1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2006, Johannes Berg <johannes@sipsolutions.net> */ #include <linux/list.h> #include <linux/spinlock.h> #include <linux/leds.h> #include "ieee80211_i.h" #define MAC80211_BLINK_DELAY 50 /* ms */ static inline void ieee80211_led_rx(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_LEDS unsigned long led_delay = MAC80211_BLINK_DELAY; if (!atomic_read(&local->rx_led_active)) return; led_trigger_blink_oneshot(&local->rx_led, &led_delay, &led_delay, 0); #endif } static inline void ieee80211_led_tx(struct ieee80211_local *local) { #ifdef CONFIG_MAC80211_LEDS unsigned long led_delay = MAC80211_BLINK_DELAY; if (!atomic_read(&local->tx_led_active)) return; led_trigger_blink_oneshot(&local->tx_led, &led_delay, &led_delay, 0); #endif } #ifdef CONFIG_MAC80211_LEDS void ieee80211_led_assoc(struct ieee80211_local *local, bool associated); void ieee80211_led_radio(struct ieee80211_local *local, bool enabled); void ieee80211_alloc_led_names(struct ieee80211_local *local); void ieee80211_free_led_names(struct ieee80211_local *local); void ieee80211_led_init(struct ieee80211_local *local); void ieee80211_led_exit(struct ieee80211_local *local); void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off); #else static inline void ieee80211_led_assoc(struct ieee80211_local *local, bool associated) { } static inline void ieee80211_led_radio(struct ieee80211_local *local, bool enabled) { } static inline void ieee80211_alloc_led_names(struct ieee80211_local *local) { } static inline void ieee80211_free_led_names(struct ieee80211_local *local) { } static inline void ieee80211_led_init(struct ieee80211_local *local) { } static inline void ieee80211_led_exit(struct ieee80211_local *local) { } static inline void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off) { } #endif static inline void ieee80211_tpt_led_trig_tx(struct ieee80211_local *local, __le16 fc, int bytes) { #ifdef CONFIG_MAC80211_LEDS if (ieee80211_is_data(fc) && atomic_read(&local->tpt_led_active)) local->tpt_led_trigger->tx_bytes += bytes; #endif } static inline void ieee80211_tpt_led_trig_rx(struct ieee80211_local *local, __le16 fc, int bytes) { #ifdef CONFIG_MAC80211_LEDS if (ieee80211_is_data(fc) && atomic_read(&local->tpt_led_active)) local->tpt_led_trigger->rx_bytes += bytes; #endif }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for the UDP-Lite (RFC 3828) code. */ #ifndef _UDPLITE_H #define _UDPLITE_H #include <net/ip6_checksum.h> /* UDP-Lite socket options */ #define UDPLITE_SEND_CSCOV 10 /* sender partial coverage (as sent) */ #define UDPLITE_RECV_CSCOV 11 /* receiver partial coverage (threshold ) */ extern struct proto udplite_prot; extern struct udp_table udplite_table; /* * Checksum computation is all in software, hence simpler getfrag. */ static __inline__ int udplite_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; return copy_from_iter_full(to, len, &msg->msg_iter) ? 0 : -EFAULT; } /* Designate sk as UDP-Lite socket */ static inline int udplite_sk_init(struct sock *sk) { udp_init_sock(sk); udp_sk(sk)->pcflag = UDPLITE_BIT; return 0; } /* * Checksumming routines */ static inline int udplite_checksum_init(struct sk_buff *skb, struct udphdr *uh) { u16 cscov; /* In UDPv4 a zero checksum means that the transmitter generated no * checksum. UDP-Lite (like IPv6) mandates checksums, hence packets * with a zero checksum field are illegal. */ if (uh->check == 0) { net_dbg_ratelimited("UDPLite: zeroed checksum field\n"); return 1; } cscov = ntohs(uh->len); if (cscov == 0) /* Indicates that full coverage is required. */ ; else if (cscov < 8 || cscov > skb->len) { /* * Coverage length violates RFC 3828: log and discard silently. */ net_dbg_ratelimited("UDPLite: bad csum coverage %d/%d\n", cscov, skb->len); return 1; } else if (cscov < skb->len) { UDP_SKB_CB(skb)->partial_cov = 1; UDP_SKB_CB(skb)->cscov = cscov; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; skb->csum_valid = 0; } return 0; } /* Slow-path computation of checksum. Socket is locked. */ static inline __wsum udplite_csum_outgoing(struct sock *sk, struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); int cscov = up->len; __wsum csum = 0; if (up->pcflag & UDPLITE_SEND_CC) { /* * Sender has set `partial coverage' option on UDP-Lite socket. * The special case "up->pcslen == 0" signifies full coverage. */ if (up->pcslen < up->len) { if (0 < up->pcslen) cscov = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } /* * NOTE: Causes for the error case `up->pcslen > up->len': * (i) Application error (will not be penalized). * (ii) Payload too big for send buffer: data is split * into several packets, each with its own header. * In this case (e.g. last segment), coverage may * exceed packet length. * Since packets with coverage length > packet length are * illegal, we fall back to the defaults here. */ } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ skb_queue_walk(&sk->sk_write_queue, skb) { const int off = skb_transport_offset(skb); const int len = skb->len - off; csum = skb_checksum(skb, off, (cscov > len)? len : cscov, csum); if ((cscov -= len) <= 0) break; } return csum; } /* Fast-path computation of checksum. Socket may not be locked. */ static inline __wsum udplite_csum(struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); const int off = skb_transport_offset(skb); int len = skb->len - off; if ((up->pcflag & UDPLITE_SEND_CC) && up->pcslen < len) { if (0 < up->pcslen) len = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ return skb_checksum(skb, off, len, 0); } void udplite4_register(void); int udplite_get_port(struct sock *sk, unsigned short snum, int (*scmp)(const struct sock *, const struct sock *)); #endif /* _UDPLITE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/include/linux/sunrpc/addr.h * * Various routines for copying and comparing sockaddrs and for * converting them to and from presentation format. */ #ifndef _LINUX_SUNRPC_ADDR_H #define _LINUX_SUNRPC_ADDR_H #include <linux/socket.h> #include <linux/in.h> #include <linux/in6.h> #include <net/ipv6.h> size_t rpc_ntop(const struct sockaddr *, char *, const size_t); size_t rpc_pton(struct net *, const char *, const size_t, struct sockaddr *, const size_t); char * rpc_sockaddr2uaddr(const struct sockaddr *, gfp_t); size_t rpc_uaddr2sockaddr(struct net *, const char *, const size_t, struct sockaddr *, const size_t); static inline unsigned short rpc_get_port(const struct sockaddr *sap) { switch (sap->sa_family) { case AF_INET: return ntohs(((struct sockaddr_in *)sap)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)sap)->sin6_port); } return 0; } static inline void rpc_set_port(struct sockaddr *sap, const unsigned short port) { switch (sap->sa_family) { case AF_INET: ((struct sockaddr_in *)sap)->sin_port = htons(port); break; case AF_INET6: ((struct sockaddr_in6 *)sap)->sin6_port = htons(port); break; } } #define IPV6_SCOPE_DELIMITER '%' #define IPV6_SCOPE_ID_LEN sizeof("%nnnnnnnnnn") static inline bool rpc_cmp_addr4(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in *sin1 = (const struct sockaddr_in *)sap1; const struct sockaddr_in *sin2 = (const struct sockaddr_in *)sap2; return sin1->sin_addr.s_addr == sin2->sin_addr.s_addr; } static inline bool __rpc_copy_addr4(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in *ssin = (struct sockaddr_in *) src; struct sockaddr_in *dsin = (struct sockaddr_in *) dst; dsin->sin_family = ssin->sin_family; dsin->sin_addr.s_addr = ssin->sin_addr.s_addr; return true; } #if IS_ENABLED(CONFIG_IPV6) static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { const struct sockaddr_in6 *sin1 = (const struct sockaddr_in6 *)sap1; const struct sockaddr_in6 *sin2 = (const struct sockaddr_in6 *)sap2; if (!ipv6_addr_equal(&sin1->sin6_addr, &sin2->sin6_addr)) return false; else if (ipv6_addr_type(&sin1->sin6_addr) & IPV6_ADDR_LINKLOCAL) return sin1->sin6_scope_id == sin2->sin6_scope_id; return true; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { const struct sockaddr_in6 *ssin6 = (const struct sockaddr_in6 *) src; struct sockaddr_in6 *dsin6 = (struct sockaddr_in6 *) dst; dsin6->sin6_family = ssin6->sin6_family; dsin6->sin6_addr = ssin6->sin6_addr; dsin6->sin6_scope_id = ssin6->sin6_scope_id; return true; } #else /* !(IS_ENABLED(CONFIG_IPV6) */ static inline bool rpc_cmp_addr6(const struct sockaddr *sap1, const struct sockaddr *sap2) { return false; } static inline bool __rpc_copy_addr6(struct sockaddr *dst, const struct sockaddr *src) { return false; } #endif /* !(IS_ENABLED(CONFIG_IPV6) */ /** * rpc_cmp_addr - compare the address portion of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr * * Just compares the family and address portion. Ignores port, but * compares the scope if it's a link-local address. * * Returns true if the addrs are equal, false if they aren't. */ static inline bool rpc_cmp_addr(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (sap1->sa_family == sap2->sa_family) { switch (sap1->sa_family) { case AF_INET: return rpc_cmp_addr4(sap1, sap2); case AF_INET6: return rpc_cmp_addr6(sap1, sap2); } } return false; } /** * rpc_cmp_addr_port - compare the address and port number of two sockaddrs. * @sap1: first sockaddr * @sap2: second sockaddr */ static inline bool rpc_cmp_addr_port(const struct sockaddr *sap1, const struct sockaddr *sap2) { if (!rpc_cmp_addr(sap1, sap2)) return false; return rpc_get_port(sap1) == rpc_get_port(sap2); } /** * rpc_copy_addr - copy the address portion of one sockaddr to another * @dst: destination sockaddr * @src: source sockaddr * * Just copies the address portion and family. Ignores port, scope, etc. * Caller is responsible for making certain that dst is large enough to hold * the address in src. Returns true if address family is supported. Returns * false otherwise. */ static inline bool rpc_copy_addr(struct sockaddr *dst, const struct sockaddr *src) { switch (src->sa_family) { case AF_INET: return __rpc_copy_addr4(dst, src); case AF_INET6: return __rpc_copy_addr6(dst, src); } return false; } /** * rpc_get_scope_id - return scopeid for a given sockaddr * @sa: sockaddr to get scopeid from * * Returns the value of the sin6_scope_id for AF_INET6 addrs, or 0 if * not an AF_INET6 address. */ static inline u32 rpc_get_scope_id(const struct sockaddr *sa) { if (sa->sa_family != AF_INET6) return 0; return ((struct sockaddr_in6 *) sa)->sin6_scope_id; } #endif /* _LINUX_SUNRPC_ADDR_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: low-level thread information * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds and Dave Miller */ #ifndef _ASM_X86_THREAD_INFO_H #define _ASM_X86_THREAD_INFO_H #include <linux/compiler.h> #include <asm/page.h> #include <asm/percpu.h> #include <asm/types.h> /* * TOP_OF_KERNEL_STACK_PADDING is a number of unused bytes that we * reserve at the top of the kernel stack. We do it because of a nasty * 32-bit corner case. On x86_32, the hardware stack frame is * variable-length. Except for vm86 mode, struct pt_regs assumes a * maximum-length frame. If we enter from CPL 0, the top 8 bytes of * pt_regs don't actually exist. Ordinarily this doesn't matter, but it * does in at least one case: * * If we take an NMI early enough in SYSENTER, then we can end up with * pt_regs that extends above sp0. On the way out, in the espfix code, * we can read the saved SS value, but that value will be above sp0. * Without this offset, that can result in a page fault. (We are * careful that, in this case, the value we read doesn't matter.) * * In vm86 mode, the hardware frame is much longer still, so add 16 * bytes to make room for the real-mode segments. * * x86_64 has a fixed-length stack frame. */ #ifdef CONFIG_X86_32 # ifdef CONFIG_VM86 # define TOP_OF_KERNEL_STACK_PADDING 16 # else # define TOP_OF_KERNEL_STACK_PADDING 8 # endif #else # define TOP_OF_KERNEL_STACK_PADDING 0 #endif /* * low level task data that entry.S needs immediate access to * - this struct should fit entirely inside of one cache line * - this struct shares the supervisor stack pages */ #ifndef __ASSEMBLY__ struct task_struct; #include <asm/cpufeature.h> #include <linux/atomic.h> struct thread_info { unsigned long flags; /* low level flags */ u32 status; /* thread synchronous flags */ }; #define INIT_THREAD_INFO(tsk) \ { \ .flags = 0, \ } #else /* !__ASSEMBLY__ */ #include <asm/asm-offsets.h> #endif /* * thread information flags * - these are process state flags that various assembly files * may need to access */ #define TIF_SYSCALL_TRACE 0 /* syscall trace active */ #define TIF_NOTIFY_RESUME 1 /* callback before returning to user */ #define TIF_SIGPENDING 2 /* signal pending */ #define TIF_NEED_RESCHED 3 /* rescheduling necessary */ #define TIF_SINGLESTEP 4 /* reenable singlestep on user return*/ #define TIF_SSBD 5 /* Speculative store bypass disable */ #define TIF_SYSCALL_EMU 6 /* syscall emulation active */ #define TIF_SYSCALL_AUDIT 7 /* syscall auditing active */ #define TIF_SECCOMP 8 /* secure computing */ #define TIF_SPEC_IB 9 /* Indirect branch speculation mitigation */ #define TIF_SPEC_FORCE_UPDATE 10 /* Force speculation MSR update in context switch */ #define TIF_USER_RETURN_NOTIFY 11 /* notify kernel of userspace return */ #define TIF_UPROBE 12 /* breakpointed or singlestepping */ #define TIF_PATCH_PENDING 13 /* pending live patching update */ #define TIF_NEED_FPU_LOAD 14 /* load FPU on return to userspace */ #define TIF_NOCPUID 15 /* CPUID is not accessible in userland */ #define TIF_NOTSC 16 /* TSC is not accessible in userland */ #define TIF_IA32 17 /* IA32 compatibility process */ #define TIF_SLD 18 /* Restore split lock detection on context switch */ #define TIF_MEMDIE 20 /* is terminating due to OOM killer */ #define TIF_POLLING_NRFLAG 21 /* idle is polling for TIF_NEED_RESCHED */ #define TIF_IO_BITMAP 22 /* uses I/O bitmap */ #define TIF_FORCED_TF 24 /* true if TF in eflags artificially */ #define TIF_BLOCKSTEP 25 /* set when we want DEBUGCTLMSR_BTF */ #define TIF_LAZY_MMU_UPDATES 27 /* task is updating the mmu lazily */ #define TIF_SYSCALL_TRACEPOINT 28 /* syscall tracepoint instrumentation */ #define TIF_ADDR32 29 /* 32-bit address space on 64 bits */ #define TIF_X32 30 /* 32-bit native x86-64 binary */ #define _TIF_SYSCALL_TRACE (1 << TIF_SYSCALL_TRACE) #define _TIF_NOTIFY_RESUME (1 << TIF_NOTIFY_RESUME) #define _TIF_SIGPENDING (1 << TIF_SIGPENDING) #define _TIF_NEED_RESCHED (1 << TIF_NEED_RESCHED) #define _TIF_SINGLESTEP (1 << TIF_SINGLESTEP) #define _TIF_SSBD (1 << TIF_SSBD) #define _TIF_SYSCALL_EMU (1 << TIF_SYSCALL_EMU) #define _TIF_SYSCALL_AUDIT (1 << TIF_SYSCALL_AUDIT) #define _TIF_SECCOMP (1 << TIF_SECCOMP) #define _TIF_SPEC_IB (1 << TIF_SPEC_IB) #define _TIF_SPEC_FORCE_UPDATE (1 << TIF_SPEC_FORCE_UPDATE) #define _TIF_USER_RETURN_NOTIFY (1 << TIF_USER_RETURN_NOTIFY) #define _TIF_UPROBE (1 << TIF_UPROBE) #define _TIF_PATCH_PENDING (1 << TIF_PATCH_PENDING) #define _TIF_NEED_FPU_LOAD (1 << TIF_NEED_FPU_LOAD) #define _TIF_NOCPUID (1 << TIF_NOCPUID) #define _TIF_NOTSC (1 << TIF_NOTSC) #define _TIF_IA32 (1 << TIF_IA32) #define _TIF_SLD (1 << TIF_SLD) #define _TIF_POLLING_NRFLAG (1 << TIF_POLLING_NRFLAG) #define _TIF_IO_BITMAP (1 << TIF_IO_BITMAP) #define _TIF_FORCED_TF (1 << TIF_FORCED_TF) #define _TIF_BLOCKSTEP (1 << TIF_BLOCKSTEP) #define _TIF_LAZY_MMU_UPDATES (1 << TIF_LAZY_MMU_UPDATES) #define _TIF_SYSCALL_TRACEPOINT (1 << TIF_SYSCALL_TRACEPOINT) #define _TIF_ADDR32 (1 << TIF_ADDR32) #define _TIF_X32 (1 << TIF_X32) /* flags to check in __switch_to() */ #define _TIF_WORK_CTXSW_BASE \ (_TIF_NOCPUID | _TIF_NOTSC | _TIF_BLOCKSTEP | \ _TIF_SSBD | _TIF_SPEC_FORCE_UPDATE | _TIF_SLD) /* * Avoid calls to __switch_to_xtra() on UP as STIBP is not evaluated. */ #ifdef CONFIG_SMP # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE | _TIF_SPEC_IB) #else # define _TIF_WORK_CTXSW (_TIF_WORK_CTXSW_BASE) #endif #ifdef CONFIG_X86_IOPL_IOPERM # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY | \ _TIF_IO_BITMAP) #else # define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW| _TIF_USER_RETURN_NOTIFY) #endif #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW) #define STACK_WARN (THREAD_SIZE/8) /* * macros/functions for gaining access to the thread information structure * * preempt_count needs to be 1 initially, until the scheduler is functional. */ #ifndef __ASSEMBLY__ /* * Walks up the stack frames to make sure that the specified object is * entirely contained by a single stack frame. * * Returns: * GOOD_FRAME if within a frame * BAD_STACK if placed across a frame boundary (or outside stack) * NOT_STACK unable to determine (no frame pointers, etc) */ static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { #if defined(CONFIG_FRAME_POINTER) const void *frame = NULL; const void *oldframe; oldframe = __builtin_frame_address(1); if (oldframe) frame = __builtin_frame_address(2); /* * low ----------------------------------------------> high * [saved bp][saved ip][args][local vars][saved bp][saved ip] * ^----------------^ * allow copies only within here */ while (stack <= frame && frame < stackend) { /* * If obj + len extends past the last frame, this * check won't pass and the next frame will be 0, * causing us to bail out and correctly report * the copy as invalid. */ if (obj + len <= frame) return obj >= oldframe + 2 * sizeof(void *) ? GOOD_FRAME : BAD_STACK; oldframe = frame; frame = *(const void * const *)frame; } return BAD_STACK; #else return NOT_STACK; #endif } #else /* !__ASSEMBLY__ */ #ifdef CONFIG_X86_64 # define cpu_current_top_of_stack (cpu_tss_rw + TSS_sp1) #endif #endif /* * Thread-synchronous status. * * This is different from the flags in that nobody else * ever touches our thread-synchronous status, so we don't * have to worry about atomic accesses. */ #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ #ifndef __ASSEMBLY__ #ifdef CONFIG_COMPAT #define TS_I386_REGS_POKED 0x0004 /* regs poked by 32-bit ptracer */ #define TS_COMPAT_RESTART 0x0008 #define arch_set_restart_data arch_set_restart_data static inline void arch_set_restart_data(struct restart_block *restart) { struct thread_info *ti = current_thread_info(); if (ti->status & TS_COMPAT) ti->status |= TS_COMPAT_RESTART; else ti->status &= ~TS_COMPAT_RESTART; } #endif #ifdef CONFIG_X86_32 #define in_ia32_syscall() true #else #define in_ia32_syscall() (IS_ENABLED(CONFIG_IA32_EMULATION) && \ current_thread_info()->status & TS_COMPAT) #endif extern void arch_task_cache_init(void); extern int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src); extern void arch_release_task_struct(struct task_struct *tsk); extern void arch_setup_new_exec(void); #define arch_setup_new_exec arch_setup_new_exec #endif /* !__ASSEMBLY__ */ #endif /* _ASM_X86_THREAD_INFO_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Generic associative array implementation. * * See Documentation/core-api/assoc_array.rst for information. * * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_ASSOC_ARRAY_H #define _LINUX_ASSOC_ARRAY_H #ifdef CONFIG_ASSOCIATIVE_ARRAY #include <linux/types.h> #define ASSOC_ARRAY_KEY_CHUNK_SIZE BITS_PER_LONG /* Key data retrieved in chunks of this size */ /* * Generic associative array. */ struct assoc_array { struct assoc_array_ptr *root; /* The node at the root of the tree */ unsigned long nr_leaves_on_tree; }; /* * Operations on objects and index keys for use by array manipulation routines. */ struct assoc_array_ops { /* Method to get a chunk of an index key from caller-supplied data */ unsigned long (*get_key_chunk)(const void *index_key, int level); /* Method to get a piece of an object's index key */ unsigned long (*get_object_key_chunk)(const void *object, int level); /* Is this the object we're looking for? */ bool (*compare_object)(const void *object, const void *index_key); /* How different is an object from an index key, to a bit position in * their keys? (or -1 if they're the same) */ int (*diff_objects)(const void *object, const void *index_key); /* Method to free an object. */ void (*free_object)(void *object); }; /* * Access and manipulation functions. */ struct assoc_array_edit; static inline void assoc_array_init(struct assoc_array *array) { array->root = NULL; array->nr_leaves_on_tree = 0; } extern int assoc_array_iterate(const struct assoc_array *array, int (*iterator)(const void *object, void *iterator_data), void *iterator_data); extern void *assoc_array_find(const struct assoc_array *array, const struct assoc_array_ops *ops, const void *index_key); extern void assoc_array_destroy(struct assoc_array *array, const struct assoc_array_ops *ops); extern struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, const struct assoc_array_ops *ops, const void *index_key, void *object); extern void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object); extern struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, const struct assoc_array_ops *ops, const void *index_key); extern struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, const struct assoc_array_ops *ops); extern void assoc_array_apply_edit(struct assoc_array_edit *edit); extern void assoc_array_cancel_edit(struct assoc_array_edit *edit); extern int assoc_array_gc(struct assoc_array *array, const struct assoc_array_ops *ops, bool (*iterator)(void *object, void *iterator_data), void *iterator_data); #endif /* CONFIG_ASSOCIATIVE_ARRAY */ #endif /* _LINUX_ASSOC_ARRAY_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 /* SPDX-License-Identifier: GPL-2.0 */ /* * INETPEER - A storage for permanent information about peers * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #ifndef _NET_INETPEER_H #define _NET_INETPEER_H #include <linux/types.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/rtnetlink.h> #include <net/ipv6.h> #include <linux/atomic.h> /* IPv4 address key for cache lookups */ struct ipv4_addr_key { __be32 addr; int vif; }; #define INETPEER_MAXKEYSZ (sizeof(struct in6_addr) / sizeof(u32)) struct inetpeer_addr { union { struct ipv4_addr_key a4; struct in6_addr a6; u32 key[INETPEER_MAXKEYSZ]; }; __u16 family; }; struct inet_peer { struct rb_node rb_node; struct inetpeer_addr daddr; u32 metrics[RTAX_MAX]; u32 rate_tokens; /* rate limiting for ICMP */ u32 n_redirects; unsigned long rate_last; /* * Once inet_peer is queued for deletion (refcnt == 0), following field * is not available: rid * We can share memory with rcu_head to help keep inet_peer small. */ union { struct { atomic_t rid; /* Frag reception counter */ }; struct rcu_head rcu; }; /* following fields might be frequently dirtied */ __u32 dtime; /* the time of last use of not referenced entries */ refcount_t refcnt; }; struct inet_peer_base { struct rb_root rb_root; seqlock_t lock; int total; }; void inet_peer_base_init(struct inet_peer_base *); void inet_initpeers(void) __init; #define INETPEER_METRICS_NEW (~(u32) 0) static inline void inetpeer_set_addr_v4(struct inetpeer_addr *iaddr, __be32 ip) { iaddr->a4.addr = ip; iaddr->a4.vif = 0; iaddr->family = AF_INET; } static inline __be32 inetpeer_get_addr_v4(struct inetpeer_addr *iaddr) { return iaddr->a4.addr; } static inline void inetpeer_set_addr_v6(struct inetpeer_addr *iaddr, struct in6_addr *in6) { iaddr->a6 = *in6; iaddr->family = AF_INET6; } static inline struct in6_addr *inetpeer_get_addr_v6(struct inetpeer_addr *iaddr) { return &iaddr->a6; } /* can be called with or without local BH being disabled */ struct inet_peer *inet_getpeer(struct inet_peer_base *base, const struct inetpeer_addr *daddr, int create); static inline struct inet_peer *inet_getpeer_v4(struct inet_peer_base *base, __be32 v4daddr, int vif, int create) { struct inetpeer_addr daddr; daddr.a4.addr = v4daddr; daddr.a4.vif = vif; daddr.family = AF_INET; return inet_getpeer(base, &daddr, create); } static inline struct inet_peer *inet_getpeer_v6(struct inet_peer_base *base, const struct in6_addr *v6daddr, int create) { struct inetpeer_addr daddr; daddr.a6 = *v6daddr; daddr.family = AF_INET6; return inet_getpeer(base, &daddr, create); } static inline int inetpeer_addr_cmp(const struct inetpeer_addr *a, const struct inetpeer_addr *b) { int i, n; if (a->family == AF_INET) n = sizeof(a->a4) / sizeof(u32); else n = sizeof(a->a6) / sizeof(u32); for (i = 0; i < n; i++) { if (a->key[i] == b->key[i]) continue; if (a->key[i] < b->key[i]) return -1; return 1; } return 0; } /* can be called from BH context or outside */ void inet_putpeer(struct inet_peer *p); bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout); void inetpeer_invalidate_tree(struct inet_peer_base *); #endif /* _NET_INETPEER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef IOCONTEXT_H #define IOCONTEXT_H #include <linux/radix-tree.h> #include <linux/rcupdate.h> #include <linux/workqueue.h> enum { ICQ_EXITED = 1 << 2, ICQ_DESTROYED = 1 << 3, }; /* * An io_cq (icq) is association between an io_context (ioc) and a * request_queue (q). This is used by elevators which need to track * information per ioc - q pair. * * Elevator can request use of icq by setting elevator_type->icq_size and * ->icq_align. Both size and align must be larger than that of struct * io_cq and elevator can use the tail area for private information. The * recommended way to do this is defining a struct which contains io_cq as * the first member followed by private members and using its size and * align. For example, * * struct snail_io_cq { * struct io_cq icq; * int poke_snail; * int feed_snail; * }; * * struct elevator_type snail_elv_type { * .ops = { ... }, * .icq_size = sizeof(struct snail_io_cq), * .icq_align = __alignof__(struct snail_io_cq), * ... * }; * * If icq_size is set, block core will manage icq's. All requests will * have its ->elv.icq field set before elevator_ops->elevator_set_req_fn() * is called and be holding a reference to the associated io_context. * * Whenever a new icq is created, elevator_ops->elevator_init_icq_fn() is * called and, on destruction, ->elevator_exit_icq_fn(). Both functions * are called with both the associated io_context and queue locks held. * * Elevator is allowed to lookup icq using ioc_lookup_icq() while holding * queue lock but the returned icq is valid only until the queue lock is * released. Elevators can not and should not try to create or destroy * icq's. * * As icq's are linked from both ioc and q, the locking rules are a bit * complex. * * - ioc lock nests inside q lock. * * - ioc->icq_list and icq->ioc_node are protected by ioc lock. * q->icq_list and icq->q_node by q lock. * * - ioc->icq_tree and ioc->icq_hint are protected by ioc lock, while icq * itself is protected by q lock. However, both the indexes and icq * itself are also RCU managed and lookup can be performed holding only * the q lock. * * - icq's are not reference counted. They are destroyed when either the * ioc or q goes away. Each request with icq set holds an extra * reference to ioc to ensure it stays until the request is completed. * * - Linking and unlinking icq's are performed while holding both ioc and q * locks. Due to the lock ordering, q exit is simple but ioc exit * requires reverse-order double lock dance. */ struct io_cq { struct request_queue *q; struct io_context *ioc; /* * q_node and ioc_node link io_cq through icq_list of q and ioc * respectively. Both fields are unused once ioc_exit_icq() is * called and shared with __rcu_icq_cache and __rcu_head which are * used for RCU free of io_cq. */ union { struct list_head q_node; struct kmem_cache *__rcu_icq_cache; }; union { struct hlist_node ioc_node; struct rcu_head __rcu_head; }; unsigned int flags; }; /* * I/O subsystem state of the associated processes. It is refcounted * and kmalloc'ed. These could be shared between processes. */ struct io_context { atomic_long_t refcount; atomic_t active_ref; atomic_t nr_tasks; /* all the fields below are protected by this lock */ spinlock_t lock; unsigned short ioprio; struct radix_tree_root icq_tree; struct io_cq __rcu *icq_hint; struct hlist_head icq_list; struct work_struct release_work; }; /** * get_io_context_active - get active reference on ioc * @ioc: ioc of interest * * Only iocs with active reference can issue new IOs. This function * acquires an active reference on @ioc. The caller must already have an * active reference on @ioc. */ static inline void get_io_context_active(struct io_context *ioc) { WARN_ON_ONCE(atomic_long_read(&ioc->refcount) <= 0); WARN_ON_ONCE(atomic_read(&ioc->active_ref) <= 0); atomic_long_inc(&ioc->refcount); atomic_inc(&ioc->active_ref); } static inline void ioc_task_link(struct io_context *ioc) { get_io_context_active(ioc); WARN_ON_ONCE(atomic_read(&ioc->nr_tasks) <= 0); atomic_inc(&ioc->nr_tasks); } struct task_struct; #ifdef CONFIG_BLOCK void put_io_context(struct io_context *ioc); void put_io_context_active(struct io_context *ioc); void exit_io_context(struct task_struct *task); struct io_context *get_task_io_context(struct task_struct *task, gfp_t gfp_flags, int node); #else struct io_context; static inline void put_io_context(struct io_context *ioc) { } static inline void exit_io_context(struct task_struct *task) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETLINK_H #define __LINUX_NETLINK_H #include <linux/capability.h> #include <linux/skbuff.h> #include <linux/export.h> #include <net/scm.h> #include <uapi/linux/netlink.h> struct net; static inline struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb) { return (struct nlmsghdr *)skb->data; } enum netlink_skb_flags { NETLINK_SKB_DST = 0x8, /* Dst set in sendto or sendmsg */ }; struct netlink_skb_parms { struct scm_creds creds; /* Skb credentials */ __u32 portid; __u32 dst_group; __u32 flags; struct sock *sk; bool nsid_is_set; int nsid; }; #define NETLINK_CB(skb) (*(struct netlink_skb_parms*)&((skb)->cb)) #define NETLINK_CREDS(skb) (&NETLINK_CB((skb)).creds) void netlink_table_grab(void); void netlink_table_ungrab(void); #define NL_CFG_F_NONROOT_RECV (1 << 0) #define NL_CFG_F_NONROOT_SEND (1 << 1) /* optional Netlink kernel configuration parameters */ struct netlink_kernel_cfg { unsigned int groups; unsigned int flags; void (*input)(struct sk_buff *skb); struct mutex *cb_mutex; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); bool (*compare)(struct net *net, struct sock *sk); }; struct sock *__netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg); static inline struct sock * netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg) { return __netlink_kernel_create(net, unit, THIS_MODULE, cfg); } /* this can be increased when necessary - don't expose to userland */ #define NETLINK_MAX_COOKIE_LEN 20 /** * struct netlink_ext_ack - netlink extended ACK report struct * @_msg: message string to report - don't access directly, use * %NL_SET_ERR_MSG * @bad_attr: attribute with error * @policy: policy for a bad attribute * @cookie: cookie data to return to userspace (for success) * @cookie_len: actual cookie data length */ struct netlink_ext_ack { const char *_msg; const struct nlattr *bad_attr; const struct nla_policy *policy; u8 cookie[NETLINK_MAX_COOKIE_LEN]; u8 cookie_len; }; /* Always use this macro, this allows later putting the * message into a separate section or such for things * like translation or listing all possible messages. * Currently string formatting is not supported (due * to the lack of an output buffer.) */ #define NL_SET_ERR_MSG(extack, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) \ __extack->_msg = __msg; \ } while (0) #define NL_SET_ERR_MSG_MOD(extack, msg) \ NL_SET_ERR_MSG((extack), KBUILD_MODNAME ": " msg) #define NL_SET_BAD_ATTR_POLICY(extack, attr, pol) do { \ if ((extack)) { \ (extack)->bad_attr = (attr); \ (extack)->policy = (pol); \ } \ } while (0) #define NL_SET_BAD_ATTR(extack, attr) NL_SET_BAD_ATTR_POLICY(extack, attr, NULL) #define NL_SET_ERR_MSG_ATTR_POL(extack, attr, pol, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) { \ __extack->_msg = __msg; \ __extack->bad_attr = (attr); \ __extack->policy = (pol); \ } \ } while (0) #define NL_SET_ERR_MSG_ATTR(extack, attr, msg) \ NL_SET_ERR_MSG_ATTR_POL(extack, attr, NULL, msg) static inline void nl_set_extack_cookie_u64(struct netlink_ext_ack *extack, u64 cookie) { u64 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } static inline void nl_set_extack_cookie_u32(struct netlink_ext_ack *extack, u32 cookie) { u32 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } void netlink_kernel_release(struct sock *sk); int __netlink_change_ngroups(struct sock *sk, unsigned int groups); int netlink_change_ngroups(struct sock *sk, unsigned int groups); void __netlink_clear_multicast_users(struct sock *sk, unsigned int group); void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack); int netlink_has_listeners(struct sock *sk, unsigned int group); bool netlink_strict_get_check(struct sk_buff *skb); int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 portid, int nonblock); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation); int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation, int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), void *filter_data); int netlink_set_err(struct sock *ssk, __u32 portid, __u32 group, int code); int netlink_register_notifier(struct notifier_block *nb); int netlink_unregister_notifier(struct notifier_block *nb); /* finegrained unicast helpers: */ struct sock *netlink_getsockbyfilp(struct file *filp); int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk); void netlink_detachskb(struct sock *sk, struct sk_buff *skb); int netlink_sendskb(struct sock *sk, struct sk_buff *skb); static inline struct sk_buff * netlink_skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff *nskb; nskb = skb_clone(skb, gfp_mask); if (!nskb) return NULL; /* This is a large skb, set destructor callback to release head */ if (is_vmalloc_addr(skb->head)) nskb->destructor = skb->destructor; return nskb; } /* * skb should fit one page. This choice is good for headerless malloc. * But we should limit to 8K so that userspace does not have to * use enormous buffer sizes on recvmsg() calls just to avoid * MSG_TRUNC when PAGE_SIZE is very large. */ #if PAGE_SIZE < 8192UL #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(PAGE_SIZE) #else #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(8192UL) #endif #define NLMSG_DEFAULT_SIZE (NLMSG_GOODSIZE - NLMSG_HDRLEN) struct netlink_callback { struct sk_buff *skb; const struct nlmsghdr *nlh; int (*dump)(struct sk_buff * skb, struct netlink_callback *cb); int (*done)(struct netlink_callback *cb); void *data; /* the module that dump function belong to */ struct module *module; struct netlink_ext_ack *extack; u16 family; u16 answer_flags; u32 min_dump_alloc; unsigned int prev_seq, seq; bool strict_check; union { u8 ctx[48]; /* args is deprecated. Cast a struct over ctx instead * for proper type safety. */ long args[6]; }; }; struct netlink_notify { struct net *net; u32 portid; int protocol; }; struct nlmsghdr * __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags); struct netlink_dump_control { int (*start)(struct netlink_callback *); int (*dump)(struct sk_buff *skb, struct netlink_callback *); int (*done)(struct netlink_callback *); void *data; struct module *module; u32 min_dump_alloc; }; int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control); static inline int netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control) { if (!control->module) control->module = THIS_MODULE; return __netlink_dump_start(ssk, skb, nlh, control); } struct netlink_tap { struct net_device *dev; struct module *module; struct list_head list; }; int netlink_add_tap(struct netlink_tap *nt); int netlink_remove_tap(struct netlink_tap *nt); bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *ns, int cap); bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *ns, int cap); bool netlink_capable(const struct sk_buff *skb, int cap); bool netlink_net_capable(const struct sk_buff *skb, int cap); #endif /* __LINUX_NETLINK_H */
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 // SPDX-License-Identifier: GPL-2.0-or-later /* * SELinux NetLabel Support * * This file provides the necessary glue to tie NetLabel into the SELinux * subsystem. * * Author: Paul Moore <paul@paul-moore.com> */ /* * (c) Copyright Hewlett-Packard Development Company, L.P., 2007, 2008 */ #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/gfp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/sock.h> #include <net/netlabel.h> #include <net/ip.h> #include <net/ipv6.h> #include "objsec.h" #include "security.h" #include "netlabel.h" /** * selinux_netlbl_sidlookup_cached - Cache a SID lookup * @skb: the packet * @secattr: the NetLabel security attributes * @sid: the SID * * Description: * Query the SELinux security server to lookup the correct SID for the given * security attributes. If the query is successful, cache the result to speed * up future lookups. Returns zero on success, negative values on failure. * */ static int selinux_netlbl_sidlookup_cached(struct sk_buff *skb, u16 family, struct netlbl_lsm_secattr *secattr, u32 *sid) { int rc; rc = security_netlbl_secattr_to_sid(&selinux_state, secattr, sid); if (rc == 0 && (secattr->flags & NETLBL_SECATTR_CACHEABLE) && (secattr->flags & NETLBL_SECATTR_CACHE)) netlbl_cache_add(skb, family, secattr); return rc; } /** * selinux_netlbl_sock_genattr - Generate the NetLabel socket secattr * @sk: the socket * * Description: * Generate the NetLabel security attributes for a socket, making full use of * the socket's attribute cache. Returns a pointer to the security attributes * on success, NULL on failure. * */ static struct netlbl_lsm_secattr *selinux_netlbl_sock_genattr(struct sock *sk) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; if (sksec->nlbl_secattr != NULL) return sksec->nlbl_secattr; secattr = netlbl_secattr_alloc(GFP_ATOMIC); if (secattr == NULL) return NULL; rc = security_netlbl_sid_to_secattr(&selinux_state, sksec->sid, secattr); if (rc != 0) { netlbl_secattr_free(secattr); return NULL; } sksec->nlbl_secattr = secattr; return secattr; } /** * selinux_netlbl_sock_getattr - Get the cached NetLabel secattr * @sk: the socket * @sid: the SID * * Query the socket's cached secattr and if the SID matches the cached value * return the cache, otherwise return NULL. * */ static struct netlbl_lsm_secattr *selinux_netlbl_sock_getattr( const struct sock *sk, u32 sid) { struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr = sksec->nlbl_secattr; if (secattr == NULL) return NULL; if ((secattr->flags & NETLBL_SECATTR_SECID) && (secattr->attr.secid == sid)) return secattr; return NULL; } /** * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache * * Description: * Invalidate the NetLabel security attribute mapping cache. * */ void selinux_netlbl_cache_invalidate(void) { netlbl_cache_invalidate(); } /** * selinux_netlbl_err - Handle a NetLabel packet error * @skb: the packet * @error: the error code * @gateway: true if host is acting as a gateway, false otherwise * * Description: * When a packet is dropped due to a call to avc_has_perm() pass the error * code to the NetLabel subsystem so any protocol specific processing can be * done. This is safe to call even if you are unsure if NetLabel labeling is * present on the packet, NetLabel is smart enough to only act when it should. * */ void selinux_netlbl_err(struct sk_buff *skb, u16 family, int error, int gateway) { netlbl_skbuff_err(skb, family, error, gateway); } /** * selinux_netlbl_sk_security_free - Free the NetLabel fields * @sksec: the sk_security_struct * * Description: * Free all of the memory in the NetLabel fields of a sk_security_struct. * */ void selinux_netlbl_sk_security_free(struct sk_security_struct *sksec) { if (sksec->nlbl_secattr != NULL) netlbl_secattr_free(sksec->nlbl_secattr); } /** * selinux_netlbl_sk_security_reset - Reset the NetLabel fields * @sksec: the sk_security_struct * @family: the socket family * * Description: * Called when the NetLabel state of a sk_security_struct needs to be reset. * The caller is responsible for all the NetLabel sk_security_struct locking. * */ void selinux_netlbl_sk_security_reset(struct sk_security_struct *sksec) { sksec->nlbl_state = NLBL_UNSET; } /** * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel * @skb: the packet * @family: protocol family * @type: NetLabel labeling protocol type * @sid: the SID * * Description: * Call the NetLabel mechanism to get the security attributes of the given * packet and use those attributes to determine the correct context/SID to * assign to the packet. Returns zero on success, negative values on failure. * */ int selinux_netlbl_skbuff_getsid(struct sk_buff *skb, u16 family, u32 *type, u32 *sid) { int rc; struct netlbl_lsm_secattr secattr; if (!netlbl_enabled()) { *sid = SECSID_NULL; return 0; } netlbl_secattr_init(&secattr); rc = netlbl_skbuff_getattr(skb, family, &secattr); if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) rc = selinux_netlbl_sidlookup_cached(skb, family, &secattr, sid); else *sid = SECSID_NULL; *type = secattr.type; netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_skbuff_setsid - Set the NetLabel on a packet given a sid * @skb: the packet * @family: protocol family * @sid: the SID * * Description * Call the NetLabel mechanism to set the label of a packet using @sid. * Returns zero on success, negative values on failure. * */ int selinux_netlbl_skbuff_setsid(struct sk_buff *skb, u16 family, u32 sid) { int rc; struct netlbl_lsm_secattr secattr_storage; struct netlbl_lsm_secattr *secattr = NULL; struct sock *sk; /* if this is a locally generated packet check to see if it is already * being labeled by it's parent socket, if it is just exit */ sk = skb_to_full_sk(skb); if (sk != NULL) { struct sk_security_struct *sksec = sk->sk_security; if (sksec->nlbl_state != NLBL_REQSKB) return 0; secattr = selinux_netlbl_sock_getattr(sk, sid); } if (secattr == NULL) { secattr = &secattr_storage; netlbl_secattr_init(secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, sid, secattr); if (rc != 0) goto skbuff_setsid_return; } rc = netlbl_skbuff_setattr(skb, family, secattr); skbuff_setsid_return: if (secattr == &secattr_storage) netlbl_secattr_destroy(secattr); return rc; } /** * selinux_netlbl_sctp_assoc_request - Label an incoming sctp association. * @ep: incoming association endpoint. * @skb: the packet. * * Description: * A new incoming connection is represented by @ep, ...... * Returns zero on success, negative values on failure. * */ int selinux_netlbl_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) { int rc; struct netlbl_lsm_secattr secattr; struct sk_security_struct *sksec = ep->base.sk->sk_security; struct sockaddr_in addr4; struct sockaddr_in6 addr6; if (ep->base.sk->sk_family != PF_INET && ep->base.sk->sk_family != PF_INET6) return 0; netlbl_secattr_init(&secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, ep->secid, &secattr); if (rc != 0) goto assoc_request_return; /* Move skb hdr address info to a struct sockaddr and then call * netlbl_conn_setattr(). */ if (ip_hdr(skb)->version == 4) { addr4.sin_family = AF_INET; addr4.sin_addr.s_addr = ip_hdr(skb)->saddr; rc = netlbl_conn_setattr(ep->base.sk, (void *)&addr4, &secattr); } else if (IS_ENABLED(CONFIG_IPV6) && ip_hdr(skb)->version == 6) { addr6.sin6_family = AF_INET6; addr6.sin6_addr = ipv6_hdr(skb)->saddr; rc = netlbl_conn_setattr(ep->base.sk, (void *)&addr6, &secattr); } else { rc = -EAFNOSUPPORT; } if (rc == 0) sksec->nlbl_state = NLBL_LABELED; assoc_request_return: netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_inet_conn_request - Label an incoming stream connection * @req: incoming connection request socket * * Description: * A new incoming connection request is represented by @req, we need to label * the new request_sock here and the stack will ensure the on-the-wire label * will get preserved when a full sock is created once the connection handshake * is complete. Returns zero on success, negative values on failure. * */ int selinux_netlbl_inet_conn_request(struct request_sock *req, u16 family) { int rc; struct netlbl_lsm_secattr secattr; if (family != PF_INET && family != PF_INET6) return 0; netlbl_secattr_init(&secattr); rc = security_netlbl_sid_to_secattr(&selinux_state, req->secid, &secattr); if (rc != 0) goto inet_conn_request_return; rc = netlbl_req_setattr(req, &secattr); inet_conn_request_return: netlbl_secattr_destroy(&secattr); return rc; } /** * selinux_netlbl_inet_csk_clone - Initialize the newly created sock * @sk: the new sock * * Description: * A new connection has been established using @sk, we've already labeled the * socket via the request_sock struct in selinux_netlbl_inet_conn_request() but * we need to set the NetLabel state here since we now have a sock structure. * */ void selinux_netlbl_inet_csk_clone(struct sock *sk, u16 family) { struct sk_security_struct *sksec = sk->sk_security; if (family == PF_INET) sksec->nlbl_state = NLBL_LABELED; else sksec->nlbl_state = NLBL_UNSET; } /** * selinux_netlbl_sctp_sk_clone - Copy state to the newly created sock * @sk: current sock * @newsk: the new sock * * Description: * Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ void selinux_netlbl_sctp_sk_clone(struct sock *sk, struct sock *newsk) { struct sk_security_struct *sksec = sk->sk_security; struct sk_security_struct *newsksec = newsk->sk_security; newsksec->nlbl_state = sksec->nlbl_state; } /** * selinux_netlbl_socket_post_create - Label a socket using NetLabel * @sock: the socket to label * @family: protocol family * * Description: * Attempt to label a socket using the NetLabel mechanism using the given * SID. Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_post_create(struct sock *sk, u16 family) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; if (family != PF_INET && family != PF_INET6) return 0; secattr = selinux_netlbl_sock_genattr(sk); if (secattr == NULL) return -ENOMEM; rc = netlbl_sock_setattr(sk, family, secattr); switch (rc) { case 0: sksec->nlbl_state = NLBL_LABELED; break; case -EDESTADDRREQ: sksec->nlbl_state = NLBL_REQSKB; rc = 0; break; } return rc; } /** * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel * @sksec: the sock's sk_security_struct * @skb: the packet * @family: protocol family * @ad: the audit data * * Description: * Fetch the NetLabel security attributes from @skb and perform an access check * against the receiving socket. Returns zero on success, negative values on * error. * */ int selinux_netlbl_sock_rcv_skb(struct sk_security_struct *sksec, struct sk_buff *skb, u16 family, struct common_audit_data *ad) { int rc; u32 nlbl_sid; u32 perm; struct netlbl_lsm_secattr secattr; if (!netlbl_enabled()) return 0; netlbl_secattr_init(&secattr); rc = netlbl_skbuff_getattr(skb, family, &secattr); if (rc == 0 && secattr.flags != NETLBL_SECATTR_NONE) rc = selinux_netlbl_sidlookup_cached(skb, family, &secattr, &nlbl_sid); else nlbl_sid = SECINITSID_UNLABELED; netlbl_secattr_destroy(&secattr); if (rc != 0) return rc; switch (sksec->sclass) { case SECCLASS_UDP_SOCKET: perm = UDP_SOCKET__RECVFROM; break; case SECCLASS_TCP_SOCKET: perm = TCP_SOCKET__RECVFROM; break; default: perm = RAWIP_SOCKET__RECVFROM; } rc = avc_has_perm(&selinux_state, sksec->sid, nlbl_sid, sksec->sclass, perm, ad); if (rc == 0) return 0; if (nlbl_sid != SECINITSID_UNLABELED) netlbl_skbuff_err(skb, family, rc, 0); return rc; } /** * selinux_netlbl_option - Is this a NetLabel option * @level: the socket level or protocol * @optname: the socket option name * * Description: * Returns true if @level and @optname refer to a NetLabel option. * Helper for selinux_netlbl_socket_setsockopt(). */ static inline int selinux_netlbl_option(int level, int optname) { return (level == IPPROTO_IP && optname == IP_OPTIONS) || (level == IPPROTO_IPV6 && optname == IPV6_HOPOPTS); } /** * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel * @sock: the socket * @level: the socket level or protocol * @optname: the socket option name * * Description: * Check the setsockopt() call and if the user is trying to replace the IP * options on a socket and a NetLabel is in place for the socket deny the * access; otherwise allow the access. Returns zero when the access is * allowed, -EACCES when denied, and other negative values on error. * */ int selinux_netlbl_socket_setsockopt(struct socket *sock, int level, int optname) { int rc = 0; struct sock *sk = sock->sk; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr secattr; if (selinux_netlbl_option(level, optname) && (sksec->nlbl_state == NLBL_LABELED || sksec->nlbl_state == NLBL_CONNLABELED)) { netlbl_secattr_init(&secattr); lock_sock(sk); /* call the netlabel function directly as we want to see the * on-the-wire label that is assigned via the socket's options * and not the cached netlabel/lsm attributes */ rc = netlbl_sock_getattr(sk, &secattr); release_sock(sk); if (rc == 0) rc = -EACCES; else if (rc == -ENOMSG) rc = 0; netlbl_secattr_destroy(&secattr); } return rc; } /** * selinux_netlbl_socket_connect_helper - Help label a client-side socket on * connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ static int selinux_netlbl_socket_connect_helper(struct sock *sk, struct sockaddr *addr) { int rc; struct sk_security_struct *sksec = sk->sk_security; struct netlbl_lsm_secattr *secattr; /* connected sockets are allowed to disconnect when the address family * is set to AF_UNSPEC, if that is what is happening we want to reset * the socket */ if (addr->sa_family == AF_UNSPEC) { netlbl_sock_delattr(sk); sksec->nlbl_state = NLBL_REQSKB; rc = 0; return rc; } secattr = selinux_netlbl_sock_genattr(sk); if (secattr == NULL) { rc = -ENOMEM; return rc; } rc = netlbl_conn_setattr(sk, addr, secattr); if (rc == 0) sksec->nlbl_state = NLBL_CONNLABELED; return rc; } /** * selinux_netlbl_socket_connect_locked - Label a client-side socket on * connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket that already has the socket locked * with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_connect_locked(struct sock *sk, struct sockaddr *addr) { struct sk_security_struct *sksec = sk->sk_security; if (sksec->nlbl_state != NLBL_REQSKB && sksec->nlbl_state != NLBL_CONNLABELED) return 0; return selinux_netlbl_socket_connect_helper(sk, addr); } /** * selinux_netlbl_socket_connect - Label a client-side socket on connect * @sk: the socket to label * @addr: the destination address * * Description: * Attempt to label a connected socket with NetLabel using the given address. * Returns zero values on success, negative values on failure. * */ int selinux_netlbl_socket_connect(struct sock *sk, struct sockaddr *addr) { int rc; lock_sock(sk); rc = selinux_netlbl_socket_connect_locked(sk, addr); release_sock(sk); return rc; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib6 #if !defined(_TRACE_FIB6_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB6_H #include <linux/in6.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib6_table_lookup, TP_PROTO(const struct net *net, const struct fib6_result *res, struct fib6_table *table, const struct flowi6 *flp), TP_ARGS(net, res, table, flp), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 16 ) __array( __u8, dst, 16 ) __field( u16, sport ) __field( u16, dport ) __field( u8, proto ) __field( u8, rt_type ) __dynamic_array( char, name, IFNAMSIZ ) __array( __u8, gw, 16 ) ), TP_fast_assign( struct in6_addr *in6; __entry->tb_id = table->tb6_id; __entry->err = ip6_rt_type_to_error(res->fib6_type); __entry->oif = flp->flowi6_oif; __entry->iif = flp->flowi6_iif; __entry->tos = ip6_tclass(flp->flowlabel); __entry->scope = flp->flowi6_scope; __entry->flags = flp->flowi6_flags; in6 = (struct in6_addr *)__entry->src; *in6 = flp->saddr; in6 = (struct in6_addr *)__entry->dst; *in6 = flp->daddr; __entry->proto = flp->flowi6_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl6_sport); __entry->dport = ntohs(flp->fl6_dport); } else { __entry->sport = 0; __entry->dport = 0; } if (res->nh && res->nh->fib_nh_dev) { __assign_str(name, res->nh->fib_nh_dev); } else { __assign_str(name, "-"); } if (res->f6i == net->ipv6.fib6_null_entry) { struct in6_addr in6_zero = {}; in6 = (struct in6_addr *)__entry->gw; *in6 = in6_zero; } else if (res->nh) { in6 = (struct in6_addr *)__entry->gw; *in6 = res->nh->fib_nh_gw6; } ), TP_printk("table %3u oif %d iif %d proto %u %pI6c/%u -> %pI6c/%u tos %d scope %d flags %x ==> dev %s gw %pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __get_str(name), __entry->gw, __entry->err) ); #endif /* _TRACE_FIB6_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/file_table.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/string.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/eventpoll.h> #include <linux/rcupdate.h> #include <linux/mount.h> #include <linux/capability.h> #include <linux/cdev.h> #include <linux/fsnotify.h> #include <linux/sysctl.h> #include <linux/percpu_counter.h> #include <linux/percpu.h> #include <linux/task_work.h> #include <linux/ima.h> #include <linux/swap.h> #include <linux/atomic.h> #include "internal.h" /* sysctl tunables... */ struct files_stat_struct files_stat = { .max_files = NR_FILE }; /* SLAB cache for file structures */ static struct kmem_cache *filp_cachep __read_mostly; static struct percpu_counter nr_files __cacheline_aligned_in_smp; static void file_free_rcu(struct rcu_head *head) { struct file *f = container_of(head, struct file, f_u.fu_rcuhead); put_cred(f->f_cred); kmem_cache_free(filp_cachep, f); } static inline void file_free(struct file *f) { security_file_free(f); if (!(f->f_mode & FMODE_NOACCOUNT)) percpu_counter_dec(&nr_files); call_rcu(&f->f_u.fu_rcuhead, file_free_rcu); } /* * Return the total number of open files in the system */ static long get_nr_files(void) { return percpu_counter_read_positive(&nr_files); } /* * Return the maximum number of open files in the system */ unsigned long get_max_files(void) { return files_stat.max_files; } EXPORT_SYMBOL_GPL(get_max_files); /* * Handle nr_files sysctl */ #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { files_stat.nr_files = get_nr_files(); return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); } #else int proc_nr_files(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { return -ENOSYS; } #endif static struct file *__alloc_file(int flags, const struct cred *cred) { struct file *f; int error; f = kmem_cache_zalloc(filp_cachep, GFP_KERNEL); if (unlikely(!f)) return ERR_PTR(-ENOMEM); f->f_cred = get_cred(cred); error = security_file_alloc(f); if (unlikely(error)) { file_free_rcu(&f->f_u.fu_rcuhead); return ERR_PTR(error); } atomic_long_set(&f->f_count, 1); rwlock_init(&f->f_owner.lock); spin_lock_init(&f->f_lock); mutex_init(&f->f_pos_lock); eventpoll_init_file(f); f->f_flags = flags; f->f_mode = OPEN_FMODE(flags); /* f->f_version: 0 */ return f; } /* Find an unused file structure and return a pointer to it. * Returns an error pointer if some error happend e.g. we over file * structures limit, run out of memory or operation is not permitted. * * Be very careful using this. You are responsible for * getting write access to any mount that you might assign * to this filp, if it is opened for write. If this is not * done, you will imbalance int the mount's writer count * and a warning at __fput() time. */ struct file *alloc_empty_file(int flags, const struct cred *cred) { static long old_max; struct file *f; /* * Privileged users can go above max_files */ if (get_nr_files() >= files_stat.max_files && !capable(CAP_SYS_ADMIN)) { /* * percpu_counters are inaccurate. Do an expensive check before * we go and fail. */ if (percpu_counter_sum_positive(&nr_files) >= files_stat.max_files) goto over; } f = __alloc_file(flags, cred); if (!IS_ERR(f)) percpu_counter_inc(&nr_files); return f; over: /* Ran out of filps - report that */ if (get_nr_files() > old_max) { pr_info("VFS: file-max limit %lu reached\n", get_max_files()); old_max = get_nr_files(); } return ERR_PTR(-ENFILE); } /* * Variant of alloc_empty_file() that doesn't check and modify nr_files. * * Should not be used unless there's a very good reason to do so. */ struct file *alloc_empty_file_noaccount(int flags, const struct cred *cred) { struct file *f = __alloc_file(flags, cred); if (!IS_ERR(f)) f->f_mode |= FMODE_NOACCOUNT; return f; } /** * alloc_file - allocate and initialize a 'struct file' * * @path: the (dentry, vfsmount) pair for the new file * @flags: O_... flags with which the new file will be opened * @fop: the 'struct file_operations' for the new file */ static struct file *alloc_file(const struct path *path, int flags, const struct file_operations *fop) { struct file *file; file = alloc_empty_file(flags, current_cred()); if (IS_ERR(file)) return file; file->f_path = *path; file->f_inode = path->dentry->d_inode; file->f_mapping = path->dentry->d_inode->i_mapping; file->f_wb_err = filemap_sample_wb_err(file->f_mapping); file->f_sb_err = file_sample_sb_err(file); if ((file->f_mode & FMODE_READ) && likely(fop->read || fop->read_iter)) file->f_mode |= FMODE_CAN_READ; if ((file->f_mode & FMODE_WRITE) && likely(fop->write || fop->write_iter)) file->f_mode |= FMODE_CAN_WRITE; file->f_mode |= FMODE_OPENED; file->f_op = fop; if ((file->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) i_readcount_inc(path->dentry->d_inode); return file; } struct file *alloc_file_pseudo(struct inode *inode, struct vfsmount *mnt, const char *name, int flags, const struct file_operations *fops) { static const struct dentry_operations anon_ops = { .d_dname = simple_dname }; struct qstr this = QSTR_INIT(name, strlen(name)); struct path path; struct file *file; path.dentry = d_alloc_pseudo(mnt->mnt_sb, &this); if (!path.dentry) return ERR_PTR(-ENOMEM); if (!mnt->mnt_sb->s_d_op) d_set_d_op(path.dentry, &anon_ops); path.mnt = mntget(mnt); d_instantiate(path.dentry, inode); file = alloc_file(&path, flags, fops); if (IS_ERR(file)) { ihold(inode); path_put(&path); } return file; } EXPORT_SYMBOL(alloc_file_pseudo); struct file *alloc_file_clone(struct file *base, int flags, const struct file_operations *fops) { struct file *f = alloc_file(&base->f_path, flags, fops); if (!IS_ERR(f)) { path_get(&f->f_path); f->f_mapping = base->f_mapping; } return f; } /* the real guts of fput() - releasing the last reference to file */ static void __fput(struct file *file) { struct dentry *dentry = file->f_path.dentry; struct vfsmount *mnt = file->f_path.mnt; struct inode *inode = file->f_inode; fmode_t mode = file->f_mode; if (unlikely(!(file->f_mode & FMODE_OPENED))) goto out; might_sleep(); fsnotify_close(file); /* * The function eventpoll_release() should be the first called * in the file cleanup chain. */ eventpoll_release(file); locks_remove_file(file); ima_file_free(file); if (unlikely(file->f_flags & FASYNC)) { if (file->f_op->fasync) file->f_op->fasync(-1, file, 0); } if (file->f_op->release) file->f_op->release(inode, file); if (unlikely(S_ISCHR(inode->i_mode) && inode->i_cdev != NULL && !(mode & FMODE_PATH))) { cdev_put(inode->i_cdev); } fops_put(file->f_op); put_pid(file->f_owner.pid); if ((mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) i_readcount_dec(inode); if (mode & FMODE_WRITER) { put_write_access(inode); __mnt_drop_write(mnt); } dput(dentry); if (unlikely(mode & FMODE_NEED_UNMOUNT)) dissolve_on_fput(mnt); mntput(mnt); out: file_free(file); } static LLIST_HEAD(delayed_fput_list); static void delayed_fput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_fput_list); struct file *f, *t; llist_for_each_entry_safe(f, t, node, f_u.fu_llist) __fput(f); } static void ____fput(struct callback_head *work) { __fput(container_of(work, struct file, f_u.fu_rcuhead)); } /* * If kernel thread really needs to have the final fput() it has done * to complete, call this. The only user right now is the boot - we * *do* need to make sure our writes to binaries on initramfs has * not left us with opened struct file waiting for __fput() - execve() * won't work without that. Please, don't add more callers without * very good reasons; in particular, never call that with locks * held and never call that from a thread that might need to do * some work on any kind of umount. */ void flush_delayed_fput(void) { delayed_fput(NULL); } EXPORT_SYMBOL_GPL(flush_delayed_fput); static DECLARE_DELAYED_WORK(delayed_fput_work, delayed_fput); void fput_many(struct file *file, unsigned int refs) { if (atomic_long_sub_and_test(refs, &file->f_count)) { struct task_struct *task = current; if (likely(!in_interrupt() && !(task->flags & PF_KTHREAD))) { init_task_work(&file->f_u.fu_rcuhead, ____fput); if (!task_work_add(task, &file->f_u.fu_rcuhead, TWA_RESUME)) return; /* * After this task has run exit_task_work(), * task_work_add() will fail. Fall through to delayed * fput to avoid leaking *file. */ } if (llist_add(&file->f_u.fu_llist, &delayed_fput_list)) schedule_delayed_work(&delayed_fput_work, 1); } } void fput(struct file *file) { fput_many(file, 1); } /* * synchronous analog of fput(); for kernel threads that might be needed * in some umount() (and thus can't use flush_delayed_fput() without * risking deadlocks), need to wait for completion of __fput() and know * for this specific struct file it won't involve anything that would * need them. Use only if you really need it - at the very least, * don't blindly convert fput() by kernel thread to that. */ void __fput_sync(struct file *file) { if (atomic_long_dec_and_test(&file->f_count)) { struct task_struct *task = current; BUG_ON(!(task->flags & PF_KTHREAD)); __fput(file); } } EXPORT_SYMBOL(fput); void __init files_init(void) { filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, NULL); percpu_counter_init(&nr_files, 0, GFP_KERNEL); } /* * One file with associated inode and dcache is very roughly 1K. Per default * do not use more than 10% of our memory for files. */ void __init files_maxfiles_init(void) { unsigned long n; unsigned long nr_pages = totalram_pages(); unsigned long memreserve = (nr_pages - nr_free_pages()) * 3/2; memreserve = min(memreserve, nr_pages - 1); n = ((nr_pages - memreserve) * (PAGE_SIZE / 1024)) / 10; files_stat.max_files = max_t(unsigned long, n, NR_FILE); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include <linux/sched.h> #include <linux/uaccess.h> struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; struct cgroup *cgrp; struct css_set *cset; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *, unsigned long); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *fork_idle(int); struct mm_struct *copy_init_mm(void); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (refcount_dec_and_test(&t->usage)) __put_task_struct(t); } static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* md.h : kernel internal structure of the Linux MD driver Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman */ #ifndef _MD_MD_H #define _MD_MD_H #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/badblocks.h> #include <linux/kobject.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/wait.h> #include <linux/workqueue.h> #include "md-cluster.h" #define MaxSector (~(sector_t)0) /* * These flags should really be called "NO_RETRY" rather than * "FAILFAST" because they don't make any promise about time lapse, * only about the number of retries, which will be zero. * REQ_FAILFAST_DRIVER is not included because * Commit: 4a27446f3e39 ("[SCSI] modify scsi to handle new fail fast flags.") * seems to suggest that the errors it avoids retrying should usually * be retried. */ #define MD_FAILFAST (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT) /* * The struct embedded in rdev is used to serialize IO. */ struct serial_in_rdev { struct rb_root_cached serial_rb; spinlock_t serial_lock; wait_queue_head_t serial_io_wait; }; /* * MD's 'extended' device */ struct md_rdev { struct list_head same_set; /* RAID devices within the same set */ sector_t sectors; /* Device size (in 512bytes sectors) */ struct mddev *mddev; /* RAID array if running */ int last_events; /* IO event timestamp */ /* * If meta_bdev is non-NULL, it means that a separate device is * being used to store the metadata (superblock/bitmap) which * would otherwise be contained on the same device as the data (bdev). */ struct block_device *meta_bdev; struct block_device *bdev; /* block device handle */ struct page *sb_page, *bb_page; int sb_loaded; __u64 sb_events; sector_t data_offset; /* start of data in array */ sector_t new_data_offset;/* only relevant while reshaping */ sector_t sb_start; /* offset of the super block (in 512byte sectors) */ int sb_size; /* bytes in the superblock */ int preferred_minor; /* autorun support */ struct kobject kobj; /* A device can be in one of three states based on two flags: * Not working: faulty==1 in_sync==0 * Fully working: faulty==0 in_sync==1 * Working, but not * in sync with array * faulty==0 in_sync==0 * * It can never have faulty==1, in_sync==1 * This reduces the burden of testing multiple flags in many cases */ unsigned long flags; /* bit set of 'enum flag_bits' bits. */ wait_queue_head_t blocked_wait; int desc_nr; /* descriptor index in the superblock */ int raid_disk; /* role of device in array */ int new_raid_disk; /* role that the device will have in * the array after a level-change completes. */ int saved_raid_disk; /* role that device used to have in the * array and could again if we did a partial * resync from the bitmap */ union { sector_t recovery_offset;/* If this device has been partially * recovered, this is where we were * up to. */ sector_t journal_tail; /* If this device is a journal device, * this is the journal tail (journal * recovery start point) */ }; atomic_t nr_pending; /* number of pending requests. * only maintained for arrays that * support hot removal */ atomic_t read_errors; /* number of consecutive read errors that * we have tried to ignore. */ time64_t last_read_error; /* monotonic time since our * last read error */ atomic_t corrected_errors; /* number of corrected read errors, * for reporting to userspace and storing * in superblock. */ struct serial_in_rdev *serial; /* used for raid1 io serialization */ struct work_struct del_work; /* used for delayed sysfs removal */ struct kernfs_node *sysfs_state; /* handle for 'state' * sysfs entry */ /* handle for 'unacknowledged_bad_blocks' sysfs dentry */ struct kernfs_node *sysfs_unack_badblocks; /* handle for 'bad_blocks' sysfs dentry */ struct kernfs_node *sysfs_badblocks; struct badblocks badblocks; struct { short offset; /* Offset from superblock to start of PPL. * Not used by external metadata. */ unsigned int size; /* Size in sectors of the PPL space */ sector_t sector; /* First sector of the PPL space */ } ppl; }; enum flag_bits { Faulty, /* device is known to have a fault */ In_sync, /* device is in_sync with rest of array */ Bitmap_sync, /* ..actually, not quite In_sync. Need a * bitmap-based recovery to get fully in sync. * The bit is only meaningful before device * has been passed to pers->hot_add_disk. */ WriteMostly, /* Avoid reading if at all possible */ AutoDetected, /* added by auto-detect */ Blocked, /* An error occurred but has not yet * been acknowledged by the metadata * handler, so don't allow writes * until it is cleared */ WriteErrorSeen, /* A write error has been seen on this * device */ FaultRecorded, /* Intermediate state for clearing * Blocked. The Fault is/will-be * recorded in the metadata, but that * metadata hasn't been stored safely * on disk yet. */ BlockedBadBlocks, /* A writer is blocked because they * found an unacknowledged bad-block. * This can safely be cleared at any * time, and the writer will re-check. * It may be set at any time, and at * worst the writer will timeout and * re-check. So setting it as * accurately as possible is good, but * not absolutely critical. */ WantReplacement, /* This device is a candidate to be * hot-replaced, either because it has * reported some faults, or because * of explicit request. */ Replacement, /* This device is a replacement for * a want_replacement device with same * raid_disk number. */ Candidate, /* For clustered environments only: * This device is seen locally but not * by the whole cluster */ Journal, /* This device is used as journal for * raid-5/6. * Usually, this device should be faster * than other devices in the array */ ClusterRemove, RemoveSynchronized, /* synchronize_rcu() was called after * this device was known to be faulty, * so it is safe to remove without * another synchronize_rcu() call. */ ExternalBbl, /* External metadata provides bad * block management for a disk */ FailFast, /* Minimal retries should be attempted on * this device, so use REQ_FAILFAST_DEV. * Also don't try to repair failed reads. * It is expects that no bad block log * is present. */ LastDev, /* Seems to be the last working dev as * it didn't fail, so don't use FailFast * any more for metadata */ CollisionCheck, /* * check if there is collision between raid1 * serial bios. */ }; static inline int is_badblock(struct md_rdev *rdev, sector_t s, int sectors, sector_t *first_bad, int *bad_sectors) { if (unlikely(rdev->badblocks.count)) { int rv = badblocks_check(&rdev->badblocks, rdev->data_offset + s, sectors, first_bad, bad_sectors); if (rv) *first_bad -= rdev->data_offset; return rv; } return 0; } extern int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, int is_new); extern int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, int is_new); struct md_cluster_info; /* change UNSUPPORTED_MDDEV_FLAGS for each array type if new flag is added */ enum mddev_flags { MD_ARRAY_FIRST_USE, /* First use of array, needs initialization */ MD_CLOSING, /* If set, we are closing the array, do not open * it then */ MD_JOURNAL_CLEAN, /* A raid with journal is already clean */ MD_HAS_JOURNAL, /* The raid array has journal feature set */ MD_CLUSTER_RESYNC_LOCKED, /* cluster raid only, which means node * already took resync lock, need to * release the lock */ MD_FAILFAST_SUPPORTED, /* Using MD_FAILFAST on metadata writes is * supported as calls to md_error() will * never cause the array to become failed. */ MD_HAS_PPL, /* The raid array has PPL feature set */ MD_HAS_MULTIPLE_PPLS, /* The raid array has multiple PPLs feature set */ MD_ALLOW_SB_UPDATE, /* md_check_recovery is allowed to update * the metadata without taking reconfig_mutex. */ MD_UPDATING_SB, /* md_check_recovery is updating the metadata * without explicitly holding reconfig_mutex. */ MD_NOT_READY, /* do_md_run() is active, so 'array_state' * must not report that array is ready yet */ MD_BROKEN, /* This is used in RAID-0/LINEAR only, to stop * I/O in case an array member is gone/failed. */ }; enum mddev_sb_flags { MD_SB_CHANGE_DEVS, /* Some device status has changed */ MD_SB_CHANGE_CLEAN, /* transition to or from 'clean' */ MD_SB_CHANGE_PENDING, /* switch from 'clean' to 'active' in progress */ MD_SB_NEED_REWRITE, /* metadata write needs to be repeated */ }; #define NR_SERIAL_INFOS 8 /* record current range of serialize IOs */ struct serial_info { struct rb_node node; sector_t start; /* start sector of rb node */ sector_t last; /* end sector of rb node */ sector_t _subtree_last; /* highest sector in subtree of rb node */ }; struct mddev { void *private; struct md_personality *pers; dev_t unit; int md_minor; struct list_head disks; unsigned long flags; unsigned long sb_flags; int suspended; atomic_t active_io; int ro; int sysfs_active; /* set when sysfs deletes * are happening, so run/ * takeover/stop are not safe */ struct gendisk *gendisk; struct kobject kobj; int hold_active; #define UNTIL_IOCTL 1 #define UNTIL_STOP 2 /* Superblock information */ int major_version, minor_version, patch_version; int persistent; int external; /* metadata is * managed externally */ char metadata_type[17]; /* externally set*/ int chunk_sectors; time64_t ctime, utime; int level, layout; char clevel[16]; int raid_disks; int max_disks; sector_t dev_sectors; /* used size of * component devices */ sector_t array_sectors; /* exported array size */ int external_size; /* size managed * externally */ __u64 events; /* If the last 'event' was simply a clean->dirty transition, and * we didn't write it to the spares, then it is safe and simple * to just decrement the event count on a dirty->clean transition. * So we record that possibility here. */ int can_decrease_events; char uuid[16]; /* If the array is being reshaped, we need to record the * new shape and an indication of where we are up to. * This is written to the superblock. * If reshape_position is MaxSector, then no reshape is happening (yet). */ sector_t reshape_position; int delta_disks, new_level, new_layout; int new_chunk_sectors; int reshape_backwards; struct md_thread *thread; /* management thread */ struct md_thread *sync_thread; /* doing resync or reconstruct */ /* 'last_sync_action' is initialized to "none". It is set when a * sync operation (i.e "data-check", "requested-resync", "resync", * "recovery", or "reshape") is started. It holds this value even * when the sync thread is "frozen" (interrupted) or "idle" (stopped * or finished). It is overwritten when a new sync operation is begun. */ char *last_sync_action; sector_t curr_resync; /* last block scheduled */ /* As resync requests can complete out of order, we cannot easily track * how much resync has been completed. So we occasionally pause until * everything completes, then set curr_resync_completed to curr_resync. * As such it may be well behind the real resync mark, but it is a value * we are certain of. */ sector_t curr_resync_completed; unsigned long resync_mark; /* a recent timestamp */ sector_t resync_mark_cnt;/* blocks written at resync_mark */ sector_t curr_mark_cnt; /* blocks scheduled now */ sector_t resync_max_sectors; /* may be set by personality */ atomic64_t resync_mismatches; /* count of sectors where * parity/replica mismatch found */ /* allow user-space to request suspension of IO to regions of the array */ sector_t suspend_lo; sector_t suspend_hi; /* if zero, use the system-wide default */ int sync_speed_min; int sync_speed_max; /* resync even though the same disks are shared among md-devices */ int parallel_resync; int ok_start_degraded; unsigned long recovery; /* If a RAID personality determines that recovery (of a particular * device) will fail due to a read error on the source device, it * takes a copy of this number and does not attempt recovery again * until this number changes. */ int recovery_disabled; int in_sync; /* know to not need resync */ /* 'open_mutex' avoids races between 'md_open' and 'do_md_stop', so * that we are never stopping an array while it is open. * 'reconfig_mutex' protects all other reconfiguration. * These locks are separate due to conflicting interactions * with bdev->bd_mutex. * Lock ordering is: * reconfig_mutex -> bd_mutex * bd_mutex -> open_mutex: e.g. __blkdev_get -> md_open */ struct mutex open_mutex; struct mutex reconfig_mutex; atomic_t active; /* general refcount */ atomic_t openers; /* number of active opens */ int changed; /* True if we might need to * reread partition info */ int degraded; /* whether md should consider * adding a spare */ atomic_t recovery_active; /* blocks scheduled, but not written */ wait_queue_head_t recovery_wait; sector_t recovery_cp; sector_t resync_min; /* user requested sync * starts here */ sector_t resync_max; /* resync should pause * when it gets here */ struct kernfs_node *sysfs_state; /* handle for 'array_state' * file in sysfs. */ struct kernfs_node *sysfs_action; /* handle for 'sync_action' */ struct kernfs_node *sysfs_completed; /*handle for 'sync_completed' */ struct kernfs_node *sysfs_degraded; /*handle for 'degraded' */ struct kernfs_node *sysfs_level; /*handle for 'level' */ struct work_struct del_work; /* used for delayed sysfs removal */ /* "lock" protects: * flush_bio transition from NULL to !NULL * rdev superblocks, events * clearing MD_CHANGE_* * in_sync - and related safemode and MD_CHANGE changes * pers (also protected by reconfig_mutex and pending IO). * clearing ->bitmap * clearing ->bitmap_info.file * changing ->resync_{min,max} * setting MD_RECOVERY_RUNNING (which interacts with resync_{min,max}) */ spinlock_t lock; wait_queue_head_t sb_wait; /* for waiting on superblock updates */ atomic_t pending_writes; /* number of active superblock writes */ unsigned int safemode; /* if set, update "clean" superblock * when no writes pending. */ unsigned int safemode_delay; struct timer_list safemode_timer; struct percpu_ref writes_pending; int sync_checkers; /* # of threads checking writes_pending */ struct request_queue *queue; /* for plugging ... */ struct bitmap *bitmap; /* the bitmap for the device */ struct { struct file *file; /* the bitmap file */ loff_t offset; /* offset from superblock of * start of bitmap. May be * negative, but not '0' * For external metadata, offset * from start of device. */ unsigned long space; /* space available at this offset */ loff_t default_offset; /* this is the offset to use when * hot-adding a bitmap. It should * eventually be settable by sysfs. */ unsigned long default_space; /* space available at * default offset */ struct mutex mutex; unsigned long chunksize; unsigned long daemon_sleep; /* how many jiffies between updates? */ unsigned long max_write_behind; /* write-behind mode */ int external; int nodes; /* Maximum number of nodes in the cluster */ char cluster_name[64]; /* Name of the cluster */ } bitmap_info; atomic_t max_corr_read_errors; /* max read retries */ struct list_head all_mddevs; struct attribute_group *to_remove; struct bio_set bio_set; struct bio_set sync_set; /* for sync operations like * metadata and bitmap writes */ mempool_t md_io_pool; /* Generic flush handling. * The last to finish preflush schedules a worker to submit * the rest of the request (without the REQ_PREFLUSH flag). */ struct bio *flush_bio; atomic_t flush_pending; ktime_t start_flush, last_flush; /* last_flush is when the last completed * flush was started. */ struct work_struct flush_work; struct work_struct event_work; /* used by dm to report failure event */ mempool_t *serial_info_pool; void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev); struct md_cluster_info *cluster_info; unsigned int good_device_nr; /* good device num within cluster raid */ unsigned int noio_flag; /* for memalloc scope API */ bool has_superblocks:1; bool fail_last_dev:1; bool serialize_policy:1; }; enum recovery_flags { /* * If neither SYNC or RESHAPE are set, then it is a recovery. */ MD_RECOVERY_RUNNING, /* a thread is running, or about to be started */ MD_RECOVERY_SYNC, /* actually doing a resync, not a recovery */ MD_RECOVERY_RECOVER, /* doing recovery, or need to try it. */ MD_RECOVERY_INTR, /* resync needs to be aborted for some reason */ MD_RECOVERY_DONE, /* thread is done and is waiting to be reaped */ MD_RECOVERY_NEEDED, /* we might need to start a resync/recover */ MD_RECOVERY_REQUESTED, /* user-space has requested a sync (used with SYNC) */ MD_RECOVERY_CHECK, /* user-space request for check-only, no repair */ MD_RECOVERY_RESHAPE, /* A reshape is happening */ MD_RECOVERY_FROZEN, /* User request to abort, and not restart, any action */ MD_RECOVERY_ERROR, /* sync-action interrupted because io-error */ MD_RECOVERY_WAIT, /* waiting for pers->start() to finish */ MD_RESYNCING_REMOTE, /* remote node is running resync thread */ }; static inline int __must_check mddev_lock(struct mddev *mddev) { return mutex_lock_interruptible(&mddev->reconfig_mutex); } /* Sometimes we need to take the lock in a situation where * failure due to interrupts is not acceptable. */ static inline void mddev_lock_nointr(struct mddev *mddev) { mutex_lock(&mddev->reconfig_mutex); } static inline int mddev_trylock(struct mddev *mddev) { return mutex_trylock(&mddev->reconfig_mutex); } extern void mddev_unlock(struct mddev *mddev); static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors) { atomic_add(nr_sectors, &bdev->bd_disk->sync_io); } static inline void md_sync_acct_bio(struct bio *bio, unsigned long nr_sectors) { atomic_add(nr_sectors, &bio->bi_disk->sync_io); } struct md_personality { char *name; int level; struct list_head list; struct module *owner; bool __must_check (*make_request)(struct mddev *mddev, struct bio *bio); /* * start up works that do NOT require md_thread. tasks that * requires md_thread should go into start() */ int (*run)(struct mddev *mddev); /* start up works that require md threads */ int (*start)(struct mddev *mddev); void (*free)(struct mddev *mddev, void *priv); void (*status)(struct seq_file *seq, struct mddev *mddev); /* error_handler must set ->faulty and clear ->in_sync * if appropriate, and should abort recovery if needed */ void (*error_handler)(struct mddev *mddev, struct md_rdev *rdev); int (*hot_add_disk) (struct mddev *mddev, struct md_rdev *rdev); int (*hot_remove_disk) (struct mddev *mddev, struct md_rdev *rdev); int (*spare_active) (struct mddev *mddev); sector_t (*sync_request)(struct mddev *mddev, sector_t sector_nr, int *skipped); int (*resize) (struct mddev *mddev, sector_t sectors); sector_t (*size) (struct mddev *mddev, sector_t sectors, int raid_disks); int (*check_reshape) (struct mddev *mddev); int (*start_reshape) (struct mddev *mddev); void (*finish_reshape) (struct mddev *mddev); void (*update_reshape_pos) (struct mddev *mddev); /* quiesce suspends or resumes internal processing. * 1 - stop new actions and wait for action io to complete * 0 - return to normal behaviour */ void (*quiesce) (struct mddev *mddev, int quiesce); /* takeover is used to transition an array from one * personality to another. The new personality must be able * to handle the data in the current layout. * e.g. 2drive raid1 -> 2drive raid5 * ndrive raid5 -> degraded n+1drive raid6 with special layout * If the takeover succeeds, a new 'private' structure is returned. * This needs to be installed and then ->run used to activate the * array. */ void *(*takeover) (struct mddev *mddev); /* Changes the consistency policy of an active array. */ int (*change_consistency_policy)(struct mddev *mddev, const char *buf); }; struct md_sysfs_entry { struct attribute attr; ssize_t (*show)(struct mddev *, char *); ssize_t (*store)(struct mddev *, const char *, size_t); }; extern struct attribute_group md_bitmap_group; static inline struct kernfs_node *sysfs_get_dirent_safe(struct kernfs_node *sd, char *name) { if (sd) return sysfs_get_dirent(sd, name); return sd; } static inline void sysfs_notify_dirent_safe(struct kernfs_node *sd) { if (sd) sysfs_notify_dirent(sd); } static inline char * mdname (struct mddev * mddev) { return mddev->gendisk ? mddev->gendisk->disk_name : "mdX"; } static inline int sysfs_link_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; if (!test_bit(Replacement, &rdev->flags) && !test_bit(Journal, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); return sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); } else return 0; } static inline void sysfs_unlink_rdev(struct mddev *mddev, struct md_rdev *rdev) { char nm[20]; if (!test_bit(Replacement, &rdev->flags) && !test_bit(Journal, &rdev->flags) && mddev->kobj.sd) { sprintf(nm, "rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); } } /* * iterates through some rdev ringlist. It's safe to remove the * current 'rdev'. Dont touch 'tmp' though. */ #define rdev_for_each_list(rdev, tmp, head) \ list_for_each_entry_safe(rdev, tmp, head, same_set) /* * iterates through the 'same array disks' ringlist */ #define rdev_for_each(rdev, mddev) \ list_for_each_entry(rdev, &((mddev)->disks), same_set) #define rdev_for_each_safe(rdev, tmp, mddev) \ list_for_each_entry_safe(rdev, tmp, &((mddev)->disks), same_set) #define rdev_for_each_rcu(rdev, mddev) \ list_for_each_entry_rcu(rdev, &((mddev)->disks), same_set) struct md_thread { void (*run) (struct md_thread *thread); struct mddev *mddev; wait_queue_head_t wqueue; unsigned long flags; struct task_struct *tsk; unsigned long timeout; void *private; }; #define THREAD_WAKEUP 0 static inline void safe_put_page(struct page *p) { if (p) put_page(p); } extern int register_md_personality(struct md_personality *p); extern int unregister_md_personality(struct md_personality *p); extern int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module); extern int unregister_md_cluster_operations(void); extern int md_setup_cluster(struct mddev *mddev, int nodes); extern void md_cluster_stop(struct mddev *mddev); extern struct md_thread *md_register_thread( void (*run)(struct md_thread *thread), struct mddev *mddev, const char *name); extern void md_unregister_thread(struct md_thread **threadp); extern void md_wakeup_thread(struct md_thread *thread); extern void md_check_recovery(struct mddev *mddev); extern void md_reap_sync_thread(struct mddev *mddev); extern int mddev_init_writes_pending(struct mddev *mddev); extern bool md_write_start(struct mddev *mddev, struct bio *bi); extern void md_write_inc(struct mddev *mddev, struct bio *bi); extern void md_write_end(struct mddev *mddev); extern void md_done_sync(struct mddev *mddev, int blocks, int ok); extern void md_error(struct mddev *mddev, struct md_rdev *rdev); extern void md_finish_reshape(struct mddev *mddev); extern bool __must_check md_flush_request(struct mddev *mddev, struct bio *bio); extern void md_super_write(struct mddev *mddev, struct md_rdev *rdev, sector_t sector, int size, struct page *page); extern int md_super_wait(struct mddev *mddev); extern int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, struct page *page, int op, int op_flags, bool metadata_op); extern void md_do_sync(struct md_thread *thread); extern void md_new_event(struct mddev *mddev); extern void md_allow_write(struct mddev *mddev); extern void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev); extern void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors); extern int md_check_no_bitmap(struct mddev *mddev); extern int md_integrity_register(struct mddev *mddev); extern int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev); extern int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale); extern void mddev_init(struct mddev *mddev); extern int md_run(struct mddev *mddev); extern int md_start(struct mddev *mddev); extern void md_stop(struct mddev *mddev); extern void md_stop_writes(struct mddev *mddev); extern int md_rdev_init(struct md_rdev *rdev); extern void md_rdev_clear(struct md_rdev *rdev); extern void md_handle_request(struct mddev *mddev, struct bio *bio); extern void mddev_suspend(struct mddev *mddev); extern void mddev_resume(struct mddev *mddev); extern struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, struct mddev *mddev); extern void md_reload_sb(struct mddev *mddev, int raid_disk); extern void md_update_sb(struct mddev *mddev, int force); extern void md_kick_rdev_from_array(struct md_rdev * rdev); extern void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, bool is_suspend); extern void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, bool is_suspend); struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr); struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev); static inline bool is_mddev_broken(struct md_rdev *rdev, const char *md_type) { int flags = rdev->bdev->bd_disk->flags; if (!(flags & GENHD_FL_UP)) { if (!test_and_set_bit(MD_BROKEN, &rdev->mddev->flags)) pr_warn("md: %s: %s array has a missing/failed member\n", mdname(rdev->mddev), md_type); return true; } return false; } static inline void rdev_dec_pending(struct md_rdev *rdev, struct mddev *mddev) { int faulty = test_bit(Faulty, &rdev->flags); if (atomic_dec_and_test(&rdev->nr_pending) && faulty) { set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } } extern struct md_cluster_operations *md_cluster_ops; static inline int mddev_is_clustered(struct mddev *mddev) { return mddev->cluster_info && mddev->bitmap_info.nodes > 1; } /* clear unsupported mddev_flags */ static inline void mddev_clear_unsupported_flags(struct mddev *mddev, unsigned long unsupported_flags) { mddev->flags &= ~unsupported_flags; } static inline void mddev_check_writesame(struct mddev *mddev, struct bio *bio) { if (bio_op(bio) == REQ_OP_WRITE_SAME && !bio->bi_disk->queue->limits.max_write_same_sectors) mddev->queue->limits.max_write_same_sectors = 0; } static inline void mddev_check_write_zeroes(struct mddev *mddev, struct bio *bio) { if (bio_op(bio) == REQ_OP_WRITE_ZEROES && !bio->bi_disk->queue->limits.max_write_zeroes_sectors) mddev->queue->limits.max_write_zeroes_sectors = 0; } struct mdu_array_info_s; struct mdu_disk_info_s; extern int mdp_major; void md_autostart_arrays(int part); int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info); int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info); int do_md_run(struct mddev *mddev); extern const struct block_device_operations md_fops; #endif /* _MD_MD_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct ptr_ring' datastructure. * * Author: * Michael S. Tsirkin <mst@redhat.com> * * Copyright (C) 2016 Red Hat, Inc. * * This is a limited-size FIFO maintaining pointers in FIFO order, with * one CPU producing entries and another consuming entries from a FIFO. * * This implementation tries to minimize cache-contention when there is a * single producer and a single consumer CPU. */ #ifndef _LINUX_PTR_RING_H #define _LINUX_PTR_RING_H 1 #ifdef __KERNEL__ #include <linux/spinlock.h> #include <linux/cache.h> #include <linux/types.h> #include <linux/compiler.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/errno.h> #endif struct ptr_ring { int producer ____cacheline_aligned_in_smp; spinlock_t producer_lock; int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */ int consumer_tail; /* next entry to invalidate */ spinlock_t consumer_lock; /* Shared consumer/producer data */ /* Read-only by both the producer and the consumer */ int size ____cacheline_aligned_in_smp; /* max entries in queue */ int batch; /* number of entries to consume in a batch */ void **queue; }; /* Note: callers invoking this in a loop must use a compiler barrier, * for example cpu_relax(). * * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock: * see e.g. ptr_ring_full. */ static inline bool __ptr_ring_full(struct ptr_ring *r) { return r->queue[r->producer]; } static inline bool ptr_ring_full(struct ptr_ring *r) { bool ret; spin_lock(&r->producer_lock); ret = __ptr_ring_full(r); spin_unlock(&r->producer_lock); return ret; } static inline bool ptr_ring_full_irq(struct ptr_ring *r) { bool ret; spin_lock_irq(&r->producer_lock); ret = __ptr_ring_full(r); spin_unlock_irq(&r->producer_lock); return ret; } static inline bool ptr_ring_full_any(struct ptr_ring *r) { unsigned long flags; bool ret; spin_lock_irqsave(&r->producer_lock, flags); ret = __ptr_ring_full(r); spin_unlock_irqrestore(&r->producer_lock, flags); return ret; } static inline bool ptr_ring_full_bh(struct ptr_ring *r) { bool ret; spin_lock_bh(&r->producer_lock); ret = __ptr_ring_full(r); spin_unlock_bh(&r->producer_lock); return ret; } /* Note: callers invoking this in a loop must use a compiler barrier, * for example cpu_relax(). Callers must hold producer_lock. * Callers are responsible for making sure pointer that is being queued * points to a valid data. */ static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr) { if (unlikely(!r->size) || r->queue[r->producer]) return -ENOSPC; /* Make sure the pointer we are storing points to a valid data. */ /* Pairs with the dependency ordering in __ptr_ring_consume. */ smp_wmb(); WRITE_ONCE(r->queue[r->producer++], ptr); if (unlikely(r->producer >= r->size)) r->producer = 0; return 0; } /* * Note: resize (below) nests producer lock within consumer lock, so if you * consume in interrupt or BH context, you must disable interrupts/BH when * calling this. */ static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr) { int ret; spin_lock(&r->producer_lock); ret = __ptr_ring_produce(r, ptr); spin_unlock(&r->producer_lock); return ret; } static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr) { int ret; spin_lock_irq(&r->producer_lock); ret = __ptr_ring_produce(r, ptr); spin_unlock_irq(&r->producer_lock); return ret; } static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr) { unsigned long flags; int ret; spin_lock_irqsave(&r->producer_lock, flags); ret = __ptr_ring_produce(r, ptr); spin_unlock_irqrestore(&r->producer_lock, flags); return ret; } static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr) { int ret; spin_lock_bh(&r->producer_lock); ret = __ptr_ring_produce(r, ptr); spin_unlock_bh(&r->producer_lock); return ret; } static inline void *__ptr_ring_peek(struct ptr_ring *r) { if (likely(r->size)) return READ_ONCE(r->queue[r->consumer_head]); return NULL; } /* * Test ring empty status without taking any locks. * * NB: This is only safe to call if ring is never resized. * * However, if some other CPU consumes ring entries at the same time, the value * returned is not guaranteed to be correct. * * In this case - to avoid incorrectly detecting the ring * as empty - the CPU consuming the ring entries is responsible * for either consuming all ring entries until the ring is empty, * or synchronizing with some other CPU and causing it to * re-test __ptr_ring_empty and/or consume the ring enteries * after the synchronization point. * * Note: callers invoking this in a loop must use a compiler barrier, * for example cpu_relax(). */ static inline bool __ptr_ring_empty(struct ptr_ring *r) { if (likely(r->size)) return !r->queue[READ_ONCE(r->consumer_head)]; return true; } static inline bool ptr_ring_empty(struct ptr_ring *r) { bool ret; spin_lock(&r->consumer_lock); ret = __ptr_ring_empty(r); spin_unlock(&r->consumer_lock); return ret; } static inline bool ptr_ring_empty_irq(struct ptr_ring *r) { bool ret; spin_lock_irq(&r->consumer_lock); ret = __ptr_ring_empty(r); spin_unlock_irq(&r->consumer_lock); return ret; } static inline bool ptr_ring_empty_any(struct ptr_ring *r) { unsigned long flags; bool ret; spin_lock_irqsave(&r->consumer_lock, flags); ret = __ptr_ring_empty(r); spin_unlock_irqrestore(&r->consumer_lock, flags); return ret; } static inline bool ptr_ring_empty_bh(struct ptr_ring *r) { bool ret; spin_lock_bh(&r->consumer_lock); ret = __ptr_ring_empty(r); spin_unlock_bh(&r->consumer_lock); return ret; } /* Must only be called after __ptr_ring_peek returned !NULL */ static inline void __ptr_ring_discard_one(struct ptr_ring *r) { /* Fundamentally, what we want to do is update consumer * index and zero out the entry so producer can reuse it. * Doing it naively at each consume would be as simple as: * consumer = r->consumer; * r->queue[consumer++] = NULL; * if (unlikely(consumer >= r->size)) * consumer = 0; * r->consumer = consumer; * but that is suboptimal when the ring is full as producer is writing * out new entries in the same cache line. Defer these updates until a * batch of entries has been consumed. */ /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty * to work correctly. */ int consumer_head = r->consumer_head; int head = consumer_head++; /* Once we have processed enough entries invalidate them in * the ring all at once so producer can reuse their space in the ring. * We also do this when we reach end of the ring - not mandatory * but helps keep the implementation simple. */ if (unlikely(consumer_head - r->consumer_tail >= r->batch || consumer_head >= r->size)) { /* Zero out entries in the reverse order: this way we touch the * cache line that producer might currently be reading the last; * producer won't make progress and touch other cache lines * besides the first one until we write out all entries. */ while (likely(head >= r->consumer_tail)) r->queue[head--] = NULL; r->consumer_tail = consumer_head; } if (unlikely(consumer_head >= r->size)) { consumer_head = 0; r->consumer_tail = 0; } /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ WRITE_ONCE(r->consumer_head, consumer_head); } static inline void *__ptr_ring_consume(struct ptr_ring *r) { void *ptr; /* The READ_ONCE in __ptr_ring_peek guarantees that anyone * accessing data through the pointer is up to date. Pairs * with smp_wmb in __ptr_ring_produce. */ ptr = __ptr_ring_peek(r); if (ptr) __ptr_ring_discard_one(r); return ptr; } static inline int __ptr_ring_consume_batched(struct ptr_ring *r, void **array, int n) { void *ptr; int i; for (i = 0; i < n; i++) { ptr = __ptr_ring_consume(r); if (!ptr) break; array[i] = ptr; } return i; } /* * Note: resize (below) nests producer lock within consumer lock, so if you * call this in interrupt or BH context, you must disable interrupts/BH when * producing. */ static inline void *ptr_ring_consume(struct ptr_ring *r) { void *ptr; spin_lock(&r->consumer_lock); ptr = __ptr_ring_consume(r); spin_unlock(&r->consumer_lock); return ptr; } static inline void *ptr_ring_consume_irq(struct ptr_ring *r) { void *ptr; spin_lock_irq(&r->consumer_lock); ptr = __ptr_ring_consume(r); spin_unlock_irq(&r->consumer_lock); return ptr; } static inline void *ptr_ring_consume_any(struct ptr_ring *r) { unsigned long flags; void *ptr; spin_lock_irqsave(&r->consumer_lock, flags); ptr = __ptr_ring_consume(r); spin_unlock_irqrestore(&r->consumer_lock, flags); return ptr; } static inline void *ptr_ring_consume_bh(struct ptr_ring *r) { void *ptr; spin_lock_bh(&r->consumer_lock); ptr = __ptr_ring_consume(r); spin_unlock_bh(&r->consumer_lock); return ptr; } static inline int ptr_ring_consume_batched(struct ptr_ring *r, void **array, int n) { int ret; spin_lock(&r->consumer_lock); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock(&r->consumer_lock); return ret; } static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r, void **array, int n) { int ret; spin_lock_irq(&r->consumer_lock); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock_irq(&r->consumer_lock); return ret; } static inline int ptr_ring_consume_batched_any(struct ptr_ring *r, void **array, int n) { unsigned long flags; int ret; spin_lock_irqsave(&r->consumer_lock, flags); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock_irqrestore(&r->consumer_lock, flags); return ret; } static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r, void **array, int n) { int ret; spin_lock_bh(&r->consumer_lock); ret = __ptr_ring_consume_batched(r, array, n); spin_unlock_bh(&r->consumer_lock); return ret; } /* Cast to structure type and call a function without discarding from FIFO. * Function must return a value. * Callers must take consumer_lock. */ #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r))) #define PTR_RING_PEEK_CALL(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ \ spin_lock(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v; \ }) #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ \ spin_lock_irq(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock_irq(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v; \ }) #define PTR_RING_PEEK_CALL_BH(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ \ spin_lock_bh(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock_bh(&(r)->consumer_lock); \ __PTR_RING_PEEK_CALL_v; \ }) #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \ typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \ unsigned long __PTR_RING_PEEK_CALL_f;\ \ spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \ spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \ __PTR_RING_PEEK_CALL_v; \ }) /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See * documentation for vmalloc for which of them are legal. */ static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp) { if (size > KMALLOC_MAX_SIZE / sizeof(void *)) return NULL; return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO); } static inline void __ptr_ring_set_size(struct ptr_ring *r, int size) { r->size = size; r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue)); /* We need to set batch at least to 1 to make logic * in __ptr_ring_discard_one work correctly. * Batching too much (because ring is small) would cause a lot of * burstiness. Needs tuning, for now disable batching. */ if (r->batch > r->size / 2 || !r->batch) r->batch = 1; } static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp) { r->queue = __ptr_ring_init_queue_alloc(size, gfp); if (!r->queue) return -ENOMEM; __ptr_ring_set_size(r, size); r->producer = r->consumer_head = r->consumer_tail = 0; spin_lock_init(&r->producer_lock); spin_lock_init(&r->consumer_lock); return 0; } /* * Return entries into ring. Destroy entries that don't fit. * * Note: this is expected to be a rare slow path operation. * * Note: producer lock is nested within consumer lock, so if you * resize you must make sure all uses nest correctly. * In particular if you consume ring in interrupt or BH context, you must * disable interrupts/BH when doing so. */ static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n, void (*destroy)(void *)) { unsigned long flags; int head; spin_lock_irqsave(&r->consumer_lock, flags); spin_lock(&r->producer_lock); if (!r->size) goto done; /* * Clean out buffered entries (for simplicity). This way following code * can test entries for NULL and if not assume they are valid. */ head = r->consumer_head - 1; while (likely(head >= r->consumer_tail)) r->queue[head--] = NULL; r->consumer_tail = r->consumer_head; /* * Go over entries in batch, start moving head back and copy entries. * Stop when we run into previously unconsumed entries. */ while (n) { head = r->consumer_head - 1; if (head < 0) head = r->size - 1; if (r->queue[head]) { /* This batch entry will have to be destroyed. */ goto done; } r->queue[head] = batch[--n]; r->consumer_tail = head; /* matching READ_ONCE in __ptr_ring_empty for lockless tests */ WRITE_ONCE(r->consumer_head, head); } done: /* Destroy all entries left in the batch. */ while (n) destroy(batch[--n]); spin_unlock(&r->producer_lock); spin_unlock_irqrestore(&r->consumer_lock, flags); } static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue, int size, gfp_t gfp, void (*destroy)(void *)) { int producer = 0; void **old; void *ptr; while ((ptr = __ptr_ring_consume(r))) if (producer < size) queue[producer++] = ptr; else if (destroy) destroy(ptr); if (producer >= size) producer = 0; __ptr_ring_set_size(r, size); r->producer = producer; r->consumer_head = 0; r->consumer_tail = 0; old = r->queue; r->queue = queue; return old; } /* * Note: producer lock is nested within consumer lock, so if you * resize you must make sure all uses nest correctly. * In particular if you consume ring in interrupt or BH context, you must * disable interrupts/BH when doing so. */ static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp, void (*destroy)(void *)) { unsigned long flags; void **queue = __ptr_ring_init_queue_alloc(size, gfp); void **old; if (!queue) return -ENOMEM; spin_lock_irqsave(&(r)->consumer_lock, flags); spin_lock(&(r)->producer_lock); old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy); spin_unlock(&(r)->producer_lock); spin_unlock_irqrestore(&(r)->consumer_lock, flags); kvfree(old); return 0; } /* * Note: producer lock is nested within consumer lock, so if you * resize you must make sure all uses nest correctly. * In particular if you consume ring in interrupt or BH context, you must * disable interrupts/BH when doing so. */ static inline int ptr_ring_resize_multiple(struct ptr_ring **rings, unsigned int nrings, int size, gfp_t gfp, void (*destroy)(void *)) { unsigned long flags; void ***queues; int i; queues = kmalloc_array(nrings, sizeof(*queues), gfp); if (!queues) goto noqueues; for (i = 0; i < nrings; ++i) { queues[i] = __ptr_ring_init_queue_alloc(size, gfp); if (!queues[i]) goto nomem; } for (i = 0; i < nrings; ++i) { spin_lock_irqsave(&(rings[i])->consumer_lock, flags); spin_lock(&(rings[i])->producer_lock); queues[i] = __ptr_ring_swap_queue(rings[i], queues[i], size, gfp, destroy); spin_unlock(&(rings[i])->producer_lock); spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags); } for (i = 0; i < nrings; ++i) kvfree(queues[i]); kfree(queues); return 0; nomem: while (--i >= 0) kvfree(queues[i]); kfree(queues); noqueues: return -ENOMEM; } static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *)) { void *ptr; if (destroy) while ((ptr = ptr_ring_consume(r))) destroy(ptr); kvfree(r->queue); } #endif /* _LINUX_PTR_RING_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_COUNTER_H #define _LINUX_PERCPU_COUNTER_H /* * A simple "approximate counter" for use in ext2 and ext3 superblocks. * * WARNING: these things are HUGE. 4 kbytes per counter on 32-way P4. */ #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/list.h> #include <linux/threads.h> #include <linux/percpu.h> #include <linux/types.h> #include <linux/gfp.h> #ifdef CONFIG_SMP struct percpu_counter { raw_spinlock_t lock; s64 count; #ifdef CONFIG_HOTPLUG_CPU struct list_head list; /* All percpu_counters are on a list */ #endif s32 __percpu *counters; }; extern int percpu_counter_batch; int __percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp, struct lock_class_key *key); #define percpu_counter_init(fbc, value, gfp) \ ({ \ static struct lock_class_key __key; \ \ __percpu_counter_init(fbc, value, gfp, &__key); \ }) void percpu_counter_destroy(struct percpu_counter *fbc); void percpu_counter_set(struct percpu_counter *fbc, s64 amount); void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch); s64 __percpu_counter_sum(struct percpu_counter *fbc); int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch); void percpu_counter_sync(struct percpu_counter *fbc); static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { return __percpu_counter_compare(fbc, rhs, percpu_counter_batch); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { percpu_counter_add_batch(fbc, amount, percpu_counter_batch); } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { s64 ret = __percpu_counter_sum(fbc); return ret < 0 ? 0 : ret; } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return __percpu_counter_sum(fbc); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * It is possible for the percpu_counter_read() to return a small negative * number for some counter which should never be negative. * */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { /* Prevent reloads of fbc->count */ s64 ret = READ_ONCE(fbc->count); if (ret >= 0) return ret; return 0; } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return (fbc->counters != NULL); } #else /* !CONFIG_SMP */ struct percpu_counter { s64 count; }; static inline int percpu_counter_init(struct percpu_counter *fbc, s64 amount, gfp_t gfp) { fbc->count = amount; return 0; } static inline void percpu_counter_destroy(struct percpu_counter *fbc) { } static inline void percpu_counter_set(struct percpu_counter *fbc, s64 amount) { fbc->count = amount; } static inline int percpu_counter_compare(struct percpu_counter *fbc, s64 rhs) { if (fbc->count > rhs) return 1; else if (fbc->count < rhs) return -1; else return 0; } static inline int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch) { return percpu_counter_compare(fbc, rhs); } static inline void percpu_counter_add(struct percpu_counter *fbc, s64 amount) { preempt_disable(); fbc->count += amount; preempt_enable(); } static inline void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { percpu_counter_add(fbc, amount); } static inline s64 percpu_counter_read(struct percpu_counter *fbc) { return fbc->count; } /* * percpu_counter is intended to track positive numbers. In the UP case the * number should never be negative. */ static inline s64 percpu_counter_read_positive(struct percpu_counter *fbc) { return fbc->count; } static inline s64 percpu_counter_sum_positive(struct percpu_counter *fbc) { return percpu_counter_read_positive(fbc); } static inline s64 percpu_counter_sum(struct percpu_counter *fbc) { return percpu_counter_read(fbc); } static inline bool percpu_counter_initialized(struct percpu_counter *fbc) { return true; } static inline void percpu_counter_sync(struct percpu_counter *fbc) { } #endif /* CONFIG_SMP */ static inline void percpu_counter_inc(struct percpu_counter *fbc) { percpu_counter_add(fbc, 1); } static inline void percpu_counter_dec(struct percpu_counter *fbc) { percpu_counter_add(fbc, -1); } static inline void percpu_counter_sub(struct percpu_counter *fbc, s64 amount) { percpu_counter_add(fbc, -amount); } #endif /* _LINUX_PERCPU_COUNTER_H */
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 // SPDX-License-Identifier: GPL-2.0 /* * preemptoff and irqoff tracepoints * * Copyright (C) Joel Fernandes (Google) <joel@joelfernandes.org> */ #include <linux/kallsyms.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/ftrace.h> #include <linux/kprobes.h> #include "trace.h" #define CREATE_TRACE_POINTS #include <trace/events/preemptirq.h> #ifdef CONFIG_TRACE_IRQFLAGS /* Per-cpu variable to prevent redundant calls when IRQs already off */ static DEFINE_PER_CPU(int, tracing_irq_cpu); /* * Like trace_hardirqs_on() but without the lockdep invocation. This is * used in the low level entry code where the ordering vs. RCU is important * and lockdep uses a staged approach which splits the lockdep hardirq * tracking into a RCU on and a RCU off section. */ void trace_hardirqs_on_prepare(void) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable(CALLER_ADDR0, CALLER_ADDR1); tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1); this_cpu_write(tracing_irq_cpu, 0); } } EXPORT_SYMBOL(trace_hardirqs_on_prepare); NOKPROBE_SYMBOL(trace_hardirqs_on_prepare); void trace_hardirqs_on(void) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable_rcuidle(CALLER_ADDR0, CALLER_ADDR1); tracer_hardirqs_on(CALLER_ADDR0, CALLER_ADDR1); this_cpu_write(tracing_irq_cpu, 0); } lockdep_hardirqs_on_prepare(CALLER_ADDR0); lockdep_hardirqs_on(CALLER_ADDR0); } EXPORT_SYMBOL(trace_hardirqs_on); NOKPROBE_SYMBOL(trace_hardirqs_on); /* * Like trace_hardirqs_off() but without the lockdep invocation. This is * used in the low level entry code where the ordering vs. RCU is important * and lockdep uses a staged approach which splits the lockdep hardirq * tracking into a RCU on and a RCU off section. */ void trace_hardirqs_off_finish(void) { if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1); if (!in_nmi()) trace_irq_disable(CALLER_ADDR0, CALLER_ADDR1); } } EXPORT_SYMBOL(trace_hardirqs_off_finish); NOKPROBE_SYMBOL(trace_hardirqs_off_finish); void trace_hardirqs_off(void) { lockdep_hardirqs_off(CALLER_ADDR0); if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, CALLER_ADDR1); if (!in_nmi()) trace_irq_disable_rcuidle(CALLER_ADDR0, CALLER_ADDR1); } } EXPORT_SYMBOL(trace_hardirqs_off); NOKPROBE_SYMBOL(trace_hardirqs_off); __visible void trace_hardirqs_on_caller(unsigned long caller_addr) { if (this_cpu_read(tracing_irq_cpu)) { if (!in_nmi()) trace_irq_enable_rcuidle(CALLER_ADDR0, caller_addr); tracer_hardirqs_on(CALLER_ADDR0, caller_addr); this_cpu_write(tracing_irq_cpu, 0); } lockdep_hardirqs_on_prepare(CALLER_ADDR0); lockdep_hardirqs_on(CALLER_ADDR0); } EXPORT_SYMBOL(trace_hardirqs_on_caller); NOKPROBE_SYMBOL(trace_hardirqs_on_caller); __visible void trace_hardirqs_off_caller(unsigned long caller_addr) { lockdep_hardirqs_off(CALLER_ADDR0); if (!this_cpu_read(tracing_irq_cpu)) { this_cpu_write(tracing_irq_cpu, 1); tracer_hardirqs_off(CALLER_ADDR0, caller_addr); if (!in_nmi()) trace_irq_disable_rcuidle(CALLER_ADDR0, caller_addr); } } EXPORT_SYMBOL(trace_hardirqs_off_caller); NOKPROBE_SYMBOL(trace_hardirqs_off_caller); #endif /* CONFIG_TRACE_IRQFLAGS */ #ifdef CONFIG_TRACE_PREEMPT_TOGGLE void trace_preempt_on(unsigned long a0, unsigned long a1) { if (!in_nmi()) trace_preempt_enable_rcuidle(a0, a1); tracer_preempt_on(a0, a1); } void trace_preempt_off(unsigned long a0, unsigned long a1) { if (!in_nmi()) trace_preempt_disable_rcuidle(a0, a1); tracer_preempt_off(a0, a1); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _NF_CONNTRACK_COMMON_H #define _NF_CONNTRACK_COMMON_H #include <linux/atomic.h> #include <uapi/linux/netfilter/nf_conntrack_common.h> struct ip_conntrack_stat { unsigned int found; unsigned int invalid; unsigned int insert; unsigned int insert_failed; unsigned int clash_resolve; unsigned int drop; unsigned int early_drop; unsigned int error; unsigned int expect_new; unsigned int expect_create; unsigned int expect_delete; unsigned int search_restart; }; #define NFCT_INFOMASK 7UL #define NFCT_PTRMASK ~(NFCT_INFOMASK) struct nf_conntrack { atomic_t use; }; void nf_conntrack_destroy(struct nf_conntrack *nfct); static inline void nf_conntrack_put(struct nf_conntrack *nfct) { if (nfct && atomic_dec_and_test(&nfct->use)) nf_conntrack_destroy(nfct); } static inline void nf_conntrack_get(struct nf_conntrack *nfct) { if (nfct) atomic_inc(&nfct->use); } #endif /* _NF_CONNTRACK_COMMON_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 /* SPDX-License-Identifier: GPL-2.0 */ /* * Dynamic queue limits (dql) - Definitions * * Copyright (c) 2011, Tom Herbert <therbert@google.com> * * This header file contains the definitions for dynamic queue limits (dql). * dql would be used in conjunction with a producer/consumer type queue * (possibly a HW queue). Such a queue would have these general properties: * * 1) Objects are queued up to some limit specified as number of objects. * 2) Periodically a completion process executes which retires consumed * objects. * 3) Starvation occurs when limit has been reached, all queued data has * actually been consumed, but completion processing has not yet run * so queuing new data is blocked. * 4) Minimizing the amount of queued data is desirable. * * The goal of dql is to calculate the limit as the minimum number of objects * needed to prevent starvation. * * The primary functions of dql are: * dql_queued - called when objects are enqueued to record number of objects * dql_avail - returns how many objects are available to be queued based * on the object limit and how many objects are already enqueued * dql_completed - called at completion time to indicate how many objects * were retired from the queue * * The dql implementation does not implement any locking for the dql data * structures, the higher layer should provide this. dql_queued should * be serialized to prevent concurrent execution of the function; this * is also true for dql_completed. However, dql_queued and dlq_completed can * be executed concurrently (i.e. they can be protected by different locks). */ #ifndef _LINUX_DQL_H #define _LINUX_DQL_H #ifdef __KERNEL__ #include <asm/bug.h> struct dql { /* Fields accessed in enqueue path (dql_queued) */ unsigned int num_queued; /* Total ever queued */ unsigned int adj_limit; /* limit + num_completed */ unsigned int last_obj_cnt; /* Count at last queuing */ /* Fields accessed only by completion path (dql_completed) */ unsigned int limit ____cacheline_aligned_in_smp; /* Current limit */ unsigned int num_completed; /* Total ever completed */ unsigned int prev_ovlimit; /* Previous over limit */ unsigned int prev_num_queued; /* Previous queue total */ unsigned int prev_last_obj_cnt; /* Previous queuing cnt */ unsigned int lowest_slack; /* Lowest slack found */ unsigned long slack_start_time; /* Time slacks seen */ /* Configuration */ unsigned int max_limit; /* Max limit */ unsigned int min_limit; /* Minimum limit */ unsigned int slack_hold_time; /* Time to measure slack */ }; /* Set some static maximums */ #define DQL_MAX_OBJECT (UINT_MAX / 16) #define DQL_MAX_LIMIT ((UINT_MAX / 2) - DQL_MAX_OBJECT) /* * Record number of objects queued. Assumes that caller has already checked * availability in the queue with dql_avail. */ static inline void dql_queued(struct dql *dql, unsigned int count) { BUG_ON(count > DQL_MAX_OBJECT); dql->last_obj_cnt = count; /* We want to force a write first, so that cpu do not attempt * to get cache line containing last_obj_cnt, num_queued, adj_limit * in Shared state, but directly does a Request For Ownership * It is only a hint, we use barrier() only. */ barrier(); dql->num_queued += count; } /* Returns how many objects can be queued, < 0 indicates over limit. */ static inline int dql_avail(const struct dql *dql) { return READ_ONCE(dql->adj_limit) - READ_ONCE(dql->num_queued); } /* Record number of completed objects and recalculate the limit. */ void dql_completed(struct dql *dql, unsigned int count); /* Reset dql state */ void dql_reset(struct dql *dql); /* Initialize dql state */ void dql_init(struct dql *dql, unsigned int hold_time); #endif /* _KERNEL_ */ #endif /* _LINUX_DQL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_COMPAT_H #define _LINUX_COMPAT_H /* * These are the type definitions for the architecture specific * syscall compatibility layer. */ #include <linux/types.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/param.h> /* for HZ */ #include <linux/sem.h> #include <linux/socket.h> #include <linux/if.h> #include <linux/fs.h> #include <linux/aio_abi.h> /* for aio_context_t */ #include <linux/uaccess.h> #include <linux/unistd.h> #include <asm/compat.h> #ifdef CONFIG_COMPAT #include <asm/siginfo.h> #include <asm/signal.h> #endif #ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER /* * It may be useful for an architecture to override the definitions of the * COMPAT_SYSCALL_DEFINE0 and COMPAT_SYSCALL_DEFINEx() macros, in particular * to use a different calling convention for syscalls. To allow for that, + the prototypes for the compat_sys_*() functions below will *not* be included * if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #include <asm/syscall_wrapper.h> #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ #ifndef COMPAT_USE_64BIT_TIME #define COMPAT_USE_64BIT_TIME 0 #endif #ifndef __SC_DELOUSE #define __SC_DELOUSE(t,v) ((__force t)(unsigned long)(v)) #endif #ifndef COMPAT_SYSCALL_DEFINE0 #define COMPAT_SYSCALL_DEFINE0(name) \ asmlinkage long compat_sys_##name(void); \ ALLOW_ERROR_INJECTION(compat_sys_##name, ERRNO); \ asmlinkage long compat_sys_##name(void) #endif /* COMPAT_SYSCALL_DEFINE0 */ #define COMPAT_SYSCALL_DEFINE1(name, ...) \ COMPAT_SYSCALL_DEFINEx(1, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE2(name, ...) \ COMPAT_SYSCALL_DEFINEx(2, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE3(name, ...) \ COMPAT_SYSCALL_DEFINEx(3, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE4(name, ...) \ COMPAT_SYSCALL_DEFINEx(4, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE5(name, ...) \ COMPAT_SYSCALL_DEFINEx(5, _##name, __VA_ARGS__) #define COMPAT_SYSCALL_DEFINE6(name, ...) \ COMPAT_SYSCALL_DEFINEx(6, _##name, __VA_ARGS__) /* * The asmlinkage stub is aliased to a function named __se_compat_sys_*() which * sign-extends 32-bit ints to longs whenever needed. The actual work is * done within __do_compat_sys_*(). */ #ifndef COMPAT_SYSCALL_DEFINEx #define COMPAT_SYSCALL_DEFINEx(x, name, ...) \ __diag_push(); \ __diag_ignore(GCC, 8, "-Wattribute-alias", \ "Type aliasing is used to sanitize syscall arguments");\ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \ asmlinkage long compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) \ __attribute__((alias(__stringify(__se_compat_sys##name)))); \ ALLOW_ERROR_INJECTION(compat_sys##name, ERRNO); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__));\ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \ asmlinkage long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \ { \ long ret = __do_compat_sys##name(__MAP(x,__SC_DELOUSE,__VA_ARGS__));\ __MAP(x,__SC_TEST,__VA_ARGS__); \ return ret; \ } \ __diag_pop(); \ static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)) #endif /* COMPAT_SYSCALL_DEFINEx */ struct compat_iovec { compat_uptr_t iov_base; compat_size_t iov_len; }; #ifdef CONFIG_COMPAT #ifndef compat_user_stack_pointer #define compat_user_stack_pointer() current_user_stack_pointer() #endif #ifndef compat_sigaltstack /* we'll need that for MIPS */ typedef struct compat_sigaltstack { compat_uptr_t ss_sp; int ss_flags; compat_size_t ss_size; } compat_stack_t; #endif #ifndef COMPAT_MINSIGSTKSZ #define COMPAT_MINSIGSTKSZ MINSIGSTKSZ #endif #define compat_jiffies_to_clock_t(x) \ (((unsigned long)(x) * COMPAT_USER_HZ) / HZ) typedef __compat_uid32_t compat_uid_t; typedef __compat_gid32_t compat_gid_t; struct compat_sel_arg_struct; struct rusage; struct old_itimerval32; struct compat_tms { compat_clock_t tms_utime; compat_clock_t tms_stime; compat_clock_t tms_cutime; compat_clock_t tms_cstime; }; #define _COMPAT_NSIG_WORDS (_COMPAT_NSIG / _COMPAT_NSIG_BPW) typedef struct { compat_sigset_word sig[_COMPAT_NSIG_WORDS]; } compat_sigset_t; int set_compat_user_sigmask(const compat_sigset_t __user *umask, size_t sigsetsize); struct compat_sigaction { #ifndef __ARCH_HAS_IRIX_SIGACTION compat_uptr_t sa_handler; compat_ulong_t sa_flags; #else compat_uint_t sa_flags; compat_uptr_t sa_handler; #endif #ifdef __ARCH_HAS_SA_RESTORER compat_uptr_t sa_restorer; #endif compat_sigset_t sa_mask __packed; }; typedef union compat_sigval { compat_int_t sival_int; compat_uptr_t sival_ptr; } compat_sigval_t; typedef struct compat_siginfo { int si_signo; #ifndef __ARCH_HAS_SWAPPED_SIGINFO int si_errno; int si_code; #else int si_code; int si_errno; #endif union { int _pad[128/sizeof(int) - 3]; /* kill() */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ } _kill; /* POSIX.1b timers */ struct { compat_timer_t _tid; /* timer id */ int _overrun; /* overrun count */ compat_sigval_t _sigval; /* same as below */ } _timer; /* POSIX.1b signals */ struct { compat_pid_t _pid; /* sender's pid */ __compat_uid32_t _uid; /* sender's uid */ compat_sigval_t _sigval; } _rt; /* SIGCHLD */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_clock_t _utime; compat_clock_t _stime; } _sigchld; #ifdef CONFIG_X86_X32_ABI /* SIGCHLD (x32 version) */ struct { compat_pid_t _pid; /* which child */ __compat_uid32_t _uid; /* sender's uid */ int _status; /* exit code */ compat_s64 _utime; compat_s64 _stime; } _sigchld_x32; #endif /* SIGILL, SIGFPE, SIGSEGV, SIGBUS, SIGTRAP, SIGEMT */ struct { compat_uptr_t _addr; /* faulting insn/memory ref. */ #ifdef __ARCH_SI_TRAPNO int _trapno; /* TRAP # which caused the signal */ #endif #define __COMPAT_ADDR_BND_PKEY_PAD (__alignof__(compat_uptr_t) < sizeof(short) ? \ sizeof(short) : __alignof__(compat_uptr_t)) union { /* * used when si_code=BUS_MCEERR_AR or * used when si_code=BUS_MCEERR_AO */ short int _addr_lsb; /* Valid LSB of the reported address. */ /* used when si_code=SEGV_BNDERR */ struct { char _dummy_bnd[__COMPAT_ADDR_BND_PKEY_PAD]; compat_uptr_t _lower; compat_uptr_t _upper; } _addr_bnd; /* used when si_code=SEGV_PKUERR */ struct { char _dummy_pkey[__COMPAT_ADDR_BND_PKEY_PAD]; u32 _pkey; } _addr_pkey; }; } _sigfault; /* SIGPOLL */ struct { compat_long_t _band; /* POLL_IN, POLL_OUT, POLL_MSG */ int _fd; } _sigpoll; struct { compat_uptr_t _call_addr; /* calling user insn */ int _syscall; /* triggering system call number */ unsigned int _arch; /* AUDIT_ARCH_* of syscall */ } _sigsys; } _sifields; } compat_siginfo_t; struct compat_rlimit { compat_ulong_t rlim_cur; compat_ulong_t rlim_max; }; struct compat_rusage { struct old_timeval32 ru_utime; struct old_timeval32 ru_stime; compat_long_t ru_maxrss; compat_long_t ru_ixrss; compat_long_t ru_idrss; compat_long_t ru_isrss; compat_long_t ru_minflt; compat_long_t ru_majflt; compat_long_t ru_nswap; compat_long_t ru_inblock; compat_long_t ru_oublock; compat_long_t ru_msgsnd; compat_long_t ru_msgrcv; compat_long_t ru_nsignals; compat_long_t ru_nvcsw; compat_long_t ru_nivcsw; }; extern int put_compat_rusage(const struct rusage *, struct compat_rusage __user *); struct compat_siginfo; struct __compat_aio_sigset; struct compat_dirent { u32 d_ino; compat_off_t d_off; u16 d_reclen; char d_name[256]; }; struct compat_ustat { compat_daddr_t f_tfree; compat_ino_t f_tinode; char f_fname[6]; char f_fpack[6]; }; #define COMPAT_SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int)) - 3) typedef struct compat_sigevent { compat_sigval_t sigev_value; compat_int_t sigev_signo; compat_int_t sigev_notify; union { compat_int_t _pad[COMPAT_SIGEV_PAD_SIZE]; compat_int_t _tid; struct { compat_uptr_t _function; compat_uptr_t _attribute; } _sigev_thread; } _sigev_un; } compat_sigevent_t; struct compat_ifmap { compat_ulong_t mem_start; compat_ulong_t mem_end; unsigned short base_addr; unsigned char irq; unsigned char dma; unsigned char port; }; struct compat_if_settings { unsigned int type; /* Type of physical device or protocol */ unsigned int size; /* Size of the data allocated by the caller */ compat_uptr_t ifs_ifsu; /* union of pointers */ }; struct compat_ifreq { union { char ifrn_name[IFNAMSIZ]; /* if name, e.g. "en0" */ } ifr_ifrn; union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct sockaddr ifru_netmask; struct sockaddr ifru_hwaddr; short ifru_flags; compat_int_t ifru_ivalue; compat_int_t ifru_mtu; struct compat_ifmap ifru_map; char ifru_slave[IFNAMSIZ]; /* Just fits the size */ char ifru_newname[IFNAMSIZ]; compat_caddr_t ifru_data; struct compat_if_settings ifru_settings; } ifr_ifru; }; struct compat_ifconf { compat_int_t ifc_len; /* size of buffer */ compat_caddr_t ifcbuf; }; struct compat_robust_list { compat_uptr_t next; }; struct compat_robust_list_head { struct compat_robust_list list; compat_long_t futex_offset; compat_uptr_t list_op_pending; }; #ifdef CONFIG_COMPAT_OLD_SIGACTION struct compat_old_sigaction { compat_uptr_t sa_handler; compat_old_sigset_t sa_mask; compat_ulong_t sa_flags; compat_uptr_t sa_restorer; }; #endif struct compat_keyctl_kdf_params { compat_uptr_t hashname; compat_uptr_t otherinfo; __u32 otherinfolen; __u32 __spare[8]; }; struct compat_statfs; struct compat_statfs64; struct compat_old_linux_dirent; struct compat_linux_dirent; struct linux_dirent64; struct compat_msghdr; struct compat_mmsghdr; struct compat_sysinfo; struct compat_sysctl_args; struct compat_kexec_segment; struct compat_mq_attr; struct compat_msgbuf; #define BITS_PER_COMPAT_LONG (8*sizeof(compat_long_t)) #define BITS_TO_COMPAT_LONGS(bits) DIV_ROUND_UP(bits, BITS_PER_COMPAT_LONG) long compat_get_bitmap(unsigned long *mask, const compat_ulong_t __user *umask, unsigned long bitmap_size); long compat_put_bitmap(compat_ulong_t __user *umask, unsigned long *mask, unsigned long bitmap_size); void copy_siginfo_to_external32(struct compat_siginfo *to, const struct kernel_siginfo *from); int copy_siginfo_from_user32(kernel_siginfo_t *to, const struct compat_siginfo __user *from); int __copy_siginfo_to_user32(struct compat_siginfo __user *to, const kernel_siginfo_t *from); #ifndef copy_siginfo_to_user32 #define copy_siginfo_to_user32 __copy_siginfo_to_user32 #endif int get_compat_sigevent(struct sigevent *event, const struct compat_sigevent __user *u_event); extern int get_compat_sigset(sigset_t *set, const compat_sigset_t __user *compat); /* * Defined inline such that size can be compile time constant, which avoids * CONFIG_HARDENED_USERCOPY complaining about copies from task_struct */ static inline int put_compat_sigset(compat_sigset_t __user *compat, const sigset_t *set, unsigned int size) { /* size <= sizeof(compat_sigset_t) <= sizeof(sigset_t) */ #ifdef __BIG_ENDIAN compat_sigset_t v; switch (_NSIG_WORDS) { case 4: v.sig[7] = (set->sig[3] >> 32); v.sig[6] = set->sig[3]; fallthrough; case 3: v.sig[5] = (set->sig[2] >> 32); v.sig[4] = set->sig[2]; fallthrough; case 2: v.sig[3] = (set->sig[1] >> 32); v.sig[2] = set->sig[1]; fallthrough; case 1: v.sig[1] = (set->sig[0] >> 32); v.sig[0] = set->sig[0]; } return copy_to_user(compat, &v, size) ? -EFAULT : 0; #else return copy_to_user(compat, set, size) ? -EFAULT : 0; #endif } extern int compat_ptrace_request(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); extern long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data); struct epoll_event; /* fortunately, this one is fixed-layout */ extern void __user *compat_alloc_user_space(unsigned long len); int compat_restore_altstack(const compat_stack_t __user *uss); int __compat_save_altstack(compat_stack_t __user *, unsigned long); #define unsafe_compat_save_altstack(uss, sp, label) do { \ compat_stack_t __user *__uss = uss; \ struct task_struct *t = current; \ unsafe_put_user(ptr_to_compat((void __user *)t->sas_ss_sp), \ &__uss->ss_sp, label); \ unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \ unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \ if (t->sas_ss_flags & SS_AUTODISARM) \ sas_ss_reset(t); \ } while (0); /* * These syscall function prototypes are kept in the same order as * include/uapi/asm-generic/unistd.h. Deprecated or obsolete system calls * go below. * * Please note that these prototypes here are only provided for information * purposes, for static analysis, and for linking from the syscall table. * These functions should not be called elsewhere from kernel code. * * As the syscall calling convention may be different from the default * for architectures overriding the syscall calling convention, do not * include the prototypes if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. */ #ifndef CONFIG_ARCH_HAS_SYSCALL_WRAPPER asmlinkage long compat_sys_io_setup(unsigned nr_reqs, u32 __user *ctx32p); asmlinkage long compat_sys_io_submit(compat_aio_context_t ctx_id, int nr, u32 __user *iocb); asmlinkage long compat_sys_io_pgetevents(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct old_timespec32 __user *timeout, const struct __compat_aio_sigset __user *usig); asmlinkage long compat_sys_io_pgetevents_time64(compat_aio_context_t ctx_id, compat_long_t min_nr, compat_long_t nr, struct io_event __user *events, struct __kernel_timespec __user *timeout, const struct __compat_aio_sigset __user *usig); /* fs/cookies.c */ asmlinkage long compat_sys_lookup_dcookie(u32, u32, char __user *, compat_size_t); /* fs/eventpoll.c */ asmlinkage long compat_sys_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, int timeout, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/fcntl.c */ asmlinkage long compat_sys_fcntl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); asmlinkage long compat_sys_fcntl64(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/ioctl.c */ asmlinkage long compat_sys_ioctl(unsigned int fd, unsigned int cmd, compat_ulong_t arg); /* fs/open.c */ asmlinkage long compat_sys_statfs(const char __user *pathname, struct compat_statfs __user *buf); asmlinkage long compat_sys_statfs64(const char __user *pathname, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_fstatfs(unsigned int fd, struct compat_statfs __user *buf); asmlinkage long compat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user *buf); asmlinkage long compat_sys_truncate(const char __user *, compat_off_t); asmlinkage long compat_sys_ftruncate(unsigned int, compat_ulong_t); /* No generic prototype for truncate64, ftruncate64, fallocate */ asmlinkage long compat_sys_openat(int dfd, const char __user *filename, int flags, umode_t mode); /* fs/readdir.c */ asmlinkage long compat_sys_getdents(unsigned int fd, struct compat_linux_dirent __user *dirent, unsigned int count); /* fs/read_write.c */ asmlinkage long compat_sys_lseek(unsigned int, compat_off_t, unsigned int); /* No generic prototype for pread64 and pwrite64 */ asmlinkage ssize_t compat_sys_preadv(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); asmlinkage ssize_t compat_sys_pwritev(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64 asmlinkage long compat_sys_preadv64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64 asmlinkage long compat_sys_pwritev64(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos); #endif /* fs/sendfile.c */ asmlinkage long compat_sys_sendfile(int out_fd, int in_fd, compat_off_t __user *offset, compat_size_t count); asmlinkage long compat_sys_sendfile64(int out_fd, int in_fd, compat_loff_t __user *offset, compat_size_t count); /* fs/select.c */ asmlinkage long compat_sys_pselect6_time32(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timespec32 __user *tsp, void __user *sig); asmlinkage long compat_sys_pselect6_time64(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct __kernel_timespec __user *tsp, void __user *sig); asmlinkage long compat_sys_ppoll_time32(struct pollfd __user *ufds, unsigned int nfds, struct old_timespec32 __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); asmlinkage long compat_sys_ppoll_time64(struct pollfd __user *ufds, unsigned int nfds, struct __kernel_timespec __user *tsp, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* fs/signalfd.c */ asmlinkage long compat_sys_signalfd4(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize, int flags); /* fs/stat.c */ asmlinkage long compat_sys_newfstatat(unsigned int dfd, const char __user *filename, struct compat_stat __user *statbuf, int flag); asmlinkage long compat_sys_newfstat(unsigned int fd, struct compat_stat __user *statbuf); /* fs/sync.c: No generic prototype for sync_file_range and sync_file_range2 */ /* kernel/exit.c */ asmlinkage long compat_sys_waitid(int, compat_pid_t, struct compat_siginfo __user *, int, struct compat_rusage __user *); /* kernel/futex.c */ asmlinkage long compat_sys_set_robust_list(struct compat_robust_list_head __user *head, compat_size_t len); asmlinkage long compat_sys_get_robust_list(int pid, compat_uptr_t __user *head_ptr, compat_size_t __user *len_ptr); /* kernel/itimer.c */ asmlinkage long compat_sys_getitimer(int which, struct old_itimerval32 __user *it); asmlinkage long compat_sys_setitimer(int which, struct old_itimerval32 __user *in, struct old_itimerval32 __user *out); /* kernel/kexec.c */ asmlinkage long compat_sys_kexec_load(compat_ulong_t entry, compat_ulong_t nr_segments, struct compat_kexec_segment __user *, compat_ulong_t flags); /* kernel/posix-timers.c */ asmlinkage long compat_sys_timer_create(clockid_t which_clock, struct compat_sigevent __user *timer_event_spec, timer_t __user *created_timer_id); /* kernel/ptrace.c */ asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid, compat_long_t addr, compat_long_t data); /* kernel/sched/core.c */ asmlinkage long compat_sys_sched_setaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); asmlinkage long compat_sys_sched_getaffinity(compat_pid_t pid, unsigned int len, compat_ulong_t __user *user_mask_ptr); /* kernel/signal.c */ asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr, compat_stack_t __user *uoss_ptr); asmlinkage long compat_sys_rt_sigsuspend(compat_sigset_t __user *unewset, compat_size_t sigsetsize); #ifndef CONFIG_ODD_RT_SIGACTION asmlinkage long compat_sys_rt_sigaction(int, const struct compat_sigaction __user *, struct compat_sigaction __user *, compat_size_t); #endif asmlinkage long compat_sys_rt_sigprocmask(int how, compat_sigset_t __user *set, compat_sigset_t __user *oset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigpending(compat_sigset_t __user *uset, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time32(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct old_timespec32 __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigtimedwait_time64(compat_sigset_t __user *uthese, struct compat_siginfo __user *uinfo, struct __kernel_timespec __user *uts, compat_size_t sigsetsize); asmlinkage long compat_sys_rt_sigqueueinfo(compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); /* No generic prototype for rt_sigreturn */ /* kernel/sys.c */ asmlinkage long compat_sys_times(struct compat_tms __user *tbuf); asmlinkage long compat_sys_getrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_setrlimit(unsigned int resource, struct compat_rlimit __user *rlim); asmlinkage long compat_sys_getrusage(int who, struct compat_rusage __user *ru); /* kernel/time.c */ asmlinkage long compat_sys_gettimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); asmlinkage long compat_sys_settimeofday(struct old_timeval32 __user *tv, struct timezone __user *tz); /* kernel/timer.c */ asmlinkage long compat_sys_sysinfo(struct compat_sysinfo __user *info); /* ipc/mqueue.c */ asmlinkage long compat_sys_mq_open(const char __user *u_name, int oflag, compat_mode_t mode, struct compat_mq_attr __user *u_attr); asmlinkage long compat_sys_mq_notify(mqd_t mqdes, const struct compat_sigevent __user *u_notification); asmlinkage long compat_sys_mq_getsetattr(mqd_t mqdes, const struct compat_mq_attr __user *u_mqstat, struct compat_mq_attr __user *u_omqstat); /* ipc/msg.c */ asmlinkage long compat_sys_msgctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); asmlinkage long compat_sys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); /* ipc/sem.c */ asmlinkage long compat_sys_semctl(int semid, int semnum, int cmd, int arg); /* ipc/shm.c */ asmlinkage long compat_sys_shmctl(int first, int second, void __user *uptr); asmlinkage long compat_sys_shmat(int shmid, compat_uptr_t shmaddr, int shmflg); /* net/socket.c */ asmlinkage long compat_sys_recvfrom(int fd, void __user *buf, compat_size_t len, unsigned flags, struct sockaddr __user *addr, int __user *addrlen); asmlinkage long compat_sys_sendmsg(int fd, struct compat_msghdr __user *msg, unsigned flags); asmlinkage long compat_sys_recvmsg(int fd, struct compat_msghdr __user *msg, unsigned int flags); /* mm/filemap.c: No generic prototype for readahead */ /* security/keys/keyctl.c */ asmlinkage long compat_sys_keyctl(u32 option, u32 arg2, u32 arg3, u32 arg4, u32 arg5); /* arch/example/kernel/sys_example.c */ asmlinkage long compat_sys_execve(const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp); /* mm/fadvise.c: No generic prototype for fadvise64_64 */ /* mm/, CONFIG_MMU only */ asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, compat_ulong_t mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t flags); asmlinkage long compat_sys_get_mempolicy(int __user *policy, compat_ulong_t __user *nmask, compat_ulong_t maxnode, compat_ulong_t addr, compat_ulong_t flags); asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, compat_ulong_t maxnode); asmlinkage long compat_sys_migrate_pages(compat_pid_t pid, compat_ulong_t maxnode, const compat_ulong_t __user *old_nodes, const compat_ulong_t __user *new_nodes); asmlinkage long compat_sys_move_pages(pid_t pid, compat_ulong_t nr_pages, __u32 __user *pages, const int __user *nodes, int __user *status, int flags); asmlinkage long compat_sys_rt_tgsigqueueinfo(compat_pid_t tgid, compat_pid_t pid, int sig, struct compat_siginfo __user *uinfo); asmlinkage long compat_sys_recvmmsg_time64(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct __kernel_timespec __user *timeout); asmlinkage long compat_sys_recvmmsg_time32(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags, struct old_timespec32 __user *timeout); asmlinkage long compat_sys_wait4(compat_pid_t pid, compat_uint_t __user *stat_addr, int options, struct compat_rusage __user *ru); asmlinkage long compat_sys_fanotify_mark(int, unsigned int, __u32, __u32, int, const char __user *); asmlinkage long compat_sys_open_by_handle_at(int mountdirfd, struct file_handle __user *handle, int flags); asmlinkage long compat_sys_sendmmsg(int fd, struct compat_mmsghdr __user *mmsg, unsigned vlen, unsigned int flags); asmlinkage long compat_sys_execveat(int dfd, const char __user *filename, const compat_uptr_t __user *argv, const compat_uptr_t __user *envp, int flags); asmlinkage ssize_t compat_sys_preadv2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); asmlinkage ssize_t compat_sys_pwritev2(compat_ulong_t fd, const struct iovec __user *vec, compat_ulong_t vlen, u32 pos_low, u32 pos_high, rwf_t flags); #ifdef __ARCH_WANT_COMPAT_SYS_PREADV64V2 asmlinkage long compat_sys_preadv64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif #ifdef __ARCH_WANT_COMPAT_SYS_PWRITEV64V2 asmlinkage long compat_sys_pwritev64v2(unsigned long fd, const struct iovec __user *vec, unsigned long vlen, loff_t pos, rwf_t flags); #endif /* * Deprecated system calls which are still defined in * include/uapi/asm-generic/unistd.h and wanted by >= 1 arch */ /* __ARCH_WANT_SYSCALL_NO_AT */ asmlinkage long compat_sys_open(const char __user *filename, int flags, umode_t mode); /* __ARCH_WANT_SYSCALL_NO_FLAGS */ asmlinkage long compat_sys_signalfd(int ufd, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize); /* __ARCH_WANT_SYSCALL_OFF_T */ asmlinkage long compat_sys_newstat(const char __user *filename, struct compat_stat __user *statbuf); asmlinkage long compat_sys_newlstat(const char __user *filename, struct compat_stat __user *statbuf); /* __ARCH_WANT_SYSCALL_DEPRECATED */ asmlinkage long compat_sys_select(int n, compat_ulong_t __user *inp, compat_ulong_t __user *outp, compat_ulong_t __user *exp, struct old_timeval32 __user *tvp); asmlinkage long compat_sys_ustat(unsigned dev, struct compat_ustat __user *u32); asmlinkage long compat_sys_recv(int fd, void __user *buf, compat_size_t len, unsigned flags); /* obsolete: fs/readdir.c */ asmlinkage long compat_sys_old_readdir(unsigned int fd, struct compat_old_linux_dirent __user *, unsigned int count); /* obsolete: fs/select.c */ asmlinkage long compat_sys_old_select(struct compat_sel_arg_struct __user *arg); /* obsolete: ipc */ asmlinkage long compat_sys_ipc(u32, int, int, u32, compat_uptr_t, u32); /* obsolete: kernel/signal.c */ #ifdef __ARCH_WANT_SYS_SIGPENDING asmlinkage long compat_sys_sigpending(compat_old_sigset_t __user *set); #endif #ifdef __ARCH_WANT_SYS_SIGPROCMASK asmlinkage long compat_sys_sigprocmask(int how, compat_old_sigset_t __user *nset, compat_old_sigset_t __user *oset); #endif #ifdef CONFIG_COMPAT_OLD_SIGACTION asmlinkage long compat_sys_sigaction(int sig, const struct compat_old_sigaction __user *act, struct compat_old_sigaction __user *oact); #endif /* obsolete: net/socket.c */ asmlinkage long compat_sys_socketcall(int call, u32 __user *args); #endif /* CONFIG_ARCH_HAS_SYSCALL_WRAPPER */ /* * For most but not all architectures, "am I in a compat syscall?" and * "am I a compat task?" are the same question. For architectures on which * they aren't the same question, arch code can override in_compat_syscall. */ #ifndef in_compat_syscall static inline bool in_compat_syscall(void) { return is_compat_task(); } #endif /** * ns_to_old_timeval32 - Compat version of ns_to_timeval * @nsec: the nanoseconds value to be converted * * Returns the old_timeval32 representation of the nsec parameter. */ static inline struct old_timeval32 ns_to_old_timeval32(s64 nsec) { struct __kernel_old_timeval tv; struct old_timeval32 ctv; tv = ns_to_kernel_old_timeval(nsec); ctv.tv_sec = tv.tv_sec; ctv.tv_usec = tv.tv_usec; return ctv; } /* * Kernel code should not call compat syscalls (i.e., compat_sys_xyzyyz()) * directly. Instead, use one of the functions which work equivalently, such * as the kcompat_sys_xyzyyz() functions prototyped below. */ int kcompat_sys_statfs64(const char __user * pathname, compat_size_t sz, struct compat_statfs64 __user * buf); int kcompat_sys_fstatfs64(unsigned int fd, compat_size_t sz, struct compat_statfs64 __user * buf); #else /* !CONFIG_COMPAT */ #define is_compat_task() (0) /* Ensure no one redefines in_compat_syscall() under !CONFIG_COMPAT */ #define in_compat_syscall in_compat_syscall static inline bool in_compat_syscall(void) { return false; } #endif /* CONFIG_COMPAT */ /* * Some legacy ABIs like the i386 one use less than natural alignment for 64-bit * types, and will need special compat treatment for that. Most architectures * don't need that special handling even for compat syscalls. */ #ifndef compat_need_64bit_alignment_fixup #define compat_need_64bit_alignment_fixup() false #endif /* * A pointer passed in from user mode. This should not * be used for syscall parameters, just declare them * as pointers because the syscall entry code will have * appropriately converted them already. */ #ifndef compat_ptr static inline void __user *compat_ptr(compat_uptr_t uptr) { return (void __user *)(unsigned long)uptr; } #endif static inline compat_uptr_t ptr_to_compat(void __user *uptr) { return (u32)(unsigned long)uptr; } #endif /* _LINUX_COMPAT_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MMU_NOTIFIER_H #define _LINUX_MMU_NOTIFIER_H #include <linux/list.h> #include <linux/spinlock.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/srcu.h> #include <linux/interval_tree.h> struct mmu_notifier_subscriptions; struct mmu_notifier; struct mmu_notifier_range; struct mmu_interval_notifier; /** * enum mmu_notifier_event - reason for the mmu notifier callback * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that * move the range * * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like * madvise() or replacing a page by another one, ...). * * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range * ie using the vma access permission (vm_page_prot) to update the whole range * is enough no need to inspect changes to the CPU page table (mprotect() * syscall) * * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for * pages in the range so to mirror those changes the user must inspect the CPU * page table (from the end callback). * * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same * access flags). User should soft dirty the page in the end callback to make * sure that anyone relying on soft dirtyness catch pages that might be written * through non CPU mappings. * * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal * that the mm refcount is zero and the range is no longer accessible. * * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal * a device driver to possibly ignore the invalidation if the * migrate_pgmap_owner field matches the driver's device private pgmap owner. */ enum mmu_notifier_event { MMU_NOTIFY_UNMAP = 0, MMU_NOTIFY_CLEAR, MMU_NOTIFY_PROTECTION_VMA, MMU_NOTIFY_PROTECTION_PAGE, MMU_NOTIFY_SOFT_DIRTY, MMU_NOTIFY_RELEASE, MMU_NOTIFY_MIGRATE, }; #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) struct mmu_notifier_ops { /* * Called either by mmu_notifier_unregister or when the mm is * being destroyed by exit_mmap, always before all pages are * freed. This can run concurrently with other mmu notifier * methods (the ones invoked outside the mm context) and it * should tear down all secondary mmu mappings and freeze the * secondary mmu. If this method isn't implemented you've to * be sure that nothing could possibly write to the pages * through the secondary mmu by the time the last thread with * tsk->mm == mm exits. * * As side note: the pages freed after ->release returns could * be immediately reallocated by the gart at an alias physical * address with a different cache model, so if ->release isn't * implemented because all _software_ driven memory accesses * through the secondary mmu are terminated by the time the * last thread of this mm quits, you've also to be sure that * speculative _hardware_ operations can't allocate dirty * cachelines in the cpu that could not be snooped and made * coherent with the other read and write operations happening * through the gart alias address, so leading to memory * corruption. */ void (*release)(struct mmu_notifier *subscription, struct mm_struct *mm); /* * clear_flush_young is called after the VM is * test-and-clearing the young/accessed bitflag in the * pte. This way the VM will provide proper aging to the * accesses to the page through the secondary MMUs and not * only to the ones through the Linux pte. * Start-end is necessary in case the secondary MMU is mapping the page * at a smaller granularity than the primary MMU. */ int (*clear_flush_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * clear_young is a lightweight version of clear_flush_young. Like the * latter, it is supposed to test-and-clear the young/accessed bitflag * in the secondary pte, but it may omit flushing the secondary tlb. */ int (*clear_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * test_young is called to check the young/accessed bitflag in * the secondary pte. This is used to know if the page is * frequently used without actually clearing the flag or tearing * down the secondary mapping on the page. */ int (*test_young)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long address); /* * change_pte is called in cases that pte mapping to page is changed: * for example, when ksm remaps pte to point to a new shared page. */ void (*change_pte)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long address, pte_t pte); /* * invalidate_range_start() and invalidate_range_end() must be * paired and are called only when the mmap_lock and/or the * locks protecting the reverse maps are held. If the subsystem * can't guarantee that no additional references are taken to * the pages in the range, it has to implement the * invalidate_range() notifier to remove any references taken * after invalidate_range_start(). * * Invalidation of multiple concurrent ranges may be * optionally permitted by the driver. Either way the * establishment of sptes is forbidden in the range passed to * invalidate_range_begin/end for the whole duration of the * invalidate_range_begin/end critical section. * * invalidate_range_start() is called when all pages in the * range are still mapped and have at least a refcount of one. * * invalidate_range_end() is called when all pages in the * range have been unmapped and the pages have been freed by * the VM. * * The VM will remove the page table entries and potentially * the page between invalidate_range_start() and * invalidate_range_end(). If the page must not be freed * because of pending I/O or other circumstances then the * invalidate_range_start() callback (or the initial mapping * by the driver) must make sure that the refcount is kept * elevated. * * If the driver increases the refcount when the pages are * initially mapped into an address space then either * invalidate_range_start() or invalidate_range_end() may * decrease the refcount. If the refcount is decreased on * invalidate_range_start() then the VM can free pages as page * table entries are removed. If the refcount is only * droppped on invalidate_range_end() then the driver itself * will drop the last refcount but it must take care to flush * any secondary tlb before doing the final free on the * page. Pages will no longer be referenced by the linux * address space but may still be referenced by sptes until * the last refcount is dropped. * * If blockable argument is set to false then the callback cannot * sleep and has to return with -EAGAIN if sleeping would be required. * 0 should be returned otherwise. Please note that notifiers that can * fail invalidate_range_start are not allowed to implement * invalidate_range_end, as there is no mechanism for informing the * notifier that its start failed. */ int (*invalidate_range_start)(struct mmu_notifier *subscription, const struct mmu_notifier_range *range); void (*invalidate_range_end)(struct mmu_notifier *subscription, const struct mmu_notifier_range *range); /* * invalidate_range() is either called between * invalidate_range_start() and invalidate_range_end() when the * VM has to free pages that where unmapped, but before the * pages are actually freed, or outside of _start()/_end() when * a (remote) TLB is necessary. * * If invalidate_range() is used to manage a non-CPU TLB with * shared page-tables, it not necessary to implement the * invalidate_range_start()/end() notifiers, as * invalidate_range() alread catches the points in time when an * external TLB range needs to be flushed. For more in depth * discussion on this see Documentation/vm/mmu_notifier.rst * * Note that this function might be called with just a sub-range * of what was passed to invalidate_range_start()/end(), if * called between those functions. */ void (*invalidate_range)(struct mmu_notifier *subscription, struct mm_struct *mm, unsigned long start, unsigned long end); /* * These callbacks are used with the get/put interface to manage the * lifetime of the mmu_notifier memory. alloc_notifier() returns a new * notifier for use with the mm. * * free_notifier() is only called after the mmu_notifier has been * fully put, calls to any ops callback are prevented and no ops * callbacks are currently running. It is called from a SRCU callback * and cannot sleep. */ struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); void (*free_notifier)(struct mmu_notifier *subscription); }; /* * The notifier chains are protected by mmap_lock and/or the reverse map * semaphores. Notifier chains are only changed when all reverse maps and * the mmap_lock locks are taken. * * Therefore notifier chains can only be traversed when either * * 1. mmap_lock is held. * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). * 3. No other concurrent thread can access the list (release) */ struct mmu_notifier { struct hlist_node hlist; const struct mmu_notifier_ops *ops; struct mm_struct *mm; struct rcu_head rcu; unsigned int users; }; /** * struct mmu_interval_notifier_ops * @invalidate: Upon return the caller must stop using any SPTEs within this * range. This function can sleep. Return false only if sleeping * was required but mmu_notifier_range_blockable(range) is false. */ struct mmu_interval_notifier_ops { bool (*invalidate)(struct mmu_interval_notifier *interval_sub, const struct mmu_notifier_range *range, unsigned long cur_seq); }; struct mmu_interval_notifier { struct interval_tree_node interval_tree; const struct mmu_interval_notifier_ops *ops; struct mm_struct *mm; struct hlist_node deferred_item; unsigned long invalidate_seq; }; #ifdef CONFIG_MMU_NOTIFIER #ifdef CONFIG_LOCKDEP extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; #endif struct mmu_notifier_range { struct vm_area_struct *vma; struct mm_struct *mm; unsigned long start; unsigned long end; unsigned flags; enum mmu_notifier_event event; void *migrate_pgmap_owner; }; static inline int mm_has_notifiers(struct mm_struct *mm) { return unlikely(mm->notifier_subscriptions); } struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, struct mm_struct *mm); static inline struct mmu_notifier * mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) { struct mmu_notifier *ret; mmap_write_lock(mm); ret = mmu_notifier_get_locked(ops, mm); mmap_write_unlock(mm); return ret; } void mmu_notifier_put(struct mmu_notifier *subscription); void mmu_notifier_synchronize(void); extern int mmu_notifier_register(struct mmu_notifier *subscription, struct mm_struct *mm); extern int __mmu_notifier_register(struct mmu_notifier *subscription, struct mm_struct *mm); extern void mmu_notifier_unregister(struct mmu_notifier *subscription, struct mm_struct *mm); unsigned long mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops); int mmu_interval_notifier_insert_locked( struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, unsigned long start, unsigned long length, const struct mmu_interval_notifier_ops *ops); void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); /** * mmu_interval_set_seq - Save the invalidation sequence * @interval_sub - The subscription passed to invalidate * @cur_seq - The cur_seq passed to the invalidate() callback * * This must be called unconditionally from the invalidate callback of a * struct mmu_interval_notifier_ops under the same lock that is used to call * mmu_interval_read_retry(). It updates the sequence number for later use by * mmu_interval_read_retry(). The provided cur_seq will always be odd. * * If the caller does not call mmu_interval_read_begin() or * mmu_interval_read_retry() then this call is not required. */ static inline void mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, unsigned long cur_seq) { WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); } /** * mmu_interval_read_retry - End a read side critical section against a VA range * interval_sub: The subscription * seq: The return of the paired mmu_interval_read_begin() * * This MUST be called under a user provided lock that is also held * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). * * Each call should be paired with a single mmu_interval_read_begin() and * should be used to conclude the read side. * * Returns true if an invalidation collided with this critical section, and * the caller should retry. */ static inline bool mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, unsigned long seq) { return interval_sub->invalidate_seq != seq; } /** * mmu_interval_check_retry - Test if a collision has occurred * interval_sub: The subscription * seq: The return of the matching mmu_interval_read_begin() * * This can be used in the critical section between mmu_interval_read_begin() * and mmu_interval_read_retry(). A return of true indicates an invalidation * has collided with this critical region and a future * mmu_interval_read_retry() will return true. * * False is not reliable and only suggests a collision may not have * occured. It can be called many times and does not have to hold the user * provided lock. * * This call can be used as part of loops and other expensive operations to * expedite a retry. */ static inline bool mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, unsigned long seq) { /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ return READ_ONCE(interval_sub->invalidate_seq) != seq; } extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); extern void __mmu_notifier_release(struct mm_struct *mm); extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end); extern int __mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end); extern int __mmu_notifier_test_young(struct mm_struct *mm, unsigned long address); extern void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte); extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, bool only_end); extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end); extern bool mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); static inline bool mmu_notifier_range_blockable(const struct mmu_notifier_range *range) { return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); } static inline void mmu_notifier_release(struct mm_struct *mm) { if (mm_has_notifiers(mm)) __mmu_notifier_release(mm); } static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) return __mmu_notifier_clear_flush_young(mm, start, end); return 0; } static inline int mmu_notifier_clear_young(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) return __mmu_notifier_clear_young(mm, start, end); return 0; } static inline int mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { if (mm_has_notifiers(mm)) return __mmu_notifier_test_young(mm, address); return 0; } static inline void mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { if (mm_has_notifiers(mm)) __mmu_notifier_change_pte(mm, address, pte); } static inline void mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { might_sleep(); lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); if (mm_has_notifiers(range->mm)) { range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; __mmu_notifier_invalidate_range_start(range); } lock_map_release(&__mmu_notifier_invalidate_range_start_map); } static inline int mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) { int ret = 0; lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); if (mm_has_notifiers(range->mm)) { range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; ret = __mmu_notifier_invalidate_range_start(range); } lock_map_release(&__mmu_notifier_invalidate_range_start_map); return ret; } static inline void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) { if (mmu_notifier_range_blockable(range)) might_sleep(); if (mm_has_notifiers(range->mm)) __mmu_notifier_invalidate_range_end(range, false); } static inline void mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) { if (mm_has_notifiers(range->mm)) __mmu_notifier_invalidate_range_end(range, true); } static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm_has_notifiers(mm)) __mmu_notifier_invalidate_range(mm, start, end); } static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) { mm->notifier_subscriptions = NULL; } static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) { if (mm_has_notifiers(mm)) __mmu_notifier_subscriptions_destroy(mm); } static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, enum mmu_notifier_event event, unsigned flags, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end) { range->vma = vma; range->event = event; range->mm = mm; range->start = start; range->end = end; range->flags = flags; } static inline void mmu_notifier_range_init_migrate( struct mmu_notifier_range *range, unsigned int flags, struct vm_area_struct *vma, struct mm_struct *mm, unsigned long start, unsigned long end, void *pgmap) { mmu_notifier_range_init(range, MMU_NOTIFY_MIGRATE, flags, vma, mm, start, end); range->migrate_pgmap_owner = pgmap; } #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ ___address, \ ___address + \ PAGE_SIZE); \ __young; \ }) #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ ___address, \ ___address + \ PMD_SIZE); \ __young; \ }) #define ptep_clear_young_notify(__vma, __address, __ptep) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ ___address + PAGE_SIZE); \ __young; \ }) #define pmdp_clear_young_notify(__vma, __address, __pmdp) \ ({ \ int __young; \ struct vm_area_struct *___vma = __vma; \ unsigned long ___address = __address; \ __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ ___address + PMD_SIZE); \ __young; \ }) #define ptep_clear_flush_notify(__vma, __address, __ptep) \ ({ \ unsigned long ___addr = __address & PAGE_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pte_t ___pte; \ \ ___pte = ptep_clear_flush(__vma, __address, __ptep); \ mmu_notifier_invalidate_range(___mm, ___addr, \ ___addr + PAGE_SIZE); \ \ ___pte; \ }) #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ ({ \ unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pmd_t ___pmd; \ \ ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ mmu_notifier_invalidate_range(___mm, ___haddr, \ ___haddr + HPAGE_PMD_SIZE); \ \ ___pmd; \ }) #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ ({ \ unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ struct mm_struct *___mm = (__vma)->vm_mm; \ pud_t ___pud; \ \ ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ mmu_notifier_invalidate_range(___mm, ___haddr, \ ___haddr + HPAGE_PUD_SIZE); \ \ ___pud; \ }) /* * set_pte_at_notify() sets the pte _after_ running the notifier. * This is safe to start by updating the secondary MMUs, because the primary MMU * pte invalidate must have already happened with a ptep_clear_flush() before * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is * required when we change both the protection of the mapping from read-only to * read-write and the pfn (like during copy on write page faults). Otherwise the * old page would remain mapped readonly in the secondary MMUs after the new * page is already writable by some CPU through the primary MMU. */ #define set_pte_at_notify(__mm, __address, __ptep, __pte) \ ({ \ struct mm_struct *___mm = __mm; \ unsigned long ___address = __address; \ pte_t ___pte = __pte; \ \ mmu_notifier_change_pte(___mm, ___address, ___pte); \ set_pte_at(___mm, ___address, __ptep, ___pte); \ }) #else /* CONFIG_MMU_NOTIFIER */ struct mmu_notifier_range { unsigned long start; unsigned long end; }; static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, unsigned long start, unsigned long end) { range->start = start; range->end = end; } #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \ _mmu_notifier_range_init(range, start, end) #define mmu_notifier_range_init_migrate(range, flags, vma, mm, start, end, \ pgmap) \ _mmu_notifier_range_init(range, start, end) static inline bool mmu_notifier_range_blockable(const struct mmu_notifier_range *range) { return true; } static inline int mm_has_notifiers(struct mm_struct *mm) { return 0; } static inline void mmu_notifier_release(struct mm_struct *mm) { } static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, unsigned long start, unsigned long end) { return 0; } static inline int mmu_notifier_test_young(struct mm_struct *mm, unsigned long address) { return 0; } static inline void mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, pte_t pte) { } static inline void mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) { } static inline int mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) { return 0; } static inline void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) { } static inline void mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) { } static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, unsigned long start, unsigned long end) { } static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) { } static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) { } #define mmu_notifier_range_update_to_read_only(r) false #define ptep_clear_flush_young_notify ptep_clear_flush_young #define pmdp_clear_flush_young_notify pmdp_clear_flush_young #define ptep_clear_young_notify ptep_test_and_clear_young #define pmdp_clear_young_notify pmdp_test_and_clear_young #define ptep_clear_flush_notify ptep_clear_flush #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush #define pudp_huge_clear_flush_notify pudp_huge_clear_flush #define set_pte_at_notify set_pte_at static inline void mmu_notifier_synchronize(void) { } #endif /* CONFIG_MMU_NOTIFIER */ #endif /* _LINUX_MMU_NOTIFIER_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 /* SPDX-License-Identifier: GPL-2.0+ */ /* * RCU-based infrastructure for lightweight reader-writer locking * * Copyright (c) 2015, Red Hat, Inc. * * Author: Oleg Nesterov <oleg@redhat.com> */ #ifndef _LINUX_RCU_SYNC_H_ #define _LINUX_RCU_SYNC_H_ #include <linux/wait.h> #include <linux/rcupdate.h> /* Structure to mediate between updaters and fastpath-using readers. */ struct rcu_sync { int gp_state; int gp_count; wait_queue_head_t gp_wait; struct rcu_head cb_head; }; /** * rcu_sync_is_idle() - Are readers permitted to use their fastpaths? * @rsp: Pointer to rcu_sync structure to use for synchronization * * Returns true if readers are permitted to use their fastpaths. Must be * invoked within some flavor of RCU read-side critical section. */ static inline bool rcu_sync_is_idle(struct rcu_sync *rsp) { RCU_LOCKDEP_WARN(!rcu_read_lock_any_held(), "suspicious rcu_sync_is_idle() usage"); return !READ_ONCE(rsp->gp_state); /* GP_IDLE */ } extern void rcu_sync_init(struct rcu_sync *); extern void rcu_sync_enter_start(struct rcu_sync *); extern void rcu_sync_enter(struct rcu_sync *); extern void rcu_sync_exit(struct rcu_sync *); extern void rcu_sync_dtor(struct rcu_sync *); #define __RCU_SYNC_INITIALIZER(name) { \ .gp_state = 0, \ .gp_count = 0, \ .gp_wait = __WAIT_QUEUE_HEAD_INITIALIZER(name.gp_wait), \ } #define DEFINE_RCU_SYNC(name) \ struct rcu_sync name = __RCU_SYNC_INITIALIZER(name) #endif /* _LINUX_RCU_SYNC_H_ */
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes <gareth@valinux.com>, May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include <linux/compat.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/user.h> #include <asm/fpu/api.h> #include <asm/fpu/xstate.h> #include <asm/fpu/xcr.h> #include <asm/cpufeature.h> #include <asm/trace/fpu.h> /* * High level FPU state handling functions: */ extern void fpu__prepare_read(struct fpu *fpu); extern void fpu__prepare_write(struct fpu *fpu); extern void fpu__save(struct fpu *fpu); extern int fpu__restore_sig(void __user *buf, int ia32_frame); extern void fpu__drop(struct fpu *fpu); extern int fpu__copy(struct task_struct *dst, struct task_struct *src); extern void fpu__clear_user_states(struct fpu *fpu); extern void fpu__clear_all(struct fpu *fpu); extern int fpu__exception_code(struct fpu *fpu, int trap_nr); /* * Boot time FPU initialization functions: */ extern void fpu__init_cpu(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(struct cpuinfo_x86 *c); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); extern u64 fpu__get_supported_xfeatures_mask(void); /* * Debugging facility: */ #ifdef CONFIG_X86_DEBUG_FPU # define WARN_ON_FPU(x) WARN_ON_ONCE(x) #else # define WARN_ON_FPU(x) ({ (void)(x); 0; }) #endif /* * FPU related CPU feature flag helper routines: */ static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has(X86_FEATURE_FXSR); } /* * fpstate handling functions: */ extern union fpregs_state init_fpstate; extern void fpstate_init(union fpregs_state *state); #ifdef CONFIG_MATH_EMULATION extern void fpstate_init_soft(struct swregs_state *soft); #else static inline void fpstate_init_soft(struct swregs_state *soft) {} #endif static inline void fpstate_init_xstate(struct xregs_state *xsave) { /* * XRSTORS requires these bits set in xcomp_bv, or it will * trigger #GP: */ xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask_all; } static inline void fpstate_init_fxstate(struct fxregs_state *fx) { fx->cwd = 0x37f; fx->mxcsr = MXCSR_DEFAULT; } extern void fpstate_sanitize_xstate(struct fpu *fpu); /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */ #define user_insn(insn, output, input...) \ ({ \ int err; \ \ might_fault(); \ \ asm volatile(ASM_STAC "\n" \ "1: " #insn "\n" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: negl %%eax\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn_err(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define kernel_insn(insn, output, input...) \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \ : output : input) static inline int copy_fregs_to_user(struct fregs_state __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); } static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) { if (IS_ENABLED(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_kernel_to_fregs(struct fregs_state *fx) { kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_kernel_to_fregs_err(struct fregs_state *fx) { return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int copy_user_to_fregs(struct fregs_state __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void copy_fxregs_to_kernel(struct fpu *fpu) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); } static inline void fxsave(struct fxregs_state *fx) { if (IS_ENABLED(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx)); else asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx)); } /* These macros all use (%edi)/(%rdi) as the single memory argument. */ #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" /* * After this @err contains 0 on success or the negated trap number when * the operation raises an exception. For faults this results in -EFAULT. */ #define XSTATE_OP(op, st, lmask, hmask, err) \ asm volatile("1:" op "\n\t" \ "xor %[err], %[err]\n" \ "2:\n\t" \ ".pushsection .fixup,\"ax\"\n\t" \ "3: negl %%eax\n\t" \ "jmp 2b\n\t" \ ".popsection\n\t" \ _ASM_EXTABLE_FAULT(1b, 3b) \ : [err] "=a" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact * format and supervisor states in addition to modified optimization in * XSAVEOPT. * * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT * supports modified optimization which is not supported by XSAVE. * * We use XSAVE as a fallback. * * The 661 label is defined in the ALTERNATIVE* macros as the address of the * original instruction which gets replaced. We need to use it here as the * address of the instruction where we might get an exception at. */ #define XSTATE_XSAVE(st, lmask, hmask, err) \ asm volatile(ALTERNATIVE_2(XSAVE, \ XSAVEOPT, X86_FEATURE_XSAVEOPT, \ XSAVES, X86_FEATURE_XSAVES) \ "\n" \ "xor %[err], %[err]\n" \ "3:\n" \ ".pushsection .fixup,\"ax\"\n" \ "4: movl $-2, %[err]\n" \ "jmp 3b\n" \ ".popsection\n" \ _ASM_EXTABLE(661b, 4b) \ : [err] "=r" (err) \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact * XSAVE area format. */ #define XSTATE_XRESTORE(st, lmask, hmask) \ asm volatile(ALTERNATIVE(XRSTOR, \ XRSTORS, X86_FEATURE_XSAVES) \ "\n" \ "3:\n" \ _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\ : \ : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ : "memory") /* * This function is called only during boot time when x86 caps are not set * up and alternative can not be used yet. */ static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) { u64 mask = -1; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON(system_state != SYSTEM_BOOTING); if (boot_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); /* * We should never fault when copying from a kernel buffer, and the FPU * state we set at boot time should be valid. */ WARN_ON_FPU(err); } /* * Save processor xstate to xsave area. */ static inline void copy_xregs_to_kernel(struct xregs_state *xstate) { u64 mask = xfeatures_mask_all; u32 lmask = mask; u32 hmask = mask >> 32; int err; WARN_ON_FPU(!alternatives_patched); XSTATE_XSAVE(xstate, lmask, hmask, err); /* We should never fault when copying to a kernel buffer: */ WARN_ON_FPU(err); } /* * Restore processor xstate from xsave area. */ static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; XSTATE_XRESTORE(xstate, lmask, hmask); } /* * Save xstate to user space xsave area. * * We don't use modified optimization because xrstor/xrstors might track * a different application. * * We don't use compacted format xsave area for * backward compatibility for old applications which don't understand * compacted format of xsave area. */ static inline int copy_xregs_to_user(struct xregs_state __user *buf) { u64 mask = xfeatures_mask_user(); u32 lmask = mask; u32 hmask = mask >> 32; int err; /* * Clear the xsave header first, so that reserved fields are * initialized to zero. */ err = __clear_user(&buf->header, sizeof(buf->header)); if (unlikely(err)) return -EFAULT; stac(); XSTATE_OP(XSAVE, buf, lmask, hmask, err); clac(); return err; } /* * Restore xstate from user space xsave area. */ static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) { struct xregs_state *xstate = ((__force struct xregs_state *)buf); u32 lmask = mask; u32 hmask = mask >> 32; int err; stac(); XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); clac(); return err; } /* * Restore xstate from kernel space xsave area, return an error code instead of * an exception. */ static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask) { u32 lmask = mask; u32 hmask = mask >> 32; int err; if (static_cpu_has(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); return err; } extern int copy_fpregs_to_fpstate(struct fpu *fpu); static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask) { if (use_xsave()) { copy_kernel_to_xregs(&fpstate->xsave, mask); } else { if (use_fxsr()) copy_kernel_to_fxregs(&fpstate->fxsave); else copy_kernel_to_fregs(&fpstate->fsave); } } static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) { /* * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is * pending. Clear the x87 state here by setting it to fixed values. * "m" is a random variable that should be in L1. */ if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { asm volatile( "fnclex\n\t" "emms\n\t" "fildl %P[addr]" /* set F?P to defined value */ : : [addr] "m" (fpstate)); } __copy_kernel_to_fpregs(fpstate, -1); } extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); /* * FPU context switch related helper methods: */ DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); /* * The in-register FPU state for an FPU context on a CPU is assumed to be * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx * matches the FPU. * * If the FPU register state is valid, the kernel can skip restoring the * FPU state from memory. * * Any code that clobbers the FPU registers or updates the in-memory * FPU state for a task MUST let the rest of the kernel know that the * FPU registers are no longer valid for this task. * * Either one of these invalidation functions is enough. Invalidate * a resource you control: CPU if using the CPU for something else * (with preemption disabled), FPU for the current task, or a task that * is prevented from running by the current task. */ static inline void __cpu_invalidate_fpregs_state(void) { __this_cpu_write(fpu_fpregs_owner_ctx, NULL); } static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) { fpu->last_cpu = -1; } static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } /* * These generally need preemption protection to work, * do try to avoid using these on their own: */ static inline void fpregs_deactivate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, NULL); trace_x86_fpu_regs_deactivated(fpu); } static inline void fpregs_activate(struct fpu *fpu) { this_cpu_write(fpu_fpregs_owner_ctx, fpu); trace_x86_fpu_regs_activated(fpu); } /* * Internal helper, do not use directly. Use switch_fpu_return() instead. */ static inline void __fpregs_load_activate(void) { struct fpu *fpu = &current->thread.fpu; int cpu = smp_processor_id(); if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) return; if (!fpregs_state_valid(fpu, cpu)) { copy_kernel_to_fpregs(&fpu->state); fpregs_activate(fpu); fpu->last_cpu = cpu; } clear_thread_flag(TIF_NEED_FPU_LOAD); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state. * This is done within the context of the old process. * * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state * will get loaded on return to userspace, or when the kernel needs it. * * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers * are saved in the current thread's FPU register state. * * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not * hold current()'s FPU registers. It is required to load the * registers before returning to userland or using the content * otherwise. * * The FPU context is only stored/restored for a user task and * PF_KTHREAD is used to distinguish between kernel and user threads. */ static inline void switch_fpu_prepare(struct fpu *old_fpu, int cpu) { if (static_cpu_has(X86_FEATURE_FPU) && !(current->flags & PF_KTHREAD)) { if (!copy_fpregs_to_fpstate(old_fpu)) old_fpu->last_cpu = -1; else old_fpu->last_cpu = cpu; /* But leave fpu_fpregs_owner_ctx! */ trace_x86_fpu_regs_deactivated(old_fpu); } } /* * Misc helper functions: */ /* * Load PKRU from the FPU context if available. Delay loading of the * complete FPU state until the return to userland. */ static inline void switch_fpu_finish(struct fpu *new_fpu) { u32 pkru_val = init_pkru_value; struct pkru_state *pk; if (!static_cpu_has(X86_FEATURE_FPU)) return; set_thread_flag(TIF_NEED_FPU_LOAD); if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return; /* * PKRU state is switched eagerly because it needs to be valid before we * return to userland e.g. for a copy_to_user() operation. */ if (!(current->flags & PF_KTHREAD)) { /* * If the PKRU bit in xsave.header.xfeatures is not set, * then the PKRU component was in init state, which means * XRSTOR will set PKRU to 0. If the bit is not set then * get_xsave_addr() will return NULL because the PKRU value * in memory is not valid. This means pkru_val has to be * set to 0 and not to init_pkru_value. */ pk = get_xsave_addr(&new_fpu->state.xsave, XFEATURE_PKRU); pkru_val = pk ? pk->pkru : 0; } __write_pkru(pkru_val); } #endif /* _ASM_X86_FPU_INTERNAL_H */
1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche, <flla@stud.uni-sb.de> * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> * Linus Torvalds, <torvalds@cs.helsinki.fi> * Alan Cox, <gw4pts@gw4pts.ampr.org> * Matthew Dillon, <dillon@apollo.west.oic.com> * Arnt Gulbrandsen, <agulbra@nvg.unit.no> * Jorge Cwik, <jorge@laser.satlink.net> * * Fixes: * Alan Cox : Numerous verify_area() calls * Alan Cox : Set the ACK bit on a reset * Alan Cox : Stopped it crashing if it closed while * sk->inuse=1 and was trying to connect * (tcp_err()). * Alan Cox : All icmp error handling was broken * pointers passed where wrong and the * socket was looked up backwards. Nobody * tested any icmp error code obviously. * Alan Cox : tcp_err() now handled properly. It * wakes people on errors. poll * behaves and the icmp error race * has gone by moving it into sock.c * Alan Cox : tcp_send_reset() fixed to work for * everything not just packets for * unknown sockets. * Alan Cox : tcp option processing. * Alan Cox : Reset tweaked (still not 100%) [Had * syn rule wrong] * Herp Rosmanith : More reset fixes * Alan Cox : No longer acks invalid rst frames. * Acking any kind of RST is right out. * Alan Cox : Sets an ignore me flag on an rst * receive otherwise odd bits of prattle * escape still * Alan Cox : Fixed another acking RST frame bug. * Should stop LAN workplace lockups. * Alan Cox : Some tidyups using the new skb list * facilities * Alan Cox : sk->keepopen now seems to work * Alan Cox : Pulls options out correctly on accepts * Alan Cox : Fixed assorted sk->rqueue->next errors * Alan Cox : PSH doesn't end a TCP read. Switched a * bit to skb ops. * Alan Cox : Tidied tcp_data to avoid a potential * nasty. * Alan Cox : Added some better commenting, as the * tcp is hard to follow * Alan Cox : Removed incorrect check for 20 * psh * Michael O'Reilly : ack < copied bug fix. * Johannes Stille : Misc tcp fixes (not all in yet). * Alan Cox : FIN with no memory -> CRASH * Alan Cox : Added socket option proto entries. * Also added awareness of them to accept. * Alan Cox : Added TCP options (SOL_TCP) * Alan Cox : Switched wakeup calls to callbacks, * so the kernel can layer network * sockets. * Alan Cox : Use ip_tos/ip_ttl settings. * Alan Cox : Handle FIN (more) properly (we hope). * Alan Cox : RST frames sent on unsynchronised * state ack error. * Alan Cox : Put in missing check for SYN bit. * Alan Cox : Added tcp_select_window() aka NET2E * window non shrink trick. * Alan Cox : Added a couple of small NET2E timer * fixes * Charles Hedrick : TCP fixes * Toomas Tamm : TCP window fixes * Alan Cox : Small URG fix to rlogin ^C ack fight * Charles Hedrick : Rewrote most of it to actually work * Linus : Rewrote tcp_read() and URG handling * completely * Gerhard Koerting: Fixed some missing timer handling * Matthew Dillon : Reworked TCP machine states as per RFC * Gerhard Koerting: PC/TCP workarounds * Adam Caldwell : Assorted timer/timing errors * Matthew Dillon : Fixed another RST bug * Alan Cox : Move to kernel side addressing changes. * Alan Cox : Beginning work on TCP fastpathing * (not yet usable) * Arnt Gulbrandsen: Turbocharged tcp_check() routine. * Alan Cox : TCP fast path debugging * Alan Cox : Window clamping * Michael Riepe : Bug in tcp_check() * Matt Dillon : More TCP improvements and RST bug fixes * Matt Dillon : Yet more small nasties remove from the * TCP code (Be very nice to this man if * tcp finally works 100%) 8) * Alan Cox : BSD accept semantics. * Alan Cox : Reset on closedown bug. * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). * Michael Pall : Handle poll() after URG properly in * all cases. * Michael Pall : Undo the last fix in tcp_read_urg() * (multi URG PUSH broke rlogin). * Michael Pall : Fix the multi URG PUSH problem in * tcp_readable(), poll() after URG * works now. * Michael Pall : recv(...,MSG_OOB) never blocks in the * BSD api. * Alan Cox : Changed the semantics of sk->socket to * fix a race and a signal problem with * accept() and async I/O. * Alan Cox : Relaxed the rules on tcp_sendto(). * Yury Shevchuk : Really fixed accept() blocking problem. * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for * clients/servers which listen in on * fixed ports. * Alan Cox : Cleaned the above up and shrank it to * a sensible code size. * Alan Cox : Self connect lockup fix. * Alan Cox : No connect to multicast. * Ross Biro : Close unaccepted children on master * socket close. * Alan Cox : Reset tracing code. * Alan Cox : Spurious resets on shutdown. * Alan Cox : Giant 15 minute/60 second timer error * Alan Cox : Small whoops in polling before an * accept. * Alan Cox : Kept the state trace facility since * it's handy for debugging. * Alan Cox : More reset handler fixes. * Alan Cox : Started rewriting the code based on * the RFC's for other useful protocol * references see: Comer, KA9Q NOS, and * for a reference on the difference * between specifications and how BSD * works see the 4.4lite source. * A.N.Kuznetsov : Don't time wait on completion of tidy * close. * Linus Torvalds : Fin/Shutdown & copied_seq changes. * Linus Torvalds : Fixed BSD port reuse to work first syn * Alan Cox : Reimplemented timers as per the RFC * and using multiple timers for sanity. * Alan Cox : Small bug fixes, and a lot of new * comments. * Alan Cox : Fixed dual reader crash by locking * the buffers (much like datagram.c) * Alan Cox : Fixed stuck sockets in probe. A probe * now gets fed up of retrying without * (even a no space) answer. * Alan Cox : Extracted closing code better * Alan Cox : Fixed the closing state machine to * resemble the RFC. * Alan Cox : More 'per spec' fixes. * Jorge Cwik : Even faster checksumming. * Alan Cox : tcp_data() doesn't ack illegal PSH * only frames. At least one pc tcp stack * generates them. * Alan Cox : Cache last socket. * Alan Cox : Per route irtt. * Matt Day : poll()->select() match BSD precisely on error * Alan Cox : New buffers * Marc Tamsky : Various sk->prot->retransmits and * sk->retransmits misupdating fixed. * Fixed tcp_write_timeout: stuck close, * and TCP syn retries gets used now. * Mark Yarvis : In tcp_read_wakeup(), don't send an * ack if state is TCP_CLOSED. * Alan Cox : Look up device on a retransmit - routes may * change. Doesn't yet cope with MSS shrink right * but it's a start! * Marc Tamsky : Closing in closing fixes. * Mike Shaver : RFC1122 verifications. * Alan Cox : rcv_saddr errors. * Alan Cox : Block double connect(). * Alan Cox : Small hooks for enSKIP. * Alexey Kuznetsov: Path MTU discovery. * Alan Cox : Support soft errors. * Alan Cox : Fix MTU discovery pathological case * when the remote claims no mtu! * Marc Tamsky : TCP_CLOSE fix. * Colin (G3TNE) : Send a reset on syn ack replies in * window but wrong (fixes NT lpd problems) * Pedro Roque : Better TCP window handling, delayed ack. * Joerg Reuter : No modification of locked buffers in * tcp_do_retransmit() * Eric Schenk : Changed receiver side silly window * avoidance algorithm to BSD style * algorithm. This doubles throughput * against machines running Solaris, * and seems to result in general * improvement. * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD * Willy Konynenberg : Transparent proxying support. * Mike McLagan : Routing by source * Keith Owens : Do proper merging with partial SKB's in * tcp_do_sendmsg to avoid burstiness. * Eric Schenk : Fix fast close down bug with * shutdown() followed by close(). * Andi Kleen : Make poll agree with SIGIO * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and * lingertime == 0 (RFC 793 ABORT Call) * Hirokazu Takahashi : Use copy_from_user() instead of * csum_and_copy_from_user() if possible. * * Description of States: * * TCP_SYN_SENT sent a connection request, waiting for ack * * TCP_SYN_RECV received a connection request, sent ack, * waiting for final ack in three-way handshake. * * TCP_ESTABLISHED connection established * * TCP_FIN_WAIT1 our side has shutdown, waiting to complete * transmission of remaining buffered data * * TCP_FIN_WAIT2 all buffered data sent, waiting for remote * to shutdown * * TCP_CLOSING both sides have shutdown but we still have * data we have to finish sending * * TCP_TIME_WAIT timeout to catch resent junk before entering * closed, can only be entered from FIN_WAIT2 * or CLOSING. Required because the other end * may not have gotten our last ACK causing it * to retransmit the data packet (which we ignore) * * TCP_CLOSE_WAIT remote side has shutdown and is waiting for * us to finish writing our data and to shutdown * (we have to close() to move on to LAST_ACK) * * TCP_LAST_ACK out side has shutdown after remote has * shutdown. There may still be data in our * buffer that we have to finish sending * * TCP_CLOSE socket is finished */ #define pr_fmt(fmt) "TCP: " fmt #include <crypto/hash.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/poll.h> #include <linux/inet_diag.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/skbuff.h> #include <linux/scatterlist.h> #include <linux/splice.h> #include <linux/net.h> #include <linux/socket.h> #include <linux/random.h> #include <linux/memblock.h> #include <linux/highmem.h> #include <linux/swap.h> #include <linux/cache.h> #include <linux/err.h> #include <linux/time.h> #include <linux/slab.h> #include <linux/errqueue.h> #include <linux/static_key.h> #include <net/icmp.h> #include <net/inet_common.h> #include <net/tcp.h> #include <net/mptcp.h> #include <net/xfrm.h> #include <net/ip.h> #include <net/sock.h> #include <linux/uaccess.h> #include <asm/ioctls.h> #include <net/busy_poll.h> DEFINE_PER_CPU(unsigned int, tcp_orphan_count); EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); long sysctl_tcp_mem[3] __read_mostly; EXPORT_SYMBOL(sysctl_tcp_mem); atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ EXPORT_SYMBOL(tcp_memory_allocated); #if IS_ENABLED(CONFIG_SMC) DEFINE_STATIC_KEY_FALSE(tcp_have_smc); EXPORT_SYMBOL(tcp_have_smc); #endif /* * Current number of TCP sockets. */ struct percpu_counter tcp_sockets_allocated; EXPORT_SYMBOL(tcp_sockets_allocated); /* * TCP splice context */ struct tcp_splice_state { struct pipe_inode_info *pipe; size_t len; unsigned int flags; }; /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ unsigned long tcp_memory_pressure __read_mostly; EXPORT_SYMBOL_GPL(tcp_memory_pressure); DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); EXPORT_SYMBOL(tcp_rx_skb_cache_key); DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); void tcp_enter_memory_pressure(struct sock *sk) { unsigned long val; if (READ_ONCE(tcp_memory_pressure)) return; val = jiffies; if (!val) val--; if (!cmpxchg(&tcp_memory_pressure, 0, val)) NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); } EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); void tcp_leave_memory_pressure(struct sock *sk) { unsigned long val; if (!READ_ONCE(tcp_memory_pressure)) return; val = xchg(&tcp_memory_pressure, 0); if (val) NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, jiffies_to_msecs(jiffies - val)); } EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); /* Convert seconds to retransmits based on initial and max timeout */ static u8 secs_to_retrans(int seconds, int timeout, int rto_max) { u8 res = 0; if (seconds > 0) { int period = timeout; res = 1; while (seconds > period && res < 255) { res++; timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return res; } /* Convert retransmits to seconds based on initial and max timeout */ static int retrans_to_secs(u8 retrans, int timeout, int rto_max) { int period = 0; if (retrans > 0) { period = timeout; while (--retrans) { timeout <<= 1; if (timeout > rto_max) timeout = rto_max; period += timeout; } } return period; } static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) { u32 rate = READ_ONCE(tp->rate_delivered); u32 intv = READ_ONCE(tp->rate_interval_us); u64 rate64 = 0; if (rate && intv) { rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; do_div(rate64, intv); } return rate64; } /* Address-family independent initialization for a tcp_sock. * * NOTE: A lot of things set to zero explicitly by call to * sk_alloc() so need not be done here. */ void tcp_init_sock(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); tp->out_of_order_queue = RB_ROOT; sk->tcp_rtx_queue = RB_ROOT; tcp_init_xmit_timers(sk); INIT_LIST_HEAD(&tp->tsq_node); INIT_LIST_HEAD(&tp->tsorted_sent_queue); icsk->icsk_rto = TCP_TIMEOUT_INIT; icsk->icsk_rto_min = TCP_RTO_MIN; icsk->icsk_delack_max = TCP_DELACK_MAX; tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); /* So many TCP implementations out there (incorrectly) count the * initial SYN frame in their delayed-ACK and congestion control * algorithms that we must have the following bandaid to talk * efficiently to them. -DaveM */ tp->snd_cwnd = TCP_INIT_CWND; /* There's a bubble in the pipe until at least the first ACK. */ tp->app_limited = ~0U; /* See draft-stevens-tcpca-spec-01 for discussion of the * initialization of these values. */ tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tp->snd_cwnd_clamp = ~0; tp->mss_cache = TCP_MSS_DEFAULT; tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; tcp_assign_congestion_control(sk); tp->tsoffset = 0; tp->rack.reo_wnd_steps = 1; sk->sk_write_space = sk_stream_write_space; sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); icsk->icsk_sync_mss = tcp_sync_mss; WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); sk_sockets_allocated_inc(sk); sk->sk_route_forced_caps = NETIF_F_GSO; } EXPORT_SYMBOL(tcp_init_sock); static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) { struct sk_buff *skb = tcp_write_queue_tail(sk); if (tsflags && skb) { struct skb_shared_info *shinfo = skb_shinfo(skb); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); if (tsflags & SOF_TIMESTAMPING_TX_ACK) tcb->txstamp_ack = 1; if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; } } static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, int target, struct sock *sk) { int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); if (avail > 0) { if (avail >= target) return true; if (tcp_rmem_pressure(sk)) return true; if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss) return true; } if (sk->sk_prot->stream_memory_read) return sk->sk_prot->stream_memory_read(sk); return false; } /* * Wait for a TCP event. * * Note that we don't need to lock the socket, as the upper poll layers * take care of normal races (between the test and the event) and we don't * go look at any of the socket buffers directly. */ __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) { __poll_t mask; struct sock *sk = sock->sk; const struct tcp_sock *tp = tcp_sk(sk); int state; sock_poll_wait(file, sock, wait); state = inet_sk_state_load(sk); if (state == TCP_LISTEN) return inet_csk_listen_poll(sk); /* Socket is not locked. We are protected from async events * by poll logic and correct handling of state changes * made by other threads is impossible in any case. */ mask = 0; /* * EPOLLHUP is certainly not done right. But poll() doesn't * have a notion of HUP in just one direction, and for a * socket the read side is more interesting. * * Some poll() documentation says that EPOLLHUP is incompatible * with the EPOLLOUT/POLLWR flags, so somebody should check this * all. But careful, it tends to be safer to return too many * bits than too few, and you can easily break real applications * if you don't tell them that something has hung up! * * Check-me. * * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and * our fs/select.c). It means that after we received EOF, * poll always returns immediately, making impossible poll() on write() * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP * if and only if shutdown has been made in both directions. * Actually, it is interesting to look how Solaris and DUX * solve this dilemma. I would prefer, if EPOLLHUP were maskable, * then we could set it on SND_SHUTDOWN. BTW examples given * in Stevens' books assume exactly this behaviour, it explains * why EPOLLHUP is incompatible with EPOLLOUT. --ANK * * NOTE. Check for TCP_CLOSE is added. The goal is to prevent * blocking on fresh not-connected or disconnected socket. --ANK */ if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) mask |= EPOLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; /* Connected or passive Fast Open socket? */ if (state != TCP_SYN_SENT && (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { int target = sock_rcvlowat(sk, 0, INT_MAX); if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && !sock_flag(sk, SOCK_URGINLINE) && tp->urg_data) target++; if (tcp_stream_is_readable(tp, target, sk)) mask |= EPOLLIN | EPOLLRDNORM; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { if (__sk_stream_is_writeable(sk, 1)) { mask |= EPOLLOUT | EPOLLWRNORM; } else { /* send SIGIO later */ sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); /* Race breaker. If space is freed after * wspace test but before the flags are set, * IO signal will be lost. Memory barrier * pairs with the input side. */ smp_mb__after_atomic(); if (__sk_stream_is_writeable(sk, 1)) mask |= EPOLLOUT | EPOLLWRNORM; } } else mask |= EPOLLOUT | EPOLLWRNORM; if (tp->urg_data & TCP_URG_VALID) mask |= EPOLLPRI; } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { /* Active TCP fastopen socket with defer_connect * Return EPOLLOUT so application can call write() * in order for kernel to generate SYN+data */ mask |= EPOLLOUT | EPOLLWRNORM; } /* This barrier is coupled with smp_wmb() in tcp_reset() */ smp_rmb(); if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) mask |= EPOLLERR; return mask; } EXPORT_SYMBOL(tcp_poll); int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) { struct tcp_sock *tp = tcp_sk(sk); int answ; bool slow; switch (cmd) { case SIOCINQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; slow = lock_sock_fast(sk); answ = tcp_inq(sk); unlock_sock_fast(sk, slow); break; case SIOCATMARK: answ = tp->urg_data && READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); break; case SIOCOUTQ: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - tp->snd_una; break; case SIOCOUTQNSD: if (sk->sk_state == TCP_LISTEN) return -EINVAL; if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) answ = 0; else answ = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); break; default: return -ENOIOCTLCMD; } return put_user(answ, (int __user *)arg); } EXPORT_SYMBOL(tcp_ioctl); static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) { TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; tp->pushed_seq = tp->write_seq; } static inline bool forced_push(const struct tcp_sock *tp) { return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); } static void skb_entail(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); skb->csum = 0; tcb->seq = tcb->end_seq = tp->write_seq; tcb->tcp_flags = TCPHDR_ACK; tcb->sacked = 0; __skb_header_release(skb); tcp_add_write_queue_tail(sk, skb); sk_wmem_queued_add(sk, skb->truesize); sk_mem_charge(sk, skb->truesize); if (tp->nonagle & TCP_NAGLE_PUSH) tp->nonagle &= ~TCP_NAGLE_PUSH; tcp_slow_start_after_idle_check(sk); } static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) { if (flags & MSG_OOB) tp->snd_up = tp->write_seq; } /* If a not yet filled skb is pushed, do not send it if * we have data packets in Qdisc or NIC queues : * Because TX completion will happen shortly, it gives a chance * to coalesce future sendmsg() payload into this skb, without * need for a timer, and with no latency trade off. * As packets containing data payload have a bigger truesize * than pure acks (dataless) packets, the last checks prevent * autocorking if we only have an ACK in Qdisc/NIC queues, * or if TX completion was delayed after we processed ACK packet. */ static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, int size_goal) { return skb->len < size_goal && sock_net(sk)->ipv4.sysctl_tcp_autocorking && !tcp_rtx_queue_empty(sk) && refcount_read(&sk->sk_wmem_alloc) > skb->truesize; } void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, int size_goal) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; skb = tcp_write_queue_tail(sk); if (!skb) return; if (!(flags & MSG_MORE) || forced_push(tp)) tcp_mark_push(tp, skb); tcp_mark_urg(tp, flags); if (tcp_should_autocork(sk, skb, size_goal)) { /* avoid atomic op if TSQ_THROTTLED bit is already set */ if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); } /* It is possible TX completion already happened * before we set TSQ_THROTTLED. */ if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) return; } if (flags & MSG_MORE) nonagle = TCP_NAGLE_CORK; __tcp_push_pending_frames(sk, mss_now, nonagle); } static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) { struct tcp_splice_state *tss = rd_desc->arg.data; int ret; ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, min(rd_desc->count, len), tss->flags); if (ret > 0) rd_desc->count -= ret; return ret; } static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) { /* Store TCP splice context information in read_descriptor_t. */ read_descriptor_t rd_desc = { .arg.data = tss, .count = tss->len, }; return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); } /** * tcp_splice_read - splice data from TCP socket to a pipe * @sock: socket to splice from * @ppos: position (not valid) * @pipe: pipe to splice to * @len: number of bytes to splice * @flags: splice modifier flags * * Description: * Will read pages from given socket and fill them into a pipe. * **/ ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct sock *sk = sock->sk; struct tcp_splice_state tss = { .pipe = pipe, .len = len, .flags = flags, }; long timeo; ssize_t spliced; int ret; sock_rps_record_flow(sk); /* * We can't seek on a socket input */ if (unlikely(*ppos)) return -ESPIPE; ret = spliced = 0; lock_sock(sk); timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); while (tss.len) { ret = __tcp_splice_read(sk, &tss); if (ret < 0) break; else if (!ret) { if (spliced) break; if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { ret = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* * This occurs when user tries to read * from never connected socket. */ ret = -ENOTCONN; break; } if (!timeo) { ret = -EAGAIN; break; } /* if __tcp_splice_read() got nothing while we have * an skb in receive queue, we do not want to loop. * This might happen with URG data. */ if (!skb_queue_empty(&sk->sk_receive_queue)) break; sk_wait_data(sk, &timeo, NULL); if (signal_pending(current)) { ret = sock_intr_errno(timeo); break; } continue; } tss.len -= ret; spliced += ret; if (!timeo) break; release_sock(sk); lock_sock(sk); if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current)) break; } release_sock(sk); if (spliced) return spliced; return ret; } EXPORT_SYMBOL(tcp_splice_read); struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, bool force_schedule) { struct sk_buff *skb; if (likely(!size)) { skb = sk->sk_tx_skb_cache; if (skb) { skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); sk->sk_tx_skb_cache = NULL; pskb_trim(skb, 0); INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); skb_shinfo(skb)->tx_flags = 0; memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); return skb; } } /* The TCP header must be at least 32-bit aligned. */ size = ALIGN(size, 4); if (unlikely(tcp_under_memory_pressure(sk))) sk_mem_reclaim_partial(sk); skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); if (likely(skb)) { bool mem_scheduled; if (force_schedule) { mem_scheduled = true; sk_forced_mem_schedule(sk, skb->truesize); } else { mem_scheduled = sk_wmem_schedule(sk, skb->truesize); } if (likely(mem_scheduled)) { skb_reserve(skb, sk->sk_prot->max_header); /* * Make sure that we have exactly size bytes * available to the caller, no more, no less. */ skb->reserved_tailroom = skb->end - skb->tail - size; INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); return skb; } __kfree_skb(skb); } else { sk->sk_prot->enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); } return NULL; } static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, int large_allowed) { struct tcp_sock *tp = tcp_sk(sk); u32 new_size_goal, size_goal; if (!large_allowed) return mss_now; /* Note : tcp_tso_autosize() will eventually split this later */ new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); /* We try hard to avoid divides here */ size_goal = tp->gso_segs * mss_now; if (unlikely(new_size_goal < size_goal || new_size_goal >= size_goal + mss_now)) { tp->gso_segs = min_t(u16, new_size_goal / mss_now, sk->sk_gso_max_segs); size_goal = tp->gso_segs * mss_now; } return max(size_goal, mss_now); } int tcp_send_mss(struct sock *sk, int *size_goal, int flags) { int mss_now; mss_now = tcp_current_mss(sk); *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); return mss_now; } /* In some cases, both sendpage() and sendmsg() could have added * an skb to the write queue, but failed adding payload on it. * We need to remove it to consume less memory, but more * importantly be able to generate EPOLLOUT for Edge Trigger epoll() * users. */ static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) { if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { tcp_unlink_write_queue(skb, sk); if (tcp_write_queue_empty(sk)) tcp_chrono_stop(sk, TCP_CHRONO_BUSY); sk_wmem_free_skb(sk, skb); } } ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct tcp_sock *tp = tcp_sk(sk); int mss_now, size_goal; int err; ssize_t copied; long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ONCE(!sendpage_ok(page), "page must not be a Slab one and have page_count > 0")) return -EINVAL; /* Wait for a connection to finish. One exception is TCP Fast Open * (passive side) where data is allowed to be sent before a connection * is fully established. */ if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && !tcp_passive_fastopen(sk)) { err = sk_stream_wait_connect(sk, &timeo); if (err != 0) goto out_err; } sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); mss_now = tcp_send_mss(sk, &size_goal, flags); copied = 0; err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto out_err; while (size > 0) { struct sk_buff *skb = tcp_write_queue_tail(sk); int copy, i; bool can_coalesce; if (!skb || (copy = size_goal - skb->len) <= 0 || !tcp_skb_can_collapse_to(skb)) { new_segment: if (!sk_stream_memory_free(sk)) goto wait_for_space; skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, tcp_rtx_and_write_queues_empty(sk)); if (!skb) goto wait_for_space; #ifdef CONFIG_TLS_DEVICE skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); #endif skb_entail(sk, skb); copy = size_goal; } if (copy > size) copy = size; i = skb_shinfo(skb)->nr_frags; can_coalesce = skb_can_coalesce(skb, i, page, offset); if (!can_coalesce && i >= sysctl_max_skb_frags) { tcp_mark_push(tp, skb); goto new_segment; } if (!sk_wmem_schedule(sk, copy)) goto wait_for_space; if (can_coalesce) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { get_page(page); skb_fill_page_desc(skb, i, page, offset, copy); } if (!(flags & MSG_NO_SHARED_FRAGS)) skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk_wmem_queued_add(sk, copy); sk_mem_charge(sk, copy); skb->ip_summed = CHECKSUM_PARTIAL; WRITE_ONCE(tp->write_seq, tp->write_seq + copy); TCP_SKB_CB(skb)->end_seq += copy; tcp_skb_pcount_set(skb, 0); if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; copied += copy; offset += copy; size -= copy; if (!size) goto out; if (skb->len < size_goal || (flags & MSG_OOB)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_space: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH, size_goal); err = sk_stream_wait_memory(sk, &timeo); if (err != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } out: if (copied) { tcp_tx_timestamp(sk, sk->sk_tsflags); if (!(flags & MSG_SENDPAGE_NOTLAST)) tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); } return copied; do_error: tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); if (copied) goto out; out_err: /* make sure we wake any epoll edge trigger waiter */ if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { sk->sk_write_space(sk); tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); } return sk_stream_error(sk, flags, err); } EXPORT_SYMBOL_GPL(do_tcp_sendpages); int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags) { if (!(sk->sk_route_caps & NETIF_F_SG)) return sock_no_sendpage_locked(sk, page, offset, size, flags); tcp_rate_check_app_limited(sk); /* is sending application-limited? */ return do_tcp_sendpages(sk, page, offset, size, flags); } EXPORT_SYMBOL_GPL(tcp_sendpage_locked); int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { int ret; lock_sock(sk); ret = tcp_sendpage_locked(sk, page, offset, size, flags); release_sock(sk); return ret; } EXPORT_SYMBOL(tcp_sendpage); void tcp_free_fastopen_req(struct tcp_sock *tp) { if (tp->fastopen_req) { kfree(tp->fastopen_req); tp->fastopen_req = NULL; } } static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, size_t size, struct ubuf_info *uarg) { struct tcp_sock *tp = tcp_sk(sk); struct inet_sock *inet = inet_sk(sk); struct sockaddr *uaddr = msg->msg_name; int err, flags; if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && uaddr->sa_family == AF_UNSPEC)) return -EOPNOTSUPP; if (tp->fastopen_req) return -EALREADY; /* Another Fast Open is in progress */ tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), sk->sk_allocation); if (unlikely(!tp->fastopen_req)) return -ENOBUFS; tp->fastopen_req->data = msg; tp->fastopen_req->size = size; tp->fastopen_req->uarg = uarg; if (inet->defer_connect) { err = tcp_connect(sk); /* Same failure procedure as in tcp_v4/6_connect */ if (err) { tcp_set_state(sk, TCP_CLOSE); inet->inet_dport = 0; sk->sk_route_caps = 0; } } flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; err = __inet_stream_connect(sk->sk_socket, uaddr, msg->msg_namelen, flags, 1); /* fastopen_req could already be freed in __inet_stream_connect * if the connection times out or gets rst */ if (tp->fastopen_req) { *copied = tp->fastopen_req->copied; tcp_free_fastopen_req(tp); inet->defer_connect = 0; } return err; } int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) { struct tcp_sock *tp = tcp_sk(sk); struct ubuf_info *uarg = NULL; struct sk_buff *skb; struct sockcm_cookie sockc; int flags, err, copied = 0; int mss_now = 0, size_goal, copied_syn = 0; int process_backlog = 0; bool zc = false; long timeo; flags = msg->msg_flags; if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { skb = tcp_write_queue_tail(sk); uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); if (!uarg) { err = -ENOBUFS; goto out_err; } zc = sk->sk_route_caps & NETIF_F_SG; if (!zc) uarg->zerocopy = 0; } if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && !tp->repair) { err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); if (err == -EINPROGRESS && copied_syn > 0) goto out; else if (err) goto out_err; } timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); tcp_rate_check_app_limited(sk); /* is sending application-limited? */ /* Wait for a connection to finish. One exception is TCP Fast Open * (passive side) where data is allowed to be sent before a connection * is fully established. */ if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && !tcp_passive_fastopen(sk)) { err = sk_stream_wait_connect(sk, &timeo); if (err != 0) goto do_error; } if (unlikely(tp->repair)) { if (tp->repair_queue == TCP_RECV_QUEUE) { copied = tcp_send_rcvq(sk, msg, size); goto out_nopush; } err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out_err; /* 'common' sending to sendq */ } sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) { err = -EINVAL; goto out_err; } } /* This should be in poll */ sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); /* Ok commence sending. */ copied = 0; restart: mss_now = tcp_send_mss(sk, &size_goal, flags); err = -EPIPE; if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) goto do_error; while (msg_data_left(msg)) { int copy = 0; skb = tcp_write_queue_tail(sk); if (skb) copy = size_goal - skb->len; if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { bool first_skb; new_segment: if (!sk_stream_memory_free(sk)) goto wait_for_space; if (unlikely(process_backlog >= 16)) { process_backlog = 0; if (sk_flush_backlog(sk)) goto restart; } first_skb = tcp_rtx_and_write_queues_empty(sk); skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, first_skb); if (!skb) goto wait_for_space; process_backlog++; skb->ip_summed = CHECKSUM_PARTIAL; skb_entail(sk, skb); copy = size_goal; /* All packets are restored as if they have * already been sent. skb_mstamp_ns isn't set to * avoid wrong rtt estimation. */ if (tp->repair) TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; } /* Try to append data to the end of skb. */ if (copy > msg_data_left(msg)) copy = msg_data_left(msg); /* Where to copy to? */ if (skb_availroom(skb) > 0 && !zc) { /* We have some space in skb head. Superb! */ copy = min_t(int, copy, skb_availroom(skb)); err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); if (err) goto do_fault; } else if (!zc) { bool merge = true; int i = skb_shinfo(skb)->nr_frags; struct page_frag *pfrag = sk_page_frag(sk); if (!sk_page_frag_refill(sk, pfrag)) goto wait_for_space; if (!skb_can_coalesce(skb, i, pfrag->page, pfrag->offset)) { if (i >= sysctl_max_skb_frags) { tcp_mark_push(tp, skb); goto new_segment; } merge = false; } copy = min_t(int, copy, pfrag->size - pfrag->offset); if (!sk_wmem_schedule(sk, copy)) goto wait_for_space; err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, pfrag->page, pfrag->offset, copy); if (err) goto do_error; /* Update the skb. */ if (merge) { skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); } else { skb_fill_page_desc(skb, i, pfrag->page, pfrag->offset, copy); page_ref_inc(pfrag->page); } pfrag->offset += copy; } else { if (!sk_wmem_schedule(sk, copy)) goto wait_for_space; err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); if (err == -EMSGSIZE || err == -EEXIST) { tcp_mark_push(tp, skb); goto new_segment; } if (err < 0) goto do_error; copy = err; } if (!copied) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; WRITE_ONCE(tp->write_seq, tp->write_seq + copy); TCP_SKB_CB(skb)->end_seq += copy; tcp_skb_pcount_set(skb, 0); copied += copy; if (!msg_data_left(msg)) { if (unlikely(flags & MSG_EOR)) TCP_SKB_CB(skb)->eor = 1; goto out; } if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) continue; if (forced_push(tp)) { tcp_mark_push(tp, skb); __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); } else if (skb == tcp_send_head(sk)) tcp_push_one(sk, mss_now); continue; wait_for_space: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); if (copied) tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH, size_goal); err = sk_stream_wait_memory(sk, &timeo); if (err != 0) goto do_error; mss_now = tcp_send_mss(sk, &size_goal, flags); } out: if (copied) { tcp_tx_timestamp(sk, sockc.tsflags); tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); } out_nopush: sock_zerocopy_put(uarg); return copied + copied_syn; do_error: skb = tcp_write_queue_tail(sk); do_fault: tcp_remove_empty_skb(sk, skb); if (copied + copied_syn) goto out; out_err: sock_zerocopy_put_abort(uarg, true); err = sk_stream_error(sk, flags, err); /* make sure we wake any epoll edge trigger waiter */ if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { sk->sk_write_space(sk); tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); } return err; } EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { int ret; lock_sock(sk); ret = tcp_sendmsg_locked(sk, msg, size); release_sock(sk); return ret; } EXPORT_SYMBOL(tcp_sendmsg); /* * Handle reading urgent data. BSD has very simple semantics for * this, no blocking and very strange errors 8) */ static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) { struct tcp_sock *tp = tcp_sk(sk); /* No URG data to read. */ if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || tp->urg_data == TCP_URG_READ) return -EINVAL; /* Yes this is right ! */ if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) return -ENOTCONN; if (tp->urg_data & TCP_URG_VALID) { int err = 0; char c = tp->urg_data; if (!(flags & MSG_PEEK)) tp->urg_data = TCP_URG_READ; /* Read urgent data. */ msg->msg_flags |= MSG_OOB; if (len > 0) { if (!(flags & MSG_TRUNC)) err = memcpy_to_msg(msg, &c, 1); len = 1; } else msg->msg_flags |= MSG_TRUNC; return err ? -EFAULT : len; } if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) return 0; /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and * the available implementations agree in this case: * this call should never block, independent of the * blocking state of the socket. * Mike <pall@rz.uni-karlsruhe.de> */ return -EAGAIN; } static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) { struct sk_buff *skb; int copied = 0, err = 0; /* XXX -- need to support SO_PEEK_OFF */ skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) return err; copied += skb->len; } skb_queue_walk(&sk->sk_write_queue, skb) { err = skb_copy_datagram_msg(skb, 0, msg, skb->len); if (err) break; copied += skb->len; } return err ?: copied; } /* Clean up the receive buffer for full frames taken by the user, * then send an ACK if necessary. COPIED is the number of bytes * tcp_recvmsg has given to the user so far, it speeds up the * calculation of whether or not we must ACK for the sake of * a window update. */ void tcp_cleanup_rbuf(struct sock *sk, int copied) { struct tcp_sock *tp = tcp_sk(sk); bool time_to_ack = false; struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); if (inet_csk_ack_scheduled(sk)) { const struct inet_connection_sock *icsk = inet_csk(sk); if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || /* * If this read emptied read buffer, we send ACK, if * connection is not bidirectional, user drained * receive buffer and there was a small segment * in queue. */ (copied > 0 && ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && !inet_csk_in_pingpong_mode(sk))) && !atomic_read(&sk->sk_rmem_alloc))) time_to_ack = true; } /* We send an ACK if we can now advertise a non-zero window * which has been raised "significantly". * * Even if window raised up to infinity, do not send window open ACK * in states, where we will not receive more. It is useless. */ if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { __u32 rcv_window_now = tcp_receive_window(tp); /* Optimize, __tcp_select_window() is not cheap. */ if (2*rcv_window_now <= tp->window_clamp) { __u32 new_window = __tcp_select_window(sk); /* Send ACK now, if this read freed lots of space * in our buffer. Certainly, new_window is new window. * We can advertise it now, if it is not less than current one. * "Lots" means "at least twice" here. */ if (new_window && new_window >= 2 * rcv_window_now) time_to_ack = true; } } if (time_to_ack) tcp_send_ack(sk); } static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) { struct sk_buff *skb; u32 offset; while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { offset = seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { *off = offset; return skb; } /* This looks weird, but this can happen if TCP collapsing * splitted a fat GRO packet, while we released socket lock * in skb_splice_bits() */ sk_eat_skb(sk, skb); } return NULL; } /* * This routine provides an alternative to tcp_recvmsg() for routines * that would like to handle copying from skbuffs directly in 'sendfile' * fashion. * Note: * - It is assumed that the socket was locked by the caller. * - The routine does not block. * - At present, there is no support for reading OOB data * or for 'peeking' the socket using this routine * (although both would be easy to implement). */ int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor) { struct sk_buff *skb; struct tcp_sock *tp = tcp_sk(sk); u32 seq = tp->copied_seq; u32 offset; int copied = 0; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { if (offset < skb->len) { int used; size_t len; len = skb->len - offset; /* Stop reading if we hit a patch of urgent data */ if (tp->urg_data) { u32 urg_offset = tp->urg_seq - seq; if (urg_offset < len) len = urg_offset; if (!len) break; } used = recv_actor(desc, skb, offset, len); if (used <= 0) { if (!copied) copied = used; break; } else if (used <= len) { seq += used; copied += used; offset += used; } /* If recv_actor drops the lock (e.g. TCP splice * receive) the skb pointer might be invalid when * getting here: tcp_collapse might have deleted it * while aggregating skbs from the socket queue. */ skb = tcp_recv_skb(sk, seq - 1, &offset); if (!skb) break; /* TCP coalescing might have appended data to the skb. * Try to splice more frags */ if (offset + 1 != skb->len) continue; } if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { sk_eat_skb(sk, skb); ++seq; break; } sk_eat_skb(sk, skb); if (!desc->count) break; WRITE_ONCE(tp->copied_seq, seq); } WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ if (copied > 0) { tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, copied); } return copied; } EXPORT_SYMBOL(tcp_read_sock); int tcp_peek_len(struct socket *sock) { return tcp_inq(sock->sk); } EXPORT_SYMBOL(tcp_peek_len); /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ int tcp_set_rcvlowat(struct sock *sk, int val) { int cap; if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) cap = sk->sk_rcvbuf >> 1; else cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; val = min(val, cap); WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); /* Check if we need to signal EPOLLIN right now */ tcp_data_ready(sk); if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) return 0; val <<= 1; if (val > sk->sk_rcvbuf) { WRITE_ONCE(sk->sk_rcvbuf, val); tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); } return 0; } EXPORT_SYMBOL(tcp_set_rcvlowat); #ifdef CONFIG_MMU static const struct vm_operations_struct tcp_vm_ops = { }; int tcp_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { if (vma->vm_flags & (VM_WRITE | VM_EXEC)) return -EPERM; vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ vma->vm_flags |= VM_MIXEDMAP; vma->vm_ops = &tcp_vm_ops; return 0; } EXPORT_SYMBOL(tcp_mmap); static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, u32 *offset_frag) { skb_frag_t *frag; if (unlikely(offset_skb >= skb->len)) return NULL; offset_skb -= skb_headlen(skb); if ((int)offset_skb < 0 || skb_has_frag_list(skb)) return NULL; frag = skb_shinfo(skb)->frags; while (offset_skb) { if (skb_frag_size(frag) > offset_skb) { *offset_frag = offset_skb; return frag; } offset_skb -= skb_frag_size(frag); ++frag; } *offset_frag = 0; return frag; } static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, struct sk_buff *skb, u32 copylen, u32 *offset, u32 *seq) { unsigned long copy_address = (unsigned long)zc->copybuf_address; struct msghdr msg = {}; struct iovec iov; int err; if (copy_address != zc->copybuf_address) return -EINVAL; err = import_single_range(READ, (void __user *)copy_address, copylen, &iov, &msg.msg_iter); if (err) return err; err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); if (err) return err; zc->recv_skip_hint -= copylen; *offset += copylen; *seq += copylen; return (__s32)copylen; } static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc, struct sock *sk, struct sk_buff *skb, u32 *seq, s32 copybuf_len) { u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); if (!copylen) return 0; /* skb is null if inq < PAGE_SIZE. */ if (skb) offset = *seq - TCP_SKB_CB(skb)->seq; else skb = tcp_recv_skb(sk, *seq, &offset); zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, seq); return zc->copybuf_len < 0 ? 0 : copylen; } static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, struct page **pages, unsigned long pages_to_map, unsigned long *insert_addr, u32 *length_with_pending, u32 *seq, struct tcp_zerocopy_receive *zc) { unsigned long pages_remaining = pages_to_map; int bytes_mapped; int ret; ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining); bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining); /* Even if vm_insert_pages fails, it may have partially succeeded in * mapping (some but not all of the pages). */ *seq += bytes_mapped; *insert_addr += bytes_mapped; if (ret) { /* But if vm_insert_pages did fail, we have to unroll some state * we speculatively touched before. */ const int bytes_not_mapped = PAGE_SIZE * pages_remaining; *length_with_pending -= bytes_not_mapped; zc->recv_skip_hint += bytes_not_mapped; } return ret; } static int tcp_zerocopy_receive(struct sock *sk, struct tcp_zerocopy_receive *zc) { u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0; unsigned long address = (unsigned long)zc->address; s32 copybuf_len = zc->copybuf_len; struct tcp_sock *tp = tcp_sk(sk); #define PAGE_BATCH_SIZE 8 struct page *pages[PAGE_BATCH_SIZE]; const skb_frag_t *frags = NULL; struct vm_area_struct *vma; struct sk_buff *skb = NULL; unsigned long pg_idx = 0; unsigned long curr_addr; u32 seq = tp->copied_seq; int inq = tcp_inq(sk); int ret; zc->copybuf_len = 0; if (address & (PAGE_SIZE - 1) || address != zc->address) return -EINVAL; if (sk->sk_state == TCP_LISTEN) return -ENOTCONN; sock_rps_record_flow(sk); mmap_read_lock(current->mm); vma = find_vma(current->mm, address); if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { mmap_read_unlock(current->mm); return -EINVAL; } vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); avail_len = min_t(u32, vma_len, inq); aligned_len = avail_len & ~(PAGE_SIZE - 1); if (aligned_len) { zap_page_range(vma, address, aligned_len); zc->length = aligned_len; zc->recv_skip_hint = 0; } else { zc->length = avail_len; zc->recv_skip_hint = avail_len; } ret = 0; curr_addr = address; while (length + PAGE_SIZE <= zc->length) { if (zc->recv_skip_hint < PAGE_SIZE) { u32 offset_frag; /* If we're here, finish the current batch. */ if (pg_idx) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, &curr_addr, &length, &seq, zc); if (ret) goto out; pg_idx = 0; } if (skb) { if (zc->recv_skip_hint > 0) break; skb = skb->next; offset = seq - TCP_SKB_CB(skb)->seq; } else { skb = tcp_recv_skb(sk, seq, &offset); } zc->recv_skip_hint = skb->len - offset; frags = skb_advance_to_frag(skb, offset, &offset_frag); if (!frags || offset_frag) break; } if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { int remaining = zc->recv_skip_hint; while (remaining && (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags))) { remaining -= skb_frag_size(frags); frags++; } zc->recv_skip_hint -= remaining; break; } pages[pg_idx] = skb_frag_page(frags); pg_idx++; length += PAGE_SIZE; zc->recv_skip_hint -= PAGE_SIZE; frags++; if (pg_idx == PAGE_BATCH_SIZE) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, &curr_addr, &length, &seq, zc); if (ret) goto out; pg_idx = 0; } } if (pg_idx) { ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, &curr_addr, &length, &seq, zc); } out: mmap_read_unlock(current->mm); /* Try to copy straggler data. */ if (!ret) copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq, copybuf_len); if (length + copylen) { WRITE_ONCE(tp->copied_seq, seq); tcp_rcv_space_adjust(sk); /* Clean up data we have read: This will do ACK frames. */ tcp_recv_skb(sk, seq, &offset); tcp_cleanup_rbuf(sk, length + copylen); ret = 0; if (length == zc->length) zc->recv_skip_hint = 0; } else { if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) ret = -EIO; } zc->length = length; return ret; } #endif static void tcp_update_recv_tstamps(struct sk_buff *skb, struct scm_timestamping_internal *tss) { if (skb->tstamp) tss->ts[0] = ktime_to_timespec64(skb->tstamp); else tss->ts[0] = (struct timespec64) {0}; if (skb_hwtstamps(skb)->hwtstamp) tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); else tss->ts[2] = (struct timespec64) {0}; } /* Similar to __sock_recv_timestamp, but does not require an skb */ static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, struct scm_timestamping_internal *tss) { int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); bool has_timestamping = false; if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { if (sock_flag(sk, SOCK_RCVTSTAMP)) { if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { if (new_tstamp) { struct __kernel_timespec kts = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, sizeof(kts), &kts); } else { struct __kernel_old_timespec ts_old = { .tv_sec = tss->ts[0].tv_sec, .tv_nsec = tss->ts[0].tv_nsec, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, sizeof(ts_old), &ts_old); } } else { if (new_tstamp) { struct __kernel_sock_timeval stv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(stv), &stv); } else { struct __kernel_old_timeval tv = { .tv_sec = tss->ts[0].tv_sec, .tv_usec = tss->ts[0].tv_nsec / 1000, }; put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } } } if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) has_timestamping = true; else tss->ts[0] = (struct timespec64) {0}; } if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) has_timestamping = true; else tss->ts[2] = (struct timespec64) {0}; } if (has_timestamping) { tss->ts[1] = (struct timespec64) {0}; if (sock_flag(sk, SOCK_TSTAMP_NEW)) put_cmsg_scm_timestamping64(msg, tss); else put_cmsg_scm_timestamping(msg, tss); } } static int tcp_inq_hint(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); u32 copied_seq = READ_ONCE(tp->copied_seq); u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); int inq; inq = rcv_nxt - copied_seq; if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { lock_sock(sk); inq = tp->rcv_nxt - tp->copied_seq; release_sock(sk); } /* After receiving a FIN, tell the user-space to continue reading * by returning a non-zero inq. */ if (inq == 0 && sock_flag(sk, SOCK_DONE)) inq = 1; return inq; } /* * This routine copies from a sock struct into the user buffer. * * Technical note: in 2.3 we work on _locked_ socket, so that * tricks with *seq access order and skb->users are not required. * Probably, code can be easily improved even more. */ int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len) { struct tcp_sock *tp = tcp_sk(sk); int copied = 0; u32 peek_seq; u32 *seq; unsigned long used; int err, inq; int target; /* Read at least this many bytes */ long timeo; struct sk_buff *skb, *last; u32 urg_hole = 0; struct scm_timestamping_internal tss; int cmsg_flags; if (unlikely(flags & MSG_ERRQUEUE)) return inet_recv_error(sk, msg, len, addr_len); if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && (sk->sk_state == TCP_ESTABLISHED)) sk_busy_loop(sk, nonblock); lock_sock(sk); err = -ENOTCONN; if (sk->sk_state == TCP_LISTEN) goto out; cmsg_flags = tp->recvmsg_inq ? 1 : 0; timeo = sock_rcvtimeo(sk, nonblock); /* Urgent data needs to be handled specially. */ if (flags & MSG_OOB) goto recv_urg; if (unlikely(tp->repair)) { err = -EPERM; if (!(flags & MSG_PEEK)) goto out; if (tp->repair_queue == TCP_SEND_QUEUE) goto recv_sndq; err = -EINVAL; if (tp->repair_queue == TCP_NO_QUEUE) goto out; /* 'common' recv queue MSG_PEEK-ing */ } seq = &tp->copied_seq; if (flags & MSG_PEEK) { peek_seq = tp->copied_seq; seq = &peek_seq; } target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); do { u32 offset; /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ if (tp->urg_data && tp->urg_seq == *seq) { if (copied) break; if (signal_pending(current)) { copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; break; } } /* Next get a buffer. */ last = skb_peek_tail(&sk->sk_receive_queue); skb_queue_walk(&sk->sk_receive_queue, skb) { last = skb; /* Now that we have two receive queues this * shouldn't happen. */ if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags)) break; offset = *seq - TCP_SKB_CB(skb)->seq; if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err_once("%s: found a SYN, please report !\n", __func__); offset--; } if (offset < skb->len) goto found_ok_skb; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; WARN(!(flags & MSG_PEEK), "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); } /* Well, if we have backlog, try to process it now yet. */ if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) break; if (copied) { if (sk->sk_err || sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN) || !timeo || signal_pending(current)) break; } else { if (sock_flag(sk, SOCK_DONE)) break; if (sk->sk_err) { copied = sock_error(sk); break; } if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_state == TCP_CLOSE) { /* This occurs when user tries to read * from never connected socket. */ copied = -ENOTCONN; break; } if (!timeo) { copied = -EAGAIN; break; } if (signal_pending(current)) { copied = sock_intr_errno(timeo); break; } } tcp_cleanup_rbuf(sk, copied); if (copied >= target) { /* Do not sleep, just process backlog. */ release_sock(sk); lock_sock(sk); } else { sk_wait_data(sk, &timeo, last); } if ((flags & MSG_PEEK) && (peek_seq - copied - urg_hole != tp->copied_seq)) { net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", current->comm, task_pid_nr(current)); peek_seq = tp->copied_seq; } continue; found_ok_skb: /* Ok so how much can we use? */ used = skb->len - offset; if (len < used) used = len; /* Do we have urgent data here? */ if (tp->urg_data) { u32 urg_offset = tp->urg_seq - *seq; if (urg_offset < used) { if (!urg_offset) { if (!sock_flag(sk, SOCK_URGINLINE)) { WRITE_ONCE(*seq, *seq + 1); urg_hole++; offset++; used--; if (!used) goto skip_copy; } } else used = urg_offset; } } if (!(flags & MSG_TRUNC)) { err = skb_copy_datagram_msg(skb, offset, msg, used); if (err) { /* Exception. Bailout! */ if (!copied) copied = -EFAULT; break; } } WRITE_ONCE(*seq, *seq + used); copied += used; len -= used; tcp_rcv_space_adjust(sk); skip_copy: if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { tp->urg_data = 0; tcp_fast_path_check(sk); } if (TCP_SKB_CB(skb)->has_rxtstamp) { tcp_update_recv_tstamps(skb, &tss); cmsg_flags |= 2; } if (used + offset < skb->len) continue; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) goto found_fin_ok; if (!(flags & MSG_PEEK)) sk_eat_skb(sk, skb); continue; found_fin_ok: /* Process the FIN. */ WRITE_ONCE(*seq, *seq + 1); if (!(flags & MSG_PEEK)) sk_eat_skb(sk, skb); break; } while (len > 0); /* According to UNIX98, msg_name/msg_namelen are ignored * on connected socket. I was just happy when found this 8) --ANK */ /* Clean up data we have read: This will do ACK frames. */ tcp_cleanup_rbuf(sk, copied); release_sock(sk); if (cmsg_flags) { if (cmsg_flags & 2) tcp_recv_timestamp(msg, sk, &tss); if (cmsg_flags & 1) { inq = tcp_inq_hint(sk); put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); } } return copied; out: release_sock(sk); return err; recv_urg: err = tcp_recv_urg(sk, msg, len, flags); goto out; recv_sndq: err = tcp_peek_sndq(sk, msg, len); goto out; } EXPORT_SYMBOL(tcp_recvmsg); void tcp_set_state(struct sock *sk, int state) { int oldstate = sk->sk_state; /* We defined a new enum for TCP states that are exported in BPF * so as not force the internal TCP states to be frozen. The * following checks will detect if an internal state value ever * differs from the BPF value. If this ever happens, then we will * need to remap the internal value to the BPF value before calling * tcp_call_bpf_2arg. */ BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); switch (state) { case TCP_ESTABLISHED: if (oldstate != TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); break; case TCP_CLOSE: if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); sk->sk_prot->unhash(sk); if (inet_csk(sk)->icsk_bind_hash && !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) inet_put_port(sk); fallthrough; default: if (oldstate == TCP_ESTABLISHED) TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); } /* Change state AFTER socket is unhashed to avoid closed * socket sitting in hash tables. */ inet_sk_state_store(sk, state); } EXPORT_SYMBOL_GPL(tcp_set_state); /* * State processing on a close. This implements the state shift for * sending our FIN frame. Note that we only send a FIN for some * states. A shutdown() may have already sent the FIN, or we may be * closed. */ static const unsigned char new_state[16] = { /* current state: new state: action: */ [0 /* (Invalid) */] = TCP_CLOSE, [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_SYN_SENT] = TCP_CLOSE, [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, [TCP_TIME_WAIT] = TCP_CLOSE, [TCP_CLOSE] = TCP_CLOSE, [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, [TCP_LAST_ACK] = TCP_LAST_ACK, [TCP_LISTEN] = TCP_CLOSE, [TCP_CLOSING] = TCP_CLOSING, [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ }; static int tcp_close_state(struct sock *sk) { int next = (int)new_state[sk->sk_state]; int ns = next & TCP_STATE_MASK; tcp_set_state(sk, ns); return next & TCP_ACTION_FIN; } /* * Shutdown the sending side of a connection. Much like close except * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). */ void tcp_shutdown(struct sock *sk, int how) { /* We need to grab some memory, and put together a FIN, * and then put it into the queue to be sent. * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. */ if (!(how & SEND_SHUTDOWN)) return; /* If we've already sent a FIN, or it's a closed state, skip this. */ if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { /* Clear out any half completed packets. FIN if needed. */ if (tcp_close_state(sk)) tcp_send_fin(sk); } } EXPORT_SYMBOL(tcp_shutdown); int tcp_orphan_count_sum(void) { int i, total = 0; for_each_possible_cpu(i) total += per_cpu(tcp_orphan_count, i); return max(total, 0); } static int tcp_orphan_cache; static struct timer_list tcp_orphan_timer; #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) static void tcp_orphan_update(struct timer_list *unused) { WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); } static bool tcp_too_many_orphans(int shift) { return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; } bool tcp_check_oom(struct sock *sk, int shift) { bool too_many_orphans, out_of_socket_memory; too_many_orphans = tcp_too_many_orphans(shift); out_of_socket_memory = tcp_out_of_memory(sk); if (too_many_orphans) net_info_ratelimited("too many orphaned sockets\n"); if (out_of_socket_memory) net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); return too_many_orphans || out_of_socket_memory; } void tcp_close(struct sock *sk, long timeout) { struct sk_buff *skb; int data_was_unread = 0; int state; lock_sock(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); /* Special case. */ inet_csk_listen_stop(sk); goto adjudge_to_death; } /* We need to flush the recv. buffs. We do this only on the * descriptor close, not protocol-sourced closes, because the * reader process may not have drained the data yet! */ while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) len--; data_was_unread += len; __kfree_skb(skb); } sk_mem_reclaim(sk); /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ if (sk->sk_state == TCP_CLOSE) goto adjudge_to_death; /* As outlined in RFC 2525, section 2.17, we send a RST here because * data was lost. To witness the awful effects of the old behavior of * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk * GET in an FTP client, suspend the process, wait for the client to * advertise a zero window, then kill -9 the FTP client, wheee... * Note: timeout is always zero in such a case. */ if (unlikely(tcp_sk(sk)->repair)) { sk->sk_prot->disconnect(sk, 0); } else if (data_was_unread) { /* Unread data was tossed, zap the connection. */ NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, sk->sk_allocation); } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { /* Check zero linger _after_ checking for unread data. */ sk->sk_prot->disconnect(sk, 0); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); } else if (tcp_close_state(sk)) { /* We FIN if the application ate all the data before * zapping the connection. */ /* RED-PEN. Formally speaking, we have broken TCP state * machine. State transitions: * * TCP_ESTABLISHED -> TCP_FIN_WAIT1 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) * TCP_CLOSE_WAIT -> TCP_LAST_ACK * * are legal only when FIN has been sent (i.e. in window), * rather than queued out of window. Purists blame. * * F.e. "RFC state" is ESTABLISHED, * if Linux state is FIN-WAIT-1, but FIN is still not sent. * * The visible declinations are that sometimes * we enter time-wait state, when it is not required really * (harmless), do not send active resets, when they are * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when * they look as CLOSING or LAST_ACK for Linux) * Probably, I missed some more holelets. * --ANK * XXX (TFO) - To start off we don't support SYN+ACK+FIN * in a single packet! (May consider it later but will * probably need API support or TCP_CORK SYN-ACK until * data is written and socket is closed.) */ tcp_send_fin(sk); } sk_stream_wait_close(sk, timeout); adjudge_to_death: state = sk->sk_state; sock_hold(sk); sock_orphan(sk); local_bh_disable(); bh_lock_sock(sk); /* remove backlog if any, without releasing ownership. */ __release_sock(sk); this_cpu_inc(tcp_orphan_count); /* Have we already been destroyed by a softirq or backlog? */ if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) goto out; /* This is a (useful) BSD violating of the RFC. There is a * problem with TCP as specified in that the other end could * keep a socket open forever with no application left this end. * We use a 1 minute timeout (about the same as BSD) then kill * our end. If they send after that then tough - BUT: long enough * that we won't make the old 4*rto = almost no time - whoops * reset mistake. * * Nope, it was not mistake. It is really desired behaviour * f.e. on http servers, when such sockets are useless, but * consume significant resources. Let's do it with special * linger2 option. --ANK */ if (sk->sk_state == TCP_FIN_WAIT2) { struct tcp_sock *tp = tcp_sk(sk); if (tp->linger2 < 0) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONLINGER); } else { const int tmo = tcp_fin_time(sk); if (tmo > TCP_TIMEWAIT_LEN) { inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); } else { tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); goto out; } } } if (sk->sk_state != TCP_CLOSE) { sk_mem_reclaim(sk); if (tcp_check_oom(sk, 0)) { tcp_set_state(sk, TCP_CLOSE); tcp_send_active_reset(sk, GFP_ATOMIC); __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONMEMORY); } else if (!check_net(sock_net(sk))) { /* Not possible to send reset; just close */ tcp_set_state(sk, TCP_CLOSE); } } if (sk->sk_state == TCP_CLOSE) { struct request_sock *req; req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, lockdep_sock_is_held(sk)); /* We could get here with a non-NULL req if the socket is * aborted (e.g., closed with unread data) before 3WHS * finishes. */ if (req) reqsk_fastopen_remove(sk, req, false); inet_csk_destroy_sock(sk); } /* Otherwise, socket is reprieved until protocol close. */ out: bh_unlock_sock(sk); local_bh_enable(); release_sock(sk); sock_put(sk); } EXPORT_SYMBOL(tcp_close); /* These states need RST on ABORT according to RFC793 */ static inline bool tcp_need_reset(int state) { return (1 << state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_SYN_RECV); } static void tcp_rtx_queue_purge(struct sock *sk) { struct rb_node *p = rb_first(&sk->tcp_rtx_queue); tcp_sk(sk)->highest_sack = NULL; while (p) { struct sk_buff *skb = rb_to_skb(p); p = rb_next(p); /* Since we are deleting whole queue, no need to * list_del(&skb->tcp_tsorted_anchor) */ tcp_rtx_queue_unlink(skb, sk); sk_wmem_free_skb(sk, skb); } } void tcp_write_queue_purge(struct sock *sk) { struct sk_buff *skb; tcp_chrono_stop(sk, TCP_CHRONO_BUSY); while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { tcp_skb_tsorted_anchor_cleanup(skb); sk_wmem_free_skb(sk, skb); } tcp_rtx_queue_purge(sk); skb = sk->sk_tx_skb_cache; if (skb) { __kfree_skb(skb); sk->sk_tx_skb_cache = NULL; } INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); sk_mem_reclaim(sk); tcp_clear_all_retrans_hints(tcp_sk(sk)); tcp_sk(sk)->packets_out = 0; inet_csk(sk)->icsk_backoff = 0; } int tcp_disconnect(struct sock *sk, int flags) { struct inet_sock *inet = inet_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); int old_state = sk->sk_state; u32 seq; if (old_state != TCP_CLOSE) tcp_set_state(sk, TCP_CLOSE); /* ABORT function of RFC793 */ if (old_state == TCP_LISTEN) { inet_csk_listen_stop(sk); } else if (unlikely(tp->repair)) { sk->sk_err = ECONNABORTED; } else if (tcp_need_reset(old_state) || (tp->snd_nxt != tp->write_seq && (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { /* The last check adjusts for discrepancy of Linux wrt. RFC * states */ tcp_send_active_reset(sk, gfp_any()); sk->sk_err = ECONNRESET; } else if (old_state == TCP_SYN_SENT) sk->sk_err = ECONNRESET; tcp_clear_xmit_timers(sk); __skb_queue_purge(&sk->sk_receive_queue); if (sk->sk_rx_skb_cache) { __kfree_skb(sk->sk_rx_skb_cache); sk->sk_rx_skb_cache = NULL; } WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); tp->urg_data = 0; tcp_write_queue_purge(sk); tcp_fastopen_active_disable_ofo_check(sk); skb_rbtree_purge(&tp->out_of_order_queue); inet->inet_dport = 0; if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) inet_reset_saddr(sk); sk->sk_shutdown = 0; sock_reset_flag(sk, SOCK_DONE); tp->srtt_us = 0; tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); tp->rcv_rtt_last_tsecr = 0; seq = tp->write_seq + tp->max_window + 2; if (!seq) seq = 1; WRITE_ONCE(tp->write_seq, seq); icsk->icsk_backoff = 0; icsk->icsk_probes_out = 0; icsk->icsk_probes_tstamp = 0; icsk->icsk_rto = TCP_TIMEOUT_INIT; icsk->icsk_rto_min = TCP_RTO_MIN; icsk->icsk_delack_max = TCP_DELACK_MAX; tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tp->snd_cwnd = TCP_INIT_CWND; tp->snd_cwnd_cnt = 0; tp->window_clamp = 0; tp->delivered = 0; tp->delivered_ce = 0; if (icsk->icsk_ca_ops->release) icsk->icsk_ca_ops->release(sk); memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); icsk->icsk_ca_initialized = 0; tcp_set_ca_state(sk, TCP_CA_Open); tp->is_sack_reneg = 0; tcp_clear_retrans(tp); tp->total_retrans = 0; inet_csk_delack_init(sk); /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 * issue in __tcp_select_window() */ icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); __sk_dst_reset(sk); dst_release(sk->sk_rx_dst); sk->sk_rx_dst = NULL; tcp_saved_syn_free(tp); tp->compressed_ack = 0; tp->segs_in = 0; tp->segs_out = 0; tp->bytes_sent = 0; tp->bytes_acked = 0; tp->bytes_received = 0; tp->bytes_retrans = 0; tp->data_segs_in = 0; tp->data_segs_out = 0; tp->duplicate_sack[0].start_seq = 0; tp->duplicate_sack[0].end_seq = 0; tp->dsack_dups = 0; tp->reord_seen = 0; tp->retrans_out = 0; tp->sacked_out = 0; tp->tlp_high_seq = 0; tp->last_oow_ack_time = 0; /* There's a bubble in the pipe until at least the first ACK. */ tp->app_limited = ~0U; tp->rack.mstamp = 0; tp->rack.advanced = 0; tp->rack.reo_wnd_steps = 1; tp->rack.last_delivered = 0; tp->rack.reo_wnd_persist = 0; tp->rack.dsack_seen = 0; tp->syn_data_acked = 0; tp->rx_opt.saw_tstamp = 0; tp->rx_opt.dsack = 0; tp->rx_opt.num_sacks = 0; tp->rcv_ooopack = 0; /* Clean up fastopen related fields */ tcp_free_fastopen_req(tp); inet->defer_connect = 0; tp->fastopen_client_fail = 0; WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); if (sk->sk_frag.page) { put_page(sk->sk_frag.page); sk->sk_frag.page = NULL; sk->sk_frag.offset = 0; } sk->sk_error_report(sk); return 0; } EXPORT_SYMBOL(tcp_disconnect); static inline bool tcp_can_repair_sock(const struct sock *sk) { return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && (sk->sk_state != TCP_LISTEN); } static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) { struct tcp_repair_window opt; if (!tp->repair) return -EPERM; if (len != sizeof(opt)) return -EINVAL; if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) return -EFAULT; if (opt.max_window < opt.snd_wnd) return -EINVAL; if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) return -EINVAL; if (after(opt.rcv_wup, tp->rcv_nxt)) return -EINVAL; tp->snd_wl1 = opt.snd_wl1; tp->snd_wnd = opt.snd_wnd; tp->max_window = opt.max_window; tp->rcv_wnd = opt.rcv_wnd; tp->rcv_wup = opt.rcv_wup; return 0; } static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, unsigned int len) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_repair_opt opt; size_t offset = 0; while (len >= sizeof(opt)) { if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) return -EFAULT; offset += sizeof(opt); len -= sizeof(opt); switch (opt.opt_code) { case TCPOPT_MSS: tp->rx_opt.mss_clamp = opt.opt_val; tcp_mtup_init(sk); break; case TCPOPT_WINDOW: { u16 snd_wscale = opt.opt_val & 0xFFFF; u16 rcv_wscale = opt.opt_val >> 16; if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) return -EFBIG; tp->rx_opt.snd_wscale = snd_wscale; tp->rx_opt.rcv_wscale = rcv_wscale; tp->rx_opt.wscale_ok = 1; } break; case TCPOPT_SACK_PERM: if (opt.opt_val != 0) return -EINVAL; tp->rx_opt.sack_ok |= TCP_SACK_SEEN; break; case TCPOPT_TIMESTAMP: if (opt.opt_val != 0) return -EINVAL; tp->rx_opt.tstamp_ok = 1; break; } } return 0; } DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); EXPORT_SYMBOL(tcp_tx_delay_enabled); static void tcp_enable_tx_delay(void) { if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { static int __tcp_tx_delay_enabled = 0; if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { static_branch_enable(&tcp_tx_delay_enabled); pr_info("TCP_TX_DELAY enabled\n"); } } } /* When set indicates to always queue non-full frames. Later the user clears * this option and we transmit any pending partial frames in the queue. This is * meant to be used alongside sendfile() to get properly filled frames when the * user (for example) must write out headers with a write() call first and then * use sendfile to send out the data parts. * * TCP_CORK can be set together with TCP_NODELAY and it is stronger than * TCP_NODELAY. */ static void __tcp_sock_set_cork(struct sock *sk, bool on) { struct tcp_sock *tp = tcp_sk(sk); if (on) { tp->nonagle |= TCP_NAGLE_CORK; } else { tp->nonagle &= ~TCP_NAGLE_CORK; if (tp->nonagle & TCP_NAGLE_OFF) tp->nonagle |= TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } } void tcp_sock_set_cork(struct sock *sk, bool on) { lock_sock(sk); __tcp_sock_set_cork(sk, on); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_cork); /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is * remembered, but it is not activated until cork is cleared. * * However, when TCP_NODELAY is set we make an explicit push, which overrides * even TCP_CORK for currently queued segments. */ static void __tcp_sock_set_nodelay(struct sock *sk, bool on) { if (on) { tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; tcp_push_pending_frames(sk); } else { tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; } } void tcp_sock_set_nodelay(struct sock *sk) { lock_sock(sk); __tcp_sock_set_nodelay(sk, true); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_nodelay); static void __tcp_sock_set_quickack(struct sock *sk, int val) { if (!val) { inet_csk_enter_pingpong_mode(sk); return; } inet_csk_exit_pingpong_mode(sk); if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && inet_csk_ack_scheduled(sk)) { inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; tcp_cleanup_rbuf(sk, 1); if (!(val & 1)) inet_csk_enter_pingpong_mode(sk); } } void tcp_sock_set_quickack(struct sock *sk, int val) { lock_sock(sk); __tcp_sock_set_quickack(sk, val); release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_quickack); int tcp_sock_set_syncnt(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_SYNCNT) return -EINVAL; lock_sock(sk); inet_csk(sk)->icsk_syn_retries = val; release_sock(sk); return 0; } EXPORT_SYMBOL(tcp_sock_set_syncnt); void tcp_sock_set_user_timeout(struct sock *sk, u32 val) { lock_sock(sk); inet_csk(sk)->icsk_user_timeout = val; release_sock(sk); } EXPORT_SYMBOL(tcp_sock_set_user_timeout); int tcp_sock_set_keepidle_locked(struct sock *sk, int val) { struct tcp_sock *tp = tcp_sk(sk); if (val < 1 || val > MAX_TCP_KEEPIDLE) return -EINVAL; tp->keepalive_time = val * HZ; if (sock_flag(sk, SOCK_KEEPOPEN) && !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { u32 elapsed = keepalive_time_elapsed(tp); if (tp->keepalive_time > elapsed) elapsed = tp->keepalive_time - elapsed; else elapsed = 0; inet_csk_reset_keepalive_timer(sk, elapsed); } return 0; } int tcp_sock_set_keepidle(struct sock *sk, int val) { int err; lock_sock(sk); err = tcp_sock_set_keepidle_locked(sk, val); release_sock(sk); return err; } EXPORT_SYMBOL(tcp_sock_set_keepidle); int tcp_sock_set_keepintvl(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_KEEPINTVL) return -EINVAL; lock_sock(sk); tcp_sk(sk)->keepalive_intvl = val * HZ; release_sock(sk); return 0; } EXPORT_SYMBOL(tcp_sock_set_keepintvl); int tcp_sock_set_keepcnt(struct sock *sk, int val) { if (val < 1 || val > MAX_TCP_KEEPCNT) return -EINVAL; lock_sock(sk); tcp_sk(sk)->keepalive_probes = val; release_sock(sk); return 0; } EXPORT_SYMBOL(tcp_sock_set_keepcnt); /* * Socket option code for TCP. */ static int do_tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct net *net = sock_net(sk); int val; int err = 0; /* These are data/string values, all the others are ints */ switch (optname) { case TCP_CONGESTION: { char name[TCP_CA_NAME_MAX]; if (optlen < 1) return -EINVAL; val = strncpy_from_sockptr(name, optval, min_t(long, TCP_CA_NAME_MAX-1, optlen)); if (val < 0) return -EFAULT; name[val] = 0; lock_sock(sk); err = tcp_set_congestion_control(sk, name, true, ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)); release_sock(sk); return err; } case TCP_ULP: { char name[TCP_ULP_NAME_MAX]; if (optlen < 1) return -EINVAL; val = strncpy_from_sockptr(name, optval, min_t(long, TCP_ULP_NAME_MAX - 1, optlen)); if (val < 0) return -EFAULT; name[val] = 0; lock_sock(sk); err = tcp_set_ulp(sk, name); release_sock(sk); return err; } case TCP_FASTOPEN_KEY: { __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; __u8 *backup_key = NULL; /* Allow a backup key as well to facilitate key rotation * First key is the active one. */ if (optlen != TCP_FASTOPEN_KEY_LENGTH && optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) return -EINVAL; if (copy_from_sockptr(key, optval, optlen)) return -EFAULT; if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) backup_key = key + TCP_FASTOPEN_KEY_LENGTH; return tcp_fastopen_reset_cipher(net, sk, key, backup_key); } default: /* fallthru */ break; } if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; lock_sock(sk); switch (optname) { case TCP_MAXSEG: /* Values greater than interface MTU won't take effect. However * at the point when this call is done we typically don't yet * know which interface is going to be used */ if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { err = -EINVAL; break; } tp->rx_opt.user_mss = val; break; case TCP_NODELAY: __tcp_sock_set_nodelay(sk, val); break; case TCP_THIN_LINEAR_TIMEOUTS: if (val < 0 || val > 1) err = -EINVAL; else tp->thin_lto = val; break; case TCP_THIN_DUPACK: if (val < 0 || val > 1) err = -EINVAL; break; case TCP_REPAIR: if (!tcp_can_repair_sock(sk)) err = -EPERM; else if (val == TCP_REPAIR_ON) { tp->repair = 1; sk->sk_reuse = SK_FORCE_REUSE; tp->repair_queue = TCP_NO_QUEUE; } else if (val == TCP_REPAIR_OFF) { tp->repair = 0; sk->sk_reuse = SK_NO_REUSE; tcp_send_window_probe(sk); } else if (val == TCP_REPAIR_OFF_NO_WP) { tp->repair = 0; sk->sk_reuse = SK_NO_REUSE; } else err = -EINVAL; break; case TCP_REPAIR_QUEUE: if (!tp->repair) err = -EPERM; else if ((unsigned int)val < TCP_QUEUES_NR) tp->repair_queue = val; else err = -EINVAL; break; case TCP_QUEUE_SEQ: if (sk->sk_state != TCP_CLOSE) { err = -EPERM; } else if (tp->repair_queue == TCP_SEND_QUEUE) { if (!tcp_rtx_queue_empty(sk)) err = -EPERM; else WRITE_ONCE(tp->write_seq, val); } else if (tp->repair_queue == TCP_RECV_QUEUE) { if (tp->rcv_nxt != tp->copied_seq) { err = -EPERM; } else { WRITE_ONCE(tp->rcv_nxt, val); WRITE_ONCE(tp->copied_seq, val); } } else { err = -EINVAL; } break; case TCP_REPAIR_OPTIONS: if (!tp->repair) err = -EINVAL; else if (sk->sk_state == TCP_ESTABLISHED) err = tcp_repair_options_est(sk, optval, optlen); else err = -EPERM; break; case TCP_CORK: __tcp_sock_set_cork(sk, val); break; case TCP_KEEPIDLE: err = tcp_sock_set_keepidle_locked(sk, val); break; case TCP_KEEPINTVL: if (val < 1 || val > MAX_TCP_KEEPINTVL) err = -EINVAL; else tp->keepalive_intvl = val * HZ; break; case TCP_KEEPCNT: if (val < 1 || val > MAX_TCP_KEEPCNT) err = -EINVAL; else tp->keepalive_probes = val; break; case TCP_SYNCNT: if (val < 1 || val > MAX_TCP_SYNCNT) err = -EINVAL; else icsk->icsk_syn_retries = val; break; case TCP_SAVE_SYN: /* 0: disable, 1: enable, 2: start from ether_header */ if (val < 0 || val > 2) err = -EINVAL; else tp->save_syn = val; break; case TCP_LINGER2: if (val < 0) tp->linger2 = -1; else if (val > TCP_FIN_TIMEOUT_MAX / HZ) tp->linger2 = TCP_FIN_TIMEOUT_MAX; else tp->linger2 = val * HZ; break; case TCP_DEFER_ACCEPT: /* Translate value in seconds to number of retransmits */ icsk->icsk_accept_queue.rskq_defer_accept = secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); break; case TCP_WINDOW_CLAMP: if (!val) { if (sk->sk_state != TCP_CLOSE) { err = -EINVAL; break; } tp->window_clamp = 0; } else tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? SOCK_MIN_RCVBUF / 2 : val; break; case TCP_QUICKACK: __tcp_sock_set_quickack(sk, val); break; #ifdef CONFIG_TCP_MD5SIG case TCP_MD5SIG: case TCP_MD5SIG_EXT: err = tp->af_specific->md5_parse(sk, optname, optval, optlen); break; #endif case TCP_USER_TIMEOUT: /* Cap the max time in ms TCP will retry or probe the window * before giving up and aborting (ETIMEDOUT) a connection. */ if (val < 0) err = -EINVAL; else icsk->icsk_user_timeout = val; break; case TCP_FASTOPEN: if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { tcp_fastopen_init_key_once(net); fastopen_queue_tune(sk, val); } else { err = -EINVAL; } break; case TCP_FASTOPEN_CONNECT: if (val > 1 || val < 0) { err = -EINVAL; } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { if (sk->sk_state == TCP_CLOSE) tp->fastopen_connect = val; else err = -EINVAL; } else { err = -EOPNOTSUPP; } break; case TCP_FASTOPEN_NO_COOKIE: if (val > 1 || val < 0) err = -EINVAL; else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) err = -EINVAL; else tp->fastopen_no_cookie = val; break; case TCP_TIMESTAMP: if (!tp->repair) err = -EPERM; else tp->tsoffset = val - tcp_time_stamp_raw(); break; case TCP_REPAIR_WINDOW: err = tcp_repair_set_window(tp, optval, optlen); break; case TCP_NOTSENT_LOWAT: tp->notsent_lowat = val; sk->sk_write_space(sk); break; case TCP_INQ: if (val > 1 || val < 0) err = -EINVAL; else tp->recvmsg_inq = val; break; case TCP_TX_DELAY: if (val) tcp_enable_tx_delay(); tp->tcp_tx_delay = val; break; default: err = -ENOPROTOOPT; break; } release_sock(sk); return err; } int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { const struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) return icsk->icsk_af_ops->setsockopt(sk, level, optname, optval, optlen); return do_tcp_setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(tcp_setsockopt); static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, struct tcp_info *info) { u64 stats[__TCP_CHRONO_MAX], total = 0; enum tcp_chrono i; for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { stats[i] = tp->chrono_stat[i - 1]; if (i == tp->chrono_type) stats[i] += tcp_jiffies32 - tp->chrono_start; stats[i] *= USEC_PER_SEC / HZ; total += stats[i]; } info->tcpi_busy_time = total; info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; } /* Return information about state of tcp endpoint in API format. */ void tcp_get_info(struct sock *sk, struct tcp_info *info) { const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ const struct inet_connection_sock *icsk = inet_csk(sk); unsigned long rate; u32 now; u64 rate64; bool slow; memset(info, 0, sizeof(*info)); if (sk->sk_type != SOCK_STREAM) return; info->tcpi_state = inet_sk_state_load(sk); /* Report meaningful fields for all TCP states, including listeners */ rate = READ_ONCE(sk->sk_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; info->tcpi_pacing_rate = rate64; rate = READ_ONCE(sk->sk_max_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; info->tcpi_max_pacing_rate = rate64; info->tcpi_reordering = tp->reordering; info->tcpi_snd_cwnd = tp->snd_cwnd; if (info->tcpi_state == TCP_LISTEN) { /* listeners aliased fields : * tcpi_unacked -> Number of children ready for accept() * tcpi_sacked -> max backlog */ info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); return; } slow = lock_sock_fast(sk); info->tcpi_ca_state = icsk->icsk_ca_state; info->tcpi_retransmits = icsk->icsk_retransmits; info->tcpi_probes = icsk->icsk_probes_out; info->tcpi_backoff = icsk->icsk_backoff; if (tp->rx_opt.tstamp_ok) info->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tcp_is_sack(tp)) info->tcpi_options |= TCPI_OPT_SACK; if (tp->rx_opt.wscale_ok) { info->tcpi_options |= TCPI_OPT_WSCALE; info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; } if (tp->ecn_flags & TCP_ECN_OK) info->tcpi_options |= TCPI_OPT_ECN; if (tp->ecn_flags & TCP_ECN_SEEN) info->tcpi_options |= TCPI_OPT_ECN_SEEN; if (tp->syn_data_acked) info->tcpi_options |= TCPI_OPT_SYN_DATA; info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); info->tcpi_snd_mss = tp->mss_cache; info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; info->tcpi_unacked = tp->packets_out; info->tcpi_sacked = tp->sacked_out; info->tcpi_lost = tp->lost_out; info->tcpi_retrans = tp->retrans_out; now = tcp_jiffies32; info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); info->tcpi_pmtu = icsk->icsk_pmtu_cookie; info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; info->tcpi_rtt = tp->srtt_us >> 3; info->tcpi_rttvar = tp->mdev_us >> 2; info->tcpi_snd_ssthresh = tp->snd_ssthresh; info->tcpi_advmss = tp->advmss; info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; info->tcpi_rcv_space = tp->rcvq_space.space; info->tcpi_total_retrans = tp->total_retrans; info->tcpi_bytes_acked = tp->bytes_acked; info->tcpi_bytes_received = tp->bytes_received; info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); tcp_get_info_chrono_stats(tp, info); info->tcpi_segs_out = tp->segs_out; info->tcpi_segs_in = tp->segs_in; info->tcpi_min_rtt = tcp_min_rtt(tp); info->tcpi_data_segs_in = tp->data_segs_in; info->tcpi_data_segs_out = tp->data_segs_out; info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; rate64 = tcp_compute_delivery_rate(tp); if (rate64) info->tcpi_delivery_rate = rate64; info->tcpi_delivered = tp->delivered; info->tcpi_delivered_ce = tp->delivered_ce; info->tcpi_bytes_sent = tp->bytes_sent; info->tcpi_bytes_retrans = tp->bytes_retrans; info->tcpi_dsack_dups = tp->dsack_dups; info->tcpi_reord_seen = tp->reord_seen; info->tcpi_rcv_ooopack = tp->rcv_ooopack; info->tcpi_snd_wnd = tp->snd_wnd; info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; unlock_sock_fast(sk, slow); } EXPORT_SYMBOL_GPL(tcp_get_info); static size_t tcp_opt_stats_get_size(void) { return nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 0; } struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, const struct sk_buff *orig_skb) { const struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *stats; struct tcp_info info; unsigned long rate; u64 rate64; stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); if (!stats) return NULL; tcp_get_info_chrono_stats(tp, &info); nla_put_u64_64bit(stats, TCP_NLA_BUSY, info.tcpi_busy_time, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, info.tcpi_rwnd_limited, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, info.tcpi_sndbuf_limited, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, tp->data_segs_out, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, tp->total_retrans, TCP_NLA_PAD); rate = READ_ONCE(sk->sk_pacing_rate); rate64 = (rate != ~0UL) ? rate : ~0ULL; nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); rate64 = tcp_compute_delivery_rate(tp); nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, TCP_NLA_PAD); nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, TCP_NLA_PAD); nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, max_t(int, 0, tp->write_seq - tp->snd_nxt)); nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, TCP_NLA_PAD); return stats; } static int do_tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); int val, len; if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, sizeof(int)); if (len < 0) return -EINVAL; switch (optname) { case TCP_MAXSEG: val = tp->mss_cache; if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) val = tp->rx_opt.user_mss; if (tp->repair) val = tp->rx_opt.mss_clamp; break; case TCP_NODELAY: val = !!(tp->nonagle&TCP_NAGLE_OFF); break; case TCP_CORK: val = !!(tp->nonagle&TCP_NAGLE_CORK); break; case TCP_KEEPIDLE: val = keepalive_time_when(tp) / HZ; break; case TCP_KEEPINTVL: val = keepalive_intvl_when(tp) / HZ; break; case TCP_KEEPCNT: val = keepalive_probes(tp); break; case TCP_SYNCNT: val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; break; case TCP_LINGER2: val = tp->linger2; if (val >= 0) val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; break; case TCP_DEFER_ACCEPT: val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); break; case TCP_WINDOW_CLAMP: val = tp->window_clamp; break; case TCP_INFO: { struct tcp_info info; if (get_user(len, optlen)) return -EFAULT; tcp_get_info(sk, &info); len = min_t(unsigned int, len, sizeof(info)); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } case TCP_CC_INFO: { const struct tcp_congestion_ops *ca_ops; union tcp_cc_info info; size_t sz = 0; int attr; if (get_user(len, optlen)) return -EFAULT; ca_ops = icsk->icsk_ca_ops; if (ca_ops && ca_ops->get_info) sz = ca_ops->get_info(sk, ~0U, &attr, &info); len = min_t(unsigned int, len, sz); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } case TCP_QUICKACK: val = !inet_csk_in_pingpong_mode(sk); break; case TCP_CONGESTION: if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, TCP_CA_NAME_MAX); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) return -EFAULT; return 0; case TCP_ULP: if (get_user(len, optlen)) return -EFAULT; len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); if (!icsk->icsk_ulp_ops) { if (put_user(0, optlen)) return -EFAULT; return 0; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) return -EFAULT; return 0; case TCP_FASTOPEN_KEY: { u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; unsigned int key_len; if (get_user(len, optlen)) return -EFAULT; key_len = tcp_fastopen_get_cipher(net, icsk, key) * TCP_FASTOPEN_KEY_LENGTH; len = min_t(unsigned int, len, key_len); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, key, len)) return -EFAULT; return 0; } case TCP_THIN_LINEAR_TIMEOUTS: val = tp->thin_lto; break; case TCP_THIN_DUPACK: val = 0; break; case TCP_REPAIR: val = tp->repair; break; case TCP_REPAIR_QUEUE: if (tp->repair) val = tp->repair_queue; else return -EINVAL; break; case TCP_REPAIR_WINDOW: { struct tcp_repair_window opt; if (get_user(len, optlen)) return -EFAULT; if (len != sizeof(opt)) return -EINVAL; if (!tp->repair) return -EPERM; opt.snd_wl1 = tp->snd_wl1; opt.snd_wnd = tp->snd_wnd; opt.max_window = tp->max_window; opt.rcv_wnd = tp->rcv_wnd; opt.rcv_wup = tp->rcv_wup; if (copy_to_user(optval, &opt, len)) return -EFAULT; return 0; } case TCP_QUEUE_SEQ: if (tp->repair_queue == TCP_SEND_QUEUE) val = tp->write_seq; else if (tp->repair_queue == TCP_RECV_QUEUE) val = tp->rcv_nxt; else return -EINVAL; break; case TCP_USER_TIMEOUT: val = icsk->icsk_user_timeout; break; case TCP_FASTOPEN: val = icsk->icsk_accept_queue.fastopenq.max_qlen; break; case TCP_FASTOPEN_CONNECT: val = tp->fastopen_connect; break; case TCP_FASTOPEN_NO_COOKIE: val = tp->fastopen_no_cookie; break; case TCP_TX_DELAY: val = tp->tcp_tx_delay; break; case TCP_TIMESTAMP: val = tcp_time_stamp_raw() + tp->tsoffset; break; case TCP_NOTSENT_LOWAT: val = tp->notsent_lowat; break; case TCP_INQ: val = tp->recvmsg_inq; break; case TCP_SAVE_SYN: val = tp->save_syn; break; case TCP_SAVED_SYN: { if (get_user(len, optlen)) return -EFAULT; lock_sock(sk); if (tp->saved_syn) { if (len < tcp_saved_syn_len(tp->saved_syn)) { if (put_user(tcp_saved_syn_len(tp->saved_syn), optlen)) { release_sock(sk); return -EFAULT; } release_sock(sk); return -EINVAL; } len = tcp_saved_syn_len(tp->saved_syn); if (put_user(len, optlen)) { release_sock(sk); return -EFAULT; } if (copy_to_user(optval, tp->saved_syn->data, len)) { release_sock(sk); return -EFAULT; } tcp_saved_syn_free(tp); release_sock(sk); } else { release_sock(sk); len = 0; if (put_user(len, optlen)) return -EFAULT; } return 0; } #ifdef CONFIG_MMU case TCP_ZEROCOPY_RECEIVE: { struct tcp_zerocopy_receive zc = {}; int err; if (get_user(len, optlen)) return -EFAULT; if (len < 0 || len < offsetofend(struct tcp_zerocopy_receive, length)) return -EINVAL; if (len > sizeof(zc)) { len = sizeof(zc); if (put_user(len, optlen)) return -EFAULT; } if (copy_from_user(&zc, optval, len)) return -EFAULT; lock_sock(sk); err = tcp_zerocopy_receive(sk, &zc); release_sock(sk); if (len >= offsetofend(struct tcp_zerocopy_receive, err)) goto zerocopy_rcv_sk_err; switch (len) { case offsetofend(struct tcp_zerocopy_receive, err): goto zerocopy_rcv_sk_err; case offsetofend(struct tcp_zerocopy_receive, inq): goto zerocopy_rcv_inq; case offsetofend(struct tcp_zerocopy_receive, length): default: goto zerocopy_rcv_out; } zerocopy_rcv_sk_err: if (!err) zc.err = sock_error(sk); zerocopy_rcv_inq: zc.inq = tcp_inq_hint(sk); zerocopy_rcv_out: if (!err && copy_to_user(optval, &zc, len)) err = -EFAULT; return err; } #endif default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct inet_connection_sock *icsk = inet_csk(sk); if (level != SOL_TCP) return icsk->icsk_af_ops->getsockopt(sk, level, optname, optval, optlen); return do_tcp_getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(tcp_getsockopt); #ifdef CONFIG_TCP_MD5SIG static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); static DEFINE_MUTEX(tcp_md5sig_mutex); static bool tcp_md5sig_pool_populated = false; static void __tcp_alloc_md5sig_pool(void) { struct crypto_ahash *hash; int cpu; hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(hash)) return; for_each_possible_cpu(cpu) { void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; struct ahash_request *req; if (!scratch) { scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr), GFP_KERNEL, cpu_to_node(cpu)); if (!scratch) return; per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; } if (per_cpu(tcp_md5sig_pool, cpu).md5_req) continue; req = ahash_request_alloc(hash, GFP_KERNEL); if (!req) return; ahash_request_set_callback(req, 0, NULL, NULL); per_cpu(tcp_md5sig_pool, cpu).md5_req = req; } /* before setting tcp_md5sig_pool_populated, we must commit all writes * to memory. See smp_rmb() in tcp_get_md5sig_pool() */ smp_wmb(); tcp_md5sig_pool_populated = true; } bool tcp_alloc_md5sig_pool(void) { if (unlikely(!tcp_md5sig_pool_populated)) { mutex_lock(&tcp_md5sig_mutex); if (!tcp_md5sig_pool_populated) { __tcp_alloc_md5sig_pool(); if (tcp_md5sig_pool_populated) static_branch_inc(&tcp_md5_needed); } mutex_unlock(&tcp_md5sig_mutex); } return tcp_md5sig_pool_populated; } EXPORT_SYMBOL(tcp_alloc_md5sig_pool); /** * tcp_get_md5sig_pool - get md5sig_pool for this user * * We use percpu structure, so if we succeed, we exit with preemption * and BH disabled, to make sure another thread or softirq handling * wont try to get same context. */ struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) { local_bh_disable(); if (tcp_md5sig_pool_populated) { /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ smp_rmb(); return this_cpu_ptr(&tcp_md5sig_pool); } local_bh_enable(); return NULL; } EXPORT_SYMBOL(tcp_get_md5sig_pool); int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, const struct sk_buff *skb, unsigned int header_len) { struct scatterlist sg; const struct tcphdr *tp = tcp_hdr(skb); struct ahash_request *req = hp->md5_req; unsigned int i; const unsigned int head_data_len = skb_headlen(skb) > header_len ? skb_headlen(skb) - header_len : 0; const struct skb_shared_info *shi = skb_shinfo(skb); struct sk_buff *frag_iter; sg_init_table(&sg, 1); sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); ahash_request_set_crypt(req, &sg, NULL, head_data_len); if (crypto_ahash_update(req)) return 1; for (i = 0; i < shi->nr_frags; ++i) { const skb_frag_t *f = &shi->frags[i]; unsigned int offset = skb_frag_off(f); struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); sg_set_page(&sg, page, skb_frag_size(f), offset_in_page(offset)); ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); if (crypto_ahash_update(req)) return 1; } skb_walk_frags(skb, frag_iter) if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) return 1; return 0; } EXPORT_SYMBOL(tcp_md5_hash_skb_data); int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) { u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ struct scatterlist sg; sg_init_one(&sg, key->key, keylen); ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); /* We use data_race() because tcp_md5_do_add() might change key->key under us */ return data_race(crypto_ahash_update(hp->md5_req)); } EXPORT_SYMBOL(tcp_md5_hash_key); #endif void tcp_done(struct sock *sk) { struct request_sock *req; /* We might be called with a new socket, after * inet_csk_prepare_forced_close() has been called * so we can not use lockdep_sock_is_held(sk) */ req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); tcp_set_state(sk, TCP_CLOSE); tcp_clear_xmit_timers(sk); if (req) reqsk_fastopen_remove(sk, req, false); sk->sk_shutdown = SHUTDOWN_MASK; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); else inet_csk_destroy_sock(sk); } EXPORT_SYMBOL_GPL(tcp_done); int tcp_abort(struct sock *sk, int err) { if (!sk_fullsock(sk)) { if (sk->sk_state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); local_bh_disable(); inet_csk_reqsk_queue_drop(req->rsk_listener, req); local_bh_enable(); return 0; } return -EOPNOTSUPP; } /* Don't race with userspace socket closes such as tcp_close. */ lock_sock(sk); if (sk->sk_state == TCP_LISTEN) { tcp_set_state(sk, TCP_CLOSE); inet_csk_listen_stop(sk); } /* Don't race with BH socket closes such as inet_csk_listen_stop. */ local_bh_disable(); bh_lock_sock(sk); if (!sock_flag(sk, SOCK_DEAD)) { sk->sk_err = err; /* This barrier is coupled with smp_rmb() in tcp_poll() */ smp_wmb(); sk->sk_error_report(sk); if (tcp_need_reset(sk->sk_state)) tcp_send_active_reset(sk, GFP_ATOMIC); tcp_done(sk); } bh_unlock_sock(sk); local_bh_enable(); tcp_write_queue_purge(sk); release_sock(sk); return 0; } EXPORT_SYMBOL_GPL(tcp_abort); extern struct tcp_congestion_ops tcp_reno; static __initdata unsigned long thash_entries; static int __init set_thash_entries(char *str) { ssize_t ret; if (!str) return 0; ret = kstrtoul(str, 0, &thash_entries); if (ret) return 0; return 1; } __setup("thash_entries=", set_thash_entries); static void __init tcp_init_mem(void) { unsigned long limit = nr_free_buffer_pages() / 16; limit = max(limit, 128UL); sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ sysctl_tcp_mem[1] = limit; /* 6.25 % */ sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ } void __init tcp_init(void) { int max_rshare, max_wshare, cnt; unsigned long limit; unsigned int i; BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof_field(struct sk_buff, cb)); percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); inet_hashinfo_init(&tcp_hashinfo); inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", thash_entries, 21, /* one slot per 2 MB*/ 0, 64 * 1024); tcp_hashinfo.bind_bucket_cachep = kmem_cache_create("tcp_bind_bucket", sizeof(struct inet_bind_bucket), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); /* Size and allocate the main established and bind bucket * hash tables. * * The methodology is similar to that of the buffer cache. */ tcp_hashinfo.ehash = alloc_large_system_hash("TCP established", sizeof(struct inet_ehash_bucket), thash_entries, 17, /* one slot per 128 KB of memory */ 0, NULL, &tcp_hashinfo.ehash_mask, 0, thash_entries ? 0 : 512 * 1024); for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); if (inet_ehash_locks_alloc(&tcp_hashinfo)) panic("TCP: failed to alloc ehash_locks"); tcp_hashinfo.bhash = alloc_large_system_hash("TCP bind", sizeof(struct inet_bind_hashbucket), tcp_hashinfo.ehash_mask + 1, 17, /* one slot per 128 KB of memory */ 0, &tcp_hashinfo.bhash_size, NULL, 0, 64 * 1024); tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; for (i = 0; i < tcp_hashinfo.bhash_size; i++) { spin_lock_init(&tcp_hashinfo.bhash[i].lock); INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); } cnt = tcp_hashinfo.ehash_mask + 1; sysctl_tcp_max_orphans = cnt / 2; tcp_init_mem(); /* Set per-socket limits to no more than 1/128 the pressure threshold */ limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); max_wshare = min(4UL*1024*1024, limit); max_rshare = min(6UL*1024*1024, limit); init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; init_net.ipv4.sysctl_tcp_rmem[1] = 131072; init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); pr_info("Hash tables configured (established %u bind %u)\n", tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); tcp_v4_init(); tcp_metrics_init(); BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); tcp_tasklet_init(); mptcp_init(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_UDP_TUNNEL_H #define __NET_UDP_TUNNEL_H #include <net/ip_tunnels.h> #include <net/udp.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ipv6.h> #include <net/ipv6_stubs.h> #endif struct udp_port_cfg { u8 family; /* Used only for kernel-created sockets */ union { struct in_addr local_ip; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr local_ip6; #endif }; union { struct in_addr peer_ip; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr peer_ip6; #endif }; __be16 local_udp_port; __be16 peer_udp_port; int bind_ifindex; unsigned int use_udp_checksums:1, use_udp6_tx_checksums:1, use_udp6_rx_checksums:1, ipv6_v6only:1; }; int udp_sock_create4(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp); #if IS_ENABLED(CONFIG_IPV6) int udp_sock_create6(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp); #else static inline int udp_sock_create6(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp) { return 0; } #endif static inline int udp_sock_create(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp) { if (cfg->family == AF_INET) return udp_sock_create4(net, cfg, sockp); if (cfg->family == AF_INET6) return udp_sock_create6(net, cfg, sockp); return -EPFNOSUPPORT; } typedef int (*udp_tunnel_encap_rcv_t)(struct sock *sk, struct sk_buff *skb); typedef int (*udp_tunnel_encap_err_lookup_t)(struct sock *sk, struct sk_buff *skb); typedef void (*udp_tunnel_encap_destroy_t)(struct sock *sk); typedef struct sk_buff *(*udp_tunnel_gro_receive_t)(struct sock *sk, struct list_head *head, struct sk_buff *skb); typedef int (*udp_tunnel_gro_complete_t)(struct sock *sk, struct sk_buff *skb, int nhoff); struct udp_tunnel_sock_cfg { void *sk_user_data; /* user data used by encap_rcv call back */ /* Used for setting up udp_sock fields, see udp.h for details */ __u8 encap_type; udp_tunnel_encap_rcv_t encap_rcv; udp_tunnel_encap_err_lookup_t encap_err_lookup; udp_tunnel_encap_destroy_t encap_destroy; udp_tunnel_gro_receive_t gro_receive; udp_tunnel_gro_complete_t gro_complete; }; /* Setup the given (UDP) sock to receive UDP encapsulated packets */ void setup_udp_tunnel_sock(struct net *net, struct socket *sock, struct udp_tunnel_sock_cfg *sock_cfg); /* -- List of parsable UDP tunnel types -- * * Adding to this list will result in serious debate. The main issue is * that this list is essentially a list of workarounds for either poorly * designed tunnels, or poorly designed device offloads. * * The parsing supported via these types should really be used for Rx * traffic only as the network stack will have already inserted offsets for * the location of the headers in the skb. In addition any ports that are * pushed should be kept within the namespace without leaking to other * devices such as VFs or other ports on the same device. * * It is strongly encouraged to use CHECKSUM_COMPLETE for Rx to avoid the * need to use this for Rx checksum offload. It should not be necessary to * call this function to perform Tx offloads on outgoing traffic. */ enum udp_parsable_tunnel_type { UDP_TUNNEL_TYPE_VXLAN = BIT(0), /* RFC 7348 */ UDP_TUNNEL_TYPE_GENEVE = BIT(1), /* draft-ietf-nvo3-geneve */ UDP_TUNNEL_TYPE_VXLAN_GPE = BIT(2), /* draft-ietf-nvo3-vxlan-gpe */ }; struct udp_tunnel_info { unsigned short type; sa_family_t sa_family; __be16 port; u8 hw_priv; }; /* Notify network devices of offloadable types */ void udp_tunnel_push_rx_port(struct net_device *dev, struct socket *sock, unsigned short type); void udp_tunnel_drop_rx_port(struct net_device *dev, struct socket *sock, unsigned short type); void udp_tunnel_notify_add_rx_port(struct socket *sock, unsigned short type); void udp_tunnel_notify_del_rx_port(struct socket *sock, unsigned short type); static inline void udp_tunnel_get_rx_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_UDP_TUNNEL_PUSH_INFO, dev); } static inline void udp_tunnel_drop_rx_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_UDP_TUNNEL_DROP_INFO, dev); } /* Transmit the skb using UDP encapsulation. */ void udp_tunnel_xmit_skb(struct rtable *rt, struct sock *sk, struct sk_buff *skb, __be32 src, __be32 dst, __u8 tos, __u8 ttl, __be16 df, __be16 src_port, __be16 dst_port, bool xnet, bool nocheck); int udp_tunnel6_xmit_skb(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, struct net_device *dev, struct in6_addr *saddr, struct in6_addr *daddr, __u8 prio, __u8 ttl, __be32 label, __be16 src_port, __be16 dst_port, bool nocheck); void udp_tunnel_sock_release(struct socket *sock); struct metadata_dst *udp_tun_rx_dst(struct sk_buff *skb, unsigned short family, __be16 flags, __be64 tunnel_id, int md_size); #ifdef CONFIG_INET static inline int udp_tunnel_handle_offloads(struct sk_buff *skb, bool udp_csum) { int type = udp_csum ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; return iptunnel_handle_offloads(skb, type); } #endif static inline void udp_tunnel_encap_enable(struct socket *sock) { struct udp_sock *up = udp_sk(sock->sk); if (up->encap_enabled) return; up->encap_enabled = 1; #if IS_ENABLED(CONFIG_IPV6) if (sock->sk->sk_family == PF_INET6) ipv6_stub->udpv6_encap_enable(); else #endif udp_encap_enable(); } #define UDP_TUNNEL_NIC_MAX_TABLES 4 enum udp_tunnel_nic_info_flags { /* Device callbacks may sleep */ UDP_TUNNEL_NIC_INFO_MAY_SLEEP = BIT(0), /* Device only supports offloads when it's open, all ports * will be removed before close and re-added after open. */ UDP_TUNNEL_NIC_INFO_OPEN_ONLY = BIT(1), /* Device supports only IPv4 tunnels */ UDP_TUNNEL_NIC_INFO_IPV4_ONLY = BIT(2), /* Device has hard-coded the IANA VXLAN port (4789) as VXLAN. * This port must not be counted towards n_entries of any table. * Driver will not receive any callback associated with port 4789. */ UDP_TUNNEL_NIC_INFO_STATIC_IANA_VXLAN = BIT(3), }; struct udp_tunnel_nic; #define UDP_TUNNEL_NIC_MAX_SHARING_DEVICES (U16_MAX / 2) struct udp_tunnel_nic_shared { struct udp_tunnel_nic *udp_tunnel_nic_info; struct list_head devices; }; struct udp_tunnel_nic_shared_node { struct net_device *dev; struct list_head list; }; /** * struct udp_tunnel_nic_info - driver UDP tunnel offload information * @set_port: callback for adding a new port * @unset_port: callback for removing a port * @sync_table: callback for syncing the entire port table at once * @shared: reference to device global state (optional) * @flags: device flags from enum udp_tunnel_nic_info_flags * @tables: UDP port tables this device has * @tables.n_entries: number of entries in this table * @tables.tunnel_types: types of tunnels this table accepts * * Drivers are expected to provide either @set_port and @unset_port callbacks * or the @sync_table callback. Callbacks are invoked with rtnl lock held. * * Devices which (misguidedly) share the UDP tunnel port table across multiple * netdevs should allocate an instance of struct udp_tunnel_nic_shared and * point @shared at it. * There must never be more than %UDP_TUNNEL_NIC_MAX_SHARING_DEVICES devices * sharing a table. * * Known limitations: * - UDP tunnel port notifications are fundamentally best-effort - * it is likely the driver will both see skbs which use a UDP tunnel port, * while not being a tunneled skb, and tunnel skbs from other ports - * drivers should only use these ports for non-critical RX-side offloads, * e.g. the checksum offload; * - none of the devices care about the socket family at present, so we don't * track it. Please extend this code if you care. */ struct udp_tunnel_nic_info { /* one-by-one */ int (*set_port)(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti); int (*unset_port)(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti); /* all at once */ int (*sync_table)(struct net_device *dev, unsigned int table); struct udp_tunnel_nic_shared *shared; unsigned int flags; struct udp_tunnel_nic_table_info { unsigned int n_entries; unsigned int tunnel_types; } tables[UDP_TUNNEL_NIC_MAX_TABLES]; }; /* UDP tunnel module dependencies * * Tunnel drivers are expected to have a hard dependency on the udp_tunnel * module. NIC drivers are not, they just attach their * struct udp_tunnel_nic_info to the netdev and wait for callbacks to come. * Loading a tunnel driver will cause the udp_tunnel module to be loaded * and only then will all the required state structures be allocated. * Since we want a weak dependency from the drivers and the core to udp_tunnel * we call things through the following stubs. */ struct udp_tunnel_nic_ops { void (*get_port)(struct net_device *dev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti); void (*set_port_priv)(struct net_device *dev, unsigned int table, unsigned int idx, u8 priv); void (*add_port)(struct net_device *dev, struct udp_tunnel_info *ti); void (*del_port)(struct net_device *dev, struct udp_tunnel_info *ti); void (*reset_ntf)(struct net_device *dev); size_t (*dump_size)(struct net_device *dev, unsigned int table); int (*dump_write)(struct net_device *dev, unsigned int table, struct sk_buff *skb); }; #ifdef CONFIG_INET extern const struct udp_tunnel_nic_ops *udp_tunnel_nic_ops; #else #define udp_tunnel_nic_ops ((struct udp_tunnel_nic_ops *)NULL) #endif static inline void udp_tunnel_nic_get_port(struct net_device *dev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti) { /* This helper is used from .sync_table, we indicate empty entries * by zero'ed @ti. Drivers which need to know the details of a port * when it gets deleted should use the .set_port / .unset_port * callbacks. * Zero out here, otherwise !CONFIG_INET causes uninitilized warnings. */ memset(ti, 0, sizeof(*ti)); if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->get_port(dev, table, idx, ti); } static inline void udp_tunnel_nic_set_port_priv(struct net_device *dev, unsigned int table, unsigned int idx, u8 priv) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->set_port_priv(dev, table, idx, priv); } static inline void udp_tunnel_nic_add_port(struct net_device *dev, struct udp_tunnel_info *ti) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->add_port(dev, ti); } static inline void udp_tunnel_nic_del_port(struct net_device *dev, struct udp_tunnel_info *ti) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->del_port(dev, ti); } /** * udp_tunnel_nic_reset_ntf() - device-originating reset notification * @dev: network interface device structure * * Called by the driver to inform the core that the entire UDP tunnel port * state has been lost, usually due to device reset. Core will assume device * forgot all the ports and issue .set_port and .sync_table callbacks as * necessary. * * This function must be called with rtnl lock held, and will issue all * the callbacks before returning. */ static inline void udp_tunnel_nic_reset_ntf(struct net_device *dev) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->reset_ntf(dev); } static inline size_t udp_tunnel_nic_dump_size(struct net_device *dev, unsigned int table) { if (!udp_tunnel_nic_ops) return 0; return udp_tunnel_nic_ops->dump_size(dev, table); } static inline int udp_tunnel_nic_dump_write(struct net_device *dev, unsigned int table, struct sk_buff *skb) { if (!udp_tunnel_nic_ops) return 0; return udp_tunnel_nic_ops->dump_write(dev, table, skb); } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BITOPS_H #define _LINUX_BITOPS_H #include <asm/types.h> #include <linux/bits.h> /* Set bits in the first 'n' bytes when loaded from memory */ #ifdef __LITTLE_ENDIAN # define aligned_byte_mask(n) ((1UL << 8*(n))-1) #else # define aligned_byte_mask(n) (~0xffUL << (BITS_PER_LONG - 8 - 8*(n))) #endif #define BITS_PER_TYPE(type) (sizeof(type) * BITS_PER_BYTE) #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(long)) #define BITS_TO_U64(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(u64)) #define BITS_TO_U32(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(u32)) #define BITS_TO_BYTES(nr) DIV_ROUND_UP(nr, BITS_PER_TYPE(char)) extern unsigned int __sw_hweight8(unsigned int w); extern unsigned int __sw_hweight16(unsigned int w); extern unsigned int __sw_hweight32(unsigned int w); extern unsigned long __sw_hweight64(__u64 w); /* * Include this here because some architectures need generic_ffs/fls in * scope */ #include <asm/bitops.h> #define for_each_set_bit(bit, addr, size) \ for ((bit) = find_first_bit((addr), (size)); \ (bit) < (size); \ (bit) = find_next_bit((addr), (size), (bit) + 1)) /* same as for_each_set_bit() but use bit as value to start with */ #define for_each_set_bit_from(bit, addr, size) \ for ((bit) = find_next_bit((addr), (size), (bit)); \ (bit) < (size); \ (bit) = find_next_bit((addr), (size), (bit) + 1)) #define for_each_clear_bit(bit, addr, size) \ for ((bit) = find_first_zero_bit((addr), (size)); \ (bit) < (size); \ (bit) = find_next_zero_bit((addr), (size), (bit) + 1)) /* same as for_each_clear_bit() but use bit as value to start with */ #define for_each_clear_bit_from(bit, addr, size) \ for ((bit) = find_next_zero_bit((addr), (size), (bit)); \ (bit) < (size); \ (bit) = find_next_zero_bit((addr), (size), (bit) + 1)) /** * for_each_set_clump8 - iterate over bitmap for each 8-bit clump with set bits * @start: bit offset to start search and to store the current iteration offset * @clump: location to store copy of current 8-bit clump * @bits: bitmap address to base the search on * @size: bitmap size in number of bits */ #define for_each_set_clump8(start, clump, bits, size) \ for ((start) = find_first_clump8(&(clump), (bits), (size)); \ (start) < (size); \ (start) = find_next_clump8(&(clump), (bits), (size), (start) + 8)) static inline int get_bitmask_order(unsigned int count) { int order; order = fls(count); return order; /* We could be slightly more clever with -1 here... */ } static __always_inline unsigned long hweight_long(unsigned long w) { return sizeof(w) == 4 ? hweight32(w) : hweight64((__u64)w); } /** * rol64 - rotate a 64-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u64 rol64(__u64 word, unsigned int shift) { return (word << (shift & 63)) | (word >> ((-shift) & 63)); } /** * ror64 - rotate a 64-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u64 ror64(__u64 word, unsigned int shift) { return (word >> (shift & 63)) | (word << ((-shift) & 63)); } /** * rol32 - rotate a 32-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u32 rol32(__u32 word, unsigned int shift) { return (word << (shift & 31)) | (word >> ((-shift) & 31)); } /** * ror32 - rotate a 32-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u32 ror32(__u32 word, unsigned int shift) { return (word >> (shift & 31)) | (word << ((-shift) & 31)); } /** * rol16 - rotate a 16-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u16 rol16(__u16 word, unsigned int shift) { return (word << (shift & 15)) | (word >> ((-shift) & 15)); } /** * ror16 - rotate a 16-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u16 ror16(__u16 word, unsigned int shift) { return (word >> (shift & 15)) | (word << ((-shift) & 15)); } /** * rol8 - rotate an 8-bit value left * @word: value to rotate * @shift: bits to roll */ static inline __u8 rol8(__u8 word, unsigned int shift) { return (word << (shift & 7)) | (word >> ((-shift) & 7)); } /** * ror8 - rotate an 8-bit value right * @word: value to rotate * @shift: bits to roll */ static inline __u8 ror8(__u8 word, unsigned int shift) { return (word >> (shift & 7)) | (word << ((-shift) & 7)); } /** * sign_extend32 - sign extend a 32-bit value using specified bit as sign-bit * @value: value to sign extend * @index: 0 based bit index (0<=index<32) to sign bit * * This is safe to use for 16- and 8-bit types as well. */ static __always_inline __s32 sign_extend32(__u32 value, int index) { __u8 shift = 31 - index; return (__s32)(value << shift) >> shift; } /** * sign_extend64 - sign extend a 64-bit value using specified bit as sign-bit * @value: value to sign extend * @index: 0 based bit index (0<=index<64) to sign bit */ static __always_inline __s64 sign_extend64(__u64 value, int index) { __u8 shift = 63 - index; return (__s64)(value << shift) >> shift; } static inline unsigned fls_long(unsigned long l) { if (sizeof(l) == 4) return fls(l); return fls64(l); } static inline int get_count_order(unsigned int count) { if (count == 0) return -1; return fls(--count); } /** * get_count_order_long - get order after rounding @l up to power of 2 * @l: parameter * * it is same as get_count_order() but with long type parameter */ static inline int get_count_order_long(unsigned long l) { if (l == 0UL) return -1; return (int)fls_long(--l); } /** * __ffs64 - find first set bit in a 64 bit word * @word: The 64 bit word * * On 64 bit arches this is a synomyn for __ffs * The result is not defined if no bits are set, so check that @word * is non-zero before calling this. */ static inline unsigned long __ffs64(u64 word) { #if BITS_PER_LONG == 32 if (((u32)word) == 0UL) return __ffs((u32)(word >> 32)) + 32; #elif BITS_PER_LONG != 64 #error BITS_PER_LONG not 32 or 64 #endif return __ffs((unsigned long)word); } /** * assign_bit - Assign value to a bit in memory * @nr: the bit to set * @addr: the address to start counting from * @value: the value to assign */ static __always_inline void assign_bit(long nr, volatile unsigned long *addr, bool value) { if (value) set_bit(nr, addr); else clear_bit(nr, addr); } static __always_inline void __assign_bit(long nr, volatile unsigned long *addr, bool value) { if (value) __set_bit(nr, addr); else __clear_bit(nr, addr); } #ifdef __KERNEL__ #ifndef set_mask_bits #define set_mask_bits(ptr, mask, bits) \ ({ \ const typeof(*(ptr)) mask__ = (mask), bits__ = (bits); \ typeof(*(ptr)) old__, new__; \ \ do { \ old__ = READ_ONCE(*(ptr)); \ new__ = (old__ & ~mask__) | bits__; \ } while (cmpxchg(ptr, old__, new__) != old__); \ \ old__; \ }) #endif #ifndef bit_clear_unless #define bit_clear_unless(ptr, clear, test) \ ({ \ const typeof(*(ptr)) clear__ = (clear), test__ = (test);\ typeof(*(ptr)) old__, new__; \ \ do { \ old__ = READ_ONCE(*(ptr)); \ new__ = old__ & ~clear__; \ } while (!(old__ & test__) && \ cmpxchg(ptr, old__, new__) != old__); \ \ !(old__ & test__); \ }) #endif #ifndef find_last_bit /** * find_last_bit - find the last set bit in a memory region * @addr: The address to start the search at * @size: The number of bits to search * * Returns the bit number of the last set bit, or size. */ extern unsigned long find_last_bit(const unsigned long *addr, unsigned long size); #endif #endif /* __KERNEL__ */ #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright(c) 2016 Intel Deutschland GmbH * Copyright (C) 2018 - 2019 Intel Corporation */ #ifndef __MAC80211_DRIVER_OPS #define __MAC80211_DRIVER_OPS #include <net/mac80211.h> #include "ieee80211_i.h" #include "trace.h" #define check_sdata_in_driver(sdata) ({ \ !WARN_ONCE(!(sdata->flags & IEEE80211_SDATA_IN_DRIVER), \ "%s: Failed check-sdata-in-driver check, flags: 0x%x\n", \ sdata->dev ? sdata->dev->name : sdata->name, sdata->flags); \ }) static inline struct ieee80211_sub_if_data * get_bss_sdata(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); return sdata; } static inline void drv_tx(struct ieee80211_local *local, struct ieee80211_tx_control *control, struct sk_buff *skb) { local->ops->tx(&local->hw, control, skb); } static inline void drv_sync_rx_queues(struct ieee80211_local *local, struct sta_info *sta) { if (local->ops->sync_rx_queues) { trace_drv_sync_rx_queues(local, sta->sdata, &sta->sta); local->ops->sync_rx_queues(&local->hw); trace_drv_return_void(local); } } static inline void drv_get_et_strings(struct ieee80211_sub_if_data *sdata, u32 sset, u8 *data) { struct ieee80211_local *local = sdata->local; if (local->ops->get_et_strings) { trace_drv_get_et_strings(local, sset); local->ops->get_et_strings(&local->hw, &sdata->vif, sset, data); trace_drv_return_void(local); } } static inline void drv_get_et_stats(struct ieee80211_sub_if_data *sdata, struct ethtool_stats *stats, u64 *data) { struct ieee80211_local *local = sdata->local; if (local->ops->get_et_stats) { trace_drv_get_et_stats(local); local->ops->get_et_stats(&local->hw, &sdata->vif, stats, data); trace_drv_return_void(local); } } static inline int drv_get_et_sset_count(struct ieee80211_sub_if_data *sdata, int sset) { struct ieee80211_local *local = sdata->local; int rv = 0; if (local->ops->get_et_sset_count) { trace_drv_get_et_sset_count(local, sset); rv = local->ops->get_et_sset_count(&local->hw, &sdata->vif, sset); trace_drv_return_int(local, rv); } return rv; } int drv_start(struct ieee80211_local *local); void drv_stop(struct ieee80211_local *local); #ifdef CONFIG_PM static inline int drv_suspend(struct ieee80211_local *local, struct cfg80211_wowlan *wowlan) { int ret; might_sleep(); trace_drv_suspend(local); ret = local->ops->suspend(&local->hw, wowlan); trace_drv_return_int(local, ret); return ret; } static inline int drv_resume(struct ieee80211_local *local) { int ret; might_sleep(); trace_drv_resume(local); ret = local->ops->resume(&local->hw); trace_drv_return_int(local, ret); return ret; } static inline void drv_set_wakeup(struct ieee80211_local *local, bool enabled) { might_sleep(); if (!local->ops->set_wakeup) return; trace_drv_set_wakeup(local, enabled); local->ops->set_wakeup(&local->hw, enabled); trace_drv_return_void(local); } #endif int drv_add_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int drv_change_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type, bool p2p); void drv_remove_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); static inline int drv_config(struct ieee80211_local *local, u32 changed) { int ret; might_sleep(); trace_drv_config(local, changed); ret = local->ops->config(&local->hw, changed); trace_drv_return_int(local, ret); return ret; } static inline void drv_bss_info_changed(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info, u32 changed) { might_sleep(); if (WARN_ON_ONCE(changed & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED) && sdata->vif.type != NL80211_IFTYPE_AP && sdata->vif.type != NL80211_IFTYPE_ADHOC && sdata->vif.type != NL80211_IFTYPE_MESH_POINT && sdata->vif.type != NL80211_IFTYPE_OCB)) return; if (WARN_ON_ONCE(sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE || sdata->vif.type == NL80211_IFTYPE_NAN || (sdata->vif.type == NL80211_IFTYPE_MONITOR && !sdata->vif.mu_mimo_owner && !(changed & BSS_CHANGED_TXPOWER)))) return; if (!check_sdata_in_driver(sdata)) return; trace_drv_bss_info_changed(local, sdata, info, changed); if (local->ops->bss_info_changed) local->ops->bss_info_changed(&local->hw, &sdata->vif, info, changed); trace_drv_return_void(local); } static inline u64 drv_prepare_multicast(struct ieee80211_local *local, struct netdev_hw_addr_list *mc_list) { u64 ret = 0; trace_drv_prepare_multicast(local, mc_list->count); if (local->ops->prepare_multicast) ret = local->ops->prepare_multicast(&local->hw, mc_list); trace_drv_return_u64(local, ret); return ret; } static inline void drv_configure_filter(struct ieee80211_local *local, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { might_sleep(); trace_drv_configure_filter(local, changed_flags, total_flags, multicast); local->ops->configure_filter(&local->hw, changed_flags, total_flags, multicast); trace_drv_return_void(local); } static inline void drv_config_iface_filter(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int filter_flags, unsigned int changed_flags) { might_sleep(); trace_drv_config_iface_filter(local, sdata, filter_flags, changed_flags); if (local->ops->config_iface_filter) local->ops->config_iface_filter(&local->hw, &sdata->vif, filter_flags, changed_flags); trace_drv_return_void(local); } static inline int drv_set_tim(struct ieee80211_local *local, struct ieee80211_sta *sta, bool set) { int ret = 0; trace_drv_set_tim(local, sta, set); if (local->ops->set_tim) ret = local->ops->set_tim(&local->hw, sta, set); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_key(struct ieee80211_local *local, enum set_key_cmd cmd, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { int ret; might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_set_key(local, cmd, sdata, sta, key); ret = local->ops->set_key(&local->hw, cmd, &sdata->vif, sta, key); trace_drv_return_int(local, ret); return ret; } static inline void drv_update_tkip_key(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_key_conf *conf, struct sta_info *sta, u32 iv32, u16 *phase1key) { struct ieee80211_sta *ista = NULL; if (sta) ista = &sta->sta; sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_update_tkip_key(local, sdata, conf, ista, iv32); if (local->ops->update_tkip_key) local->ops->update_tkip_key(&local->hw, &sdata->vif, conf, ista, iv32, phase1key); trace_drv_return_void(local); } static inline int drv_hw_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_scan_request *req) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_hw_scan(local, sdata); ret = local->ops->hw_scan(&local->hw, &sdata->vif, req); trace_drv_return_int(local, ret); return ret; } static inline void drv_cancel_hw_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); if (!check_sdata_in_driver(sdata)) return; trace_drv_cancel_hw_scan(local, sdata); local->ops->cancel_hw_scan(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_sched_scan_start(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req, struct ieee80211_scan_ies *ies) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sched_scan_start(local, sdata); ret = local->ops->sched_scan_start(&local->hw, &sdata->vif, req, ies); trace_drv_return_int(local, ret); return ret; } static inline int drv_sched_scan_stop(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sched_scan_stop(local, sdata); ret = local->ops->sched_scan_stop(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline void drv_sw_scan_start(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const u8 *mac_addr) { might_sleep(); trace_drv_sw_scan_start(local, sdata, mac_addr); if (local->ops->sw_scan_start) local->ops->sw_scan_start(&local->hw, &sdata->vif, mac_addr); trace_drv_return_void(local); } static inline void drv_sw_scan_complete(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); trace_drv_sw_scan_complete(local, sdata); if (local->ops->sw_scan_complete) local->ops->sw_scan_complete(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_get_stats(struct ieee80211_local *local, struct ieee80211_low_level_stats *stats) { int ret = -EOPNOTSUPP; might_sleep(); if (local->ops->get_stats) ret = local->ops->get_stats(&local->hw, stats); trace_drv_get_stats(local, stats, ret); return ret; } static inline void drv_get_key_seq(struct ieee80211_local *local, struct ieee80211_key *key, struct ieee80211_key_seq *seq) { if (local->ops->get_key_seq) local->ops->get_key_seq(&local->hw, &key->conf, seq); trace_drv_get_key_seq(local, &key->conf); } static inline int drv_set_frag_threshold(struct ieee80211_local *local, u32 value) { int ret = 0; might_sleep(); trace_drv_set_frag_threshold(local, value); if (local->ops->set_frag_threshold) ret = local->ops->set_frag_threshold(&local->hw, value); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_rts_threshold(struct ieee80211_local *local, u32 value) { int ret = 0; might_sleep(); trace_drv_set_rts_threshold(local, value); if (local->ops->set_rts_threshold) ret = local->ops->set_rts_threshold(&local->hw, value); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_coverage_class(struct ieee80211_local *local, s16 value) { int ret = 0; might_sleep(); trace_drv_set_coverage_class(local, value); if (local->ops->set_coverage_class) local->ops->set_coverage_class(&local->hw, value); else ret = -EOPNOTSUPP; trace_drv_return_int(local, ret); return ret; } static inline void drv_sta_notify(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_notify(local, sdata, cmd, sta); if (local->ops->sta_notify) local->ops->sta_notify(&local->hw, &sdata->vif, cmd, sta); trace_drv_return_void(local); } static inline int drv_sta_add(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { int ret = 0; might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sta_add(local, sdata, sta); if (local->ops->sta_add) ret = local->ops->sta_add(&local->hw, &sdata->vif, sta); trace_drv_return_int(local, ret); return ret; } static inline void drv_sta_remove(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_remove(local, sdata, sta); if (local->ops->sta_remove) local->ops->sta_remove(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } #ifdef CONFIG_MAC80211_DEBUGFS static inline void drv_sta_add_debugfs(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct dentry *dir) { might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; if (local->ops->sta_add_debugfs) local->ops->sta_add_debugfs(&local->hw, &sdata->vif, sta, dir); } #endif static inline void drv_sta_pre_rcu_remove(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { might_sleep(); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_pre_rcu_remove(local, sdata, &sta->sta); if (local->ops->sta_pre_rcu_remove) local->ops->sta_pre_rcu_remove(&local->hw, &sdata->vif, &sta->sta); trace_drv_return_void(local); } __must_check int drv_sta_state(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state); __must_check int drv_sta_set_txpwr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta); void drv_sta_rc_update(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u32 changed); static inline void drv_sta_rate_tbl_update(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_rate_tbl_update(local, sdata, sta); if (local->ops->sta_rate_tbl_update) local->ops->sta_rate_tbl_update(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } static inline void drv_sta_statistics(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct station_info *sinfo) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_statistics(local, sdata, sta); if (local->ops->sta_statistics) local->ops->sta_statistics(&local->hw, &sdata->vif, sta, sinfo); trace_drv_return_void(local); } int drv_conf_tx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 ac, const struct ieee80211_tx_queue_params *params); u64 drv_get_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void drv_set_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 tsf); void drv_offset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, s64 offset); void drv_reset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); static inline int drv_tx_last_beacon(struct ieee80211_local *local) { int ret = 0; /* default unsupported op for less congestion */ might_sleep(); trace_drv_tx_last_beacon(local); if (local->ops->tx_last_beacon) ret = local->ops->tx_last_beacon(&local->hw); trace_drv_return_int(local, ret); return ret; } int drv_ampdu_action(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_ampdu_params *params); static inline int drv_get_survey(struct ieee80211_local *local, int idx, struct survey_info *survey) { int ret = -EOPNOTSUPP; trace_drv_get_survey(local, idx, survey); if (local->ops->get_survey) ret = local->ops->get_survey(&local->hw, idx, survey); trace_drv_return_int(local, ret); return ret; } static inline void drv_rfkill_poll(struct ieee80211_local *local) { might_sleep(); if (local->ops->rfkill_poll) local->ops->rfkill_poll(&local->hw); } static inline void drv_flush(struct ieee80211_local *local, struct ieee8021