEN], *p; if (__within_kprobe_blacklist(addr)) return true; /* Check if the address is on a suffixed-symbol */ if (!lookup_symbol_name(addr, symname)) { p = strchr(symname, '.'); if (!p) return false; *p = '\0'; addr = (unsigned long)kprobe_lookup_name(symname, 0); if (addr) return __within_kprobe_blacklist(addr); } return false; } /* * If we have a symbol_name argument, look it up and add the offset field * to it. This way, we can specify a relative address to a symbol. * This returns encoded errors if it fails to look up symbol or invalid * combination of parameters. */ static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, unsigned int offset) { if ((symbol_name && addr) || (!symbol_name && !addr)) goto invalid; if (symbol_name) { addr = kprobe_lookup_name(symbol_name, offset); if (!addr) return ERR_PTR(-ENOENT); } addr = (kprobe_opcode_t *)(((char *)addr) + offset); if (addr) return addr; invalid: return ERR_PTR(-EINVAL); } static kprobe_opcode_t *kprobe_addr(struct kprobe *p) { return _kprobe_addr(p->addr, p->symbol_name, p->offset); } /* Check passed kprobe is valid and return kprobe in kprobe_table. */ static struct kprobe *__get_valid_kprobe(struct kprobe *p) { struct kprobe *ap, *list_p; lockdep_assert_held(&kprobe_mutex); ap = get_kprobe(p->addr); if (unlikely(!ap)) return NULL; if (p != ap) { list_for_each_entry(list_p, &ap->list, list) if (list_p == p) /* kprobe p is a valid probe */ goto valid; return NULL; } valid: return ap; } /* Return error if the kprobe is being re-registered */ static inline int check_kprobe_rereg(struct kprobe *p) { int ret = 0; mutex_lock(&kprobe_mutex); if (__get_valid_kprobe(p)) ret = -EINVAL; mutex_unlock(&kprobe_mutex); return ret; } int __weak arch_check_ftrace_location(struct kprobe *p) { unsigned long ftrace_addr; ftrace_addr = ftrace_location((unsigned long)p->addr); if (ftrace_addr) { #ifdef CONFIG_KPROBES_ON_FTRACE /* Given address is not on the instruction boundary */ if ((unsigned long)p->addr != ftrace_addr) return -EILSEQ; p->flags |= KPROBE_FLAG_FTRACE; #else /* !CONFIG_KPROBES_ON_FTRACE */ return -EINVAL; #endif } return 0; } static int check_kprobe_address_safe(struct kprobe *p, struct module **probed_mod) { int ret; ret = arch_check_ftrace_location(p); if (ret) return ret; jump_label_lock(); preempt_disable(); /* Ensure it is not in reserved area nor out of text */ if (!kernel_text_address((unsigned long) p->addr) || within_kprobe_blacklist((unsigned long) p->addr) || jump_label_text_reserved(p->addr, p->addr) || static_call_text_reserved(p->addr, p->addr) || find_bug((unsigned long)p->addr)) { ret = -EINVAL; goto out; } /* Check if are we probing a module */ *probed_mod = __module_text_address((unsigned long) p->addr); if (*probed_mod) { /* * We must hold a refcount of the probed module while updating * its code to prohibit unexpected unloading. */ if (unlikely(!try_module_get(*probed_mod))) { ret = -ENOENT; goto out; } /* * If the module freed .init.text, we couldn't insert * kprobes in there. */ if (within_module_init((unsigned long)p->addr, *probed_mod) && (*probed_mod)->state != MODULE_STATE_COMING) { module_put(*probed_mod); *probed_mod = NULL; ret = -ENOENT; } } out: preempt_enable(); jump_label_unlock(); return ret; } int register_kprobe(struct kprobe *p) { int ret; struct kprobe *old_p; struct module *probed_mod; kprobe_opcode_t *addr; /* Adjust probe address from symbol */ addr = kprobe_addr(p); if (IS_ERR(addr)) return PTR_ERR(addr); p->addr = addr; ret = check_kprobe_rereg(p); if (ret) return ret; /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ p->flags &= KPROBE_FLAG_DISABLED; p->nmissed = 0; INIT_LIST_HEAD(&p->list); ret = check_kprobe_address_safe(p, &probed_mod); if (ret) return ret; mutex_lock(&kprobe_mutex); old_p = get_kprobe(p->addr); if (old_p) { /* Since this may unoptimize old_p, locking text_mutex. */ ret = register_aggr_kprobe(old_p, p); goto out; } cpus_read_lock(); /* Prevent text modification */ mutex_lock(&text_mutex); ret = prepare_kprobe(p); mutex_unlock(&text_mutex); cpus_read_unlock(); if (ret) goto out; INIT_HLIST_NODE(&p->hlist); hlist_add_head_rcu(&p->hlist, &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); if (!kprobes_all_disarmed && !kprobe_disabled(p)) { ret = arm_kprobe(p); if (ret) { hlist_del_rcu(&p->hlist); synchronize_rcu(); goto out; } } /* Try to optimize kprobe */ try_to_optimize_kprobe(p); out: mutex_unlock(&kprobe_mutex); if (probed_mod) module_put(probed_mod); return ret; } EXPORT_SYMBOL_GPL(register_kprobe); /* Check if all probes on the aggrprobe are disabled */ static int aggr_kprobe_disabled(struct kprobe *ap) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); list_for_each_entry(kp, &ap->list, list) if (!kprobe_disabled(kp)) /* * There is an active probe on the list. * We can't disable this ap. */ return 0; return 1; } /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ static struct kprobe *__disable_kprobe(struct kprobe *p) { struct kprobe *orig_p; int ret; /* Get an original kprobe for return */ orig_p = __get_valid_kprobe(p); if (unlikely(orig_p == NULL)) return ERR_PTR(-EINVAL); if (!kprobe_disabled(p)) { /* Disable probe if it is a child probe */ if (p != orig_p) p->flags |= KPROBE_FLAG_DISABLED; /* Try to disarm and disable this/parent probe */ if (p == orig_p || aggr_kprobe_disabled(orig_p)) { /* * If kprobes_all_disarmed is set, orig_p * should have already been disarmed, so * skip unneed disarming process. */ if (!kprobes_all_disarmed) { ret = disarm_kprobe(orig_p, true); if (ret) { p->flags &= ~KPROBE_FLAG_DISABLED; return ERR_PTR(ret); } } orig_p->flags |= KPROBE_FLAG_DISABLED; } } return orig_p; } /* * Unregister a kprobe without a scheduler synchronization. */ static int __unregister_kprobe_top(struct kprobe *p) { struct kprobe *ap, *list_p; /* Disable kprobe. This will disarm it if needed. */ ap = __disable_kprobe(p); if (IS_ERR(ap)) return PTR_ERR(ap); if (ap == p) /* * This probe is an independent(and non-optimized) kprobe * (not an aggrprobe). Remove from the hash list. */ goto disarmed; /* Following process expects this probe is an aggrprobe */ WARN_ON(!kprobe_aggrprobe(ap)); if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) /* * !disarmed could be happen if the probe is under delayed * unoptimizing. */ goto disarmed; else { /* If disabling probe has special handlers, update aggrprobe */ if (p->post_handler && !kprobe_gone(p)) { list_for_each_entry(list_p, &ap->list, list) { if ((list_p != p) && (list_p->post_handler)) goto noclean; } ap->post_handler = NULL; } noclean: /* * Remove from the aggrprobe: this path will do nothing in * __unregister_kprobe_bottom(). */ list_del_rcu(&p->list); if (!kprobe_disabled(ap) && !kprobes_all_disarmed) /* * Try to optimize this probe again, because post * handler may have been changed. */ optimize_kprobe(ap); } return 0; disarmed: hlist_del_rcu(&ap->hlist); return 0; } static void __unregister_kprobe_bottom(struct kprobe *p) { struct kprobe *ap; if (list_empty(&p->list)) /* This is an independent kprobe */ arch_remove_kprobe(p); else if (list_is_singular(&p->list)) { /* This is the last child of an aggrprobe */ ap = list_entry(p->list.next, struct kprobe, list); list_del(&p->list); free_aggr_kprobe(ap); } /* Otherwise, do nothing. */ } int register_kprobes(struct kprobe **kps, int num) { int i, ret = 0; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kprobe(kps[i]); if (ret < 0) { if (i > 0) unregister_kprobes(kps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kprobes); void unregister_kprobe(struct kprobe *p) { unregister_kprobes(&p, 1); } EXPORT_SYMBOL_GPL(unregister_kprobe); void unregister_kprobes(struct kprobe **kps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(kps[i]) < 0) kps[i]->addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) if (kps[i]->addr) __unregister_kprobe_bottom(kps[i]); } EXPORT_SYMBOL_GPL(unregister_kprobes); int __weak kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { return NOTIFY_DONE; } NOKPROBE_SYMBOL(kprobe_exceptions_notify); static struct notifier_block kprobe_exceptions_nb = { .notifier_call = kprobe_exceptions_notify, .priority = 0x7fffffff /* we need to be notified first */ }; unsigned long __weak arch_deref_entry_point(void *entry) { return (unsigned long)entry; } #ifdef CONFIG_KRETPROBES unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, void *trampoline_address, void *frame_pointer) { struct kretprobe_instance *ri = NULL, *last = NULL; struct hlist_head *head; struct hlist_node *tmp; unsigned long flags; kprobe_opcode_t *correct_ret_addr = NULL; bool skipped = false; kretprobe_hash_lock(current, &head, &flags); /* * It is possible to have multiple instances associated with a given * task either because multiple functions in the call path have * return probes installed on them, and/or more than one * return probe was registered for a target function. * * We can handle this because: * - instances are always pushed into the head of the list * - when multiple return probes are registered for the same * function, the (chronologically) first instance's ret_addr * will be the real return address, and all the rest will * point to kretprobe_trampoline. */ hlist_for_each_entry(ri, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; /* * Return probes must be pushed on this hash list correct * order (same as return order) so that it can be popped * correctly. However, if we find it is pushed it incorrect * order, this means we find a function which should not be * probed, because the wrong order entry is pushed on the * path of processing other kretprobe itself. */ if (ri->fp != frame_pointer) { if (!skipped) pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n"); skipped = true; continue; } correct_ret_addr = ri->ret_addr; if (skipped) pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n", ri->rp->kp.addr); if (correct_ret_addr != trampoline_address) /* * This is the real return address. Any other * instances associated with this task are for * other calls deeper on the call stack */ break; } BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address)); last = ri; hlist_for_each_entry_safe(ri, tmp, head, hlist) { if (ri->task != current) /* another task is sharing our hash bucket */ continue; if (ri->fp != frame_pointer) continue; if (ri->rp && ri->rp->handler) { struct kprobe *prev = kprobe_running(); __this_cpu_write(current_kprobe, &ri->rp->kp); ri->ret_addr = correct_ret_addr; ri->rp->handler(ri, regs); __this_cpu_write(current_kprobe, prev); } recycle_rp_inst(ri); if (ri == last) break; } kretprobe_hash_unlock(current, &flags); return (unsigned long)correct_ret_addr; } NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) /* * This kprobe pre_handler is registered with every kretprobe. When probe * hits it will set up the return probe. */ static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { struct kretprobe *rp = container_of(p, struct kretprobe, kp); unsigned long hash, flags = 0; struct kretprobe_instance *ri; /* TODO: consider to only swap the RA after the last pre_handler fired */ hash = hash_ptr(current, KPROBE_HASH_BITS); /* * Nested is a workaround that will soon not be needed. * There's other protections that make sure the same lock * is not taken on the same CPU that lockdep is unaware of. */ raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); if (!hlist_empty(&rp->free_instances)) { ri = hlist_entry(rp->free_instances.first, struct kretprobe_instance, hlist); hlist_del(&ri->hlist); raw_spin_unlock_irqrestore(&rp->lock, flags); ri->rp = rp; ri->task = current; if (rp->entry_handler && rp->entry_handler(ri, regs)) { raw_spin_lock_irqsave_nested(&rp->lock, flags, 1); hlist_add_head(&ri->hlist, &rp->free_instances); raw_spin_unlock_irqrestore(&rp->lock, flags); return 0; } arch_prepare_kretprobe(ri, regs); /* XXX(hch): why is there no hlist_move_head? */ INIT_HLIST_NODE(&ri->hlist); kretprobe_table_lock(hash, &flags); hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); kretprobe_table_unlock(hash, &flags); } else { rp->nmissed++; raw_spin_unlock_irqrestore(&rp->lock, flags); } return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); bool __weak arch_kprobe_on_func_entry(unsigned long offset) { return !offset; } /** * kprobe_on_func_entry() -- check whether given address is function entry * @addr: Target address * @sym: Target symbol name * @offset: The offset from the symbol or the address * * This checks whether the given @addr+@offset or @sym+@offset is on the * function entry address or not. * This returns 0 if it is the function entry, or -EINVAL if it is not. * And also it returns -ENOENT if it fails the symbol or address lookup. * Caller must pass @addr or @sym (either one must be NULL), or this * returns -EINVAL. */ int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) { kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); if (IS_ERR(kp_addr)) return PTR_ERR(kp_addr); if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset)) return -ENOENT; if (!arch_kprobe_on_func_entry(offset)) return -EINVAL; return 0; } int register_kretprobe(struct kretprobe *rp) { int ret; struct kretprobe_instance *inst; int i; void *addr; ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); if (ret) return ret; /* If only rp->kp.addr is specified, check reregistering kprobes */ if (rp->kp.addr && check_kprobe_rereg(&rp->kp)) return -EINVAL; if (kretprobe_blacklist_size) { addr = kprobe_addr(&rp->kp); if (IS_ERR(addr)) return PTR_ERR(addr); for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { if (kretprobe_blacklist[i].addr == addr) return -EINVAL; } } if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) return -E2BIG; rp->kp.pre_handler = pre_handler_kretprobe; rp->kp.post_handler = NULL; rp->kp.fault_handler = NULL; /* Pre-allocate memory for max kretprobe instances */ if (rp->maxactive <= 0) { #ifdef CONFIG_PREEMPTION rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); #else rp->maxactive = num_possible_cpus(); #endif } raw_spin_lock_init(&rp->lock); INIT_HLIST_HEAD(&rp->free_instances); for (i = 0; i < rp->maxactive; i++) { inst = kmalloc(sizeof(struct kretprobe_instance) + rp->data_size, GFP_KERNEL); if (inst == NULL) { free_rp_inst(rp); return -ENOMEM; } INIT_HLIST_NODE(&inst->hlist); hlist_add_head(&inst->hlist, &rp->free_instances); } rp->nmissed = 0; /* Establish function entry probe point */ ret = register_kprobe(&rp->kp); if (ret != 0) free_rp_inst(rp); return ret; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { int ret = 0, i; if (num <= 0) return -EINVAL; for (i = 0; i < num; i++) { ret = register_kretprobe(rps[i]); if (ret < 0) { if (i > 0) unregister_kretprobes(rps, i); break; } } return ret; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { unregister_kretprobes(&rp, 1); } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { int i; if (num <= 0) return; mutex_lock(&kprobe_mutex); for (i = 0; i < num; i++) if (__unregister_kprobe_top(&rps[i]->kp) < 0) rps[i]->kp.addr = NULL; mutex_unlock(&kprobe_mutex); synchronize_rcu(); for (i = 0; i < num; i++) { if (rps[i]->kp.addr) { __unregister_kprobe_bottom(&rps[i]->kp); cleanup_rp_inst(rps[i]); } } } EXPORT_SYMBOL_GPL(unregister_kretprobes); #else /* CONFIG_KRETPROBES */ int register_kretprobe(struct kretprobe *rp) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobe); int register_kretprobes(struct kretprobe **rps, int num) { return -ENOSYS; } EXPORT_SYMBOL_GPL(register_kretprobes); void unregister_kretprobe(struct kretprobe *rp) { } EXPORT_SYMBOL_GPL(unregister_kretprobe); void unregister_kretprobes(struct kretprobe **rps, int num) { } EXPORT_SYMBOL_GPL(unregister_kretprobes); static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) { return 0; } NOKPROBE_SYMBOL(pre_handler_kretprobe); #endif /* CONFIG_KRETPROBES */ /* Set the kprobe gone and remove its instruction buffer. */ static void kill_kprobe(struct kprobe *p) { struct kprobe *kp; lockdep_assert_held(&kprobe_mutex); if (WARN_ON_ONCE(kprobe_gone(p))) return; p->flags |= KPROBE_FLAG_GONE; if (kprobe_aggrprobe(p)) { /* * If this is an aggr_kprobe, we have to list all the * chained probes and mark them GONE. */ list_for_each_entry(kp, &p->list, list) kp->flags |= KPROBE_FLAG_GONE; p->post_handler = NULL; kill_optimized_kprobe(p); } /* * Here, we can remove insn_slot safely, because no thread calls * the original probed function (which will be freed soon) any more. */ arch_remove_kprobe(p); /* * The module is going away. We should disarm the kprobe which * is using ftrace, because ftrace framework is still available at * MODULE_STATE_GOING notification. */ if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) disarm_kprobe_ftrace(p); } /* Disable one kprobe */ int disable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Disable this kprobe */ p = __disable_kprobe(kp); if (IS_ERR(p)) ret = PTR_ERR(p); mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(disable_kprobe); /* Enable one kprobe */ int enable_kprobe(struct kprobe *kp) { int ret = 0; struct kprobe *p; mutex_lock(&kprobe_mutex); /* Check whether specified probe is valid. */ p = __get_valid_kprobe(kp); if (unlikely(p == NULL)) { ret = -EINVAL; goto out; } if (kprobe_gone(kp)) { /* This kprobe has gone, we couldn't enable it. */ ret = -EINVAL; goto out; } if (p != kp) kp->flags &= ~KPROBE_FLAG_DISABLED; if (!kprobes_all_disarmed && kprobe_disabled(p)) { p->flags &= ~KPROBE_FLAG_DISABLED; ret = arm_kprobe(p); if (ret) p->flags |= KPROBE_FLAG_DISABLED; } out: mutex_unlock(&kprobe_mutex); return ret; } EXPORT_SYMBOL_GPL(enable_kprobe); /* Caller must NOT call this in usual path. This is only for critical case */ void dump_kprobe(struct kprobe *kp) { pr_err("Dumping kprobe:\n"); pr_err("Name: %s\nOffset: %x\nAddress: %pS\n", kp->symbol_name, kp->offset, kp->addr); } NOKPROBE_SYMBOL(dump_kprobe); int kprobe_add_ksym_blacklist(unsigned long entry) { struct kprobe_blacklist_entry *ent; unsigned long offset = 0, size = 0; if (!kernel_text_address(entry) || !kallsyms_lookup_size_offset(entry, &size, &offset)) return -EINVAL; ent = kmalloc(sizeof(*ent), GFP_KERNEL); if (!ent) return -ENOMEM; ent->start_addr = entry; ent->end_addr = entry + size; INIT_LIST_HEAD(&ent->list); list_add_tail(&ent->list, &kprobe_blacklist); return (int)size; } /* Add all symbols in given area into kprobe blacklist */ int kprobe_add_area_blacklist(unsigned long start, unsigned long end) { unsigned long entry; int ret = 0; for (entry = start; entry < end; entry += ret) { ret = kprobe_add_ksym_blacklist(entry); if (ret < 0) return ret; if (ret == 0) /* In case of alias symbol */ ret = 1; } return 0; } /* Remove all symbols in given area from kprobe blacklist */ static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) { struct kprobe_blacklist_entry *ent, *n; list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { if (ent->start_addr < start || ent->start_addr >= end) continue; list_del(&ent->list); kfree(ent); } } static void kprobe_remove_ksym_blacklist(unsigned long entry) { kprobe_remove_area_blacklist(entry, entry + 1); } int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, char *type, char *sym) { return -ERANGE; } int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, char *sym) { #ifdef __ARCH_WANT_KPROBES_INSN_SLOT if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) return 0; #ifdef CONFIG_OPTPROBES if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) return 0; #endif #endif if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) return 0; return -ERANGE; } int __init __weak arch_populate_kprobe_blacklist(void) { return 0; } /* * Lookup and populate the kprobe_blacklist. * * Unlike the kretprobe blacklist, we'll need to determine * the range of addresses that belong to the said functions, * since a kprobe need not necessarily be at the beginning * of a function. */ static int __init populate_kprobe_blacklist(unsigned long *start, unsigned long *end) { unsigned long entry; unsigned long *iter; int ret; for (iter = start; iter < end; iter++) { entry = arch_deref_entry_point((void *)*iter); ret = kprobe_add_ksym_blacklist(entry); if (ret == -EINVAL) continue; if (ret < 0) return ret; } /* Symbols in __kprobes_text are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, (unsigned long)__kprobes_text_end); if (ret) return ret; /* Symbols in noinstr section are blacklisted */ ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, (unsigned long)__noinstr_text_end); return ret ? : arch_populate_kprobe_blacklist(); } static void add_module_kprobe_blacklist(struct module *mod) { unsigned long start, end; int i; if (mod->kprobe_blacklist) { for (i = 0; i < mod->num_kprobe_blacklist; i++) kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); } start = (unsigned long)mod->kprobes_text_start; if (start) { end = start + mod->kprobes_text_size; kprobe_add_area_blacklist(start, end); } start = (unsigned long)mod->noinstr_text_start; if (start) { end = start + mod->noinstr_text_size; kprobe_add_area_blacklist(start, end); } } static void remove_module_kprobe_blacklist(struct module *mod) { unsigned long start, end; int i; if (mod->kprobe_blacklist) { for (i = 0; i < mod->num_kprobe_blacklist; i++) kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); } start = (unsigned long)mod->kprobes_text_start; if (start) { end = start + mod->kprobes_text_size; kprobe_remove_area_blacklist(start, end); } start = (unsigned long)mod->noinstr_text_start; if (start) { end = start + mod->noinstr_text_size; kprobe_remove_area_blacklist(start, end); } } /* Module notifier call back, checking kprobes on the module */ static int kprobes_module_callback(struct notifier_block *nb, unsigned long val, void *data) { struct module *mod = data; struct hlist_head *head; struct kprobe *p; unsigned int i; int checkcore = (val == MODULE_STATE_GOING); if (val == MODULE_STATE_COMING) { mutex_lock(&kprobe_mutex); add_module_kprobe_blacklist(mod); mutex_unlock(&kprobe_mutex); } if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) return NOTIFY_DONE; /* * When MODULE_STATE_GOING was notified, both of module .text and * .init.text sections would be freed. When MODULE_STATE_LIVE was * notified, only .init.text section would be freed. We need to * disable kprobes which have been inserted in the sections. */ mutex_lock(&kprobe_mutex); for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (kprobe_gone(p)) continue; if (within_module_init((unsigned long)p->addr, mod) || (checkcore && within_module_core((unsigned long)p->addr, mod))) { /* * The vaddr this probe is installed will soon * be vfreed buy not synced to disk. Hence, * disarming the breakpoint isn't needed. * * Note, this will also move any optimized probes * that are pending to be removed from their * corresponding lists to the freeing_list and * will not be touched by the delayed * kprobe_optimizer work handler. */ kill_kprobe(p); } } } if (val == MODULE_STATE_GOING) remove_module_kprobe_blacklist(mod); mutex_unlock(&kprobe_mutex); return NOTIFY_DONE; } static struct notifier_block kprobe_module_nb = { .notifier_call = kprobes_module_callback, .priority = 0 }; /* Markers of _kprobe_blacklist section */ extern unsigned long __start_kprobe_blacklist[]; extern unsigned long __stop_kprobe_blacklist[]; void kprobe_free_init_mem(void) { void *start = (void *)(&__init_begin); void *end = (void *)(&__init_end); struct hlist_head *head; struct kprobe *p; int i; mutex_lock(&kprobe_mutex); /* Kill all kprobes on initmem */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; hlist_for_each_entry(p, head, hlist) { if (start <= (void *)p->addr && (void *)p->addr < end) kill_kprobe(p); } } mutex_unlock(&kprobe_mutex); } static int __init init_kprobes(void) { int i, err = 0; /* FIXME allocate the probe table, currently defined statically */ /* initialize all list heads */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { INIT_HLIST_HEAD(&kprobe_table[i]); INIT_HLIST_HEAD(&kretprobe_inst_table[i]); raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); } err = populate_kprobe_blacklist(__start_kprobe_blacklist, __stop_kprobe_blacklist); if (err) { pr_err("kprobes: failed to populate blacklist: %d\n", err); pr_err("Please take care of using kprobes.\n"); } if (kretprobe_blacklist_size) { /* lookup the function address from its name */ for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { kretprobe_blacklist[i].addr = kprobe_lookup_name(kretprobe_blacklist[i].name, 0); if (!kretprobe_blacklist[i].addr) printk("kretprobe: lookup failed: %s\n", kretprobe_blacklist[i].name); } } /* By default, kprobes are armed */ kprobes_all_disarmed = false; #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) /* Init kprobe_optinsn_slots for allocation */ kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; #endif err = arch_init_kprobes(); if (!err) err = register_die_notifier(&kprobe_exceptions_nb); if (!err) err = register_module_notifier(&kprobe_module_nb); kprobes_initialized = (err == 0); if (!err) init_test_probes(); return err; } early_initcall(init_kprobes); #if defined(CONFIG_OPTPROBES) static int __init init_optprobes(void) { /* * Enable kprobe optimization - this kicks the optimizer which * depends on synchronize_rcu_tasks() and ksoftirqd, that is * not spawned in early initcall. So delay the optimization. */ optimize_all_kprobes(); return 0; } subsys_initcall(init_optprobes); #endif #ifdef CONFIG_DEBUG_FS static void report_probe(struct seq_file *pi, struct kprobe *p, const char *sym, int offset, char *modname, struct kprobe *pp) { char *kprobe_type; void *addr = p->addr; if (p->pre_handler == pre_handler_kretprobe) kprobe_type = "r"; else kprobe_type = "k"; if (!kallsyms_show_value(pi->file->f_cred)) addr = NULL; if (sym) seq_printf(pi, "%px %s %s+0x%x %s ", addr, kprobe_type, sym, offset, (modname ? modname : " ")); else /* try to use %pS */ seq_printf(pi, "%px %s %pS ", addr, kprobe_type, p->addr); if (!pp) pp = p; seq_printf(pi, "%s%s%s%s\n", (kprobe_gone(p) ? "[GONE]" : ""), ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), (kprobe_ftrace(pp) ? "[FTRACE]" : "")); } static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) { return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; } static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) { (*pos)++; if (*pos >= KPROBE_TABLE_SIZE) return NULL; return pos; } static void kprobe_seq_stop(struct seq_file *f, void *v) { /* Nothing to do */ } static int show_kprobe_addr(struct seq_file *pi, void *v) { struct hlist_head *head; struct kprobe *p, *kp; const char *sym = NULL; unsigned int i = *(loff_t *) v; unsigned long offset = 0; char *modname, namebuf[KSYM_NAME_LEN]; head = &kprobe_table[i]; preempt_disable(); hlist_for_each_entry_rcu(p, head, hlist) { sym = kallsyms_lookup((unsigned long)p->addr, NULL, &offset, &modname, namebuf); if (kprobe_aggrprobe(p)) { list_for_each_entry_rcu(kp, &p->list, list) report_probe(pi, kp, sym, offset, modname, p); } else report_probe(pi, p, sym, offset, modname, NULL); } preempt_enable(); return 0; } static const struct seq_operations kprobes_sops = { .start = kprobe_seq_start, .next = kprobe_seq_next, .stop = kprobe_seq_stop, .show = show_kprobe_addr }; DEFINE_SEQ_ATTRIBUTE(kprobes); /* kprobes/blacklist -- shows which functions can not be probed */ static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) { mutex_lock(&kprobe_mutex); return seq_list_start(&kprobe_blacklist, *pos); } static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) { return seq_list_next(v, &kprobe_blacklist, pos); } static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) { struct kprobe_blacklist_entry *ent = list_entry(v, struct kprobe_blacklist_entry, list); /* * If /proc/kallsyms is not showing kernel address, we won't * show them here either. */ if (!kallsyms_show_value(m->file->f_cred)) seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, (void *)ent->start_addr); else seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, (void *)ent->end_addr, (void *)ent->start_addr); return 0; } static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) { mutex_unlock(&kprobe_mutex); } static const struct seq_operations kprobe_blacklist_sops = { .start = kprobe_blacklist_seq_start, .next = kprobe_blacklist_seq_next, .stop = kprobe_blacklist_seq_stop, .show = kprobe_blacklist_seq_show, }; DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); static int arm_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i, total = 0, errors = 0; int err, ret = 0; mutex_lock(&kprobe_mutex); /* If kprobes are armed, just return */ if (!kprobes_all_disarmed) goto already_enabled; /* * optimize_kprobe() called by arm_kprobe() checks * kprobes_all_disarmed, so set kprobes_all_disarmed before * arm_kprobe. */ kprobes_all_disarmed = false; /* Arming kprobes doesn't optimize kprobe itself */ for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; /* Arm all kprobes on a best-effort basis */ hlist_for_each_entry(p, head, hlist) { if (!kprobe_disabled(p)) { err = arm_kprobe(p); if (err) { errors++; ret = err; } total++; } } } if (errors) pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n", errors, total); else pr_info("Kprobes globally enabled\n"); already_enabled: mutex_unlock(&kprobe_mutex); return ret; } static int disarm_all_kprobes(void) { struct hlist_head *head; struct kprobe *p; unsigned int i, total = 0, errors = 0; int err, ret = 0; mutex_lock(&kprobe_mutex); /* If kprobes are already disarmed, just return */ if (kprobes_all_disarmed) { mutex_unlock(&kprobe_mutex); return 0; } kprobes_all_disarmed = true; for (i = 0; i < KPROBE_TABLE_SIZE; i++) { head = &kprobe_table[i]; /* Disarm all kprobes on a best-effort basis */ hlist_for_each_entry(p, head, hlist) { if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { err = disarm_kprobe(p, false); if (err) { errors++; ret = err; } total++; } } } if (errors) pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n", errors, total); else pr_info("Kprobes globally disabled\n"); mutex_unlock(&kprobe_mutex); /* Wait for disarming all kprobes by optimizer */ wait_for_kprobe_optimizer(); return ret; } /* * XXX: The debugfs bool file interface doesn't allow for callbacks * when the bool state is switched. We can reuse that facility when * available */ static ssize_t read_enabled_file_bool(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { char buf[3]; if (!kprobes_all_disarmed) buf[0] = '1'; else buf[0] = '0'; buf[1] = '\n'; buf[2] = 0x00; return simple_read_from_buffer(user_buf, count, ppos, buf, 2); } static ssize_t write_enabled_file_bool(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { char buf[32]; size_t buf_size; int ret = 0; buf_size = min(count, (sizeof(buf)-1)); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; buf[buf_size] = '\0'; switch (buf[0]) { case 'y': case 'Y': case '1': ret = arm_all_kprobes(); break; case 'n': case 'N': case '0': ret = disarm_all_kprobes(); break; default: return -EINVAL; } if (ret) return ret; return count; } static const struct file_operations fops_kp = { .read = read_enabled_file_bool, .write = write_enabled_file_bool, .llseek = default_llseek, }; static int __init debugfs_kprobe_init(void) { struct dentry *dir; dir = debugfs_create_dir("kprobes", NULL); debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); debugfs_create_file("blacklist", 0400, dir, NULL, &kprobe_blacklist_fops); return 0; } late_initcall(debugfs_kprobe_init); #endif /* CONFIG_DEBUG_FS */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM random #if !defined(_TRACE_RANDOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RANDOM_H #include <linux/writeback.h> #include <linux/tracepoint.h> TRACE_EVENT(add_device_randomness, TP_PROTO(int bytes, unsigned long IP), TP_ARGS(bytes, IP), TP_STRUCT__entry( __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("bytes %d caller %pS", __entry->bytes, (void *)__entry->IP) ); DECLARE_EVENT_CLASS(random__mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("%s pool: bytes %d caller %pS", __entry->pool_name, __entry->bytes, (void *)__entry->IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes_nolock, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); TRACE_EVENT(credit_entropy_bits, TP_PROTO(const char *pool_name, int bits, int entropy_count, unsigned long IP), TP_ARGS(pool_name, bits, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bits ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bits = bits; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: bits %d entropy_count %d caller %pS", __entry->pool_name, __entry->bits, __entry->entropy_count, (void *)__entry->IP) ); TRACE_EVENT(push_to_pool, TP_PROTO(const char *pool_name, int pool_bits, int input_bits), TP_ARGS(pool_name, pool_bits, input_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, pool_bits ) __field( int, input_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->pool_bits = pool_bits; __entry->input_bits = input_bits; ), TP_printk("%s: pool_bits %d input_pool_bits %d", __entry->pool_name, __entry->pool_bits, __entry->input_bits) ); TRACE_EVENT(debit_entropy, TP_PROTO(const char *pool_name, int debit_bits), TP_ARGS(pool_name, debit_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, debit_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->debit_bits = debit_bits; ), TP_printk("%s: debit_bits %d", __entry->pool_name, __entry->debit_bits) ); TRACE_EVENT(add_input_randomness, TP_PROTO(int input_bits), TP_ARGS(input_bits), TP_STRUCT__entry( __field( int, input_bits ) ), TP_fast_assign( __entry->input_bits = input_bits; ), TP_printk("input_pool_bits %d", __entry->input_bits) ); TRACE_EVENT(add_disk_randomness, TP_PROTO(dev_t dev, int input_bits), TP_ARGS(dev, input_bits), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, input_bits ) ), TP_fast_assign( __entry->dev = dev; __entry->input_bits = input_bits; ), TP_printk("dev %d,%d input_pool_bits %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->input_bits) ); TRACE_EVENT(xfer_secondary_pool, TP_PROTO(const char *pool_name, int xfer_bits, int request_bits, int pool_entropy, int input_entropy), TP_ARGS(pool_name, xfer_bits, request_bits, pool_entropy, input_entropy), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, xfer_bits ) __field( int, request_bits ) __field( int, pool_entropy ) __field( int, input_entropy ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->xfer_bits = xfer_bits; __entry->request_bits = request_bits; __entry->pool_entropy = pool_entropy; __entry->input_entropy = input_entropy; ), TP_printk("pool %s xfer_bits %d request_bits %d pool_entropy %d " "input_entropy %d", __entry->pool_name, __entry->xfer_bits, __entry->request_bits, __entry->pool_entropy, __entry->input_entropy) ); DECLARE_EVENT_CLASS(random__get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP), TP_STRUCT__entry( __field( int, nbytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->nbytes = nbytes; __entry->IP = IP; ), TP_printk("nbytes %d caller %pS", __entry->nbytes, (void *)__entry->IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes_arch, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DECLARE_EVENT_CLASS(random__extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, nbytes ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->nbytes = nbytes; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: nbytes %d entropy_count %d caller %pS", __entry->pool_name, __entry->nbytes, __entry->entropy_count, (void *)__entry->IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy_user, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); TRACE_EVENT(random_read, TP_PROTO(int got_bits, int need_bits, int pool_left, int input_left), TP_ARGS(got_bits, need_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, need_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->need_bits = need_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d still_needed_bits %d " "blocking_pool_entropy_left %d input_entropy_left %d", __entry->got_bits, __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(urandom_read, TP_PROTO(int got_bits, int pool_left, int input_left), TP_ARGS(got_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d nonblocking_pool_entropy_left %d " "input_entropy_left %d", __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(prandom_u32, TP_PROTO(unsigned int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( unsigned int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%u" , __entry->ret) ); #endif /* _TRACE_RANDOM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_JUMP_LABEL_H #define _ASM_X86_JUMP_LABEL_H #define HAVE_JUMP_LABEL_BATCH #define JUMP_LABEL_NOP_SIZE 5 #ifdef CONFIG_X86_64 # define STATIC_KEY_INIT_NOP P6_NOP5_ATOMIC #else # define STATIC_KEY_INIT_NOP GENERIC_NOP5_ATOMIC #endif #include <asm/asm.h> #include <asm/nops.h> #ifndef __ASSEMBLY__ #include <linux/stringify.h> #include <linux/types.h> static __always_inline bool arch_static_branch(struct static_key *key, bool branch) { asm_volatile_goto("1:" ".byte " __stringify(STATIC_KEY_INIT_NOP) "\n\t" ".pushsection __jump_table, \"aw\" \n\t" _ASM_ALIGN "\n\t" ".long 1b - ., %l[l_yes] - . \n\t" _ASM_PTR "%c0 + %c1 - .\n\t" ".popsection \n\t" : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } static __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch) { asm_volatile_goto("1:" ".byte 0xe9\n\t .long %l[l_yes] - 2f\n\t" "2:\n\t" ".pushsection __jump_table, \"aw\" \n\t" _ASM_ALIGN "\n\t" ".long 1b - ., %l[l_yes] - . \n\t" _ASM_PTR "%c0 + %c1 - .\n\t" ".popsection \n\t" : : "i" (key), "i" (branch) : : l_yes); return false; l_yes: return true; } #else /* __ASSEMBLY__ */ .macro STATIC_JUMP_IF_TRUE target, key, def .Lstatic_jump_\@: .if \def /* Equivalent to "jmp.d32 \target" */ .byte 0xe9 .long \target - .Lstatic_jump_after_\@ .Lstatic_jump_after_\@: .else .byte STATIC_KEY_INIT_NOP .endif .pushsection __jump_table, "aw" _ASM_ALIGN .long .Lstatic_jump_\@ - ., \target - . _ASM_PTR \key - . .popsection .endm .macro STATIC_JUMP_IF_FALSE target, key, def .Lstatic_jump_\@: .if \def .byte STATIC_KEY_INIT_NOP .else /* Equivalent to "jmp.d32 \target" */ .byte 0xe9 .long \target - .Lstatic_jump_after_\@ .Lstatic_jump_after_\@: .endif .pushsection __jump_table, "aw" _ASM_ALIGN .long .Lstatic_jump_\@ - ., \target - . _ASM_PTR \key + 1 - . .popsection .endm #endif /* __ASSEMBLY__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 /* BlueZ - Bluetooth protocol stack for Linux Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __HCI_CORE_H #define __HCI_CORE_H #include <linux/idr.h> #include <linux/leds.h> #include <linux/rculist.h> #include <net/bluetooth/hci.h> #include <net/bluetooth/hci_sock.h> /* HCI priority */ #define HCI_PRIO_MAX 7 /* HCI Core structures */ struct inquiry_data { bdaddr_t bdaddr; __u8 pscan_rep_mode; __u8 pscan_period_mode; __u8 pscan_mode; __u8 dev_class[3]; __le16 clock_offset; __s8 rssi; __u8 ssp_mode; }; struct inquiry_entry { struct list_head all; /* inq_cache.all */ struct list_head list; /* unknown or resolve */ enum { NAME_NOT_KNOWN, NAME_NEEDED, NAME_PENDING, NAME_KNOWN, } name_state; __u32 timestamp; struct inquiry_data data; }; struct discovery_state { int type; enum { DISCOVERY_STOPPED, DISCOVERY_STARTING, DISCOVERY_FINDING, DISCOVERY_RESOLVING, DISCOVERY_STOPPING, } state; struct list_head all; /* All devices found during inquiry */ struct list_head unknown; /* Name state not known */ struct list_head resolve; /* Name needs to be resolved */ __u32 timestamp; bdaddr_t last_adv_addr; u8 last_adv_addr_type; s8 last_adv_rssi; u32 last_adv_flags; u8 last_adv_data[HCI_MAX_AD_LENGTH]; u8 last_adv_data_len; bool report_invalid_rssi; bool result_filtering; bool limited; s8 rssi; u16 uuid_count; u8 (*uuids)[16]; unsigned long scan_start; unsigned long scan_duration; }; #define SUSPEND_NOTIFIER_TIMEOUT msecs_to_jiffies(2000) /* 2 seconds */ enum suspend_tasks { SUSPEND_PAUSE_DISCOVERY, SUSPEND_UNPAUSE_DISCOVERY, SUSPEND_PAUSE_ADVERTISING, SUSPEND_UNPAUSE_ADVERTISING, SUSPEND_SCAN_DISABLE, SUSPEND_SCAN_ENABLE, SUSPEND_DISCONNECTING, SUSPEND_POWERING_DOWN, SUSPEND_PREPARE_NOTIFIER, __SUSPEND_NUM_TASKS }; enum suspended_state { BT_RUNNING = 0, BT_SUSPEND_DISCONNECT, BT_SUSPEND_CONFIGURE_WAKE, }; struct hci_conn_hash { struct list_head list; unsigned int acl_num; unsigned int amp_num; unsigned int sco_num; unsigned int le_num; unsigned int le_num_slave; }; struct bdaddr_list { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; }; struct bdaddr_list_with_irk { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 peer_irk[16]; u8 local_irk[16]; }; struct bdaddr_list_with_flags { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u32 current_flags; }; enum hci_conn_flags { HCI_CONN_FLAG_REMOTE_WAKEUP, HCI_CONN_FLAG_MAX }; #define hci_conn_test_flag(nr, flags) ((flags) & (1U << nr)) /* Make sure number of flags doesn't exceed sizeof(current_flags) */ static_assert(HCI_CONN_FLAG_MAX < 32); struct bt_uuid { struct list_head list; u8 uuid[16]; u8 size; u8 svc_hint; }; struct blocked_key { struct list_head list; struct rcu_head rcu; u8 type; u8 val[16]; }; struct smp_csrk { bdaddr_t bdaddr; u8 bdaddr_type; u8 type; u8 val[16]; }; struct smp_ltk { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 bdaddr_type; u8 authenticated; u8 type; u8 enc_size; __le16 ediv; __le64 rand; u8 val[16]; }; struct smp_irk { struct list_head list; struct rcu_head rcu; bdaddr_t rpa; bdaddr_t bdaddr; u8 addr_type; u8 val[16]; }; struct link_key { struct list_head list; struct rcu_head rcu; bdaddr_t bdaddr; u8 type; u8 val[HCI_LINK_KEY_SIZE]; u8 pin_len; }; struct oob_data { struct list_head list; bdaddr_t bdaddr; u8 bdaddr_type; u8 present; u8 hash192[16]; u8 rand192[16]; u8 hash256[16]; u8 rand256[16]; }; struct adv_info { struct list_head list; bool pending; __u8 instance; __u32 flags; __u16 timeout; __u16 remaining_time; __u16 duration; __u16 adv_data_len; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u16 scan_rsp_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __s8 tx_power; bdaddr_t random_addr; bool rpa_expired; struct delayed_work rpa_expired_cb; }; #define HCI_MAX_ADV_INSTANCES 5 #define HCI_DEFAULT_ADV_DURATION 2 struct adv_pattern { struct list_head list; __u8 ad_type; __u8 offset; __u8 length; __u8 value[HCI_MAX_AD_LENGTH]; }; struct adv_monitor { struct list_head patterns; bool active; __u16 handle; }; #define HCI_MIN_ADV_MONITOR_HANDLE 1 #define HCI_MAX_ADV_MONITOR_NUM_HANDLES 32 #define HCI_MAX_ADV_MONITOR_NUM_PATTERNS 16 #define HCI_MAX_SHORT_NAME_LENGTH 10 /* Min encryption key size to match with SMP */ #define HCI_MIN_ENC_KEY_SIZE 7 /* Default LE RPA expiry time, 15 minutes */ #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60) /* Default min/max age of connection information (1s/3s) */ #define DEFAULT_CONN_INFO_MIN_AGE 1000 #define DEFAULT_CONN_INFO_MAX_AGE 3000 /* Default authenticated payload timeout 30s */ #define DEFAULT_AUTH_PAYLOAD_TIMEOUT 0x0bb8 struct amp_assoc { __u16 len; __u16 offset; __u16 rem_len; __u16 len_so_far; __u8 data[HCI_MAX_AMP_ASSOC_SIZE]; }; #define HCI_MAX_PAGES 3 struct hci_dev { struct list_head list; struct mutex lock; char name[8]; unsigned long flags; __u16 id; __u8 bus; __u8 dev_type; bdaddr_t bdaddr; bdaddr_t setup_addr; bdaddr_t public_addr; bdaddr_t random_addr; bdaddr_t static_addr; __u8 adv_addr_type; __u8 dev_name[HCI_MAX_NAME_LENGTH]; __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH]; __u8 eir[HCI_MAX_EIR_LENGTH]; __u16 appearance; __u8 dev_class[3]; __u8 major_class; __u8 minor_class; __u8 max_page; __u8 features[HCI_MAX_PAGES][8]; __u8 le_features[8]; __u8 le_white_list_size; __u8 le_resolv_list_size; __u8 le_num_of_adv_sets; __u8 le_states[8]; __u8 commands[64]; __u8 hci_ver; __u16 hci_rev; __u8 lmp_ver; __u16 manufacturer; __u16 lmp_subver; __u16 voice_setting; __u8 num_iac; __u8 stored_max_keys; __u8 stored_num_keys; __u8 io_capability; __s8 inq_tx_power; __u8 err_data_reporting; __u16 page_scan_interval; __u16 page_scan_window; __u8 page_scan_type; __u8 le_adv_channel_map; __u16 le_adv_min_interval; __u16 le_adv_max_interval; __u8 le_scan_type; __u16 le_scan_interval; __u16 le_scan_window; __u16 le_scan_int_suspend; __u16 le_scan_window_suspend; __u16 le_scan_int_discovery; __u16 le_scan_window_discovery; __u16 le_scan_int_adv_monitor; __u16 le_scan_window_adv_monitor; __u16 le_scan_int_connect; __u16 le_scan_window_connect; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u16 le_def_tx_len; __u16 le_def_tx_time; __u16 le_max_tx_len; __u16 le_max_tx_time; __u16 le_max_rx_len; __u16 le_max_rx_time; __u8 le_max_key_size; __u8 le_min_key_size; __u16 discov_interleaved_timeout; __u16 conn_info_min_age; __u16 conn_info_max_age; __u16 auth_payload_timeout; __u8 min_enc_key_size; __u8 max_enc_key_size; __u8 pairing_opts; __u8 ssp_debug_mode; __u8 hw_error_code; __u32 clock; __u16 devid_source; __u16 devid_vendor; __u16 devid_product; __u16 devid_version; __u8 def_page_scan_type; __u16 def_page_scan_int; __u16 def_page_scan_window; __u8 def_inq_scan_type; __u16 def_inq_scan_int; __u16 def_inq_scan_window; __u16 def_br_lsto; __u16 def_page_timeout; __u16 def_multi_adv_rotation_duration; __u16 def_le_autoconnect_timeout; __u16 pkt_type; __u16 esco_type; __u16 link_policy; __u16 link_mode; __u32 idle_timeout; __u16 sniff_min_interval; __u16 sniff_max_interval; __u8 amp_status; __u32 amp_total_bw; __u32 amp_max_bw; __u32 amp_min_latency; __u32 amp_max_pdu; __u8 amp_type; __u16 amp_pal_cap; __u16 amp_assoc_size; __u32 amp_max_flush_to; __u32 amp_be_flush_to; struct amp_assoc loc_assoc; __u8 flow_ctl_mode; unsigned int auto_accept_delay; unsigned long quirks; atomic_t cmd_cnt; unsigned int acl_cnt; unsigned int sco_cnt; unsigned int le_cnt; unsigned int acl_mtu; unsigned int sco_mtu; unsigned int le_mtu; unsigned int acl_pkts; unsigned int sco_pkts; unsigned int le_pkts; __u16 block_len; __u16 block_mtu; __u16 num_blocks; __u16 block_cnt; unsigned long acl_last_tx; unsigned long sco_last_tx; unsigned long le_last_tx; __u8 le_tx_def_phys; __u8 le_rx_def_phys; struct workqueue_struct *workqueue; struct workqueue_struct *req_workqueue; struct work_struct power_on; struct delayed_work power_off; struct work_struct error_reset; __u16 discov_timeout; struct delayed_work discov_off; struct delayed_work service_cache; struct delayed_work cmd_timer; struct work_struct rx_work; struct work_struct cmd_work; struct work_struct tx_work; struct work_struct discov_update; struct work_struct bg_scan_update; struct work_struct scan_update; struct work_struct connectable_update; struct work_struct discoverable_update; struct delayed_work le_scan_disable; struct delayed_work le_scan_restart; struct sk_buff_head rx_q; struct sk_buff_head raw_q; struct sk_buff_head cmd_q; struct sk_buff *sent_cmd; struct mutex req_lock; wait_queue_head_t req_wait_q; __u32 req_status; __u32 req_result; struct sk_buff *req_skb; void *smp_data; void *smp_bredr_data; struct discovery_state discovery; int discovery_old_state; bool discovery_paused; int advertising_old_state; bool advertising_paused; struct notifier_block suspend_notifier; struct work_struct suspend_prepare; enum suspended_state suspend_state_next; enum suspended_state suspend_state; bool scanning_paused; bool suspended; u8 wake_reason; bdaddr_t wake_addr; u8 wake_addr_type; wait_queue_head_t suspend_wait_q; DECLARE_BITMAP(suspend_tasks, __SUSPEND_NUM_TASKS); struct hci_conn_hash conn_hash; struct list_head mgmt_pending; struct list_head blacklist; struct list_head whitelist; struct list_head uuids; struct list_head link_keys; struct list_head long_term_keys; struct list_head identity_resolving_keys; struct list_head remote_oob_data; struct list_head le_white_list; struct list_head le_resolv_list; struct list_head le_conn_params; struct list_head pend_le_conns; struct list_head pend_le_reports; struct list_head blocked_keys; struct hci_dev_stats stat; atomic_t promisc; const char *hw_info; const char *fw_info; struct dentry *debugfs; struct device dev; struct rfkill *rfkill; DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS); __s8 adv_tx_power; __u8 adv_data[HCI_MAX_EXT_AD_LENGTH]; __u8 adv_data_len; __u8 scan_rsp_data[HCI_MAX_EXT_AD_LENGTH]; __u8 scan_rsp_data_len; struct list_head adv_instances; unsigned int adv_instance_cnt; __u8 cur_adv_instance; __u16 adv_instance_timeout; struct delayed_work adv_instance_expire; struct idr adv_monitors_idr; unsigned int adv_monitors_cnt; __u8 irk[16]; __u32 rpa_timeout; struct delayed_work rpa_expired; bdaddr_t rpa; #if IS_ENABLED(CONFIG_BT_LEDS) struct led_trigger *power_led; #endif #if IS_ENABLED(CONFIG_BT_MSFTEXT) __u16 msft_opcode; void *msft_data; #endif int (*open)(struct hci_dev *hdev); int (*close)(struct hci_dev *hdev); int (*flush)(struct hci_dev *hdev); int (*setup)(struct hci_dev *hdev); int (*shutdown)(struct hci_dev *hdev); int (*send)(struct hci_dev *hdev, struct sk_buff *skb); void (*notify)(struct hci_dev *hdev, unsigned int evt); void (*hw_error)(struct hci_dev *hdev, u8 code); int (*post_init)(struct hci_dev *hdev); int (*set_diag)(struct hci_dev *hdev, bool enable); int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr); void (*cmd_timeout)(struct hci_dev *hdev); bool (*prevent_wake)(struct hci_dev *hdev); }; #define HCI_PHY_HANDLE(handle) (handle & 0xff) enum conn_reasons { CONN_REASON_PAIR_DEVICE, CONN_REASON_L2CAP_CHAN, CONN_REASON_SCO_CONNECT, }; struct hci_conn { struct list_head list; atomic_t refcnt; bdaddr_t dst; __u8 dst_type; bdaddr_t src; __u8 src_type; bdaddr_t init_addr; __u8 init_addr_type; bdaddr_t resp_addr; __u8 resp_addr_type; __u16 handle; __u16 state; __u8 mode; __u8 type; __u8 role; bool out; __u8 attempt; __u8 dev_class[3]; __u8 features[HCI_MAX_PAGES][8]; __u16 pkt_type; __u16 link_policy; __u8 key_type; __u8 auth_type; __u8 sec_level; __u8 pending_sec_level; __u8 pin_length; __u8 enc_key_size; __u8 io_capability; __u32 passkey_notify; __u8 passkey_entered; __u16 disc_timeout; __u16 conn_timeout; __u16 setting; __u16 auth_payload_timeout; __u16 le_conn_min_interval; __u16 le_conn_max_interval; __u16 le_conn_interval; __u16 le_conn_latency; __u16 le_supv_timeout; __u8 le_adv_data[HCI_MAX_AD_LENGTH]; __u8 le_adv_data_len; __u8 le_tx_phy; __u8 le_rx_phy; __s8 rssi; __s8 tx_power; __s8 max_tx_power; unsigned long flags; enum conn_reasons conn_reason; __u32 clock; __u16 clock_accuracy; unsigned long conn_info_timestamp; __u8 remote_cap; __u8 remote_auth; __u8 remote_id; unsigned int sent; struct sk_buff_head data_q; struct list_head chan_list; struct delayed_work disc_work; struct delayed_work auto_accept_work; struct delayed_work idle_work; struct delayed_work le_conn_timeout; struct work_struct le_scan_cleanup; struct device dev; struct dentry *debugfs; struct hci_dev *hdev; void *l2cap_data; void *sco_data; struct amp_mgr *amp_mgr; struct hci_conn *link; void (*connect_cfm_cb) (struct hci_conn *conn, u8 status); void (*security_cfm_cb) (struct hci_conn *conn, u8 status); void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason); }; struct hci_chan { struct list_head list; __u16 handle; struct hci_conn *conn; struct sk_buff_head data_q; unsigned int sent; __u8 state; bool amp; }; struct hci_conn_params { struct list_head list; struct list_head action; bdaddr_t addr; u8 addr_type; u16 conn_min_interval; u16 conn_max_interval; u16 conn_latency; u16 supervision_timeout; enum { HCI_AUTO_CONN_DISABLED, HCI_AUTO_CONN_REPORT, HCI_AUTO_CONN_DIRECT, HCI_AUTO_CONN_ALWAYS, HCI_AUTO_CONN_LINK_LOSS, HCI_AUTO_CONN_EXPLICIT, } auto_connect; struct hci_conn *conn; bool explicit_connect; u32 current_flags; }; extern struct list_head hci_dev_list; extern struct list_head hci_cb_list; extern rwlock_t hci_dev_list_lock; extern struct mutex hci_cb_list_lock; #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags) #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags) #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags) #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags) #define hci_dev_clear_volatile_flags(hdev) \ do { \ hci_dev_clear_flag(hdev, HCI_LE_SCAN); \ hci_dev_clear_flag(hdev, HCI_LE_ADV); \ hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION);\ hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \ } while (0) /* ----- HCI interface to upper protocols ----- */ int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr); int l2cap_disconn_ind(struct hci_conn *hcon); void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags); void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb); #else static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags) { return 0; } static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb) { } #endif /* ----- Inquiry cache ----- */ #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */ #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */ static inline void discovery_init(struct hci_dev *hdev) { hdev->discovery.state = DISCOVERY_STOPPED; INIT_LIST_HEAD(&hdev->discovery.all); INIT_LIST_HEAD(&hdev->discovery.unknown); INIT_LIST_HEAD(&hdev->discovery.resolve); hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; } static inline void hci_discovery_filter_clear(struct hci_dev *hdev) { hdev->discovery.result_filtering = false; hdev->discovery.report_invalid_rssi = true; hdev->discovery.rssi = HCI_RSSI_INVALID; hdev->discovery.uuid_count = 0; kfree(hdev->discovery.uuids); hdev->discovery.uuids = NULL; hdev->discovery.scan_start = 0; hdev->discovery.scan_duration = 0; } bool hci_discovery_active(struct hci_dev *hdev); void hci_discovery_set_state(struct hci_dev *hdev, int state); static inline int inquiry_cache_empty(struct hci_dev *hdev) { return list_empty(&hdev->discovery.all); } static inline long inquiry_cache_age(struct hci_dev *hdev) { struct discovery_state *c = &hdev->discovery; return jiffies - c->timestamp; } static inline long inquiry_entry_age(struct inquiry_entry *e) { return jiffies - e->timestamp; } struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, bdaddr_t *bdaddr); struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, bdaddr_t *bdaddr, int state); void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, struct inquiry_entry *ie); u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, bool name_known); void hci_inquiry_cache_flush(struct hci_dev *hdev); /* ----- HCI Connections ----- */ enum { HCI_CONN_AUTH_PEND, HCI_CONN_REAUTH_PEND, HCI_CONN_ENCRYPT_PEND, HCI_CONN_RSWITCH_PEND, HCI_CONN_MODE_CHANGE_PEND, HCI_CONN_SCO_SETUP_PEND, HCI_CONN_MGMT_CONNECTED, HCI_CONN_SSP_ENABLED, HCI_CONN_SC_ENABLED, HCI_CONN_AES_CCM, HCI_CONN_POWER_SAVE, HCI_CONN_FLUSH_KEY, HCI_CONN_ENCRYPT, HCI_CONN_AUTH, HCI_CONN_SECURE, HCI_CONN_FIPS, HCI_CONN_STK_ENCRYPT, HCI_CONN_AUTH_INITIATOR, HCI_CONN_DROP, HCI_CONN_PARAM_REMOVAL_PEND, HCI_CONN_NEW_LINK_KEY, HCI_CONN_SCANNING, HCI_CONN_AUTH_FAILURE, }; static inline bool hci_conn_ssp_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && test_bit(HCI_CONN_SSP_ENABLED, &conn->flags); } static inline bool hci_conn_sc_enabled(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; return hci_dev_test_flag(hdev, HCI_SC_ENABLED) && test_bit(HCI_CONN_SC_ENABLED, &conn->flags); } static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_add_rcu(&c->list, &h->list); switch (c->type) { case ACL_LINK: h->acl_num++; break; case AMP_LINK: h->amp_num++; break; case LE_LINK: h->le_num++; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave++; break; case SCO_LINK: case ESCO_LINK: h->sco_num++; break; } } static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c) { struct hci_conn_hash *h = &hdev->conn_hash; list_del_rcu(&c->list); synchronize_rcu(); switch (c->type) { case ACL_LINK: h->acl_num--; break; case AMP_LINK: h->amp_num--; break; case LE_LINK: h->le_num--; if (c->role == HCI_ROLE_SLAVE) h->le_num_slave--; break; case SCO_LINK: case ESCO_LINK: h->sco_num--; break; } } static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type) { struct hci_conn_hash *h = &hdev->conn_hash; switch (type) { case ACL_LINK: return h->acl_num; case AMP_LINK: return h->amp_num; case LE_LINK: return h->le_num; case SCO_LINK: case ESCO_LINK: return h->sco_num; default: return 0; } } static inline unsigned int hci_conn_count(struct hci_dev *hdev) { struct hci_conn_hash *c = &hdev->conn_hash; return c->acl_num + c->amp_num + c->sco_num + c->le_num; } static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; __u8 type = INVALID_LINK; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { type = c->type; break; } } rcu_read_unlock(); return type; } static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev, __u16 handle) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->handle == handle) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev, __u8 type, bdaddr_t *ba) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev, bdaddr_t *ba, __u8 ba_type) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type != LE_LINK) continue; if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev, __u8 type, __u16 state) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == type && c->state == state) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev) { struct hci_conn_hash *h = &hdev->conn_hash; struct hci_conn *c; rcu_read_lock(); list_for_each_entry_rcu(c, &h->list, list) { if (c->type == LE_LINK && c->state == BT_CONNECT && !test_bit(HCI_CONN_SCANNING, &c->flags)) { rcu_read_unlock(); return c; } } rcu_read_unlock(); return NULL; } int hci_disconnect(struct hci_conn *conn, __u8 reason); bool hci_setup_sync(struct hci_conn *conn, __u16 handle); void hci_sco_setup(struct hci_conn *conn, __u8 status); struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, u8 role); int hci_conn_del(struct hci_conn *conn); void hci_conn_hash_flush(struct hci_dev *hdev); void hci_conn_check_pending(struct hci_dev *hdev); struct hci_chan *hci_chan_create(struct hci_conn *conn); void hci_chan_del(struct hci_chan *chan); void hci_chan_list_flush(struct hci_conn *conn); struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle); struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, enum conn_reasons conn_reason); struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, u8 dst_type, u8 sec_level, u16 conn_timeout, u8 role, bdaddr_t *direct_rpa); struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, u8 sec_level, u8 auth_type, enum conn_reasons conn_reason); struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, __u16 setting); int hci_conn_check_link_mode(struct hci_conn *conn); int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level); int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, bool initiator); int hci_conn_switch_role(struct hci_conn *conn, __u8 role); void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active); void hci_le_conn_failed(struct hci_conn *conn, u8 status); /* * hci_conn_get() and hci_conn_put() are used to control the life-time of an * "hci_conn" object. They do not guarantee that the hci_conn object is running, * working or anything else. They just guarantee that the object is available * and can be dereferenced. So you can use its locks, local variables and any * other constant data. * Before accessing runtime data, you _must_ lock the object and then check that * it is still running. As soon as you release the locks, the connection might * get dropped, though. * * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control * how long the underlying connection is held. So every channel that runs on the * hci_conn object calls this to prevent the connection from disappearing. As * long as you hold a device, you must also guarantee that you have a valid * reference to the device via hci_conn_get() (or the initial reference from * hci_conn_add()). * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't * break because nobody cares for that. But this means, we cannot use * _get()/_drop() in it, but require the caller to have a valid ref (FIXME). */ static inline struct hci_conn *hci_conn_get(struct hci_conn *conn) { get_device(&conn->dev); return conn; } static inline void hci_conn_put(struct hci_conn *conn) { put_device(&conn->dev); } static inline void hci_conn_hold(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); atomic_inc(&conn->refcnt); cancel_delayed_work(&conn->disc_work); } static inline void hci_conn_drop(struct hci_conn *conn) { BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt)); if (atomic_dec_and_test(&conn->refcnt)) { unsigned long timeo; switch (conn->type) { case ACL_LINK: case LE_LINK: cancel_delayed_work(&conn->idle_work); if (conn->state == BT_CONNECTED) { timeo = conn->disc_timeout; if (!conn->out) timeo *= 2; } else { timeo = 0; } break; case AMP_LINK: timeo = conn->disc_timeout; break; default: timeo = 0; break; } cancel_delayed_work(&conn->disc_work); queue_delayed_work(conn->hdev->workqueue, &conn->disc_work, timeo); } } /* ----- HCI Devices ----- */ static inline void hci_dev_put(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); put_device(&d->dev); } static inline struct hci_dev *hci_dev_hold(struct hci_dev *d) { BT_DBG("%s orig refcnt %d", d->name, kref_read(&d->dev.kobj.kref)); get_device(&d->dev); return d; } #define hci_dev_lock(d) mutex_lock(&d->lock) #define hci_dev_unlock(d) mutex_unlock(&d->lock) #define to_hci_dev(d) container_of(d, struct hci_dev, dev) #define to_hci_conn(c) container_of(c, struct hci_conn, dev) static inline void *hci_get_drvdata(struct hci_dev *hdev) { return dev_get_drvdata(&hdev->dev); } static inline void hci_set_drvdata(struct hci_dev *hdev, void *data) { dev_set_drvdata(&hdev->dev, data); } struct hci_dev *hci_dev_get(int index); struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type); struct hci_dev *hci_alloc_dev(void); void hci_free_dev(struct hci_dev *hdev); int hci_register_dev(struct hci_dev *hdev); void hci_unregister_dev(struct hci_dev *hdev); void hci_cleanup_dev(struct hci_dev *hdev); int hci_suspend_dev(struct hci_dev *hdev); int hci_resume_dev(struct hci_dev *hdev); int hci_reset_dev(struct hci_dev *hdev); int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb); int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb); __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...); __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...); static inline void hci_set_msft_opcode(struct hci_dev *hdev, __u16 opcode) { #if IS_ENABLED(CONFIG_BT_MSFTEXT) hdev->msft_opcode = opcode; #endif } int hci_dev_open(__u16 dev); int hci_dev_close(__u16 dev); int hci_dev_do_close(struct hci_dev *hdev); int hci_dev_reset(__u16 dev); int hci_dev_reset_stat(__u16 dev); int hci_dev_cmd(unsigned int cmd, void __user *arg); int hci_get_dev_list(void __user *arg); int hci_get_dev_info(void __user *arg); int hci_get_conn_list(void __user *arg); int hci_get_conn_info(struct hci_dev *hdev, void __user *arg); int hci_get_auth_info(struct hci_dev *hdev, void __user *arg); int hci_inquiry(void __user *arg); struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( struct list_head *list, bdaddr_t *bdaddr, u8 type); struct bdaddr_list_with_flags * hci_bdaddr_list_lookup_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type, u8 *peer_irk, u8 *local_irk); int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type, u32 flags); int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, u8 type); int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, u8 type); void hci_bdaddr_list_clear(struct list_head *list); struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type); void hci_conn_params_clear_disabled(struct hci_dev *hdev); struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, bdaddr_t *addr, u8 addr_type); void hci_uuids_clear(struct hci_dev *hdev); void hci_link_keys_clear(struct hci_dev *hdev); struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len, bool *persistent); struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type, u8 authenticated, u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand); struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 role); int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_smp_ltks_clear(struct hci_dev *hdev); int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr); struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa); struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 val[16], bdaddr_t *rpa); void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type); bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]); void hci_blocked_keys_clear(struct hci_dev *hdev); void hci_smp_irks_clear(struct hci_dev *hdev); bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type); void hci_remote_oob_data_clear(struct hci_dev *hdev); struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 *hash192, u8 *rand192, u8 *hash256, u8 *rand256); int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type); void hci_adv_instances_clear(struct hci_dev *hdev); struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance); struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance); int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, u16 adv_data_len, u8 *adv_data, u16 scan_rsp_len, u8 *scan_rsp_data, u16 timeout, u16 duration); int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance); void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired); void hci_adv_monitors_clear(struct hci_dev *hdev); void hci_free_adv_monitor(struct adv_monitor *monitor); int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor); int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle); bool hci_is_adv_monitoring(struct hci_dev *hdev); void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb); void hci_init_sysfs(struct hci_dev *hdev); void hci_conn_init_sysfs(struct hci_conn *conn); void hci_conn_add_sysfs(struct hci_conn *conn); void hci_conn_del_sysfs(struct hci_conn *conn); #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev)) /* ----- LMP capabilities ----- */ #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT) #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH) #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD) #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF) #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK) #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ) #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO) #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR)) #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE) #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR) #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC) #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ) #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR)) #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR) #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH) #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO) #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR) #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES) #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT) #define lmp_edr_2m_capable(dev) ((dev)->features[0][3] & LMP_EDR_2M) #define lmp_edr_3m_capable(dev) ((dev)->features[0][3] & LMP_EDR_3M) #define lmp_edr_3slot_capable(dev) ((dev)->features[0][4] & LMP_EDR_3SLOT) #define lmp_edr_5slot_capable(dev) ((dev)->features[0][5] & LMP_EDR_5SLOT) /* ----- Extended LMP capabilities ----- */ #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER) #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE) #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN) #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN) #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC) #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING) /* ----- Host capabilities ----- */ #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP) #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC) #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE)) #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR)) #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \ !hci_dev_test_flag(dev, HCI_AUTO_OFF)) #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \ hci_dev_test_flag(dev, HCI_SC_ENABLED)) #define scan_1m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_1M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_1M)) #define scan_2m(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_2M) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_2M)) #define scan_coded(dev) (((dev)->le_tx_def_phys & HCI_LE_SET_PHY_CODED) || \ ((dev)->le_rx_def_phys & HCI_LE_SET_PHY_CODED)) /* Use LL Privacy based address resolution if supported */ #define use_ll_privacy(dev) ((dev)->le_features[0] & HCI_LE_LL_PRIVACY) /* Use ext scanning if set ext scan param and ext scan enable is supported */ #define use_ext_scan(dev) (((dev)->commands[37] & 0x20) && \ ((dev)->commands[37] & 0x40)) /* Use ext create connection if command is supported */ #define use_ext_conn(dev) ((dev)->commands[37] & 0x80) /* Extended advertising support */ #define ext_adv_capable(dev) (((dev)->le_features[1] & HCI_LE_EXT_ADV)) /* ----- HCI protocols ----- */ #define HCI_PROTO_DEFER 0x01 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 type, __u8 *flags) { switch (type) { case ACL_LINK: return l2cap_connect_ind(hdev, bdaddr); case SCO_LINK: case ESCO_LINK: return sco_connect_ind(hdev, bdaddr, flags); default: BT_ERR("unknown link type %d", type); return -EINVAL; } } static inline int hci_proto_disconn_ind(struct hci_conn *conn) { if (conn->type != ACL_LINK && conn->type != LE_LINK) return HCI_ERROR_REMOTE_USER_TERM; return l2cap_disconn_ind(conn); } /* ----- HCI callbacks ----- */ struct hci_cb { struct list_head list; char *name; void (*connect_cfm) (struct hci_conn *conn, __u8 status); void (*disconn_cfm) (struct hci_conn *conn, __u8 status); void (*security_cfm) (struct hci_conn *conn, __u8 status, __u8 encrypt); void (*key_change_cfm) (struct hci_conn *conn, __u8 status); void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role); }; static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->connect_cfm) cb->connect_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); if (conn->connect_cfm_cb) conn->connect_cfm_cb(conn, status); } static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->disconn_cfm) cb->disconn_cfm(conn, reason); } mutex_unlock(&hci_cb_list_lock); if (conn->disconn_cfm_cb) conn->disconn_cfm_cb(conn, reason); } static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) return; encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; __u8 encrypt; if (conn->state == BT_CONFIG) { if (!status) conn->state = BT_CONNECTED; hci_connect_cfm(conn, status); hci_conn_drop(conn); return; } if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) encrypt = 0x00; else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) encrypt = 0x02; else encrypt = 0x01; if (!status) { if (conn->sec_level == BT_SECURITY_SDP) conn->sec_level = BT_SECURITY_LOW; if (conn->pending_sec_level > conn->sec_level) conn->sec_level = conn->pending_sec_level; } mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->security_cfm) cb->security_cfm(conn, status, encrypt); } mutex_unlock(&hci_cb_list_lock); if (conn->security_cfm_cb) conn->security_cfm_cb(conn, status); } static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->key_change_cfm) cb->key_change_cfm(conn, status); } mutex_unlock(&hci_cb_list_lock); } static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status, __u8 role) { struct hci_cb *cb; mutex_lock(&hci_cb_list_lock); list_for_each_entry(cb, &hci_cb_list, list) { if (cb->role_switch_cfm) cb->role_switch_cfm(conn, status, role); } mutex_unlock(&hci_cb_list_lock); } static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type, size_t *data_len) { size_t parsed = 0; if (eir_len < 2) return NULL; while (parsed < eir_len - 1) { u8 field_len = eir[0]; if (field_len == 0) break; parsed += field_len + 1; if (parsed > eir_len) break; if (eir[1] != type) { eir += field_len + 1; continue; } /* Zero length data */ if (field_len == 1) return NULL; if (data_len) *data_len = field_len - 1; return &eir[2]; } return NULL; } static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type) { if (addr_type != ADDR_LE_DEV_RANDOM) return false; if ((bdaddr->b[5] & 0xc0) == 0x40) return true; return false; } static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type) { if (addr_type == ADDR_LE_DEV_PUBLIC) return true; /* Check for Random Static address type */ if ((addr->b[5] & 0xc0) == 0xc0) return true; return false; } static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) { if (!hci_bdaddr_is_rpa(bdaddr, addr_type)) return NULL; return hci_find_irk_by_rpa(hdev, bdaddr); } static inline int hci_check_conn_params(u16 min, u16 max, u16 latency, u16 to_multiplier) { u16 max_latency; if (min > max || min < 6 || max > 3200) return -EINVAL; if (to_multiplier < 10 || to_multiplier > 3200) return -EINVAL; if (max >= to_multiplier * 8) return -EINVAL; max_latency = (to_multiplier * 4 / max) - 1; if (latency > 499 || latency > max_latency) return -EINVAL; return 0; } int hci_register_cb(struct hci_cb *hcb); int hci_unregister_cb(struct hci_cb *hcb); struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u8 event, u32 timeout); int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param); int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, const void *param); void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags); void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb); void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode); struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, const void *param, u32 timeout); u32 hci_conn_get_phy(struct hci_conn *conn); /* ----- HCI Sockets ----- */ void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, int flag, struct sock *skip_sk); void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb); void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, void *data, u16 data_len, ktime_t tstamp, int flag, struct sock *skip_sk); void hci_sock_dev_event(struct hci_dev *hdev, int event); #define HCI_MGMT_VAR_LEN BIT(0) #define HCI_MGMT_NO_HDEV BIT(1) #define HCI_MGMT_UNTRUSTED BIT(2) #define HCI_MGMT_UNCONFIGURED BIT(3) #define HCI_MGMT_HDEV_OPTIONAL BIT(4) struct hci_mgmt_handler { int (*func) (struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len); size_t data_len; unsigned long flags; }; struct hci_mgmt_chan { struct list_head list; unsigned short channel; size_t handler_count; const struct hci_mgmt_handler *handlers; void (*hdev_init) (struct sock *sk, struct hci_dev *hdev); }; int hci_mgmt_chan_register(struct hci_mgmt_chan *c); void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c); /* Management interface */ #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR)) #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \ BIT(BDADDR_LE_PUBLIC) | \ BIT(BDADDR_LE_RANDOM)) /* These LE scan and inquiry parameters were chosen according to LE General * Discovery Procedure specification. */ #define DISCOV_LE_SCAN_WIN 0x12 #define DISCOV_LE_SCAN_INT 0x12 #define DISCOV_LE_TIMEOUT 10240 /* msec */ #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */ #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04 #define DISCOV_BREDR_INQUIRY_LEN 0x08 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */ #define DISCOV_LE_FAST_ADV_INT_MIN 100 /* msec */ #define DISCOV_LE_FAST_ADV_INT_MAX 150 /* msec */ void mgmt_fill_version_info(void *ver); int mgmt_new_settings(struct hci_dev *hdev); void mgmt_index_added(struct hci_dev *hdev); void mgmt_index_removed(struct hci_dev *hdev); void mgmt_set_powered_failed(struct hci_dev *hdev, int err); void mgmt_power_on(struct hci_dev *hdev, int err); void __mgmt_power_off(struct hci_dev *hdev); void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, bool persistent); void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, u32 flags, u8 *name, u8 name_len); void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 reason, bool mgmt_connected); void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure); void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status); int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 value, u8 confirm_hint); int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type); int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status); int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 passkey, u8 entered); void mgmt_auth_failed(struct hci_conn *conn, u8 status); void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status); void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status); void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, u8 status); void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status); void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status); void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len); void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, s8 rssi, u8 *name, u8 name_len); void mgmt_discovering(struct hci_dev *hdev, u8 discovering); void mgmt_suspending(struct hci_dev *hdev, u8 state); void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, u8 addr_type); bool mgmt_powering_down(struct hci_dev *hdev); void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent); void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent); void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, bool persistent); void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 store_hint, u16 min_interval, u16 max_interval, u16 latency, u16 timeout); void mgmt_smp_complete(struct hci_conn *conn, bool complete); bool mgmt_get_connectable(struct hci_dev *hdev); void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status); void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status); u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev); void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, u8 instance); void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, u8 instance); int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip); u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, u16 to_multiplier); void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, __u8 ltk[16], __u8 key_size); void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *bdaddr_type); #define SCO_AIRMODE_MASK 0x0003 #define SCO_AIRMODE_CVSD 0x0000 #define SCO_AIRMODE_TRANSP 0x0003 #endif /* __HCI_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Tracing hooks * * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. * * This file defines hook entry points called by core code where * user tracing/debugging support might need to do something. These * entry points are called tracehook_*(). Each hook declared below * has a detailed kerneldoc comment giving the context (locking et * al) from which it is called, and the meaning of its return value. * * Each function here typically has only one call site, so it is ok * to have some nontrivial tracehook_*() inlines. In all cases, the * fast path when no tracing is enabled should be very short. * * The purpose of this file and the tracehook_* layer is to consolidate * the interface that the kernel core and arch code uses to enable any * user debugging or tracing facility (such as ptrace). The interfaces * here are carefully documented so that maintainers of core and arch * code do not need to think about the implementation details of the * tracing facilities. Likewise, maintainers of the tracing code do not * need to understand all the calling core or arch code in detail, just * documented circumstances of each call, such as locking conditions. * * If the calling core code changes so that locking is different, then * it is ok to change the interface documented here. The maintainer of * core code changing should notify the maintainers of the tracing code * that they need to work out the change. * * Some tracehook_*() inlines take arguments that the current tracing * implementations might not necessarily use. These function signatures * are chosen to pass in all the information that is on hand in the * caller and might conceivably be relevant to a tracer, so that the * core code won't have to be updated when tracing adds more features. * If a call site changes so that some of those parameters are no longer * already on hand without extra work, then the tracehook_* interface * can change so there is no make-work burden on the core code. The * maintainer of core code changing should notify the maintainers of the * tracing code that they need to work out the change. */ #ifndef _LINUX_TRACEHOOK_H #define _LINUX_TRACEHOOK_H 1 #include <linux/sched.h> #include <linux/ptrace.h> #include <linux/security.h> #include <linux/task_work.h> #include <linux/memcontrol.h> #include <linux/blk-cgroup.h> struct linux_binprm; /* * ptrace report for syscall entry and exit looks identical. */ static inline int ptrace_report_syscall(struct pt_regs *regs, unsigned long message) { int ptrace = current->ptrace; if (!(ptrace & PT_PTRACED)) return 0; current->ptrace_message = message; ptrace_notify(SIGTRAP | ((ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); /* * this isn't the same as continuing with a signal, but it will do * for normal use. strace only continues with a signal if the * stopping signal is not SIGTRAP. -brl */ if (current->exit_code) { send_sig(current->exit_code, current, 1); current->exit_code = 0; } current->ptrace_message = 0; return fatal_signal_pending(current); } /** * tracehook_report_syscall_entry - task is about to attempt a system call * @regs: user register state of current task * * This will be called if %TIF_SYSCALL_TRACE or %TIF_SYSCALL_EMU have been set, * when the current task has just entered the kernel for a system call. * Full user register state is available here. Changing the values * in @regs can affect the system call number and arguments to be tried. * It is safe to block here, preventing the system call from beginning. * * Returns zero normally, or nonzero if the calling arch code should abort * the system call. That must prevent normal entry so no system call is * made. If @task ever returns to user mode after this, its register state * is unspecified, but should be something harmless like an %ENOSYS error * return. It should preserve enough information so that syscall_rollback() * can work (see asm-generic/syscall.h). * * Called without locks, just after entering kernel mode. */ static inline __must_check int tracehook_report_syscall_entry( struct pt_regs *regs) { return ptrace_report_syscall(regs, PTRACE_EVENTMSG_SYSCALL_ENTRY); } /** * tracehook_report_syscall_exit - task has just finished a system call * @regs: user register state of current task * @step: nonzero if simulating single-step or block-step * * This will be called if %TIF_SYSCALL_TRACE has been set, when the * current task has just finished an attempted system call. Full * user register state is available here. It is safe to block here, * preventing signals from being processed. * * If @step is nonzero, this report is also in lieu of the normal * trap that would follow the system call instruction because * user_enable_block_step() or user_enable_single_step() was used. * In this case, %TIF_SYSCALL_TRACE might not be set. * * Called without locks, just before checking for pending signals. */ static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step) { if (step) user_single_step_report(regs); else ptrace_report_syscall(regs, PTRACE_EVENTMSG_SYSCALL_EXIT); } /** * tracehook_signal_handler - signal handler setup is complete * @stepping: nonzero if debugger single-step or block-step in use * * Called by the arch code after a signal handler has been set up. * Register and stack state reflects the user handler about to run. * Signal mask changes have already been made. * * Called without locks, shortly before returning to user mode * (or handling more signals). */ static inline void tracehook_signal_handler(int stepping) { if (stepping) ptrace_notify(SIGTRAP); } /** * set_notify_resume - cause tracehook_notify_resume() to be called * @task: task that will call tracehook_notify_resume() * * Calling this arranges that @task will call tracehook_notify_resume() * before returning to user mode. If it's already running in user mode, * it will enter the kernel and call tracehook_notify_resume() soon. * If it's blocked, it will not be woken. */ static inline void set_notify_resume(struct task_struct *task) { #ifdef TIF_NOTIFY_RESUME if (!test_and_set_tsk_thread_flag(task, TIF_NOTIFY_RESUME)) kick_process(task); #endif } /** * tracehook_notify_resume - report when about to return to user mode * @regs: user-mode registers of @current task * * This is called when %TIF_NOTIFY_RESUME has been set. Now we are * about to return to user mode, and the user state in @regs can be * inspected or adjusted. The caller in arch code has cleared * %TIF_NOTIFY_RESUME before the call. If the flag gets set again * asynchronously, this will be called again before we return to * user mode. * * Called without locks. */ static inline void tracehook_notify_resume(struct pt_regs *regs) { clear_thread_flag(TIF_NOTIFY_RESUME); /* * This barrier pairs with task_work_add()->set_notify_resume() after * hlist_add_head(task->task_works); */ smp_mb__after_atomic(); if (unlikely(current->task_works)) task_work_run(); #ifdef CONFIG_KEYS_REQUEST_CACHE if (unlikely(current->cached_requested_key)) { key_put(current->cached_requested_key); current->cached_requested_key = NULL; } #endif mem_cgroup_handle_over_high(); blkcg_maybe_throttle_current(); } #endif /* <linux/tracehook.h> */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 1999-2002 Vojtech Pavlik */ #ifndef _INPUT_H #define _INPUT_H #include <linux/time.h> #include <linux/list.h> #include <uapi/linux/input.h> /* Implementation details, userspace should not care about these */ #define ABS_MT_FIRST ABS_MT_TOUCH_MAJOR #define ABS_MT_LAST ABS_MT_TOOL_Y /* * In-kernel definitions. */ #include <linux/device.h> #include <linux/fs.h> #include <linux/timer.h> #include <linux/mod_devicetable.h> struct input_dev_poller; /** * struct input_value - input value representation * @type: type of value (EV_KEY, EV_ABS, etc) * @code: the value code * @value: the value */ struct input_value { __u16 type; __u16 code; __s32 value; }; enum input_clock_type { INPUT_CLK_REAL = 0, INPUT_CLK_MONO, INPUT_CLK_BOOT, INPUT_CLK_MAX }; /** * struct input_dev - represents an input device * @name: name of the device * @phys: physical path to the device in the system hierarchy * @uniq: unique identification code for the device (if device has it) * @id: id of the device (struct input_id) * @propbit: bitmap of device properties and quirks * @evbit: bitmap of types of events supported by the device (EV_KEY, * EV_REL, etc.) * @keybit: bitmap of keys/buttons this device has * @relbit: bitmap of relative axes for the device * @absbit: bitmap of absolute axes for the device * @mscbit: bitmap of miscellaneous events supported by the device * @ledbit: bitmap of leds present on the device * @sndbit: bitmap of sound effects supported by the device * @ffbit: bitmap of force feedback effects supported by the device * @swbit: bitmap of switches present on the device * @hint_events_per_packet: average number of events generated by the * device in a packet (between EV_SYN/SYN_REPORT events). Used by * event handlers to estimate size of the buffer needed to hold * events. * @keycodemax: size of keycode table * @keycodesize: size of elements in keycode table * @keycode: map of scancodes to keycodes for this device * @getkeycode: optional legacy method to retrieve current keymap. * @setkeycode: optional method to alter current keymap, used to implement * sparse keymaps. If not supplied default mechanism will be used. * The method is being called while holding event_lock and thus must * not sleep * @ff: force feedback structure associated with the device if device * supports force feedback effects * @poller: poller structure associated with the device if device is * set up to use polling mode * @repeat_key: stores key code of the last key pressed; used to implement * software autorepeat * @timer: timer for software autorepeat * @rep: current values for autorepeat parameters (delay, rate) * @mt: pointer to multitouch state * @absinfo: array of &struct input_absinfo elements holding information * about absolute axes (current value, min, max, flat, fuzz, * resolution) * @key: reflects current state of device's keys/buttons * @led: reflects current state of device's LEDs * @snd: reflects current state of sound effects * @sw: reflects current state of device's switches * @open: this method is called when the very first user calls * input_open_device(). The driver must prepare the device * to start generating events (start polling thread, * request an IRQ, submit URB, etc.) * @close: this method is called when the very last user calls * input_close_device(). * @flush: purges the device. Most commonly used to get rid of force * feedback effects loaded into the device when disconnecting * from it * @event: event handler for events sent _to_ the device, like EV_LED * or EV_SND. The device is expected to carry out the requested * action (turn on a LED, play sound, etc.) The call is protected * by @event_lock and must not sleep * @grab: input handle that currently has the device grabbed (via * EVIOCGRAB ioctl). When a handle grabs a device it becomes sole * recipient for all input events coming from the device * @event_lock: this spinlock is taken when input core receives * and processes a new event for the device (in input_event()). * Code that accesses and/or modifies parameters of a device * (such as keymap or absmin, absmax, absfuzz, etc.) after device * has been registered with input core must take this lock. * @mutex: serializes calls to open(), close() and flush() methods * @users: stores number of users (input handlers) that opened this * device. It is used by input_open_device() and input_close_device() * to make sure that dev->open() is only called when the first * user opens device and dev->close() is called when the very * last user closes the device * @going_away: marks devices that are in a middle of unregistering and * causes input_open_device*() fail with -ENODEV. * @dev: driver model's view of this device * @h_list: list of input handles associated with the device. When * accessing the list dev->mutex must be held * @node: used to place the device onto input_dev_list * @num_vals: number of values queued in the current frame * @max_vals: maximum number of values queued in a frame * @vals: array of values queued in the current frame * @devres_managed: indicates that devices is managed with devres framework * and needs not be explicitly unregistered or freed. * @timestamp: storage for a timestamp set by input_set_timestamp called * by a driver */ struct input_dev { const char *name; const char *phys; const char *uniq; struct input_id id; unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]; unsigned long evbit[BITS_TO_LONGS(EV_CNT)]; unsigned long keybit[BITS_TO_LONGS(KEY_CNT)]; unsigned long relbit[BITS_TO_LONGS(REL_CNT)]; unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; unsigned int hint_events_per_packet; unsigned int keycodemax; unsigned int keycodesize; void *keycode; int (*setkeycode)(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode); int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke); struct ff_device *ff; struct input_dev_poller *poller; unsigned int repeat_key; struct timer_list timer; int rep[REP_CNT]; struct input_mt *mt; struct input_absinfo *absinfo; unsigned long key[BITS_TO_LONGS(KEY_CNT)]; unsigned long led[BITS_TO_LONGS(LED_CNT)]; unsigned long snd[BITS_TO_LONGS(SND_CNT)]; unsigned long sw[BITS_TO_LONGS(SW_CNT)]; int (*open)(struct input_dev *dev); void (*close)(struct input_dev *dev); int (*flush)(struct input_dev *dev, struct file *file); int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); struct input_handle __rcu *grab; spinlock_t event_lock; struct mutex mutex; unsigned int users; bool going_away; struct device dev; struct list_head h_list; struct list_head node; unsigned int num_vals; unsigned int max_vals; struct input_value *vals; bool devres_managed; ktime_t timestamp[INPUT_CLK_MAX]; }; #define to_input_dev(d) container_of(d, struct input_dev, dev) /* * Verify that we are in sync with input_device_id mod_devicetable.h #defines */ #if EV_MAX != INPUT_DEVICE_ID_EV_MAX #error "EV_MAX and INPUT_DEVICE_ID_EV_MAX do not match" #endif #if KEY_MIN_INTERESTING != INPUT_DEVICE_ID_KEY_MIN_INTERESTING #error "KEY_MIN_INTERESTING and INPUT_DEVICE_ID_KEY_MIN_INTERESTING do not match" #endif #if KEY_MAX != INPUT_DEVICE_ID_KEY_MAX #error "KEY_MAX and INPUT_DEVICE_ID_KEY_MAX do not match" #endif #if REL_MAX != INPUT_DEVICE_ID_REL_MAX #error "REL_MAX and INPUT_DEVICE_ID_REL_MAX do not match" #endif #if ABS_MAX != INPUT_DEVICE_ID_ABS_MAX #error "ABS_MAX and INPUT_DEVICE_ID_ABS_MAX do not match" #endif #if MSC_MAX != INPUT_DEVICE_ID_MSC_MAX #error "MSC_MAX and INPUT_DEVICE_ID_MSC_MAX do not match" #endif #if LED_MAX != INPUT_DEVICE_ID_LED_MAX #error "LED_MAX and INPUT_DEVICE_ID_LED_MAX do not match" #endif #if SND_MAX != INPUT_DEVICE_ID_SND_MAX #error "SND_MAX and INPUT_DEVICE_ID_SND_MAX do not match" #endif #if FF_MAX != INPUT_DEVICE_ID_FF_MAX #error "FF_MAX and INPUT_DEVICE_ID_FF_MAX do not match" #endif #if SW_MAX != INPUT_DEVICE_ID_SW_MAX #error "SW_MAX and INPUT_DEVICE_ID_SW_MAX do not match" #endif #if INPUT_PROP_MAX != INPUT_DEVICE_ID_PROP_MAX #error "INPUT_PROP_MAX and INPUT_DEVICE_ID_PROP_MAX do not match" #endif #define INPUT_DEVICE_ID_MATCH_DEVICE \ (INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR | INPUT_DEVICE_ID_MATCH_PRODUCT) #define INPUT_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ (INPUT_DEVICE_ID_MATCH_DEVICE | INPUT_DEVICE_ID_MATCH_VERSION) struct input_handle; /** * struct input_handler - implements one of interfaces for input devices * @private: driver-specific data * @event: event handler. This method is being called by input core with * interrupts disabled and dev->event_lock spinlock held and so * it may not sleep * @events: event sequence handler. This method is being called by * input core with interrupts disabled and dev->event_lock * spinlock held and so it may not sleep * @filter: similar to @event; separates normal event handlers from * "filters". * @match: called after comparing device's id with handler's id_table * to perform fine-grained matching between device and handler * @connect: called when attaching a handler to an input device * @disconnect: disconnects a handler from input device * @start: starts handler for given handle. This function is called by * input core right after connect() method and also when a process * that "grabbed" a device releases it * @legacy_minors: set to %true by drivers using legacy minor ranges * @minor: beginning of range of 32 legacy minors for devices this driver * can provide * @name: name of the handler, to be shown in /proc/bus/input/handlers * @id_table: pointer to a table of input_device_ids this driver can * handle * @h_list: list of input handles associated with the handler * @node: for placing the driver onto input_handler_list * * Input handlers attach to input devices and create input handles. There * are likely several handlers attached to any given input device at the * same time. All of them will get their copy of input event generated by * the device. * * The very same structure is used to implement input filters. Input core * allows filters to run first and will not pass event to regular handlers * if any of the filters indicate that the event should be filtered (by * returning %true from their filter() method). * * Note that input core serializes calls to connect() and disconnect() * methods. */ struct input_handler { void *private; void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value); void (*events)(struct input_handle *handle, const struct input_value *vals, unsigned int count); bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value); bool (*match)(struct input_handler *handler, struct input_dev *dev); int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id); void (*disconnect)(struct input_handle *handle); void (*start)(struct input_handle *handle); bool legacy_minors; int minor; const char *name; const struct input_device_id *id_table; struct list_head h_list; struct list_head node; }; /** * struct input_handle - links input device with an input handler * @private: handler-specific data * @open: counter showing whether the handle is 'open', i.e. should deliver * events from its device * @name: name given to the handle by handler that created it * @dev: input device the handle is attached to * @handler: handler that works with the device through this handle * @d_node: used to put the handle on device's list of attached handles * @h_node: used to put the handle on handler's list of handles from which * it gets events */ struct input_handle { void *private; int open; const char *name; struct input_dev *dev; struct input_handler *handler; struct list_head d_node; struct list_head h_node; }; struct input_dev __must_check *input_allocate_device(void); struct input_dev __must_check *devm_input_allocate_device(struct device *); void input_free_device(struct input_dev *dev); static inline struct input_dev *input_get_device(struct input_dev *dev) { return dev ? to_input_dev(get_device(&dev->dev)) : NULL; } static inline void input_put_device(struct input_dev *dev) { if (dev) put_device(&dev->dev); } static inline void *input_get_drvdata(struct input_dev *dev) { return dev_get_drvdata(&dev->dev); } static inline void input_set_drvdata(struct input_dev *dev, void *data) { dev_set_drvdata(&dev->dev, data); } int __must_check input_register_device(struct input_dev *); void input_unregister_device(struct input_dev *); void input_reset_device(struct input_dev *); int input_setup_polling(struct input_dev *dev, void (*poll_fn)(struct input_dev *dev)); void input_set_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_min_poll_interval(struct input_dev *dev, unsigned int interval); void input_set_max_poll_interval(struct input_dev *dev, unsigned int interval); int input_get_poll_interval(struct input_dev *dev); int __must_check input_register_handler(struct input_handler *); void input_unregister_handler(struct input_handler *); int __must_check input_get_new_minor(int legacy_base, unsigned int legacy_num, bool allow_dynamic); void input_free_minor(unsigned int minor); int input_handler_for_each_handle(struct input_handler *, void *data, int (*fn)(struct input_handle *, void *)); int input_register_handle(struct input_handle *); void input_unregister_handle(struct input_handle *); int input_grab_device(struct input_handle *); void input_release_device(struct input_handle *); int input_open_device(struct input_handle *); void input_close_device(struct input_handle *); int input_flush_device(struct input_handle *handle, struct file *file); void input_set_timestamp(struct input_dev *dev, ktime_t timestamp); ktime_t *input_get_timestamp(struct input_dev *dev); void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value); static inline void input_report_key(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_KEY, code, !!value); } static inline void input_report_rel(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_REL, code, value); } static inline void input_report_abs(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_ABS, code, value); } static inline void input_report_ff_status(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_FF_STATUS, code, value); } static inline void input_report_switch(struct input_dev *dev, unsigned int code, int value) { input_event(dev, EV_SW, code, !!value); } static inline void input_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_REPORT, 0); } static inline void input_mt_sync(struct input_dev *dev) { input_event(dev, EV_SYN, SYN_MT_REPORT, 0); } void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code); /** * input_set_events_per_packet - tell handlers about the driver event rate * @dev: the input device used by the driver * @n_events: the average number of events between calls to input_sync() * * If the event rate sent from a device is unusually large, use this * function to set the expected event rate. This will allow handlers * to set up an appropriate buffer size for the event stream, in order * to minimize information loss. */ static inline void input_set_events_per_packet(struct input_dev *dev, int n_events) { dev->hint_events_per_packet = n_events; } void input_alloc_absinfo(struct input_dev *dev); void input_set_abs_params(struct input_dev *dev, unsigned int axis, int min, int max, int fuzz, int flat); #define INPUT_GENERATE_ABS_ACCESSORS(_suffix, _item) \ static inline int input_abs_get_##_suffix(struct input_dev *dev, \ unsigned int axis) \ { \ return dev->absinfo ? dev->absinfo[axis]._item : 0; \ } \ \ static inline void input_abs_set_##_suffix(struct input_dev *dev, \ unsigned int axis, int val) \ { \ input_alloc_absinfo(dev); \ if (dev->absinfo) \ dev->absinfo[axis]._item = val; \ } INPUT_GENERATE_ABS_ACCESSORS(val, value) INPUT_GENERATE_ABS_ACCESSORS(min, minimum) INPUT_GENERATE_ABS_ACCESSORS(max, maximum) INPUT_GENERATE_ABS_ACCESSORS(fuzz, fuzz) INPUT_GENERATE_ABS_ACCESSORS(flat, flat) INPUT_GENERATE_ABS_ACCESSORS(res, resolution) int input_scancode_to_scalar(const struct input_keymap_entry *ke, unsigned int *scancode); int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke); int input_set_keycode(struct input_dev *dev, const struct input_keymap_entry *ke); bool input_match_device_id(const struct input_dev *dev, const struct input_device_id *id); void input_enable_softrepeat(struct input_dev *dev, int delay, int period); extern struct class input_class; /** * struct ff_device - force-feedback part of an input device * @upload: Called to upload an new effect into device * @erase: Called to erase an effect from device * @playback: Called to request device to start playing specified effect * @set_gain: Called to set specified gain * @set_autocenter: Called to auto-center device * @destroy: called by input core when parent input device is being * destroyed * @private: driver-specific data, will be freed automatically * @ffbit: bitmap of force feedback capabilities truly supported by * device (not emulated like ones in input_dev->ffbit) * @mutex: mutex for serializing access to the device * @max_effects: maximum number of effects supported by device * @effects: pointer to an array of effects currently loaded into device * @effect_owners: array of effect owners; when file handle owning * an effect gets closed the effect is automatically erased * * Every force-feedback device must implement upload() and playback() * methods; erase() is optional. set_gain() and set_autocenter() need * only be implemented if driver sets up FF_GAIN and FF_AUTOCENTER * bits. * * Note that playback(), set_gain() and set_autocenter() are called with * dev->event_lock spinlock held and interrupts off and thus may not * sleep. */ struct ff_device { int (*upload)(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old); int (*erase)(struct input_dev *dev, int effect_id); int (*playback)(struct input_dev *dev, int effect_id, int value); void (*set_gain)(struct input_dev *dev, u16 gain); void (*set_autocenter)(struct input_dev *dev, u16 magnitude); void (*destroy)(struct ff_device *); void *private; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; struct mutex mutex; int max_effects; struct ff_effect *effects; struct file *effect_owners[]; }; int input_ff_create(struct input_dev *dev, unsigned int max_effects); void input_ff_destroy(struct input_dev *dev); int input_ff_event(struct input_dev *dev, unsigned int type, unsigned int code, int value); int input_ff_upload(struct input_dev *dev, struct ff_effect *effect, struct file *file); int input_ff_erase(struct input_dev *dev, int effect_id, struct file *file); int input_ff_flush(struct input_dev *dev, struct file *file); int input_ff_create_memless(struct input_dev *dev, void *data, int (*play_effect)(struct input_dev *, void *, struct ff_effect *)); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_NULLS_H #define _LINUX_LIST_NULLS_H #include <linux/poison.h> #include <linux/const.h> /* * Special version of lists, where end of list is not a NULL pointer, * but a 'nulls' marker, which can have many different values. * (up to 2^31 different values guaranteed on all platforms) * * In the standard hlist, termination of a list is the NULL pointer. * In this special 'nulls' variant, we use the fact that objects stored in * a list are aligned on a word (4 or 8 bytes alignment). * We therefore use the last significant bit of 'ptr' : * Set to 1 : This is a 'nulls' end-of-list marker (ptr >> 1) * Set to 0 : This is a pointer to some object (ptr) */ struct hlist_nulls_head { struct hlist_nulls_node *first; }; struct hlist_nulls_node { struct hlist_nulls_node *next, **pprev; }; #define NULLS_MARKER(value) (1UL | (((long)value) << 1)) #define INIT_HLIST_NULLS_HEAD(ptr, nulls) \ ((ptr)->first = (struct hlist_nulls_node *) NULLS_MARKER(nulls)) #define hlist_nulls_entry(ptr, type, member) container_of(ptr,type,member) #define hlist_nulls_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ !is_a_nulls(____ptr) ? hlist_nulls_entry(____ptr, type, member) : NULL; \ }) /** * ptr_is_a_nulls - Test if a ptr is a nulls * @ptr: ptr to be tested * */ static inline int is_a_nulls(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr & 1); } /** * get_nulls_value - Get the 'nulls' value of the end of chain * @ptr: end of chain * * Should be called only if is_a_nulls(ptr); */ static inline unsigned long get_nulls_value(const struct hlist_nulls_node *ptr) { return ((unsigned long)ptr) >> 1; } /** * hlist_nulls_unhashed - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. */ static inline int hlist_nulls_unhashed(const struct hlist_nulls_node *h) { return !h->pprev; } /** * hlist_nulls_unhashed_lockless - Has node been removed and reinitialized? * @h: Node to be checked * * Not that not all removal functions will leave a node in unhashed state. * For example, hlist_del_init_rcu() leaves the node in unhashed state, * but hlist_nulls_del() does not. Unlike hlist_nulls_unhashed(), this * function may be used locklessly. */ static inline int hlist_nulls_unhashed_lockless(const struct hlist_nulls_node *h) { return !READ_ONCE(h->pprev); } static inline int hlist_nulls_empty(const struct hlist_nulls_head *h) { return is_a_nulls(READ_ONCE(h->first)); } static inline void hlist_nulls_add_head(struct hlist_nulls_node *n, struct hlist_nulls_head *h) { struct hlist_nulls_node *first = h->first; n->next = first; WRITE_ONCE(n->pprev, &h->first); h->first = n; if (!is_a_nulls(first)) WRITE_ONCE(first->pprev, &n->next); } static inline void __hlist_nulls_del(struct hlist_nulls_node *n) { struct hlist_nulls_node *next = n->next; struct hlist_nulls_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (!is_a_nulls(next)) WRITE_ONCE(next->pprev, pprev); } static inline void hlist_nulls_del(struct hlist_nulls_node *n) { __hlist_nulls_del(n); WRITE_ONCE(n->pprev, LIST_POISON2); } /** * hlist_nulls_for_each_entry - iterate over list of given type * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry(tpos, pos, head, member) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) /** * hlist_nulls_for_each_entry_from - iterate over a hlist continuing from current point * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @member: the name of the hlist_node within the struct. * */ #define hlist_nulls_for_each_entry_from(tpos, pos, member) \ for (; (!is_a_nulls(pos)) && \ ({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1;}); \ pos = pos->next) #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_REQUEST_H #define _SCSI_SCSI_REQUEST_H #include <linux/blk-mq.h> #define BLK_MAX_CDB 16 struct scsi_request { unsigned char __cmd[BLK_MAX_CDB]; unsigned char *cmd; unsigned short cmd_len; int result; unsigned int sense_len; unsigned int resid_len; /* residual count */ int retries; void *sense; }; static inline struct scsi_request *scsi_req(struct request *rq) { return blk_mq_rq_to_pdu(rq); } static inline void scsi_req_free_cmd(struct scsi_request *req) { if (req->cmd != req->__cmd) kfree(req->cmd); } void scsi_req_init(struct scsi_request *req); #endif /* _SCSI_SCSI_REQUEST_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_MROUTE_H #define __LINUX_MROUTE_H #include <linux/in.h> #include <linux/pim.h> #include <net/fib_rules.h> #include <net/fib_notifier.h> #include <uapi/linux/mroute.h> #include <linux/mroute_base.h> #include <linux/sockptr.h> #ifdef CONFIG_IP_MROUTE static inline int ip_mroute_opt(int opt) { return opt >= MRT_BASE && opt <= MRT_MAX; } int ip_mroute_setsockopt(struct sock *, int, sockptr_t, unsigned int); int ip_mroute_getsockopt(struct sock *, int, char __user *, int __user *); int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg); int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); int ip_mr_init(void); bool ipmr_rule_default(const struct fib_rule *rule); #else static inline int ip_mroute_setsockopt(struct sock *sock, int optname, sockptr_t optval, unsigned int optlen) { return -ENOPROTOOPT; } static inline int ip_mroute_getsockopt(struct sock *sock, int optname, char __user *optval, int __user *optlen) { return -ENOPROTOOPT; } static inline int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) { return -ENOIOCTLCMD; } static inline int ip_mr_init(void) { return 0; } static inline int ip_mroute_opt(int opt) { return 0; } static inline bool ipmr_rule_default(const struct fib_rule *rule) { return true; } #endif #define VIFF_STATIC 0x8000 struct mfc_cache_cmp_arg { __be32 mfc_mcastgrp; __be32 mfc_origin; }; /** * struct mfc_cache - multicast routing entries * @_c: Common multicast routing information; has to be first [for casting] * @mfc_mcastgrp: destination multicast group address * @mfc_origin: source address * @cmparg: used for rhashtable comparisons */ struct mfc_cache { struct mr_mfc _c; union { struct { __be32 mfc_mcastgrp; __be32 mfc_origin; }; struct mfc_cache_cmp_arg cmparg; }; }; struct rtmsg; int ipmr_get_route(struct net *net, struct sk_buff *skb, __be32 saddr, __be32 daddr, struct rtmsg *rtm, u32 portid); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi_bus.h - ACPI Bus Driver ($Revision: 22 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef __ACPI_BUS_H__ #define __ACPI_BUS_H__ #include <linux/device.h> #include <linux/property.h> /* TBD: Make dynamic */ #define ACPI_MAX_HANDLES 10 struct acpi_handle_list { u32 count; acpi_handle handles[ACPI_MAX_HANDLES]; }; /* acpi_utils.h */ acpi_status acpi_extract_package(union acpi_object *package, struct acpi_buffer *format, struct acpi_buffer *buffer); acpi_status acpi_evaluate_integer(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, unsigned long long *data); acpi_status acpi_evaluate_reference(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, struct acpi_handle_list *list); acpi_status acpi_evaluate_ost(acpi_handle handle, u32 source_event, u32 status_code, struct acpi_buffer *status_buf); acpi_status acpi_get_physical_device_location(acpi_handle handle, struct acpi_pld_info **pld); bool acpi_has_method(acpi_handle handle, char *name); acpi_status acpi_execute_simple_method(acpi_handle handle, char *method, u64 arg); acpi_status acpi_evaluate_ej0(acpi_handle handle); acpi_status acpi_evaluate_lck(acpi_handle handle, int lock); acpi_status acpi_evaluate_reg(acpi_handle handle, u8 space_id, u32 function); bool acpi_ata_match(acpi_handle handle); bool acpi_bay_match(acpi_handle handle); bool acpi_dock_match(acpi_handle handle); bool acpi_check_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 funcs); union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4); static inline union acpi_object * acpi_evaluate_dsm_typed(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4, acpi_object_type type) { union acpi_object *obj; obj = acpi_evaluate_dsm(handle, guid, rev, func, argv4); if (obj && obj->type != type) { ACPI_FREE(obj); obj = NULL; } return obj; } #define ACPI_INIT_DSM_ARGV4(cnt, eles) \ { \ .package.type = ACPI_TYPE_PACKAGE, \ .package.count = (cnt), \ .package.elements = (eles) \ } bool acpi_dev_found(const char *hid); bool acpi_dev_present(const char *hid, const char *uid, s64 hrv); #ifdef CONFIG_ACPI struct proc_dir_entry; #define ACPI_BUS_FILE_ROOT "acpi" extern struct proc_dir_entry *acpi_root_dir; enum acpi_bus_device_type { ACPI_BUS_TYPE_DEVICE = 0, ACPI_BUS_TYPE_POWER, ACPI_BUS_TYPE_PROCESSOR, ACPI_BUS_TYPE_THERMAL, ACPI_BUS_TYPE_POWER_BUTTON, ACPI_BUS_TYPE_SLEEP_BUTTON, ACPI_BUS_TYPE_ECDT_EC, ACPI_BUS_DEVICE_TYPE_COUNT }; struct acpi_driver; struct acpi_device; /* * ACPI Scan Handler * ----------