1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the IP router. * * Version: @(#)route.h 1.0.4 05/27/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Fixes: * Alan Cox : Reformatted. Added ip_rt_local() * Alan Cox : Support for TCP parameters. * Alexey Kuznetsov: Major changes for new routing code. * Mike McLagan : Routing by source * Robert Olsson : Added rt_cache statistics */ #ifndef _ROUTE_H #define _ROUTE_H #include <net/dst.h> #include <net/inetpeer.h> #include <net/flow.h> #include <net/inet_sock.h> #include <net/ip_fib.h> #include <net/arp.h> #include <net/ndisc.h> #include <linux/in_route.h> #include <linux/rtnetlink.h> #include <linux/rcupdate.h> #include <linux/route.h> #include <linux/ip.h> #include <linux/cache.h> #include <linux/security.h> /* IPv4 datagram length is stored into 16bit field (tot_len) */ #define IP_MAX_MTU 0xFFFFU #define RTO_ONLINK 0x01 #define RT_CONN_FLAGS(sk) (RT_TOS(inet_sk(sk)->tos) | sock_flag(sk, SOCK_LOCALROUTE)) #define RT_CONN_FLAGS_TOS(sk,tos) (RT_TOS(tos) | sock_flag(sk, SOCK_LOCALROUTE)) struct fib_nh; struct fib_info; struct uncached_list; struct rtable { struct dst_entry dst; int rt_genid; unsigned int rt_flags; __u16 rt_type; __u8 rt_is_input; __u8 rt_uses_gateway; int rt_iif; u8 rt_gw_family; /* Info on neighbour */ union { __be32 rt_gw4; struct in6_addr rt_gw6; }; /* Miscellaneous cached information */ u32 rt_mtu_locked:1, rt_pmtu:31; struct list_head rt_uncached; struct uncached_list *rt_uncached_list; }; static inline bool rt_is_input_route(const struct rtable *rt) { return rt->rt_is_input != 0; } static inline bool rt_is_output_route(const struct rtable *rt) { return rt->rt_is_input == 0; } static inline __be32 rt_nexthop(const struct rtable *rt, __be32 daddr) { if (rt->rt_gw_family == AF_INET) return rt->rt_gw4; return daddr; } struct ip_rt_acct { __u32 o_bytes; __u32 o_packets; __u32 i_bytes; __u32 i_packets; }; struct rt_cache_stat { unsigned int in_slow_tot; unsigned int in_slow_mc; unsigned int in_no_route; unsigned int in_brd; unsigned int in_martian_dst; unsigned int in_martian_src; unsigned int out_slow_tot; unsigned int out_slow_mc; }; extern struct ip_rt_acct __percpu *ip_rt_acct; struct in_device; int ip_rt_init(void); void rt_cache_flush(struct net *net); void rt_flush_dev(struct net_device *dev); struct rtable *ip_route_output_key_hash(struct net *net, struct flowi4 *flp, const struct sk_buff *skb); struct rtable *ip_route_output_key_hash_rcu(struct net *net, struct flowi4 *flp, struct fib_result *res, const struct sk_buff *skb); static inline struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_key_hash(net, flp, NULL); } struct rtable *ip_route_output_flow(struct net *, struct flowi4 *flp, const struct sock *sk); struct rtable *ip_route_output_tunnel(struct sk_buff *skb, struct net_device *dev, struct net *net, __be32 *saddr, const struct ip_tunnel_info *info, u8 protocol, bool use_cache); struct dst_entry *ipv4_blackhole_route(struct net *net, struct dst_entry *dst_orig); static inline struct rtable *ip_route_output_key(struct net *net, struct flowi4 *flp) { return ip_route_output_flow(net, flp, NULL); } static inline struct rtable *ip_route_output(struct net *net, __be32 daddr, __be32 saddr, u8 tos, int oif) { struct flowi4 fl4 = { .flowi4_oif = oif, .flowi4_tos = tos, .daddr = daddr, .saddr = saddr, }; return ip_route_output_key(net, &fl4); } static inline struct rtable *ip_route_output_ports(struct net *net, struct flowi4 *fl4, struct sock *sk, __be32 daddr, __be32 saddr, __be16 dport, __be16 sport, __u8 proto, __u8 tos, int oif) { flowi4_init_output(fl4, oif, sk ? sk->sk_mark : 0, tos, RT_SCOPE_UNIVERSE, proto, sk ? inet_sk_flowi_flags(sk) : 0, daddr, saddr, dport, sport, sock_net_uid(net, sk)); if (sk) security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_output_gre(struct net *net, struct flowi4 *fl4, __be32 daddr, __be32 saddr, __be32 gre_key, __u8 tos, int oif) { memset(fl4, 0, sizeof(*fl4)); fl4->flowi4_oif = oif; fl4->daddr = daddr; fl4->saddr = saddr; fl4->flowi4_tos = tos; fl4->flowi4_proto = IPPROTO_GRE; fl4->fl4_gre_key = gre_key; return ip_route_output_key(net, fl4); } int ip_mc_validate_source(struct sk_buff *skb, __be32 daddr, __be32 saddr, u8 tos, struct net_device *dev, struct in_device *in_dev, u32 *itag); int ip_route_input_noref(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin); int ip_route_input_rcu(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, struct fib_result *res); int ip_route_use_hint(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin, const struct sk_buff *hint); static inline int ip_route_input(struct sk_buff *skb, __be32 dst, __be32 src, u8 tos, struct net_device *devin) { int err; rcu_read_lock(); err = ip_route_input_noref(skb, dst, src, tos, devin); if (!err) { skb_dst_force(skb); if (!skb_dst(skb)) err = -EINVAL; } rcu_read_unlock(); return err; } void ipv4_update_pmtu(struct sk_buff *skb, struct net *net, u32 mtu, int oif, u8 protocol); void ipv4_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, u32 mtu); void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u8 protocol); void ipv4_sk_redirect(struct sk_buff *skb, struct sock *sk); void ip_rt_send_redirect(struct sk_buff *skb); unsigned int inet_addr_type(struct net *net, __be32 addr); unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id); unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev, __be32 addr); unsigned int inet_addr_type_dev_table(struct net *net, const struct net_device *dev, __be32 addr); void ip_rt_multicast_event(struct in_device *); int ip_rt_ioctl(struct net *, unsigned int cmd, struct rtentry *rt); void ip_rt_get_source(u8 *src, struct sk_buff *skb, struct rtable *rt); struct rtable *rt_dst_alloc(struct net_device *dev, unsigned int flags, u16 type, bool nopolicy, bool noxfrm); struct rtable *rt_dst_clone(struct net_device *dev, struct rtable *rt); struct in_ifaddr; void fib_add_ifaddr(struct in_ifaddr *); void fib_del_ifaddr(struct in_ifaddr *, struct in_ifaddr *); void fib_modify_prefix_metric(struct in_ifaddr *ifa, u32 new_metric); void rt_add_uncached_list(struct rtable *rt); void rt_del_uncached_list(struct rtable *rt); int fib_dump_info_fnhe(struct sk_buff *skb, struct netlink_callback *cb, u32 table_id, struct fib_info *fi, int *fa_index, int fa_start, unsigned int flags); static inline void ip_rt_put(struct rtable *rt) { /* dst_release() accepts a NULL parameter. * We rely on dst being first structure in struct rtable */ BUILD_BUG_ON(offsetof(struct rtable, dst) != 0); dst_release(&rt->dst); } #define IPTOS_RT_MASK (IPTOS_TOS_MASK & ~3) extern const __u8 ip_tos2prio[16]; static inline char rt_tos2priority(u8 tos) { return ip_tos2prio[IPTOS_TOS(tos)>>1]; } /* ip_route_connect() and ip_route_newports() work in tandem whilst * binding a socket for a new outgoing connection. * * In order to use IPSEC properly, we must, in the end, have a * route that was looked up using all available keys including source * and destination ports. * * However, if a source port needs to be allocated (the user specified * a wildcard source port) we need to obtain addressing information * in order to perform that allocation. * * So ip_route_connect() looks up a route using wildcarded source and * destination ports in the key, simply so that we can get a pair of * addresses to use for port allocation. * * Later, once the ports are allocated, ip_route_newports() will make * another route lookup if needed to make sure we catch any IPSEC * rules keyed on the port information. * * The callers allocate the flow key on their stack, and must pass in * the same flowi4 object to both the ip_route_connect() and the * ip_route_newports() calls. */ static inline void ip_route_connect_init(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { __u8 flow_flags = 0; if (inet_sk(sk)->transparent) flow_flags |= FLOWI_FLAG_ANYSRC; flowi4_init_output(fl4, oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE, protocol, flow_flags, dst, src, dport, sport, sk->sk_uid); } static inline struct rtable *ip_route_connect(struct flowi4 *fl4, __be32 dst, __be32 src, u32 tos, int oif, u8 protocol, __be16 sport, __be16 dport, struct sock *sk) { struct net *net = sock_net(sk); struct rtable *rt; ip_route_connect_init(fl4, dst, src, tos, oif, protocol, sport, dport, sk); if (!dst || !src) { rt = __ip_route_output_key(net, fl4); if (IS_ERR(rt)) return rt; ip_rt_put(rt); flowi4_update_output(fl4, oif, tos, fl4->daddr, fl4->saddr); } security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(net, fl4, sk); } static inline struct rtable *ip_route_newports(struct flowi4 *fl4, struct rtable *rt, __be16 orig_sport, __be16 orig_dport, __be16 sport, __be16 dport, struct sock *sk) { if (sport != orig_sport || dport != orig_dport) { fl4->fl4_dport = dport; fl4->fl4_sport = sport; ip_rt_put(rt); flowi4_update_output(fl4, sk->sk_bound_dev_if, RT_CONN_FLAGS(sk), fl4->daddr, fl4->saddr); security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); return ip_route_output_flow(sock_net(sk), fl4, sk); } return rt; } static inline int inet_iif(const struct sk_buff *skb) { struct rtable *rt = skb_rtable(skb); if (rt && rt->rt_iif) return rt->rt_iif; return skb->skb_iif; } static inline int ip4_dst_hoplimit(const struct dst_entry *dst) { int hoplimit = dst_metric_raw(dst, RTAX_HOPLIMIT); struct net *net = dev_net(dst->dev); if (hoplimit == 0) hoplimit = net->ipv4.sysctl_ip_default_ttl; return hoplimit; } static inline struct neighbour *ip_neigh_gw4(struct net_device *dev, __be32 daddr) { struct neighbour *neigh; neigh = __ipv4_neigh_lookup_noref(dev, daddr); if (unlikely(!neigh)) neigh = __neigh_create(&arp_tbl, &daddr, dev, false); return neigh; } static inline struct neighbour *ip_neigh_for_gw(struct rtable *rt, struct sk_buff *skb, bool *is_v6gw) { struct net_device *dev = rt->dst.dev; struct neighbour *neigh; if (likely(rt->rt_gw_family == AF_INET)) { neigh = ip_neigh_gw4(dev, rt->rt_gw4); } else if (rt->rt_gw_family == AF_INET6) { neigh = ip_neigh_gw6(dev, &rt->rt_gw6); *is_v6gw = true; } else { neigh = ip_neigh_gw4(dev, ip_hdr(skb)->daddr); } return neigh; } #endif /* _ROUTE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_USER_H #define _LINUX_SCHED_USER_H #include <linux/uidgid.h> #include <linux/atomic.h> #include <linux/refcount.h> #include <linux/ratelimit.h> /* * Some day this will be a full-fledged user tracking system.. */ struct user_struct { refcount_t __count; /* reference count */ atomic_t processes; /* How many processes does this user have? */ atomic_t sigpending; /* How many pending signals does this user have? */ #ifdef CONFIG_FANOTIFY atomic_t fanotify_listeners; #endif #ifdef CONFIG_EPOLL atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ #endif #ifdef CONFIG_POSIX_MQUEUE /* protected by mq_lock */ unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ #endif unsigned long locked_shm; /* How many pages of mlocked shm ? */ unsigned long unix_inflight; /* How many files in flight in unix sockets */ atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ /* Hash table maintenance information */ struct hlist_node uidhash_node; kuid_t uid; #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) || \ defined(CONFIG_NET) || defined(CONFIG_IO_URING) atomic_long_t locked_vm; #endif #ifdef CONFIG_WATCH_QUEUE atomic_t nr_watches; /* The number of watches this user currently has */ #endif /* Miscellaneous per-user rate limit */ struct ratelimit_state ratelimit; }; extern int uids_sysfs_init(void); extern struct user_struct *find_user(kuid_t); extern struct user_struct root_user; #define INIT_USER (&root_user) /* per-UID process charging. */ extern struct user_struct * alloc_uid(kuid_t); static inline struct user_struct *get_uid(struct user_struct *u) { refcount_inc(&u->__count); return u; } extern void free_uid(struct user_struct *); #endif /* _LINUX_SCHED_USER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic API for algorithms (i.e., low-level API). * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_ALGAPI_H #define _CRYPTO_ALGAPI_H #include <linux/crypto.h> #include <linux/list.h> #include <linux/kernel.h> /* * Maximum values for blocksize and alignmask, used to allocate * static buffers that are big enough for any combination of * algs and architectures. Ciphers have a lower maximum size. */ #define MAX_ALGAPI_BLOCKSIZE 160 #define MAX_ALGAPI_ALIGNMASK 63 #define MAX_CIPHER_BLOCKSIZE 16 #define MAX_CIPHER_ALIGNMASK 15 struct crypto_aead; struct crypto_instance; struct module; struct rtattr; struct seq_file; struct sk_buff; struct crypto_type { unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); unsigned int (*extsize)(struct crypto_alg *alg); int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask); int (*init_tfm)(struct crypto_tfm *tfm); void (*show)(struct seq_file *m, struct crypto_alg *alg); int (*report)(struct sk_buff *skb, struct crypto_alg *alg); void (*free)(struct crypto_instance *inst); unsigned int type; unsigned int maskclear; unsigned int maskset; unsigned int tfmsize; }; struct crypto_instance { struct crypto_alg alg; struct crypto_template *tmpl; union { /* Node in list of instances after registration. */ struct hlist_node list; /* List of attached spawns before registration. */ struct crypto_spawn *spawns; }; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_template { struct list_head list; struct hlist_head instances; struct module *module; int (*create)(struct crypto_template *tmpl, struct rtattr **tb); char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_spawn { struct list_head list; struct crypto_alg *alg; union { /* Back pointer to instance after registration.*/ struct crypto_instance *inst; /* Spawn list pointer prior to registration. */ struct crypto_spawn *next; }; const struct crypto_type *frontend; u32 mask; bool dead; bool registered; }; struct crypto_queue { struct list_head list; struct list_head *backlog; unsigned int qlen; unsigned int max_qlen; }; struct scatter_walk { struct scatterlist *sg; unsigned int offset; }; void crypto_mod_put(struct crypto_alg *alg); int crypto_register_template(struct crypto_template *tmpl); int crypto_register_templates(struct crypto_template *tmpls, int count); void crypto_unregister_template(struct crypto_template *tmpl); void crypto_unregister_templates(struct crypto_template *tmpls, int count); struct crypto_template *crypto_lookup_template(const char *name); int crypto_register_instance(struct crypto_template *tmpl, struct crypto_instance *inst); void crypto_unregister_instance(struct crypto_instance *inst); int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); void crypto_drop_spawn(struct crypto_spawn *spawn); struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, u32 mask); void *crypto_spawn_tfm2(struct crypto_spawn *spawn); struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret); const char *crypto_attr_alg_name(struct rtattr *rta); int crypto_attr_u32(struct rtattr *rta, u32 *num); int crypto_inst_setname(struct crypto_instance *inst, const char *name, struct crypto_alg *alg); void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); int crypto_enqueue_request(struct crypto_queue *queue, struct crypto_async_request *request); void crypto_enqueue_request_head(struct crypto_queue *queue, struct crypto_async_request *request); struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); static inline unsigned int crypto_queue_len(struct crypto_queue *queue) { return queue->qlen; } void crypto_inc(u8 *a, unsigned int size); void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size); static inline void crypto_xor(u8 *dst, const u8 *src, unsigned int size) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && __builtin_constant_p(size) && (size % sizeof(unsigned long)) == 0) { unsigned long *d = (unsigned long *)dst; unsigned long *s = (unsigned long *)src; while (size > 0) { *d++ ^= *s++; size -= sizeof(unsigned long); } } else { __crypto_xor(dst, dst, src, size); } } static inline void crypto_xor_cpy(u8 *dst, const u8 *src1, const u8 *src2, unsigned int size) { if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && __builtin_constant_p(size) && (size % sizeof(unsigned long)) == 0) { unsigned long *d = (unsigned long *)dst; unsigned long *s1 = (unsigned long *)src1; unsigned long *s2 = (unsigned long *)src2; while (size > 0) { *d++ = *s1++ ^ *s2++; size -= sizeof(unsigned long); } } else { __crypto_xor(dst, src1, src2, size); } } static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm) { return PTR_ALIGN(crypto_tfm_ctx(tfm), crypto_tfm_alg_alignmask(tfm) + 1); } static inline struct crypto_instance *crypto_tfm_alg_instance( struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct crypto_instance, alg); } static inline void *crypto_instance_ctx(struct crypto_instance *inst) { return inst->__ctx; } struct crypto_cipher_spawn { struct crypto_spawn base; }; static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; type |= CRYPTO_ALG_TYPE_CIPHER; mask |= CRYPTO_ALG_TYPE_MASK; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn) { crypto_drop_spawn(&spawn->base); } static inline struct crypto_alg *crypto_spawn_cipher_alg( struct crypto_cipher_spawn *spawn) { return spawn->base.alg; } static inline struct crypto_cipher *crypto_spawn_cipher( struct crypto_cipher_spawn *spawn) { u32 type = CRYPTO_ALG_TYPE_CIPHER; u32 mask = CRYPTO_ALG_TYPE_MASK; return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask)); } static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm) { return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher; } static inline struct crypto_async_request *crypto_get_backlog( struct crypto_queue *queue) { return queue->backlog == &queue->list ? NULL : container_of(queue->backlog, struct crypto_async_request, list); } static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off) { return (algt->type ^ off) & algt->mask & off; } /* * When an algorithm uses another algorithm (e.g., if it's an instance of a * template), these are the flags that should always be set on the "outer" * algorithm if any "inner" algorithm has them set. */ #define CRYPTO_ALG_INHERITED_FLAGS \ (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \ CRYPTO_ALG_ALLOCATES_MEMORY) /* * Given the type and mask that specify the flags restrictions on a template * instance being created, return the mask that should be passed to * crypto_grab_*() (along with type=0) to honor any request the user made to * have any of the CRYPTO_ALG_INHERITED_FLAGS clear. */ static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt) { return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS); } noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size); /** * crypto_memneq - Compare two areas of memory without leaking * timing information. * * @a: One area of memory * @b: Another area of memory * @size: The size of the area. * * Returns 0 when data is equal, 1 otherwise. */ static inline int crypto_memneq(const void *a, const void *b, size_t size) { return __crypto_memneq(a, b, size) != 0UL ? 1 : 0; } int crypto_register_notifier(struct notifier_block *nb); int crypto_unregister_notifier(struct notifier_block *nb); /* Crypto notification events. */ enum { CRYPTO_MSG_ALG_REQUEST, CRYPTO_MSG_ALG_REGISTER, CRYPTO_MSG_ALG_LOADED, }; #endif /* _CRYPTO_ALGAPI_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * NET Generic infrastructure for INET connection oriented protocols. * * Definitions for inet_connection_sock * * Authors: Many people, see the TCP sources * * From code originally in TCP */ #ifndef _INET_CONNECTION_SOCK_H #define _INET_CONNECTION_SOCK_H #include <linux/compiler.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/poll.h> #include <linux/kernel.h> #include <linux/sockptr.h> #include <net/inet_sock.h> #include <net/request_sock.h> /* Cancel timers, when they are not required. */ #undef INET_CSK_CLEAR_TIMERS struct inet_bind_bucket; struct tcp_congestion_ops; /* * Pointers to address related TCP functions * (i.e. things that depend on the address family) */ struct inet_connection_sock_af_ops { int (*queue_xmit)(struct sock *sk, struct sk_buff *skb, struct flowi *fl); void (*send_check)(struct sock *sk, struct sk_buff *skb); int (*rebuild_header)(struct sock *sk); void (*sk_rx_dst_set)(struct sock *sk, const struct sk_buff *skb); int (*conn_request)(struct sock *sk, struct sk_buff *skb); struct sock *(*syn_recv_sock)(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req); u16 net_header_len; u16 net_frag_header_len; u16 sockaddr_len; int (*setsockopt)(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); void (*addr2sockaddr)(struct sock *sk, struct sockaddr *); void (*mtu_reduced)(struct sock *sk); }; /** inet_connection_sock - INET connection oriented sock * * @icsk_accept_queue: FIFO of established children * @icsk_bind_hash: Bind node * @icsk_timeout: Timeout * @icsk_retransmit_timer: Resend (no ack) * @icsk_rto: Retransmit timeout * @icsk_pmtu_cookie Last pmtu seen by socket * @icsk_ca_ops Pluggable congestion control hook * @icsk_af_ops Operations which are AF_INET{4,6} specific * @icsk_ulp_ops Pluggable ULP control hook * @icsk_ulp_data ULP private data * @icsk_clean_acked Clean acked data hook * @icsk_listen_portaddr_node hash to the portaddr listener hashtable * @icsk_ca_state: Congestion control state * @icsk_retransmits: Number of unrecovered [RTO] timeouts * @icsk_pending: Scheduled timer event * @icsk_backoff: Backoff * @icsk_syn_retries: Number of allowed SYN (or equivalent) retries * @icsk_probes_out: unanswered 0 window probes * @icsk_ext_hdr_len: Network protocol overhead (IP/IPv6 options) * @icsk_ack: Delayed ACK control data * @icsk_mtup; MTU probing control data * @icsk_probes_tstamp: Probe timestamp (cleared by non-zero window ack) * @icsk_user_timeout: TCP_USER_TIMEOUT value */ struct inet_connection_sock { /* inet_sock has to be the first member! */ struct inet_sock icsk_inet; struct request_sock_queue icsk_accept_queue; struct inet_bind_bucket *icsk_bind_hash; unsigned long icsk_timeout; struct timer_list icsk_retransmit_timer; struct timer_list icsk_delack_timer; __u32 icsk_rto; __u32 icsk_rto_min; __u32 icsk_delack_max; __u32 icsk_pmtu_cookie; const struct tcp_congestion_ops *icsk_ca_ops; const struct inet_connection_sock_af_ops *icsk_af_ops; const struct tcp_ulp_ops *icsk_ulp_ops; void __rcu *icsk_ulp_data; void (*icsk_clean_acked)(struct sock *sk, u32 acked_seq); struct hlist_node icsk_listen_portaddr_node; unsigned int (*icsk_sync_mss)(struct sock *sk, u32 pmtu); __u8 icsk_ca_state:5, icsk_ca_initialized:1, icsk_ca_setsockopt:1, icsk_ca_dst_locked:1; __u8 icsk_retransmits; __u8 icsk_pending; __u8 icsk_backoff; __u8 icsk_syn_retries; __u8 icsk_probes_out; __u16 icsk_ext_hdr_len; struct { __u8 pending; /* ACK is pending */ __u8 quick; /* Scheduled number of quick acks */ __u8 pingpong; /* The session is interactive */ __u8 retry; /* Number of attempts */ __u32 ato; /* Predicted tick of soft clock */ unsigned long timeout; /* Currently scheduled timeout */ __u32 lrcvtime; /* timestamp of last received data packet */ __u16 last_seg_size; /* Size of last incoming segment */ __u16 rcv_mss; /* MSS used for delayed ACK decisions */ } icsk_ack; struct { int enabled; /* Range of MTUs to search */ int search_high; int search_low; /* Information on the current probe. */ int probe_size; u32 probe_timestamp; } icsk_mtup; u32 icsk_probes_tstamp; u32 icsk_user_timeout; u64 icsk_ca_priv[104 / sizeof(u64)]; #define ICSK_CA_PRIV_SIZE (13 * sizeof(u64)) }; #define ICSK_TIME_RETRANS 1 /* Retransmit timer */ #define ICSK_TIME_DACK 2 /* Delayed ack timer */ #define ICSK_TIME_PROBE0 3 /* Zero window probe timer */ #define ICSK_TIME_EARLY_RETRANS 4 /* Early retransmit timer */ #define ICSK_TIME_LOSS_PROBE 5 /* Tail loss probe timer */ #define ICSK_TIME_REO_TIMEOUT 6 /* Reordering timer */ static inline struct inet_connection_sock *inet_csk(const struct sock *sk) { return (struct inet_connection_sock *)sk; } static inline void *inet_csk_ca(const struct sock *sk) { return (void *)inet_csk(sk)->icsk_ca_priv; } struct sock *inet_csk_clone_lock(const struct sock *sk, const struct request_sock *req, const gfp_t priority); enum inet_csk_ack_state_t { ICSK_ACK_SCHED = 1, ICSK_ACK_TIMER = 2, ICSK_ACK_PUSHED = 4, ICSK_ACK_PUSHED2 = 8, ICSK_ACK_NOW = 16 /* Send the next ACK immediately (once) */ }; void inet_csk_init_xmit_timers(struct sock *sk, void (*retransmit_handler)(struct timer_list *), void (*delack_handler)(struct timer_list *), void (*keepalive_handler)(struct timer_list *)); void inet_csk_clear_xmit_timers(struct sock *sk); static inline void inet_csk_schedule_ack(struct sock *sk) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_SCHED; } static inline int inet_csk_ack_scheduled(const struct sock *sk) { return inet_csk(sk)->icsk_ack.pending & ICSK_ACK_SCHED; } static inline void inet_csk_delack_init(struct sock *sk) { memset(&inet_csk(sk)->icsk_ack, 0, sizeof(inet_csk(sk)->icsk_ack)); } void inet_csk_delete_keepalive_timer(struct sock *sk); void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long timeout); static inline void inet_csk_clear_xmit_timer(struct sock *sk, const int what) { struct inet_connection_sock *icsk = inet_csk(sk); if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0) { icsk->icsk_pending = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_retransmit_timer); #endif } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending = 0; icsk->icsk_ack.retry = 0; #ifdef INET_CSK_CLEAR_TIMERS sk_stop_timer(sk, &icsk->icsk_delack_timer); #endif } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } /* * Reset the retransmission timer */ static inline void inet_csk_reset_xmit_timer(struct sock *sk, const int what, unsigned long when, const unsigned long max_when) { struct inet_connection_sock *icsk = inet_csk(sk); if (when > max_when) { pr_debug("reset_xmit_timer: sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, (void *)_THIS_IP_); when = max_when; } if (what == ICSK_TIME_RETRANS || what == ICSK_TIME_PROBE0 || what == ICSK_TIME_EARLY_RETRANS || what == ICSK_TIME_LOSS_PROBE || what == ICSK_TIME_REO_TIMEOUT) { icsk->icsk_pending = what; icsk->icsk_timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout); } else if (what == ICSK_TIME_DACK) { icsk->icsk_ack.pending |= ICSK_ACK_TIMER; icsk->icsk_ack.timeout = jiffies + when; sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout); } else { pr_debug("inet_csk BUG: unknown timer value\n"); } } static inline unsigned long inet_csk_rto_backoff(const struct inet_connection_sock *icsk, unsigned long max_when) { u64 when = (u64)icsk->icsk_rto << icsk->icsk_backoff; return (unsigned long)min_t(u64, when, max_when); } struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern); int inet_csk_get_port(struct sock *sk, unsigned short snum); struct dst_entry *inet_csk_route_req(const struct sock *sk, struct flowi4 *fl4, const struct request_sock *req); struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, struct sock *newsk, const struct request_sock *req); struct sock *inet_csk_reqsk_queue_add(struct sock *sk, struct request_sock *req, struct sock *child); void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, unsigned long timeout); struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, struct request_sock *req, bool own_req); static inline void inet_csk_reqsk_queue_added(struct sock *sk) { reqsk_queue_added(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_len(const struct sock *sk) { return reqsk_queue_len(&inet_csk(sk)->icsk_accept_queue); } static inline int inet_csk_reqsk_queue_is_full(const struct sock *sk) { return inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog; } bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req); void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req); static inline void inet_csk_prepare_for_destroy_sock(struct sock *sk) { /* The below has to be done to allow calling inet_csk_destroy_sock */ sock_set_flag(sk, SOCK_DEAD); this_cpu_inc(*sk->sk_prot->orphan_count); } void inet_csk_destroy_sock(struct sock *sk); void inet_csk_prepare_forced_close(struct sock *sk); /* * LISTEN is a special case for poll.. */ static inline __poll_t inet_csk_listen_poll(const struct sock *sk) { return !reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue) ? (EPOLLIN | EPOLLRDNORM) : 0; } int inet_csk_listen_start(struct sock *sk, int backlog); void inet_csk_listen_stop(struct sock *sk); void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr); /* update the fast reuse flag when adding a socket */ void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, struct sock *sk); struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu); #define TCP_PINGPONG_THRESH 3 static inline void inet_csk_enter_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = TCP_PINGPONG_THRESH; } static inline void inet_csk_exit_pingpong_mode(struct sock *sk) { inet_csk(sk)->icsk_ack.pingpong = 0; } static inline bool inet_csk_in_pingpong_mode(struct sock *sk) { return inet_csk(sk)->icsk_ack.pingpong >= TCP_PINGPONG_THRESH; } static inline void inet_csk_inc_pingpong_cnt(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ack.pingpong < U8_MAX) icsk->icsk_ack.pingpong++; } static inline bool inet_csk_has_ulp(struct sock *sk) { return inet_sk(sk)->is_icsk && !!inet_csk(sk)->icsk_ulp_ops; } #endif /* _INET_CONNECTION_SOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PATH_H #define _LINUX_PATH_H struct dentry; struct vfsmount; struct path { struct vfsmount *mnt; struct dentry *dentry; } __randomize_layout; extern void path_get(const struct path *); extern void path_put(const struct path *); static inline int path_equal(const struct path *path1, const struct path *path2) { return path1->mnt == path2->mnt && path1->dentry == path2->dentry; } static inline void path_put_init(struct path *path) { path_put(path); *path = (struct path) { }; } #endif /* _LINUX_PATH_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/namespace.c * * (C) Copyright Al Viro 2000, 2001 * * Based on code from fs/super.c, copyright Linus Torvalds and others. * Heavily rewritten. */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/capability.h> #include <linux/mnt_namespace.h> #include <linux/user_namespace.h> #include <linux/namei.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/idr.h> #include <linux/init.h> /* init_rootfs */ #include <linux/fs_struct.h> /* get_fs_root et.al. */ #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ #include <linux/file.h> #include <linux/uaccess.h> #include <linux/proc_ns.h> #include <linux/magic.h> #include <linux/memblock.h> #include <linux/task_work.h> #include <linux/sched/task.h> #include <uapi/linux/mount.h> #include <linux/fs_context.h> #include <linux/shmem_fs.h> #include "pnode.h" #include "internal.h" /* Maximum number of mounts in a mount namespace */ unsigned int sysctl_mount_max __read_mostly = 100000; static unsigned int m_hash_mask __read_mostly; static unsigned int m_hash_shift __read_mostly; static unsigned int mp_hash_mask __read_mostly; static unsigned int mp_hash_shift __read_mostly; static __initdata unsigned long mhash_entries; static int __init set_mhash_entries(char *str) { if (!str) return 0; mhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mhash_entries=", set_mhash_entries); static __initdata unsigned long mphash_entries; static int __init set_mphash_entries(char *str) { if (!str) return 0; mphash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mphash_entries=", set_mphash_entries); static u64 event; static DEFINE_IDA(mnt_id_ida); static DEFINE_IDA(mnt_group_ida); static struct hlist_head *mount_hashtable __read_mostly; static struct hlist_head *mountpoint_hashtable __read_mostly; static struct kmem_cache *mnt_cache __read_mostly; static DECLARE_RWSEM(namespace_sem); static HLIST_HEAD(unmounted); /* protected by namespace_sem */ static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ /* /sys/fs */ struct kobject *fs_kobj; EXPORT_SYMBOL_GPL(fs_kobj); /* * vfsmount lock may be taken for read to prevent changes to the * vfsmount hash, ie. during mountpoint lookups or walking back * up the tree. * * It should be taken for write in all cases where the vfsmount * tree or hash is modified or when a vfsmount structure is modified. */ __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) { unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); tmp += ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> m_hash_shift); return &mount_hashtable[tmp & m_hash_mask]; } static inline struct hlist_head *mp_hash(struct dentry *dentry) { unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> mp_hash_shift); return &mountpoint_hashtable[tmp & mp_hash_mask]; } static int mnt_alloc_id(struct mount *mnt) { int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); if (res < 0) return res; mnt->mnt_id = res; return 0; } static void mnt_free_id(struct mount *mnt) { ida_free(&mnt_id_ida, mnt->mnt_id); } /* * Allocate a new peer group ID */ static int mnt_alloc_group_id(struct mount *mnt) { int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); if (res < 0) return res; mnt->mnt_group_id = res; return 0; } /* * Release a peer group ID */ void mnt_release_group_id(struct mount *mnt) { ida_free(&mnt_group_ida, mnt->mnt_group_id); mnt->mnt_group_id = 0; } /* * vfsmount lock must be held for read */ static inline void mnt_add_count(struct mount *mnt, int n) { #ifdef CONFIG_SMP this_cpu_add(mnt->mnt_pcp->mnt_count, n); #else preempt_disable(); mnt->mnt_count += n; preempt_enable(); #endif } /* * vfsmount lock must be held for write */ int mnt_get_count(struct mount *mnt) { #ifdef CONFIG_SMP int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; } return count; #else return mnt->mnt_count; #endif } static struct mount *alloc_vfsmnt(const char *name) { struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); if (mnt) { int err; err = mnt_alloc_id(mnt); if (err) goto out_free_cache; if (name) { mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); if (!mnt->mnt_devname) goto out_free_id; } #ifdef CONFIG_SMP mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); if (!mnt->mnt_pcp) goto out_free_devname; this_cpu_add(mnt->mnt_pcp->mnt_count, 1); #else mnt->mnt_count = 1; mnt->mnt_writers = 0; #endif INIT_HLIST_NODE(&mnt->mnt_hash); INIT_LIST_HEAD(&mnt->mnt_child); INIT_LIST_HEAD(&mnt->mnt_mounts); INIT_LIST_HEAD(&mnt->mnt_list); INIT_LIST_HEAD(&mnt->mnt_expire); INIT_LIST_HEAD(&mnt->mnt_share); INIT_LIST_HEAD(&mnt->mnt_slave_list); INIT_LIST_HEAD(&mnt->mnt_slave); INIT_HLIST_NODE(&mnt->mnt_mp_list); INIT_LIST_HEAD(&mnt->mnt_umounting); INIT_HLIST_HEAD(&mnt->mnt_stuck_children); } return mnt; #ifdef CONFIG_SMP out_free_devname: kfree_const(mnt->mnt_devname); #endif out_free_id: mnt_free_id(mnt); out_free_cache: kmem_cache_free(mnt_cache, mnt); return NULL; } /* * Most r/o checks on a fs are for operations that take * discrete amounts of time, like a write() or unlink(). * We must keep track of when those operations start * (for permission checks) and when they end, so that * we can determine when writes are able to occur to * a filesystem. */ /* * __mnt_is_readonly: check whether a mount is read-only * @mnt: the mount to check for its write status * * This shouldn't be used directly ouside of the VFS. * It does not guarantee that the filesystem will stay * r/w, just that it is right *now*. This can not and * should not be used in place of IS_RDONLY(inode). * mnt_want/drop_write() will _keep_ the filesystem * r/w. */ bool __mnt_is_readonly(struct vfsmount *mnt) { return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(__mnt_is_readonly); static inline void mnt_inc_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_inc(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers++; #endif } static inline void mnt_dec_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_dec(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers--; #endif } static unsigned int mnt_get_writers(struct mount *mnt) { #ifdef CONFIG_SMP unsigned int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; } return count; #else return mnt->mnt_writers; #endif } static int mnt_is_readonly(struct vfsmount *mnt) { if (mnt->mnt_sb->s_readonly_remount) return 1; /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ smp_rmb(); return __mnt_is_readonly(mnt); } /* * Most r/o & frozen checks on a fs are for operations that take discrete * amounts of time, like a write() or unlink(). We must keep track of when * those operations start (for permission checks) and when they end, so that we * can determine when writes are able to occur to a filesystem. */ /** * __mnt_want_write - get write access to a mount without freeze protection * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mnt it read-write) before * returning success. This operation does not protect against filesystem being * frozen. When the write operation is finished, __mnt_drop_write() must be * called. This is effectively a refcount. */ int __mnt_want_write(struct vfsmount *m) { struct mount *mnt = real_mount(m); int ret = 0; preempt_disable(); mnt_inc_writers(mnt); /* * The store to mnt_inc_writers must be visible before we pass * MNT_WRITE_HOLD loop below, so that the slowpath can see our * incremented count after it has set MNT_WRITE_HOLD. */ smp_mb(); while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) cpu_relax(); /* * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will * be set to match its requirements. So we must not load that until * MNT_WRITE_HOLD is cleared. */ smp_rmb(); if (mnt_is_readonly(m)) { mnt_dec_writers(mnt); ret = -EROFS; } preempt_enable(); return ret; } /** * mnt_want_write - get write access to a mount * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mount is read-write, filesystem * is not frozen) before returning success. When the write operation is * finished, mnt_drop_write() must be called. This is effectively a refcount. */ int mnt_want_write(struct vfsmount *m) { int ret; sb_start_write(m->mnt_sb); ret = __mnt_want_write(m); if (ret) sb_end_write(m->mnt_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write); /** * mnt_clone_write - get write access to a mount * @mnt: the mount on which to take a write * * This is effectively like mnt_want_write, except * it must only be used to take an extra write reference * on a mountpoint that we already know has a write reference * on it. This allows some optimisation. * * After finished, mnt_drop_write must be called as usual to * drop the reference. */ int mnt_clone_write(struct vfsmount *mnt) { /* superblock may be r/o */ if (__mnt_is_readonly(mnt)) return -EROFS; preempt_disable(); mnt_inc_writers(real_mount(mnt)); preempt_enable(); return 0; } EXPORT_SYMBOL_GPL(mnt_clone_write); /** * __mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like __mnt_want_write, but it takes a file and can * do some optimisations if the file is open for write already */ int __mnt_want_write_file(struct file *file) { if (!(file->f_mode & FMODE_WRITER)) return __mnt_want_write(file->f_path.mnt); else return mnt_clone_write(file->f_path.mnt); } /** * mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like mnt_want_write, but it takes a file and can * do some optimisations if the file is open for write already */ int mnt_want_write_file(struct file *file) { int ret; sb_start_write(file_inode(file)->i_sb); ret = __mnt_want_write_file(file); if (ret) sb_end_write(file_inode(file)->i_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write_file); /** * __mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done * performing writes to it. Must be matched with * __mnt_want_write() call above. */ void __mnt_drop_write(struct vfsmount *mnt) { preempt_disable(); mnt_dec_writers(real_mount(mnt)); preempt_enable(); } /** * mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done performing writes to it and * also allows filesystem to be frozen again. Must be matched with * mnt_want_write() call above. */ void mnt_drop_write(struct vfsmount *mnt) { __mnt_drop_write(mnt); sb_end_write(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(mnt_drop_write); void __mnt_drop_write_file(struct file *file) { __mnt_drop_write(file->f_path.mnt); } void mnt_drop_write_file(struct file *file) { __mnt_drop_write_file(file); sb_end_write(file_inode(file)->i_sb); } EXPORT_SYMBOL(mnt_drop_write_file); static int mnt_make_readonly(struct mount *mnt) { int ret = 0; lock_mount_hash(); mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; /* * After storing MNT_WRITE_HOLD, we'll read the counters. This store * should be visible before we do. */ smp_mb(); /* * With writers on hold, if this value is zero, then there are * definitely no active writers (although held writers may subsequently * increment the count, they'll have to wait, and decrement it after * seeing MNT_READONLY). * * It is OK to have counter incremented on one CPU and decremented on * another: the sum will add up correctly. The danger would be when we * sum up each counter, if we read a counter before it is incremented, * but then read another CPU's count which it has been subsequently * decremented from -- we would see more decrements than we should. * MNT_WRITE_HOLD protects against this scenario, because * mnt_want_write first increments count, then smp_mb, then spins on * MNT_WRITE_HOLD, so it can't be decremented by another CPU while * we're counting up here. */ if (mnt_get_writers(mnt) > 0) ret = -EBUSY; else mnt->mnt.mnt_flags |= MNT_READONLY; /* * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers * that become unheld will see MNT_READONLY. */ smp_wmb(); mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; unlock_mount_hash(); return ret; } static int __mnt_unmake_readonly(struct mount *mnt) { lock_mount_hash(); mnt->mnt.mnt_flags &= ~MNT_READONLY; unlock_mount_hash(); return 0; } int sb_prepare_remount_readonly(struct super_block *sb) { struct mount *mnt; int err = 0; /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ if (atomic_long_read(&sb->s_remove_count)) return -EBUSY; lock_mount_hash(); list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; smp_mb(); if (mnt_get_writers(mnt) > 0) { err = -EBUSY; break; } } } if (!err && atomic_long_read(&sb->s_remove_count)) err = -EBUSY; if (!err) { sb->s_readonly_remount = 1; smp_wmb(); } list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; } unlock_mount_hash(); return err; } static void free_vfsmnt(struct mount *mnt) { kfree_const(mnt->mnt_devname); #ifdef CONFIG_SMP free_percpu(mnt->mnt_pcp); #endif kmem_cache_free(mnt_cache, mnt); } static void delayed_free_vfsmnt(struct rcu_head *head) { free_vfsmnt(container_of(head, struct mount, mnt_rcu)); } /* call under rcu_read_lock */ int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) { struct mount *mnt; if (read_seqretry(&mount_lock, seq)) return 1; if (bastard == NULL) return 0; mnt = real_mount(bastard); mnt_add_count(mnt, 1); smp_mb(); // see mntput_no_expire() if (likely(!read_seqretry(&mount_lock, seq))) return 0; if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { mnt_add_count(mnt, -1); return 1; } lock_mount_hash(); if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { mnt_add_count(mnt, -1); unlock_mount_hash(); return 1; } unlock_mount_hash(); /* caller will mntput() */ return -1; } /* call under rcu_read_lock */ bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) { int res = __legitimize_mnt(bastard, seq); if (likely(!res)) return true; if (unlikely(res < 0)) { rcu_read_unlock(); mntput(bastard); rcu_read_lock(); } return false; } /* * find the first mount at @dentry on vfsmount @mnt. * call under rcu_read_lock() */ struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) { struct hlist_head *head = m_hash(mnt, dentry); struct mount *p; hlist_for_each_entry_rcu(p, head, mnt_hash) if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) return p; return NULL; } /* * lookup_mnt - Return the first child mount mounted at path * * "First" means first mounted chronologically. If you create the * following mounts: * * mount /dev/sda1 /mnt * mount /dev/sda2 /mnt * mount /dev/sda3 /mnt * * Then lookup_mnt() on the base /mnt dentry in the root mount will * return successively the root dentry and vfsmount of /dev/sda1, then * /dev/sda2, then /dev/sda3, then NULL. * * lookup_mnt takes a reference to the found vfsmount. */ struct vfsmount *lookup_mnt(const struct path *path) { struct mount *child_mnt; struct vfsmount *m; unsigned seq; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); child_mnt = __lookup_mnt(path->mnt, path->dentry); m = child_mnt ? &child_mnt->mnt : NULL; } while (!legitimize_mnt(m, seq)); rcu_read_unlock(); return m; } static inline void lock_ns_list(struct mnt_namespace *ns) { spin_lock(&ns->ns_lock); } static inline void unlock_ns_list(struct mnt_namespace *ns) { spin_unlock(&ns->ns_lock); } static inline bool mnt_is_cursor(struct mount *mnt) { return mnt->mnt.mnt_flags & MNT_CURSOR; } /* * __is_local_mountpoint - Test to see if dentry is a mountpoint in the * current mount namespace. * * The common case is dentries are not mountpoints at all and that * test is handled inline. For the slow case when we are actually * dealing with a mountpoint of some kind, walk through all of the * mounts in the current mount namespace and test to see if the dentry * is a mountpoint. * * The mount_hashtable is not usable in the context because we * need to identify all mounts that may be in the current mount * namespace not just a mount that happens to have some specified * parent mount. */ bool __is_local_mountpoint(struct dentry *dentry) { struct mnt_namespace *ns = current->nsproxy->mnt_ns; struct mount *mnt; bool is_covered = false; down_read(&namespace_sem); lock_ns_list(ns); list_for_each_entry(mnt, &ns->list, mnt_list) { if (mnt_is_cursor(mnt)) continue; is_covered = (mnt->mnt_mountpoint == dentry); if (is_covered) break; } unlock_ns_list(ns); up_read(&namespace_sem); return is_covered; } static struct mountpoint *lookup_mountpoint(struct dentry *dentry) { struct hlist_head *chain = mp_hash(dentry); struct mountpoint *mp; hlist_for_each_entry(mp, chain, m_hash) { if (mp->m_dentry == dentry) { mp->m_count++; return mp; } } return NULL; } static struct mountpoint *get_mountpoint(struct dentry *dentry) { struct mountpoint *mp, *new = NULL; int ret; if (d_mountpoint(dentry)) { /* might be worth a WARN_ON() */ if (d_unlinked(dentry)) return ERR_PTR(-ENOENT); mountpoint: read_seqlock_excl(&mount_lock); mp = lookup_mountpoint(dentry); read_sequnlock_excl(&mount_lock); if (mp) goto done; } if (!new) new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* Exactly one processes may set d_mounted */ ret = d_set_mounted(dentry); /* Someone else set d_mounted? */ if (ret == -EBUSY) goto mountpoint; /* The dentry is not available as a mountpoint? */ mp = ERR_PTR(ret); if (ret) goto done; /* Add the new mountpoint to the hash table */ read_seqlock_excl(&mount_lock); new->m_dentry = dget(dentry); new->m_count = 1; hlist_add_head(&new->m_hash, mp_hash(dentry)); INIT_HLIST_HEAD(&new->m_list); read_sequnlock_excl(&mount_lock); mp = new; new = NULL; done: kfree(new); return mp; } /* * vfsmount lock must be held. Additionally, the caller is responsible * for serializing calls for given disposal list. */ static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) { if (!--mp->m_count) { struct dentry *dentry = mp->m_dentry; BUG_ON(!hlist_empty(&mp->m_list)); spin_lock(&dentry->d_lock); dentry->d_flags &= ~DCACHE_MOUNTED; spin_unlock(&dentry->d_lock); dput_to_list(dentry, list); hlist_del(&mp->m_hash); kfree(mp); } } /* called with namespace_lock and vfsmount lock */ static void put_mountpoint(struct mountpoint *mp) { __put_mountpoint(mp, &ex_mountpoints); } static inline int check_mnt(struct mount *mnt) { return mnt->mnt_ns == current->nsproxy->mnt_ns; } /* * vfsmount lock must be held for write */ static void touch_mnt_namespace(struct mnt_namespace *ns) { if (ns) { ns->event = ++event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static void __touch_mnt_namespace(struct mnt_namespace *ns) { if (ns && ns->event != event) { ns->event = event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static struct mountpoint *unhash_mnt(struct mount *mnt) { struct mountpoint *mp; mnt->mnt_parent = mnt; mnt->mnt_mountpoint = mnt->mnt.mnt_root; list_del_init(&mnt->mnt_child); hlist_del_init_rcu(&mnt->mnt_hash); hlist_del_init(&mnt->mnt_mp_list); mp = mnt->mnt_mp; mnt->mnt_mp = NULL; return mp; } /* * vfsmount lock must be held for write */ static void umount_mnt(struct mount *mnt) { put_mountpoint(unhash_mnt(mnt)); } /* * vfsmount lock must be held for write */ void mnt_set_mountpoint(struct mount *mnt, struct mountpoint *mp, struct mount *child_mnt) { mp->m_count++; mnt_add_count(mnt, 1); /* essentially, that's mntget */ child_mnt->mnt_mountpoint = mp->m_dentry; child_mnt->mnt_parent = mnt; child_mnt->mnt_mp = mp; hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); } static void __attach_mnt(struct mount *mnt, struct mount *parent) { hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mnt->mnt_mountpoint)); list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); } /* * vfsmount lock must be held for write */ static void attach_mnt(struct mount *mnt, struct mount *parent, struct mountpoint *mp) { mnt_set_mountpoint(parent, mp, mnt); __attach_mnt(mnt, parent); } void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) { struct mountpoint *old_mp = mnt->mnt_mp; struct mount *old_parent = mnt->mnt_parent; list_del_init(&mnt->mnt_child); hlist_del_init(&mnt->mnt_mp_list); hlist_del_init_rcu(&mnt->mnt_hash); attach_mnt(mnt, parent, mp); put_mountpoint(old_mp); mnt_add_count(old_parent, -1); } /* * vfsmount lock must be held for write */ static void commit_tree(struct mount *mnt) { struct mount *parent = mnt->mnt_parent; struct mount *m; LIST_HEAD(head); struct mnt_namespace *n = parent->mnt_ns; BUG_ON(parent == mnt); list_add_tail(&head, &mnt->mnt_list); list_for_each_entry(m, &head, mnt_list) m->mnt_ns = n; list_splice(&head, n->list.prev); n->mounts += n->pending_mounts; n->pending_mounts = 0; __attach_mnt(mnt, parent); touch_mnt_namespace(n); } static struct mount *next_mnt(struct mount *p, struct mount *root) { struct list_head *next = p->mnt_mounts.next; if (next == &p->mnt_mounts) { while (1) { if (p == root) return NULL; next = p->mnt_child.next; if (next != &p->mnt_parent->mnt_mounts) break; p = p->mnt_parent; } } return list_entry(next, struct mount, mnt_child); } static struct mount *skip_mnt_tree(struct mount *p) { struct list_head *prev = p->mnt_mounts.prev; while (prev != &p->mnt_mounts) { p = list_entry(prev, struct mount, mnt_child); prev = p->mnt_mounts.prev; } return p; } /** * vfs_create_mount - Create a mount for a configured superblock * @fc: The configuration context with the superblock attached * * Create a mount to an already configured superblock. If necessary, the * caller should invoke vfs_get_tree() before calling this. * * Note that this does not attach the mount to anything. */ struct vfsmount *vfs_create_mount(struct fs_context *fc) { struct mount *mnt; if (!fc->root) return ERR_PTR(-EINVAL); mnt = alloc_vfsmnt(fc->source ?: "none"); if (!mnt) return ERR_PTR(-ENOMEM); if (fc->sb_flags & SB_KERNMOUNT) mnt->mnt.mnt_flags = MNT_INTERNAL; atomic_inc(&fc->root->d_sb->s_active); mnt->mnt.mnt_sb = fc->root->d_sb; mnt->mnt.mnt_root = dget(fc->root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); unlock_mount_hash(); return &mnt->mnt; } EXPORT_SYMBOL(vfs_create_mount); struct vfsmount *fc_mount(struct fs_context *fc) { int err = vfs_get_tree(fc); if (!err) { up_write(&fc->root->d_sb->s_umount); return vfs_create_mount(fc); } return ERR_PTR(err); } EXPORT_SYMBOL(fc_mount); struct vfsmount *vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) { struct fs_context *fc; struct vfsmount *mnt; int ret = 0; if (!type) return ERR_PTR(-EINVAL); fc = fs_context_for_mount(type, flags); if (IS_ERR(fc)) return ERR_CAST(fc); if (name) ret = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!ret) ret = parse_monolithic_mount_data(fc, data); if (!ret) mnt = fc_mount(fc); else mnt = ERR_PTR(ret); put_fs_context(fc); return mnt; } EXPORT_SYMBOL_GPL(vfs_kern_mount); struct vfsmount * vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, const char *name, void *data) { /* Until it is worked out how to pass the user namespace * through from the parent mount to the submount don't support * unprivileged mounts with submounts. */ if (mountpoint->d_sb->s_user_ns != &init_user_ns) return ERR_PTR(-EPERM); return vfs_kern_mount(type, SB_SUBMOUNT, name, data); } EXPORT_SYMBOL_GPL(vfs_submount); static struct mount *clone_mnt(struct mount *old, struct dentry *root, int flag) { struct super_block *sb = old->mnt.mnt_sb; struct mount *mnt; int err; mnt = alloc_vfsmnt(old->mnt_devname); if (!mnt) return ERR_PTR(-ENOMEM); if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) mnt->mnt_group_id = 0; /* not a peer of original */ else mnt->mnt_group_id = old->mnt_group_id; if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { err = mnt_alloc_group_id(mnt); if (err) goto out_free; } mnt->mnt.mnt_flags = old->mnt.mnt_flags; mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); atomic_inc(&sb->s_active); mnt->mnt.mnt_sb = sb; mnt->mnt.mnt_root = dget(root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &sb->s_mounts); unlock_mount_hash(); if ((flag & CL_SLAVE) || ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { list_add(&mnt->mnt_slave, &old->mnt_slave_list); mnt->mnt_master = old; CLEAR_MNT_SHARED(mnt); } else if (!(flag & CL_PRIVATE)) { if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) list_add(&mnt->mnt_share, &old->mnt_share); if (IS_MNT_SLAVE(old)) list_add(&mnt->mnt_slave, &old->mnt_slave); mnt->mnt_master = old->mnt_master; } else { CLEAR_MNT_SHARED(mnt); } if (flag & CL_MAKE_SHARED) set_mnt_shared(mnt); /* stick the duplicate mount on the same expiry list * as the original if that was on one */ if (flag & CL_EXPIRE) { if (!list_empty(&old->mnt_expire)) list_add(&mnt->mnt_expire, &old->mnt_expire); } return mnt; out_free: mnt_free_id(mnt); free_vfsmnt(mnt); return ERR_PTR(err); } static void cleanup_mnt(struct mount *mnt) { struct hlist_node *p; struct mount *m; /* * The warning here probably indicates that somebody messed * up a mnt_want/drop_write() pair. If this happens, the * filesystem was probably unable to make r/w->r/o transitions. * The locking used to deal with mnt_count decrement provides barriers, * so mnt_get_writers() below is safe. */ WARN_ON(mnt_get_writers(mnt)); if (unlikely(mnt->mnt_pins.first)) mnt_pin_kill(mnt); hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } fsnotify_vfsmount_delete(&mnt->mnt); dput(mnt->mnt.mnt_root); deactivate_super(mnt->mnt.mnt_sb); mnt_free_id(mnt); call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); } static void __cleanup_mnt(struct rcu_head *head) { cleanup_mnt(container_of(head, struct mount, mnt_rcu)); } static LLIST_HEAD(delayed_mntput_list); static void delayed_mntput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_mntput_list); struct mount *m, *t; llist_for_each_entry_safe(m, t, node, mnt_llist) cleanup_mnt(m); } static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); static void mntput_no_expire(struct mount *mnt) { LIST_HEAD(list); int count; rcu_read_lock(); if (likely(READ_ONCE(mnt->mnt_ns))) { /* * Since we don't do lock_mount_hash() here, * ->mnt_ns can change under us. However, if it's * non-NULL, then there's a reference that won't * be dropped until after an RCU delay done after * turning ->mnt_ns NULL. So if we observe it * non-NULL under rcu_read_lock(), the reference * we are dropping is not the final one. */ mnt_add_count(mnt, -1); rcu_read_unlock(); return; } lock_mount_hash(); /* * make sure that if __legitimize_mnt() has not seen us grab * mount_lock, we'll see their refcount increment here. */ smp_mb(); mnt_add_count(mnt, -1); count = mnt_get_count(mnt); if (count != 0) { WARN_ON(count < 0); rcu_read_unlock(); unlock_mount_hash(); return; } if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { rcu_read_unlock(); unlock_mount_hash(); return; } mnt->mnt.mnt_flags |= MNT_DOOMED; rcu_read_unlock(); list_del(&mnt->mnt_instance); if (unlikely(!list_empty(&mnt->mnt_mounts))) { struct mount *p, *tmp; list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { __put_mountpoint(unhash_mnt(p), &list); hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); } } unlock_mount_hash(); shrink_dentry_list(&list); if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { struct task_struct *task = current; if (likely(!(task->flags & PF_KTHREAD))) { init_task_work(&mnt->mnt_rcu, __cleanup_mnt); if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) return; } if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) schedule_delayed_work(&delayed_mntput_work, 1); return; } cleanup_mnt(mnt); } void mntput(struct vfsmount *mnt) { if (mnt) { struct mount *m = real_mount(mnt); /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ if (unlikely(m->mnt_expiry_mark)) m->mnt_expiry_mark = 0; mntput_no_expire(m); } } EXPORT_SYMBOL(mntput); struct vfsmount *mntget(struct vfsmount *mnt) { if (mnt) mnt_add_count(real_mount(mnt), 1); return mnt; } EXPORT_SYMBOL(mntget); /* path_is_mountpoint() - Check if path is a mount in the current * namespace. * * d_mountpoint() can only be used reliably to establish if a dentry is * not mounted in any namespace and that common case is handled inline. * d_mountpoint() isn't aware of the possibility there may be multiple * mounts using a given dentry in a different namespace. This function * checks if the passed in path is a mountpoint rather than the dentry * alone. */ bool path_is_mountpoint(const struct path *path) { unsigned seq; bool res; if (!d_mountpoint(path->dentry)) return false; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); res = __path_is_mountpoint(path); } while (read_seqretry(&mount_lock, seq)); rcu_read_unlock(); return res; } EXPORT_SYMBOL(path_is_mountpoint); struct vfsmount *mnt_clone_internal(const struct path *path) { struct mount *p; p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); if (IS_ERR(p)) return ERR_CAST(p); p->mnt.mnt_flags |= MNT_INTERNAL; return &p->mnt; } #ifdef CONFIG_PROC_FS static struct mount *mnt_list_next(struct mnt_namespace *ns, struct list_head *p) { struct mount *mnt, *ret = NULL; lock_ns_list(ns); list_for_each_continue(p, &ns->list) { mnt = list_entry(p, typeof(*mnt), mnt_list); if (!mnt_is_cursor(mnt)) { ret = mnt; break; } } unlock_ns_list(ns); return ret; } /* iterator; we want it to have access to namespace_sem, thus here... */ static void *m_start(struct seq_file *m, loff_t *pos) { struct proc_mounts *p = m->private; struct list_head *prev; down_read(&namespace_sem); if (!*pos) { prev = &p->ns->list; } else { prev = &p->cursor.mnt_list; /* Read after we'd reached the end? */ if (list_empty(prev)) return NULL; } return mnt_list_next(p->ns, prev); } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct proc_mounts *p = m->private; struct mount *mnt = v; ++*pos; return mnt_list_next(p->ns, &mnt->mnt_list); } static void m_stop(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *mnt = v; lock_ns_list(p->ns); if (mnt) list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); else list_del_init(&p->cursor.mnt_list); unlock_ns_list(p->ns); up_read(&namespace_sem); } static int m_show(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *r = v; return p->show(m, &r->mnt); } const struct seq_operations mounts_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = m_show, }; void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) { down_read(&namespace_sem); lock_ns_list(ns); list_del(&cursor->mnt_list); unlock_ns_list(ns); up_read(&namespace_sem); } #endif /* CONFIG_PROC_FS */ /** * may_umount_tree - check if a mount tree is busy * @mnt: root of mount tree * * This is called to check if a tree of mounts has any * open files, pwds, chroots or sub mounts that are * busy. */ int may_umount_tree(struct vfsmount *m) { struct mount *mnt = real_mount(m); int actual_refs = 0; int minimum_refs = 0; struct mount *p; BUG_ON(!m); /* write lock needed for mnt_get_count */ lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { actual_refs += mnt_get_count(p); minimum_refs += 2; } unlock_mount_hash(); if (actual_refs > minimum_refs) return 0; return 1; } EXPORT_SYMBOL(may_umount_tree); /** * may_umount - check if a mount point is busy * @mnt: root of mount * * This is called to check if a mount point has any * open files, pwds, chroots or sub mounts. If the * mount has sub mounts this will return busy * regardless of whether the sub mounts are busy. * * Doesn't take quota and stuff into account. IOW, in some cases it will * give false negatives. The main reason why it's here is that we need * a non-destructive way to look for easily umountable filesystems. */ int may_umount(struct vfsmount *mnt) { int ret = 1; down_read(&namespace_sem); lock_mount_hash(); if (propagate_mount_busy(real_mount(mnt), 2)) ret = 0; unlock_mount_hash(); up_read(&namespace_sem); return ret; } EXPORT_SYMBOL(may_umount); static void namespace_unlock(void) { struct hlist_head head; struct hlist_node *p; struct mount *m; LIST_HEAD(list); hlist_move_list(&unmounted, &head); list_splice_init(&ex_mountpoints, &list); up_write(&namespace_sem); shrink_dentry_list(&list); if (likely(hlist_empty(&head))) return; synchronize_rcu_expedited(); hlist_for_each_entry_safe(m, p, &head, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } } static inline void namespace_lock(void) { down_write(&namespace_sem); } enum umount_tree_flags { UMOUNT_SYNC = 1, UMOUNT_PROPAGATE = 2, UMOUNT_CONNECTED = 4, }; static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) { /* Leaving mounts connected is only valid for lazy umounts */ if (how & UMOUNT_SYNC) return true; /* A mount without a parent has nothing to be connected to */ if (!mnt_has_parent(mnt)) return true; /* Because the reference counting rules change when mounts are * unmounted and connected, umounted mounts may not be * connected to mounted mounts. */ if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) return true; /* Has it been requested that the mount remain connected? */ if (how & UMOUNT_CONNECTED) return false; /* Is the mount locked such that it needs to remain connected? */ if (IS_MNT_LOCKED(mnt)) return false; /* By default disconnect the mount */ return true; } /* * mount_lock must be held * namespace_sem must be held for write */ static void umount_tree(struct mount *mnt, enum umount_tree_flags how) { LIST_HEAD(tmp_list); struct mount *p; if (how & UMOUNT_PROPAGATE) propagate_mount_unlock(mnt); /* Gather the mounts to umount */ for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt.mnt_flags |= MNT_UMOUNT; list_move(&p->mnt_list, &tmp_list); } /* Hide the mounts from mnt_mounts */ list_for_each_entry(p, &tmp_list, mnt_list) { list_del_init(&p->mnt_child); } /* Add propogated mounts to the tmp_list */ if (how & UMOUNT_PROPAGATE) propagate_umount(&tmp_list); while (!list_empty(&tmp_list)) { struct mnt_namespace *ns; bool disconnect; p = list_first_entry(&tmp_list, struct mount, mnt_list); list_del_init(&p->mnt_expire); list_del_init(&p->mnt_list); ns = p->mnt_ns; if (ns) { ns->mounts--; __touch_mnt_namespace(ns); } p->mnt_ns = NULL; if (how & UMOUNT_SYNC) p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; disconnect = disconnect_mount(p, how); if (mnt_has_parent(p)) { mnt_add_count(p->mnt_parent, -1); if (!disconnect) { /* Don't forget about p */ list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); } else { umount_mnt(p); } } change_mnt_propagation(p, MS_PRIVATE); if (disconnect) hlist_add_head(&p->mnt_umount, &unmounted); } } static void shrink_submounts(struct mount *mnt); static int do_umount_root(struct super_block *sb) { int ret = 0; down_write(&sb->s_umount); if (!sb_rdonly(sb)) { struct fs_context *fc; fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, SB_RDONLY); if (IS_ERR(fc)) { ret = PTR_ERR(fc); } else { ret = parse_monolithic_mount_data(fc, NULL); if (!ret) ret = reconfigure_super(fc); put_fs_context(fc); } } up_write(&sb->s_umount); return ret; } static int do_umount(struct mount *mnt, int flags) { struct super_block *sb = mnt->mnt.mnt_sb; int retval; retval = security_sb_umount(&mnt->mnt, flags); if (retval) return retval; /* * Allow userspace to request a mountpoint be expired rather than * unmounting unconditionally. Unmount only happens if: * (1) the mark is already set (the mark is cleared by mntput()) * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] */ if (flags & MNT_EXPIRE) { if (&mnt->mnt == current->fs->root.mnt || flags & (MNT_FORCE | MNT_DETACH)) return -EINVAL; /* * probably don't strictly need the lock here if we examined * all race cases, but it's a slowpath. */ lock_mount_hash(); if (mnt_get_count(mnt) != 2) { unlock_mount_hash(); return -EBUSY; } unlock_mount_hash(); if (!xchg(&mnt->mnt_expiry_mark, 1)) return -EAGAIN; } /* * If we may have to abort operations to get out of this * mount, and they will themselves hold resources we must * allow the fs to do things. In the Unix tradition of * 'Gee thats tricky lets do it in userspace' the umount_begin * might fail to complete on the first run through as other tasks * must return, and the like. Thats for the mount program to worry * about for the moment. */ if (flags & MNT_FORCE && sb->s_op->umount_begin) { sb->s_op->umount_begin(sb); } /* * No sense to grab the lock for this test, but test itself looks * somewhat bogus. Suggestions for better replacement? * Ho-hum... In principle, we might treat that as umount + switch * to rootfs. GC would eventually take care of the old vfsmount. * Actually it makes sense, especially if rootfs would contain a * /reboot - static binary that would close all descriptors and * call reboot(9). Then init(8) could umount root and exec /reboot. */ if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { /* * Special case for "unmounting" root ... * we just try to remount it readonly. */ if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) return -EPERM; return do_umount_root(sb); } namespace_lock(); lock_mount_hash(); /* Recheck MNT_LOCKED with the locks held */ retval = -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) goto out; event++; if (flags & MNT_DETACH) { if (!list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE); retval = 0; } else { shrink_submounts(mnt); retval = -EBUSY; if (!propagate_mount_busy(mnt, 2)) { if (!list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); retval = 0; } } out: unlock_mount_hash(); namespace_unlock(); return retval; } /* * __detach_mounts - lazily unmount all mounts on the specified dentry * * During unlink, rmdir, and d_drop it is possible to loose the path * to an existing mountpoint, and wind up leaking the mount. * detach_mounts allows lazily unmounting those mounts instead of * leaking them. * * The caller may hold dentry->d_inode->i_mutex. */ void __detach_mounts(struct dentry *dentry) { struct mountpoint *mp; struct mount *mnt; namespace_lock(); lock_mount_hash(); mp = lookup_mountpoint(dentry); if (!mp) goto out_unlock; event++; while (!hlist_empty(&mp->m_list)) { mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); if (mnt->mnt.mnt_flags & MNT_UMOUNT) { umount_mnt(mnt); hlist_add_head(&mnt->mnt_umount, &unmounted); } else umount_tree(mnt, UMOUNT_CONNECTED); } put_mountpoint(mp); out_unlock: unlock_mount_hash(); namespace_unlock(); } /* * Is the caller allowed to modify his namespace? */ static inline bool may_mount(void) { return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); } #ifdef CONFIG_MANDATORY_FILE_LOCKING static bool may_mandlock(void) { pr_warn_once("======================================================\n" "WARNING: the mand mount option is being deprecated and\n" " will be removed in v5.15!\n" "======================================================\n"); return capable(CAP_SYS_ADMIN); } #else static inline bool may_mandlock(void) { pr_warn("VFS: \"mand\" mount option not supported"); return false; } #endif static int can_umount(const struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); if (!may_mount()) return -EPERM; if (path->dentry != path->mnt->mnt_root) return -EINVAL; if (!check_mnt(mnt)) return -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ return -EINVAL; if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) return -EPERM; return 0; } // caller is responsible for flags being sane int path_umount(struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); int ret; ret = can_umount(path, flags); if (!ret) ret = do_umount(mnt, flags); /* we mustn't call path_put() as that would clear mnt_expiry_mark */ dput(path->dentry); mntput_no_expire(mnt); return ret; } static int ksys_umount(char __user *name, int flags) { int lookup_flags = LOOKUP_MOUNTPOINT; struct path path; int ret; // basic validity checks done first if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) return -EINVAL; if (!(flags & UMOUNT_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); if (ret) return ret; return path_umount(&path, flags); } SYSCALL_DEFINE2(umount, char __user *, name, int, flags) { return ksys_umount(name, flags); } #ifdef __ARCH_WANT_SYS_OLDUMOUNT /* * The 2.0 compatible umount. No flags. */ SYSCALL_DEFINE1(oldumount, char __user *, name) { return ksys_umount(name, 0); } #endif static bool is_mnt_ns_file(struct dentry *dentry) { /* Is this a proxy for a mount namespace? */ return dentry->d_op == &ns_dentry_operations && dentry->d_fsdata == &mntns_operations; } static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) { return container_of(ns, struct mnt_namespace, ns); } struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) { return &mnt->ns; } static bool mnt_ns_loop(struct dentry *dentry) { /* Could bind mounting the mount namespace inode cause a * mount namespace loop? */ struct mnt_namespace *mnt_ns; if (!is_mnt_ns_file(dentry)) return false; mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; } struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, int flag) { struct mount *res, *p, *q, *r, *parent; if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) return ERR_PTR(-EINVAL); if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) return ERR_PTR(-EINVAL); res = q = clone_mnt(mnt, dentry, flag); if (IS_ERR(q)) return q; q->mnt_mountpoint = mnt->mnt_mountpoint; p = mnt; list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { struct mount *s; if (!is_subdir(r->mnt_mountpoint, dentry)) continue; for (s = r; s; s = next_mnt(s, r)) { if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(s)) { if (s->mnt.mnt_flags & MNT_LOCKED) { /* Both unbindable and locked. */ q = ERR_PTR(-EPERM); goto out; } else { s = skip_mnt_tree(s); continue; } } if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(s->mnt.mnt_root)) { s = skip_mnt_tree(s); continue; } while (p != s->mnt_parent) { p = p->mnt_parent; q = q->mnt_parent; } p = s; parent = q; q = clone_mnt(p, p->mnt.mnt_root, flag); if (IS_ERR(q)) goto out; lock_mount_hash(); list_add_tail(&q->mnt_list, &res->mnt_list); attach_mnt(q, parent, p->mnt_mp); unlock_mount_hash(); } } return res; out: if (res) { lock_mount_hash(); umount_tree(res, UMOUNT_SYNC); unlock_mount_hash(); } return q; } /* Caller should check returned pointer for errors */ struct vfsmount *collect_mounts(const struct path *path) { struct mount *tree; namespace_lock(); if (!check_mnt(real_mount(path->mnt))) tree = ERR_PTR(-EINVAL); else tree = copy_tree(real_mount(path->mnt), path->dentry, CL_COPY_ALL | CL_PRIVATE); namespace_unlock(); if (IS_ERR(tree)) return ERR_CAST(tree); return &tree->mnt; } static void free_mnt_ns(struct mnt_namespace *); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); void dissolve_on_fput(struct vfsmount *mnt) { struct mnt_namespace *ns; namespace_lock(); lock_mount_hash(); ns = real_mount(mnt)->mnt_ns; if (ns) { if (is_anon_ns(ns)) umount_tree(real_mount(mnt), UMOUNT_CONNECTED); else ns = NULL; } unlock_mount_hash(); namespace_unlock(); if (ns) free_mnt_ns(ns); } void drop_collected_mounts(struct vfsmount *mnt) { namespace_lock(); lock_mount_hash(); umount_tree(real_mount(mnt), 0); unlock_mount_hash(); namespace_unlock(); } static bool has_locked_children(struct mount *mnt, struct dentry *dentry) { struct mount *child; list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { if (!is_subdir(child->mnt_mountpoint, dentry)) continue; if (child->mnt.mnt_flags & MNT_LOCKED) return true; } return false; } /** * clone_private_mount - create a private clone of a path * * This creates a new vfsmount, which will be the clone of @path. The new will * not be attached anywhere in the namespace and will be private (i.e. changes * to the originating mount won't be propagated into this). * * Release with mntput(). */ struct vfsmount *clone_private_mount(const struct path *path) { struct mount *old_mnt = real_mount(path->mnt); struct mount *new_mnt; down_read(&namespace_sem); if (IS_MNT_UNBINDABLE(old_mnt)) goto invalid; if (!check_mnt(old_mnt)) goto invalid; if (has_locked_children(old_mnt, path->dentry)) goto invalid; new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); up_read(&namespace_sem); if (IS_ERR(new_mnt)) return ERR_CAST(new_mnt); /* Longterm mount to be removed by kern_unmount*() */ new_mnt->mnt_ns = MNT_NS_INTERNAL; return &new_mnt->mnt; invalid: up_read(&namespace_sem); return ERR_PTR(-EINVAL); } EXPORT_SYMBOL_GPL(clone_private_mount); int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, struct vfsmount *root) { struct mount *mnt; int res = f(root, arg); if (res) return res; list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { res = f(&mnt->mnt, arg); if (res) return res; } return 0; } static void lock_mnt_tree(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { int flags = p->mnt.mnt_flags; /* Don't allow unprivileged users to change mount flags */ flags |= MNT_LOCK_ATIME; if (flags & MNT_READONLY) flags |= MNT_LOCK_READONLY; if (flags & MNT_NODEV) flags |= MNT_LOCK_NODEV; if (flags & MNT_NOSUID) flags |= MNT_LOCK_NOSUID; if (flags & MNT_NOEXEC) flags |= MNT_LOCK_NOEXEC; /* Don't allow unprivileged users to reveal what is under a mount */ if (list_empty(&p->mnt_expire)) flags |= MNT_LOCKED; p->mnt.mnt_flags = flags; } } static void cleanup_group_ids(struct mount *mnt, struct mount *end) { struct mount *p; for (p = mnt; p != end; p = next_mnt(p, mnt)) { if (p->mnt_group_id && !IS_MNT_SHARED(p)) mnt_release_group_id(p); } } static int invent_group_ids(struct mount *mnt, bool recurse) { struct mount *p; for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { int err = mnt_alloc_group_id(p); if (err) { cleanup_group_ids(mnt, p); return err; } } } return 0; } int count_mounts(struct mnt_namespace *ns, struct mount *mnt) { unsigned int max = READ_ONCE(sysctl_mount_max); unsigned int mounts = 0, old, pending, sum; struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) mounts++; old = ns->mounts; pending = ns->pending_mounts; sum = old + pending; if ((old > sum) || (pending > sum) || (max < sum) || (mounts > (max - sum))) return -ENOSPC; ns->pending_mounts = pending + mounts; return 0; } /* * @source_mnt : mount tree to be attached * @nd : place the mount tree @source_mnt is attached * @parent_nd : if non-null, detach the source_mnt from its parent and * store the parent mount and mountpoint dentry. * (done when source_mnt is moved) * * NOTE: in the table below explains the semantics when a source mount * of a given type is attached to a destination mount of a given type. * --------------------------------------------------------------------------- * | BIND MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (++) | shared (+) | shared(+++)| invalid | * | | | | | | * |non-shared| shared (+) | private | slave (*) | invalid | * *************************************************************************** * A bind operation clones the source mount and mounts the clone on the * destination mount. * * (++) the cloned mount is propagated to all the mounts in the propagation * tree of the destination mount and the cloned mount is added to * the peer group of the source mount. * (+) the cloned mount is created under the destination mount and is marked * as shared. The cloned mount is added to the peer group of the source * mount. * (+++) the mount is propagated to all the mounts in the propagation tree * of the destination mount and the cloned mount is made slave * of the same master as that of the source mount. The cloned mount * is marked as 'shared and slave'. * (*) the cloned mount is made a slave of the same master as that of the * source mount. * * --------------------------------------------------------------------------- * | MOVE MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (+) | shared (+) | shared(+++) | invalid | * | | | | | | * |non-shared| shared (+*) | private | slave (*) | unbindable | * *************************************************************************** * * (+) the mount is moved to the destination. And is then propagated to * all the mounts in the propagation tree of the destination mount. * (+*) the mount is moved to the destination. * (+++) the mount is moved to the destination and is then propagated to * all the mounts belonging to the destination mount's propagation tree. * the mount is marked as 'shared and slave'. * (*) the mount continues to be a slave at the new location. * * if the source mount is a tree, the operations explained above is * applied to each mount in the tree. * Must be called without spinlocks held, since this function can sleep * in allocations. */ static int attach_recursive_mnt(struct mount *source_mnt, struct mount *dest_mnt, struct mountpoint *dest_mp, bool moving) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; HLIST_HEAD(tree_list); struct mnt_namespace *ns = dest_mnt->mnt_ns; struct mountpoint *smp; struct mount *child, *p; struct hlist_node *n; int err; /* Preallocate a mountpoint in case the new mounts need * to be tucked under other mounts. */ smp = get_mountpoint(source_mnt->mnt.mnt_root); if (IS_ERR(smp)) return PTR_ERR(smp); /* Is there space to add these mounts to the mount namespace? */ if (!moving) { err = count_mounts(ns, source_mnt); if (err) goto out; } if (IS_MNT_SHARED(dest_mnt)) { err = invent_group_ids(source_mnt, true); if (err) goto out; err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); lock_mount_hash(); if (err) goto out_cleanup_ids; for (p = source_mnt; p; p = next_mnt(p, source_mnt)) set_mnt_shared(p); } else { lock_mount_hash(); } if (moving) { unhash_mnt(source_mnt); attach_mnt(source_mnt, dest_mnt, dest_mp); touch_mnt_namespace(source_mnt->mnt_ns); } else { if (source_mnt->mnt_ns) { /* move from anon - the caller will destroy */ list_del_init(&source_mnt->mnt_ns->list); } mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); commit_tree(source_mnt); } hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { struct mount *q; hlist_del_init(&child->mnt_hash); q = __lookup_mnt(&child->mnt_parent->mnt, child->mnt_mountpoint); if (q) mnt_change_mountpoint(child, smp, q); /* Notice when we are propagating across user namespaces */ if (child->mnt_parent->mnt_ns->user_ns != user_ns) lock_mnt_tree(child); child->mnt.mnt_flags &= ~MNT_LOCKED; commit_tree(child); } put_mountpoint(smp); unlock_mount_hash(); return 0; out_cleanup_ids: while (!hlist_empty(&tree_list)) { child = hlist_entry(tree_list.first, struct mount, mnt_hash); child->mnt_parent->mnt_ns->pending_mounts = 0; umount_tree(child, UMOUNT_SYNC); } unlock_mount_hash(); cleanup_group_ids(source_mnt, NULL); out: ns->pending_mounts = 0; read_seqlock_excl(&mount_lock); put_mountpoint(smp); read_sequnlock_excl(&mount_lock); return err; } static struct mountpoint *lock_mount(struct path *path) { struct vfsmount *mnt; struct dentry *dentry = path->dentry; retry: inode_lock(dentry->d_inode); if (unlikely(cant_mount(dentry))) { inode_unlock(dentry->d_inode); return ERR_PTR(-ENOENT); } namespace_lock(); mnt = lookup_mnt(path); if (likely(!mnt)) { struct mountpoint *mp = get_mountpoint(dentry); if (IS_ERR(mp)) { namespace_unlock(); inode_unlock(dentry->d_inode); return mp; } return mp; } namespace_unlock(); inode_unlock(path->dentry->d_inode); path_put(path); path->mnt = mnt; dentry = path->dentry = dget(mnt->mnt_root); goto retry; } static void unlock_mount(struct mountpoint *where) { struct dentry *dentry = where->m_dentry; read_seqlock_excl(&mount_lock); put_mountpoint(where); read_sequnlock_excl(&mount_lock); namespace_unlock(); inode_unlock(dentry->d_inode); } static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) { if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) return -EINVAL; if (d_is_dir(mp->m_dentry) != d_is_dir(mnt->mnt.mnt_root)) return -ENOTDIR; return attach_recursive_mnt(mnt, p, mp, false); } /* * Sanity check the flags to change_mnt_propagation. */ static int flags_to_propagation_type(int ms_flags) { int type = ms_flags & ~(MS_REC | MS_SILENT); /* Fail if any non-propagation flags are set */ if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return 0; /* Only one propagation flag should be set */ if (!is_power_of_2(type)) return 0; return type; } /* * recursively change the type of the mountpoint. */ static int do_change_type(struct path *path, int ms_flags) { struct mount *m; struct mount *mnt = real_mount(path->mnt); int recurse = ms_flags & MS_REC; int type; int err = 0; if (path->dentry != path->mnt->mnt_root) return -EINVAL; type = flags_to_propagation_type(ms_flags); if (!type) return -EINVAL; namespace_lock(); if (type == MS_SHARED) { err = invent_group_ids(mnt, recurse); if (err) goto out_unlock; } lock_mount_hash(); for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) change_mnt_propagation(m, type); unlock_mount_hash(); out_unlock: namespace_unlock(); return err; } static struct mount *__do_loopback(struct path *old_path, int recurse) { struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); if (IS_MNT_UNBINDABLE(old)) return mnt; if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) return mnt; if (!recurse && has_locked_children(old, old_path->dentry)) return mnt; if (recurse) mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); else mnt = clone_mnt(old, old_path->dentry, 0); if (!IS_ERR(mnt)) mnt->mnt.mnt_flags &= ~MNT_LOCKED; return mnt; } /* * do loopback mount. */ static int do_loopback(struct path *path, const char *old_name, int recurse) { struct path old_path; struct mount *mnt = NULL, *parent; struct mountpoint *mp; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); if (err) return err; err = -EINVAL; if (mnt_ns_loop(old_path.dentry)) goto out; mp = lock_mount(path); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto out; } parent = real_mount(path->mnt); if (!check_mnt(parent)) goto out2; mnt = __do_loopback(&old_path, recurse); if (IS_ERR(mnt)) { err = PTR_ERR(mnt); goto out2; } err = graft_tree(mnt, parent, mp); if (err) { lock_mount_hash(); umount_tree(mnt, UMOUNT_SYNC); unlock_mount_hash(); } out2: unlock_mount(mp); out: path_put(&old_path); return err; } static struct file *open_detached_copy(struct path *path, bool recursive) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); struct mount *mnt, *p; struct file *file; if (IS_ERR(ns)) return ERR_CAST(ns); namespace_lock(); mnt = __do_loopback(path, recursive); if (IS_ERR(mnt)) { namespace_unlock(); free_mnt_ns(ns); return ERR_CAST(mnt); } lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt_ns = ns; ns->mounts++; } ns->root = mnt; list_add_tail(&ns->list, &mnt->mnt_list); mntget(&mnt->mnt); unlock_mount_hash(); namespace_unlock(); mntput(path->mnt); path->mnt = &mnt->mnt; file = dentry_open(path, O_PATH, current_cred()); if (IS_ERR(file)) dissolve_on_fput(path->mnt); else file->f_mode |= FMODE_NEED_UNMOUNT; return file; } SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) { struct file *file; struct path path; int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; bool detached = flags & OPEN_TREE_CLONE; int error; int fd; BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC)) return -EINVAL; if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) return -EINVAL; if (flags & AT_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (detached && !may_mount()) return -EPERM; fd = get_unused_fd_flags(flags & O_CLOEXEC); if (fd < 0) return fd; error = user_path_at(dfd, filename, lookup_flags, &path); if (unlikely(error)) { file = ERR_PTR(error); } else { if (detached) file = open_detached_copy(&path, flags & AT_RECURSIVE); else file = dentry_open(&path, O_PATH, current_cred()); path_put(&path); } if (IS_ERR(file)) { put_unused_fd(fd); return PTR_ERR(file); } fd_install(fd, file); return fd; } /* * Don't allow locked mount flags to be cleared. * * No locks need to be held here while testing the various MNT_LOCK * flags because those flags can never be cleared once they are set. */ static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) { unsigned int fl = mnt->mnt.mnt_flags; if ((fl & MNT_LOCK_READONLY) && !(mnt_flags & MNT_READONLY)) return false; if ((fl & MNT_LOCK_NODEV) && !(mnt_flags & MNT_NODEV)) return false; if ((fl & MNT_LOCK_NOSUID) && !(mnt_flags & MNT_NOSUID)) return false; if ((fl & MNT_LOCK_NOEXEC) && !(mnt_flags & MNT_NOEXEC)) return false; if ((fl & MNT_LOCK_ATIME) && ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) return false; return true; } static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) { bool readonly_request = (mnt_flags & MNT_READONLY); if (readonly_request == __mnt_is_readonly(&mnt->mnt)) return 0; if (readonly_request) return mnt_make_readonly(mnt); return __mnt_unmake_readonly(mnt); } /* * Update the user-settable attributes on a mount. The caller must hold * sb->s_umount for writing. */ static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) { lock_mount_hash(); mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); unlock_mount_hash(); } static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) { struct super_block *sb = mnt->mnt_sb; if (!__mnt_is_readonly(mnt) && (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { char *buf = (char *)__get_free_page(GFP_KERNEL); char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); struct tm tm; time64_to_tm(sb->s_time_max, 0, &tm); pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n", sb->s_type->name, is_mounted(mnt) ? "remounted" : "mounted", mntpath, tm.tm_year+1900, (unsigned long long)sb->s_time_max); free_page((unsigned long)buf); } } /* * Handle reconfiguration of the mountpoint only without alteration of the * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND * to mount(2). */ static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) { struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); int ret; if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != mnt->mnt.mnt_root) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; down_write(&sb->s_umount); ret = change_mount_ro_state(mnt, mnt_flags); if (ret == 0) set_mount_attributes(mnt, mnt_flags); up_write(&sb->s_umount); mnt_warn_timestamp_expiry(path, &mnt->mnt); return ret; } /* * change filesystem flags. dir should be a physical root of filesystem. * If you've mounted a non-root directory somewhere and want to do remount * on it - tough luck. */ static int do_remount(struct path *path, int ms_flags, int sb_flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); struct fs_context *fc; if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != path->mnt->mnt_root) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); if (IS_ERR(fc)) return PTR_ERR(fc); fc->oldapi = true; err = parse_monolithic_mount_data(fc, data); if (!err) { down_write(&sb->s_umount); err = -EPERM; if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { err = reconfigure_super(fc); if (!err) set_mount_attributes(mnt, mnt_flags); } up_write(&sb->s_umount); } mnt_warn_timestamp_expiry(path, &mnt->mnt); put_fs_context(fc); return err; } static inline int tree_contains_unbindable(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { if (IS_MNT_UNBINDABLE(p)) return 1; } return 0; } /* * Check that there aren't references to earlier/same mount namespaces in the * specified subtree. Such references can act as pins for mount namespaces * that aren't checked by the mount-cycle checking code, thereby allowing * cycles to be made. */ static bool check_for_nsfs_mounts(struct mount *subtree) { struct mount *p; bool ret = false; lock_mount_hash(); for (p = subtree; p; p = next_mnt(p, subtree)) if (mnt_ns_loop(p->mnt.mnt_root)) goto out; ret = true; out: unlock_mount_hash(); return ret; } static int do_move_mount(struct path *old_path, struct path *new_path) { struct mnt_namespace *ns; struct mount *p; struct mount *old; struct mount *parent; struct mountpoint *mp, *old_mp; int err; bool attached; mp = lock_mount(new_path); if (IS_ERR(mp)) return PTR_ERR(mp); old = real_mount(old_path->mnt); p = real_mount(new_path->mnt); parent = old->mnt_parent; attached = mnt_has_parent(old); old_mp = old->mnt_mp; ns = old->mnt_ns; err = -EINVAL; /* The mountpoint must be in our namespace. */ if (!check_mnt(p)) goto out; /* The thing moved must be mounted... */ if (!is_mounted(&old->mnt)) goto out; /* ... and either ours or the root of anon namespace */ if (!(attached ? check_mnt(old) : is_anon_ns(ns))) goto out; if (old->mnt.mnt_flags & MNT_LOCKED) goto out; if (old_path->dentry != old_path->mnt->mnt_root) goto out; if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry)) goto out; /* * Don't move a mount residing in a shared parent. */ if (attached && IS_MNT_SHARED(parent)) goto out; /* * Don't move a mount tree containing unbindable mounts to a destination * mount which is shared. */ if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) goto out; err = -ELOOP; if (!check_for_nsfs_mounts(old)) goto out; for (; mnt_has_parent(p); p = p->mnt_parent) if (p == old) goto out; err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, attached); if (err) goto out; /* if the mount is moved, it should no longer be expire * automatically */ list_del_init(&old->mnt_expire); if (attached) put_mountpoint(old_mp); out: unlock_mount(mp); if (!err) { if (attached) mntput_no_expire(parent); else free_mnt_ns(ns); } return err; } static int do_move_mount_old(struct path *path, const char *old_name) { struct path old_path; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); if (err) return err; err = do_move_mount(&old_path, path); path_put(&old_path); return err; } /* * add a mount into a namespace's mount tree */ static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, struct path *path, int mnt_flags) { struct mount *parent = real_mount(path->mnt); mnt_flags &= ~MNT_INTERNAL_FLAGS; if (unlikely(!check_mnt(parent))) { /* that's acceptable only for automounts done in private ns */ if (!(mnt_flags & MNT_SHRINKABLE)) return -EINVAL; /* ... and for those we'd better have mountpoint still alive */ if (!parent->mnt_ns) return -EINVAL; } /* Refuse the same filesystem on the same mount point */ if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path->mnt->mnt_root == path->dentry) return -EBUSY; if (d_is_symlink(newmnt->mnt.mnt_root)) return -EINVAL; newmnt->mnt.mnt_flags = mnt_flags; return graft_tree(newmnt, parent, mp); } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); /* * Create a new mount using a superblock configuration and request it * be added to the namespace tree. */ static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, unsigned int mnt_flags) { struct vfsmount *mnt; struct mountpoint *mp; struct super_block *sb = fc->root->d_sb; int error; error = security_sb_kern_mount(sb); if (!error && mount_too_revealing(sb, &mnt_flags)) error = -EPERM; if (unlikely(error)) { fc_drop_locked(fc); return error; } up_write(&sb->s_umount); mnt = vfs_create_mount(fc); if (IS_ERR(mnt)) return PTR_ERR(mnt); mnt_warn_timestamp_expiry(mountpoint, mnt); mp = lock_mount(mountpoint); if (IS_ERR(mp)) { mntput(mnt); return PTR_ERR(mp); } error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); unlock_mount(mp); if (error < 0) mntput(mnt); return error; } /* * create a new mount for userspace and request it to be added into the * namespace's tree */ static int do_new_mount(struct path *path, const char *fstype, int sb_flags, int mnt_flags, const char *name, void *data) { struct file_system_type *type; struct fs_context *fc; const char *subtype = NULL; int err = 0; if (!fstype) return -EINVAL; type = get_fs_type(fstype); if (!type) return -ENODEV; if (type->fs_flags & FS_HAS_SUBTYPE) { subtype = strchr(fstype, '.'); if (subtype) { subtype++; if (!*subtype) { put_filesystem(type); return -EINVAL; } } } fc = fs_context_for_mount(type, sb_flags); put_filesystem(type); if (IS_ERR(fc)) return PTR_ERR(fc); if (subtype) err = vfs_parse_fs_string(fc, "subtype", subtype, strlen(subtype)); if (!err && name) err = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!err) err = parse_monolithic_mount_data(fc, data); if (!err && !mount_capable(fc)) err = -EPERM; if (!err) err = vfs_get_tree(fc); if (!err) err = do_new_mount_fc(fc, path, mnt_flags); put_fs_context(fc); return err; } int finish_automount(struct vfsmount *m, struct path *path) { struct dentry *dentry = path->dentry; struct mountpoint *mp; struct mount *mnt; int err; if (!m) return 0; if (IS_ERR(m)) return PTR_ERR(m); mnt = real_mount(m); /* The new mount record should have at least 2 refs to prevent it being * expired before we get a chance to add it */ BUG_ON(mnt_get_count(mnt) < 2); if (m->mnt_sb == path->mnt->mnt_sb && m->mnt_root == dentry) { err = -ELOOP; goto discard; } /* * we don't want to use lock_mount() - in this case finding something * that overmounts our mountpoint to be means "quitely drop what we've * got", not "try to mount it on top". */ inode_lock(dentry->d_inode); namespace_lock(); if (unlikely(cant_mount(dentry))) { err = -ENOENT; goto discard_locked; } rcu_read_lock(); if (unlikely(__lookup_mnt(path->mnt, dentry))) { rcu_read_unlock(); err = 0; goto discard_locked; } rcu_read_unlock(); mp = get_mountpoint(dentry); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto discard_locked; } err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); unlock_mount(mp); if (unlikely(err)) goto discard; mntput(m); return 0; discard_locked: namespace_unlock(); inode_unlock(dentry->d_inode); discard: /* remove m from any expiration list it may be on */ if (!list_empty(&mnt->mnt_expire)) { namespace_lock(); list_del_init(&mnt->mnt_expire); namespace_unlock(); } mntput(m); mntput(m); return err; } /** * mnt_set_expiry - Put a mount on an expiration list * @mnt: The mount to list. * @expiry_list: The list to add the mount to. */ void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) { namespace_lock(); list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); namespace_unlock(); } EXPORT_SYMBOL(mnt_set_expiry); /* * process a list of expirable mountpoints with the intent of discarding any * mountpoints that aren't in use and haven't been touched since last we came * here */ void mark_mounts_for_expiry(struct list_head *mounts) { struct mount *mnt, *next; LIST_HEAD(graveyard); if (list_empty(mounts)) return; namespace_lock(); lock_mount_hash(); /* extract from the expiration list every vfsmount that matches the * following criteria: * - only referenced by its parent vfsmount * - still marked for expiry (marked on the last call here; marks are * cleared by mntput()) */ list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { if (!xchg(&mnt->mnt_expiry_mark, 1) || propagate_mount_busy(mnt, 1)) continue; list_move(&mnt->mnt_expire, &graveyard); } while (!list_empty(&graveyard)) { mnt = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(mnt->mnt_ns); umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); } unlock_mount_hash(); namespace_unlock(); } EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); /* * Ripoff of 'select_parent()' * * search the list of submounts for a given mountpoint, and move any * shrinkable submounts to the 'graveyard' list. */ static int select_submounts(struct mount *parent, struct list_head *graveyard) { struct mount *this_parent = parent; struct list_head *next; int found = 0; repeat: next = this_parent->mnt_mounts.next; resume: while (next != &this_parent->mnt_mounts) { struct list_head *tmp = next; struct mount *mnt = list_entry(tmp, struct mount, mnt_child); next = tmp->next; if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) continue; /* * Descend a level if the d_mounts list is non-empty. */ if (!list_empty(&mnt->mnt_mounts)) { this_parent = mnt; goto repeat; } if (!propagate_mount_busy(mnt, 1)) { list_move_tail(&mnt->mnt_expire, graveyard); found++; } } /* * All done at this level ... ascend and resume the search */ if (this_parent != parent) { next = this_parent->mnt_child.next; this_parent = this_parent->mnt_parent; goto resume; } return found; } /* * process a list of expirable mountpoints with the intent of discarding any * submounts of a specific parent mountpoint * * mount_lock must be held for write */ static void shrink_submounts(struct mount *mnt) { LIST_HEAD(graveyard); struct mount *m; /* extract submounts of 'mountpoint' from the expiration list */ while (select_submounts(mnt, &graveyard)) { while (!list_empty(&graveyard)) { m = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(m->mnt_ns); umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); } } } static void *copy_mount_options(const void __user * data) { char *copy; unsigned left, offset; if (!data) return NULL; copy = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!copy) return ERR_PTR(-ENOMEM); left = copy_from_user(copy, data, PAGE_SIZE); /* * Not all architectures have an exact copy_from_user(). Resort to * byte at a time. */ offset = PAGE_SIZE - left; while (left) { char c; if (get_user(c, (const char __user *)data + offset)) break; copy[offset] = c; left--; offset++; } if (left == PAGE_SIZE) { kfree(copy); return ERR_PTR(-EFAULT); } return copy; } static char *copy_mount_string(const void __user *data) { return data ? strndup_user(data, PATH_MAX) : NULL; } /* * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to * be given to the mount() call (ie: read-only, no-dev, no-suid etc). * * data is a (void *) that can point to any structure up to * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent * information (or be NULL). * * Pre-0.97 versions of mount() didn't have a flags word. * When the flags word was introduced its top half was required * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. * Therefore, if this magic number is present, it carries no information * and must be discarded. */ int path_mount(const char *dev_name, struct path *path, const char *type_page, unsigned long flags, void *data_page) { unsigned int mnt_flags = 0, sb_flags; int ret; /* Discard magic */ if ((flags & MS_MGC_MSK) == MS_MGC_VAL) flags &= ~MS_MGC_MSK; /* Basic sanity checks */ if (data_page) ((char *)data_page)[PAGE_SIZE - 1] = 0; if (flags & MS_NOUSER) return -EINVAL; ret = security_sb_mount(dev_name, path, type_page, flags, data_page); if (ret) return ret; if (!may_mount()) return -EPERM; if ((flags & SB_MANDLOCK) && !may_mandlock()) return -EPERM; /* Default to relatime unless overriden */ if (!(flags & MS_NOATIME)) mnt_flags |= MNT_RELATIME; /* Separate the per-mountpoint flags */ if (flags & MS_NOSUID) mnt_flags |= MNT_NOSUID; if (flags & MS_NODEV) mnt_flags |= MNT_NODEV; if (flags & MS_NOEXEC) mnt_flags |= MNT_NOEXEC; if (flags & MS_NOATIME) mnt_flags |= MNT_NOATIME; if (flags & MS_NODIRATIME) mnt_flags |= MNT_NODIRATIME; if (flags & MS_STRICTATIME) mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); if (flags & MS_RDONLY) mnt_flags |= MNT_READONLY; if (flags & MS_NOSYMFOLLOW) mnt_flags |= MNT_NOSYMFOLLOW; /* The default atime for remount is preservation */ if ((flags & MS_REMOUNT) && ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | MS_STRICTATIME)) == 0)) { mnt_flags &= ~MNT_ATIME_MASK; mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; } sb_flags = flags & (SB_RDONLY | SB_SYNCHRONOUS | SB_MANDLOCK | SB_DIRSYNC | SB_SILENT | SB_POSIXACL | SB_LAZYTIME | SB_I_VERSION); if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) return do_reconfigure_mnt(path, mnt_flags); if (flags & MS_REMOUNT) return do_remount(path, flags, sb_flags, mnt_flags, data_page); if (flags & MS_BIND) return do_loopback(path, dev_name, flags & MS_REC); if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return do_change_type(path, flags); if (flags & MS_MOVE) return do_move_mount_old(path, dev_name); return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, data_page); } long do_mount(const char *dev_name, const char __user *dir_name, const char *type_page, unsigned long flags, void *data_page) { struct path path; int ret; ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); if (ret) return ret; ret = path_mount(dev_name, &path, type_page, flags, data_page); path_put(&path); return ret; } static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); } static void dec_mnt_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); } static void free_mnt_ns(struct mnt_namespace *ns) { if (!is_anon_ns(ns)) ns_free_inum(&ns->ns); dec_mnt_namespaces(ns->ucounts); put_user_ns(ns->user_ns); kfree(ns); } /* * Assign a sequence number so we can detect when we attempt to bind * mount a reference to an older mount namespace into the current * mount namespace, preventing reference counting loops. A 64bit * number incrementing at 10Ghz will take 12,427 years to wrap which * is effectively never, so we can ignore the possibility. */ static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) { struct mnt_namespace *new_ns; struct ucounts *ucounts; int ret; ucounts = inc_mnt_namespaces(user_ns); if (!ucounts) return ERR_PTR(-ENOSPC); new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL); if (!new_ns) { dec_mnt_namespaces(ucounts); return ERR_PTR(-ENOMEM); } if (!anon) { ret = ns_alloc_inum(&new_ns->ns); if (ret) { kfree(new_ns); dec_mnt_namespaces(ucounts); return ERR_PTR(ret); } } new_ns->ns.ops = &mntns_operations; if (!anon) new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); atomic_set(&new_ns->count, 1); INIT_LIST_HEAD(&new_ns->list); init_waitqueue_head(&new_ns->poll); spin_lock_init(&new_ns->ns_lock); new_ns->user_ns = get_user_ns(user_ns); new_ns->ucounts = ucounts; return new_ns; } __latent_entropy struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, struct user_namespace *user_ns, struct fs_struct *new_fs) { struct mnt_namespace *new_ns; struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; struct mount *p, *q; struct mount *old; struct mount *new; int copy_flags; BUG_ON(!ns); if (likely(!(flags & CLONE_NEWNS))) { get_mnt_ns(ns); return ns; } old = ns->root; new_ns = alloc_mnt_ns(user_ns, false); if (IS_ERR(new_ns)) return new_ns; namespace_lock(); /* First pass: copy the tree topology */ copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; if (user_ns != ns->user_ns) copy_flags |= CL_SHARED_TO_SLAVE; new = copy_tree(old, old->mnt.mnt_root, copy_flags); if (IS_ERR(new)) { namespace_unlock(); free_mnt_ns(new_ns); return ERR_CAST(new); } if (user_ns != ns->user_ns) { lock_mount_hash(); lock_mnt_tree(new); unlock_mount_hash(); } new_ns->root = new; list_add_tail(&new_ns->list, &new->mnt_list); /* * Second pass: switch the tsk->fs->* elements and mark new vfsmounts * as belonging to new namespace. We have already acquired a private * fs_struct, so tsk->fs->lock is not needed. */ p = old; q = new; while (p) { q->mnt_ns = new_ns; new_ns->mounts++; if (new_fs) { if (&p->mnt == new_fs->root.mnt) { new_fs->root.mnt = mntget(&q->mnt); rootmnt = &p->mnt; } if (&p->mnt == new_fs->pwd.mnt) { new_fs->pwd.mnt = mntget(&q->mnt); pwdmnt = &p->mnt; } } p = next_mnt(p, old); q = next_mnt(q, new); if (!q) break; while (p->mnt.mnt_root != q->mnt.mnt_root) p = next_mnt(p, old); } namespace_unlock(); if (rootmnt) mntput(rootmnt); if (pwdmnt) mntput(pwdmnt); return new_ns; } struct dentry *mount_subtree(struct vfsmount *m, const char *name) { struct mount *mnt = real_mount(m); struct mnt_namespace *ns; struct super_block *s; struct path path; int err; ns = alloc_mnt_ns(&init_user_ns, true); if (IS_ERR(ns)) { mntput(m); return ERR_CAST(ns); } mnt->mnt_ns = ns; ns->root = mnt; ns->mounts++; list_add(&mnt->mnt_list, &ns->list); err = vfs_path_lookup(m->mnt_root, m, name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); put_mnt_ns(ns); if (err) return ERR_PTR(err); /* trade a vfsmount reference for active sb one */ s = path.mnt->mnt_sb; atomic_inc(&s->s_active); mntput(path.mnt); /* lock the sucker */ down_write(&s->s_umount); /* ... and return the root of (sub)tree on it */ return path.dentry; } EXPORT_SYMBOL(mount_subtree); SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, char __user *, type, unsigned long, flags, void __user *, data) { int ret; char *kernel_type; char *kernel_dev; void *options; kernel_type = copy_mount_string(type); ret = PTR_ERR(kernel_type); if (IS_ERR(kernel_type)) goto out_type; kernel_dev = copy_mount_string(dev_name); ret = PTR_ERR(kernel_dev); if (IS_ERR(kernel_dev)) goto out_dev; options = copy_mount_options(data); ret = PTR_ERR(options); if (IS_ERR(options)) goto out_data; ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); kfree(options); out_data: kfree(kernel_dev); out_dev: kfree(kernel_type); out_type: return ret; } /* * Create a kernel mount representation for a new, prepared superblock * (specified by fs_fd) and attach to an open_tree-like file descriptor. */ SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, unsigned int, attr_flags) { struct mnt_namespace *ns; struct fs_context *fc; struct file *file; struct path newmount; struct mount *mnt; struct fd f; unsigned int mnt_flags = 0; long ret; if (!may_mount()) return -EPERM; if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) return -EINVAL; if (attr_flags & ~(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)) return -EINVAL; if (attr_flags & MOUNT_ATTR_RDONLY) mnt_flags |= MNT_READONLY; if (attr_flags & MOUNT_ATTR_NOSUID) mnt_flags |= MNT_NOSUID; if (attr_flags & MOUNT_ATTR_NODEV) mnt_flags |= MNT_NODEV; if (attr_flags & MOUNT_ATTR_NOEXEC) mnt_flags |= MNT_NOEXEC; if (attr_flags & MOUNT_ATTR_NODIRATIME) mnt_flags |= MNT_NODIRATIME; switch (attr_flags & MOUNT_ATTR__ATIME) { case MOUNT_ATTR_STRICTATIME: break; case MOUNT_ATTR_NOATIME: mnt_flags |= MNT_NOATIME; break; case MOUNT_ATTR_RELATIME: mnt_flags |= MNT_RELATIME; break; default: return -EINVAL; } f = fdget(fs_fd); if (!f.file) return -EBADF; ret = -EINVAL; if (f.file->f_op != &fscontext_fops) goto err_fsfd; fc = f.file->private_data; ret = mutex_lock_interruptible(&fc->uapi_mutex); if (ret < 0) goto err_fsfd; /* There must be a valid superblock or we can't mount it */ ret = -EINVAL; if (!fc->root) goto err_unlock; ret = -EPERM; if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { pr_warn("VFS: Mount too revealing\n"); goto err_unlock; } ret = -EBUSY; if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) goto err_unlock; ret = -EPERM; if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock()) goto err_unlock; newmount.mnt = vfs_create_mount(fc); if (IS_ERR(newmount.mnt)) { ret = PTR_ERR(newmount.mnt); goto err_unlock; } newmount.dentry = dget(fc->root); newmount.mnt->mnt_flags = mnt_flags; /* We've done the mount bit - now move the file context into more or * less the same state as if we'd done an fspick(). We don't want to * do any memory allocation or anything like that at this point as we * don't want to have to handle any errors incurred. */ vfs_clean_context(fc); ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); if (IS_ERR(ns)) { ret = PTR_ERR(ns); goto err_path; } mnt = real_mount(newmount.mnt); mnt->mnt_ns = ns; ns->root = mnt; ns->mounts = 1; list_add(&mnt->mnt_list, &ns->list); mntget(newmount.mnt); /* Attach to an apparent O_PATH fd with a note that we need to unmount * it, not just simply put it. */ file = dentry_open(&newmount, O_PATH, fc->cred); if (IS_ERR(file)) { dissolve_on_fput(newmount.mnt); ret = PTR_ERR(file); goto err_path; } file->f_mode |= FMODE_NEED_UNMOUNT; ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); if (ret >= 0) fd_install(ret, file); else fput(file); err_path: path_put(&newmount); err_unlock: mutex_unlock(&fc->uapi_mutex); err_fsfd: fdput(f); return ret; } /* * Move a mount from one place to another. In combination with * fsopen()/fsmount() this is used to install a new mount and in combination * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy * a mount subtree. * * Note the flags value is a combination of MOVE_MOUNT_* flags. */ SYSCALL_DEFINE5(move_mount, int, from_dfd, const char __user *, from_pathname, int, to_dfd, const char __user *, to_pathname, unsigned int, flags) { struct path from_path, to_path; unsigned int lflags; int ret = 0; if (!may_mount()) return -EPERM; if (flags & ~MOVE_MOUNT__MASK) return -EINVAL; /* If someone gives a pathname, they aren't permitted to move * from an fd that requires unmount as we can't get at the flag * to clear it afterwards. */ lflags = 0; if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); if (ret < 0) return ret; lflags = 0; if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); if (ret < 0) goto out_from; ret = security_move_mount(&from_path, &to_path); if (ret < 0) goto out_to; ret = do_move_mount(&from_path, &to_path); out_to: path_put(&to_path); out_from: path_put(&from_path); return ret; } /* * Return true if path is reachable from root * * namespace_sem or mount_lock is held */ bool is_path_reachable(struct mount *mnt, struct dentry *dentry, const struct path *root) { while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { dentry = mnt->mnt_mountpoint; mnt = mnt->mnt_parent; } return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); } bool path_is_under(const struct path *path1, const struct path *path2) { bool res; read_seqlock_excl(&mount_lock); res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); read_sequnlock_excl(&mount_lock); return res; } EXPORT_SYMBOL(path_is_under); /* * pivot_root Semantics: * Moves the root file system of the current process to the directory put_old, * makes new_root as the new root file system of the current process, and sets * root/cwd of all processes which had them on the current root to new_root. * * Restrictions: * The new_root and put_old must be directories, and must not be on the * same file system as the current process root. The put_old must be * underneath new_root, i.e. adding a non-zero number of /.. to the string * pointed to by put_old must yield the same directory as new_root. No other * file system may be mounted on put_old. After all, new_root is a mountpoint. * * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives * in this situation. * * Notes: * - we don't move root/cwd if they are not at the root (reason: if something * cared enough to change them, it's probably wrong to force them elsewhere) * - it's okay to pick a root that isn't the root of a file system, e.g. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root * first. */ SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, const char __user *, put_old) { struct path new, old, root; struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; struct mountpoint *old_mp, *root_mp; int error; if (!may_mount()) return -EPERM; error = user_path_at(AT_FDCWD, new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); if (error) goto out0; error = user_path_at(AT_FDCWD, put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); if (error) goto out1; error = security_sb_pivotroot(&old, &new); if (error) goto out2; get_fs_root(current->fs, &root); old_mp = lock_mount(&old); error = PTR_ERR(old_mp); if (IS_ERR(old_mp)) goto out3; error = -EINVAL; new_mnt = real_mount(new.mnt); root_mnt = real_mount(root.mnt); old_mnt = real_mount(old.mnt); ex_parent = new_mnt->mnt_parent; root_parent = root_mnt->mnt_parent; if (IS_MNT_SHARED(old_mnt) || IS_MNT_SHARED(ex_parent) || IS_MNT_SHARED(root_parent)) goto out4; if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) goto out4; if (new_mnt->mnt.mnt_flags & MNT_LOCKED) goto out4; error = -ENOENT; if (d_unlinked(new.dentry)) goto out4; error = -EBUSY; if (new_mnt == root_mnt || old_mnt == root_mnt) goto out4; /* loop, on the same file system */ error = -EINVAL; if (root.mnt->mnt_root != root.dentry) goto out4; /* not a mountpoint */ if (!mnt_has_parent(root_mnt)) goto out4; /* not attached */ if (new.mnt->mnt_root != new.dentry) goto out4; /* not a mountpoint */ if (!mnt_has_parent(new_mnt)) goto out4; /* not attached */ /* make sure we can reach put_old from new_root */ if (!is_path_reachable(old_mnt, old.dentry, &new)) goto out4; /* make certain new is below the root */ if (!is_path_reachable(new_mnt, new.dentry, &root)) goto out4; lock_mount_hash(); umount_mnt(new_mnt); root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { new_mnt->mnt.mnt_flags |= MNT_LOCKED; root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; } /* mount old root on put_old */ attach_mnt(root_mnt, old_mnt, old_mp); /* mount new_root on / */ attach_mnt(new_mnt, root_parent, root_mp); mnt_add_count(root_parent, -1); touch_mnt_namespace(current->nsproxy->mnt_ns); /* A moved mount should not expire automatically */ list_del_init(&new_mnt->mnt_expire); put_mountpoint(root_mp); unlock_mount_hash(); chroot_fs_refs(&root, &new); error = 0; out4: unlock_mount(old_mp); if (!error) mntput_no_expire(ex_parent); out3: path_put(&root); out2: path_put(&old); out1: path_put(&new); out0: return error; } static void __init init_mount_tree(void) { struct vfsmount *mnt; struct mount *m; struct mnt_namespace *ns; struct path root; mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); if (IS_ERR(mnt)) panic("Can't create rootfs"); ns = alloc_mnt_ns(&init_user_ns, false); if (IS_ERR(ns)) panic("Can't allocate initial namespace"); m = real_mount(mnt); m->mnt_ns = ns; ns->root = m; ns->mounts = 1; list_add(&m->mnt_list, &ns->list); init_task.nsproxy->mnt_ns = ns; get_mnt_ns(ns); root.mnt = mnt; root.dentry = mnt->mnt_root; mnt->mnt_flags |= MNT_LOCKED; set_fs_pwd(current->fs, &root); set_fs_root(current->fs, &root); } void __init mnt_init(void) { int err; mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); mount_hashtable = alloc_large_system_hash("Mount-cache", sizeof(struct hlist_head), mhash_entries, 19, HASH_ZERO, &m_hash_shift, &m_hash_mask, 0, 0); mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", sizeof(struct hlist_head), mphash_entries, 19, HASH_ZERO, &mp_hash_shift, &mp_hash_mask, 0, 0); if (!mount_hashtable || !mountpoint_hashtable) panic("Failed to allocate mount hash table\n"); kernfs_init(); err = sysfs_init(); if (err) printk(KERN_WARNING "%s: sysfs_init error: %d\n", __func__, err); fs_kobj = kobject_create_and_add("fs", NULL); if (!fs_kobj) printk(KERN_WARNING "%s: kobj create error\n", __func__); shmem_init(); init_rootfs(); init_mount_tree(); } void put_mnt_ns(struct mnt_namespace *ns) { if (!atomic_dec_and_test(&ns->count)) return; drop_collected_mounts(&ns->root->mnt); free_mnt_ns(ns); } struct vfsmount *kern_mount(struct file_system_type *type) { struct vfsmount *mnt; mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); if (!IS_ERR(mnt)) { /* * it is a longterm mount, don't release mnt until * we unmount before file sys is unregistered */ real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; } return mnt; } EXPORT_SYMBOL_GPL(kern_mount); void kern_unmount(struct vfsmount *mnt) { /* release long term mount so mount point can be released */ if (!IS_ERR_OR_NULL(mnt)) { real_mount(mnt)->mnt_ns = NULL; synchronize_rcu(); /* yecchhh... */ mntput(mnt); } } EXPORT_SYMBOL(kern_unmount); void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) { unsigned int i; for (i = 0; i < num; i++) if (mnt[i]) real_mount(mnt[i])->mnt_ns = NULL; synchronize_rcu_expedited(); for (i = 0; i < num; i++) mntput(mnt[i]); } EXPORT_SYMBOL(kern_unmount_array); bool our_mnt(struct vfsmount *mnt) { return check_mnt(real_mount(mnt)); } bool current_chrooted(void) { /* Does the current process have a non-standard root */ struct path ns_root; struct path fs_root; bool chrooted; /* Find the namespace root */ ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt; ns_root.dentry = ns_root.mnt->mnt_root; path_get(&ns_root); while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) ; get_fs_root(current->fs, &fs_root); chrooted = !path_equal(&fs_root, &ns_root); path_put(&fs_root); path_put(&ns_root); return chrooted; } static bool mnt_already_visible(struct mnt_namespace *ns, const struct super_block *sb, int *new_mnt_flags) { int new_flags = *new_mnt_flags; struct mount *mnt; bool visible = false; down_read(&namespace_sem); lock_ns_list(ns); list_for_each_entry(mnt, &ns->list, mnt_list) { struct mount *child; int mnt_flags; if (mnt_is_cursor(mnt)) continue; if (mnt->mnt.mnt_sb->s_type != sb->s_type) continue; /* This mount is not fully visible if it's root directory * is not the root directory of the filesystem. */ if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) continue; /* A local view of the mount flags */ mnt_flags = mnt->mnt.mnt_flags; /* Don't miss readonly hidden in the superblock flags */ if (sb_rdonly(mnt->mnt.mnt_sb)) mnt_flags |= MNT_LOCK_READONLY; /* Verify the mount flags are equal to or more permissive * than the proposed new mount. */ if ((mnt_flags & MNT_LOCK_READONLY) && !(new_flags & MNT_READONLY)) continue; if ((mnt_flags & MNT_LOCK_ATIME) && ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) continue; /* This mount is not fully visible if there are any * locked child mounts that cover anything except for * empty directories. */ list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { struct inode *inode = child->mnt_mountpoint->d_inode; /* Only worry about locked mounts */ if (!(child->mnt.mnt_flags & MNT_LOCKED)) continue; /* Is the directory permanetly empty? */ if (!is_empty_dir_inode(inode)) goto next; } /* Preserve the locked attributes */ *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ MNT_LOCK_ATIME); visible = true; goto found; next: ; } found: unlock_ns_list(ns); up_read(&namespace_sem); return visible; } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) { const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; struct mnt_namespace *ns = current->nsproxy->mnt_ns; unsigned long s_iflags; if (ns->user_ns == &init_user_ns) return false; /* Can this filesystem be too revealing? */ s_iflags = sb->s_iflags; if (!(s_iflags & SB_I_USERNS_VISIBLE)) return false; if ((s_iflags & required_iflags) != required_iflags) { WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", required_iflags); return true; } return !mnt_already_visible(ns, sb, new_mnt_flags); } bool mnt_may_suid(struct vfsmount *mnt) { /* * Foreign mounts (accessed via fchdir or through /proc * symlinks) are always treated as if they are nosuid. This * prevents namespaces from trusting potentially unsafe * suid/sgid bits, file caps, or security labels that originate * in other namespaces. */ return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && current_in_userns(mnt->mnt_sb->s_user_ns); } static struct ns_common *mntns_get(struct task_struct *task) { struct ns_common *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = &nsproxy->mnt_ns->ns; get_mnt_ns(to_mnt_ns(ns)); } task_unlock(task); return ns; } static void mntns_put(struct ns_common *ns) { put_mnt_ns(to_mnt_ns(ns)); } static int mntns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct fs_struct *fs = nsset->fs; struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; struct user_namespace *user_ns = nsset->cred->user_ns; struct path root; int err; if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(user_ns, CAP_SYS_CHROOT) || !ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; if (is_anon_ns(mnt_ns)) return -EINVAL; if (fs->users != 1) return -EINVAL; get_mnt_ns(mnt_ns); old_mnt_ns = nsproxy->mnt_ns; nsproxy->mnt_ns = mnt_ns; /* Find the root */ err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, "/", LOOKUP_DOWN, &root); if (err) { /* revert to old namespace */ nsproxy->mnt_ns = old_mnt_ns; put_mnt_ns(mnt_ns); return err; } put_mnt_ns(old_mnt_ns); /* Update the pwd and root */ set_fs_pwd(fs, &root); set_fs_root(fs, &root); path_put(&root); return 0; } static struct user_namespace *mntns_owner(struct ns_common *ns) { return to_mnt_ns(ns)->user_ns; } const struct proc_ns_operations mntns_operations = { .name = "mnt", .type = CLONE_NEWNS, .get = mntns_get, .put = mntns_put, .install = mntns_install, .owner = mntns_owner, };
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FAT_H #define _FAT_H #include <linux/buffer_head.h> #include <linux/nls.h> #include <linux/hash.h> #include <linux/ratelimit.h> #include <linux/msdos_fs.h> /* * vfat shortname flags */ #define VFAT_SFN_DISPLAY_LOWER 0x0001 /* convert to lowercase for display */ #define VFAT_SFN_DISPLAY_WIN95 0x0002 /* emulate win95 rule for display */ #define VFAT_SFN_DISPLAY_WINNT 0x0004 /* emulate winnt rule for display */ #define VFAT_SFN_CREATE_WIN95 0x0100 /* emulate win95 rule for create */ #define VFAT_SFN_CREATE_WINNT 0x0200 /* emulate winnt rule for create */ #define FAT_ERRORS_CONT 1 /* ignore error and continue */ #define FAT_ERRORS_PANIC 2 /* panic on error */ #define FAT_ERRORS_RO 3 /* remount r/o on error */ #define FAT_NFS_STALE_RW 1 /* NFS RW support, can cause ESTALE */ #define FAT_NFS_NOSTALE_RO 2 /* NFS RO support, no ESTALE issue */ struct fat_mount_options { kuid_t fs_uid; kgid_t fs_gid; unsigned short fs_fmask; unsigned short fs_dmask; unsigned short codepage; /* Codepage for shortname conversions */ int time_offset; /* Offset of timestamps from UTC (in minutes) */ char *iocharset; /* Charset used for filename input/display */ unsigned short shortname; /* flags for shortname display/create rule */ unsigned char name_check; /* r = relaxed, n = normal, s = strict */ unsigned char errors; /* On error: continue, panic, remount-ro */ unsigned char nfs; /* NFS support: nostale_ro, stale_rw */ unsigned short allow_utime;/* permission for setting the [am]time */ unsigned quiet:1, /* set = fake successful chmods and chowns */ showexec:1, /* set = only set x bit for com/exe/bat */ sys_immutable:1, /* set = system files are immutable */ dotsOK:1, /* set = hidden and system files are named '.filename' */ isvfat:1, /* 0=no vfat long filename support, 1=vfat support */ utf8:1, /* Use of UTF-8 character set (Default) */ unicode_xlate:1, /* create escape sequences for unhandled Unicode */ numtail:1, /* Does first alias have a numeric '~1' type tail? */ flush:1, /* write things quickly */ nocase:1, /* Does this need case conversion? 0=need case conversion*/ usefree:1, /* Use free_clusters for FAT32 */ tz_set:1, /* Filesystem timestamps' offset set */ rodir:1, /* allow ATTR_RO for directory */ discard:1, /* Issue discard requests on deletions */ dos1xfloppy:1; /* Assume default BPB for DOS 1.x floppies */ }; #define FAT_HASH_BITS 8 #define FAT_HASH_SIZE (1UL << FAT_HASH_BITS) /* * MS-DOS file system in-core superblock data */ struct msdos_sb_info { unsigned short sec_per_clus; /* sectors/cluster */ unsigned short cluster_bits; /* log2(cluster_size) */ unsigned int cluster_size; /* cluster size */ unsigned char fats, fat_bits; /* number of FATs, FAT bits (12,16 or 32) */ unsigned short fat_start; unsigned long fat_length; /* FAT start & length (sec.) */ unsigned long dir_start; unsigned short dir_entries; /* root dir start & entries */ unsigned long data_start; /* first data sector */ unsigned long max_cluster; /* maximum cluster number */ unsigned long root_cluster; /* first cluster of the root directory */ unsigned long fsinfo_sector; /* sector number of FAT32 fsinfo */ struct mutex fat_lock; struct mutex nfs_build_inode_lock; struct mutex s_lock; unsigned int prev_free; /* previously allocated cluster number */ unsigned int free_clusters; /* -1 if undefined */ unsigned int free_clus_valid; /* is free_clusters valid? */ struct fat_mount_options options; struct nls_table *nls_disk; /* Codepage used on disk */ struct nls_table *nls_io; /* Charset used for input and display */ const void *dir_ops; /* Opaque; default directory operations */ int dir_per_block; /* dir entries per block */ int dir_per_block_bits; /* log2(dir_per_block) */ unsigned int vol_id; /*volume ID*/ int fatent_shift; const struct fatent_operations *fatent_ops; struct inode *fat_inode; struct inode *fsinfo_inode; struct ratelimit_state ratelimit; spinlock_t inode_hash_lock; struct hlist_head inode_hashtable[FAT_HASH_SIZE]; spinlock_t dir_hash_lock; struct hlist_head dir_hashtable[FAT_HASH_SIZE]; unsigned int dirty; /* fs state before mount */ struct rcu_head rcu; }; #define FAT_CACHE_VALID 0 /* special case for valid cache */ /* * MS-DOS file system inode data in memory */ struct msdos_inode_info { spinlock_t cache_lru_lock; struct list_head cache_lru; int nr_caches; /* for avoiding the race between fat_free() and fat_get_cluster() */ unsigned int cache_valid_id; /* NOTE: mmu_private is 64bits, so must hold ->i_mutex to access */ loff_t mmu_private; /* physically allocated size */ int i_start; /* first cluster or 0 */ int i_logstart; /* logical first cluster */ int i_attrs; /* unused attribute bits */ loff_t i_pos; /* on-disk position of directory entry or 0 */ struct hlist_node i_fat_hash; /* hash by i_location */ struct hlist_node i_dir_hash; /* hash by i_logstart */ struct rw_semaphore truncate_lock; /* protect bmap against truncate */ struct inode vfs_inode; }; struct fat_slot_info { loff_t i_pos; /* on-disk position of directory entry */ loff_t slot_off; /* offset for slot or de start */ int nr_slots; /* number of slots + 1(de) in filename */ struct msdos_dir_entry *de; struct buffer_head *bh; }; static inline struct msdos_sb_info *MSDOS_SB(struct super_block *sb) { return sb->s_fs_info; } /* * Functions that determine the variant of the FAT file system (i.e., * whether this is FAT12, FAT16 or FAT32. */ static inline bool is_fat12(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 12; } static inline bool is_fat16(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 16; } static inline bool is_fat32(const struct msdos_sb_info *sbi) { return sbi->fat_bits == 32; } /* Maximum number of clusters */ static inline u32 max_fat(struct super_block *sb) { struct msdos_sb_info *sbi = MSDOS_SB(sb); return is_fat32(sbi) ? MAX_FAT32 : is_fat16(sbi) ? MAX_FAT16 : MAX_FAT12; } static inline struct msdos_inode_info *MSDOS_I(struct inode *inode) { return container_of(inode, struct msdos_inode_info, vfs_inode); } /* * If ->i_mode can't hold S_IWUGO (i.e. ATTR_RO), we use ->i_attrs to * save ATTR_RO instead of ->i_mode. * * If it's directory and !sbi->options.rodir, ATTR_RO isn't read-only * bit, it's just used as flag for app. */ static inline int fat_mode_can_hold_ro(struct inode *inode) { struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb); umode_t mask; if (S_ISDIR(inode->i_mode)) { if (!sbi->options.rodir) return 0; mask = ~sbi->options.fs_dmask; } else mask = ~sbi->options.fs_fmask; if (!(mask & S_IWUGO)) return 0; return 1; } /* Convert attribute bits and a mask to the UNIX mode. */ static inline umode_t fat_make_mode(struct msdos_sb_info *sbi, u8 attrs, umode_t mode) { if (attrs & ATTR_RO && !((attrs & ATTR_DIR) && !sbi->options.rodir)) mode &= ~S_IWUGO; if (attrs & ATTR_DIR) return (mode & ~sbi->options.fs_dmask) | S_IFDIR; else return (mode & ~sbi->options.fs_fmask) | S_IFREG; } /* Return the FAT attribute byte for this inode */ static inline u8 fat_make_attrs(struct inode *inode) { u8 attrs = MSDOS_I(inode)->i_attrs; if (S_ISDIR(inode->i_mode)) attrs |= ATTR_DIR; if (fat_mode_can_hold_ro(inode) && !(inode->i_mode & S_IWUGO)) attrs |= ATTR_RO; return attrs; } static inline void fat_save_attrs(struct inode *inode, u8 attrs) { if (fat_mode_can_hold_ro(inode)) MSDOS_I(inode)->i_attrs = attrs & ATTR_UNUSED; else MSDOS_I(inode)->i_attrs = attrs & (ATTR_UNUSED | ATTR_RO); } static inline unsigned char fat_checksum(const __u8 *name) { unsigned char s = name[0]; s = (s<<7) + (s>>1) + name[1]; s = (s<<7) + (s>>1) + name[2]; s = (s<<7) + (s>>1) + name[3]; s = (s<<7) + (s>>1) + name[4]; s = (s<<7) + (s>>1) + name[5]; s = (s<<7) + (s>>1) + name[6]; s = (s<<7) + (s>>1) + name[7]; s = (s<<7) + (s>>1) + name[8]; s = (s<<7) + (s>>1) + name[9]; s = (s<<7) + (s>>1) + name[10]; return s; } static inline sector_t fat_clus_to_blknr(struct msdos_sb_info *sbi, int clus) { return ((sector_t)clus - FAT_START_ENT) * sbi->sec_per_clus + sbi->data_start; } static inline void fat_get_blknr_offset(struct msdos_sb_info *sbi, loff_t i_pos, sector_t *blknr, int *offset) { *blknr = i_pos >> sbi->dir_per_block_bits; *offset = i_pos & (sbi->dir_per_block - 1); } static inline loff_t fat_i_pos_read(struct msdos_sb_info *sbi, struct inode *inode) { loff_t i_pos; #if BITS_PER_LONG == 32 spin_lock(&sbi->inode_hash_lock); #endif i_pos = MSDOS_I(inode)->i_pos; #if BITS_PER_LONG == 32 spin_unlock(&sbi->inode_hash_lock); #endif return i_pos; } static inline void fat16_towchar(wchar_t *dst, const __u8 *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { *dst++ = src[0] | (src[1] << 8); src += 2; } #else memcpy(dst, src, len * 2); #endif } static inline int fat_get_start(const struct msdos_sb_info *sbi, const struct msdos_dir_entry *de) { int cluster = le16_to_cpu(de->start); if (is_fat32(sbi)) cluster |= (le16_to_cpu(de->starthi) << 16); return cluster; } static inline void fat_set_start(struct msdos_dir_entry *de, int cluster) { de->start = cpu_to_le16(cluster); de->starthi = cpu_to_le16(cluster >> 16); } static inline void fatwchar_to16(__u8 *dst, const wchar_t *src, size_t len) { #ifdef __BIG_ENDIAN while (len--) { dst[0] = *src & 0x00FF; dst[1] = (*src & 0xFF00) >> 8; dst += 2; src++; } #else memcpy(dst, src, len * 2); #endif } /* fat/cache.c */ extern void fat_cache_inval_inode(struct inode *inode); extern int fat_get_cluster(struct inode *inode, int cluster, int *fclus, int *dclus); extern int fat_get_mapped_cluster(struct inode *inode, sector_t sector, sector_t last_block, unsigned long *mapped_blocks, sector_t *bmap); extern int fat_bmap(struct inode *inode, sector_t sector, sector_t *phys, unsigned long *mapped_blocks, int create, bool from_bmap); /* fat/dir.c */ extern const struct file_operations fat_dir_operations; extern int fat_search_long(struct inode *inode, const unsigned char *name, int name_len, struct fat_slot_info *sinfo); extern int fat_dir_empty(struct inode *dir); extern int fat_subdirs(struct inode *dir); extern int fat_scan(struct inode *dir, const unsigned char *name, struct fat_slot_info *sinfo); extern int fat_scan_logstart(struct inode *dir, int i_logstart, struct fat_slot_info *sinfo); extern int fat_get_dotdot_entry(struct inode *dir, struct buffer_head **bh, struct msdos_dir_entry **de); extern int fat_alloc_new_dir(struct inode *dir, struct timespec64 *ts); extern int fat_add_entries(struct inode *dir, void *slots, int nr_slots, struct fat_slot_info *sinfo); extern int fat_remove_entries(struct inode *dir, struct fat_slot_info *sinfo); /* fat/fatent.c */ struct fat_entry { int entry; union { u8 *ent12_p[2]; __le16 *ent16_p; __le32 *ent32_p; } u; int nr_bhs; struct buffer_head *bhs[2]; struct inode *fat_inode; }; static inline void fatent_init(struct fat_entry *fatent) { fatent->nr_bhs = 0; fatent->entry = 0; fatent->u.ent32_p = NULL; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline void fatent_set_entry(struct fat_entry *fatent, int entry) { fatent->entry = entry; fatent->u.ent32_p = NULL; } static inline void fatent_brelse(struct fat_entry *fatent) { int i; fatent->u.ent32_p = NULL; for (i = 0; i < fatent->nr_bhs; i++) brelse(fatent->bhs[i]); fatent->nr_bhs = 0; fatent->bhs[0] = fatent->bhs[1] = NULL; fatent->fat_inode = NULL; } static inline bool fat_valid_entry(struct msdos_sb_info *sbi, int entry) { return FAT_START_ENT <= entry && entry < sbi->max_cluster; } extern void fat_ent_access_init(struct super_block *sb); extern int fat_ent_read(struct inode *inode, struct fat_entry *fatent, int entry); extern int fat_ent_write(struct inode *inode, struct fat_entry *fatent, int new, int wait); extern int fat_alloc_clusters(struct inode *inode, int *cluster, int nr_cluster); extern int fat_free_clusters(struct inode *inode, int cluster); extern int fat_count_free_clusters(struct super_block *sb); extern int fat_trim_fs(struct inode *inode, struct fstrim_range *range); /* fat/file.c */ extern long fat_generic_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); extern const struct file_operations fat_file_operations; extern const struct inode_operations fat_file_inode_operations; extern int fat_setattr(struct dentry *dentry, struct iattr *attr); extern void fat_truncate_blocks(struct inode *inode, loff_t offset); extern int fat_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); extern int fat_file_fsync(struct file *file, loff_t start, loff_t end, int datasync); /* fat/inode.c */ extern int fat_block_truncate_page(struct inode *inode, loff_t from); extern void fat_attach(struct inode *inode, loff_t i_pos); extern void fat_detach(struct inode *inode); extern struct inode *fat_iget(struct super_block *sb, loff_t i_pos); extern struct inode *fat_build_inode(struct super_block *sb, struct msdos_dir_entry *de, loff_t i_pos); extern int fat_sync_inode(struct inode *inode); extern int fat_fill_super(struct super_block *sb, void *data, int silent, int isvfat, void (*setup)(struct super_block *)); extern int fat_fill_inode(struct inode *inode, struct msdos_dir_entry *de); extern int fat_flush_inodes(struct super_block *sb, struct inode *i1, struct inode *i2); static inline unsigned long fat_dir_hash(int logstart) { return hash_32(logstart, FAT_HASH_BITS); } extern int fat_add_cluster(struct inode *inode); /* fat/misc.c */ extern __printf(3, 4) __cold void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...); #define fat_fs_error(sb, fmt, args...) \ __fat_fs_error(sb, 1, fmt , ## args) #define fat_fs_error_ratelimit(sb, fmt, args...) \ __fat_fs_error(sb, __ratelimit(&MSDOS_SB(sb)->ratelimit), fmt , ## args) __printf(3, 4) __cold void fat_msg(struct super_block *sb, const char *level, const char *fmt, ...); #define fat_msg_ratelimit(sb, level, fmt, args...) \ do { \ if (__ratelimit(&MSDOS_SB(sb)->ratelimit)) \ fat_msg(sb, level, fmt, ## args); \ } while (0) extern int fat_clusters_flush(struct super_block *sb); extern int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster); extern void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 __time, __le16 __date, u8 time_cs); extern void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts, __le16 *time, __le16 *date, u8 *time_cs); extern int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_update_time(struct inode *inode, struct timespec64 *now, int flags); extern int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs); int fat_cache_init(void); void fat_cache_destroy(void); /* fat/nfs.c */ extern const struct export_operations fat_export_ops; extern const struct export_operations fat_export_ops_nostale; /* helper for printk */ typedef unsigned long long llu; #endif /* !_FAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 /* SPDX-License-Identifier: GPL-2.0 */ /* * Events for filesystem locks * * Copyright 2013 Jeff Layton <jlayton@poochiereds.net> */ #undef TRACE_SYSTEM #define TRACE_SYSTEM filelock #if !defined(_TRACE_FILELOCK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FILELOCK_H #include <linux/tracepoint.h> #include <linux/fs.h> #include <linux/device.h> #include <linux/kdev_t.h> #define show_fl_flags(val) \ __print_flags(val, "|", \ { FL_POSIX, "FL_POSIX" }, \ { FL_FLOCK, "FL_FLOCK" }, \ { FL_DELEG, "FL_DELEG" }, \ { FL_ACCESS, "FL_ACCESS" }, \ { FL_EXISTS, "FL_EXISTS" }, \ { FL_LEASE, "FL_LEASE" }, \ { FL_CLOSE, "FL_CLOSE" }, \ { FL_SLEEP, "FL_SLEEP" }, \ { FL_DOWNGRADE_PENDING, "FL_DOWNGRADE_PENDING" }, \ { FL_UNLOCK_PENDING, "FL_UNLOCK_PENDING" }, \ { FL_OFDLCK, "FL_OFDLCK" }) #define show_fl_type(val) \ __print_symbolic(val, \ { F_RDLCK, "F_RDLCK" }, \ { F_WRLCK, "F_WRLCK" }, \ { F_UNLCK, "F_UNLCK" }) TRACE_EVENT(locks_get_lock_context, TP_PROTO(struct inode *inode, int type, struct file_lock_context *ctx), TP_ARGS(inode, type, ctx), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(unsigned char, type) __field(struct file_lock_context *, ctx) ), TP_fast_assign( __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->type = type; __entry->ctx = ctx; ), TP_printk("dev=0x%x:0x%x ino=0x%lx type=%s ctx=%p", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, show_fl_type(__entry->type), __entry->ctx) ); DECLARE_EVENT_CLASS(filelock_lock, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret), TP_STRUCT__entry( __field(struct file_lock *, fl) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(struct file_lock *, fl_blocker) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_pid) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) __field(loff_t, fl_start) __field(loff_t, fl_end) __field(int, ret) ), TP_fast_assign( __entry->fl = fl ? fl : NULL; __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->fl_blocker = fl ? fl->fl_blocker : NULL; __entry->fl_owner = fl ? fl->fl_owner : NULL; __entry->fl_pid = fl ? fl->fl_pid : 0; __entry->fl_flags = fl ? fl->fl_flags : 0; __entry->fl_type = fl ? fl->fl_type : 0; __entry->fl_start = fl ? fl->fl_start : 0; __entry->fl_end = fl ? fl->fl_end : 0; __entry->ret = ret; ), TP_printk("fl=%p dev=0x%x:0x%x ino=0x%lx fl_blocker=%p fl_owner=%p fl_pid=%u fl_flags=%s fl_type=%s fl_start=%lld fl_end=%lld ret=%d", __entry->fl, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->fl_blocker, __entry->fl_owner, __entry->fl_pid, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type), __entry->fl_start, __entry->fl_end, __entry->ret) ); DEFINE_EVENT(filelock_lock, posix_lock_inode, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, fcntl_setlk, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, locks_remove_posix, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DEFINE_EVENT(filelock_lock, flock_lock_inode, TP_PROTO(struct inode *inode, struct file_lock *fl, int ret), TP_ARGS(inode, fl, ret)); DECLARE_EVENT_CLASS(filelock_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl), TP_STRUCT__entry( __field(struct file_lock *, fl) __field(unsigned long, i_ino) __field(dev_t, s_dev) __field(struct file_lock *, fl_blocker) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) __field(unsigned long, fl_break_time) __field(unsigned long, fl_downgrade_time) ), TP_fast_assign( __entry->fl = fl ? fl : NULL; __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->fl_blocker = fl ? fl->fl_blocker : NULL; __entry->fl_owner = fl ? fl->fl_owner : NULL; __entry->fl_flags = fl ? fl->fl_flags : 0; __entry->fl_type = fl ? fl->fl_type : 0; __entry->fl_break_time = fl ? fl->fl_break_time : 0; __entry->fl_downgrade_time = fl ? fl->fl_downgrade_time : 0; ), TP_printk("fl=%p dev=0x%x:0x%x ino=0x%lx fl_blocker=%p fl_owner=%p fl_flags=%s fl_type=%s fl_break_time=%lu fl_downgrade_time=%lu", __entry->fl, MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->fl_blocker, __entry->fl_owner, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type), __entry->fl_break_time, __entry->fl_downgrade_time) ); DEFINE_EVENT(filelock_lease, break_lease_noblock, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, break_lease_block, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, break_lease_unblock, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, generic_delete_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); DEFINE_EVENT(filelock_lease, time_out_leases, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl)); TRACE_EVENT(generic_add_lease, TP_PROTO(struct inode *inode, struct file_lock *fl), TP_ARGS(inode, fl), TP_STRUCT__entry( __field(unsigned long, i_ino) __field(int, wcount) __field(int, rcount) __field(int, icount) __field(dev_t, s_dev) __field(fl_owner_t, fl_owner) __field(unsigned int, fl_flags) __field(unsigned char, fl_type) ), TP_fast_assign( __entry->s_dev = inode->i_sb->s_dev; __entry->i_ino = inode->i_ino; __entry->wcount = atomic_read(&inode->i_writecount); __entry->rcount = atomic_read(&inode->i_readcount); __entry->icount = atomic_read(&inode->i_count); __entry->fl_owner = fl->fl_owner; __entry->fl_flags = fl->fl_flags; __entry->fl_type = fl->fl_type; ), TP_printk("dev=0x%x:0x%x ino=0x%lx wcount=%d rcount=%d icount=%d fl_owner=%p fl_flags=%s fl_type=%s", MAJOR(__entry->s_dev), MINOR(__entry->s_dev), __entry->i_ino, __entry->wcount, __entry->rcount, __entry->icount, __entry->fl_owner, show_fl_flags(__entry->fl_flags), show_fl_type(__entry->fl_type)) ); TRACE_EVENT(leases_conflict, TP_PROTO(bool conflict, struct file_lock *lease, struct file_lock *breaker), TP_ARGS(conflict, lease, breaker), TP_STRUCT__entry( __field(void *, lease) __field(void *, breaker) __field(unsigned int, l_fl_flags) __field(unsigned int, b_fl_flags) __field(unsigned char, l_fl_type) __field(unsigned char, b_fl_type) __field(bool, conflict) ), TP_fast_assign( __entry->lease = lease; __entry->l_fl_flags = lease->fl_flags; __entry->l_fl_type = lease->fl_type; __entry->breaker = breaker; __entry->b_fl_flags = breaker->fl_flags; __entry->b_fl_type = breaker->fl_type; __entry->conflict = conflict; ), TP_printk("conflict %d: lease=%p fl_flags=%s fl_type=%s; breaker=%p fl_flags=%s fl_type=%s", __entry->conflict, __entry->lease, show_fl_flags(__entry->l_fl_flags), show_fl_type(__entry->l_fl_type), __entry->breaker, show_fl_flags(__entry->b_fl_flags), show_fl_type(__entry->b_fl_type)) ); #endif /* _TRACE_FILELOCK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM power #if !defined(_TRACE_POWER_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_POWER_H #include <linux/cpufreq.h> #include <linux/ktime.h> #include <linux/pm_qos.h> #include <linux/tracepoint.h> #include <linux/trace_events.h> #define TPS(x) tracepoint_string(x) DECLARE_EVENT_CLASS(cpu, TP_PROTO(unsigned int state, unsigned int cpu_id), TP_ARGS(state, cpu_id), TP_STRUCT__entry( __field( u32, state ) __field( u32, cpu_id ) ), TP_fast_assign( __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("state=%lu cpu_id=%lu", (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(cpu, cpu_idle, TP_PROTO(unsigned int state, unsigned int cpu_id), TP_ARGS(state, cpu_id) ); TRACE_EVENT(powernv_throttle, TP_PROTO(int chip_id, const char *reason, int pmax), TP_ARGS(chip_id, reason, pmax), TP_STRUCT__entry( __field(int, chip_id) __string(reason, reason) __field(int, pmax) ), TP_fast_assign( __entry->chip_id = chip_id; __assign_str(reason, reason); __entry->pmax = pmax; ), TP_printk("Chip %d Pmax %d %s", __entry->chip_id, __entry->pmax, __get_str(reason)) ); TRACE_EVENT(pstate_sample, TP_PROTO(u32 core_busy, u32 scaled_busy, u32 from, u32 to, u64 mperf, u64 aperf, u64 tsc, u32 freq, u32 io_boost ), TP_ARGS(core_busy, scaled_busy, from, to, mperf, aperf, tsc, freq, io_boost ), TP_STRUCT__entry( __field(u32, core_busy) __field(u32, scaled_busy) __field(u32, from) __field(u32, to) __field(u64, mperf) __field(u64, aperf) __field(u64, tsc) __field(u32, freq) __field(u32, io_boost) ), TP_fast_assign( __entry->core_busy = core_busy; __entry->scaled_busy = scaled_busy; __entry->from = from; __entry->to = to; __entry->mperf = mperf; __entry->aperf = aperf; __entry->tsc = tsc; __entry->freq = freq; __entry->io_boost = io_boost; ), TP_printk("core_busy=%lu scaled=%lu from=%lu to=%lu mperf=%llu aperf=%llu tsc=%llu freq=%lu io_boost=%lu", (unsigned long)__entry->core_busy, (unsigned long)__entry->scaled_busy, (unsigned long)__entry->from, (unsigned long)__entry->to, (unsigned long long)__entry->mperf, (unsigned long long)__entry->aperf, (unsigned long long)__entry->tsc, (unsigned long)__entry->freq, (unsigned long)__entry->io_boost ) ); /* This file can get included multiple times, TRACE_HEADER_MULTI_READ at top */ #ifndef _PWR_EVENT_AVOID_DOUBLE_DEFINING #define _PWR_EVENT_AVOID_DOUBLE_DEFINING #define PWR_EVENT_EXIT -1 #endif #define pm_verb_symbolic(event) \ __print_symbolic(event, \ { PM_EVENT_SUSPEND, "suspend" }, \ { PM_EVENT_RESUME, "resume" }, \ { PM_EVENT_FREEZE, "freeze" }, \ { PM_EVENT_QUIESCE, "quiesce" }, \ { PM_EVENT_HIBERNATE, "hibernate" }, \ { PM_EVENT_THAW, "thaw" }, \ { PM_EVENT_RESTORE, "restore" }, \ { PM_EVENT_RECOVER, "recover" }) DEFINE_EVENT(cpu, cpu_frequency, TP_PROTO(unsigned int frequency, unsigned int cpu_id), TP_ARGS(frequency, cpu_id) ); TRACE_EVENT(cpu_frequency_limits, TP_PROTO(struct cpufreq_policy *policy), TP_ARGS(policy), TP_STRUCT__entry( __field(u32, min_freq) __field(u32, max_freq) __field(u32, cpu_id) ), TP_fast_assign( __entry->min_freq = policy->min; __entry->max_freq = policy->max; __entry->cpu_id = policy->cpu; ), TP_printk("min=%lu max=%lu cpu_id=%lu", (unsigned long)__entry->min_freq, (unsigned long)__entry->max_freq, (unsigned long)__entry->cpu_id) ); TRACE_EVENT(device_pm_callback_start, TP_PROTO(struct device *dev, const char *pm_ops, int event), TP_ARGS(dev, pm_ops, event), TP_STRUCT__entry( __string(device, dev_name(dev)) __string(driver, dev_driver_string(dev)) __string(parent, dev->parent ? dev_name(dev->parent) : "none") __string(pm_ops, pm_ops ? pm_ops : "none ") __field(int, event) ), TP_fast_assign( __assign_str(device, dev_name(dev)); __assign_str(driver, dev_driver_string(dev)); __assign_str(parent, dev->parent ? dev_name(dev->parent) : "none"); __assign_str(pm_ops, pm_ops ? pm_ops : "none "); __entry->event = event; ), TP_printk("%s %s, parent: %s, %s[%s]", __get_str(driver), __get_str(device), __get_str(parent), __get_str(pm_ops), pm_verb_symbolic(__entry->event)) ); TRACE_EVENT(device_pm_callback_end, TP_PROTO(struct device *dev, int error), TP_ARGS(dev, error), TP_STRUCT__entry( __string(device, dev_name(dev)) __string(driver, dev_driver_string(dev)) __field(int, error) ), TP_fast_assign( __assign_str(device, dev_name(dev)); __assign_str(driver, dev_driver_string(dev)); __entry->error = error; ), TP_printk("%s %s, err=%d", __get_str(driver), __get_str(device), __entry->error) ); TRACE_EVENT(suspend_resume, TP_PROTO(const char *action, int val, bool start), TP_ARGS(action, val, start), TP_STRUCT__entry( __field(const char *, action) __field(int, val) __field(bool, start) ), TP_fast_assign( __entry->action = action; __entry->val = val; __entry->start = start; ), TP_printk("%s[%u] %s", __entry->action, (unsigned int)__entry->val, (__entry->start)?"begin":"end") ); DECLARE_EVENT_CLASS(wakeup_source, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; ), TP_printk("%s state=0x%lx", __get_str(name), (unsigned long)__entry->state) ); DEFINE_EVENT(wakeup_source, wakeup_source_activate, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state) ); DEFINE_EVENT(wakeup_source, wakeup_source_deactivate, TP_PROTO(const char *name, unsigned int state), TP_ARGS(name, state) ); /* * The clock events are used for clock enable/disable and for * clock rate change */ DECLARE_EVENT_CLASS(clock, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) __field( u64, cpu_id ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("%s state=%lu cpu_id=%lu", __get_str(name), (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(clock, clock_enable, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); DEFINE_EVENT(clock, clock_disable, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); DEFINE_EVENT(clock, clock_set_rate, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); /* * The power domain events are used for power domains transitions */ DECLARE_EVENT_CLASS(power_domain, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id), TP_STRUCT__entry( __string( name, name ) __field( u64, state ) __field( u64, cpu_id ) ), TP_fast_assign( __assign_str(name, name); __entry->state = state; __entry->cpu_id = cpu_id; ), TP_printk("%s state=%lu cpu_id=%lu", __get_str(name), (unsigned long)__entry->state, (unsigned long)__entry->cpu_id) ); DEFINE_EVENT(power_domain, power_domain_target, TP_PROTO(const char *name, unsigned int state, unsigned int cpu_id), TP_ARGS(name, state, cpu_id) ); /* * CPU latency QoS events used for global CPU latency QoS list updates */ DECLARE_EVENT_CLASS(cpu_latency_qos_request, TP_PROTO(s32 value), TP_ARGS(value), TP_STRUCT__entry( __field( s32, value ) ), TP_fast_assign( __entry->value = value; ), TP_printk("CPU_DMA_LATENCY value=%d", __entry->value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_add_request, TP_PROTO(s32 value), TP_ARGS(value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_update_request, TP_PROTO(s32 value), TP_ARGS(value) ); DEFINE_EVENT(cpu_latency_qos_request, pm_qos_remove_request, TP_PROTO(s32 value), TP_ARGS(value) ); /* * General PM QoS events used for updates of PM QoS request lists */ DECLARE_EVENT_CLASS(pm_qos_update, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value), TP_STRUCT__entry( __field( enum pm_qos_req_action, action ) __field( int, prev_value ) __field( int, curr_value ) ), TP_fast_assign( __entry->action = action; __entry->prev_value = prev_value; __entry->curr_value = curr_value; ), TP_printk("action=%s prev_value=%d curr_value=%d", __print_symbolic(__entry->action, { PM_QOS_ADD_REQ, "ADD_REQ" }, { PM_QOS_UPDATE_REQ, "UPDATE_REQ" }, { PM_QOS_REMOVE_REQ, "REMOVE_REQ" }), __entry->prev_value, __entry->curr_value) ); DEFINE_EVENT(pm_qos_update, pm_qos_update_target, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value) ); DEFINE_EVENT_PRINT(pm_qos_update, pm_qos_update_flags, TP_PROTO(enum pm_qos_req_action action, int prev_value, int curr_value), TP_ARGS(action, prev_value, curr_value), TP_printk("action=%s prev_value=0x%x curr_value=0x%x", __print_symbolic(__entry->action, { PM_QOS_ADD_REQ, "ADD_REQ" }, { PM_QOS_UPDATE_REQ, "UPDATE_REQ" }, { PM_QOS_REMOVE_REQ, "REMOVE_REQ" }), __entry->prev_value, __entry->curr_value) ); DECLARE_EVENT_CLASS(dev_pm_qos_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value), TP_STRUCT__entry( __string( name, name ) __field( enum dev_pm_qos_req_type, type ) __field( s32, new_value ) ), TP_fast_assign( __assign_str(name, name); __entry->type = type; __entry->new_value = new_value; ), TP_printk("device=%s type=%s new_value=%d", __get_str(name), __print_symbolic(__entry->type, { DEV_PM_QOS_RESUME_LATENCY, "DEV_PM_QOS_RESUME_LATENCY" }, { DEV_PM_QOS_FLAGS, "DEV_PM_QOS_FLAGS" }), __entry->new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_add_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_update_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); DEFINE_EVENT(dev_pm_qos_request, dev_pm_qos_remove_request, TP_PROTO(const char *name, enum dev_pm_qos_req_type type, s32 new_value), TP_ARGS(name, type, new_value) ); #endif /* _TRACE_POWER_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ADDRCONF_H #define _ADDRCONF_H #define MAX_RTR_SOLICITATIONS -1 /* unlimited */ #define RTR_SOLICITATION_INTERVAL (4*HZ) #define RTR_SOLICITATION_MAX_INTERVAL (3600*HZ) /* 1 hour */ #define TEMP_VALID_LIFETIME (7*86400) #define TEMP_PREFERRED_LIFETIME (86400) #define REGEN_MAX_RETRY (3) #define MAX_DESYNC_FACTOR (600) #define ADDR_CHECK_FREQUENCY (120*HZ) #define IPV6_MAX_ADDRESSES 16 #define ADDRCONF_TIMER_FUZZ_MINUS (HZ > 50 ? HZ / 50 : 1) #define ADDRCONF_TIMER_FUZZ (HZ / 4) #define ADDRCONF_TIMER_FUZZ_MAX (HZ) #define ADDRCONF_NOTIFY_PRIORITY 0 #include <linux/in.h> #include <linux/in6.h> struct prefix_info { __u8 type; __u8 length; __u8 prefix_len; #if defined(__BIG_ENDIAN_BITFIELD) __u8 onlink : 1, autoconf : 1, reserved : 6; #elif defined(__LITTLE_ENDIAN_BITFIELD) __u8 reserved : 6, autoconf : 1, onlink : 1; #else #error "Please fix <asm/byteorder.h>" #endif __be32 valid; __be32 prefered; __be32 reserved2; struct in6_addr prefix; }; #include <linux/ipv6.h> #include <linux/netdevice.h> #include <net/if_inet6.h> #include <net/ipv6.h> struct in6_validator_info { struct in6_addr i6vi_addr; struct inet6_dev *i6vi_dev; struct netlink_ext_ack *extack; }; struct ifa6_config { const struct in6_addr *pfx; unsigned int plen; const struct in6_addr *peer_pfx; u32 rt_priority; u32 ifa_flags; u32 preferred_lft; u32 valid_lft; u16 scope; }; int addrconf_init(void); void addrconf_cleanup(void); int addrconf_add_ifaddr(struct net *net, void __user *arg); int addrconf_del_ifaddr(struct net *net, void __user *arg); int addrconf_set_dstaddr(struct net *net, void __user *arg); int ipv6_chk_addr(struct net *net, const struct in6_addr *addr, const struct net_device *dev, int strict); int ipv6_chk_addr_and_flags(struct net *net, const struct in6_addr *addr, const struct net_device *dev, bool skip_dev_check, int strict, u32 banned_flags); #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) int ipv6_chk_home_addr(struct net *net, const struct in6_addr *addr); #endif int ipv6_chk_rpl_srh_loop(struct net *net, const struct in6_addr *segs, unsigned char nsegs); bool ipv6_chk_custom_prefix(const struct in6_addr *addr, const unsigned int prefix_len, struct net_device *dev); int ipv6_chk_prefix(const struct in6_addr *addr, struct net_device *dev); struct net_device *ipv6_dev_find(struct net *net, const struct in6_addr *addr, struct net_device *dev); struct inet6_ifaddr *ipv6_get_ifaddr(struct net *net, const struct in6_addr *addr, struct net_device *dev, int strict); int ipv6_dev_get_saddr(struct net *net, const struct net_device *dev, const struct in6_addr *daddr, unsigned int srcprefs, struct in6_addr *saddr); int __ipv6_get_lladdr(struct inet6_dev *idev, struct in6_addr *addr, u32 banned_flags); int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr, u32 banned_flags); bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, bool match_wildcard); bool inet_rcv_saddr_any(const struct sock *sk); void addrconf_join_solict(struct net_device *dev, const struct in6_addr *addr); void addrconf_leave_solict(struct inet6_dev *idev, const struct in6_addr *addr); void addrconf_add_linklocal(struct inet6_dev *idev, const struct in6_addr *addr, u32 flags); int addrconf_prefix_rcv_add_addr(struct net *net, struct net_device *dev, const struct prefix_info *pinfo, struct inet6_dev *in6_dev, const struct in6_addr *addr, int addr_type, u32 addr_flags, bool sllao, bool tokenized, __u32 valid_lft, u32 prefered_lft); static inline void addrconf_addr_eui48_base(u8 *eui, const char *const addr) { memcpy(eui, addr, 3); eui[3] = 0xFF; eui[4] = 0xFE; memcpy(eui + 5, addr + 3, 3); } static inline void addrconf_addr_eui48(u8 *eui, const char *const addr) { addrconf_addr_eui48_base(eui, addr); eui[0] ^= 2; } static inline int addrconf_ifid_eui48(u8 *eui, struct net_device *dev) { if (dev->addr_len != ETH_ALEN) return -1; /* * The zSeries OSA network cards can be shared among various * OS instances, but the OSA cards have only one MAC address. * This leads to duplicate address conflicts in conjunction * with IPv6 if more than one instance uses the same card. * * The driver for these cards can deliver a unique 16-bit * identifier for each instance sharing the same card. It is * placed instead of 0xFFFE in the interface identifier. The * "u" bit of the interface identifier is not inverted in this * case. Hence the resulting interface identifier has local * scope according to RFC2373. */ addrconf_addr_eui48_base(eui, dev->dev_addr); if (dev->dev_id) { eui[3] = (dev->dev_id >> 8) & 0xFF; eui[4] = dev->dev_id & 0xFF; } else { eui[0] ^= 2; } return 0; } static inline unsigned long addrconf_timeout_fixup(u32 timeout, unsigned int unit) { if (timeout == 0xffffffff) return ~0UL; /* * Avoid arithmetic overflow. * Assuming unit is constant and non-zero, this "if" statement * will go away on 64bit archs. */ if (0xfffffffe > LONG_MAX / unit && timeout > LONG_MAX / unit) return LONG_MAX / unit; return timeout; } static inline int addrconf_finite_timeout(unsigned long timeout) { return ~timeout; } /* * IPv6 Address Label subsystem (addrlabel.c) */ int ipv6_addr_label_init(void); void ipv6_addr_label_cleanup(void); int ipv6_addr_label_rtnl_register(void); u32 ipv6_addr_label(struct net *net, const struct in6_addr *addr, int type, int ifindex); /* * multicast prototypes (mcast.c) */ static inline bool ipv6_mc_may_pull(struct sk_buff *skb, unsigned int len) { if (skb_transport_offset(skb) + ipv6_transport_len(skb) < len) return false; return pskb_may_pull(skb, len); } int ipv6_sock_mc_join(struct sock *sk, int ifindex, const struct in6_addr *addr); int ipv6_sock_mc_drop(struct sock *sk, int ifindex, const struct in6_addr *addr); void __ipv6_sock_mc_close(struct sock *sk); void ipv6_sock_mc_close(struct sock *sk); bool inet6_mc_check(struct sock *sk, const struct in6_addr *mc_addr, const struct in6_addr *src_addr); int ipv6_dev_mc_inc(struct net_device *dev, const struct in6_addr *addr); int __ipv6_dev_mc_dec(struct inet6_dev *idev, const struct in6_addr *addr); int ipv6_dev_mc_dec(struct net_device *dev, const struct in6_addr *addr); void ipv6_mc_up(struct inet6_dev *idev); void ipv6_mc_down(struct inet6_dev *idev); void ipv6_mc_unmap(struct inet6_dev *idev); void ipv6_mc_remap(struct inet6_dev *idev); void ipv6_mc_init_dev(struct inet6_dev *idev); void ipv6_mc_destroy_dev(struct inet6_dev *idev); int ipv6_mc_check_mld(struct sk_buff *skb); void addrconf_dad_failure(struct sk_buff *skb, struct inet6_ifaddr *ifp); bool ipv6_chk_mcast_addr(struct net_device *dev, const struct in6_addr *group, const struct in6_addr *src_addr); void ipv6_mc_dad_complete(struct inet6_dev *idev); /* * identify MLD packets for MLD filter exceptions */ static inline bool ipv6_is_mld(struct sk_buff *skb, int nexthdr, int offset) { struct icmp6hdr *hdr; if (nexthdr != IPPROTO_ICMPV6 || !pskb_network_may_pull(skb, offset + sizeof(struct icmp6hdr))) return false; hdr = (struct icmp6hdr *)(skb_network_header(skb) + offset); switch (hdr->icmp6_type) { case ICMPV6_MGM_QUERY: case ICMPV6_MGM_REPORT: case ICMPV6_MGM_REDUCTION: case ICMPV6_MLD2_REPORT: return true; default: break; } return false; } void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len, bool sllao); /* * anycast prototypes (anycast.c) */ int ipv6_sock_ac_join(struct sock *sk, int ifindex, const struct in6_addr *addr); int ipv6_sock_ac_drop(struct sock *sk, int ifindex, const struct in6_addr *addr); void __ipv6_sock_ac_close(struct sock *sk); void ipv6_sock_ac_close(struct sock *sk); int __ipv6_dev_ac_inc(struct inet6_dev *idev, const struct in6_addr *addr); int __ipv6_dev_ac_dec(struct inet6_dev *idev, const struct in6_addr *addr); void ipv6_ac_destroy_dev(struct inet6_dev *idev); bool ipv6_chk_acast_addr(struct net *net, struct net_device *dev, const struct in6_addr *addr); bool ipv6_chk_acast_addr_src(struct net *net, struct net_device *dev, const struct in6_addr *addr); int ipv6_anycast_init(void); void ipv6_anycast_cleanup(void); /* Device notifier */ int register_inet6addr_notifier(struct notifier_block *nb); int unregister_inet6addr_notifier(struct notifier_block *nb); int inet6addr_notifier_call_chain(unsigned long val, void *v); int register_inet6addr_validator_notifier(struct notifier_block *nb); int unregister_inet6addr_validator_notifier(struct notifier_block *nb); int inet6addr_validator_notifier_call_chain(unsigned long val, void *v); void inet6_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv6_devconf *devconf); /** * __in6_dev_get - get inet6_dev pointer from netdevice * @dev: network device * * Caller must hold rcu_read_lock or RTNL, because this function * does not take a reference on the inet6_dev. */ static inline struct inet6_dev *__in6_dev_get(const struct net_device *dev) { return rcu_dereference_rtnl(dev->ip6_ptr); } /** * __in6_dev_stats_get - get inet6_dev pointer for stats * @dev: network device * @skb: skb for original incoming interface if neeeded * * Caller must hold rcu_read_lock or RTNL, because this function * does not take a reference on the inet6_dev. */ static inline struct inet6_dev *__in6_dev_stats_get(const struct net_device *dev, const struct sk_buff *skb) { if (netif_is_l3_master(dev)) dev = dev_get_by_index_rcu(dev_net(dev), inet6_iif(skb)); return __in6_dev_get(dev); } /** * __in6_dev_get_safely - get inet6_dev pointer from netdevice * @dev: network device * * This is a safer version of __in6_dev_get */ static inline struct inet6_dev *__in6_dev_get_safely(const struct net_device *dev) { if (likely(dev)) return rcu_dereference_rtnl(dev->ip6_ptr); else return NULL; } /** * in6_dev_get - get inet6_dev pointer from netdevice * @dev: network device * * This version can be used in any context, and takes a reference * on the inet6_dev. Callers must use in6_dev_put() later to * release this reference. */ static inline struct inet6_dev *in6_dev_get(const struct net_device *dev) { struct inet6_dev *idev; rcu_read_lock(); idev = rcu_dereference(dev->ip6_ptr); if (idev) refcount_inc(&idev->refcnt); rcu_read_unlock(); return idev; } static inline struct neigh_parms *__in6_dev_nd_parms_get_rcu(const struct net_device *dev) { struct inet6_dev *idev = __in6_dev_get(dev); return idev ? idev->nd_parms : NULL; } void in6_dev_finish_destroy(struct inet6_dev *idev); static inline void in6_dev_put(struct inet6_dev *idev) { if (refcount_dec_and_test(&idev->refcnt)) in6_dev_finish_destroy(idev); } static inline void in6_dev_put_clear(struct inet6_dev **pidev) { struct inet6_dev *idev = *pidev; if (idev) { in6_dev_put(idev); *pidev = NULL; } } static inline void __in6_dev_put(struct inet6_dev *idev) { refcount_dec(&idev->refcnt); } static inline void in6_dev_hold(struct inet6_dev *idev) { refcount_inc(&idev->refcnt); } /* called with rcu_read_lock held */ static inline bool ip6_ignore_linkdown(const struct net_device *dev) { const struct inet6_dev *idev = __in6_dev_get(dev); return !!idev->cnf.ignore_routes_with_linkdown; } void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp); static inline void in6_ifa_put(struct inet6_ifaddr *ifp) { if (refcount_dec_and_test(&ifp->refcnt)) inet6_ifa_finish_destroy(ifp); } static inline void __in6_ifa_put(struct inet6_ifaddr *ifp) { refcount_dec(&ifp->refcnt); } static inline void in6_ifa_hold(struct inet6_ifaddr *ifp) { refcount_inc(&ifp->refcnt); } /* * compute link-local solicited-node multicast address */ static inline void addrconf_addr_solict_mult(const struct in6_addr *addr, struct in6_addr *solicited) { ipv6_addr_set(solicited, htonl(0xFF020000), 0, htonl(0x1), htonl(0xFF000000) | addr->s6_addr32[3]); } static inline bool ipv6_addr_is_ll_all_nodes(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(1))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x00000001))) == 0; #endif } static inline bool ipv6_addr_is_ll_all_routers(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(2))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x00000002))) == 0; #endif } static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr) { return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE); } static inline bool ipv6_addr_is_solict_mult(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | ((p[1] ^ cpu_to_be64(0x00000001ff000000UL)) & cpu_to_be64(0xffffffffff000000UL))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | (addr->s6_addr32[2] ^ htonl(0x00000001)) | (addr->s6_addr[12] ^ 0xff)) == 0; #endif } static inline bool ipv6_addr_is_all_snoopers(const struct in6_addr *addr) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 __be64 *p = (__force __be64 *)addr; return ((p[0] ^ cpu_to_be64(0xff02000000000000UL)) | (p[1] ^ cpu_to_be64(0x6a))) == 0UL; #else return ((addr->s6_addr32[0] ^ htonl(0xff020000)) | addr->s6_addr32[1] | addr->s6_addr32[2] | (addr->s6_addr32[3] ^ htonl(0x0000006a))) == 0; #endif } #ifdef CONFIG_PROC_FS int if6_proc_init(void); void if6_proc_exit(void); #endif #endif
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 /* SPDX-License-Identifier: GPL-2.0 */ /* * Security server interface. * * Author : Stephen Smalley, <sds@tycho.nsa.gov> * */ #ifndef _SELINUX_SECURITY_H_ #define _SELINUX_SECURITY_H_ #include <linux/compiler.h> #include <linux/dcache.h> #include <linux/magic.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include "flask.h" #include "policycap.h" #define SECSID_NULL 0x00000000 /* unspecified SID */ #define SECSID_WILD 0xffffffff /* wildcard SID */ #define SECCLASS_NULL 0x0000 /* no class */ /* Identify specific policy version changes */ #define POLICYDB_VERSION_BASE 15 #define POLICYDB_VERSION_BOOL 16 #define POLICYDB_VERSION_IPV6 17 #define POLICYDB_VERSION_NLCLASS 18 #define POLICYDB_VERSION_VALIDATETRANS 19 #define POLICYDB_VERSION_MLS 19 #define POLICYDB_VERSION_AVTAB 20 #define POLICYDB_VERSION_RANGETRANS 21 #define POLICYDB_VERSION_POLCAP 22 #define POLICYDB_VERSION_PERMISSIVE 23 #define POLICYDB_VERSION_BOUNDARY 24 #define POLICYDB_VERSION_FILENAME_TRANS 25 #define POLICYDB_VERSION_ROLETRANS 26 #define POLICYDB_VERSION_NEW_OBJECT_DEFAULTS 27 #define POLICYDB_VERSION_DEFAULT_TYPE 28 #define POLICYDB_VERSION_CONSTRAINT_NAMES 29 #define POLICYDB_VERSION_XPERMS_IOCTL 30 #define POLICYDB_VERSION_INFINIBAND 31 #define POLICYDB_VERSION_GLBLUB 32 #define POLICYDB_VERSION_COMP_FTRANS 33 /* compressed filename transitions */ /* Range of policy versions we understand*/ #define POLICYDB_VERSION_MIN POLICYDB_VERSION_BASE #define POLICYDB_VERSION_MAX POLICYDB_VERSION_COMP_FTRANS /* Mask for just the mount related flags */ #define SE_MNTMASK 0x0f /* Super block security struct flags for mount options */ /* BE CAREFUL, these need to be the low order bits for selinux_get_mnt_opts */ #define CONTEXT_MNT 0x01 #define FSCONTEXT_MNT 0x02 #define ROOTCONTEXT_MNT 0x04 #define DEFCONTEXT_MNT 0x08 #define SBLABEL_MNT 0x10 /* Non-mount related flags */ #define SE_SBINITIALIZED 0x0100 #define SE_SBPROC 0x0200 #define SE_SBGENFS 0x0400 #define SE_SBGENFS_XATTR 0x0800 #define CONTEXT_STR "context" #define FSCONTEXT_STR "fscontext" #define ROOTCONTEXT_STR "rootcontext" #define DEFCONTEXT_STR "defcontext" #define SECLABEL_STR "seclabel" struct netlbl_lsm_secattr; extern int selinux_enabled_boot; /* * type_datum properties * available at the kernel policy version >= POLICYDB_VERSION_BOUNDARY */ #define TYPEDATUM_PROPERTY_PRIMARY 0x0001 #define TYPEDATUM_PROPERTY_ATTRIBUTE 0x0002 /* limitation of boundary depth */ #define POLICYDB_BOUNDS_MAXDEPTH 4 struct selinux_avc; struct selinux_policy; struct selinux_state { #ifdef CONFIG_SECURITY_SELINUX_DISABLE bool disabled; #endif #ifdef CONFIG_SECURITY_SELINUX_DEVELOP bool enforcing; #endif bool checkreqprot; bool initialized; bool policycap[__POLICYDB_CAPABILITY_MAX]; struct page *status_page; struct mutex status_lock; struct selinux_avc *avc; struct selinux_policy __rcu *policy; struct mutex policy_mutex; } __randomize_layout; void selinux_avc_init(struct selinux_avc **avc); extern struct selinux_state selinux_state; static inline bool selinux_initialized(const struct selinux_state *state) { /* do a synchronized load to avoid race conditions */ return smp_load_acquire(&state->initialized); } static inline void selinux_mark_initialized(struct selinux_state *state) { /* do a synchronized write to avoid race conditions */ smp_store_release(&state->initialized, true); } #ifdef CONFIG_SECURITY_SELINUX_DEVELOP static inline bool enforcing_enabled(struct selinux_state *state) { return READ_ONCE(state->enforcing); } static inline void enforcing_set(struct selinux_state *state, bool value) { WRITE_ONCE(state->enforcing, value); } #else static inline bool enforcing_enabled(struct selinux_state *state) { return true; } static inline void enforcing_set(struct selinux_state *state, bool value) { } #endif static inline bool checkreqprot_get(const struct selinux_state *state) { return READ_ONCE(state->checkreqprot); } static inline void checkreqprot_set(struct selinux_state *state, bool value) { WRITE_ONCE(state->checkreqprot, value); } #ifdef CONFIG_SECURITY_SELINUX_DISABLE static inline bool selinux_disabled(struct selinux_state *state) { return READ_ONCE(state->disabled); } static inline void selinux_mark_disabled(struct selinux_state *state) { WRITE_ONCE(state->disabled, true); } #else static inline bool selinux_disabled(struct selinux_state *state) { return false; } #endif static inline bool selinux_policycap_netpeer(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_NETPEER]); } static inline bool selinux_policycap_openperm(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_OPENPERM]); } static inline bool selinux_policycap_extsockclass(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_EXTSOCKCLASS]); } static inline bool selinux_policycap_alwaysnetwork(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_ALWAYSNETWORK]); } static inline bool selinux_policycap_cgroupseclabel(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_CGROUPSECLABEL]); } static inline bool selinux_policycap_nnp_nosuid_transition(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_NNP_NOSUID_TRANSITION]); } static inline bool selinux_policycap_genfs_seclabel_symlinks(void) { struct selinux_state *state = &selinux_state; return READ_ONCE(state->policycap[POLICYDB_CAPABILITY_GENFS_SECLABEL_SYMLINKS]); } struct selinux_policy_convert_data; struct selinux_load_state { struct selinux_policy *policy; struct selinux_policy_convert_data *convert_data; }; int security_mls_enabled(struct selinux_state *state); int security_load_policy(struct selinux_state *state, void *data, size_t len, struct selinux_load_state *load_state); void selinux_policy_commit(struct selinux_state *state, struct selinux_load_state *load_state); void selinux_policy_cancel(struct selinux_state *state, struct selinux_load_state *load_state); int security_read_policy(struct selinux_state *state, void **data, size_t *len); int security_policycap_supported(struct selinux_state *state, unsigned int req_cap); #define SEL_VEC_MAX 32 struct av_decision { u32 allowed; u32 auditallow; u32 auditdeny; u32 seqno; u32 flags; }; #define XPERMS_ALLOWED 1 #define XPERMS_AUDITALLOW 2 #define XPERMS_DONTAUDIT 4 #define security_xperm_set(perms, x) (perms[x >> 5] |= 1 << (x & 0x1f)) #define security_xperm_test(perms, x) (1 & (perms[x >> 5] >> (x & 0x1f))) struct extended_perms_data { u32 p[8]; }; struct extended_perms_decision { u8 used; u8 driver; struct extended_perms_data *allowed; struct extended_perms_data *auditallow; struct extended_perms_data *dontaudit; }; struct extended_perms { u16 len; /* length associated decision chain */ struct extended_perms_data drivers; /* flag drivers that are used */ }; /* definitions of av_decision.flags */ #define AVD_FLAGS_PERMISSIVE 0x0001 void security_compute_av(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct extended_perms *xperms); void security_compute_xperms_decision(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u8 driver, struct extended_perms_decision *xpermd); void security_compute_av_user(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd); int security_transition_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, const struct qstr *qstr, u32 *out_sid); int security_transition_sid_user(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, const char *objname, u32 *out_sid); int security_member_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 *out_sid); int security_change_sid(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass, u32 *out_sid); int security_sid_to_context(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_sid_to_context_force(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_sid_to_context_inval(struct selinux_state *state, u32 sid, char **scontext, u32 *scontext_len); int security_context_to_sid(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *out_sid, gfp_t gfp); int security_context_str_to_sid(struct selinux_state *state, const char *scontext, u32 *out_sid, gfp_t gfp); int security_context_to_sid_default(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *out_sid, u32 def_sid, gfp_t gfp_flags); int security_context_to_sid_force(struct selinux_state *state, const char *scontext, u32 scontext_len, u32 *sid); int security_get_user_sids(struct selinux_state *state, u32 callsid, char *username, u32 **sids, u32 *nel); int security_port_sid(struct selinux_state *state, u8 protocol, u16 port, u32 *out_sid); int security_ib_pkey_sid(struct selinux_state *state, u64 subnet_prefix, u16 pkey_num, u32 *out_sid); int security_ib_endport_sid(struct selinux_state *state, const char *dev_name, u8 port_num, u32 *out_sid); int security_netif_sid(struct selinux_state *state, char *name, u32 *if_sid); int security_node_sid(struct selinux_state *state, u16 domain, void *addr, u32 addrlen, u32 *out_sid); int security_validate_transition(struct selinux_state *state, u32 oldsid, u32 newsid, u32 tasksid, u16 tclass); int security_validate_transition_user(struct selinux_state *state, u32 oldsid, u32 newsid, u32 tasksid, u16 tclass); int security_bounded_transition(struct selinux_state *state, u32 oldsid, u32 newsid); int security_sid_mls_copy(struct selinux_state *state, u32 sid, u32 mls_sid, u32 *new_sid); int security_net_peersid_resolve(struct selinux_state *state, u32 nlbl_sid, u32 nlbl_type, u32 xfrm_sid, u32 *peer_sid); int security_get_classes(struct selinux_policy *policy, char ***classes, int *nclasses); int security_get_permissions(struct selinux_policy *policy, char *class, char ***perms, int *nperms); int security_get_reject_unknown(struct selinux_state *state); int security_get_allow_unknown(struct selinux_state *state); #define SECURITY_FS_USE_XATTR 1 /* use xattr */ #define SECURITY_FS_USE_TRANS 2 /* use transition SIDs, e.g. devpts/tmpfs */ #define SECURITY_FS_USE_TASK 3 /* use task SIDs, e.g. pipefs/sockfs */ #define SECURITY_FS_USE_GENFS 4 /* use the genfs support */ #define SECURITY_FS_USE_NONE 5 /* no labeling support */ #define SECURITY_FS_USE_MNTPOINT 6 /* use mountpoint labeling */ #define SECURITY_FS_USE_NATIVE 7 /* use native label support */ #define SECURITY_FS_USE_MAX 7 /* Highest SECURITY_FS_USE_XXX */ int security_fs_use(struct selinux_state *state, struct super_block *sb); int security_genfs_sid(struct selinux_state *state, const char *fstype, char *name, u16 sclass, u32 *sid); int selinux_policy_genfs_sid(struct selinux_policy *policy, const char *fstype, char *name, u16 sclass, u32 *sid); #ifdef CONFIG_NETLABEL int security_netlbl_secattr_to_sid(struct selinux_state *state, struct netlbl_lsm_secattr *secattr, u32 *sid); int security_netlbl_sid_to_secattr(struct selinux_state *state, u32 sid, struct netlbl_lsm_secattr *secattr); #else static inline int security_netlbl_secattr_to_sid(struct selinux_state *state, struct netlbl_lsm_secattr *secattr, u32 *sid) { return -EIDRM; } static inline int security_netlbl_sid_to_secattr(struct selinux_state *state, u32 sid, struct netlbl_lsm_secattr *secattr) { return -ENOENT; } #endif /* CONFIG_NETLABEL */ const char *security_get_initial_sid_context(u32 sid); /* * status notifier using mmap interface */ extern struct page *selinux_kernel_status_page(struct selinux_state *state); #define SELINUX_KERNEL_STATUS_VERSION 1 struct selinux_kernel_status { u32 version; /* version number of thie structure */ u32 sequence; /* sequence number of seqlock logic */ u32 enforcing; /* current setting of enforcing mode */ u32 policyload; /* times of policy reloaded */ u32 deny_unknown; /* current setting of deny_unknown */ /* * The version > 0 supports above members. */ } __packed; extern void selinux_status_update_setenforce(struct selinux_state *state, int enforcing); extern void selinux_status_update_policyload(struct selinux_state *state, int seqno); extern void selinux_complete_init(void); extern int selinux_disable(struct selinux_state *state); extern void exit_sel_fs(void); extern struct path selinux_null; extern struct vfsmount *selinuxfs_mount; extern void selnl_notify_setenforce(int val); extern void selnl_notify_policyload(u32 seqno); extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); extern void avtab_cache_init(void); extern void ebitmap_cache_init(void); extern void hashtab_cache_init(void); extern int security_sidtab_hash_stats(struct selinux_state *state, char *page); #endif /* _SELINUX_SECURITY_H_ */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_UACCESS_H__ #define __LINUX_UACCESS_H__ #include <linux/fault-inject-usercopy.h> #include <linux/instrumented.h> #include <linux/minmax.h> #include <linux/sched.h> #include <linux/thread_info.h> #include <asm/uaccess.h> #ifdef CONFIG_SET_FS /* * Force the uaccess routines to be wired up for actual userspace access, * overriding any possible set_fs(KERNEL_DS) still lingering around. Undone * using force_uaccess_end below. */ static inline mm_segment_t force_uaccess_begin(void) { mm_segment_t fs = get_fs(); set_fs(USER_DS); return fs; } static inline void force_uaccess_end(mm_segment_t oldfs) { set_fs(oldfs); } #else /* CONFIG_SET_FS */ typedef struct { /* empty dummy */ } mm_segment_t; #ifndef TASK_SIZE_MAX #define TASK_SIZE_MAX TASK_SIZE #endif #define uaccess_kernel() (false) #define user_addr_max() (TASK_SIZE_MAX) static inline mm_segment_t force_uaccess_begin(void) { return (mm_segment_t) { }; } static inline void force_uaccess_end(mm_segment_t oldfs) { } #endif /* CONFIG_SET_FS */ /* * Architectures should provide two primitives (raw_copy_{to,from}_user()) * and get rid of their private instances of copy_{to,from}_user() and * __copy_{to,from}_user{,_inatomic}(). * * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and * return the amount left to copy. They should assume that access_ok() has * already been checked (and succeeded); they should *not* zero-pad anything. * No KASAN or object size checks either - those belong here. * * Both of these functions should attempt to copy size bytes starting at from * into the area starting at to. They must not fetch or store anything * outside of those areas. Return value must be between 0 (everything * copied successfully) and size (nothing copied). * * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting * at to must become equal to the bytes fetched from the corresponding area * starting at from. All data past to + size - N must be left unmodified. * * If copying succeeds, the return value must be 0. If some data cannot be * fetched, it is permitted to copy less than had been fetched; the only * hard requirement is that not storing anything at all (i.e. returning size) * should happen only when nothing could be copied. In other words, you don't * have to squeeze as much as possible - it is allowed, but not necessary. * * For raw_copy_from_user() to always points to kernel memory and no faults * on store should happen. Interpretation of from is affected by set_fs(). * For raw_copy_to_user() it's the other way round. * * Both can be inlined - it's up to architectures whether it wants to bother * with that. They should not be used directly; they are used to implement * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic()) * that are used instead. Out of those, __... ones are inlined. Plain * copy_{to,from}_user() might or might not be inlined. If you want them * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER. * * NOTE: only copy_from_user() zero-pads the destination in case of short copy. * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything * at all; their callers absolutely must check the return value. * * Biarch ones should also provide raw_copy_in_user() - similar to the above, * but both source and destination are __user pointers (affected by set_fs() * as usual) and both source and destination can trigger faults. */ static __always_inline __must_check unsigned long __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) { instrument_copy_from_user(to, from, n); check_object_size(to, n, false); return raw_copy_from_user(to, from, n); } static __always_inline __must_check unsigned long __copy_from_user(void *to, const void __user *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; instrument_copy_from_user(to, from, n); check_object_size(to, n, false); return raw_copy_from_user(to, from, n); } /** * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking. * @to: Destination address, in user space. * @from: Source address, in kernel space. * @n: Number of bytes to copy. * * Context: User context only. * * Copy data from kernel space to user space. Caller must check * the specified block with access_ok() before calling this function. * The caller should also make sure he pins the user space address * so that we don't result in page fault and sleep. */ static __always_inline __must_check unsigned long __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) { if (should_fail_usercopy()) return n; instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } static __always_inline __must_check unsigned long __copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; instrument_copy_to_user(to, from, n); check_object_size(from, n, true); return raw_copy_to_user(to, from, n); } #ifdef INLINE_COPY_FROM_USER static inline __must_check unsigned long _copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); if (!should_fail_usercopy() && likely(access_ok(from, n))) { instrument_copy_from_user(to, from, n); res = raw_copy_from_user(to, from, n); } if (unlikely(res)) memset(to + (n - res), 0, res); return res; } #else extern __must_check unsigned long _copy_from_user(void *, const void __user *, unsigned long); #endif #ifdef INLINE_COPY_TO_USER static inline __must_check unsigned long _copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; if (access_ok(to, n)) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } #else extern __must_check unsigned long _copy_to_user(void __user *, const void *, unsigned long); #endif static __always_inline unsigned long __must_check copy_from_user(void *to, const void __user *from, unsigned long n) { if (likely(check_copy_size(to, n, false))) n = _copy_from_user(to, from, n); return n; } static __always_inline unsigned long __must_check copy_to_user(void __user *to, const void *from, unsigned long n) { if (likely(check_copy_size(from, n, true))) n = _copy_to_user(to, from, n); return n; } #ifdef CONFIG_COMPAT static __always_inline unsigned long __must_check copy_in_user(void __user *to, const void __user *from, unsigned long n) { might_fault(); if (access_ok(to, n) && access_ok(from, n)) n = raw_copy_in_user(to, from, n); return n; } #endif #ifndef copy_mc_to_kernel /* * Without arch opt-in this generic copy_mc_to_kernel() will not handle * #MC (or arch equivalent) during source read. */ static inline unsigned long __must_check copy_mc_to_kernel(void *dst, const void *src, size_t cnt) { memcpy(dst, src, cnt); return 0; } #endif static __always_inline void pagefault_disabled_inc(void) { current->pagefault_disabled++; } static __always_inline void pagefault_disabled_dec(void) { current->pagefault_disabled--; } /* * These routines enable/disable the pagefault handler. If disabled, it will * not take any locks and go straight to the fixup table. * * User access methods will not sleep when called from a pagefault_disabled() * environment. */ static inline void pagefault_disable(void) { pagefault_disabled_inc(); /* * make sure to have issued the store before a pagefault * can hit. */ barrier(); } static inline void pagefault_enable(void) { /* * make sure to issue those last loads/stores before enabling * the pagefault handler again. */ barrier(); pagefault_disabled_dec(); } /* * Is the pagefault handler disabled? If so, user access methods will not sleep. */ static inline bool pagefault_disabled(void) { return current->pagefault_disabled != 0; } /* * The pagefault handler is in general disabled by pagefault_disable() or * when in irq context (via in_atomic()). * * This function should only be used by the fault handlers. Other users should * stick to pagefault_disabled(). * Please NEVER use preempt_disable() to disable the fault handler. With * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled. * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT. */ #define faulthandler_disabled() (pagefault_disabled() || in_atomic()) #ifndef ARCH_HAS_NOCACHE_UACCESS static inline __must_check unsigned long __copy_from_user_inatomic_nocache(void *to, const void __user *from, unsigned long n) { return __copy_from_user_inatomic(to, from, n); } #endif /* ARCH_HAS_NOCACHE_UACCESS */ extern __must_check int check_zeroed_user(const void __user *from, size_t size); /** * copy_struct_from_user: copy a struct from userspace * @dst: Destination address, in kernel space. This buffer must be @ksize * bytes long. * @ksize: Size of @dst struct. * @src: Source address, in userspace. * @usize: (Alleged) size of @src struct. * * Copies a struct from userspace to kernel space, in a way that guarantees * backwards-compatibility for struct syscall arguments (as long as future * struct extensions are made such that all new fields are *appended* to the * old struct, and zeroed-out new fields have the same meaning as the old * struct). * * @ksize is just sizeof(*dst), and @usize should've been passed by userspace. * The recommended usage is something like the following: * * SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize) * { * int err; * struct foo karg = {}; * * if (usize > PAGE_SIZE) * return -E2BIG; * if (usize < FOO_SIZE_VER0) * return -EINVAL; * * err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize); * if (err) * return err; * * // ... * } * * There are three cases to consider: * * If @usize == @ksize, then it's copied verbatim. * * If @usize < @ksize, then the userspace has passed an old struct to a * newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize) * are to be zero-filled. * * If @usize > @ksize, then the userspace has passed a new struct to an * older kernel. The trailing bytes unknown to the kernel (@usize - @ksize) * are checked to ensure they are zeroed, otherwise -E2BIG is returned. * * Returns (in all cases, some data may have been copied): * * -E2BIG: (@usize > @ksize) and there are non-zero trailing bytes in @src. * * -EFAULT: access to userspace failed. */ static __always_inline __must_check int copy_struct_from_user(void *dst, size_t ksize, const void __user *src, size_t usize) { size_t size = min(ksize, usize); size_t rest = max(ksize, usize) - size; /* Deal with trailing bytes. */ if (usize < ksize) { memset(dst + size, 0, rest); } else if (usize > ksize) { int ret = check_zeroed_user(src + size, rest); if (ret <= 0) return ret ?: -E2BIG; } /* Copy the interoperable parts of the struct. */ if (copy_from_user(dst, src, size)) return -EFAULT; return 0; } bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size); long copy_from_kernel_nofault(void *dst, const void *src, size_t size); long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size); long copy_from_user_nofault(void *dst, const void __user *src, size_t size); long notrace copy_to_user_nofault(void __user *dst, const void *src, size_t size); long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr, long count); long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr, long count); long strnlen_user_nofault(const void __user *unsafe_addr, long count); /** * get_kernel_nofault(): safely attempt to read from a location * @val: read into this variable * @ptr: address to read from * * Returns 0 on success, or -EFAULT. */ #define get_kernel_nofault(val, ptr) ({ \ const typeof(val) *__gk_ptr = (ptr); \ copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\ }) #ifndef user_access_begin #define user_access_begin(ptr,len) access_ok(ptr, len) #define user_access_end() do { } while (0) #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0) #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e) #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e) #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e) static inline unsigned long user_access_save(void) { return 0UL; } static inline void user_access_restore(unsigned long flags) { } #endif #ifndef user_write_access_begin #define user_write_access_begin user_access_begin #define user_write_access_end user_access_end #endif #ifndef user_read_access_begin #define user_read_access_begin user_access_begin #define user_read_access_end user_access_end #endif #ifdef CONFIG_HARDENED_USERCOPY void usercopy_warn(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); void __noreturn usercopy_abort(const char *name, const char *detail, bool to_user, unsigned long offset, unsigned long len); #endif #endif /* __LINUX_UACCESS_H__ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NET_DST_CACHE_H #define _NET_DST_CACHE_H #include <linux/jiffies.h> #include <net/dst.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ip6_fib.h> #endif struct dst_cache { struct dst_cache_pcpu __percpu *cache; unsigned long reset_ts; }; /** * dst_cache_get - perform cache lookup * @dst_cache: the cache * * The caller should use dst_cache_get_ip4() if it need to retrieve the * source address to be used when xmitting to the cached dst. * local BH must be disabled. */ struct dst_entry *dst_cache_get(struct dst_cache *dst_cache); /** * dst_cache_get_ip4 - perform cache lookup and fetch ipv4 source address * @dst_cache: the cache * @saddr: return value for the retrieved source address * * local BH must be disabled. */ struct rtable *dst_cache_get_ip4(struct dst_cache *dst_cache, __be32 *saddr); /** * dst_cache_set_ip4 - store the ipv4 dst into the cache * @dst_cache: the cache * @dst: the entry to be cached * @saddr: the source address to be stored inside the cache * * local BH must be disabled. */ void dst_cache_set_ip4(struct dst_cache *dst_cache, struct dst_entry *dst, __be32 saddr); #if IS_ENABLED(CONFIG_IPV6) /** * dst_cache_set_ip6 - store the ipv6 dst into the cache * @dst_cache: the cache * @dst: the entry to be cached * @saddr: the source address to be stored inside the cache * * local BH must be disabled. */ void dst_cache_set_ip6(struct dst_cache *dst_cache, struct dst_entry *dst, const struct in6_addr *saddr); /** * dst_cache_get_ip6 - perform cache lookup and fetch ipv6 source address * @dst_cache: the cache * @saddr: return value for the retrieved source address * * local BH must be disabled. */ struct dst_entry *dst_cache_get_ip6(struct dst_cache *dst_cache, struct in6_addr *saddr); #endif /** * dst_cache_reset - invalidate the cache contents * @dst_cache: the cache * * This does not free the cached dst to avoid races and contentions. * the dst will be freed on later cache lookup. */ static inline void dst_cache_reset(struct dst_cache *dst_cache) { dst_cache->reset_ts = jiffies; } /** * dst_cache_reset_now - invalidate the cache contents immediately * @dst_cache: the cache * * The caller must be sure there are no concurrent users, as this frees * all dst_cache users immediately, rather than waiting for the next * per-cpu usage like dst_cache_reset does. Most callers should use the * higher speed lazily-freed dst_cache_reset function instead. */ void dst_cache_reset_now(struct dst_cache *dst_cache); /** * dst_cache_init - initialize the cache, allocating the required storage * @dst_cache: the cache * @gfp: allocation flags */ int dst_cache_init(struct dst_cache *dst_cache, gfp_t gfp); /** * dst_cache_destroy - empty the cache and free the allocated storage * @dst_cache: the cache * * No synchronization is enforced: it must be called only when the cache * is unsed. */ void dst_cache_destroy(struct dst_cache *dst_cache); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ /* * The proc filesystem constants/structures */ #ifndef _LINUX_PROC_FS_H #define _LINUX_PROC_FS_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/fs.h> struct proc_dir_entry; struct seq_file; struct seq_operations; enum { /* * All /proc entries using this ->proc_ops instance are never removed. * * If in doubt, ignore this flag. */ #ifdef MODULE PROC_ENTRY_PERMANENT = 0U, #else PROC_ENTRY_PERMANENT = 1U << 0, #endif }; struct proc_ops { unsigned int proc_flags; int (*proc_open)(struct inode *, struct file *); ssize_t (*proc_read)(struct file *, char __user *, size_t, loff_t *); ssize_t (*proc_read_iter)(struct kiocb *, struct iov_iter *); ssize_t (*proc_write)(struct file *, const char __user *, size_t, loff_t *); loff_t (*proc_lseek)(struct file *, loff_t, int); int (*proc_release)(struct inode *, struct file *); __poll_t (*proc_poll)(struct file *, struct poll_table_struct *); long (*proc_ioctl)(struct file *, unsigned int, unsigned long); #ifdef CONFIG_COMPAT long (*proc_compat_ioctl)(struct file *, unsigned int, unsigned long); #endif int (*proc_mmap)(struct file *, struct vm_area_struct *); unsigned long (*proc_get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); } __randomize_layout; /* definitions for hide_pid field */ enum proc_hidepid { HIDEPID_OFF = 0, HIDEPID_NO_ACCESS = 1, HIDEPID_INVISIBLE = 2, HIDEPID_NOT_PTRACEABLE = 4, /* Limit pids to only ptraceable pids */ }; /* definitions for proc mount option pidonly */ enum proc_pidonly { PROC_PIDONLY_OFF = 0, PROC_PIDONLY_ON = 1, }; struct proc_fs_info { struct pid_namespace *pid_ns; struct dentry *proc_self; /* For /proc/self */ struct dentry *proc_thread_self; /* For /proc/thread-self */ kgid_t pid_gid; enum proc_hidepid hide_pid; enum proc_pidonly pidonly; }; static inline struct proc_fs_info *proc_sb_info(struct super_block *sb) { return sb->s_fs_info; } #ifdef CONFIG_PROC_FS typedef int (*proc_write_t)(struct file *, char *, size_t); extern void proc_root_init(void); extern void proc_flush_pid(struct pid *); extern struct proc_dir_entry *proc_symlink(const char *, struct proc_dir_entry *, const char *); struct proc_dir_entry *_proc_mkdir(const char *, umode_t, struct proc_dir_entry *, void *, bool); extern struct proc_dir_entry *proc_mkdir(const char *, struct proc_dir_entry *); extern struct proc_dir_entry *proc_mkdir_data(const char *, umode_t, struct proc_dir_entry *, void *); extern struct proc_dir_entry *proc_mkdir_mode(const char *, umode_t, struct proc_dir_entry *); struct proc_dir_entry *proc_create_mount_point(const char *name); struct proc_dir_entry *proc_create_seq_private(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_seq_data(name, mode, parent, ops, data) \ proc_create_seq_private(name, mode, parent, ops, 0, data) #define proc_create_seq(name, mode, parent, ops) \ proc_create_seq_private(name, mode, parent, ops, 0, NULL) struct proc_dir_entry *proc_create_single_data(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); #define proc_create_single(name, mode, parent, show) \ proc_create_single_data(name, mode, parent, show, NULL) extern struct proc_dir_entry *proc_create_data(const char *, umode_t, struct proc_dir_entry *, const struct proc_ops *, void *); struct proc_dir_entry *proc_create(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct proc_ops *proc_ops); extern void proc_set_size(struct proc_dir_entry *, loff_t); extern void proc_set_user(struct proc_dir_entry *, kuid_t, kgid_t); extern void *PDE_DATA(const struct inode *); extern void *proc_get_parent_data(const struct inode *); extern void proc_remove(struct proc_dir_entry *); extern void remove_proc_entry(const char *, struct proc_dir_entry *); extern int remove_proc_subtree(const char *, struct proc_dir_entry *); struct proc_dir_entry *proc_create_net_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_net(name, mode, parent, ops, state_size) \ proc_create_net_data(name, mode, parent, ops, state_size, NULL) struct proc_dir_entry *proc_create_net_single(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); struct proc_dir_entry *proc_create_net_data_write(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, proc_write_t write, unsigned int state_size, void *data); struct proc_dir_entry *proc_create_net_single_write(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), proc_write_t write, void *data); extern struct pid *tgid_pidfd_to_pid(const struct file *file); struct bpf_iter_aux_info; extern int bpf_iter_init_seq_net(void *priv_data, struct bpf_iter_aux_info *aux); extern void bpf_iter_fini_seq_net(void *priv_data); #ifdef CONFIG_PROC_PID_ARCH_STATUS /* * The architecture which selects CONFIG_PROC_PID_ARCH_STATUS must * provide proc_pid_arch_status() definition. */ int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); #endif /* CONFIG_PROC_PID_ARCH_STATUS */ #else /* CONFIG_PROC_FS */ static inline void proc_root_init(void) { } static inline void proc_flush_pid(struct pid *pid) { } static inline struct proc_dir_entry *proc_symlink(const char *name, struct proc_dir_entry *parent,const char *dest) { return NULL;} static inline struct proc_dir_entry *proc_mkdir(const char *name, struct proc_dir_entry *parent) {return NULL;} static inline struct proc_dir_entry *proc_create_mount_point(const char *name) { return NULL; } static inline struct proc_dir_entry *_proc_mkdir(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data, bool force_lookup) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_data(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_mode(const char *name, umode_t mode, struct proc_dir_entry *parent) { return NULL; } #define proc_create_seq_private(name, mode, parent, ops, size, data) ({NULL;}) #define proc_create_seq_data(name, mode, parent, ops, data) ({NULL;}) #define proc_create_seq(name, mode, parent, ops) ({NULL;}) #define proc_create_single(name, mode, parent, show) ({NULL;}) #define proc_create_single_data(name, mode, parent, show, data) ({NULL;}) #define proc_create(name, mode, parent, proc_ops) ({NULL;}) #define proc_create_data(name, mode, parent, proc_ops, data) ({NULL;}) static inline void proc_set_size(struct proc_dir_entry *de, loff_t size) {} static inline void proc_set_user(struct proc_dir_entry *de, kuid_t uid, kgid_t gid) {} static inline void *PDE_DATA(const struct inode *inode) {BUG(); return NULL;} static inline void *proc_get_parent_data(const struct inode *inode) { BUG(); return NULL; } static inline void proc_remove(struct proc_dir_entry *de) {} #define remove_proc_entry(name, parent) do {} while (0) static inline int remove_proc_subtree(const char *name, struct proc_dir_entry *parent) { return 0; } #define proc_create_net_data(name, mode, parent, ops, state_size, data) ({NULL;}) #define proc_create_net(name, mode, parent, state_size, ops) ({NULL;}) #define proc_create_net_single(name, mode, parent, show, data) ({NULL;}) static inline struct pid *tgid_pidfd_to_pid(const struct file *file) { return ERR_PTR(-EBADF); } #endif /* CONFIG_PROC_FS */ struct net; static inline struct proc_dir_entry *proc_net_mkdir( struct net *net, const char *name, struct proc_dir_entry *parent) { return _proc_mkdir(name, 0, parent, net, true); } struct ns_common; int open_related_ns(struct ns_common *ns, struct ns_common *(*get_ns)(struct ns_common *ns)); /* get the associated pid namespace for a file in procfs */ static inline struct pid_namespace *proc_pid_ns(struct super_block *sb) { return proc_sb_info(sb)->pid_ns; } bool proc_ns_file(const struct file *file); #endif /* _LINUX_PROC_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PTRACE_H #define _LINUX_PTRACE_H #include <linux/compiler.h> /* For unlikely. */ #include <linux/sched.h> /* For struct task_struct. */ #include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */ #include <linux/err.h> /* for IS_ERR_VALUE */ #include <linux/bug.h> /* For BUG_ON. */ #include <linux/pid_namespace.h> /* For task_active_pid_ns. */ #include <uapi/linux/ptrace.h> #include <linux/seccomp.h> /* Add sp to seccomp_data, as seccomp is user API, we don't want to modify it */ struct syscall_info { __u64 sp; struct seccomp_data data; }; extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); /* * Ptrace flags * * The owner ship rules for task->ptrace which holds the ptrace * flags is simple. When a task is running it owns it's task->ptrace * flags. When the a task is stopped the ptracer owns task->ptrace. */ #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */ #define PT_PTRACED 0x00000001 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */ #define PT_OPT_FLAG_SHIFT 3 /* PT_TRACE_* event enable flags */ #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event))) #define PT_TRACESYSGOOD PT_EVENT_FLAG(0) #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK) #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK) #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE) #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC) #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE) #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT) #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP) #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT) #define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT) /* single stepping state bits (used on ARM and PA-RISC) */ #define PT_SINGLESTEP_BIT 31 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT) #define PT_BLOCKSTEP_BIT 30 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT) extern long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data); extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len); extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len); extern void ptrace_disable(struct task_struct *); extern int ptrace_request(struct task_struct *child, long request, unsigned long addr, unsigned long data); extern void ptrace_notify(int exit_code); extern void __ptrace_link(struct task_struct *child, struct task_struct *new_parent, const struct cred *ptracer_cred); extern void __ptrace_unlink(struct task_struct *child); extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead); #define PTRACE_MODE_READ 0x01 #define PTRACE_MODE_ATTACH 0x02 #define PTRACE_MODE_NOAUDIT 0x04 #define PTRACE_MODE_FSCREDS 0x08 #define PTRACE_MODE_REALCREDS 0x10 /* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */ #define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS) #define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS) #define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS) #define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS) /** * ptrace_may_access - check whether the caller is permitted to access * a target task. * @task: target task * @mode: selects type of access and caller credentials * * Returns true on success, false on denial. * * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must * be set in @mode to specify whether the access was requested through * a filesystem syscall (should use effective capabilities and fsuid * of the caller) or through an explicit syscall such as * process_vm_writev or ptrace (and should use the real credentials). */ extern bool ptrace_may_access(struct task_struct *task, unsigned int mode); static inline int ptrace_reparented(struct task_struct *child) { return !same_thread_group(child->real_parent, child->parent); } static inline void ptrace_unlink(struct task_struct *child) { if (unlikely(child->ptrace)) __ptrace_unlink(child); } int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr, unsigned long data); int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr, unsigned long data); /** * ptrace_parent - return the task that is tracing the given task * @task: task to consider * * Returns %NULL if no one is tracing @task, or the &struct task_struct * pointer to its tracer. * * Must called under rcu_read_lock(). The pointer returned might be kept * live only by RCU. During exec, this may be called with task_lock() held * on @task, still held from when check_unsafe_exec() was called. */ static inline struct task_struct *ptrace_parent(struct task_struct *task) { if (unlikely(task->ptrace)) return rcu_dereference(task->parent); return NULL; } /** * ptrace_event_enabled - test whether a ptrace event is enabled * @task: ptracee of interest * @event: %PTRACE_EVENT_* to test * * Test whether @event is enabled for ptracee @task. * * Returns %true if @event is enabled, %false otherwise. */ static inline bool ptrace_event_enabled(struct task_struct *task, int event) { return task->ptrace & PT_EVENT_FLAG(event); } /** * ptrace_event - possibly stop for a ptrace event notification * @event: %PTRACE_EVENT_* value to report * @message: value for %PTRACE_GETEVENTMSG to return * * Check whether @event is enabled and, if so, report @event and @message * to the ptrace parent. * * Called without locks. */ static inline void ptrace_event(int event, unsigned long message) { if (unlikely(ptrace_event_enabled(current, event))) { current->ptrace_message = message; ptrace_notify((event << 8) | SIGTRAP); } else if (event == PTRACE_EVENT_EXEC) { /* legacy EXEC report via SIGTRAP */ if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED) send_sig(SIGTRAP, current, 0); } } /** * ptrace_event_pid - possibly stop for a ptrace event notification * @event: %PTRACE_EVENT_* value to report * @pid: process identifier for %PTRACE_GETEVENTMSG to return * * Check whether @event is enabled and, if so, report @event and @pid * to the ptrace parent. @pid is reported as the pid_t seen from the * the ptrace parent's pid namespace. * * Called without locks. */ static inline void ptrace_event_pid(int event, struct pid *pid) { /* * FIXME: There's a potential race if a ptracer in a different pid * namespace than parent attaches between computing message below and * when we acquire tasklist_lock in ptrace_stop(). If this happens, * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG. */ unsigned long message = 0; struct pid_namespace *ns; rcu_read_lock(); ns = task_active_pid_ns(rcu_dereference(current->parent)); if (ns) message = pid_nr_ns(pid, ns); rcu_read_unlock(); ptrace_event(event, message); } /** * ptrace_init_task - initialize ptrace state for a new child * @child: new child task * @ptrace: true if child should be ptrace'd by parent's tracer * * This is called immediately after adding @child to its parent's children * list. @ptrace is false in the normal case, and true to ptrace @child. * * Called with current's siglock and write_lock_irq(&tasklist_lock) held. */ static inline void ptrace_init_task(struct task_struct *child, bool ptrace) { INIT_LIST_HEAD(&child->ptrace_entry); INIT_LIST_HEAD(&child->ptraced); child->jobctl = 0; child->ptrace = 0; child->parent = child->real_parent; if (unlikely(ptrace) && current->ptrace) { child->ptrace = current->ptrace; __ptrace_link(child, current->parent, current->ptracer_cred); if (child->ptrace & PT_SEIZED) task_set_jobctl_pending(child, JOBCTL_TRAP_STOP); else sigaddset(&child->pending.signal, SIGSTOP); } else child->ptracer_cred = NULL; } /** * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped * @task: task in %EXIT_DEAD state * * Called with write_lock(&tasklist_lock) held. */ static inline void ptrace_release_task(struct task_struct *task) { BUG_ON(!list_empty(&task->ptraced)); ptrace_unlink(task); BUG_ON(!list_empty(&task->ptrace_entry)); } #ifndef force_successful_syscall_return /* * System call handlers that, upon successful completion, need to return a * negative value should call force_successful_syscall_return() right before * returning. On architectures where the syscall convention provides for a * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly * others), this macro can be used to ensure that the error flag will not get * set. On architectures which do not support a separate error flag, the macro * is a no-op and the spurious error condition needs to be filtered out by some * other means (e.g., in user-level, by passing an extra argument to the * syscall handler, or something along those lines). */ #define force_successful_syscall_return() do { } while (0) #endif #ifndef is_syscall_success /* * On most systems we can tell if a syscall is a success based on if the retval * is an error value. On some systems like ia64 and powerpc they have different * indicators of success/failure and must define their own. */ #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs)))) #endif /* * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__. * * These do-nothing inlines are used when the arch does not * implement single-step. The kerneldoc comments are here * to document the interface for all arch definitions. */ #ifndef arch_has_single_step /** * arch_has_single_step - does this CPU support user-mode single-step? * * If this is defined, then there must be function declarations or * inlines for user_enable_single_step() and user_disable_single_step(). * arch_has_single_step() should evaluate to nonzero iff the machine * supports instruction single-step for user mode. * It can be a constant or it can test a CPU feature bit. */ #define arch_has_single_step() (0) /** * user_enable_single_step - single-step in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_single_step() has returned nonzero. * Set @task so that when it returns to user mode, it will trap after the * next single instruction executes. If arch_has_block_step() is defined, * this must clear the effects of user_enable_block_step() too. */ static inline void user_enable_single_step(struct task_struct *task) { BUG(); /* This can never be called. */ } /** * user_disable_single_step - cancel user-mode single-step * @task: either current or a task stopped in %TASK_TRACED * * Clear @task of the effects of user_enable_single_step() and * user_enable_block_step(). This can be called whether or not either * of those was ever called on @task, and even if arch_has_single_step() * returned zero. */ static inline void user_disable_single_step(struct task_struct *task) { } #else extern void user_enable_single_step(struct task_struct *); extern void user_disable_single_step(struct task_struct *); #endif /* arch_has_single_step */ #ifndef arch_has_block_step /** * arch_has_block_step - does this CPU support user-mode block-step? * * If this is defined, then there must be a function declaration or inline * for user_enable_block_step(), and arch_has_single_step() must be defined * too. arch_has_block_step() should evaluate to nonzero iff the machine * supports step-until-branch for user mode. It can be a constant or it * can test a CPU feature bit. */ #define arch_has_block_step() (0) /** * user_enable_block_step - step until branch in user-mode task * @task: either current or a task stopped in %TASK_TRACED * * This can only be called when arch_has_block_step() has returned nonzero, * and will never be called when single-instruction stepping is being used. * Set @task so that when it returns to user mode, it will trap after the * next branch or trap taken. */ static inline void user_enable_block_step(struct task_struct *task) { BUG(); /* This can never be called. */ } #else extern void user_enable_block_step(struct task_struct *); #endif /* arch_has_block_step */ #ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT extern void user_single_step_report(struct pt_regs *regs); #else static inline void user_single_step_report(struct pt_regs *regs) { kernel_siginfo_t info; clear_siginfo(&info); info.si_signo = SIGTRAP; info.si_errno = 0; info.si_code = SI_USER; info.si_pid = 0; info.si_uid = 0; force_sig_info(&info); } #endif #ifndef arch_ptrace_stop_needed /** * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with the siglock held, to decide whether or not it's * necessary to release the siglock and call arch_ptrace_stop() with the * same @code and @info arguments. It can be defined to a constant if * arch_ptrace_stop() is never required, or always is. On machines where * this makes sense, it should be defined to a quick test to optimize out * calling arch_ptrace_stop() when it would be superfluous. For example, * if the thread has not been back to user mode since the last stop, the * thread state might indicate that nothing needs to be done. * * This is guaranteed to be invoked once before a task stops for ptrace and * may include arch-specific operations necessary prior to a ptrace stop. */ #define arch_ptrace_stop_needed(code, info) (0) #endif #ifndef arch_ptrace_stop /** * arch_ptrace_stop - Do machine-specific work before stopping for ptrace * @code: current->exit_code value ptrace will stop with * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with * * This is called with no locks held when arch_ptrace_stop_needed() has * just returned nonzero. It is allowed to block, e.g. for user memory * access. The arch can have machine-specific work to be done before * ptrace stops. On ia64, register backing store gets written back to user * memory here. Since this can be costly (requires dropping the siglock), * we only do it when the arch requires it for this particular stop, as * indicated by arch_ptrace_stop_needed(). */ #define arch_ptrace_stop(code, info) do { } while (0) #endif #ifndef current_pt_regs #define current_pt_regs() task_pt_regs(current) #endif /* * unlike current_pt_regs(), this one is equal to task_pt_regs(current) * on *all* architectures; the only reason to have a per-arch definition * is optimisation. */ #ifndef signal_pt_regs #define signal_pt_regs() task_pt_regs(current) #endif #ifndef current_user_stack_pointer #define current_user_stack_pointer() user_stack_pointer(current_pt_regs()) #endif extern int task_current_syscall(struct task_struct *target, struct syscall_info *info); extern void sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact); #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_KDEV_T_H #define _LINUX_KDEV_T_H #include <uapi/linux/kdev_t.h> #define MINORBITS 20 #define MINORMASK ((1U << MINORBITS) - 1) #define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS)) #define MINOR(dev) ((unsigned int) ((dev) & MINORMASK)) #define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi)) #define print_dev_t(buffer, dev) \ sprintf((buffer), "%u:%u\n", MAJOR(dev), MINOR(dev)) #define format_dev_t(buffer, dev) \ ({ \ sprintf(buffer, "%u:%u", MAJOR(dev), MINOR(dev)); \ buffer; \ }) /* acceptable for old filesystems */ static __always_inline bool old_valid_dev(dev_t dev) { return MAJOR(dev) < 256 && MINOR(dev) < 256; } static __always_inline u16 old_encode_dev(dev_t dev) { return (MAJOR(dev) << 8) | MINOR(dev); } static __always_inline dev_t old_decode_dev(u16 val) { return MKDEV((val >> 8) & 255, val & 255); } static __always_inline u32 new_encode_dev(dev_t dev) { unsigned major = MAJOR(dev); unsigned minor = MINOR(dev); return (minor & 0xff) | (major << 8) | ((minor & ~0xff) << 12); } static __always_inline dev_t new_decode_dev(u32 dev) { unsigned major = (dev & 0xfff00) >> 8; unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00); return MKDEV(major, minor); } static __always_inline u64 huge_encode_dev(dev_t dev) { return new_encode_dev(dev); } static __always_inline dev_t huge_decode_dev(u64 dev) { return new_decode_dev(dev); } static __always_inline int sysv_valid_dev(dev_t dev) { return MAJOR(dev) < (1<<14) && MINOR(dev) < (1<<18); } static __always_inline u32 sysv_encode_dev(dev_t dev) { return MINOR(dev) | (MAJOR(dev) << 18); } static __always_inline unsigned sysv_major(u32 dev) { return (dev >> 18) & 0x3fff; } static __always_inline unsigned sysv_minor(u32 dev) { return dev & 0x3ffff; } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_SCHED_GENERIC_H #define __NET_SCHED_GENERIC_H #include <linux/netdevice.h> #include <linux/types.h> #include <linux/rcupdate.h> #include <linux/pkt_sched.h> #include <linux/pkt_cls.h> #include <linux/percpu.h> #include <linux/dynamic_queue_limits.h> #include <linux/list.h> #include <linux/refcount.h> #include <linux/workqueue.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/atomic.h> #include <linux/hashtable.h> #include <net/gen_stats.h> #include <net/rtnetlink.h> #include <net/flow_offload.h> struct Qdisc_ops; struct qdisc_walker; struct tcf_walker; struct module; struct bpf_flow_keys; struct qdisc_rate_table { struct tc_ratespec rate; u32 data[256]; struct qdisc_rate_table *next; int refcnt; }; enum qdisc_state_t { __QDISC_STATE_SCHED, __QDISC_STATE_DEACTIVATED, __QDISC_STATE_MISSED, }; struct qdisc_size_table { struct rcu_head rcu; struct list_head list; struct tc_sizespec szopts; int refcnt; u16 data[]; }; /* similar to sk_buff_head, but skb->prev pointer is undefined. */ struct qdisc_skb_head { struct sk_buff *head; struct sk_buff *tail; __u32 qlen; spinlock_t lock; }; struct Qdisc { int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *sch); unsigned int flags; #define TCQ_F_BUILTIN 1 #define TCQ_F_INGRESS 2 #define TCQ_F_CAN_BYPASS 4 #define TCQ_F_MQROOT 8 #define TCQ_F_ONETXQUEUE 0x10 /* dequeue_skb() can assume all skbs are for * q->dev_queue : It can test * netif_xmit_frozen_or_stopped() before * dequeueing next packet. * Its true for MQ/MQPRIO slaves, or non * multiqueue device. */ #define TCQ_F_WARN_NONWC (1 << 16) #define TCQ_F_CPUSTATS 0x20 /* run using percpu statistics */ #define TCQ_F_NOPARENT 0x40 /* root of its hierarchy : * qdisc_tree_decrease_qlen() should stop. */ #define TCQ_F_INVISIBLE 0x80 /* invisible by default in dump */ #define TCQ_F_NOLOCK 0x100 /* qdisc does not require locking */ #define TCQ_F_OFFLOADED 0x200 /* qdisc is offloaded to HW */ u32 limit; const struct Qdisc_ops *ops; struct qdisc_size_table __rcu *stab; struct hlist_node hash; u32 handle; u32 parent; struct netdev_queue *dev_queue; struct net_rate_estimator __rcu *rate_est; struct gnet_stats_basic_cpu __percpu *cpu_bstats; struct gnet_stats_queue __percpu *cpu_qstats; int pad; refcount_t refcnt; /* * For performance sake on SMP, we put highly modified fields at the end */ struct sk_buff_head gso_skb ____cacheline_aligned_in_smp; struct qdisc_skb_head q; struct gnet_stats_basic_packed bstats; seqcount_t running; struct gnet_stats_queue qstats; unsigned long state; struct Qdisc *next_sched; struct sk_buff_head skb_bad_txq; spinlock_t busylock ____cacheline_aligned_in_smp; spinlock_t seqlock; /* for NOLOCK qdisc, true if there are no enqueued skbs */ bool empty; struct rcu_head rcu; /* private data */ long privdata[] ____cacheline_aligned; }; static inline void qdisc_refcount_inc(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return; refcount_inc(&qdisc->refcnt); } /* Intended to be used by unlocked users, when concurrent qdisc release is * possible. */ static inline struct Qdisc *qdisc_refcount_inc_nz(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_BUILTIN) return qdisc; if (refcount_inc_not_zero(&qdisc->refcnt)) return qdisc; return NULL; } static inline bool qdisc_is_running(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) return spin_is_locked(&qdisc->seqlock); return (raw_read_seqcount(&qdisc->running) & 1) ? true : false; } static inline bool qdisc_is_percpu_stats(const struct Qdisc *q) { return q->flags & TCQ_F_CPUSTATS; } static inline bool qdisc_is_empty(const struct Qdisc *qdisc) { if (qdisc_is_percpu_stats(qdisc)) return READ_ONCE(qdisc->empty); return !READ_ONCE(qdisc->q.qlen); } static inline bool qdisc_run_begin(struct Qdisc *qdisc) { if (qdisc->flags & TCQ_F_NOLOCK) { if (spin_trylock(&qdisc->seqlock)) goto nolock_empty; /* Paired with smp_mb__after_atomic() to make sure * STATE_MISSED checking is synchronized with clearing * in pfifo_fast_dequeue(). */ smp_mb__before_atomic(); /* If the MISSED flag is set, it means other thread has * set the MISSED flag before second spin_trylock(), so * we can return false here to avoid multi cpus doing * the set_bit() and second spin_trylock() concurrently. */ if (test_bit(__QDISC_STATE_MISSED, &qdisc->state)) return false; /* Set the MISSED flag before the second spin_trylock(), * if the second spin_trylock() return false, it means * other cpu holding the lock will do dequeuing for us * or it will see the MISSED flag set after releasing * lock and reschedule the net_tx_action() to do the * dequeuing. */ set_bit(__QDISC_STATE_MISSED, &qdisc->state); /* spin_trylock() only has load-acquire semantic, so use * smp_mb__after_atomic() to ensure STATE_MISSED is set * before doing the second spin_trylock(). */ smp_mb__after_atomic(); /* Retry again in case other CPU may not see the new flag * after it releases the lock at the end of qdisc_run_end(). */ if (!spin_trylock(&qdisc->seqlock)) return false; nolock_empty: WRITE_ONCE(qdisc->empty, false); } else if (qdisc_is_running(qdisc)) { return false; } /* Variant of write_seqcount_begin() telling lockdep a trylock * was attempted. */ raw_write_seqcount_begin(&qdisc->running); seqcount_acquire(&qdisc->running.dep_map, 0, 1, _RET_IP_); return true; } static inline void qdisc_run_end(struct Qdisc *qdisc) { write_seqcount_end(&qdisc->running); if (qdisc->flags & TCQ_F_NOLOCK) { spin_unlock(&qdisc->seqlock); if (unlikely(test_bit(__QDISC_STATE_MISSED, &qdisc->state))) { clear_bit(__QDISC_STATE_MISSED, &qdisc->state); __netif_schedule(qdisc); } } } static inline bool qdisc_may_bulk(const struct Qdisc *qdisc) { return qdisc->flags & TCQ_F_ONETXQUEUE; } static inline int qdisc_avail_bulklimit(const struct netdev_queue *txq) { #ifdef CONFIG_BQL /* Non-BQL migrated drivers will return 0, too. */ return dql_avail(&txq->dql); #else return 0; #endif } struct Qdisc_class_ops { unsigned int flags; /* Child qdisc manipulation */ struct netdev_queue * (*select_queue)(struct Qdisc *, struct tcmsg *); int (*graft)(struct Qdisc *, unsigned long cl, struct Qdisc *, struct Qdisc **, struct netlink_ext_ack *extack); struct Qdisc * (*leaf)(struct Qdisc *, unsigned long cl); void (*qlen_notify)(struct Qdisc *, unsigned long); /* Class manipulation routines */ unsigned long (*find)(struct Qdisc *, u32 classid); int (*change)(struct Qdisc *, u32, u32, struct nlattr **, unsigned long *, struct netlink_ext_ack *); int (*delete)(struct Qdisc *, unsigned long); void (*walk)(struct Qdisc *, struct qdisc_walker * arg); /* Filter manipulation */ struct tcf_block * (*tcf_block)(struct Qdisc *sch, unsigned long arg, struct netlink_ext_ack *extack); unsigned long (*bind_tcf)(struct Qdisc *, unsigned long, u32 classid); void (*unbind_tcf)(struct Qdisc *, unsigned long); /* rtnetlink specific */ int (*dump)(struct Qdisc *, unsigned long, struct sk_buff *skb, struct tcmsg*); int (*dump_stats)(struct Qdisc *, unsigned long, struct gnet_dump *); }; /* Qdisc_class_ops flag values */ /* Implements API that doesn't require rtnl lock */ enum qdisc_class_ops_flags { QDISC_CLASS_OPS_DOIT_UNLOCKED = 1, }; struct Qdisc_ops { struct Qdisc_ops *next; const struct Qdisc_class_ops *cl_ops; char id[IFNAMSIZ]; int priv_size; unsigned int static_flags; int (*enqueue)(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free); struct sk_buff * (*dequeue)(struct Qdisc *); struct sk_buff * (*peek)(struct Qdisc *); int (*init)(struct Qdisc *sch, struct nlattr *arg, struct netlink_ext_ack *extack); void (*reset)(struct Qdisc *); void (*destroy)(struct Qdisc *); int (*change)(struct Qdisc *sch, struct nlattr *arg, struct netlink_ext_ack *extack); void (*attach)(struct Qdisc *sch); int (*change_tx_queue_len)(struct Qdisc *, unsigned int); void (*change_real_num_tx)(struct Qdisc *sch, unsigned int new_real_tx); int (*dump)(struct Qdisc *, struct sk_buff *); int (*dump_stats)(struct Qdisc *, struct gnet_dump *); void (*ingress_block_set)(struct Qdisc *sch, u32 block_index); void (*egress_block_set)(struct Qdisc *sch, u32 block_index); u32 (*ingress_block_get)(struct Qdisc *sch); u32 (*egress_block_get)(struct Qdisc *sch); struct module *owner; }; struct tcf_result { union { struct { unsigned long class; u32 classid; }; const struct tcf_proto *goto_tp; /* used in the skb_tc_reinsert function */ struct { bool ingress; struct gnet_stats_queue *qstats; }; }; }; struct tcf_chain; struct tcf_proto_ops { struct list_head head; char kind[IFNAMSIZ]; int (*classify)(struct sk_buff *, const struct tcf_proto *, struct tcf_result *); int (*init)(struct tcf_proto*); void (*destroy)(struct tcf_proto *tp, bool rtnl_held, struct netlink_ext_ack *extack); void* (*get)(struct tcf_proto*, u32 handle); void (*put)(struct tcf_proto *tp, void *f); int (*change)(struct net *net, struct sk_buff *, struct tcf_proto*, unsigned long, u32 handle, struct nlattr **, void **, bool, bool, struct netlink_ext_ack *); int (*delete)(struct tcf_proto *tp, void *arg, bool *last, bool rtnl_held, struct netlink_ext_ack *); bool (*delete_empty)(struct tcf_proto *tp); void (*walk)(struct tcf_proto *tp, struct tcf_walker *arg, bool rtnl_held); int (*reoffload)(struct tcf_proto *tp, bool add, flow_setup_cb_t *cb, void *cb_priv, struct netlink_ext_ack *extack); void (*hw_add)(struct tcf_proto *tp, void *type_data); void (*hw_del)(struct tcf_proto *tp, void *type_data); void (*bind_class)(void *, u32, unsigned long, void *, unsigned long); void * (*tmplt_create)(struct net *net, struct tcf_chain *chain, struct nlattr **tca, struct netlink_ext_ack *extack); void (*tmplt_destroy)(void *tmplt_priv); /* rtnetlink specific */ int (*dump)(struct net*, struct tcf_proto*, void *, struct sk_buff *skb, struct tcmsg*, bool); int (*terse_dump)(struct net *net, struct tcf_proto *tp, void *fh, struct sk_buff *skb, struct tcmsg *t, bool rtnl_held); int (*tmplt_dump)(struct sk_buff *skb, struct net *net, void *tmplt_priv); struct module *owner; int flags; }; /* Classifiers setting TCF_PROTO_OPS_DOIT_UNLOCKED in tcf_proto_ops->flags * are expected to implement tcf_proto_ops->delete_empty(), otherwise race * conditions can occur when filters are inserted/deleted simultaneously. */ enum tcf_proto_ops_flags { TCF_PROTO_OPS_DOIT_UNLOCKED = 1, }; struct tcf_proto { /* Fast access part */ struct tcf_proto __rcu *next; void __rcu *root; /* called under RCU BH lock*/ int (*classify)(struct sk_buff *, const struct tcf_proto *, struct tcf_result *); __be16 protocol; /* All the rest */ u32 prio; void *data; const struct tcf_proto_ops *ops; struct tcf_chain *chain; /* Lock protects tcf_proto shared state and can be used by unlocked * classifiers to protect their private data. */ spinlock_t lock; bool deleting; refcount_t refcnt; struct rcu_head rcu; struct hlist_node destroy_ht_node; }; struct qdisc_skb_cb { struct { unsigned int pkt_len; u16 slave_dev_queue_mapping; u16 tc_classid; }; #define QDISC_CB_PRIV_LEN 20 unsigned char data[QDISC_CB_PRIV_LEN]; u16 mru; }; typedef void tcf_chain_head_change_t(struct tcf_proto *tp_head, void *priv); struct tcf_chain { /* Protects filter_chain. */ struct mutex filter_chain_lock; struct tcf_proto __rcu *filter_chain; struct list_head list; struct tcf_block *block; u32 index; /* chain index */ unsigned int refcnt; unsigned int action_refcnt; bool explicitly_created; bool flushing; const struct tcf_proto_ops *tmplt_ops; void *tmplt_priv; struct rcu_head rcu; }; struct tcf_block { /* Lock protects tcf_block and lifetime-management data of chains * attached to the block (refcnt, action_refcnt, explicitly_created). */ struct mutex lock; struct list_head chain_list; u32 index; /* block index for shared blocks */ u32 classid; /* which class this block belongs to */ refcount_t refcnt; struct net *net; struct Qdisc *q; struct rw_semaphore cb_lock; /* protects cb_list and offload counters */ struct flow_block flow_block; struct list_head owner_list; bool keep_dst; atomic_t offloadcnt; /* Number of oddloaded filters */ unsigned int nooffloaddevcnt; /* Number of devs unable to do offload */ unsigned int lockeddevcnt; /* Number of devs that require rtnl lock. */ struct { struct tcf_chain *chain; struct list_head filter_chain_list; } chain0; struct rcu_head rcu; DECLARE_HASHTABLE(proto_destroy_ht, 7); struct mutex proto_destroy_lock; /* Lock for proto_destroy hashtable. */ }; #ifdef CONFIG_PROVE_LOCKING static inline bool lockdep_tcf_chain_is_locked(struct tcf_chain *chain) { return lockdep_is_held(&chain->filter_chain_lock); } static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp) { return lockdep_is_held(&tp->lock); } #else static inline bool lockdep_tcf_chain_is_locked(struct tcf_block *chain) { return true; } static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp) { return true; } #endif /* #ifdef CONFIG_PROVE_LOCKING */ #define tcf_chain_dereference(p, chain) \ rcu_dereference_protected(p, lockdep_tcf_chain_is_locked(chain)) #define tcf_proto_dereference(p, tp) \ rcu_dereference_protected(p, lockdep_tcf_proto_is_locked(tp)) static inline void qdisc_cb_private_validate(const struct sk_buff *skb, int sz) { struct qdisc_skb_cb *qcb; BUILD_BUG_ON(sizeof(skb->cb) < sizeof(*qcb)); BUILD_BUG_ON(sizeof(qcb->data) < sz); } static inline int qdisc_qlen_cpu(const struct Qdisc *q) { return this_cpu_ptr(q->cpu_qstats)->qlen; } static inline int qdisc_qlen(const struct Qdisc *q) { return q->q.qlen; } static inline int qdisc_qlen_sum(const struct Qdisc *q) { __u32 qlen = q->qstats.qlen; int i; if (qdisc_is_percpu_stats(q)) { for_each_possible_cpu(i) qlen += per_cpu_ptr(q->cpu_qstats, i)->qlen; } else { qlen += q->q.qlen; } return qlen; } static inline struct qdisc_skb_cb *qdisc_skb_cb(const struct sk_buff *skb) { return (struct qdisc_skb_cb *)skb->cb; } static inline spinlock_t *qdisc_lock(struct Qdisc *qdisc) { return &qdisc->q.lock; } static inline struct Qdisc *qdisc_root(const struct Qdisc *qdisc) { struct Qdisc *q = rcu_dereference_rtnl(qdisc->dev_queue->qdisc); return q; } static inline struct Qdisc *qdisc_root_bh(const struct Qdisc *qdisc) { return rcu_dereference_bh(qdisc->dev_queue->qdisc); } static inline struct Qdisc *qdisc_root_sleeping(const struct Qdisc *qdisc) { return qdisc->dev_queue->qdisc_sleeping; } /* The qdisc root lock is a mechanism by which to top level * of a qdisc tree can be locked from any qdisc node in the * forest. This allows changing the configuration of some * aspect of the qdisc tree while blocking out asynchronous * qdisc access in the packet processing paths. * * It is only legal to do this when the root will not change * on us. Otherwise we'll potentially lock the wrong qdisc * root. This is enforced by holding the RTNL semaphore, which * all users of this lock accessor must do. */ static inline spinlock_t *qdisc_root_lock(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root(qdisc); ASSERT_RTNL(); return qdisc_lock(root); } static inline spinlock_t *qdisc_root_sleeping_lock(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root_sleeping(qdisc); ASSERT_RTNL(); return qdisc_lock(root); } static inline seqcount_t *qdisc_root_sleeping_running(const struct Qdisc *qdisc) { struct Qdisc *root = qdisc_root_sleeping(qdisc); ASSERT_RTNL(); return &root->running; } static inline struct net_device *qdisc_dev(const struct Qdisc *qdisc) { return qdisc->dev_queue->dev; } static inline void sch_tree_lock(const struct Qdisc *q) { spin_lock_bh(qdisc_root_sleeping_lock(q)); } static inline void sch_tree_unlock(const struct Qdisc *q) { spin_unlock_bh(qdisc_root_sleeping_lock(q)); } extern struct Qdisc noop_qdisc; extern struct Qdisc_ops noop_qdisc_ops; extern struct Qdisc_ops pfifo_fast_ops; extern struct Qdisc_ops mq_qdisc_ops; extern struct Qdisc_ops noqueue_qdisc_ops; extern const struct Qdisc_ops *default_qdisc_ops; static inline const struct Qdisc_ops * get_default_qdisc_ops(const struct net_device *dev, int ntx) { return ntx < dev->real_num_tx_queues ? default_qdisc_ops : &pfifo_fast_ops; } struct Qdisc_class_common { u32 classid; struct hlist_node hnode; }; struct Qdisc_class_hash { struct hlist_head *hash; unsigned int hashsize; unsigned int hashmask; unsigned int hashelems; }; static inline unsigned int qdisc_class_hash(u32 id, u32 mask) { id ^= id >> 8; id ^= id >> 4; return id & mask; } static inline struct Qdisc_class_common * qdisc_class_find(const struct Qdisc_class_hash *hash, u32 id) { struct Qdisc_class_common *cl; unsigned int h; if (!id) return NULL; h = qdisc_class_hash(id, hash->hashmask); hlist_for_each_entry(cl, &hash->hash[h], hnode) { if (cl->classid == id) return cl; } return NULL; } static inline int tc_classid_to_hwtc(struct net_device *dev, u32 classid) { u32 hwtc = TC_H_MIN(classid) - TC_H_MIN_PRIORITY; return (hwtc < netdev_get_num_tc(dev)) ? hwtc : -EINVAL; } int qdisc_class_hash_init(struct Qdisc_class_hash *); void qdisc_class_hash_insert(struct Qdisc_class_hash *, struct Qdisc_class_common *); void qdisc_class_hash_remove(struct Qdisc_class_hash *, struct Qdisc_class_common *); void qdisc_class_hash_grow(struct Qdisc *, struct Qdisc_class_hash *); void qdisc_class_hash_destroy(struct Qdisc_class_hash *); int dev_qdisc_change_tx_queue_len(struct net_device *dev); void dev_qdisc_change_real_num_tx(struct net_device *dev, unsigned int new_real_tx); void dev_init_scheduler(struct net_device *dev); void dev_shutdown(struct net_device *dev); void dev_activate(struct net_device *dev); void dev_deactivate(struct net_device *dev); void dev_deactivate_many(struct list_head *head); struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, struct Qdisc *qdisc); void qdisc_reset(struct Qdisc *qdisc); void qdisc_put(struct Qdisc *qdisc); void qdisc_put_unlocked(struct Qdisc *qdisc); void qdisc_tree_reduce_backlog(struct Qdisc *qdisc, int n, int len); #ifdef CONFIG_NET_SCHED int qdisc_offload_dump_helper(struct Qdisc *q, enum tc_setup_type type, void *type_data); void qdisc_offload_graft_helper(struct net_device *dev, struct Qdisc *sch, struct Qdisc *new, struct Qdisc *old, enum tc_setup_type type, void *type_data, struct netlink_ext_ack *extack); #else static inline int qdisc_offload_dump_helper(struct Qdisc *q, enum tc_setup_type type, void *type_data) { q->flags &= ~TCQ_F_OFFLOADED; return 0; } static inline void qdisc_offload_graft_helper(struct net_device *dev, struct Qdisc *sch, struct Qdisc *new, struct Qdisc *old, enum tc_setup_type type, void *type_data, struct netlink_ext_ack *extack) { } #endif struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, struct netlink_ext_ack *extack); void qdisc_free(struct Qdisc *qdisc); struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, const struct Qdisc_ops *ops, u32 parentid, struct netlink_ext_ack *extack); void __qdisc_calculate_pkt_len(struct sk_buff *skb, const struct qdisc_size_table *stab); int skb_do_redirect(struct sk_buff *); static inline bool skb_at_tc_ingress(const struct sk_buff *skb) { #ifdef CONFIG_NET_CLS_ACT return skb->tc_at_ingress; #else return false; #endif } static inline bool skb_skip_tc_classify(struct sk_buff *skb) { #ifdef CONFIG_NET_CLS_ACT if (skb->tc_skip_classify) { skb->tc_skip_classify = 0; return true; } #endif return false; } /* Reset all TX qdiscs greater than index of a device. */ static inline void qdisc_reset_all_tx_gt(struct net_device *dev, unsigned int i) { struct Qdisc *qdisc; for (; i < dev->num_tx_queues; i++) { qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc); if (qdisc) { spin_lock_bh(qdisc_lock(qdisc)); qdisc_reset(qdisc); spin_unlock_bh(qdisc_lock(qdisc)); } } } /* Are all TX queues of the device empty? */ static inline bool qdisc_all_tx_empty(const struct net_device *dev) { unsigned int i; rcu_read_lock(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); const struct Qdisc *q = rcu_dereference(txq->qdisc); if (!qdisc_is_empty(q)) { rcu_read_unlock(); return false; } } rcu_read_unlock(); return true; } /* Are any of the TX qdiscs changing? */ static inline bool qdisc_tx_changing(const struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); if (rcu_access_pointer(txq->qdisc) != txq->qdisc_sleeping) return true; } return false; } /* Is the device using the noop qdisc on all queues? */ static inline bool qdisc_tx_is_noop(const struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); if (rcu_access_pointer(txq->qdisc) != &noop_qdisc) return false; } return true; } static inline unsigned int qdisc_pkt_len(const struct sk_buff *skb) { return qdisc_skb_cb(skb)->pkt_len; } /* additional qdisc xmit flags (NET_XMIT_MASK in linux/netdevice.h) */ enum net_xmit_qdisc_t { __NET_XMIT_STOLEN = 0x00010000, __NET_XMIT_BYPASS = 0x00020000, }; #ifdef CONFIG_NET_CLS_ACT #define net_xmit_drop_count(e) ((e) & __NET_XMIT_STOLEN ? 0 : 1) #else #define net_xmit_drop_count(e) (1) #endif static inline void qdisc_calculate_pkt_len(struct sk_buff *skb, const struct Qdisc *sch) { #ifdef CONFIG_NET_SCHED struct qdisc_size_table *stab = rcu_dereference_bh(sch->stab); if (stab) __qdisc_calculate_pkt_len(skb, stab); #endif } static inline int qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { qdisc_calculate_pkt_len(skb, sch); return sch->enqueue(skb, sch, to_free); } static inline void _bstats_update(struct gnet_stats_basic_packed *bstats, __u64 bytes, __u32 packets) { bstats->bytes += bytes; bstats->packets += packets; } static inline void bstats_update(struct gnet_stats_basic_packed *bstats, const struct sk_buff *skb) { _bstats_update(bstats, qdisc_pkt_len(skb), skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1); } static inline void _bstats_cpu_update(struct gnet_stats_basic_cpu *bstats, __u64 bytes, __u32 packets) { u64_stats_update_begin(&bstats->syncp); _bstats_update(&bstats->bstats, bytes, packets); u64_stats_update_end(&bstats->syncp); } static inline void bstats_cpu_update(struct gnet_stats_basic_cpu *bstats, const struct sk_buff *skb) { u64_stats_update_begin(&bstats->syncp); bstats_update(&bstats->bstats, skb); u64_stats_update_end(&bstats->syncp); } static inline void qdisc_bstats_cpu_update(struct Qdisc *sch, const struct sk_buff *skb) { bstats_cpu_update(this_cpu_ptr(sch->cpu_bstats), skb); } static inline void qdisc_bstats_update(struct Qdisc *sch, const struct sk_buff *skb) { bstats_update(&sch->bstats, skb); } static inline void qdisc_qstats_backlog_dec(struct Qdisc *sch, const struct sk_buff *skb) { sch->qstats.backlog -= qdisc_pkt_len(skb); } static inline void qdisc_qstats_cpu_backlog_dec(struct Qdisc *sch, const struct sk_buff *skb) { this_cpu_sub(sch->cpu_qstats->backlog, qdisc_pkt_len(skb)); } static inline void qdisc_qstats_backlog_inc(struct Qdisc *sch, const struct sk_buff *skb) { sch->qstats.backlog += qdisc_pkt_len(skb); } static inline void qdisc_qstats_cpu_backlog_inc(struct Qdisc *sch, const struct sk_buff *skb) { this_cpu_add(sch->cpu_qstats->backlog, qdisc_pkt_len(skb)); } static inline void qdisc_qstats_cpu_qlen_inc(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->qlen); } static inline void qdisc_qstats_cpu_qlen_dec(struct Qdisc *sch) { this_cpu_dec(sch->cpu_qstats->qlen); } static inline void qdisc_qstats_cpu_requeues_inc(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->requeues); } static inline void __qdisc_qstats_drop(struct Qdisc *sch, int count) { sch->qstats.drops += count; } static inline void qstats_drop_inc(struct gnet_stats_queue *qstats) { qstats->drops++; } static inline void qstats_overlimit_inc(struct gnet_stats_queue *qstats) { qstats->overlimits++; } static inline void qdisc_qstats_drop(struct Qdisc *sch) { qstats_drop_inc(&sch->qstats); } static inline void qdisc_qstats_cpu_drop(struct Qdisc *sch) { this_cpu_inc(sch->cpu_qstats->drops); } static inline void qdisc_qstats_overlimit(struct Qdisc *sch) { sch->qstats.overlimits++; } static inline int qdisc_qstats_copy(struct gnet_dump *d, struct Qdisc *sch) { __u32 qlen = qdisc_qlen_sum(sch); return gnet_stats_copy_queue(d, sch->cpu_qstats, &sch->qstats, qlen); } static inline void qdisc_qstats_qlen_backlog(struct Qdisc *sch, __u32 *qlen, __u32 *backlog) { struct gnet_stats_queue qstats = { 0 }; __u32 len = qdisc_qlen_sum(sch); __gnet_stats_copy_queue(&qstats, sch->cpu_qstats, &sch->qstats, len); *qlen = qstats.qlen; *backlog = qstats.backlog; } static inline void qdisc_tree_flush_backlog(struct Qdisc *sch) { __u32 qlen, backlog; qdisc_qstats_qlen_backlog(sch, &qlen, &backlog); qdisc_tree_reduce_backlog(sch, qlen, backlog); } static inline void qdisc_purge_queue(struct Qdisc *sch) { __u32 qlen, backlog; qdisc_qstats_qlen_backlog(sch, &qlen, &backlog); qdisc_reset(sch); qdisc_tree_reduce_backlog(sch, qlen, backlog); } static inline void qdisc_skb_head_init(struct qdisc_skb_head *qh) { qh->head = NULL; qh->tail = NULL; qh->qlen = 0; } static inline void __qdisc_enqueue_tail(struct sk_buff *skb, struct qdisc_skb_head *qh) { struct sk_buff *last = qh->tail; if (last) { skb->next = NULL; last->next = skb; qh->tail = skb; } else { qh->tail = skb; qh->head = skb; } qh->qlen++; } static inline int qdisc_enqueue_tail(struct sk_buff *skb, struct Qdisc *sch) { __qdisc_enqueue_tail(skb, &sch->q); qdisc_qstats_backlog_inc(sch, skb); return NET_XMIT_SUCCESS; } static inline void __qdisc_enqueue_head(struct sk_buff *skb, struct qdisc_skb_head *qh) { skb->next = qh->head; if (!qh->head) qh->tail = skb; qh->head = skb; qh->qlen++; } static inline struct sk_buff *__qdisc_dequeue_head(struct qdisc_skb_head *qh) { struct sk_buff *skb = qh->head; if (likely(skb != NULL)) { qh->head = skb->next; qh->qlen--; if (qh->head == NULL) qh->tail = NULL; skb->next = NULL; } return skb; } static inline struct sk_buff *qdisc_dequeue_head(struct Qdisc *sch) { struct sk_buff *skb = __qdisc_dequeue_head(&sch->q); if (likely(skb != NULL)) { qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); } return skb; } /* Instead of calling kfree_skb() while root qdisc lock is held, * queue the skb for future freeing at end of __dev_xmit_skb() */ static inline void __qdisc_drop(struct sk_buff *skb, struct sk_buff **to_free) { skb->next = *to_free; *to_free = skb; } static inline void __qdisc_drop_all(struct sk_buff *skb, struct sk_buff **to_free) { if (skb->prev) skb->prev->next = *to_free; else skb->next = *to_free; *to_free = skb; } static inline unsigned int __qdisc_queue_drop_head(struct Qdisc *sch, struct qdisc_skb_head *qh, struct sk_buff **to_free) { struct sk_buff *skb = __qdisc_dequeue_head(qh); if (likely(skb != NULL)) { unsigned int len = qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); __qdisc_drop(skb, to_free); return len; } return 0; } static inline struct sk_buff *qdisc_peek_head(struct Qdisc *sch) { const struct qdisc_skb_head *qh = &sch->q; return qh->head; } /* generic pseudo peek method for non-work-conserving qdisc */ static inline struct sk_buff *qdisc_peek_dequeued(struct Qdisc *sch) { struct sk_buff *skb = skb_peek(&sch->gso_skb); /* we can reuse ->gso_skb because peek isn't called for root qdiscs */ if (!skb) { skb = sch->dequeue(sch); if (skb) { __skb_queue_head(&sch->gso_skb, skb); /* it's still part of the queue */ qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; } } return skb; } static inline void qdisc_update_stats_at_dequeue(struct Qdisc *sch, struct sk_buff *skb) { if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_backlog_dec(sch, skb); qdisc_bstats_cpu_update(sch, skb); qdisc_qstats_cpu_qlen_dec(sch); } else { qdisc_qstats_backlog_dec(sch, skb); qdisc_bstats_update(sch, skb); sch->q.qlen--; } } static inline void qdisc_update_stats_at_enqueue(struct Qdisc *sch, unsigned int pkt_len) { if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_qlen_inc(sch); this_cpu_add(sch->cpu_qstats->backlog, pkt_len); } else { sch->qstats.backlog += pkt_len; sch->q.qlen++; } } /* use instead of qdisc->dequeue() for all qdiscs queried with ->peek() */ static inline struct sk_buff *qdisc_dequeue_peeked(struct Qdisc *sch) { struct sk_buff *skb = skb_peek(&sch->gso_skb); if (skb) { skb = __skb_dequeue(&sch->gso_skb); if (qdisc_is_percpu_stats(sch)) { qdisc_qstats_cpu_backlog_dec(sch, skb); qdisc_qstats_cpu_qlen_dec(sch); } else { qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; } } else { skb = sch->dequeue(sch); } return skb; } static inline void __qdisc_reset_queue(struct qdisc_skb_head *qh) { /* * We do not know the backlog in bytes of this list, it * is up to the caller to correct it */ ASSERT_RTNL(); if (qh->qlen) { rtnl_kfree_skbs(qh->head, qh->tail); qh->head = NULL; qh->tail = NULL; qh->qlen = 0; } } static inline void qdisc_reset_queue(struct Qdisc *sch) { __qdisc_reset_queue(&sch->q); sch->qstats.backlog = 0; } static inline struct Qdisc *qdisc_replace(struct Qdisc *sch, struct Qdisc *new, struct Qdisc **pold) { struct Qdisc *old; sch_tree_lock(sch); old = *pold; *pold = new; if (old != NULL) qdisc_purge_queue(old); sch_tree_unlock(sch); return old; } static inline void rtnl_qdisc_drop(struct sk_buff *skb, struct Qdisc *sch) { rtnl_kfree_skbs(skb, skb); qdisc_qstats_drop(sch); } static inline int qdisc_drop_cpu(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop(skb, to_free); qdisc_qstats_cpu_drop(sch); return NET_XMIT_DROP; } static inline int qdisc_drop(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop(skb, to_free); qdisc_qstats_drop(sch); return NET_XMIT_DROP; } static inline int qdisc_drop_all(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { __qdisc_drop_all(skb, to_free); qdisc_qstats_drop(sch); return NET_XMIT_DROP; } /* Length to Time (L2T) lookup in a qdisc_rate_table, to determine how long it will take to send a packet given its size. */ static inline u32 qdisc_l2t(struct qdisc_rate_table* rtab, unsigned int pktlen) { int slot = pktlen + rtab->rate.cell_align + rtab->rate.overhead; if (slot < 0) slot = 0; slot >>= rtab->rate.cell_log; if (slot > 255) return rtab->data[255]*(slot >> 8) + rtab->data[slot & 0xFF]; return rtab->data[slot]; } struct psched_ratecfg { u64 rate_bytes_ps; /* bytes per second */ u32 mult; u16 overhead; u8 linklayer; u8 shift; }; static inline u64 psched_l2t_ns(const struct psched_ratecfg *r, unsigned int len) { len += r->overhead; if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) return ((u64)(DIV_ROUND_UP(len,48)*53) * r->mult) >> r->shift; return ((u64)len * r->mult) >> r->shift; } void psched_ratecfg_precompute(struct psched_ratecfg *r, const struct tc_ratespec *conf, u64 rate64); static inline void psched_ratecfg_getrate(struct tc_ratespec *res, const struct psched_ratecfg *r) { memset(res, 0, sizeof(*res)); /* legacy struct tc_ratespec has a 32bit @rate field * Qdisc using 64bit rate should add new attributes * in order to maintain compatibility. */ res->rate = min_t(u64, r->rate_bytes_ps, ~0U); res->overhead = r->overhead; res->linklayer = (r->linklayer & TC_LINKLAYER_MASK); } /* Mini Qdisc serves for specific needs of ingress/clsact Qdisc. * The fast path only needs to access filter list and to update stats */ struct mini_Qdisc { struct tcf_proto *filter_list; struct tcf_block *block; struct gnet_stats_basic_cpu __percpu *cpu_bstats; struct gnet_stats_queue __percpu *cpu_qstats; struct rcu_head rcu; }; static inline void mini_qdisc_bstats_cpu_update(struct mini_Qdisc *miniq, const struct sk_buff *skb) { bstats_cpu_update(this_cpu_ptr(miniq->cpu_bstats), skb); } static inline void mini_qdisc_qstats_cpu_drop(struct mini_Qdisc *miniq) { this_cpu_inc(miniq->cpu_qstats->drops); } struct mini_Qdisc_pair { struct mini_Qdisc miniq1; struct mini_Qdisc miniq2; struct mini_Qdisc __rcu **p_miniq; }; void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, struct tcf_proto *tp_head); void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, struct mini_Qdisc __rcu **p_miniq); void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, struct tcf_block *block); static inline int skb_tc_reinsert(struct sk_buff *skb, struct tcf_result *res) { return res->ingress ? netif_receive_skb(skb) : dev_queue_xmit(skb); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_CLOCK_H #define _LINUX_SCHED_CLOCK_H #include <linux/smp.h> /* * Do not use outside of architecture code which knows its limitations. * * sched_clock() has no promise of monotonicity or bounded drift between * CPUs, use (which you should not) requires disabling IRQs. * * Please use one of the three interfaces below. */ extern unsigned long long notrace sched_clock(void); /* * See the comment in kernel/sched/clock.c */ extern u64 running_clock(void); extern u64 sched_clock_cpu(int cpu); extern void sched_clock_init(void); #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK static inline void sched_clock_tick(void) { } static inline void clear_sched_clock_stable(void) { } static inline void sched_clock_idle_sleep_event(void) { } static inline void sched_clock_idle_wakeup_event(void) { } static inline u64 cpu_clock(int cpu) { return sched_clock(); } static inline u64 local_clock(void) { return sched_clock(); } #else extern int sched_clock_stable(void); extern void clear_sched_clock_stable(void); /* * When sched_clock_stable(), __sched_clock_offset provides the offset * between local_clock() and sched_clock(). */ extern u64 __sched_clock_offset; extern void sched_clock_tick(void); extern void sched_clock_tick_stable(void); extern void sched_clock_idle_sleep_event(void); extern void sched_clock_idle_wakeup_event(void); /* * As outlined in clock.c, provides a fast, high resolution, nanosecond * time source that is monotonic per cpu argument and has bounded drift * between cpus. * * ######################### BIG FAT WARNING ########################## * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # * # go backwards !! # * #################################################################### */ static inline u64 cpu_clock(int cpu) { return sched_clock_cpu(cpu); } static inline u64 local_clock(void) { return sched_clock_cpu(raw_smp_processor_id()); } #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * An i/f to runtime opt-in for irq time accounting based off of sched_clock. * The reason for this explicit opt-in is not to have perf penalty with * slow sched_clocks. */ extern void enable_sched_clock_irqtime(void); extern void disable_sched_clock_irqtime(void); #else static inline void enable_sched_clock_irqtime(void) {} static inline void disable_sched_clock_irqtime(void) {} #endif #endif /* _LINUX_SCHED_CLOCK_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 // SPDX-License-Identifier: GPL-2.0-only /* * NSA Security-Enhanced Linux (SELinux) security module * * This file contains the SELinux hook function implementations. * * Authors: Stephen Smalley, <sds@tycho.nsa.gov> * Chris Vance, <cvance@nai.com> * Wayne Salamon, <wsalamon@nai.com> * James Morris <jmorris@redhat.com> * * Copyright (C) 2001,2002 Networks Associates Technology, Inc. * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> * Eric Paris <eparis@redhat.com> * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * <dgoeddel@trustedcs.com> * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. * Paul Moore <paul@paul-moore.com> * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. * Yuichi Nakamura <ynakam@hitachisoft.jp> * Copyright (C) 2016 Mellanox Technologies */ #include <linux/init.h> #include <linux/kd.h> #include <linux/kernel.h> #include <linux/kernel_read_file.h> #include <linux/tracehook.h> #include <linux/errno.h> #include <linux/sched/signal.h> #include <linux/sched/task.h> #include <linux/lsm_hooks.h> #include <linux/xattr.h> #include <linux/capability.h> #include <linux/unistd.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/slab.h> #include <linux/pagemap.h> #include <linux/proc_fs.h> #include <linux/swap.h> #include <linux/spinlock.h> #include <linux/syscalls.h> #include <linux/dcache.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/namei.h> #include <linux/mount.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/tty.h> #include <net/icmp.h> #include <net/ip.h> /* for local_port_range[] */ #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ #include <net/inet_connection_sock.h> #include <net/net_namespace.h> #include <net/netlabel.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/netdevice.h> /* for network interface checks */ #include <net/netlink.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/dccp.h> #include <linux/sctp.h> #include <net/sctp/structs.h> #include <linux/quota.h> #include <linux/un.h> /* for Unix socket types */ #include <net/af_unix.h> /* for Unix socket types */ #include <linux/parser.h> #include <linux/nfs_mount.h> #include <net/ipv6.h> #include <linux/hugetlb.h> #include <linux/personality.h> #include <linux/audit.h> #include <linux/string.h> #include <linux/mutex.h> #include <linux/posix-timers.h> #include <linux/syslog.h> #include <linux/user_namespace.h> #include <linux/export.h> #include <linux/msg.h> #include <linux/shm.h> #include <linux/bpf.h> #include <linux/kernfs.h> #include <linux/stringhash.h> /* for hashlen_string() */ #include <uapi/linux/mount.h> #include <linux/fsnotify.h> #include <linux/fanotify.h> #include "avc.h" #include "objsec.h" #include "netif.h" #include "netnode.h" #include "netport.h" #include "ibpkey.h" #include "xfrm.h" #include "netlabel.h" #include "audit.h" #include "avc_ss.h" struct selinux_state selinux_state; /* SECMARK reference count */ static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); #ifdef CONFIG_SECURITY_SELINUX_DEVELOP static int selinux_enforcing_boot __initdata; static int __init enforcing_setup(char *str) { unsigned long enforcing; if (!kstrtoul(str, 0, &enforcing)) selinux_enforcing_boot = enforcing ? 1 : 0; return 1; } __setup("enforcing=", enforcing_setup); #else #define selinux_enforcing_boot 1 #endif int selinux_enabled_boot __initdata = 1; #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM static int __init selinux_enabled_setup(char *str) { unsigned long enabled; if (!kstrtoul(str, 0, &enabled)) selinux_enabled_boot = enabled ? 1 : 0; return 1; } __setup("selinux=", selinux_enabled_setup); #endif static unsigned int selinux_checkreqprot_boot = CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; static int __init checkreqprot_setup(char *str) { unsigned long checkreqprot; if (!kstrtoul(str, 0, &checkreqprot)) { selinux_checkreqprot_boot = checkreqprot ? 1 : 0; if (checkreqprot) pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n"); } return 1; } __setup("checkreqprot=", checkreqprot_setup); /** * selinux_secmark_enabled - Check to see if SECMARK is currently enabled * * Description: * This function checks the SECMARK reference counter to see if any SECMARK * targets are currently configured, if the reference counter is greater than * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is * enabled, false (0) if SECMARK is disabled. If the always_check_network * policy capability is enabled, SECMARK is always considered enabled. * */ static int selinux_secmark_enabled(void) { return (selinux_policycap_alwaysnetwork() || atomic_read(&selinux_secmark_refcount)); } /** * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled * * Description: * This function checks if NetLabel or labeled IPSEC is enabled. Returns true * (1) if any are enabled or false (0) if neither are enabled. If the * always_check_network policy capability is enabled, peer labeling * is always considered enabled. * */ static int selinux_peerlbl_enabled(void) { return (selinux_policycap_alwaysnetwork() || netlbl_enabled() || selinux_xfrm_enabled()); } static int selinux_netcache_avc_callback(u32 event) { if (event == AVC_CALLBACK_RESET) { sel_netif_flush(); sel_netnode_flush(); sel_netport_flush(); synchronize_net(); } return 0; } static int selinux_lsm_notifier_avc_callback(u32 event) { if (event == AVC_CALLBACK_RESET) { sel_ib_pkey_flush(); call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); } return 0; } /* * initialise the security for the init task */ static void cred_init_security(void) { struct cred *cred = (struct cred *) current->real_cred; struct task_security_struct *tsec; tsec = selinux_cred(cred); tsec->osid = tsec->sid = SECINITSID_KERNEL; } /* * get the security ID of a set of credentials */ static inline u32 cred_sid(const struct cred *cred) { const struct task_security_struct *tsec; tsec = selinux_cred(cred); return tsec->sid; } /* * get the objective security ID of a task */ static inline u32 task_sid(const struct task_struct *task) { u32 sid; rcu_read_lock(); sid = cred_sid(__task_cred(task)); rcu_read_unlock(); return sid; } static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); /* * Try reloading inode security labels that have been marked as invalid. The * @may_sleep parameter indicates when sleeping and thus reloading labels is * allowed; when set to false, returns -ECHILD when the label is * invalid. The @dentry parameter should be set to a dentry of the inode. */ static int __inode_security_revalidate(struct inode *inode, struct dentry *dentry, bool may_sleep) { struct inode_security_struct *isec = selinux_inode(inode); might_sleep_if(may_sleep); if (selinux_initialized(&selinux_state) && isec->initialized != LABEL_INITIALIZED) { if (!may_sleep) return -ECHILD; /* * Try reloading the inode security label. This will fail if * @opt_dentry is NULL and no dentry for this inode can be * found; in that case, continue using the old label. */ inode_doinit_with_dentry(inode, dentry); } return 0; } static struct inode_security_struct *inode_security_novalidate(struct inode *inode) { return selinux_inode(inode); } static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) { int error; error = __inode_security_revalidate(inode, NULL, !rcu); if (error) return ERR_PTR(error); return selinux_inode(inode); } /* * Get the security label of an inode. */ static struct inode_security_struct *inode_security(struct inode *inode) { __inode_security_revalidate(inode, NULL, true); return selinux_inode(inode); } static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); return selinux_inode(inode); } /* * Get the security label of a dentry's backing inode. */ static struct inode_security_struct *backing_inode_security(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); __inode_security_revalidate(inode, dentry, true); return selinux_inode(inode); } static void inode_free_security(struct inode *inode) { struct inode_security_struct *isec = selinux_inode(inode); struct superblock_security_struct *sbsec; if (!isec) return; sbsec = inode->i_sb->s_security; /* * As not all inode security structures are in a list, we check for * empty list outside of the lock to make sure that we won't waste * time taking a lock doing nothing. * * The list_del_init() function can be safely called more than once. * It should not be possible for this function to be called with * concurrent list_add(), but for better safety against future changes * in the code, we use list_empty_careful() here. */ if (!list_empty_careful(&isec->list)) { spin_lock(&sbsec->isec_lock); list_del_init(&isec->list); spin_unlock(&sbsec->isec_lock); } } static void superblock_free_security(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; sb->s_security = NULL; kfree(sbsec); } struct selinux_mnt_opts { const char *fscontext, *context, *rootcontext, *defcontext; }; static void selinux_free_mnt_opts(void *mnt_opts) { struct selinux_mnt_opts *opts = mnt_opts; kfree(opts->fscontext); kfree(opts->context); kfree(opts->rootcontext); kfree(opts->defcontext); kfree(opts); } enum { Opt_error = -1, Opt_context = 0, Opt_defcontext = 1, Opt_fscontext = 2, Opt_rootcontext = 3, Opt_seclabel = 4, }; #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} static struct { const char *name; int len; int opt; bool has_arg; } tokens[] = { A(context, true), A(fscontext, true), A(defcontext, true), A(rootcontext, true), A(seclabel, false), }; #undef A static int match_opt_prefix(char *s, int l, char **arg) { int i; for (i = 0; i < ARRAY_SIZE(tokens); i++) { size_t len = tokens[i].len; if (len > l || memcmp(s, tokens[i].name, len)) continue; if (tokens[i].has_arg) { if (len == l || s[len] != '=') continue; *arg = s + len + 1; } else if (len != l) continue; return tokens[i].opt; } return Opt_error; } #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" static int may_context_mount_sb_relabel(u32 sid, struct superblock_security_struct *sbsec, const struct cred *cred) { const struct task_security_struct *tsec = selinux_cred(cred); int rc; rc = avc_has_perm(&selinux_state, tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELFROM, NULL); if (rc) return rc; rc = avc_has_perm(&selinux_state, tsec->sid, sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELTO, NULL); return rc; } static int may_context_mount_inode_relabel(u32 sid, struct superblock_security_struct *sbsec, const struct cred *cred) { const struct task_security_struct *tsec = selinux_cred(cred); int rc; rc = avc_has_perm(&selinux_state, tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__RELABELFROM, NULL); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, NULL); return rc; } static int selinux_is_genfs_special_handling(struct super_block *sb) { /* Special handling. Genfs but also in-core setxattr handler */ return !strcmp(sb->s_type->name, "sysfs") || !strcmp(sb->s_type->name, "pstore") || !strcmp(sb->s_type->name, "debugfs") || !strcmp(sb->s_type->name, "tracefs") || !strcmp(sb->s_type->name, "rootfs") || (selinux_policycap_cgroupseclabel() && (!strcmp(sb->s_type->name, "cgroup") || !strcmp(sb->s_type->name, "cgroup2"))); } static int selinux_is_sblabel_mnt(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; /* * IMPORTANT: Double-check logic in this function when adding a new * SECURITY_FS_USE_* definition! */ BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); switch (sbsec->behavior) { case SECURITY_FS_USE_XATTR: case SECURITY_FS_USE_TRANS: case SECURITY_FS_USE_TASK: case SECURITY_FS_USE_NATIVE: return 1; case SECURITY_FS_USE_GENFS: return selinux_is_genfs_special_handling(sb); /* Never allow relabeling on context mounts */ case SECURITY_FS_USE_MNTPOINT: case SECURITY_FS_USE_NONE: default: return 0; } } static int sb_finish_set_opts(struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; struct dentry *root = sb->s_root; struct inode *root_inode = d_backing_inode(root); int rc = 0; if (sbsec->behavior == SECURITY_FS_USE_XATTR) { /* Make sure that the xattr handler exists and that no error other than -ENODATA is returned by getxattr on the root directory. -ENODATA is ok, as this may be the first boot of the SELinux kernel before we have assigned xattr values to the filesystem. */ if (!(root_inode->i_opflags & IOP_XATTR)) { pr_warn("SELinux: (dev %s, type %s) has no " "xattr support\n", sb->s_id, sb->s_type->name); rc = -EOPNOTSUPP; goto out; } rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); if (rc < 0 && rc != -ENODATA) { if (rc == -EOPNOTSUPP) pr_warn("SELinux: (dev %s, type " "%s) has no security xattr handler\n", sb->s_id, sb->s_type->name); else pr_warn("SELinux: (dev %s, type " "%s) getxattr errno %d\n", sb->s_id, sb->s_type->name, -rc); goto out; } } sbsec->flags |= SE_SBINITIALIZED; /* * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply * leave the flag untouched because sb_clone_mnt_opts might be handing * us a superblock that needs the flag to be cleared. */ if (selinux_is_sblabel_mnt(sb)) sbsec->flags |= SBLABEL_MNT; else sbsec->flags &= ~SBLABEL_MNT; /* Initialize the root inode. */ rc = inode_doinit_with_dentry(root_inode, root); /* Initialize any other inodes associated with the superblock, e.g. inodes created prior to initial policy load or inodes created during get_sb by a pseudo filesystem that directly populates itself. */ spin_lock(&sbsec->isec_lock); while (!list_empty(&sbsec->isec_head)) { struct inode_security_struct *isec = list_first_entry(&sbsec->isec_head, struct inode_security_struct, list); struct inode *inode = isec->inode; list_del_init(&isec->list); spin_unlock(&sbsec->isec_lock); inode = igrab(inode); if (inode) { if (!IS_PRIVATE(inode)) inode_doinit_with_dentry(inode, NULL); iput(inode); } spin_lock(&sbsec->isec_lock); } spin_unlock(&sbsec->isec_lock); out: return rc; } static int bad_option(struct superblock_security_struct *sbsec, char flag, u32 old_sid, u32 new_sid) { char mnt_flags = sbsec->flags & SE_MNTMASK; /* check if the old mount command had the same options */ if (sbsec->flags & SE_SBINITIALIZED) if (!(sbsec->flags & flag) || (old_sid != new_sid)) return 1; /* check if we were passed the same options twice, * aka someone passed context=a,context=b */ if (!(sbsec->flags & SE_SBINITIALIZED)) if (mnt_flags & flag) return 1; return 0; } static int parse_sid(struct super_block *sb, const char *s, u32 *sid) { int rc = security_context_str_to_sid(&selinux_state, s, sid, GFP_KERNEL); if (rc) pr_warn("SELinux: security_context_str_to_sid" "(%s) failed for (dev %s, type %s) errno=%d\n", s, sb->s_id, sb->s_type->name, rc); return rc; } /* * Allow filesystems with binary mount data to explicitly set mount point * labeling information. */ static int selinux_set_mnt_opts(struct super_block *sb, void *mnt_opts, unsigned long kern_flags, unsigned long *set_kern_flags) { const struct cred *cred = current_cred(); struct superblock_security_struct *sbsec = sb->s_security; struct dentry *root = sbsec->sb->s_root; struct selinux_mnt_opts *opts = mnt_opts; struct inode_security_struct *root_isec; u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; u32 defcontext_sid = 0; int rc = 0; mutex_lock(&sbsec->lock); if (!selinux_initialized(&selinux_state)) { if (!opts) { /* Defer initialization until selinux_complete_init, after the initial policy is loaded and the security server is ready to handle calls. */ goto out; } rc = -EINVAL; pr_warn("SELinux: Unable to set superblock options " "before the security server is initialized\n"); goto out; } if (kern_flags && !set_kern_flags) { /* Specifying internal flags without providing a place to * place the results is not allowed */ rc = -EINVAL; goto out; } /* * Binary mount data FS will come through this function twice. Once * from an explicit call and once from the generic calls from the vfs. * Since the generic VFS calls will not contain any security mount data * we need to skip the double mount verification. * * This does open a hole in which we will not notice if the first * mount using this sb set explict options and a second mount using * this sb does not set any security options. (The first options * will be used for both mounts) */ if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) && !opts) goto out; root_isec = backing_inode_security_novalidate(root); /* * parse the mount options, check if they are valid sids. * also check if someone is trying to mount the same sb more * than once with different security options. */ if (opts) { if (opts->fscontext) { rc = parse_sid(sb, opts->fscontext, &fscontext_sid); if (rc) goto out; if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, fscontext_sid)) goto out_double_mount; sbsec->flags |= FSCONTEXT_MNT; } if (opts->context) { rc = parse_sid(sb, opts->context, &context_sid); if (rc) goto out; if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, context_sid)) goto out_double_mount; sbsec->flags |= CONTEXT_MNT; } if (opts->rootcontext) { rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); if (rc) goto out; if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, rootcontext_sid)) goto out_double_mount; sbsec->flags |= ROOTCONTEXT_MNT; } if (opts->defcontext) { rc = parse_sid(sb, opts->defcontext, &defcontext_sid); if (rc) goto out; if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, defcontext_sid)) goto out_double_mount; sbsec->flags |= DEFCONTEXT_MNT; } } if (sbsec->flags & SE_SBINITIALIZED) { /* previously mounted with options, but not on this attempt? */ if ((sbsec->flags & SE_MNTMASK) && !opts) goto out_double_mount; rc = 0; goto out; } if (strcmp(sb->s_type->name, "proc") == 0) sbsec->flags |= SE_SBPROC | SE_SBGENFS; if (!strcmp(sb->s_type->name, "debugfs") || !strcmp(sb->s_type->name, "tracefs") || !strcmp(sb->s_type->name, "binder") || !strcmp(sb->s_type->name, "bpf") || !strcmp(sb->s_type->name, "pstore")) sbsec->flags |= SE_SBGENFS; if (!strcmp(sb->s_type->name, "sysfs") || !strcmp(sb->s_type->name, "cgroup") || !strcmp(sb->s_type->name, "cgroup2")) sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; if (!sbsec->behavior) { /* * Determine the labeling behavior to use for this * filesystem type. */ rc = security_fs_use(&selinux_state, sb); if (rc) { pr_warn("%s: security_fs_use(%s) returned %d\n", __func__, sb->s_type->name, rc); goto out; } } /* * If this is a user namespace mount and the filesystem type is not * explicitly whitelisted, then no contexts are allowed on the command * line and security labels must be ignored. */ if (sb->s_user_ns != &init_user_ns && strcmp(sb->s_type->name, "tmpfs") && strcmp(sb->s_type->name, "ramfs") && strcmp(sb->s_type->name, "devpts")) { if (context_sid || fscontext_sid || rootcontext_sid || defcontext_sid) { rc = -EACCES; goto out; } if (sbsec->behavior == SECURITY_FS_USE_XATTR) { sbsec->behavior = SECURITY_FS_USE_MNTPOINT; rc = security_transition_sid(&selinux_state, current_sid(), current_sid(), SECCLASS_FILE, NULL, &sbsec->mntpoint_sid); if (rc) goto out; } goto out_set_opts; } /* sets the context of the superblock for the fs being mounted. */ if (fscontext_sid) { rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); if (rc) goto out; sbsec->sid = fscontext_sid; } /* * Switch to using mount point labeling behavior. * sets the label used on all file below the mountpoint, and will set * the superblock context if not already set. */ if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { sbsec->behavior = SECURITY_FS_USE_NATIVE; *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; } if (context_sid) { if (!fscontext_sid) { rc = may_context_mount_sb_relabel(context_sid, sbsec, cred); if (rc) goto out; sbsec->sid = context_sid; } else { rc = may_context_mount_inode_relabel(context_sid, sbsec, cred); if (rc) goto out; } if (!rootcontext_sid) rootcontext_sid = context_sid; sbsec->mntpoint_sid = context_sid; sbsec->behavior = SECURITY_FS_USE_MNTPOINT; } if (rootcontext_sid) { rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, cred); if (rc) goto out; root_isec->sid = rootcontext_sid; root_isec->initialized = LABEL_INITIALIZED; } if (defcontext_sid) { if (sbsec->behavior != SECURITY_FS_USE_XATTR && sbsec->behavior != SECURITY_FS_USE_NATIVE) { rc = -EINVAL; pr_warn("SELinux: defcontext option is " "invalid for this filesystem type\n"); goto out; } if (defcontext_sid != sbsec->def_sid) { rc = may_context_mount_inode_relabel(defcontext_sid, sbsec, cred); if (rc) goto out; } sbsec->def_sid = defcontext_sid; } out_set_opts: rc = sb_finish_set_opts(sb); out: mutex_unlock(&sbsec->lock); return rc; out_double_mount: rc = -EINVAL; pr_warn("SELinux: mount invalid. Same superblock, different " "security settings for (dev %s, type %s)\n", sb->s_id, sb->s_type->name); goto out; } static int selinux_cmp_sb_context(const struct super_block *oldsb, const struct super_block *newsb) { struct superblock_security_struct *old = oldsb->s_security; struct superblock_security_struct *new = newsb->s_security; char oldflags = old->flags & SE_MNTMASK; char newflags = new->flags & SE_MNTMASK; if (oldflags != newflags) goto mismatch; if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) goto mismatch; if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) goto mismatch; if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) goto mismatch; if (oldflags & ROOTCONTEXT_MNT) { struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); if (oldroot->sid != newroot->sid) goto mismatch; } return 0; mismatch: pr_warn("SELinux: mount invalid. Same superblock, " "different security settings for (dev %s, " "type %s)\n", newsb->s_id, newsb->s_type->name); return -EBUSY; } static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb, unsigned long kern_flags, unsigned long *set_kern_flags) { int rc = 0; const struct superblock_security_struct *oldsbsec = oldsb->s_security; struct superblock_security_struct *newsbsec = newsb->s_security; int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); int set_context = (oldsbsec->flags & CONTEXT_MNT); int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); /* * if the parent was able to be mounted it clearly had no special lsm * mount options. thus we can safely deal with this superblock later */ if (!selinux_initialized(&selinux_state)) return 0; /* * Specifying internal flags without providing a place to * place the results is not allowed. */ if (kern_flags && !set_kern_flags) return -EINVAL; /* how can we clone if the old one wasn't set up?? */ BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); /* if fs is reusing a sb, make sure that the contexts match */ if (newsbsec->flags & SE_SBINITIALIZED) { if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; return selinux_cmp_sb_context(oldsb, newsb); } mutex_lock(&newsbsec->lock); newsbsec->flags = oldsbsec->flags; newsbsec->sid = oldsbsec->sid; newsbsec->def_sid = oldsbsec->def_sid; newsbsec->behavior = oldsbsec->behavior; if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { rc = security_fs_use(&selinux_state, newsb); if (rc) goto out; } if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { newsbsec->behavior = SECURITY_FS_USE_NATIVE; *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; } if (set_context) { u32 sid = oldsbsec->mntpoint_sid; if (!set_fscontext) newsbsec->sid = sid; if (!set_rootcontext) { struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); newisec->sid = sid; } newsbsec->mntpoint_sid = sid; } if (set_rootcontext) { const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); newisec->sid = oldisec->sid; } sb_finish_set_opts(newsb); out: mutex_unlock(&newsbsec->lock); return rc; } static int selinux_add_opt(int token, const char *s, void **mnt_opts) { struct selinux_mnt_opts *opts = *mnt_opts; if (token == Opt_seclabel) /* eaten and completely ignored */ return 0; if (!opts) { opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); if (!opts) return -ENOMEM; *mnt_opts = opts; } if (!s) return -ENOMEM; switch (token) { case Opt_context: if (opts->context || opts->defcontext) goto Einval; opts->context = s; break; case Opt_fscontext: if (opts->fscontext) goto Einval; opts->fscontext = s; break; case Opt_rootcontext: if (opts->rootcontext) goto Einval; opts->rootcontext = s; break; case Opt_defcontext: if (opts->context || opts->defcontext) goto Einval; opts->defcontext = s; break; } return 0; Einval: pr_warn(SEL_MOUNT_FAIL_MSG); return -EINVAL; } static int selinux_add_mnt_opt(const char *option, const char *val, int len, void **mnt_opts) { int token = Opt_error; int rc, i; for (i = 0; i < ARRAY_SIZE(tokens); i++) { if (strcmp(option, tokens[i].name) == 0) { token = tokens[i].opt; break; } } if (token == Opt_error) return -EINVAL; if (token != Opt_seclabel) { val = kmemdup_nul(val, len, GFP_KERNEL); if (!val) { rc = -ENOMEM; goto free_opt; } } rc = selinux_add_opt(token, val, mnt_opts); if (unlikely(rc)) { kfree(val); goto free_opt; } return rc; free_opt: if (*mnt_opts) { selinux_free_mnt_opts(*mnt_opts); *mnt_opts = NULL; } return rc; } static int show_sid(struct seq_file *m, u32 sid) { char *context = NULL; u32 len; int rc; rc = security_sid_to_context(&selinux_state, sid, &context, &len); if (!rc) { bool has_comma = context && strchr(context, ','); seq_putc(m, '='); if (has_comma) seq_putc(m, '\"'); seq_escape(m, context, "\"\n\\"); if (has_comma) seq_putc(m, '\"'); } kfree(context); return rc; } static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) { struct superblock_security_struct *sbsec = sb->s_security; int rc; if (!(sbsec->flags & SE_SBINITIALIZED)) return 0; if (!selinux_initialized(&selinux_state)) return 0; if (sbsec->flags & FSCONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, FSCONTEXT_STR); rc = show_sid(m, sbsec->sid); if (rc) return rc; } if (sbsec->flags & CONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, CONTEXT_STR); rc = show_sid(m, sbsec->mntpoint_sid); if (rc) return rc; } if (sbsec->flags & DEFCONTEXT_MNT) { seq_putc(m, ','); seq_puts(m, DEFCONTEXT_STR); rc = show_sid(m, sbsec->def_sid); if (rc) return rc; } if (sbsec->flags & ROOTCONTEXT_MNT) { struct dentry *root = sbsec->sb->s_root; struct inode_security_struct *isec = backing_inode_security(root); seq_putc(m, ','); seq_puts(m, ROOTCONTEXT_STR); rc = show_sid(m, isec->sid); if (rc) return rc; } if (sbsec->flags & SBLABEL_MNT) { seq_putc(m, ','); seq_puts(m, SECLABEL_STR); } return 0; } static inline u16 inode_mode_to_security_class(umode_t mode) { switch (mode & S_IFMT) { case S_IFSOCK: return SECCLASS_SOCK_FILE; case S_IFLNK: return SECCLASS_LNK_FILE; case S_IFREG: return SECCLASS_FILE; case S_IFBLK: return SECCLASS_BLK_FILE; case S_IFDIR: return SECCLASS_DIR; case S_IFCHR: return SECCLASS_CHR_FILE; case S_IFIFO: return SECCLASS_FIFO_FILE; } return SECCLASS_FILE; } static inline int default_protocol_stream(int protocol) { return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); } static inline int default_protocol_dgram(int protocol) { return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); } static inline u16 socket_type_to_security_class(int family, int type, int protocol) { int extsockclass = selinux_policycap_extsockclass(); switch (family) { case PF_UNIX: switch (type) { case SOCK_STREAM: case SOCK_SEQPACKET: return SECCLASS_UNIX_STREAM_SOCKET; case SOCK_DGRAM: case SOCK_RAW: return SECCLASS_UNIX_DGRAM_SOCKET; } break; case PF_INET: case PF_INET6: switch (type) { case SOCK_STREAM: case SOCK_SEQPACKET: if (default_protocol_stream(protocol)) return SECCLASS_TCP_SOCKET; else if (extsockclass && protocol == IPPROTO_SCTP) return SECCLASS_SCTP_SOCKET; else return SECCLASS_RAWIP_SOCKET; case SOCK_DGRAM: if (default_protocol_dgram(protocol)) return SECCLASS_UDP_SOCKET; else if (extsockclass && (protocol == IPPROTO_ICMP || protocol == IPPROTO_ICMPV6)) return SECCLASS_ICMP_SOCKET; else return SECCLASS_RAWIP_SOCKET; case SOCK_DCCP: return SECCLASS_DCCP_SOCKET; default: return SECCLASS_RAWIP_SOCKET; } break; case PF_NETLINK: switch (protocol) { case NETLINK_ROUTE: return SECCLASS_NETLINK_ROUTE_SOCKET; case NETLINK_SOCK_DIAG: return SECCLASS_NETLINK_TCPDIAG_SOCKET; case NETLINK_NFLOG: return SECCLASS_NETLINK_NFLOG_SOCKET; case NETLINK_XFRM: return SECCLASS_NETLINK_XFRM_SOCKET; case NETLINK_SELINUX: return SECCLASS_NETLINK_SELINUX_SOCKET; case NETLINK_ISCSI: return SECCLASS_NETLINK_ISCSI_SOCKET; case NETLINK_AUDIT: return SECCLASS_NETLINK_AUDIT_SOCKET; case NETLINK_FIB_LOOKUP: return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; case NETLINK_CONNECTOR: return SECCLASS_NETLINK_CONNECTOR_SOCKET; case NETLINK_NETFILTER: return SECCLASS_NETLINK_NETFILTER_SOCKET; case NETLINK_DNRTMSG: return SECCLASS_NETLINK_DNRT_SOCKET; case NETLINK_KOBJECT_UEVENT: return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; case NETLINK_GENERIC: return SECCLASS_NETLINK_GENERIC_SOCKET; case NETLINK_SCSITRANSPORT: return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; case NETLINK_RDMA: return SECCLASS_NETLINK_RDMA_SOCKET; case NETLINK_CRYPTO: return SECCLASS_NETLINK_CRYPTO_SOCKET; default: return SECCLASS_NETLINK_SOCKET; } case PF_PACKET: return SECCLASS_PACKET_SOCKET; case PF_KEY: return SECCLASS_KEY_SOCKET; case PF_APPLETALK: return SECCLASS_APPLETALK_SOCKET; } if (extsockclass) { switch (family) { case PF_AX25: return SECCLASS_AX25_SOCKET; case PF_IPX: return SECCLASS_IPX_SOCKET; case PF_NETROM: return SECCLASS_NETROM_SOCKET; case PF_ATMPVC: return SECCLASS_ATMPVC_SOCKET; case PF_X25: return SECCLASS_X25_SOCKET; case PF_ROSE: return SECCLASS_ROSE_SOCKET; case PF_DECnet: return SECCLASS_DECNET_SOCKET; case PF_ATMSVC: return SECCLASS_ATMSVC_SOCKET; case PF_RDS: return SECCLASS_RDS_SOCKET; case PF_IRDA: return SECCLASS_IRDA_SOCKET; case PF_PPPOX: return SECCLASS_PPPOX_SOCKET; case PF_LLC: return SECCLASS_LLC_SOCKET; case PF_CAN: return SECCLASS_CAN_SOCKET; case PF_TIPC: return SECCLASS_TIPC_SOCKET; case PF_BLUETOOTH: return SECCLASS_BLUETOOTH_SOCKET; case PF_IUCV: return SECCLASS_IUCV_SOCKET; case PF_RXRPC: return SECCLASS_RXRPC_SOCKET; case PF_ISDN: return SECCLASS_ISDN_SOCKET; case PF_PHONET: return SECCLASS_PHONET_SOCKET; case PF_IEEE802154: return SECCLASS_IEEE802154_SOCKET; case PF_CAIF: return SECCLASS_CAIF_SOCKET; case PF_ALG: return SECCLASS_ALG_SOCKET; case PF_NFC: return SECCLASS_NFC_SOCKET; case PF_VSOCK: return SECCLASS_VSOCK_SOCKET; case PF_KCM: return SECCLASS_KCM_SOCKET; case PF_QIPCRTR: return SECCLASS_QIPCRTR_SOCKET; case PF_SMC: return SECCLASS_SMC_SOCKET; case PF_XDP: return SECCLASS_XDP_SOCKET; #if PF_MAX > 45 #error New address family defined, please update this function. #endif } } return SECCLASS_SOCKET; } static int selinux_genfs_get_sid(struct dentry *dentry, u16 tclass, u16 flags, u32 *sid) { int rc; struct super_block *sb = dentry->d_sb; char *buffer, *path; buffer = (char *)__get_free_page(GFP_KERNEL); if (!buffer) return -ENOMEM; path = dentry_path_raw(dentry, buffer, PAGE_SIZE); if (IS_ERR(path)) rc = PTR_ERR(path); else { if (flags & SE_SBPROC) { /* each process gets a /proc/PID/ entry. Strip off the * PID part to get a valid selinux labeling. * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ while (path[1] >= '0' && path[1] <= '9') { path[1] = '/'; path++; } } rc = security_genfs_sid(&selinux_state, sb->s_type->name, path, tclass, sid); if (rc == -ENOENT) { /* No match in policy, mark as unlabeled. */ *sid = SECINITSID_UNLABELED; rc = 0; } } free_page((unsigned long)buffer); return rc; } static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, u32 def_sid, u32 *sid) { #define INITCONTEXTLEN 255 char *context; unsigned int len; int rc; len = INITCONTEXTLEN; context = kmalloc(len + 1, GFP_NOFS); if (!context) return -ENOMEM; context[len] = '\0'; rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); if (rc == -ERANGE) { kfree(context); /* Need a larger buffer. Query for the right size. */ rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); if (rc < 0) return rc; len = rc; context = kmalloc(len + 1, GFP_NOFS); if (!context) return -ENOMEM; context[len] = '\0'; rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); } if (rc < 0) { kfree(context); if (rc != -ENODATA) { pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", __func__, -rc, inode->i_sb->s_id, inode->i_ino); return rc; } *sid = def_sid; return 0; } rc = security_context_to_sid_default(&selinux_state, context, rc, sid, def_sid, GFP_NOFS); if (rc) { char *dev = inode->i_sb->s_id; unsigned long ino = inode->i_ino; if (rc == -EINVAL) { pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", ino, dev, context); } else { pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", __func__, context, -rc, dev, ino); } } kfree(context); return 0; } /* The inode's security attributes must be initialized before first use. */ static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) { struct superblock_security_struct *sbsec = NULL; struct inode_security_struct *isec = selinux_inode(inode); u32 task_sid, sid = 0; u16 sclass; struct dentry *dentry; int rc = 0; if (isec->initialized == LABEL_INITIALIZED) return 0; spin_lock(&isec->lock); if (isec->initialized == LABEL_INITIALIZED) goto out_unlock; if (isec->sclass == SECCLASS_FILE) isec->sclass = inode_mode_to_security_class(inode->i_mode); sbsec = inode->i_sb->s_security; if (!(sbsec->flags & SE_SBINITIALIZED)) { /* Defer initialization until selinux_complete_init, after the initial policy is loaded and the security server is ready to handle calls. */ spin_lock(&sbsec->isec_lock); if (list_empty(&isec->list)) list_add(&isec->list, &sbsec->isec_head); spin_unlock(&sbsec->isec_lock); goto out_unlock; } sclass = isec->sclass; task_sid = isec->task_sid; sid = isec->sid; isec->initialized = LABEL_PENDING; spin_unlock(&isec->lock); switch (sbsec->behavior) { case SECURITY_FS_USE_NATIVE: break; case SECURITY_FS_USE_XATTR: if (!(inode->i_opflags & IOP_XATTR)) { sid = sbsec->def_sid; break; } /* Need a dentry, since the xattr API requires one. Life would be simpler if we could just pass the inode. */ if (opt_dentry) { /* Called from d_instantiate or d_splice_alias. */ dentry = dget(opt_dentry); } else { /* * Called from selinux_complete_init, try to find a dentry. * Some filesystems really want a connected one, so try * that first. We could split SECURITY_FS_USE_XATTR in * two, depending upon that... */ dentry = d_find_alias(inode); if (!dentry) dentry = d_find_any_alias(inode); } if (!dentry) { /* * this is can be hit on boot when a file is accessed * before the policy is loaded. When we load policy we * may find inodes that have no dentry on the * sbsec->isec_head list. No reason to complain as these * will get fixed up the next time we go through * inode_doinit with a dentry, before these inodes could * be used again by userspace. */ goto out_invalid; } rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, &sid); dput(dentry); if (rc) goto out; break; case SECURITY_FS_USE_TASK: sid = task_sid; break; case SECURITY_FS_USE_TRANS: /* Default to the fs SID. */ sid = sbsec->sid; /* Try to obtain a transition SID. */ rc = security_transition_sid(&selinux_state, task_sid, sid, sclass, NULL, &sid); if (rc) goto out; break; case SECURITY_FS_USE_MNTPOINT: sid = sbsec->mntpoint_sid; break; default: /* Default to the fs superblock SID. */ sid = sbsec->sid; if ((sbsec->flags & SE_SBGENFS) && (!S_ISLNK(inode->i_mode) || selinux_policycap_genfs_seclabel_symlinks())) { /* We must have a dentry to determine the label on * procfs inodes */ if (opt_dentry) { /* Called from d_instantiate or * d_splice_alias. */ dentry = dget(opt_dentry); } else { /* Called from selinux_complete_init, try to * find a dentry. Some filesystems really want * a connected one, so try that first. */ dentry = d_find_alias(inode); if (!dentry) dentry = d_find_any_alias(inode); } /* * This can be hit on boot when a file is accessed * before the policy is loaded. When we load policy we * may find inodes that have no dentry on the * sbsec->isec_head list. No reason to complain as * these will get fixed up the next time we go through * inode_doinit() with a dentry, before these inodes * could be used again by userspace. */ if (!dentry) goto out_invalid; rc = selinux_genfs_get_sid(dentry, sclass, sbsec->flags, &sid); if (rc) { dput(dentry); goto out; } if ((sbsec->flags & SE_SBGENFS_XATTR) && (inode->i_opflags & IOP_XATTR)) { rc = inode_doinit_use_xattr(inode, dentry, sid, &sid); if (rc) { dput(dentry); goto out; } } dput(dentry); } break; } out: spin_lock(&isec->lock); if (isec->initialized == LABEL_PENDING) { if (rc) { isec->initialized = LABEL_INVALID; goto out_unlock; } isec->initialized = LABEL_INITIALIZED; isec->sid = sid; } out_unlock: spin_unlock(&isec->lock); return rc; out_invalid: spin_lock(&isec->lock); if (isec->initialized == LABEL_PENDING) { isec->initialized = LABEL_INVALID; isec->sid = sid; } spin_unlock(&isec->lock); return 0; } /* Convert a Linux signal to an access vector. */ static inline u32 signal_to_av(int sig) { u32 perm = 0; switch (sig) { case SIGCHLD: /* Commonly granted from child to parent. */ perm = PROCESS__SIGCHLD; break; case SIGKILL: /* Cannot be caught or ignored */ perm = PROCESS__SIGKILL; break; case SIGSTOP: /* Cannot be caught or ignored */ perm = PROCESS__SIGSTOP; break; default: /* All other signals. */ perm = PROCESS__SIGNAL; break; } return perm; } #if CAP_LAST_CAP > 63 #error Fix SELinux to handle capabilities > 63. #endif /* Check whether a task is allowed to use a capability. */ static int cred_has_capability(const struct cred *cred, int cap, unsigned int opts, bool initns) { struct common_audit_data ad; struct av_decision avd; u16 sclass; u32 sid = cred_sid(cred); u32 av = CAP_TO_MASK(cap); int rc; ad.type = LSM_AUDIT_DATA_CAP; ad.u.cap = cap; switch (CAP_TO_INDEX(cap)) { case 0: sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; break; case 1: sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; break; default: pr_err("SELinux: out of range capability %d\n", cap); BUG(); return -EINVAL; } rc = avc_has_perm_noaudit(&selinux_state, sid, sid, sclass, av, 0, &avd); if (!(opts & CAP_OPT_NOAUDIT)) { int rc2 = avc_audit(&selinux_state, sid, sid, sclass, av, &avd, rc, &ad, 0); if (rc2) return rc2; } return rc; } /* Check whether a task has a particular permission to an inode. The 'adp' parameter is optional and allows other audit data to be passed (e.g. the dentry). */ static int inode_has_perm(const struct cred *cred, struct inode *inode, u32 perms, struct common_audit_data *adp) { struct inode_security_struct *isec; u32 sid; validate_creds(cred); if (unlikely(IS_PRIVATE(inode))) return 0; sid = cred_sid(cred); isec = selinux_inode(inode); return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, perms, adp); } /* Same as inode_has_perm, but pass explicit audit data containing the dentry to help the auditing code to more easily generate the pathname if needed. */ static inline int dentry_has_perm(const struct cred *cred, struct dentry *dentry, u32 av) { struct inode *inode = d_backing_inode(dentry); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; __inode_security_revalidate(inode, dentry, true); return inode_has_perm(cred, inode, av, &ad); } /* Same as inode_has_perm, but pass explicit audit data containing the path to help the auditing code to more easily generate the pathname if needed. */ static inline int path_has_perm(const struct cred *cred, const struct path *path, u32 av) { struct inode *inode = d_backing_inode(path->dentry); struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = *path; __inode_security_revalidate(inode, path->dentry, true); return inode_has_perm(cred, inode, av, &ad); } /* Same as path_has_perm, but uses the inode from the file struct. */ static inline int file_path_has_perm(const struct cred *cred, struct file *file, u32 av) { struct common_audit_data ad; ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; return inode_has_perm(cred, file_inode(file), av, &ad); } #ifdef CONFIG_BPF_SYSCALL static int bpf_fd_pass(struct file *file, u32 sid); #endif /* Check whether a task can use an open file descriptor to access an inode in a given way. Check access to the descriptor itself, and then use dentry_has_perm to check a particular permission to the file. Access to the descriptor is implicitly granted if it has the same SID as the process. If av is zero, then access to the file is not checked, e.g. for cases where only the descriptor is affected like seek. */ static int file_has_perm(const struct cred *cred, struct file *file, u32 av) { struct file_security_struct *fsec = selinux_file(file); struct inode *inode = file_inode(file); struct common_audit_data ad; u32 sid = cred_sid(cred); int rc; ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = file; if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) goto out; } #ifdef CONFIG_BPF_SYSCALL rc = bpf_fd_pass(file, cred_sid(cred)); if (rc) return rc; #endif /* av is zero if only checking access to the descriptor. */ rc = 0; if (av) rc = inode_has_perm(cred, inode, av, &ad); out: return rc; } /* * Determine the label for an inode that might be unioned. */ static int selinux_determine_inode_label(const struct task_security_struct *tsec, struct inode *dir, const struct qstr *name, u16 tclass, u32 *_new_isid) { const struct superblock_security_struct *sbsec = dir->i_sb->s_security; if ((sbsec->flags & SE_SBINITIALIZED) && (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { *_new_isid = sbsec->mntpoint_sid; } else if ((sbsec->flags & SBLABEL_MNT) && tsec->create_sid) { *_new_isid = tsec->create_sid; } else { const struct inode_security_struct *dsec = inode_security(dir); return security_transition_sid(&selinux_state, tsec->sid, dsec->sid, tclass, name, _new_isid); } return 0; } /* Check whether a task can create a file. */ static int may_create(struct inode *dir, struct dentry *dentry, u16 tclass) { const struct task_security_struct *tsec = selinux_cred(current_cred()); struct inode_security_struct *dsec; struct superblock_security_struct *sbsec; u32 sid, newsid; struct common_audit_data ad; int rc; dsec = inode_security(dir); sbsec = dir->i_sb->s_security; sid = tsec->sid; ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; rc = avc_has_perm(&selinux_state, sid, dsec->sid, SECCLASS_DIR, DIR__ADD_NAME | DIR__SEARCH, &ad); if (rc) return rc; rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, &newsid); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, newsid, tclass, FILE__CREATE, &ad); if (rc) return rc; return avc_has_perm(&selinux_state, newsid, sbsec->sid, SECCLASS_FILESYSTEM, FILESYSTEM__ASSOCIATE, &ad); } #define MAY_LINK 0 #define MAY_UNLINK 1 #define MAY_RMDIR 2 /* Check whether a task can link, unlink, or rmdir a file/directory. */ static int may_link(struct inode *dir, struct dentry *dentry, int kind) { struct inode_security_struct *dsec, *isec; struct common_audit_data ad; u32 sid = current_sid(); u32 av; int rc; dsec = inode_security(dir); isec = backing_inode_security(dentry); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = dentry; av = DIR__SEARCH; av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); rc = avc_has_perm(&selinux_state, sid, dsec->sid, SECCLASS_DIR, av, &ad); if (rc) return rc; switch (kind) { case MAY_LINK: av = FILE__LINK; break; case MAY_UNLINK: av = FILE__UNLINK; break; case MAY_RMDIR: av = DIR__RMDIR; break; default: pr_warn("SELinux: %s: unrecognized kind %d\n", __func__, kind); return 0; } rc = avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, av, &ad); return rc; } static inline int may_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; struct common_audit_data ad; u32 sid = current_sid(); u32 av; int old_is_dir, new_is_dir; int rc; old_dsec = inode_security(old_dir); old_isec = backing_inode_security(old_dentry); old_is_dir = d_is_dir(old_dentry); new_dsec = inode_security(new_dir); ad.type = LSM_AUDIT_DATA_DENTRY; ad.u.dentry = old_dentry; rc = avc_has_perm(&selinux_state, sid, old_dsec->sid, SECCLASS_DIR, DIR__REMOVE_NAME | DIR__SEARCH, &ad); if (rc) return rc; rc = avc_has_perm(&selinux_state, sid, old_isec->sid, old_isec->sclass, FILE__RENAME, &ad); if (rc) return rc; if (old_is_dir && new_dir != old_dir) { rc = avc_has_perm(&selinux_state, sid, old_isec->sid, old_isec->sclass, DIR__REPARENT, &ad); if (rc) return rc; } ad.u.dentry = new_dentry; av = DIR__ADD_NAME | DIR__SEARCH; if (d_is_positive(new_dentry)) av |= DIR__REMOVE_NAME; rc = avc_has_perm(&selinux_state, sid, new_dsec->sid, SECCLASS_DIR, av, &ad); if (rc) return rc; if (d_is_positive(new_dentry)) { new_isec = backing_inode_security(new_dentry); new_is_dir = d_is_dir(new_dentry); rc = avc_has_perm(&selinux_state, sid, new_isec->sid, new_isec->sclass, (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); if (rc) return rc; } return 0; } /* Check whether a task can perform a filesystem operation. */ static int superblock_has_perm(const struct cred *cred, struct super_block *sb, u32 perms, struct common_audit_data *ad) { struct superblock_security_struct *sbsec; u32 sid = cred_sid(cred); sbsec = sb->s_security; return avc_has_perm(&selinux_state, sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); } /* Convert a Linux mode and permission mask to an access vector. */ static inline u32 file_mask_to_av(int mode, int mask) { u32 av = 0; if (!S_ISDIR(mode)) { if (mask & MAY_EXEC) av |= FILE__EXECUTE; if (mask & MAY_READ) av |= FILE__READ; if (mask & MAY_APPEND) av |= FILE__APPEND; else if (mask & MAY_WRITE) av |= FILE__WRITE; } else { if (mask & MAY_EXEC) av |= DIR__SEARCH; if (mask & MAY_WRITE) av |= DIR__WRITE; if (mask & MAY_READ) av |= DIR__READ; } return av; } /* Convert a Linux file to an access vector. */ static inline u32 file_to_av(struct file *file) { u32 av = 0; if (file->f_mode & FMODE_READ) av |= FILE__READ; if (file->f_mode & FMODE_WRITE) { if (file->f_flags & O_APPEND) av |= FILE__APPEND; else av |= FILE__WRITE; } if (!av) { /* * Special file opened with flags 3 for ioctl-only use. */ av = FILE__IOCTL; } return av; } /* * Convert a file to an access vector and include the correct * open permission. */ static inline u32 open_file_to_av(struct file *file) { u32 av = file_to_av(file); struct inode *inode = file_inode(file); if (selinux_policycap_openperm() && inode->i_sb->s_magic != SOCKFS_MAGIC) av |= FILE__OPEN; return av; } /* Hook functions begin here. */ static int selinux_binder_set_context_mgr(const struct cred *mgr) { return avc_has_perm(&selinux_state, current_sid(), cred_sid(mgr), SECCLASS_BINDER, BINDER__SET_CONTEXT_MGR, NULL); } static int selinux_binder_transaction(const struct cred *from, const struct cred *to) { u32 mysid = current_sid(); u32 fromsid = cred_sid(from); u32 tosid = cred_sid(to); int rc; if (mysid != fromsid) { rc = avc_has_perm(&selinux_state, mysid, fromsid, SECCLASS_BINDER, BINDER__IMPERSONATE, NULL); if (rc) return rc; } return avc_has_perm(&selinux_state, fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, NULL); } static int selinux_binder_transfer_binder(const struct cred *from, const struct cred *to) { return avc_has_perm(&selinux_state, cred_sid(from), cred_sid(to), SECCLASS_BINDER, BINDER__TRANSFER, NULL); } static int selinux_binder_transfer_file(const struct cred *from, const struct cred *to, struct file *file) { u32 sid = cred_sid(to); struct file_security_struct *fsec = selinux_file(file); struct dentry *dentry = file->f_path.dentry; struct inode_security_struct *isec; struct common_audit_data ad; int rc; ad.type = LSM_AUDIT_DATA_PATH; ad.u.path = file->f_path; if (sid != fsec->sid) { rc = avc_has_perm(&selinux_state, sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); if (rc) return rc; } #ifdef CONFIG_BPF_SYSCALL rc = bpf_fd_pass(file, sid); if (rc) return rc; #endif if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; isec = backing_inode_security(dentry); return avc_has_perm(&selinux_state, sid, isec->sid, isec->sclass, file_to_av(file), &ad); } static int selinux_ptrace_access_check(struct task_struct *child, unsigned int mode) { u32 sid = current_sid(); u32 csid = task_sid(child); if (mode & PTRACE_MODE_READ) return avc_has_perm(&selinux_state, sid, csid, SECCLASS_FILE, FILE__READ, NULL); return avc_has_perm(&selinux_state, sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); } static int selinux_ptrace_traceme(struct task_struct *parent) { return avc_has_perm(&selinux_state, task_sid(parent), current_sid(), SECCLASS_PROCESS, PROCESS__PTRACE, NULL); } static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return avc_has_perm(&selinux_state, current_sid(), task_sid(target), SECCLASS_PROCESS, PROCESS__GETCAP, NULL); } static int selinux_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { return avc_has_perm(&selinux_state, cred_sid(old), cred_sid(new), SECCLASS_PROCESS, PROCESS__SETCAP, NULL); } /* * (This comment used to live with the selinux_task_setuid hook, * which was removed). * * Since setuid only affects the current process, and since the SELinux * controls are not based on the Linux identity attributes, SELinux does not * need to control this operation. However, SELinux does control the use of * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. */ static int selinux_capable(const struct cred *cred, struct user_namespace *ns, int cap, unsigned int opts) { return cred_has_capability(cred, cap, opts, ns == &init_user_ns); } static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) { const struct cred *cred = current_cred(); int rc = 0; if (!sb) return 0; switch (cmds) { case Q_SYNC: case Q_QUOTAON: case Q_QUOTAOFF: case Q_SETINFO: case Q_SETQUOTA: case Q_XQUOTAOFF: case Q_XQUOTAON: case Q_XSETQLIM: rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); break; case Q_GETFMT: case Q_GETINFO: case Q_GETQUOTA: case Q_XGETQUOTA: case Q_XGETQSTAT: case Q_XGETQSTATV: case Q_XGETNEXTQUOTA: rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); break; default: rc = 0; /* let the kernel handle invalid cmds */ break; } return rc; } static int selinux_quota_on(struct dentry *dentry) { const struct cred *cred = current_cred(); return dentry_has_perm(cred, dentry, FILE__QUOTAON); } static int selinux_syslog(int type) { switch (type) { case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ /* Set level of messages printed to console */ case SYSLOG_ACTION_CONSOLE_LEVEL: return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, NULL); } /* All other syslog types */ return avc_has_perm(&selinux_state, current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); } /* * Check that a process has enough memory to allocate a new virtual * mapping. 0 means there is enough memory for the allocation to * succeed and -ENOMEM implies there is not. * * Do not audit the selinux permission check, as this is applied to all * processes that allocate mappings. */ static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) { int rc, cap_sys_admin = 0; rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, CAP_OPT_NOAUDIT, true); if (rc == 0) cap_sys_admin = 1; return cap_sys_admin; } /* binprm security operations */ static u32 ptrace_parent_sid(void) { u32 sid = 0; struct task_struct *tracer; rcu_read_lock(); tracer = ptrace_parent(current); if (tracer) sid = task_sid(tracer); rcu_read_unlock(); return sid; } static int check_nnp_nosuid(const struct linux_binprm *bprm, const struct task_security_struct *old_tsec, const struct task_security_struct *new_tsec) { int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); int rc; u32 av; if (!nnp && !nosuid) return 0; /* neither NNP nor nosuid */ if (new_tsec->sid == old_tsec->sid) return 0; /* No change in credentials */ /* * If the policy enables the nnp_nosuid_transition policy capability, * then we permit transitions under NNP or nosuid if the * policy allows the corresponding permission between * the old and new contexts. */ if (selinux_policycap_nnp_nosuid_transition()) { av = 0; if (nnp) av |= PROCESS2__NNP_TRANSITION; if (nosuid) av |= PROCESS2__NOSUID_TRANSITION; rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS2, av, NULL); if (!rc) return 0; } /* * We also permit NNP or nosuid transitions to bounded SIDs, * i.e. SIDs that are guaranteed to only be allowed a subset * of the permissions of the current SID. */ rc = security_bounded_transition(&selinux_state, old_tsec->sid, new_tsec->sid); if (!rc) return 0; /* * On failure, preserve the errno values for NNP vs nosuid. * NNP: Operation not permitted for caller. * nosuid: Permission denied to file. */ if (nnp) return -EPERM; return -EACCES; } static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) { const struct task_security_struct *old_tsec; struct task_security_struct *new_tsec; struct inode_security_struct *isec; struct common_audit_data ad; struct inode *inode = file_inode(bprm->file); int rc; /* SELinux context only depends on initial program or script and not * the script interpreter */ old_tsec = selinux_cred(current_cred()); new_tsec = selinux_cred(bprm->cred); isec = inode_security(inode); /* Default to the current task SID. */ new_tsec->sid = old_tsec->sid; new_tsec->osid = old_tsec->sid; /* Reset fs, key, and sock SIDs on execve. */ new_tsec->create_sid = 0; new_tsec->keycreate_sid = 0; new_tsec->sockcreate_sid = 0; if (old_tsec->exec_sid) { new_tsec->sid = old_tsec->exec_sid; /* Reset exec SID on execve. */ new_tsec->exec_sid = 0; /* Fail on NNP or nosuid if not an allowed transition. */ rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); if (rc) return rc; } else { /* Check for a default transition on this program. */ rc = security_transition_sid(&selinux_state, old_tsec->sid, isec->sid, SECCLASS_PROCESS, NULL, &new_tsec->sid); if (rc) return rc; /* * Fallback to old SID on NNP or nosuid if not an allowed * transition. */ rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); if (rc) new_tsec->sid = old_tsec->sid; } ad.type = LSM_AUDIT_DATA_FILE; ad.u.file = bprm->file; if (new_tsec->sid == old_tsec->sid) { rc = avc_has_perm(&selinux_state, old_tsec->sid, isec->sid, SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); if (rc) return rc; } else { /* Check permissions for the transition. */ rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); if (rc) return rc; rc = avc_has_perm(&selinux_state, new_tsec->sid, isec->sid, SECCLASS_FILE, FILE__ENTRYPOINT, &ad); if (rc) return rc; /* Check for shared state */ if (bprm->unsafe & LSM_UNSAFE_SHARE) { rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__SHARE, NULL); if (rc) return -EPERM; } /* Make sure that anyone attempting to ptrace over a task that * changes its SID has the appropriate permit */ if (bprm->unsafe & LSM_UNSAFE_PTRACE) { u32 ptsid = ptrace_parent_sid(); if (ptsid != 0) { rc = avc_has_perm(&selinux_state, ptsid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); if (rc) return -EPERM; } } /* Clear any possibly unsafe personality bits on exec: */ bprm->per_clear |= PER_CLEAR_ON_SETID; /* Enable secure mode for SIDs transitions unless the noatsecure permission is granted between the two SIDs, i.e. ahp returns 0. */ rc = avc_has_perm(&selinux_state, old_tsec->sid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__NOATSECURE, NULL); bprm->secureexec |= !!rc; } return 0; } static int match_file(const void *p, struct file *file, unsigned fd) { return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; } /* Derived from fs/exec.c:flush_old_files. */ static inline void flush_unauthorized_files(const struct cred *cred, struct files_struct *files) { struct file *file, *devnull = NULL; struct tty_struct *tty; int drop_tty = 0; unsigned n; tty = get_current_tty(); if (tty) { spin_lock(&tty->files_lock); if (!list_empty(&tty->tty_files)) { struct tty_file_private *file_priv; /* Revalidate access to controlling tty. Use file_path_has_perm on the tty path directly rather than using file_has_perm, as this particular open file may belong to another process and we are only interested in the inode-based check here. */ file_priv = list_first_entry(&tty->tty_files, struct tty_file_private, list); file = file_priv->file; if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) drop_tty = 1; } spin_unlock(&tty->files_lock); tty_kref_put(tty); } /* Reset controlling tty. */ if (drop_tty) no_tty(); /* Revalidate access to inherited open files. */ n = iterate_fd(files, 0, match_file, cred); if (!n) /* none found? */ return; devnull = dentry_open(&selinux_null, O_RDWR, cred); if (IS_ERR(devnull)) devnull = NULL; /* replace all the matching ones with this */ do { replace_fd(n - 1, devnull, 0); } while ((n = iterate_fd(files, n, match_file, cred)) != 0); if (devnull) fput(devnull); } /* * Prepare a process for imminent new credential changes due to exec */ static void selinux_bprm_committing_creds(struct linux_binprm *bprm) { struct task_security_struct *new_tsec; struct rlimit *rlim, *initrlim; int rc, i; new_tsec = selinux_cred(bprm->cred); if (new_tsec->sid == new_tsec->osid) return; /* Close files for which the new task SID is not authorized. */ flush_unauthorized_files(bprm->cred, current->files); /* Always clear parent death signal on SID transitions. */ current->pdeath_signal = 0; /* Check whether the new SID can inherit resource limits from the old * SID. If not, reset all soft limits to the lower of the current * task's hard limit and the init task's soft limit. * * Note that the setting of hard limits (even to lower them) can be * controlled by the setrlimit check. The inclusion of the init task's * soft limit into the computation is to avoid resetting soft limits * higher than the default soft limit for cases where the default is * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. */ rc = avc_has_perm(&selinux_state, new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, PROCESS__RLIMITINH, NULL); if (rc) { /* protect against do_prlimit() */ task_lock(current); for (i = 0; i < RLIM_NLIMITS; i++) { rlim = current->signal->rlim + i; initrlim = init_task.signal->rlim + i; rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); } task_unlock(current); if (IS_ENABLED(CONFIG_POSIX_TIMERS)) update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); } } /* * Clean up the process immediately after the installation of new credentials * due to exec */ static void selinux_bprm_committed_creds(struct linux_binprm *bprm) { const struct task_security_struct *tsec = selinux_cred(current_cred()); u32 osid, sid; int rc; osid = tsec->osid; sid = tsec->sid; if (sid == osid) return; /* Check whether the new SID can inherit signal state from the old SID. * If not, clear itimers to avoid subsequent signal generation and * flush and unblock signals. * * This must occur _after_ the task SID has been updated so that any * kill done after the flush will be checked against the new SID. */ rc = avc_has_perm(&selinux_state, osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); if (rc) { clear_itimer(); spin_lock_irq(&current->sighand->siglock); if (!fatal_signal_pending(current)) { flush_sigqueue(&current->pending); flush_sigqueue(&current->signal->shared_pending); flush_signal_handlers(current, 1); sigemptyset(&current->blocked); recalc_sigpending(); } spin_unlock_irq(&current->sighand->siglock); } /* Wake up the parent if it is waiting so that it can re