1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM jbd2 #if !defined(_TRACE_JBD2_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_JBD2_H #include <linux/jbd2.h> #include <linux/tracepoint.h> struct transaction_chp_stats_s; struct transaction_run_stats_s; TRACE_EVENT(jbd2_checkpoint, TP_PROTO(journal_t *journal, int result), TP_ARGS(journal, result), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, result ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->result = result; ), TP_printk("dev %d,%d result %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->result) ); DECLARE_EVENT_CLASS(jbd2_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction), TP_STRUCT__entry( __field( dev_t, dev ) __field( char, sync_commit ) __field( int, transaction ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->sync_commit = commit_transaction->t_synchronous_commit; __entry->transaction = commit_transaction->t_tid; ), TP_printk("dev %d,%d transaction %d sync %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->transaction, __entry->sync_commit) ); DEFINE_EVENT(jbd2_commit, jbd2_start_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_locking, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_flushing, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_commit_logging, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); DEFINE_EVENT(jbd2_commit, jbd2_drop_transaction, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction) ); TRACE_EVENT(jbd2_end_commit, TP_PROTO(journal_t *journal, transaction_t *commit_transaction), TP_ARGS(journal, commit_transaction), TP_STRUCT__entry( __field( dev_t, dev ) __field( char, sync_commit ) __field( int, transaction ) __field( int, head ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->sync_commit = commit_transaction->t_synchronous_commit; __entry->transaction = commit_transaction->t_tid; __entry->head = journal->j_tail_sequence; ), TP_printk("dev %d,%d transaction %d sync %d head %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->transaction, __entry->sync_commit, __entry->head) ); TRACE_EVENT(jbd2_submit_inode_data, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; ), TP_printk("dev %d,%d ino %lu", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long) __entry->ino) ); DECLARE_EVENT_CLASS(jbd2_handle_start_class, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, requested_blocks) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->requested_blocks = requested_blocks; ), TP_printk("dev %d,%d tid %lu type %u line_no %u " "requested_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->requested_blocks) ); DEFINE_EVENT(jbd2_handle_start_class, jbd2_handle_start, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks) ); DEFINE_EVENT(jbd2_handle_start_class, jbd2_handle_restart, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int requested_blocks), TP_ARGS(dev, tid, type, line_no, requested_blocks) ); TRACE_EVENT(jbd2_handle_extend, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int buffer_credits, int requested_blocks), TP_ARGS(dev, tid, type, line_no, buffer_credits, requested_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, buffer_credits ) __field( int, requested_blocks) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->buffer_credits = buffer_credits; __entry->requested_blocks = requested_blocks; ), TP_printk("dev %d,%d tid %lu type %u line_no %u " "buffer_credits %d requested_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->buffer_credits, __entry->requested_blocks) ); TRACE_EVENT(jbd2_handle_stats, TP_PROTO(dev_t dev, unsigned long tid, unsigned int type, unsigned int line_no, int interval, int sync, int requested_blocks, int dirtied_blocks), TP_ARGS(dev, tid, type, line_no, interval, sync, requested_blocks, dirtied_blocks), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned int, type ) __field( unsigned int, line_no ) __field( int, interval ) __field( int, sync ) __field( int, requested_blocks) __field( int, dirtied_blocks ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->type = type; __entry->line_no = line_no; __entry->interval = interval; __entry->sync = sync; __entry->requested_blocks = requested_blocks; __entry->dirtied_blocks = dirtied_blocks; ), TP_printk("dev %d,%d tid %lu type %u line_no %u interval %d " "sync %d requested_blocks %d dirtied_blocks %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, __entry->type, __entry->line_no, __entry->interval, __entry->sync, __entry->requested_blocks, __entry->dirtied_blocks) ); TRACE_EVENT(jbd2_run_stats, TP_PROTO(dev_t dev, unsigned long tid, struct transaction_run_stats_s *stats), TP_ARGS(dev, tid, stats), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned long, wait ) __field( unsigned long, request_delay ) __field( unsigned long, running ) __field( unsigned long, locked ) __field( unsigned long, flushing ) __field( unsigned long, logging ) __field( __u32, handle_count ) __field( __u32, blocks ) __field( __u32, blocks_logged ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->wait = stats->rs_wait; __entry->request_delay = stats->rs_request_delay; __entry->running = stats->rs_running; __entry->locked = stats->rs_locked; __entry->flushing = stats->rs_flushing; __entry->logging = stats->rs_logging; __entry->handle_count = stats->rs_handle_count; __entry->blocks = stats->rs_blocks; __entry->blocks_logged = stats->rs_blocks_logged; ), TP_printk("dev %d,%d tid %lu wait %u request_delay %u running %u " "locked %u flushing %u logging %u handle_count %u " "blocks %u blocks_logged %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, jiffies_to_msecs(__entry->wait), jiffies_to_msecs(__entry->request_delay), jiffies_to_msecs(__entry->running), jiffies_to_msecs(__entry->locked), jiffies_to_msecs(__entry->flushing), jiffies_to_msecs(__entry->logging), __entry->handle_count, __entry->blocks, __entry->blocks_logged) ); TRACE_EVENT(jbd2_checkpoint_stats, TP_PROTO(dev_t dev, unsigned long tid, struct transaction_chp_stats_s *stats), TP_ARGS(dev, tid, stats), TP_STRUCT__entry( __field( dev_t, dev ) __field( unsigned long, tid ) __field( unsigned long, chp_time ) __field( __u32, forced_to_close ) __field( __u32, written ) __field( __u32, dropped ) ), TP_fast_assign( __entry->dev = dev; __entry->tid = tid; __entry->chp_time = stats->cs_chp_time; __entry->forced_to_close= stats->cs_forced_to_close; __entry->written = stats->cs_written; __entry->dropped = stats->cs_dropped; ), TP_printk("dev %d,%d tid %lu chp_time %u forced_to_close %u " "written %u dropped %u", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tid, jiffies_to_msecs(__entry->chp_time), __entry->forced_to_close, __entry->written, __entry->dropped) ); TRACE_EVENT(jbd2_update_log_tail, TP_PROTO(journal_t *journal, tid_t first_tid, unsigned long block_nr, unsigned long freed), TP_ARGS(journal, first_tid, block_nr, freed), TP_STRUCT__entry( __field( dev_t, dev ) __field( tid_t, tail_sequence ) __field( tid_t, first_tid ) __field(unsigned long, block_nr ) __field(unsigned long, freed ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->tail_sequence = journal->j_tail_sequence; __entry->first_tid = first_tid; __entry->block_nr = block_nr; __entry->freed = freed; ), TP_printk("dev %d,%d from %u to %u offset %lu freed %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->tail_sequence, __entry->first_tid, __entry->block_nr, __entry->freed) ); TRACE_EVENT(jbd2_write_superblock, TP_PROTO(journal_t *journal, int write_op), TP_ARGS(journal, write_op), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, write_op ) ), TP_fast_assign( __entry->dev = journal->j_fs_dev->bd_dev; __entry->write_op = write_op; ), TP_printk("dev %d,%d write_op %x", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->write_op) ); TRACE_EVENT(jbd2_lock_buffer_stall, TP_PROTO(dev_t dev, unsigned long stall_ms), TP_ARGS(dev, stall_ms), TP_STRUCT__entry( __field( dev_t, dev ) __field(unsigned long, stall_ms ) ), TP_fast_assign( __entry->dev = dev; __entry->stall_ms = stall_ms; ), TP_printk("dev %d,%d stall_ms %lu", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->stall_ms) ); #endif /* _TRACE_JBD2_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __BLUETOOTH_H #define __BLUETOOTH_H #include <linux/poll.h> #include <net/sock.h> #include <linux/seq_file.h> #define BT_SUBSYS_VERSION 2 #define BT_SUBSYS_REVISION 22 #ifndef AF_BLUETOOTH #define AF_BLUETOOTH 31 #define PF_BLUETOOTH AF_BLUETOOTH #endif /* Bluetooth versions */ #define BLUETOOTH_VER_1_1 1 #define BLUETOOTH_VER_1_2 2 #define BLUETOOTH_VER_2_0 3 #define BLUETOOTH_VER_2_1 4 #define BLUETOOTH_VER_4_0 6 /* Reserv for core and drivers use */ #define BT_SKB_RESERVE 8 #define BTPROTO_L2CAP 0 #define BTPROTO_HCI 1 #define BTPROTO_SCO 2 #define BTPROTO_RFCOMM 3 #define BTPROTO_BNEP 4 #define BTPROTO_CMTP 5 #define BTPROTO_HIDP 6 #define BTPROTO_AVDTP 7 #define SOL_HCI 0 #define SOL_L2CAP 6 #define SOL_SCO 17 #define SOL_RFCOMM 18 #define BT_SECURITY 4 struct bt_security { __u8 level; __u8 key_size; }; #define BT_SECURITY_SDP 0 #define BT_SECURITY_LOW 1 #define BT_SECURITY_MEDIUM 2 #define BT_SECURITY_HIGH 3 #define BT_SECURITY_FIPS 4 #define BT_DEFER_SETUP 7 #define BT_FLUSHABLE 8 #define BT_FLUSHABLE_OFF 0 #define BT_FLUSHABLE_ON 1 #define BT_POWER 9 struct bt_power { __u8 force_active; }; #define BT_POWER_FORCE_ACTIVE_OFF 0 #define BT_POWER_FORCE_ACTIVE_ON 1 #define BT_CHANNEL_POLICY 10 /* BR/EDR only (default policy) * AMP controllers cannot be used. * Channel move requests from the remote device are denied. * If the L2CAP channel is currently using AMP, move the channel to BR/EDR. */ #define BT_CHANNEL_POLICY_BREDR_ONLY 0 /* BR/EDR Preferred * Allow use of AMP controllers. * If the L2CAP channel is currently on AMP, move it to BR/EDR. * Channel move requests from the remote device are allowed. */ #define BT_CHANNEL_POLICY_BREDR_PREFERRED 1 /* AMP Preferred * Allow use of AMP controllers * If the L2CAP channel is currently on BR/EDR and AMP controller * resources are available, initiate a channel move to AMP. * Channel move requests from the remote device are allowed. * If the L2CAP socket has not been connected yet, try to create * and configure the channel directly on an AMP controller rather * than BR/EDR. */ #define BT_CHANNEL_POLICY_AMP_PREFERRED 2 #define BT_VOICE 11 struct bt_voice { __u16 setting; }; #define BT_VOICE_TRANSPARENT 0x0003 #define BT_VOICE_CVSD_16BIT 0x0060 #define BT_SNDMTU 12 #define BT_RCVMTU 13 #define BT_PHY 14 #define BT_PHY_BR_1M_1SLOT 0x00000001 #define BT_PHY_BR_1M_3SLOT 0x00000002 #define BT_PHY_BR_1M_5SLOT 0x00000004 #define BT_PHY_EDR_2M_1SLOT 0x00000008 #define BT_PHY_EDR_2M_3SLOT 0x00000010 #define BT_PHY_EDR_2M_5SLOT 0x00000020 #define BT_PHY_EDR_3M_1SLOT 0x00000040 #define BT_PHY_EDR_3M_3SLOT 0x00000080 #define BT_PHY_EDR_3M_5SLOT 0x00000100 #define BT_PHY_LE_1M_TX 0x00000200 #define BT_PHY_LE_1M_RX 0x00000400 #define BT_PHY_LE_2M_TX 0x00000800 #define BT_PHY_LE_2M_RX 0x00001000 #define BT_PHY_LE_CODED_TX 0x00002000 #define BT_PHY_LE_CODED_RX 0x00004000 #define BT_MODE 15 #define BT_MODE_BASIC 0x00 #define BT_MODE_ERTM 0x01 #define BT_MODE_STREAMING 0x02 #define BT_MODE_LE_FLOWCTL 0x03 #define BT_MODE_EXT_FLOWCTL 0x04 #define BT_PKT_STATUS 16 #define BT_SCM_PKT_STATUS 0x03 __printf(1, 2) void bt_info(const char *fmt, ...); __printf(1, 2) void bt_warn(const char *fmt, ...); __printf(1, 2) void bt_err(const char *fmt, ...); #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) void bt_dbg_set(bool enable); bool bt_dbg_get(void); __printf(1, 2) void bt_dbg(const char *fmt, ...); #endif __printf(1, 2) void bt_warn_ratelimited(const char *fmt, ...); __printf(1, 2) void bt_err_ratelimited(const char *fmt, ...); #define BT_INFO(fmt, ...) bt_info(fmt "\n", ##__VA_ARGS__) #define BT_WARN(fmt, ...) bt_warn(fmt "\n", ##__VA_ARGS__) #define BT_ERR(fmt, ...) bt_err(fmt "\n", ##__VA_ARGS__) #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) #define BT_DBG(fmt, ...) bt_dbg(fmt "\n", ##__VA_ARGS__) #else #define BT_DBG(fmt, ...) pr_debug(fmt "\n", ##__VA_ARGS__) #endif #define bt_dev_info(hdev, fmt, ...) \ BT_INFO("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_warn(hdev, fmt, ...) \ BT_WARN("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_err(hdev, fmt, ...) \ BT_ERR("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_dbg(hdev, fmt, ...) \ BT_DBG("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_warn_ratelimited(hdev, fmt, ...) \ bt_warn_ratelimited("%s: " fmt, (hdev)->name, ##__VA_ARGS__) #define bt_dev_err_ratelimited(hdev, fmt, ...) \ bt_err_ratelimited("%s: " fmt, (hdev)->name, ##__VA_ARGS__) /* Connection and socket states */ enum { BT_CONNECTED = 1, /* Equal to TCP_ESTABLISHED to make net code happy */ BT_OPEN, BT_BOUND, BT_LISTEN, BT_CONNECT, BT_CONNECT2, BT_CONFIG, BT_DISCONN, BT_CLOSED }; /* If unused will be removed by compiler */ static inline const char *state_to_string(int state) { switch (state) { case BT_CONNECTED: return "BT_CONNECTED"; case BT_OPEN: return "BT_OPEN"; case BT_BOUND: return "BT_BOUND"; case BT_LISTEN: return "BT_LISTEN"; case BT_CONNECT: return "BT_CONNECT"; case BT_CONNECT2: return "BT_CONNECT2"; case BT_CONFIG: return "BT_CONFIG"; case BT_DISCONN: return "BT_DISCONN"; case BT_CLOSED: return "BT_CLOSED"; } return "invalid state"; } /* BD Address */ typedef struct { __u8 b[6]; } __packed bdaddr_t; /* BD Address type */ #define BDADDR_BREDR 0x00 #define BDADDR_LE_PUBLIC 0x01 #define BDADDR_LE_RANDOM 0x02 static inline bool bdaddr_type_is_valid(u8 type) { switch (type) { case BDADDR_BREDR: case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } static inline bool bdaddr_type_is_le(u8 type) { switch (type) { case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } #define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}}) #define BDADDR_NONE (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}) /* Copy, swap, convert BD Address */ static inline int bacmp(const bdaddr_t *ba1, const bdaddr_t *ba2) { return memcmp(ba1, ba2, sizeof(bdaddr_t)); } static inline void bacpy(bdaddr_t *dst, const bdaddr_t *src) { memcpy(dst, src, sizeof(bdaddr_t)); } void baswap(bdaddr_t *dst, const bdaddr_t *src); /* Common socket structures and functions */ #define bt_sk(__sk) ((struct bt_sock *) __sk) struct bt_sock { struct sock sk; struct list_head accept_q; struct sock *parent; unsigned long flags; void (*skb_msg_name)(struct sk_buff *, void *, int *); void (*skb_put_cmsg)(struct sk_buff *, struct msghdr *, struct sock *); }; enum { BT_SK_DEFER_SETUP, BT_SK_SUSPEND, }; struct bt_sock_list { struct hlist_head head; rwlock_t lock; #ifdef CONFIG_PROC_FS int (* custom_seq_show)(struct seq_file *, void *); #endif }; int bt_sock_register(int proto, const struct net_proto_family *ops); void bt_sock_unregister(int proto); void bt_sock_link(struct bt_sock_list *l, struct sock *s); void bt_sock_unlink(struct bt_sock_list *l, struct sock *s); int bt_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); int bt_sock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); __poll_t bt_sock_poll(struct file *file, struct socket *sock, poll_table *wait); int bt_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int bt_sock_wait_state(struct sock *sk, int state, unsigned long timeo); int bt_sock_wait_ready(struct sock *sk, unsigned long flags); void bt_accept_enqueue(struct sock *parent, struct sock *sk, bool bh); void bt_accept_unlink(struct sock *sk); struct sock *bt_accept_dequeue(struct sock *parent, struct socket *newsock); /* Skb helpers */ struct l2cap_ctrl { u8 sframe:1, poll:1, final:1, fcs:1, sar:2, super:2; u16 reqseq; u16 txseq; u8 retries; __le16 psm; bdaddr_t bdaddr; struct l2cap_chan *chan; }; struct sco_ctrl { u8 pkt_status; }; struct hci_dev; typedef void (*hci_req_complete_t)(struct hci_dev *hdev, u8 status, u16 opcode); typedef void (*hci_req_complete_skb_t)(struct hci_dev *hdev, u8 status, u16 opcode, struct sk_buff *skb); #define HCI_REQ_START BIT(0) #define HCI_REQ_SKB BIT(1) struct hci_ctrl { u16 opcode; u8 req_flags; u8 req_event; union { hci_req_complete_t req_complete; hci_req_complete_skb_t req_complete_skb; }; }; struct bt_skb_cb { u8 pkt_type; u8 force_active; u16 expect; u8 incoming:1; union { struct l2cap_ctrl l2cap; struct sco_ctrl sco; struct hci_ctrl hci; }; }; #define bt_cb(skb) ((struct bt_skb_cb *)((skb)->cb)) #define hci_skb_pkt_type(skb) bt_cb((skb))->pkt_type #define hci_skb_expect(skb) bt_cb((skb))->expect #define hci_skb_opcode(skb) bt_cb((skb))->hci.opcode static inline struct sk_buff *bt_skb_alloc(unsigned int len, gfp_t how) { struct sk_buff *skb; skb = alloc_skb(len + BT_SKB_RESERVE, how); if (skb) skb_reserve(skb, BT_SKB_RESERVE); return skb; } static inline struct sk_buff *bt_skb_send_alloc(struct sock *sk, unsigned long len, int nb, int *err) { struct sk_buff *skb; skb = sock_alloc_send_skb(sk, len + BT_SKB_RESERVE, nb, err); if (skb) skb_reserve(skb, BT_SKB_RESERVE); if (!skb && *err) return NULL; *err = sock_error(sk); if (*err) goto out; if (sk->sk_shutdown) { *err = -ECONNRESET; goto out; } return skb; out: kfree_skb(skb); return NULL; } int bt_to_errno(u16 code); void hci_sock_set_flag(struct sock *sk, int nr); void hci_sock_clear_flag(struct sock *sk, int nr); int hci_sock_test_flag(struct sock *sk, int nr); unsigned short hci_sock_get_channel(struct sock *sk); u32 hci_sock_get_cookie(struct sock *sk); int hci_sock_init(void); void hci_sock_cleanup(void); int bt_sysfs_init(void); void bt_sysfs_cleanup(void); int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)); void bt_procfs_cleanup(struct net *net, const char *name); extern struct dentry *bt_debugfs; int l2cap_init(void); void l2cap_exit(void); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_init(void); void sco_exit(void); #else static inline int sco_init(void) { return 0; } static inline void sco_exit(void) { } #endif int mgmt_init(void); void mgmt_exit(void); void bt_sock_reclassify_lock(struct sock *sk, int proto); #endif /* __BLUETOOTH_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 /* SPDX-License-Identifier: GPL-2.0 */ /* File: linux/posix_acl.h (C) 2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> */ #ifndef __LINUX_POSIX_ACL_H #define __LINUX_POSIX_ACL_H #include <linux/bug.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <uapi/linux/posix_acl.h> struct posix_acl_entry { short e_tag; unsigned short e_perm; union { kuid_t e_uid; kgid_t e_gid; }; }; struct posix_acl { refcount_t a_refcount; struct rcu_head a_rcu; unsigned int a_count; struct posix_acl_entry a_entries[]; }; #define FOREACH_ACL_ENTRY(pa, acl, pe) \ for(pa=(acl)->a_entries, pe=pa+(acl)->a_count; pa<pe; pa++) /* * Duplicate an ACL handle. */ static inline struct posix_acl * posix_acl_dup(struct posix_acl *acl) { if (acl) refcount_inc(&acl->a_refcount); return acl; } /* * Free an ACL handle. */ static inline void posix_acl_release(struct posix_acl *acl) { if (acl && refcount_dec_and_test(&acl->a_refcount)) kfree_rcu(acl, a_rcu); } /* posix_acl.c */ extern void posix_acl_init(struct posix_acl *, int); extern struct posix_acl *posix_acl_alloc(int, gfp_t); extern int posix_acl_valid(struct user_namespace *, const struct posix_acl *); extern int posix_acl_permission(struct inode *, const struct posix_acl *, int); extern struct posix_acl *posix_acl_from_mode(umode_t, gfp_t); extern int posix_acl_equiv_mode(const struct posix_acl *, umode_t *); extern int __posix_acl_create(struct posix_acl **, gfp_t, umode_t *); extern int __posix_acl_chmod(struct posix_acl **, gfp_t, umode_t); extern struct posix_acl *get_posix_acl(struct inode *, int); extern int set_posix_acl(struct inode *, int, struct posix_acl *); #ifdef CONFIG_FS_POSIX_ACL extern int posix_acl_chmod(struct inode *, umode_t); extern int posix_acl_create(struct inode *, umode_t *, struct posix_acl **, struct posix_acl **); extern int posix_acl_update_mode(struct inode *, umode_t *, struct posix_acl **); extern int simple_set_acl(struct inode *, struct posix_acl *, int); extern int simple_acl_create(struct inode *, struct inode *); struct posix_acl *get_cached_acl(struct inode *inode, int type); struct posix_acl *get_cached_acl_rcu(struct inode *inode, int type); void set_cached_acl(struct inode *inode, int type, struct posix_acl *acl); void forget_cached_acl(struct inode *inode, int type); void forget_all_cached_acls(struct inode *inode); static inline void cache_no_acl(struct inode *inode) { inode->i_acl = NULL; inode->i_default_acl = NULL; } #else static inline int posix_acl_chmod(struct inode *inode, umode_t mode) { return 0; } #define simple_set_acl NULL static inline int simple_acl_create(struct inode *dir, struct inode *inode) { return 0; } static inline void cache_no_acl(struct inode *inode) { } static inline int posix_acl_create(struct inode *inode, umode_t *mode, struct posix_acl **default_acl, struct posix_acl **acl) { *default_acl = *acl = NULL; return 0; } static inline void forget_all_cached_acls(struct inode *inode) { } #endif /* CONFIG_FS_POSIX_ACL */ struct posix_acl *get_acl(struct inode *inode, int type); #endif /* __LINUX_POSIX_ACL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_TASK_WORK_H #define _LINUX_TASK_WORK_H #include <linux/list.h> #include <linux/sched.h> typedef void (*task_work_func_t)(struct callback_head *); static inline void init_task_work(struct callback_head *twork, task_work_func_t func) { twork->func = func; } enum task_work_notify_mode { TWA_NONE, TWA_RESUME, TWA_SIGNAL, }; int task_work_add(struct task_struct *task, struct callback_head *twork, enum task_work_notify_mode mode); struct callback_head *task_work_cancel(struct task_struct *, task_work_func_t); void task_work_run(void); static inline void exit_task_work(struct task_struct *task) { task_work_run(); } #endif /* _LINUX_TASK_WORK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_X86_INSN_H #define _ASM_X86_INSN_H /* * x86 instruction analysis * * Copyright (C) IBM Corporation, 2009 */ /* insn_attr_t is defined in inat.h */ #include <asm/inat.h> struct insn_field { union { insn_value_t value; insn_byte_t bytes[4]; }; /* !0 if we've run insn_get_xxx() for this field */ unsigned char got; unsigned char nbytes; }; struct insn { struct insn_field prefixes; /* * Prefixes * prefixes.bytes[3]: last prefix */ struct insn_field rex_prefix; /* REX prefix */ struct insn_field vex_prefix; /* VEX prefix */ struct insn_field opcode; /* * opcode.bytes[0]: opcode1 * opcode.bytes[1]: opcode2 * opcode.bytes[2]: opcode3 */ struct insn_field modrm; struct insn_field sib; struct insn_field displacement; union { struct insn_field immediate; struct insn_field moffset1; /* for 64bit MOV */ struct insn_field immediate1; /* for 64bit imm or off16/32 */ }; union { struct insn_field moffset2; /* for 64bit MOV */ struct insn_field immediate2; /* for 64bit imm or seg16 */ }; int emulate_prefix_size; insn_attr_t attr; unsigned char opnd_bytes; unsigned char addr_bytes; unsigned char length; unsigned char x86_64; const insn_byte_t *kaddr; /* kernel address of insn to analyze */ const insn_byte_t *end_kaddr; /* kernel address of last insn in buffer */ const insn_byte_t *next_byte; }; #define MAX_INSN_SIZE 15 #define X86_MODRM_MOD(modrm) (((modrm) & 0xc0) >> 6) #define X86_MODRM_REG(modrm) (((modrm) & 0x38) >> 3) #define X86_MODRM_RM(modrm) ((modrm) & 0x07) #define X86_SIB_SCALE(sib) (((sib) & 0xc0) >> 6) #define X86_SIB_INDEX(sib) (((sib) & 0x38) >> 3) #define X86_SIB_BASE(sib) ((sib) & 0x07) #define X86_REX_W(rex) ((rex) & 8) #define X86_REX_R(rex) ((rex) & 4) #define X86_REX_X(rex) ((rex) & 2) #define X86_REX_B(rex) ((rex) & 1) /* VEX bit flags */ #define X86_VEX_W(vex) ((vex) & 0x80) /* VEX3 Byte2 */ #define X86_VEX_R(vex) ((vex) & 0x80) /* VEX2/3 Byte1 */ #define X86_VEX_X(vex) ((vex) & 0x40) /* VEX3 Byte1 */ #define X86_VEX_B(vex) ((vex) & 0x20) /* VEX3 Byte1 */ #define X86_VEX_L(vex) ((vex) & 0x04) /* VEX3 Byte2, VEX2 Byte1 */ /* VEX bit fields */ #define X86_EVEX_M(vex) ((vex) & 0x03) /* EVEX Byte1 */ #define X86_VEX3_M(vex) ((vex) & 0x1f) /* VEX3 Byte1 */ #define X86_VEX2_M 1 /* VEX2.M always 1 */ #define X86_VEX_V(vex) (((vex) & 0x78) >> 3) /* VEX3 Byte2, VEX2 Byte1 */ #define X86_VEX_P(vex) ((vex) & 0x03) /* VEX3 Byte2, VEX2 Byte1 */ #define X86_VEX_M_MAX 0x1f /* VEX3.M Maximum value */ extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64); extern void insn_get_prefixes(struct insn *insn); extern void insn_get_opcode(struct insn *insn); extern void insn_get_modrm(struct insn *insn); extern void insn_get_sib(struct insn *insn); extern void insn_get_displacement(struct insn *insn); extern void insn_get_immediate(struct insn *insn); extern void insn_get_length(struct insn *insn); /* Attribute will be determined after getting ModRM (for opcode groups) */ static inline void insn_get_attribute(struct insn *insn) { insn_get_modrm(insn); } /* Instruction uses RIP-relative addressing */ extern int insn_rip_relative(struct insn *insn); /* Init insn for kernel text */ static inline void kernel_insn_init(struct insn *insn, const void *kaddr, int buf_len) { #ifdef CONFIG_X86_64 insn_init(insn, kaddr, buf_len, 1); #else /* CONFIG_X86_32 */ insn_init(insn, kaddr, buf_len, 0); #endif } static inline int insn_is_avx(struct insn *insn) { if (!insn->prefixes.got) insn_get_prefixes(insn); return (insn->vex_prefix.value != 0); } static inline int insn_is_evex(struct insn *insn) { if (!insn->prefixes.got) insn_get_prefixes(insn); return (insn->vex_prefix.nbytes == 4); } static inline int insn_has_emulate_prefix(struct insn *insn) { return !!insn->emulate_prefix_size; } /* Ensure this instruction is decoded completely */ static inline int insn_complete(struct insn *insn) { return insn->opcode.got && insn->modrm.got && insn->sib.got && insn->displacement.got && insn->immediate.got; } static inline insn_byte_t insn_vex_m_bits(struct insn *insn) { if (insn->vex_prefix.nbytes == 2) /* 2 bytes VEX */ return X86_VEX2_M; else if (insn->vex_prefix.nbytes == 3) /* 3 bytes VEX */ return X86_VEX3_M(insn->vex_prefix.bytes[1]); else /* EVEX */ return X86_EVEX_M(insn->vex_prefix.bytes[1]); } static inline insn_byte_t insn_vex_p_bits(struct insn *insn) { if (insn->vex_prefix.nbytes == 2) /* 2 bytes VEX */ return X86_VEX_P(insn->vex_prefix.bytes[1]); else return X86_VEX_P(insn->vex_prefix.bytes[2]); } /* Get the last prefix id from last prefix or VEX prefix */ static inline int insn_last_prefix_id(struct insn *insn) { if (insn_is_avx(insn)) return insn_vex_p_bits(insn); /* VEX_p is a SIMD prefix id */ if (insn->prefixes.bytes[3]) return inat_get_last_prefix_id(insn->prefixes.bytes[3]); return 0; } /* Offset of each field from kaddr */ static inline int insn_offset_rex_prefix(struct insn *insn) { return insn->prefixes.nbytes; } static inline int insn_offset_vex_prefix(struct insn *insn) { return insn_offset_rex_prefix(insn) + insn->rex_prefix.nbytes; } static inline int insn_offset_opcode(struct insn *insn) { return insn_offset_vex_prefix(insn) + insn->vex_prefix.nbytes; } static inline int insn_offset_modrm(struct insn *insn) { return insn_offset_opcode(insn) + insn->opcode.nbytes; } static inline int insn_offset_sib(struct insn *insn) { return insn_offset_modrm(insn) + insn->modrm.nbytes; } static inline int insn_offset_displacement(struct insn *insn) { return insn_offset_sib(insn) + insn->sib.nbytes; } static inline int insn_offset_immediate(struct insn *insn) { return insn_offset_displacement(insn) + insn->displacement.nbytes; } /** * for_each_insn_prefix() -- Iterate prefixes in the instruction * @insn: Pointer to struct insn. * @idx: Index storage. * @prefix: Prefix byte. * * Iterate prefix bytes of given @insn. Each prefix byte is stored in @prefix * and the index is stored in @idx (note that this @idx is just for a cursor, * do not change it.) * Since prefixes.nbytes can be bigger than 4 if some prefixes * are repeated, it cannot be used for looping over the prefixes. */ #define for_each_insn_prefix(insn, idx, prefix) \ for (idx = 0; idx < ARRAY_SIZE(insn->prefixes.bytes) && (prefix = insn->prefixes.bytes[idx]) != 0; idx++) #define POP_SS_OPCODE 0x1f #define MOV_SREG_OPCODE 0x8e /* * Intel SDM Vol.3A 6.8.3 states; * "Any single-step trap that would be delivered following the MOV to SS * instruction or POP to SS instruction (because EFLAGS.TF is 1) is * suppressed." * This function returns true if @insn is MOV SS or POP SS. On these * instructions, single stepping is suppressed. */ static inline int insn_masking_exception(struct insn *insn) { return insn->opcode.bytes[0] == POP_SS_OPCODE || (insn->opcode.bytes[0] == MOV_SREG_OPCODE && X86_MODRM_REG(insn->modrm.bytes[0]) == 2); } #endif /* _ASM_X86_INSN_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_COOKIE_H #define __LINUX_COOKIE_H #include <linux/atomic.h> #include <linux/percpu.h> #include <asm/local.h> struct pcpu_gen_cookie { local_t nesting; u64 last; } __aligned(16); struct gen_cookie { struct pcpu_gen_cookie __percpu *local; atomic64_t forward_last ____cacheline_aligned_in_smp; atomic64_t reverse_last; }; #define COOKIE_LOCAL_BATCH 4096 #define DEFINE_COOKIE(name) \ static DEFINE_PER_CPU(struct pcpu_gen_cookie, __##name); \ static struct gen_cookie name = { \ .local = &__##name, \ .forward_last = ATOMIC64_INIT(0), \ .reverse_last = ATOMIC64_INIT(0), \ } static __always_inline u64 gen_cookie_next(struct gen_cookie *gc) { struct pcpu_gen_cookie *local = this_cpu_ptr(gc->local); u64 val; if (likely(local_inc_return(&local->nesting) == 1)) { val = local->last; if (__is_defined(CONFIG_SMP) && unlikely((val & (COOKIE_LOCAL_BATCH - 1)) == 0)) { s64 next = atomic64_add_return(COOKIE_LOCAL_BATCH, &gc->forward_last); val = next - COOKIE_LOCAL_BATCH; } local->last = ++val; } else { val = atomic64_dec_return(&gc->reverse_last); } local_dec(&local->nesting); return val; } #endif /* __LINUX_COOKIE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM mmap #if !defined(_TRACE_MMAP_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_MMAP_H #include <linux/tracepoint.h> TRACE_EVENT(vm_unmapped_area, TP_PROTO(unsigned long addr, struct vm_unmapped_area_info *info), TP_ARGS(addr, info), TP_STRUCT__entry( __field(unsigned long, addr) __field(unsigned long, total_vm) __field(unsigned long, flags) __field(unsigned long, length) __field(unsigned long, low_limit) __field(unsigned long, high_limit) __field(unsigned long, align_mask) __field(unsigned long, align_offset) ), TP_fast_assign( __entry->addr = addr; __entry->total_vm = current->mm->total_vm; __entry->flags = info->flags; __entry->length = info->length; __entry->low_limit = info->low_limit; __entry->high_limit = info->high_limit; __entry->align_mask = info->align_mask; __entry->align_offset = info->align_offset; ), TP_printk("addr=0x%lx err=%ld total_vm=0x%lx flags=0x%lx len=0x%lx lo=0x%lx hi=0x%lx mask=0x%lx ofs=0x%lx\n", IS_ERR_VALUE(__entry->addr) ? 0 : __entry->addr, IS_ERR_VALUE(__entry->addr) ? __entry->addr : 0, __entry->total_vm, __entry->flags, __entry->length, __entry->low_limit, __entry->high_limit, __entry->align_mask, __entry->align_offset) ); #endif /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM random #if !defined(_TRACE_RANDOM_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RANDOM_H #include <linux/writeback.h> #include <linux/tracepoint.h> TRACE_EVENT(add_device_randomness, TP_PROTO(int bytes, unsigned long IP), TP_ARGS(bytes, IP), TP_STRUCT__entry( __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("bytes %d caller %pS", __entry->bytes, (void *)__entry->IP) ); DECLARE_EVENT_CLASS(random__mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bytes = bytes; __entry->IP = IP; ), TP_printk("%s pool: bytes %d caller %pS", __entry->pool_name, __entry->bytes, (void *)__entry->IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes_nolock, TP_PROTO(const char *pool_name, int bytes, unsigned long IP), TP_ARGS(pool_name, bytes, IP) ); TRACE_EVENT(credit_entropy_bits, TP_PROTO(const char *pool_name, int bits, int entropy_count, unsigned long IP), TP_ARGS(pool_name, bits, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, bits ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->bits = bits; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: bits %d entropy_count %d caller %pS", __entry->pool_name, __entry->bits, __entry->entropy_count, (void *)__entry->IP) ); TRACE_EVENT(push_to_pool, TP_PROTO(const char *pool_name, int pool_bits, int input_bits), TP_ARGS(pool_name, pool_bits, input_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, pool_bits ) __field( int, input_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->pool_bits = pool_bits; __entry->input_bits = input_bits; ), TP_printk("%s: pool_bits %d input_pool_bits %d", __entry->pool_name, __entry->pool_bits, __entry->input_bits) ); TRACE_EVENT(debit_entropy, TP_PROTO(const char *pool_name, int debit_bits), TP_ARGS(pool_name, debit_bits), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, debit_bits ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->debit_bits = debit_bits; ), TP_printk("%s: debit_bits %d", __entry->pool_name, __entry->debit_bits) ); TRACE_EVENT(add_input_randomness, TP_PROTO(int input_bits), TP_ARGS(input_bits), TP_STRUCT__entry( __field( int, input_bits ) ), TP_fast_assign( __entry->input_bits = input_bits; ), TP_printk("input_pool_bits %d", __entry->input_bits) ); TRACE_EVENT(add_disk_randomness, TP_PROTO(dev_t dev, int input_bits), TP_ARGS(dev, input_bits), TP_STRUCT__entry( __field( dev_t, dev ) __field( int, input_bits ) ), TP_fast_assign( __entry->dev = dev; __entry->input_bits = input_bits; ), TP_printk("dev %d,%d input_pool_bits %d", MAJOR(__entry->dev), MINOR(__entry->dev), __entry->input_bits) ); TRACE_EVENT(xfer_secondary_pool, TP_PROTO(const char *pool_name, int xfer_bits, int request_bits, int pool_entropy, int input_entropy), TP_ARGS(pool_name, xfer_bits, request_bits, pool_entropy, input_entropy), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, xfer_bits ) __field( int, request_bits ) __field( int, pool_entropy ) __field( int, input_entropy ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->xfer_bits = xfer_bits; __entry->request_bits = request_bits; __entry->pool_entropy = pool_entropy; __entry->input_entropy = input_entropy; ), TP_printk("pool %s xfer_bits %d request_bits %d pool_entropy %d " "input_entropy %d", __entry->pool_name, __entry->xfer_bits, __entry->request_bits, __entry->pool_entropy, __entry->input_entropy) ); DECLARE_EVENT_CLASS(random__get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP), TP_STRUCT__entry( __field( int, nbytes ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->nbytes = nbytes; __entry->IP = IP; ), TP_printk("nbytes %d caller %pS", __entry->nbytes, (void *)__entry->IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DEFINE_EVENT(random__get_random_bytes, get_random_bytes_arch, TP_PROTO(int nbytes, unsigned long IP), TP_ARGS(nbytes, IP) ); DECLARE_EVENT_CLASS(random__extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP), TP_STRUCT__entry( __field( const char *, pool_name ) __field( int, nbytes ) __field( int, entropy_count ) __field(unsigned long, IP ) ), TP_fast_assign( __entry->pool_name = pool_name; __entry->nbytes = nbytes; __entry->entropy_count = entropy_count; __entry->IP = IP; ), TP_printk("%s pool: nbytes %d entropy_count %d caller %pS", __entry->pool_name, __entry->nbytes, __entry->entropy_count, (void *)__entry->IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); DEFINE_EVENT(random__extract_entropy, extract_entropy_user, TP_PROTO(const char *pool_name, int nbytes, int entropy_count, unsigned long IP), TP_ARGS(pool_name, nbytes, entropy_count, IP) ); TRACE_EVENT(random_read, TP_PROTO(int got_bits, int need_bits, int pool_left, int input_left), TP_ARGS(got_bits, need_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, need_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->need_bits = need_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d still_needed_bits %d " "blocking_pool_entropy_left %d input_entropy_left %d", __entry->got_bits, __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(urandom_read, TP_PROTO(int got_bits, int pool_left, int input_left), TP_ARGS(got_bits, pool_left, input_left), TP_STRUCT__entry( __field( int, got_bits ) __field( int, pool_left ) __field( int, input_left ) ), TP_fast_assign( __entry->got_bits = got_bits; __entry->pool_left = pool_left; __entry->input_left = input_left; ), TP_printk("got_bits %d nonblocking_pool_entropy_left %d " "input_entropy_left %d", __entry->got_bits, __entry->pool_left, __entry->input_left) ); TRACE_EVENT(prandom_u32, TP_PROTO(unsigned int ret), TP_ARGS(ret), TP_STRUCT__entry( __field( unsigned int, ret) ), TP_fast_assign( __entry->ret = ret; ), TP_printk("ret=%u" , __entry->ret) ); #endif /* _TRACE_RANDOM_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 /* SPDX-License-Identifier: GPL-2.0 */ /* * Wireless configuration interface internals. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2018-2020 Intel Corporation */ #ifndef __NET_WIRELESS_CORE_H #define __NET_WIRELESS_CORE_H #include <linux/list.h> #include <linux/netdevice.h> #include <linux/rbtree.h> #include <linux/debugfs.h> #include <linux/rfkill.h> #include <linux/workqueue.h> #include <linux/rtnetlink.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include "reg.h" #define WIPHY_IDX_INVALID -1 struct cfg80211_registered_device { const struct cfg80211_ops *ops; struct list_head list; /* rfkill support */ struct rfkill_ops rfkill_ops; struct rfkill *rfkill; struct work_struct rfkill_block; /* ISO / IEC 3166 alpha2 for which this device is receiving * country IEs on, this can help disregard country IEs from APs * on the same alpha2 quickly. The alpha2 may differ from * cfg80211_regdomain's alpha2 when an intersection has occurred. * If the AP is reconfigured this can also be used to tell us if * the country on the country IE changed. */ char country_ie_alpha2[2]; /* * the driver requests the regulatory core to set this regulatory * domain as the wiphy's. Only used for %REGULATORY_WIPHY_SELF_MANAGED * devices using the regulatory_set_wiphy_regd() API */ const struct ieee80211_regdomain *requested_regd; /* If a Country IE has been received this tells us the environment * which its telling us its in. This defaults to ENVIRON_ANY */ enum environment_cap env; /* wiphy index, internal only */ int wiphy_idx; /* protected by RTNL */ int devlist_generation, wdev_id; int opencount; wait_queue_head_t dev_wait; struct list_head beacon_registrations; spinlock_t beacon_registrations_lock; /* protected by RTNL only */ int num_running_ifaces; int num_running_monitor_ifaces; u64 cookie_counter; /* BSSes/scanning */ spinlock_t bss_lock; struct list_head bss_list; struct rb_root bss_tree; u32 bss_generation; u32 bss_entries; struct cfg80211_scan_request *scan_req; /* protected by RTNL */ struct cfg80211_scan_request *int_scan_req; struct sk_buff *scan_msg; struct list_head sched_scan_req_list; time64_t suspend_at; struct work_struct scan_done_wk; struct genl_info *cur_cmd_info; struct work_struct conn_work; struct work_struct event_work; struct delayed_work dfs_update_channels_wk; /* netlink port which started critical protocol (0 means not started) */ u32 crit_proto_nlportid; struct cfg80211_coalesce *coalesce; struct work_struct destroy_work; struct work_struct sched_scan_stop_wk; struct work_struct sched_scan_res_wk; struct cfg80211_chan_def radar_chandef; struct work_struct propagate_radar_detect_wk; struct cfg80211_chan_def cac_done_chandef; struct work_struct propagate_cac_done_wk; struct work_struct mgmt_registrations_update_wk; /* lock for all wdev lists */ spinlock_t mgmt_registrations_lock; /* must be last because of the way we do wiphy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wiphy wiphy __aligned(NETDEV_ALIGN); }; static inline struct cfg80211_registered_device *wiphy_to_rdev(struct wiphy *wiphy) { BUG_ON(!wiphy); return container_of(wiphy, struct cfg80211_registered_device, wiphy); } static inline void cfg80211_rdev_free_wowlan(struct cfg80211_registered_device *rdev) { #ifdef CONFIG_PM int i; if (!rdev->wiphy.wowlan_config) return; for (i = 0; i < rdev->wiphy.wowlan_config->n_patterns; i++) kfree(rdev->wiphy.wowlan_config->patterns[i].mask); kfree(rdev->wiphy.wowlan_config->patterns); if (rdev->wiphy.wowlan_config->tcp && rdev->wiphy.wowlan_config->tcp->sock) sock_release(rdev->wiphy.wowlan_config->tcp->sock); kfree(rdev->wiphy.wowlan_config->tcp); kfree(rdev->wiphy.wowlan_config->nd_config); kfree(rdev->wiphy.wowlan_config); #endif } static inline u64 cfg80211_assign_cookie(struct cfg80211_registered_device *rdev) { u64 r = ++rdev->cookie_counter; if (WARN_ON(r == 0)) r = ++rdev->cookie_counter; return r; } extern struct workqueue_struct *cfg80211_wq; extern struct list_head cfg80211_rdev_list; extern int cfg80211_rdev_list_generation; struct cfg80211_internal_bss { struct list_head list; struct list_head hidden_list; struct rb_node rbn; u64 ts_boottime; unsigned long ts; unsigned long refcount; atomic_t hold; /* time at the start of the reception of the first octet of the * timestamp field of the last beacon/probe received for this BSS. * The time is the TSF of the BSS specified by %parent_bssid. */ u64 parent_tsf; /* the BSS according to which %parent_tsf is set. This is set to * the BSS that the interface that requested the scan was connected to * when the beacon/probe was received. */ u8 parent_bssid[ETH_ALEN] __aligned(2); /* must be last because of priv member */ struct cfg80211_bss pub; }; static inline struct cfg80211_internal_bss *bss_from_pub(struct cfg80211_bss *pub) { return container_of(pub, struct cfg80211_internal_bss, pub); } static inline void cfg80211_hold_bss(struct cfg80211_internal_bss *bss) { atomic_inc(&bss->hold); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); atomic_inc(&bss->hold); } } static inline void cfg80211_unhold_bss(struct cfg80211_internal_bss *bss) { int r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); } } struct cfg80211_registered_device *cfg80211_rdev_by_wiphy_idx(int wiphy_idx); int get_wiphy_idx(struct wiphy *wiphy); struct wiphy *wiphy_idx_to_wiphy(int wiphy_idx); int cfg80211_switch_netns(struct cfg80211_registered_device *rdev, struct net *net); void cfg80211_init_wdev(struct wireless_dev *wdev); void cfg80211_register_wdev(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); static inline void wdev_lock(struct wireless_dev *wdev) __acquires(wdev) { mutex_lock(&wdev->mtx); __acquire(wdev->mtx); } static inline void wdev_unlock(struct wireless_dev *wdev) __releases(wdev) { __release(wdev->mtx); mutex_unlock(&wdev->mtx); } #define ASSERT_WDEV_LOCK(wdev) lockdep_assert_held(&(wdev)->mtx) static inline bool cfg80211_has_monitors_only(struct cfg80211_registered_device *rdev) { ASSERT_RTNL(); return rdev->num_running_ifaces == rdev->num_running_monitor_ifaces && rdev->num_running_ifaces > 0; } enum cfg80211_event_type { EVENT_CONNECT_RESULT, EVENT_ROAMED, EVENT_DISCONNECTED, EVENT_IBSS_JOINED, EVENT_STOPPED, EVENT_PORT_AUTHORIZED, }; struct cfg80211_event { struct list_head list; enum cfg80211_event_type type; union { struct cfg80211_connect_resp_params cr; struct cfg80211_roam_info rm; struct { const u8 *ie; size_t ie_len; u16 reason; bool locally_generated; } dc; struct { u8 bssid[ETH_ALEN]; struct ieee80211_channel *channel; } ij; struct { u8 bssid[ETH_ALEN]; } pa; }; }; struct cfg80211_cached_keys { struct key_params params[CFG80211_MAX_WEP_KEYS]; u8 data[CFG80211_MAX_WEP_KEYS][WLAN_KEY_LEN_WEP104]; int def; }; enum cfg80211_chan_mode { CHAN_MODE_UNDEFINED, CHAN_MODE_SHARED, CHAN_MODE_EXCLUSIVE, }; struct cfg80211_beacon_registration { struct list_head list; u32 nlportid; }; struct cfg80211_cqm_config { u32 rssi_hyst; s32 last_rssi_event_value; int n_rssi_thresholds; s32 rssi_thresholds[]; }; void cfg80211_destroy_ifaces(struct cfg80211_registered_device *rdev); /* free object */ void cfg80211_dev_free(struct cfg80211_registered_device *rdev); int cfg80211_dev_rename(struct cfg80211_registered_device *rdev, char *newname); void ieee80211_set_bitrate_flags(struct wiphy *wiphy); void cfg80211_bss_expire(struct cfg80211_registered_device *rdev); void cfg80211_bss_age(struct cfg80211_registered_device *rdev, unsigned long age_secs); void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, struct ieee80211_channel *channel); /* IBSS */ int __cfg80211_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params, struct cfg80211_cached_keys *connkeys); void cfg80211_clear_ibss(struct net_device *dev, bool nowext); int __cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); int cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); void __cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, struct ieee80211_channel *channel); int cfg80211_ibss_wext_join(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); /* mesh */ extern const struct mesh_config default_mesh_config; extern const struct mesh_setup default_mesh_setup; int __cfg80211_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_setup *setup, const struct mesh_config *conf); int __cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_set_mesh_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); /* OCB */ int __cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int __cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); /* AP */ int __cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); int cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); /* MLME */ int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_auth_type auth_type, const u8 *bssid, const u8 *ssid, int ssid_len, const u8 *ie, int ie_len, const u8 *key, int key_len, int key_idx, const u8 *auth_data, int auth_data_len); int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, const u8 *bssid, const u8 *ssid, int ssid_len, struct cfg80211_assoc_request *req); int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); void cfg80211_mlme_down(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_pid, u16 frame_type, const u8 *match_data, int match_len, bool multicast_rx, struct netlink_ext_ack *extack); void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk); void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlpid); void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev); int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa, const struct ieee80211_ht_cap *ht_capa_mask); void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa, const struct ieee80211_vht_cap *vht_capa_mask); /* SME events */ int cfg80211_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *connect, struct cfg80211_cached_keys *connkeys, const u8 *prev_bssid); void __cfg80211_connect_result(struct net_device *dev, struct cfg80211_connect_resp_params *params, bool wextev); void __cfg80211_disconnected(struct net_device *dev, const u8 *ie, size_t ie_len, u16 reason, bool from_ap); int cfg80211_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason, bool wextev); void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_roam_info *info); void __cfg80211_port_authorized(struct wireless_dev *wdev, const u8 *bssid); int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_autodisconnect_wk(struct work_struct *work); /* SME implementation */ void cfg80211_conn_work(struct work_struct *work); void cfg80211_sme_scan_done(struct net_device *dev); bool cfg80211_sme_rx_assoc_resp(struct wireless_dev *wdev, u16 status); void cfg80211_sme_rx_auth(struct wireless_dev *wdev, const u8 *buf, size_t len); void cfg80211_sme_disassoc(struct wireless_dev *wdev); void cfg80211_sme_deauth(struct wireless_dev *wdev); void cfg80211_sme_auth_timeout(struct wireless_dev *wdev); void cfg80211_sme_assoc_timeout(struct wireless_dev *wdev); void cfg80211_sme_abandon_assoc(struct wireless_dev *wdev); /* internal helpers */ bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher); bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise); int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr); void __cfg80211_scan_done(struct work_struct *wk); void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool send_message); void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req); int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, bool want_multi); void cfg80211_sched_scan_results_wk(struct work_struct *work); int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req, bool driver_initiated); int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, u64 reqid, bool driver_initiated); void cfg80211_upload_connect_keys(struct wireless_dev *wdev); int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params); void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev); void cfg80211_process_wdev_events(struct wireless_dev *wdev); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz); int cfg80211_scan(struct cfg80211_registered_device *rdev); extern struct work_struct cfg80211_disconnect_work; /** * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable * @wiphy: the wiphy to validate against * @chandef: the channel definition to check * * Checks if chandef is usable and we can/need start CAC on such channel. * * Return: true if all channels available and at least * one channel requires CAC (NL80211_DFS_USABLE) */ bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state); void cfg80211_dfs_channels_update_work(struct work_struct *work); unsigned int cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev); bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan); bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev); bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan); static inline unsigned int elapsed_jiffies_msecs(unsigned long start) { unsigned long end = jiffies; if (end >= start) return jiffies_to_msecs(end - start); return jiffies_to_msecs(end + (ULONG_MAX - start) + 1); } void cfg80211_get_chan_state(struct wireless_dev *wdev, struct ieee80211_channel **chan, enum cfg80211_chan_mode *chanmode, u8 *radar_detect); int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask); int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int); void cfg80211_update_iface_num(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, int num); void __cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct cfg80211_internal_bss * cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts); #ifdef CONFIG_CFG80211_DEVELOPER_WARNINGS #define CFG80211_DEV_WARN_ON(cond) WARN_ON(cond) #else /* * Trick to enable using it as a condition, * and also not give a warning when it's * not used that way. */ #define CFG80211_DEV_WARN_ON(cond) ({bool __r = (cond); __r; }) #endif void cfg80211_cqm_config_free(struct wireless_dev *wdev); void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid); void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev); void cfg80211_pmsr_free_wk(struct work_struct *work); #endif /* __NET_WIRELESS_CORE_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/fs.h> #include <linux/buffer_head.h> #include <linux/exportfs.h> #include <linux/iso_fs.h> #include <asm/unaligned.h> enum isofs_file_format { isofs_file_normal = 0, isofs_file_sparse = 1, isofs_file_compressed = 2, }; /* * iso fs inode data in memory */ struct iso_inode_info { unsigned long i_iget5_block; unsigned long i_iget5_offset; unsigned int i_first_extent; unsigned char i_file_format; unsigned char i_format_parm[3]; unsigned long i_next_section_block; unsigned long i_next_section_offset; off_t i_section_size; struct inode vfs_inode; }; /* * iso9660 super-block data in memory */ struct isofs_sb_info { unsigned long s_ninodes; unsigned long s_nzones; unsigned long s_firstdatazone; unsigned long s_log_zone_size; unsigned long s_max_size; int s_rock_offset; /* offset of SUSP fields within SU area */ s32 s_sbsector; unsigned char s_joliet_level; unsigned char s_mapping; unsigned char s_check; unsigned char s_session; unsigned int s_high_sierra:1; unsigned int s_rock:2; unsigned int s_cruft:1; /* Broken disks with high byte of length * containing junk */ unsigned int s_nocompress:1; unsigned int s_hide:1; unsigned int s_showassoc:1; unsigned int s_overriderockperm:1; unsigned int s_uid_set:1; unsigned int s_gid_set:1; umode_t s_fmode; umode_t s_dmode; kgid_t s_gid; kuid_t s_uid; struct nls_table *s_nls_iocharset; /* Native language support table */ }; #define ISOFS_INVALID_MODE ((umode_t) -1) static inline struct isofs_sb_info *ISOFS_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct iso_inode_info *ISOFS_I(struct inode *inode) { return container_of(inode, struct iso_inode_info, vfs_inode); } static inline int isonum_711(u8 *p) { return *p; } static inline int isonum_712(s8 *p) { return *p; } static inline unsigned int isonum_721(u8 *p) { return get_unaligned_le16(p); } static inline unsigned int isonum_722(u8 *p) { return get_unaligned_be16(p); } static inline unsigned int isonum_723(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le16(p); } static inline unsigned int isonum_731(u8 *p) { return get_unaligned_le32(p); } static inline unsigned int isonum_732(u8 *p) { return get_unaligned_be32(p); } static inline unsigned int isonum_733(u8 *p) { /* Ignore bigendian datum due to broken mastering programs */ return get_unaligned_le32(p); } extern int iso_date(u8 *, int); struct inode; /* To make gcc happy */ extern int parse_rock_ridge_inode(struct iso_directory_record *, struct inode *, int relocated); extern int get_rock_ridge_filename(struct iso_directory_record *, char *, struct inode *); extern int isofs_name_translate(struct iso_directory_record *, char *, struct inode *); int get_joliet_filename(struct iso_directory_record *, unsigned char *, struct inode *); int get_acorn_filename(struct iso_directory_record *, char *, struct inode *); extern struct dentry *isofs_lookup(struct inode *, struct dentry *, unsigned int flags); extern struct buffer_head *isofs_bread(struct inode *, sector_t); extern int isofs_get_blocks(struct inode *, sector_t, struct buffer_head **, unsigned long); struct inode *__isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset, int relocated); static inline struct inode *isofs_iget(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 0); } static inline struct inode *isofs_iget_reloc(struct super_block *sb, unsigned long block, unsigned long offset) { return __isofs_iget(sb, block, offset, 1); } /* Because the inode number is no longer relevant to finding the * underlying meta-data for an inode, we are free to choose a more * convenient 32-bit number as the inode number. The inode numbering * scheme was recommended by Sergey Vlasov and Eric Lammerts. */ static inline unsigned long isofs_get_ino(unsigned long block, unsigned long offset, unsigned long bufbits) { return (block << (bufbits - 5)) | (offset >> 5); } /* Every directory can have many redundant directory entries scattered * throughout the directory tree. First there is the directory entry * with the name of the directory stored in the parent directory. * Then, there is the "." directory entry stored in the directory * itself. Finally, there are possibly many ".." directory entries * stored in all the subdirectories. * * In order for the NFS get_parent() method to work and for the * general consistency of the dcache, we need to make sure the * "i_iget5_block" and "i_iget5_offset" all point to exactly one of * the many redundant entries for each directory. We normalize the * block and offset by always making them point to the "." directory. * * Notice that we do not use the entry for the directory with the name * that is located in the parent directory. Even though choosing this * first directory is more natural, it is much easier to find the "." * entry in the NFS get_parent() method because it is implicitly * encoded in the "extent + ext_attr_length" fields of _all_ the * redundant entries for the directory. Thus, it can always be * reached regardless of which directory entry you have in hand. * * This works because the "." entry is simply the first directory * record when you start reading the file that holds all the directory * records, and this file starts at "extent + ext_attr_length" blocks. * Because the "." entry is always the first entry listed in the * directories file, the normalized "offset" value is always 0. * * You should pass the directory entry in "de". On return, "block" * and "offset" will hold normalized values. Only directories are * affected making it safe to call even for non-directory file * types. */ static inline void isofs_normalize_block_and_offset(struct iso_directory_record* de, unsigned long *block, unsigned long *offset) { /* Only directories are normalized. */ if (de->flags[0] & 2) { *offset = 0; *block = (unsigned long)isonum_733(de->extent) + (unsigned long)isonum_711(de->ext_attr_length); } } extern const struct inode_operations isofs_dir_inode_operations; extern const struct file_operations isofs_dir_operations; extern const struct address_space_operations isofs_symlink_aops; extern const struct export_operations isofs_export_ops;
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_H #define _IPV6_H #include <uapi/linux/ipv6.h> #define ipv6_optlen(p) (((p)->hdrlen+1) << 3) #define ipv6_authlen(p) (((p)->hdrlen+2) << 2) /* * This structure contains configuration options per IPv6 link. */ struct ipv6_devconf { __s32 forwarding; __s32 hop_limit; __s32 mtu6; __s32 accept_ra; __s32 accept_redirects; __s32 autoconf; __s32 dad_transmits; __s32 rtr_solicits; __s32 rtr_solicit_interval; __s32 rtr_solicit_max_interval; __s32 rtr_solicit_delay; __s32 force_mld_version; __s32 mldv1_unsolicited_report_interval; __s32 mldv2_unsolicited_report_interval; __s32 use_tempaddr; __s32 temp_valid_lft; __s32 temp_prefered_lft; __s32 regen_max_retry; __s32 max_desync_factor; __s32 max_addresses; __s32 accept_ra_defrtr; __s32 accept_ra_min_hop_limit; __s32 accept_ra_pinfo; __s32 ignore_routes_with_linkdown; #ifdef CONFIG_IPV6_ROUTER_PREF __s32 accept_ra_rtr_pref; __s32 rtr_probe_interval; #ifdef CONFIG_IPV6_ROUTE_INFO __s32 accept_ra_rt_info_min_plen; __s32 accept_ra_rt_info_max_plen; #endif #endif __s32 proxy_ndp; __s32 accept_source_route; __s32 accept_ra_from_local; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD __s32 optimistic_dad; __s32 use_optimistic; #endif #ifdef CONFIG_IPV6_MROUTE __s32 mc_forwarding; #endif __s32 disable_ipv6; __s32 drop_unicast_in_l2_multicast; __s32 accept_dad; __s32 force_tllao; __s32 ndisc_notify; __s32 suppress_frag_ndisc; __s32 accept_ra_mtu; __s32 drop_unsolicited_na; struct ipv6_stable_secret { bool initialized; struct in6_addr secret; } stable_secret; __s32 use_oif_addrs_only; __s32 keep_addr_on_down; __s32 seg6_enabled; #ifdef CONFIG_IPV6_SEG6_HMAC __s32 seg6_require_hmac; #endif __u32 enhanced_dad; __u32 addr_gen_mode; __s32 disable_policy; __s32 ndisc_tclass; __s32 rpl_seg_enabled; struct ctl_table_header *sysctl_header; }; struct ipv6_params { __s32 disable_ipv6; __s32 autoconf; }; extern struct ipv6_params ipv6_defaults; #include <linux/tcp.h> #include <linux/udp.h> #include <net/inet_sock.h> static inline struct ipv6hdr *ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_network_header(skb); } static inline struct ipv6hdr *inner_ipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_inner_network_header(skb); } static inline struct ipv6hdr *ipipv6_hdr(const struct sk_buff *skb) { return (struct ipv6hdr *)skb_transport_header(skb); } static inline unsigned int ipv6_transport_len(const struct sk_buff *skb) { return ntohs(ipv6_hdr(skb)->payload_len) + sizeof(struct ipv6hdr) - skb_network_header_len(skb); } /* This structure contains results of exthdrs parsing as offsets from skb->nh. */ struct inet6_skb_parm { int iif; __be16 ra; __u16 dst0; __u16 srcrt; __u16 dst1; __u16 lastopt; __u16 nhoff; __u16 flags; #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE) __u16 dsthao; #endif __u16 frag_max_size; #define IP6SKB_XFRM_TRANSFORMED 1 #define IP6SKB_FORWARDED 2 #define IP6SKB_REROUTED 4 #define IP6SKB_ROUTERALERT 8 #define IP6SKB_FRAGMENTED 16 #define IP6SKB_HOPBYHOP 32 #define IP6SKB_L3SLAVE 64 #define IP6SKB_JUMBOGRAM 128 }; #if defined(CONFIG_NET_L3_MASTER_DEV) static inline bool ipv6_l3mdev_skb(__u16 flags) { return flags & IP6SKB_L3SLAVE; } #else static inline bool ipv6_l3mdev_skb(__u16 flags) { return false; } #endif #define IP6CB(skb) ((struct inet6_skb_parm*)((skb)->cb)) #define IP6CBMTU(skb) ((struct ip6_mtuinfo *)((skb)->cb)) static inline int inet6_iif(const struct sk_buff *skb) { bool l3_slave = ipv6_l3mdev_skb(IP6CB(skb)->flags); return l3_slave ? skb->skb_iif : IP6CB(skb)->iif; } static inline bool inet6_is_jumbogram(const struct sk_buff *skb) { return !!(IP6CB(skb)->flags & IP6SKB_JUMBOGRAM); } /* can not be used in TCP layer after tcp_v6_fill_cb */ static inline int inet6_sdif(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) if (skb && ipv6_l3mdev_skb(IP6CB(skb)->flags)) return IP6CB(skb)->iif; #endif return 0; } struct tcp6_request_sock { struct tcp_request_sock tcp6rsk_tcp; }; struct ipv6_mc_socklist; struct ipv6_ac_socklist; struct ipv6_fl_socklist; struct inet6_cork { struct ipv6_txoptions *opt; u8 hop_limit; u8 tclass; }; /** * struct ipv6_pinfo - ipv6 private area * * In the struct sock hierarchy (tcp6_sock, upd6_sock, etc) * this _must_ be the last member, so that inet6_sk_generic * is able to calculate its offset from the base struct sock * by using the struct proto->slab_obj_size member. -acme */ struct ipv6_pinfo { struct in6_addr saddr; struct in6_pktinfo sticky_pktinfo; const struct in6_addr *daddr_cache; #ifdef CONFIG_IPV6_SUBTREES const struct in6_addr *saddr_cache; #endif __be32 flow_label; __u32 frag_size; /* * Packed in 16bits. * Omit one shift by putting the signed field at MSB. */ #if defined(__BIG_ENDIAN_BITFIELD) __s16 hop_limit:9; __u16 __unused_1:7; #else __u16 __unused_1:7; __s16 hop_limit:9; #endif #if defined(__BIG_ENDIAN_BITFIELD) /* Packed in 16bits. */ __s16 mcast_hops:9; __u16 __unused_2:6, mc_loop:1; #else __u16 mc_loop:1, __unused_2:6; __s16 mcast_hops:9; #endif int ucast_oif; int mcast_oif; /* pktoption flags */ union { struct { __u16 srcrt:1, osrcrt:1, rxinfo:1, rxoinfo:1, rxhlim:1, rxohlim:1, hopopts:1, ohopopts:1, dstopts:1, odstopts:1, rxflow:1, rxtclass:1, rxpmtu:1, rxorigdstaddr:1, recvfragsize:1; /* 1 bits hole */ } bits; __u16 all; } rxopt; /* sockopt flags */ __u16 recverr:1, sndflow:1, repflow:1, pmtudisc:3, padding:1, /* 1 bit hole */ srcprefs:3, /* 001: prefer temporary address * 010: prefer public address * 100: prefer care-of address */ dontfrag:1, autoflowlabel:1, autoflowlabel_set:1, mc_all:1, recverr_rfc4884:1, rtalert_isolate:1; __u8 min_hopcount; __u8 tclass; __be32 rcv_flowinfo; __u32 dst_cookie; __u32 rx_dst_cookie; struct ipv6_mc_socklist __rcu *ipv6_mc_list; struct ipv6_ac_socklist *ipv6_ac_list; struct ipv6_fl_socklist __rcu *ipv6_fl_list; struct ipv6_txoptions __rcu *opt; struct sk_buff *pktoptions; struct sk_buff *rxpmtu; struct inet6_cork cork; }; /* WARNING: don't change the layout of the members in {raw,udp,tcp}6_sock! */ struct raw6_sock { /* inet_sock has to be the first member of raw6_sock */ struct inet_sock inet; __u32 checksum; /* perform checksum */ __u32 offset; /* checksum offset */ struct icmp6_filter filter; __u32 ip6mr_table; /* ipv6_pinfo has to be the last member of raw6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; struct udp6_sock { struct udp_sock udp; /* ipv6_pinfo has to be the last member of udp6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; struct tcp6_sock { struct tcp_sock tcp; /* ipv6_pinfo has to be the last member of tcp6_sock, see inet6_sk_generic */ struct ipv6_pinfo inet6; }; extern int inet6_sk_rebuild_header(struct sock *sk); struct tcp6_timewait_sock { struct tcp_timewait_sock tcp6tw_tcp; }; #if IS_ENABLED(CONFIG_IPV6) bool ipv6_mod_enabled(void); static inline struct ipv6_pinfo *inet6_sk(const struct sock *__sk) { return sk_fullsock(__sk) ? inet_sk(__sk)->pinet6 : NULL; } static inline struct raw6_sock *raw6_sk(const struct sock *sk) { return (struct raw6_sock *)sk; } #define __ipv6_only_sock(sk) (sk->sk_ipv6only) #define ipv6_only_sock(sk) (__ipv6_only_sock(sk)) #define ipv6_sk_rxinfo(sk) ((sk)->sk_family == PF_INET6 && \ inet6_sk(sk)->rxopt.bits.rxinfo) static inline const struct in6_addr *inet6_rcv_saddr(const struct sock *sk) { if (sk->sk_family == AF_INET6) return &sk->sk_v6_rcv_saddr; return NULL; } static inline int inet_v6_ipv6only(const struct sock *sk) { /* ipv6only field is at same position for timewait and other sockets */ return ipv6_only_sock(sk); } #else #define __ipv6_only_sock(sk) 0 #define ipv6_only_sock(sk) 0 #define ipv6_sk_rxinfo(sk) 0 static inline bool ipv6_mod_enabled(void) { return false; } static inline struct ipv6_pinfo * inet6_sk(const struct sock *__sk) { return NULL; } static inline struct inet6_request_sock * inet6_rsk(const struct request_sock *rsk) { return NULL; } static inline struct raw6_sock *raw6_sk(const struct sock *sk) { return NULL; } #define inet6_rcv_saddr(__sk) NULL #define tcp_twsk_ipv6only(__sk) 0 #define inet_v6_ipv6only(__sk) 0 #endif /* IS_ENABLED(CONFIG_IPV6) */ #endif /* _IPV6_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_INTERNAL_H #define BLK_INTERNAL_H #include <linux/idr.h> #include <linux/blk-mq.h> #include <linux/part_stat.h> #include <linux/blk-crypto.h> #include <xen/xen.h> #include "blk-crypto-internal.h" #include "blk-mq.h" #include "blk-mq-sched.h" /* Max future timer expiry for timeouts */ #define BLK_MAX_TIMEOUT (5 * HZ) extern struct dentry *blk_debugfs_root; struct blk_flush_queue { unsigned int flush_pending_idx:1; unsigned int flush_running_idx:1; blk_status_t rq_status; unsigned long flush_pending_since; struct list_head flush_queue[2]; struct list_head flush_data_in_flight; struct request *flush_rq; struct lock_class_key key; spinlock_t mq_flush_lock; }; extern struct kmem_cache *blk_requestq_cachep; extern struct kobj_type blk_queue_ktype; extern struct ida blk_queue_ida; static inline struct blk_flush_queue * blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) { return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; } static inline void __blk_get_queue(struct request_queue *q) { kobject_get(&q->kobj); } bool is_flush_rq(struct request *req); struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, gfp_t flags); void blk_free_flush_queue(struct blk_flush_queue *q); void blk_freeze_queue(struct request_queue *q); static inline bool biovec_phys_mergeable(struct request_queue *q, struct bio_vec *vec1, struct bio_vec *vec2) { unsigned long mask = queue_segment_boundary(q); phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; if (addr1 + vec1->bv_len != addr2) return false; if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) return false; if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) return false; return true; } static inline bool __bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { return (offset & queue_virt_boundary(q)) || ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); } /* * Check if adding a bio_vec after bprv with offset would create a gap in * the SG list. Most drivers don't care about this, but some do. */ static inline bool bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { if (!queue_virt_boundary(q)) return false; return __bvec_gap_to_prev(q, bprv, offset); } static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio, unsigned int nr_segs) { rq->nr_phys_segments = nr_segs; rq->__data_len = bio->bi_iter.bi_size; rq->bio = rq->biotail = bio; rq->ioprio = bio_prio(bio); if (bio->bi_disk) rq->rq_disk = bio->bi_disk; } #ifdef CONFIG_BLK_DEV_INTEGRITY void blk_flush_integrity(void); bool __bio_integrity_endio(struct bio *); void bio_integrity_free(struct bio *bio); static inline bool bio_integrity_endio(struct bio *bio) { if (bio_integrity(bio)) return __bio_integrity_endio(bio); return true; } bool blk_integrity_merge_rq(struct request_queue *, struct request *, struct request *); bool blk_integrity_merge_bio(struct request_queue *, struct request *, struct bio *); static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { struct bio_integrity_payload *bip = bio_integrity(req->bio); struct bio_integrity_payload *bip_next = bio_integrity(next); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct bio_integrity_payload *bip_next = bio_integrity(req->bio); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } void blk_integrity_add(struct gendisk *); void blk_integrity_del(struct gendisk *); #else /* CONFIG_BLK_DEV_INTEGRITY */ static inline bool blk_integrity_merge_rq(struct request_queue *rq, struct request *r1, struct request *r2) { return true; } static inline bool blk_integrity_merge_bio(struct request_queue *rq, struct request *r, struct bio *b) { return true; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { return false; } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { return false; } static inline void blk_flush_integrity(void) { } static inline bool bio_integrity_endio(struct bio *bio) { return true; } static inline void bio_integrity_free(struct bio *bio) { } static inline void blk_integrity_add(struct gendisk *disk) { } static inline void blk_integrity_del(struct gendisk *disk) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ unsigned long blk_rq_timeout(unsigned long timeout); void blk_add_timer(struct request *req); bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **same_queue_rq); bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs); void blk_account_io_start(struct request *req); void blk_account_io_done(struct request *req, u64 now); /* * Plug flush limits */ #define BLK_MAX_REQUEST_COUNT 32 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) /* * Internal elevator interface */ #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) void blk_insert_flush(struct request *rq); void elevator_init_mq(struct request_queue *q); int elevator_switch_mq(struct request_queue *q, struct elevator_type *new_e); void __elevator_exit(struct request_queue *, struct elevator_queue *); int elv_register_queue(struct request_queue *q, bool uevent); void elv_unregister_queue(struct request_queue *q); static inline void elevator_exit(struct request_queue *q, struct elevator_queue *e) { lockdep_assert_held(&q->sysfs_lock); blk_mq_sched_free_requests(q); __elevator_exit(q, e); } struct hd_struct *__disk_get_part(struct gendisk *disk, int partno); ssize_t part_size_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, char *buf); ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); ssize_t part_timeout_store(struct device *, struct device_attribute *, const char *, size_t); void __blk_queue_split(struct bio **bio, unsigned int *nr_segs); int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs); int blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next); unsigned int blk_recalc_rq_segments(struct request *rq); void blk_rq_set_mixed_merge(struct request *rq); bool blk_rq_merge_ok(struct request *rq, struct bio *bio); enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); int blk_dev_init(void); /* * Contribute to IO statistics IFF: * * a) it's attached to a gendisk, and * b) the queue had IO stats enabled when this request was started */ static inline bool blk_do_io_stat(struct request *rq) { return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT); } static inline void req_set_nomerge(struct request_queue *q, struct request *req) { req->cmd_flags |= REQ_NOMERGE; if (req == q->last_merge) q->last_merge = NULL; } /* * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size * is defined as 'unsigned int', meantime it has to aligned to with logical * block size which is the minimum accepted unit by hardware. */ static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) { return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; } /* * The max bio size which is aligned to q->limits.discard_granularity. This * is a hint to split large discard bio in generic block layer, then if device * driver needs to split the discard bio into smaller ones, their bi_size can * be very probably and easily aligned to discard_granularity of the device's * queue. */ static inline unsigned int bio_aligned_discard_max_sectors( struct request_queue *q) { return round_down(UINT_MAX, q->limits.discard_granularity) >> SECTOR_SHIFT; } /* * Internal io_context interface */ void get_io_context(struct io_context *ioc); struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q); struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q, gfp_t gfp_mask); void ioc_clear_queue(struct request_queue *q); int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node); /* * Internal throttling interface */ #ifdef CONFIG_BLK_DEV_THROTTLING extern int blk_throtl_init(struct request_queue *q); extern void blk_throtl_exit(struct request_queue *q); extern void blk_throtl_register_queue(struct request_queue *q); extern void blk_throtl_charge_bio_split(struct bio *bio); bool blk_throtl_bio(struct bio *bio); #else /* CONFIG_BLK_DEV_THROTTLING */ static inline int blk_throtl_init(struct request_queue *q) { return 0; } static inline void blk_throtl_exit(struct request_queue *q) { } static inline void blk_throtl_register_queue(struct request_queue *q) { } static inline void blk_throtl_charge_bio_split(struct bio *bio) { } static inline bool blk_throtl_bio(struct bio *bio) { return false; } #endif /* CONFIG_BLK_DEV_THROTTLING */ #ifdef CONFIG_BLK_DEV_THROTTLING_LOW extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, const char *page, size_t count); extern void blk_throtl_bio_endio(struct bio *bio); extern void blk_throtl_stat_add(struct request *rq, u64 time); #else static inline void blk_throtl_bio_endio(struct bio *bio) { } static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } #endif #ifdef CONFIG_BOUNCE extern int init_emergency_isa_pool(void); extern void blk_queue_bounce(struct request_queue *q, struct bio **bio); #else static inline int init_emergency_isa_pool(void) { return 0; } static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) { } #endif /* CONFIG_BOUNCE */ #ifdef CONFIG_BLK_CGROUP_IOLATENCY extern int blk_iolatency_init(struct request_queue *q); #else static inline int blk_iolatency_init(struct request_queue *q) { return 0; } #endif struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp); #ifdef CONFIG_BLK_DEV_ZONED void blk_queue_free_zone_bitmaps(struct request_queue *q); #else static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} #endif struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector); int blk_alloc_devt(struct hd_struct *part, dev_t *devt); void blk_free_devt(dev_t devt); void blk_invalidate_devt(dev_t devt); char *disk_name(struct gendisk *hd, int partno, char *buf); #define ADDPART_FLAG_NONE 0 #define ADDPART_FLAG_RAID 1 #define ADDPART_FLAG_WHOLEDISK 2 void delete_partition(struct hd_struct *part); int bdev_add_partition(struct block_device *bdev, int partno, sector_t start, sector_t length); int bdev_del_partition(struct block_device *bdev, int partno); int bdev_resize_partition(struct block_device *bdev, int partno, sector_t start, sector_t length); int disk_expand_part_tbl(struct gendisk *disk, int target); int hd_ref_init(struct hd_struct *part); /* no need to get/put refcount of part0 */ static inline int hd_struct_try_get(struct hd_struct *part) { if (part->partno) return percpu_ref_tryget_live(&part->ref); return 1; } static inline void hd_struct_put(struct hd_struct *part) { if (part->partno) percpu_ref_put(&part->ref); } static inline void hd_free_part(struct hd_struct *part) { free_percpu(part->dkstats); kfree(part->info); percpu_ref_exit(&part->ref); } /* * Any access of part->nr_sects which is not protected by partition * bd_mutex or gendisk bdev bd_mutex, should be done using this * accessor function. * * Code written along the lines of i_size_read() and i_size_write(). * CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption * on. */ static inline sector_t part_nr_sects_read(struct hd_struct *part) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) sector_t nr_sects; unsigned seq; do { seq = read_seqcount_begin(&part->nr_sects_seq); nr_sects = part->nr_sects; } while (read_seqcount_retry(&part->nr_sects_seq, seq)); return nr_sects; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) sector_t nr_sects; preempt_disable(); nr_sects = part->nr_sects; preempt_enable(); return nr_sects; #else return part->nr_sects; #endif } /* * Should be called with mutex lock held (typically bd_mutex) of partition * to provide mutual exlusion among writers otherwise seqcount might be * left in wrong state leaving the readers spinning infinitely. */ static inline void part_nr_sects_write(struct hd_struct *part, sector_t size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&part->nr_sects_seq); part->nr_sects = size; write_seqcount_end(&part->nr_sects_seq); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); part->nr_sects = size; preempt_enable(); #else part->nr_sects = size; #endif } int bio_add_hw_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset, unsigned int max_sectors, bool *same_page); #endif /* BLK_INTERNAL_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_NETLINK_H #define __LINUX_NETLINK_H #include <linux/capability.h> #include <linux/skbuff.h> #include <linux/export.h> #include <net/scm.h> #include <uapi/linux/netlink.h> struct net; static inline struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb) { return (struct nlmsghdr *)skb->data; } enum netlink_skb_flags { NETLINK_SKB_DST = 0x8, /* Dst set in sendto or sendmsg */ }; struct netlink_skb_parms { struct scm_creds creds; /* Skb credentials */ __u32 portid; __u32 dst_group; __u32 flags; struct sock *sk; bool nsid_is_set; int nsid; }; #define NETLINK_CB(skb) (*(struct netlink_skb_parms*)&((skb)->cb)) #define NETLINK_CREDS(skb) (&NETLINK_CB((skb)).creds) void netlink_table_grab(void); void netlink_table_ungrab(void); #define NL_CFG_F_NONROOT_RECV (1 << 0) #define NL_CFG_F_NONROOT_SEND (1 << 1) /* optional Netlink kernel configuration parameters */ struct netlink_kernel_cfg { unsigned int groups; unsigned int flags; void (*input)(struct sk_buff *skb); struct mutex *cb_mutex; int (*bind)(struct net *net, int group); void (*unbind)(struct net *net, int group); bool (*compare)(struct net *net, struct sock *sk); }; struct sock *__netlink_kernel_create(struct net *net, int unit, struct module *module, struct netlink_kernel_cfg *cfg); static inline struct sock * netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg) { return __netlink_kernel_create(net, unit, THIS_MODULE, cfg); } /* this can be increased when necessary - don't expose to userland */ #define NETLINK_MAX_COOKIE_LEN 20 /** * struct netlink_ext_ack - netlink extended ACK report struct * @_msg: message string to report - don't access directly, use * %NL_SET_ERR_MSG * @bad_attr: attribute with error * @policy: policy for a bad attribute * @cookie: cookie data to return to userspace (for success) * @cookie_len: actual cookie data length */ struct netlink_ext_ack { const char *_msg; const struct nlattr *bad_attr; const struct nla_policy *policy; u8 cookie[NETLINK_MAX_COOKIE_LEN]; u8 cookie_len; }; /* Always use this macro, this allows later putting the * message into a separate section or such for things * like translation or listing all possible messages. * Currently string formatting is not supported (due * to the lack of an output buffer.) */ #define NL_SET_ERR_MSG(extack, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) \ __extack->_msg = __msg; \ } while (0) #define NL_SET_ERR_MSG_MOD(extack, msg) \ NL_SET_ERR_MSG((extack), KBUILD_MODNAME ": " msg) #define NL_SET_BAD_ATTR_POLICY(extack, attr, pol) do { \ if ((extack)) { \ (extack)->bad_attr = (attr); \ (extack)->policy = (pol); \ } \ } while (0) #define NL_SET_BAD_ATTR(extack, attr) NL_SET_BAD_ATTR_POLICY(extack, attr, NULL) #define NL_SET_ERR_MSG_ATTR_POL(extack, attr, pol, msg) do { \ static const char __msg[] = msg; \ struct netlink_ext_ack *__extack = (extack); \ \ if (__extack) { \ __extack->_msg = __msg; \ __extack->bad_attr = (attr); \ __extack->policy = (pol); \ } \ } while (0) #define NL_SET_ERR_MSG_ATTR(extack, attr, msg) \ NL_SET_ERR_MSG_ATTR_POL(extack, attr, NULL, msg) static inline void nl_set_extack_cookie_u64(struct netlink_ext_ack *extack, u64 cookie) { u64 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } static inline void nl_set_extack_cookie_u32(struct netlink_ext_ack *extack, u32 cookie) { u32 __cookie = cookie; if (!extack) return; memcpy(extack->cookie, &__cookie, sizeof(__cookie)); extack->cookie_len = sizeof(__cookie); } void netlink_kernel_release(struct sock *sk); int __netlink_change_ngroups(struct sock *sk, unsigned int groups); int netlink_change_ngroups(struct sock *sk, unsigned int groups); void __netlink_clear_multicast_users(struct sock *sk, unsigned int group); void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, const struct netlink_ext_ack *extack); int netlink_has_listeners(struct sock *sk, unsigned int group); bool netlink_strict_get_check(struct sk_buff *skb); int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 portid, int nonblock); int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation); int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, __u32 portid, __u32 group, gfp_t allocation, int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), void *filter_data); int netlink_set_err(struct sock *ssk, __u32 portid, __u32 group, int code); int netlink_register_notifier(struct notifier_block *nb); int netlink_unregister_notifier(struct notifier_block *nb); /* finegrained unicast helpers: */ struct sock *netlink_getsockbyfilp(struct file *filp); int netlink_attachskb(struct sock *sk, struct sk_buff *skb, long *timeo, struct sock *ssk); void netlink_detachskb(struct sock *sk, struct sk_buff *skb); int netlink_sendskb(struct sock *sk, struct sk_buff *skb); static inline struct sk_buff * netlink_skb_clone(struct sk_buff *skb, gfp_t gfp_mask) { struct sk_buff *nskb; nskb = skb_clone(skb, gfp_mask); if (!nskb) return NULL; /* This is a large skb, set destructor callback to release head */ if (is_vmalloc_addr(skb->head)) nskb->destructor = skb->destructor; return nskb; } /* * skb should fit one page. This choice is good for headerless malloc. * But we should limit to 8K so that userspace does not have to * use enormous buffer sizes on recvmsg() calls just to avoid * MSG_TRUNC when PAGE_SIZE is very large. */ #if PAGE_SIZE < 8192UL #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(PAGE_SIZE) #else #define NLMSG_GOODSIZE SKB_WITH_OVERHEAD(8192UL) #endif #define NLMSG_DEFAULT_SIZE (NLMSG_GOODSIZE - NLMSG_HDRLEN) struct netlink_callback { struct sk_buff *skb; const struct nlmsghdr *nlh; int (*dump)(struct sk_buff * skb, struct netlink_callback *cb); int (*done)(struct netlink_callback *cb); void *data; /* the module that dump function belong to */ struct module *module; struct netlink_ext_ack *extack; u16 family; u16 answer_flags; u32 min_dump_alloc; unsigned int prev_seq, seq; bool strict_check; union { u8 ctx[48]; /* args is deprecated. Cast a struct over ctx instead * for proper type safety. */ long args[6]; }; }; struct netlink_notify { struct net *net; u32 portid; int protocol; }; struct nlmsghdr * __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags); struct netlink_dump_control { int (*start)(struct netlink_callback *); int (*dump)(struct sk_buff *skb, struct netlink_callback *); int (*done)(struct netlink_callback *); void *data; struct module *module; u32 min_dump_alloc; }; int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control); static inline int netlink_dump_start(struct sock *ssk, struct sk_buff *skb, const struct nlmsghdr *nlh, struct netlink_dump_control *control) { if (!control->module) control->module = THIS_MODULE; return __netlink_dump_start(ssk, skb, nlh, control); } struct netlink_tap { struct net_device *dev; struct module *module; struct list_head list; }; int netlink_add_tap(struct netlink_tap *nt); int netlink_remove_tap(struct netlink_tap *nt); bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, struct user_namespace *ns, int cap); bool netlink_ns_capable(const struct sk_buff *skb, struct user_namespace *ns, int cap); bool netlink_capable(const struct sk_buff *skb, int cap); bool netlink_net_capable(const struct sk_buff *skb, int cap); #endif /* __LINUX_NETLINK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM libata #if !defined(_TRACE_LIBATA_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_LIBATA_H #include <linux/ata.h> #include <linux/libata.h> #include <linux/tracepoint.h> #include <linux/trace_seq.h> #define ata_opcode_name(opcode) { opcode, #opcode } #define show_opcode_name(val) \ __print_symbolic(val, \ ata_opcode_name(ATA_CMD_DEV_RESET), \ ata_opcode_name(ATA_CMD_CHK_POWER), \ ata_opcode_name(ATA_CMD_STANDBY), \ ata_opcode_name(ATA_CMD_IDLE), \ ata_opcode_name(ATA_CMD_EDD), \ ata_opcode_name(ATA_CMD_DOWNLOAD_MICRO), \ ata_opcode_name(ATA_CMD_DOWNLOAD_MICRO_DMA), \ ata_opcode_name(ATA_CMD_NOP), \ ata_opcode_name(ATA_CMD_FLUSH), \ ata_opcode_name(ATA_CMD_FLUSH_EXT), \ ata_opcode_name(ATA_CMD_ID_ATA), \ ata_opcode_name(ATA_CMD_ID_ATAPI), \ ata_opcode_name(ATA_CMD_SERVICE), \ ata_opcode_name(ATA_CMD_READ), \ ata_opcode_name(ATA_CMD_READ_EXT), \ ata_opcode_name(ATA_CMD_READ_QUEUED), \ ata_opcode_name(ATA_CMD_READ_STREAM_EXT), \ ata_opcode_name(ATA_CMD_READ_STREAM_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE), \ ata_opcode_name(ATA_CMD_WRITE_EXT), \ ata_opcode_name(ATA_CMD_WRITE_QUEUED), \ ata_opcode_name(ATA_CMD_WRITE_STREAM_EXT), \ ata_opcode_name(ATA_CMD_WRITE_STREAM_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_FUA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_QUEUED_FUA_EXT), \ ata_opcode_name(ATA_CMD_FPDMA_READ), \ ata_opcode_name(ATA_CMD_FPDMA_WRITE), \ ata_opcode_name(ATA_CMD_NCQ_NON_DATA), \ ata_opcode_name(ATA_CMD_FPDMA_SEND), \ ata_opcode_name(ATA_CMD_FPDMA_RECV), \ ata_opcode_name(ATA_CMD_PIO_READ), \ ata_opcode_name(ATA_CMD_PIO_READ_EXT), \ ata_opcode_name(ATA_CMD_PIO_WRITE), \ ata_opcode_name(ATA_CMD_PIO_WRITE_EXT), \ ata_opcode_name(ATA_CMD_READ_MULTI), \ ata_opcode_name(ATA_CMD_READ_MULTI_EXT), \ ata_opcode_name(ATA_CMD_WRITE_MULTI), \ ata_opcode_name(ATA_CMD_WRITE_MULTI_EXT), \ ata_opcode_name(ATA_CMD_WRITE_MULTI_FUA_EXT), \ ata_opcode_name(ATA_CMD_SET_FEATURES), \ ata_opcode_name(ATA_CMD_SET_MULTI), \ ata_opcode_name(ATA_CMD_PACKET), \ ata_opcode_name(ATA_CMD_VERIFY), \ ata_opcode_name(ATA_CMD_VERIFY_EXT), \ ata_opcode_name(ATA_CMD_WRITE_UNCORR_EXT), \ ata_opcode_name(ATA_CMD_STANDBYNOW1), \ ata_opcode_name(ATA_CMD_IDLEIMMEDIATE), \ ata_opcode_name(ATA_CMD_SLEEP), \ ata_opcode_name(ATA_CMD_INIT_DEV_PARAMS), \ ata_opcode_name(ATA_CMD_READ_NATIVE_MAX), \ ata_opcode_name(ATA_CMD_READ_NATIVE_MAX_EXT), \ ata_opcode_name(ATA_CMD_SET_MAX), \ ata_opcode_name(ATA_CMD_SET_MAX_EXT), \ ata_opcode_name(ATA_CMD_READ_LOG_EXT), \ ata_opcode_name(ATA_CMD_WRITE_LOG_EXT), \ ata_opcode_name(ATA_CMD_READ_LOG_DMA_EXT), \ ata_opcode_name(ATA_CMD_WRITE_LOG_DMA_EXT), \ ata_opcode_name(ATA_CMD_TRUSTED_NONDATA), \ ata_opcode_name(ATA_CMD_TRUSTED_RCV), \ ata_opcode_name(ATA_CMD_TRUSTED_RCV_DMA), \ ata_opcode_name(ATA_CMD_TRUSTED_SND), \ ata_opcode_name(ATA_CMD_TRUSTED_SND_DMA), \ ata_opcode_name(ATA_CMD_PMP_READ), \ ata_opcode_name(ATA_CMD_PMP_READ_DMA), \ ata_opcode_name(ATA_CMD_PMP_WRITE), \ ata_opcode_name(ATA_CMD_PMP_WRITE_DMA), \ ata_opcode_name(ATA_CMD_CONF_OVERLAY), \ ata_opcode_name(ATA_CMD_SEC_SET_PASS), \ ata_opcode_name(ATA_CMD_SEC_UNLOCK), \ ata_opcode_name(ATA_CMD_SEC_ERASE_PREP), \ ata_opcode_name(ATA_CMD_SEC_ERASE_UNIT), \ ata_opcode_name(ATA_CMD_SEC_FREEZE_LOCK), \ ata_opcode_name(ATA_CMD_SEC_DISABLE_PASS), \ ata_opcode_name(ATA_CMD_CONFIG_STREAM), \ ata_opcode_name(ATA_CMD_SMART), \ ata_opcode_name(ATA_CMD_MEDIA_LOCK), \ ata_opcode_name(ATA_CMD_MEDIA_UNLOCK), \ ata_opcode_name(ATA_CMD_DSM), \ ata_opcode_name(ATA_CMD_CHK_MED_CRD_TYP), \ ata_opcode_name(ATA_CMD_CFA_REQ_EXT_ERR), \ ata_opcode_name(ATA_CMD_CFA_WRITE_NE), \ ata_opcode_name(ATA_CMD_CFA_TRANS_SECT), \ ata_opcode_name(ATA_CMD_CFA_ERASE), \ ata_opcode_name(ATA_CMD_CFA_WRITE_MULT_NE), \ ata_opcode_name(ATA_CMD_REQ_SENSE_DATA), \ ata_opcode_name(ATA_CMD_SANITIZE_DEVICE), \ ata_opcode_name(ATA_CMD_ZAC_MGMT_IN), \ ata_opcode_name(ATA_CMD_ZAC_MGMT_OUT), \ ata_opcode_name(ATA_CMD_RESTORE), \ ata_opcode_name(ATA_CMD_READ_LONG), \ ata_opcode_name(ATA_CMD_READ_LONG_ONCE), \ ata_opcode_name(ATA_CMD_WRITE_LONG), \ ata_opcode_name(ATA_CMD_WRITE_LONG_ONCE)) #define ata_error_name(result) { result, #result } #define show_error_name(val) \ __print_symbolic(val, \ ata_error_name(ATA_ICRC), \ ata_error_name(ATA_UNC), \ ata_error_name(ATA_MC), \ ata_error_name(ATA_IDNF), \ ata_error_name(ATA_MCR), \ ata_error_name(ATA_ABORTED), \ ata_error_name(ATA_TRK0NF), \ ata_error_name(ATA_AMNF)) #define ata_protocol_name(proto) { proto, #proto } #define show_protocol_name(val) \ __print_symbolic(val, \ ata_protocol_name(ATA_PROT_UNKNOWN), \ ata_protocol_name(ATA_PROT_NODATA), \ ata_protocol_name(ATA_PROT_PIO), \ ata_protocol_name(ATA_PROT_DMA), \ ata_protocol_name(ATA_PROT_NCQ), \ ata_protocol_name(ATA_PROT_NCQ_NODATA), \ ata_protocol_name(ATAPI_PROT_NODATA), \ ata_protocol_name(ATAPI_PROT_PIO), \ ata_protocol_name(ATAPI_PROT_DMA)) const char *libata_trace_parse_status(struct trace_seq*, unsigned char); #define __parse_status(s) libata_trace_parse_status(p, s) const char *libata_trace_parse_eh_action(struct trace_seq *, unsigned int); #define __parse_eh_action(a) libata_trace_parse_eh_action(p, a) const char *libata_trace_parse_eh_err_mask(struct trace_seq *, unsigned int); #define __parse_eh_err_mask(m) libata_trace_parse_eh_err_mask(p, m) const char *libata_trace_parse_qc_flags(struct trace_seq *, unsigned int); #define __parse_qc_flags(f) libata_trace_parse_qc_flags(p, f) const char *libata_trace_parse_subcmd(struct trace_seq *, unsigned char, unsigned char, unsigned char); #define __parse_subcmd(c,f,h) libata_trace_parse_subcmd(p, c, f, h) TRACE_EVENT(ata_qc_issue, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned char, cmd ) __field( unsigned char, dev ) __field( unsigned char, lbal ) __field( unsigned char, lbam ) __field( unsigned char, lbah ) __field( unsigned char, nsect ) __field( unsigned char, feature ) __field( unsigned char, hob_lbal ) __field( unsigned char, hob_lbam ) __field( unsigned char, hob_lbah ) __field( unsigned char, hob_nsect ) __field( unsigned char, hob_feature ) __field( unsigned char, ctl ) __field( unsigned char, proto ) __field( unsigned long, flags ) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->proto = qc->tf.protocol; __entry->cmd = qc->tf.command; __entry->dev = qc->tf.device; __entry->lbal = qc->tf.lbal; __entry->lbam = qc->tf.lbam; __entry->lbah = qc->tf.lbah; __entry->hob_lbal = qc->tf.hob_lbal; __entry->hob_lbam = qc->tf.hob_lbam; __entry->hob_lbah = qc->tf.hob_lbah; __entry->feature = qc->tf.feature; __entry->hob_feature = qc->tf.hob_feature; __entry->nsect = qc->tf.nsect; __entry->hob_nsect = qc->tf.hob_nsect; ), TP_printk("ata_port=%u ata_dev=%u tag=%d proto=%s cmd=%s%s " \ " tf=(%02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x)", __entry->ata_port, __entry->ata_dev, __entry->tag, show_protocol_name(__entry->proto), show_opcode_name(__entry->cmd), __parse_subcmd(__entry->cmd, __entry->feature, __entry->hob_nsect), __entry->cmd, __entry->feature, __entry->nsect, __entry->lbal, __entry->lbam, __entry->lbah, __entry->hob_feature, __entry->hob_nsect, __entry->hob_lbal, __entry->hob_lbam, __entry->hob_lbah, __entry->dev) ); DECLARE_EVENT_CLASS(ata_qc_complete_template, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned char, status ) __field( unsigned char, dev ) __field( unsigned char, lbal ) __field( unsigned char, lbam ) __field( unsigned char, lbah ) __field( unsigned char, nsect ) __field( unsigned char, error ) __field( unsigned char, hob_lbal ) __field( unsigned char, hob_lbam ) __field( unsigned char, hob_lbah ) __field( unsigned char, hob_nsect ) __field( unsigned char, hob_feature ) __field( unsigned char, ctl ) __field( unsigned long, flags ) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->status = qc->result_tf.command; __entry->dev = qc->result_tf.device; __entry->lbal = qc->result_tf.lbal; __entry->lbam = qc->result_tf.lbam; __entry->lbah = qc->result_tf.lbah; __entry->hob_lbal = qc->result_tf.hob_lbal; __entry->hob_lbam = qc->result_tf.hob_lbam; __entry->hob_lbah = qc->result_tf.hob_lbah; __entry->error = qc->result_tf.feature; __entry->hob_feature = qc->result_tf.hob_feature; __entry->nsect = qc->result_tf.nsect; __entry->hob_nsect = qc->result_tf.hob_nsect; ), TP_printk("ata_port=%u ata_dev=%u tag=%d flags=%s status=%s " \ " res=(%02x/%02x:%02x:%02x:%02x:%02x/%02x:%02x:%02x:%02x:%02x/%02x)", __entry->ata_port, __entry->ata_dev, __entry->tag, __parse_qc_flags(__entry->flags), __parse_status(__entry->status), __entry->status, __entry->error, __entry->nsect, __entry->lbal, __entry->lbam, __entry->lbah, __entry->hob_feature, __entry->hob_nsect, __entry->hob_lbal, __entry->hob_lbam, __entry->hob_lbah, __entry->dev) ); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_internal, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_failed, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); DEFINE_EVENT(ata_qc_complete_template, ata_qc_complete_done, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc)); TRACE_EVENT(ata_eh_link_autopsy, TP_PROTO(struct ata_device *dev, unsigned int eh_action, unsigned int eh_err_mask), TP_ARGS(dev, eh_action, eh_err_mask), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, eh_action ) __field( unsigned int, eh_err_mask) ), TP_fast_assign( __entry->ata_port = dev->link->ap->print_id; __entry->ata_dev = dev->link->pmp + dev->devno; __entry->eh_action = eh_action; __entry->eh_err_mask = eh_err_mask; ), TP_printk("ata_port=%u ata_dev=%u eh_action=%s err_mask=%s", __entry->ata_port, __entry->ata_dev, __parse_eh_action(__entry->eh_action), __parse_eh_err_mask(__entry->eh_err_mask)) ); TRACE_EVENT(ata_eh_link_autopsy_qc, TP_PROTO(struct ata_queued_cmd *qc), TP_ARGS(qc), TP_STRUCT__entry( __field( unsigned int, ata_port ) __field( unsigned int, ata_dev ) __field( unsigned int, tag ) __field( unsigned int, qc_flags ) __field( unsigned int, eh_err_mask) ), TP_fast_assign( __entry->ata_port = qc->ap->print_id; __entry->ata_dev = qc->dev->link->pmp + qc->dev->devno; __entry->tag = qc->tag; __entry->qc_flags = qc->flags; __entry->eh_err_mask = qc->err_mask; ), TP_printk("ata_port=%u ata_dev=%u tag=%d flags=%s err_mask=%s", __entry->ata_port, __entry->ata_dev, __entry->tag, __parse_qc_flags(__entry->qc_flags), __parse_eh_err_mask(__entry->eh_err_mask)) ); #endif /* _TRACE_LIBATA_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 /* SPDX-License-Identifier: GPL-2.0 */ /* * The proc filesystem constants/structures */ #ifndef _LINUX_PROC_FS_H #define _LINUX_PROC_FS_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/fs.h> struct proc_dir_entry; struct seq_file; struct seq_operations; enum { /* * All /proc entries using this ->proc_ops instance are never removed. * * If in doubt, ignore this flag. */ #ifdef MODULE PROC_ENTRY_PERMANENT = 0U, #else PROC_ENTRY_PERMANENT = 1U << 0, #endif }; struct proc_ops { unsigned int proc_flags; int (*proc_open)(struct inode *, struct file *); ssize_t (*proc_read)(struct file *, char __user *, size_t, loff_t *); ssize_t (*proc_read_iter)(struct kiocb *, struct iov_iter *); ssize_t (*proc_write)(struct file *, const char __user *, size_t, loff_t *); loff_t (*proc_lseek)(struct file *, loff_t, int); int (*proc_release)(struct inode *, struct file *); __poll_t (*proc_poll)(struct file *, struct poll_table_struct *); long (*proc_ioctl)(struct file *, unsigned int, unsigned long); #ifdef CONFIG_COMPAT long (*proc_compat_ioctl)(struct file *, unsigned int, unsigned long); #endif int (*proc_mmap)(struct file *, struct vm_area_struct *); unsigned long (*proc_get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); } __randomize_layout; /* definitions for hide_pid field */ enum proc_hidepid { HIDEPID_OFF = 0, HIDEPID_NO_ACCESS = 1, HIDEPID_INVISIBLE = 2, HIDEPID_NOT_PTRACEABLE = 4, /* Limit pids to only ptraceable pids */ }; /* definitions for proc mount option pidonly */ enum proc_pidonly { PROC_PIDONLY_OFF = 0, PROC_PIDONLY_ON = 1, }; struct proc_fs_info { struct pid_namespace *pid_ns; struct dentry *proc_self; /* For /proc/self */ struct dentry *proc_thread_self; /* For /proc/thread-self */ kgid_t pid_gid; enum proc_hidepid hide_pid; enum proc_pidonly pidonly; }; static inline struct proc_fs_info *proc_sb_info(struct super_block *sb) { return sb->s_fs_info; } #ifdef CONFIG_PROC_FS typedef int (*proc_write_t)(struct file *, char *, size_t); extern void proc_root_init(void); extern void proc_flush_pid(struct pid *); extern struct proc_dir_entry *proc_symlink(const char *, struct proc_dir_entry *, const char *); struct proc_dir_entry *_proc_mkdir(const char *, umode_t, struct proc_dir_entry *, void *, bool); extern struct proc_dir_entry *proc_mkdir(const char *, struct proc_dir_entry *); extern struct proc_dir_entry *proc_mkdir_data(const char *, umode_t, struct proc_dir_entry *, void *); extern struct proc_dir_entry *proc_mkdir_mode(const char *, umode_t, struct proc_dir_entry *); struct proc_dir_entry *proc_create_mount_point(const char *name); struct proc_dir_entry *proc_create_seq_private(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_seq_data(name, mode, parent, ops, data) \ proc_create_seq_private(name, mode, parent, ops, 0, data) #define proc_create_seq(name, mode, parent, ops) \ proc_create_seq_private(name, mode, parent, ops, 0, NULL) struct proc_dir_entry *proc_create_single_data(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); #define proc_create_single(name, mode, parent, show) \ proc_create_single_data(name, mode, parent, show, NULL) extern struct proc_dir_entry *proc_create_data(const char *, umode_t, struct proc_dir_entry *, const struct proc_ops *, void *); struct proc_dir_entry *proc_create(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct proc_ops *proc_ops); extern void proc_set_size(struct proc_dir_entry *, loff_t); extern void proc_set_user(struct proc_dir_entry *, kuid_t, kgid_t); extern void *PDE_DATA(const struct inode *); extern void *proc_get_parent_data(const struct inode *); extern void proc_remove(struct proc_dir_entry *); extern void remove_proc_entry(const char *, struct proc_dir_entry *); extern int remove_proc_subtree(const char *, struct proc_dir_entry *); struct proc_dir_entry *proc_create_net_data(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, unsigned int state_size, void *data); #define proc_create_net(name, mode, parent, ops, state_size) \ proc_create_net_data(name, mode, parent, ops, state_size, NULL) struct proc_dir_entry *proc_create_net_single(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), void *data); struct proc_dir_entry *proc_create_net_data_write(const char *name, umode_t mode, struct proc_dir_entry *parent, const struct seq_operations *ops, proc_write_t write, unsigned int state_size, void *data); struct proc_dir_entry *proc_create_net_single_write(const char *name, umode_t mode, struct proc_dir_entry *parent, int (*show)(struct seq_file *, void *), proc_write_t write, void *data); extern struct pid *tgid_pidfd_to_pid(const struct file *file); struct bpf_iter_aux_info; extern int bpf_iter_init_seq_net(void *priv_data, struct bpf_iter_aux_info *aux); extern void bpf_iter_fini_seq_net(void *priv_data); #ifdef CONFIG_PROC_PID_ARCH_STATUS /* * The architecture which selects CONFIG_PROC_PID_ARCH_STATUS must * provide proc_pid_arch_status() definition. */ int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task); #endif /* CONFIG_PROC_PID_ARCH_STATUS */ #else /* CONFIG_PROC_FS */ static inline void proc_root_init(void) { } static inline void proc_flush_pid(struct pid *pid) { } static inline struct proc_dir_entry *proc_symlink(const char *name, struct proc_dir_entry *parent,const char *dest) { return NULL;} static inline struct proc_dir_entry *proc_mkdir(const char *name, struct proc_dir_entry *parent) {return NULL;} static inline struct proc_dir_entry *proc_create_mount_point(const char *name) { return NULL; } static inline struct proc_dir_entry *_proc_mkdir(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data, bool force_lookup) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_data(const char *name, umode_t mode, struct proc_dir_entry *parent, void *data) { return NULL; } static inline struct proc_dir_entry *proc_mkdir_mode(const char *name, umode_t mode, struct proc_dir_entry *parent) { return NULL; } #define proc_create_seq_private(name, mode, parent, ops, size, data) ({NULL;}) #define proc_create_seq_data(name, mode, parent, ops, data) ({NULL;}) #define proc_create_seq(name, mode, parent, ops) ({NULL;}) #define proc_create_single(name, mode, parent, show) ({NULL;}) #define proc_create_single_data(name, mode, parent, show, data) ({NULL;}) #define proc_create(name, mode, parent, proc_ops) ({NULL;}) #define proc_create_data(name, mode, parent, proc_ops, data) ({NULL;}) static inline void proc_set_size(struct proc_dir_entry *de, loff_t size) {} static inline void proc_set_user(struct proc_dir_entry *de, kuid_t uid, kgid_t gid) {} static inline void *PDE_DATA(const struct inode *inode) {BUG(); return NULL;} static inline void *proc_get_parent_data(const struct inode *inode) { BUG(); return NULL; } static inline void proc_remove(struct proc_dir_entry *de) {} #define remove_proc_entry(name, parent) do {} while (0) static inline int remove_proc_subtree(const char *name, struct proc_dir_entry *parent) { return 0; } #define proc_create_net_data(name, mode, parent, ops, state_size, data) ({NULL;}) #define proc_create_net(name, mode, parent, state_size, ops) ({NULL;}) #define proc_create_net_single(name, mode, parent, show, data) ({NULL;}) static inline struct pid *tgid_pidfd_to_pid(const struct file *file) { return ERR_PTR(-EBADF); } #endif /* CONFIG_PROC_FS */ struct net; static inline struct proc_dir_entry *proc_net_mkdir( struct net *net, const char *name, struct proc_dir_entry *parent) { return _proc_mkdir(name, 0, parent, net, true); } struct ns_common; int open_related_ns(struct ns_common *ns, struct ns_common *(*get_ns)(struct ns_common *ns)); /* get the associated pid namespace for a file in procfs */ static inline struct pid_namespace *proc_pid_ns(struct super_block *sb) { return proc_sb_info(sb)->pid_ns; } bool proc_ns_file(const struct file *file); #endif /* _LINUX_PROC_FS_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 /* SPDX-License-Identifier: GPL-2.0 */ /* * Generic nexthop implementation * * Copyright (c) 2017-19 Cumulus Networks * Copyright (c) 2017-19 David Ahern <dsa@cumulusnetworks.com> */ #ifndef __LINUX_NEXTHOP_H #define __LINUX_NEXTHOP_H #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/route.h> #include <linux/types.h> #include <net/ip_fib.h> #include <net/ip6_fib.h> #include <net/netlink.h> #define NEXTHOP_VALID_USER_FLAGS RTNH_F_ONLINK struct nexthop; struct nh_config { u32 nh_id; u8 nh_family; u8 nh_protocol; u8 nh_blackhole; u8 nh_fdb; u32 nh_flags; int nh_ifindex; struct net_device *dev; union { __be32 ipv4; struct in6_addr ipv6; } gw; struct nlattr *nh_grp; u16 nh_grp_type; struct nlattr *nh_encap; u16 nh_encap_type; u32 nlflags; struct nl_info nlinfo; }; struct nh_info { struct hlist_node dev_hash; /* entry on netns devhash */ struct nexthop *nh_parent; u8 family; bool reject_nh; bool fdb_nh; union { struct fib_nh_common fib_nhc; struct fib_nh fib_nh; struct fib6_nh fib6_nh; }; }; struct nh_grp_entry { struct nexthop *nh; u8 weight; atomic_t upper_bound; struct list_head nh_list; struct nexthop *nh_parent; /* nexthop of group with this entry */ }; struct nh_group { struct nh_group *spare; /* spare group for removals */ u16 num_nh; bool mpath; bool fdb_nh; bool has_v4; struct nh_grp_entry nh_entries[]; }; struct nexthop { struct rb_node rb_node; /* entry on netns rbtree */ struct list_head fi_list; /* v4 entries using nh */ struct list_head f6i_list; /* v6 entries using nh */ struct list_head fdb_list; /* fdb entries using this nh */ struct list_head grp_list; /* nh group entries using this nh */ struct net *net; u32 id; u8 protocol; /* app managing this nh */ u8 nh_flags; bool is_group; refcount_t refcnt; struct rcu_head rcu; union { struct nh_info __rcu *nh_info; struct nh_group __rcu *nh_grp; }; }; enum nexthop_event_type { NEXTHOP_EVENT_DEL }; int register_nexthop_notifier(struct net *net, struct notifier_block *nb); int unregister_nexthop_notifier(struct net *net, struct notifier_block *nb); /* caller is holding rcu or rtnl; no reference taken to nexthop */ struct nexthop *nexthop_find_by_id(struct net *net, u32 id); void nexthop_free_rcu(struct rcu_head *head); static inline bool nexthop_get(struct nexthop *nh) { return refcount_inc_not_zero(&nh->refcnt); } static inline void nexthop_put(struct nexthop *nh) { if (refcount_dec_and_test(&nh->refcnt)) call_rcu(&nh->rcu, nexthop_free_rcu); } static inline bool nexthop_cmp(const struct nexthop *nh1, const struct nexthop *nh2) { return nh1 == nh2; } static inline bool nexthop_is_fdb(const struct nexthop *nh) { if (nh->is_group) { const struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->fdb_nh; } else { const struct nh_info *nhi; nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->fdb_nh; } } static inline bool nexthop_has_v4(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->has_v4; } return false; } static inline bool nexthop_is_multipath(const struct nexthop *nh) { if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); return nh_grp->mpath; } return false; } struct nexthop *nexthop_select_path(struct nexthop *nh, int hash); static inline unsigned int nexthop_num_path(const struct nexthop *nh) { unsigned int rc = 1; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) rc = nh_grp->num_nh; } return rc; } static inline struct nexthop *nexthop_mpath_select(const struct nh_group *nhg, int nhsel) { /* for_nexthops macros in fib_semantics.c grabs a pointer to * the nexthop before checking nhsel */ if (nhsel >= nhg->num_nh) return NULL; return nhg->nh_entries[nhsel].nh; } static inline int nexthop_mpath_fill_node(struct sk_buff *skb, struct nexthop *nh, u8 rt_family) { struct nh_group *nhg = rtnl_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; struct nh_info *nhi = rcu_dereference_rtnl(nhe->nh_info); struct fib_nh_common *nhc = &nhi->fib_nhc; int weight = nhg->nh_entries[i].weight; if (fib_add_nexthop(skb, nhc, weight, rt_family, 0) < 0) return -EMSGSIZE; } return 0; } /* called with rcu lock */ static inline bool nexthop_is_blackhole(const struct nexthop *nh) { const struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->num_nh > 1) return false; nh = nh_grp->nh_entries[0].nh; } nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->reject_nh; } static inline void nexthop_path_fib_result(struct fib_result *res, int hash) { struct nh_info *nhi; struct nexthop *nh; nh = nexthop_select_path(res->fi->nh, hash); nhi = rcu_dereference(nh->nh_info); res->nhc = &nhi->fib_nhc; } /* called with rcu read lock or rtnl held */ static inline struct fib_nh_common *nexthop_fib_nhc(struct nexthop *nh, int nhsel) { struct nh_info *nhi; BUILD_BUG_ON(offsetof(struct fib_nh, nh_common) != 0); BUILD_BUG_ON(offsetof(struct fib6_nh, nh_common) != 0); if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); if (nh_grp->mpath) { nh = nexthop_mpath_select(nh_grp, nhsel); if (!nh) return NULL; } } nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } /* called from fib_table_lookup with rcu_lock */ static inline struct fib_nh_common *nexthop_get_nhc_lookup(const struct nexthop *nh, int fib_flags, const struct flowi4 *flp, int *nhsel) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = i; return &nhi->fib_nhc; } } } else { nhi = rcu_dereference(nh->nh_info); if (fib_lookup_good_nhc(&nhi->fib_nhc, fib_flags, flp)) { *nhsel = 0; return &nhi->fib_nhc; } } return NULL; } static inline bool nexthop_uses_dev(const struct nexthop *nh, const struct net_device *dev) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nhg = rcu_dereference(nh->nh_grp); int i; for (i = 0; i < nhg->num_nh; i++) { struct nexthop *nhe = nhg->nh_entries[i].nh; nhi = rcu_dereference(nhe->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } } else { nhi = rcu_dereference(nh->nh_info); if (nhc_l3mdev_matches_dev(&nhi->fib_nhc, dev)) return true; } return false; } static inline unsigned int fib_info_num_path(const struct fib_info *fi) { if (unlikely(fi->nh)) return nexthop_num_path(fi->nh); return fi->fib_nhs; } int fib_check_nexthop(struct nexthop *nh, u8 scope, struct netlink_ext_ack *extack); static inline struct fib_nh_common *fib_info_nhc(struct fib_info *fi, int nhsel) { if (unlikely(fi->nh)) return nexthop_fib_nhc(fi->nh, nhsel); return &fi->fib_nh[nhsel].nh_common; } /* only used when fib_nh is built into fib_info */ static inline struct fib_nh *fib_info_nh(struct fib_info *fi, int nhsel) { WARN_ON(fi->nh); return &fi->fib_nh[nhsel]; } /* * IPv6 variants */ int fib6_check_nexthop(struct nexthop *nh, struct fib6_config *cfg, struct netlink_ext_ack *extack); /* Caller should either hold rcu_read_lock(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } /* Variant of nexthop_fib6_nh(). * Caller should either hold rcu_read_lock_bh(), or RTNL. */ static inline struct fib6_nh *nexthop_fib6_nh_bh(struct nexthop *nh) { struct nh_info *nhi; if (nh->is_group) { struct nh_group *nh_grp; nh_grp = rcu_dereference_bh_rtnl(nh->nh_grp); nh = nexthop_mpath_select(nh_grp, 0); if (!nh) return NULL; } nhi = rcu_dereference_bh_rtnl(nh->nh_info); if (nhi->family == AF_INET6) return &nhi->fib6_nh; return NULL; } static inline struct net_device *fib6_info_nh_dev(struct fib6_info *f6i) { struct fib6_nh *fib6_nh; fib6_nh = f6i->nh ? nexthop_fib6_nh(f6i->nh) : f6i->fib6_nh; return fib6_nh->fib_nh_dev; } static inline void nexthop_path_fib6_result(struct fib6_result *res, int hash) { struct nexthop *nh = res->f6i->nh; struct nh_info *nhi; nh = nexthop_select_path(nh, hash); nhi = rcu_dereference_rtnl(nh->nh_info); if (nhi->reject_nh) { res->fib6_type = RTN_BLACKHOLE; res->fib6_flags |= RTF_REJECT; res->nh = nexthop_fib6_nh(nh); } else { res->nh = &nhi->fib6_nh; } } int nexthop_for_each_fib6_nh(struct nexthop *nh, int (*cb)(struct fib6_nh *nh, void *arg), void *arg); static inline int nexthop_get_family(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return nhi->family; } static inline struct fib_nh_common *nexthop_fdb_nhc(struct nexthop *nh) { struct nh_info *nhi = rcu_dereference_rtnl(nh->nh_info); return &nhi->fib_nhc; } static inline struct fib_nh_common *nexthop_path_fdb_result(struct nexthop *nh, int hash) { struct nh_info *nhi; struct nexthop *nhp; nhp = nexthop_select_path(nh, hash); if (unlikely(!nhp)) return NULL; nhi = rcu_dereference(nhp->nh_info); return &nhi->fib_nhc; } #endif
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Generic socket support routines. Memory allocators, socket lock/release * handler for protocols to use and generic option handler. * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Florian La Roche, <flla@stud.uni-sb.de> * Alan Cox, <A.Cox@swansea.ac.uk> * * Fixes: * Alan Cox : Numerous verify_area() problems * Alan Cox : Connecting on a connecting socket * now returns an error for tcp. * Alan Cox : sock->protocol is set correctly. * and is not sometimes left as 0. * Alan Cox : connect handles icmp errors on a * connect properly. Unfortunately there * is a restart syscall nasty there. I * can't match BSD without hacking the C * library. Ideas urgently sought! * Alan Cox : Disallow bind() to addresses that are * not ours - especially broadcast ones!! * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost) * Alan Cox : sock_wfree/sock_rfree don't destroy sockets, * instead they leave that for the DESTROY timer. * Alan Cox : Clean up error flag in accept * Alan Cox : TCP ack handling is buggy, the DESTROY timer * was buggy. Put a remove_sock() in the handler * for memory when we hit 0. Also altered the timer * code. The ACK stuff can wait and needs major * TCP layer surgery. * Alan Cox : Fixed TCP ack bug, removed remove sock * and fixed timer/inet_bh race. * Alan Cox : Added zapped flag for TCP * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so... * Rick Sladkey : Relaxed UDP rules for matching packets. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support * Pauline Middelink : identd support * Alan Cox : Fixed connect() taking signals I think. * Alan Cox : SO_LINGER supported * Alan Cox : Error reporting fixes * Anonymous : inet_create tidied up (sk->reuse setting) * Alan Cox : inet sockets don't set sk->type! * Alan Cox : Split socket option code * Alan Cox : Callbacks * Alan Cox : Nagle flag for Charles & Johannes stuff * Alex : Removed restriction on inet fioctl * Alan Cox : Splitting INET from NET core * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt() * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code * Alan Cox : Split IP from generic code * Alan Cox : New kfree_skbmem() * Alan Cox : Make SO_DEBUG superuser only. * Alan Cox : Allow anyone to clear SO_DEBUG * (compatibility fix) * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput. * Alan Cox : Allocator for a socket is settable. * Alan Cox : SO_ERROR includes soft errors. * Alan Cox : Allow NULL arguments on some SO_ opts * Alan Cox : Generic socket allocation to make hooks * easier (suggested by Craig Metz). * Michael Pall : SO_ERROR returns positive errno again * Steve Whitehouse: Added default destructor to free * protocol private data. * Steve Whitehouse: Added various other default routines * common to several socket families. * Chris Evans : Call suser() check last on F_SETOWN * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s() * Andi Kleen : Fix write_space callback * Chris Evans : Security fixes - signedness again * Arnaldo C. Melo : cleanups, use skb_queue_purge * * To Fix: */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <asm/unaligned.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/errqueue.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/poll.h> #include <linux/tcp.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/user_namespace.h> #include <linux/static_key.h> #include <linux/memcontrol.h> #include <linux/prefetch.h> #include <linux/compat.h> #include <linux/uaccess.h> #include <linux/netdevice.h> #include <net/protocol.h> #include <linux/skbuff.h> #include <net/net_namespace.h> #include <net/request_sock.h> #include <net/sock.h> #include <linux/net_tstamp.h> #include <net/xfrm.h> #include <linux/ipsec.h> #include <net/cls_cgroup.h> #include <net/netprio_cgroup.h> #include <linux/sock_diag.h> #include <linux/filter.h> #include <net/sock_reuseport.h> #include <net/bpf_sk_storage.h> #include <trace/events/sock.h> #include <net/tcp.h> #include <net/busy_poll.h> static DEFINE_MUTEX(proto_list_mutex); static LIST_HEAD(proto_list); static void sock_inuse_add(struct net *net, int val); /** * sk_ns_capable - General socket capability test * @sk: Socket to use a capability on or through * @user_ns: The user namespace of the capability to use * @cap: The capability to use * * Test to see if the opener of the socket had when the socket was * created and the current process has the capability @cap in the user * namespace @user_ns. */ bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap) { return file_ns_capable(sk->sk_socket->file, user_ns, cap) && ns_capable(user_ns, cap); } EXPORT_SYMBOL(sk_ns_capable); /** * sk_capable - Socket global capability test * @sk: Socket to use a capability on or through * @cap: The global capability to use * * Test to see if the opener of the socket had when the socket was * created and the current process has the capability @cap in all user * namespaces. */ bool sk_capable(const struct sock *sk, int cap) { return sk_ns_capable(sk, &init_user_ns, cap); } EXPORT_SYMBOL(sk_capable); /** * sk_net_capable - Network namespace socket capability test * @sk: Socket to use a capability on or through * @cap: The capability to use * * Test to see if the opener of the socket had when the socket was created * and the current process has the capability @cap over the network namespace * the socket is a member of. */ bool sk_net_capable(const struct sock *sk, int cap) { return sk_ns_capable(sk, sock_net(sk)->user_ns, cap); } EXPORT_SYMBOL(sk_net_capable); /* * Each address family might have different locking rules, so we have * one slock key per address family and separate keys for internal and * userspace sockets. */ static struct lock_class_key af_family_keys[AF_MAX]; static struct lock_class_key af_family_kern_keys[AF_MAX]; static struct lock_class_key af_family_slock_keys[AF_MAX]; static struct lock_class_key af_family_kern_slock_keys[AF_MAX]; /* * Make lock validator output more readable. (we pre-construct these * strings build-time, so that runtime initialization of socket * locks is fast): */ #define _sock_locks(x) \ x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \ x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \ x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \ x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \ x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \ x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \ x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \ x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \ x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \ x "27" , x "28" , x "AF_CAN" , \ x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \ x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \ x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \ x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \ x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \ x "AF_MAX" static const char *const af_family_key_strings[AF_MAX+1] = { _sock_locks("sk_lock-") }; static const char *const af_family_slock_key_strings[AF_MAX+1] = { _sock_locks("slock-") }; static const char *const af_family_clock_key_strings[AF_MAX+1] = { _sock_locks("clock-") }; static const char *const af_family_kern_key_strings[AF_MAX+1] = { _sock_locks("k-sk_lock-") }; static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = { _sock_locks("k-slock-") }; static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = { _sock_locks("k-clock-") }; static const char *const af_family_rlock_key_strings[AF_MAX+1] = { _sock_locks("rlock-") }; static const char *const af_family_wlock_key_strings[AF_MAX+1] = { _sock_locks("wlock-") }; static const char *const af_family_elock_key_strings[AF_MAX+1] = { _sock_locks("elock-") }; /* * sk_callback_lock and sk queues locking rules are per-address-family, * so split the lock classes by using a per-AF key: */ static struct lock_class_key af_callback_keys[AF_MAX]; static struct lock_class_key af_rlock_keys[AF_MAX]; static struct lock_class_key af_wlock_keys[AF_MAX]; static struct lock_class_key af_elock_keys[AF_MAX]; static struct lock_class_key af_kern_callback_keys[AF_MAX]; /* Run time adjustable parameters. */ __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX; EXPORT_SYMBOL(sysctl_wmem_max); __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX; EXPORT_SYMBOL(sysctl_rmem_max); __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX; __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX; /* Maximal space eaten by iovec or ancillary data plus some space */ int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512); EXPORT_SYMBOL(sysctl_optmem_max); int sysctl_tstamp_allow_data __read_mostly = 1; DEFINE_STATIC_KEY_FALSE(memalloc_socks_key); EXPORT_SYMBOL_GPL(memalloc_socks_key); /** * sk_set_memalloc - sets %SOCK_MEMALLOC * @sk: socket to set it on * * Set %SOCK_MEMALLOC on a socket for access to emergency reserves. * It's the responsibility of the admin to adjust min_free_kbytes * to meet the requirements */ void sk_set_memalloc(struct sock *sk) { sock_set_flag(sk, SOCK_MEMALLOC); sk->sk_allocation |= __GFP_MEMALLOC; static_branch_inc(&memalloc_socks_key); } EXPORT_SYMBOL_GPL(sk_set_memalloc); void sk_clear_memalloc(struct sock *sk) { sock_reset_flag(sk, SOCK_MEMALLOC); sk->sk_allocation &= ~__GFP_MEMALLOC; static_branch_dec(&memalloc_socks_key); /* * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward * progress of swapping. SOCK_MEMALLOC may be cleared while * it has rmem allocations due to the last swapfile being deactivated * but there is a risk that the socket is unusable due to exceeding * the rmem limits. Reclaim the reserves and obey rmem limits again. */ sk_mem_reclaim(sk); } EXPORT_SYMBOL_GPL(sk_clear_memalloc); int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { int ret; unsigned int noreclaim_flag; /* these should have been dropped before queueing */ BUG_ON(!sock_flag(sk, SOCK_MEMALLOC)); noreclaim_flag = memalloc_noreclaim_save(); ret = sk->sk_backlog_rcv(sk, skb); memalloc_noreclaim_restore(noreclaim_flag); return ret; } EXPORT_SYMBOL(__sk_backlog_rcv); static int sock_get_timeout(long timeo, void *optval, bool old_timeval) { struct __kernel_sock_timeval tv; if (timeo == MAX_SCHEDULE_TIMEOUT) { tv.tv_sec = 0; tv.tv_usec = 0; } else { tv.tv_sec = timeo / HZ; tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ; } if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec }; *(struct old_timeval32 *)optval = tv32; return sizeof(tv32); } if (old_timeval) { struct __kernel_old_timeval old_tv; old_tv.tv_sec = tv.tv_sec; old_tv.tv_usec = tv.tv_usec; *(struct __kernel_old_timeval *)optval = old_tv; return sizeof(old_tv); } *(struct __kernel_sock_timeval *)optval = tv; return sizeof(tv); } static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen, bool old_timeval) { struct __kernel_sock_timeval tv; if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) { struct old_timeval32 tv32; if (optlen < sizeof(tv32)) return -EINVAL; if (copy_from_sockptr(&tv32, optval, sizeof(tv32))) return -EFAULT; tv.tv_sec = tv32.tv_sec; tv.tv_usec = tv32.tv_usec; } else if (old_timeval) { struct __kernel_old_timeval old_tv; if (optlen < sizeof(old_tv)) return -EINVAL; if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv))) return -EFAULT; tv.tv_sec = old_tv.tv_sec; tv.tv_usec = old_tv.tv_usec; } else { if (optlen < sizeof(tv)) return -EINVAL; if (copy_from_sockptr(&tv, optval, sizeof(tv))) return -EFAULT; } if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC) return -EDOM; if (tv.tv_sec < 0) { static int warned __read_mostly; *timeo_p = 0; if (warned < 10 && net_ratelimit()) { warned++; pr_info("%s: `%s' (pid %d) tries to set negative timeout\n", __func__, current->comm, task_pid_nr(current)); } return 0; } *timeo_p = MAX_SCHEDULE_TIMEOUT; if (tv.tv_sec == 0 && tv.tv_usec == 0) return 0; if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ); return 0; } static bool sock_needs_netstamp(const struct sock *sk) { switch (sk->sk_family) { case AF_UNSPEC: case AF_UNIX: return false; default: return true; } } static void sock_disable_timestamp(struct sock *sk, unsigned long flags) { if (sk->sk_flags & flags) { sk->sk_flags &= ~flags; if (sock_needs_netstamp(sk) && !(sk->sk_flags & SK_FLAGS_TIMESTAMP)) net_disable_timestamp(); } } int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { unsigned long flags; struct sk_buff_head *list = &sk->sk_receive_queue; if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) { atomic_inc(&sk->sk_drops); trace_sock_rcvqueue_full(sk, skb); return -ENOMEM; } if (!sk_rmem_schedule(sk, skb, skb->truesize)) { atomic_inc(&sk->sk_drops); return -ENOBUFS; } skb->dev = NULL; skb_set_owner_r(skb, sk); /* we escape from rcu protected region, make sure we dont leak * a norefcounted dst */ skb_dst_force(skb); spin_lock_irqsave(&list->lock, flags); sock_skb_set_dropcount(sk, skb); __skb_queue_tail(list, skb); spin_unlock_irqrestore(&list->lock, flags); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return 0; } EXPORT_SYMBOL(__sock_queue_rcv_skb); int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int err; err = sk_filter(sk, skb); if (err) return err; return __sock_queue_rcv_skb(sk, skb); } EXPORT_SYMBOL(sock_queue_rcv_skb); int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, unsigned int trim_cap, bool refcounted) { int rc = NET_RX_SUCCESS; if (sk_filter_trim_cap(sk, skb, trim_cap)) goto discard_and_relse; skb->dev = NULL; if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) { atomic_inc(&sk->sk_drops); goto discard_and_relse; } if (nested) bh_lock_sock_nested(sk); else bh_lock_sock(sk); if (!sock_owned_by_user(sk)) { /* * trylock + unlock semantics: */ mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_); rc = sk_backlog_rcv(sk, skb); mutex_release(&sk->sk_lock.dep_map, _RET_IP_); } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) { bh_unlock_sock(sk); atomic_inc(&sk->sk_drops); goto discard_and_relse; } bh_unlock_sock(sk); out: if (refcounted) sock_put(sk); return rc; discard_and_relse: kfree_skb(skb); goto out; } EXPORT_SYMBOL(__sk_receive_skb); struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = __sk_dst_get(sk); if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { sk_tx_queue_clear(sk); sk->sk_dst_pending_confirm = 0; RCU_INIT_POINTER(sk->sk_dst_cache, NULL); dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(__sk_dst_check); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie) { struct dst_entry *dst = sk_dst_get(sk); if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) { sk_dst_reset(sk); dst_release(dst); return NULL; } return dst; } EXPORT_SYMBOL(sk_dst_check); static int sock_bindtoindex_locked(struct sock *sk, int ifindex) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); /* Sorry... */ ret = -EPERM; if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW)) goto out; ret = -EINVAL; if (ifindex < 0) goto out; sk->sk_bound_dev_if = ifindex; if (sk->sk_prot->rehash) sk->sk_prot->rehash(sk); sk_dst_reset(sk); ret = 0; out: #endif return ret; } int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk) { int ret; if (lock_sk) lock_sock(sk); ret = sock_bindtoindex_locked(sk, ifindex); if (lock_sk) release_sock(sk); return ret; } EXPORT_SYMBOL(sock_bindtoindex); static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); char devname[IFNAMSIZ]; int index; ret = -EINVAL; if (optlen < 0) goto out; /* Bind this socket to a particular device like "eth0", * as specified in the passed interface name. If the * name is "" or the option length is zero the socket * is not bound. */ if (optlen > IFNAMSIZ - 1) optlen = IFNAMSIZ - 1; memset(devname, 0, sizeof(devname)); ret = -EFAULT; if (copy_from_sockptr(devname, optval, optlen)) goto out; index = 0; if (devname[0] != '\0') { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_name_rcu(net, devname); if (dev) index = dev->ifindex; rcu_read_unlock(); ret = -ENODEV; if (!dev) goto out; } return sock_bindtoindex(sk, index, true); out: #endif return ret; } static int sock_getbindtodevice(struct sock *sk, char __user *optval, int __user *optlen, int len) { int ret = -ENOPROTOOPT; #ifdef CONFIG_NETDEVICES struct net *net = sock_net(sk); char devname[IFNAMSIZ]; if (sk->sk_bound_dev_if == 0) { len = 0; goto zero; } ret = -EINVAL; if (len < IFNAMSIZ) goto out; ret = netdev_get_name(net, devname, sk->sk_bound_dev_if); if (ret) goto out; len = strlen(devname) + 1; ret = -EFAULT; if (copy_to_user(optval, devname, len)) goto out; zero: ret = -EFAULT; if (put_user(len, optlen)) goto out; ret = 0; out: #endif return ret; } bool sk_mc_loop(struct sock *sk) { if (dev_recursion_level()) return false; if (!sk) return true; switch (sk->sk_family) { case AF_INET: return inet_sk(sk)->mc_loop; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: return inet6_sk(sk)->mc_loop; #endif } WARN_ON_ONCE(1); return true; } EXPORT_SYMBOL(sk_mc_loop); void sock_set_reuseaddr(struct sock *sk) { lock_sock(sk); sk->sk_reuse = SK_CAN_REUSE; release_sock(sk); } EXPORT_SYMBOL(sock_set_reuseaddr); void sock_set_reuseport(struct sock *sk) { lock_sock(sk); sk->sk_reuseport = true; release_sock(sk); } EXPORT_SYMBOL(sock_set_reuseport); void sock_no_linger(struct sock *sk) { lock_sock(sk); sk->sk_lingertime = 0; sock_set_flag(sk, SOCK_LINGER); release_sock(sk); } EXPORT_SYMBOL(sock_no_linger); void sock_set_priority(struct sock *sk, u32 priority) { lock_sock(sk); sk->sk_priority = priority; release_sock(sk); } EXPORT_SYMBOL(sock_set_priority); void sock_set_sndtimeo(struct sock *sk, s64 secs) { lock_sock(sk); if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1) sk->sk_sndtimeo = secs * HZ; else sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; release_sock(sk); } EXPORT_SYMBOL(sock_set_sndtimeo); static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns) { if (val) { sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new); sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns); sock_set_flag(sk, SOCK_RCVTSTAMP); sock_enable_timestamp(sk, SOCK_TIMESTAMP); } else { sock_reset_flag(sk, SOCK_RCVTSTAMP); sock_reset_flag(sk, SOCK_RCVTSTAMPNS); } } void sock_enable_timestamps(struct sock *sk) { lock_sock(sk); __sock_set_timestamps(sk, true, false, true); release_sock(sk); } EXPORT_SYMBOL(sock_enable_timestamps); void sock_set_keepalive(struct sock *sk) { lock_sock(sk); if (sk->sk_prot->keepalive) sk->sk_prot->keepalive(sk, true); sock_valbool_flag(sk, SOCK_KEEPOPEN, true); release_sock(sk); } EXPORT_SYMBOL(sock_set_keepalive); static void __sock_set_rcvbuf(struct sock *sk, int val) { /* Ensure val * 2 fits into an int, to prevent max_t() from treating it * as a negative value. */ val = min_t(int, val, INT_MAX / 2); sk->sk_userlocks |= SOCK_RCVBUF_LOCK; /* We double it on the way in to account for "struct sk_buff" etc. * overhead. Applications assume that the SO_RCVBUF setting they make * will allow that much actual data to be received on that socket. * * Applications are unaware that "struct sk_buff" and other overheads * allocate from the receive buffer during socket buffer allocation. * * And after considering the possible alternatives, returning the value * we actually used in getsockopt is the most desirable behavior. */ WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF)); } void sock_set_rcvbuf(struct sock *sk, int val) { lock_sock(sk); __sock_set_rcvbuf(sk, val); release_sock(sk); } EXPORT_SYMBOL(sock_set_rcvbuf); static void __sock_set_mark(struct sock *sk, u32 val) { if (val != sk->sk_mark) { sk->sk_mark = val; sk_dst_reset(sk); } } void sock_set_mark(struct sock *sk, u32 val) { lock_sock(sk); __sock_set_mark(sk, val); release_sock(sk); } EXPORT_SYMBOL(sock_set_mark); /* * This is meant for all protocols to use and covers goings on * at the socket level. Everything here is generic. */ int sock_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock_txtime sk_txtime; struct sock *sk = sock->sk; int val; int valbool; struct linger ling; int ret = 0; /* * Options without arguments */ if (optname == SO_BINDTODEVICE) return sock_setbindtodevice(sk, optval, optlen); if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(val))) return -EFAULT; valbool = val ? 1 : 0; lock_sock(sk); switch (optname) { case SO_DEBUG: if (val && !capable(CAP_NET_ADMIN)) ret = -EACCES; else sock_valbool_flag(sk, SOCK_DBG, valbool); break; case SO_REUSEADDR: sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); break; case SO_REUSEPORT: sk->sk_reuseport = valbool; break; case SO_TYPE: case SO_PROTOCOL: case SO_DOMAIN: case SO_ERROR: ret = -ENOPROTOOPT; break; case SO_DONTROUTE: sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); sk_dst_reset(sk); break; case SO_BROADCAST: sock_valbool_flag(sk, SOCK_BROADCAST, valbool); break; case SO_SNDBUF: /* Don't error on this BSD doesn't and if you think * about it this is right. Otherwise apps have to * play 'guess the biggest size' games. RCVBUF/SNDBUF * are treated in BSD as hints */ val = min_t(u32, val, sysctl_wmem_max); set_sndbuf: /* Ensure val * 2 fits into an int, to prevent max_t() * from treating it as a negative value. */ val = min_t(int, val, INT_MAX / 2); sk->sk_userlocks |= SOCK_SNDBUF_LOCK; WRITE_ONCE(sk->sk_sndbuf, max_t(int, val * 2, SOCK_MIN_SNDBUF)); /* Wake up sending tasks if we upped the value. */ sk->sk_write_space(sk); break; case SO_SNDBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } /* No negative values (to prevent underflow, as val will be * multiplied by 2). */ if (val < 0) val = 0; goto set_sndbuf; case SO_RCVBUF: /* Don't error on this BSD doesn't and if you think * about it this is right. Otherwise apps have to * play 'guess the biggest size' games. RCVBUF/SNDBUF * are treated in BSD as hints */ __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max)); break; case SO_RCVBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } /* No negative values (to prevent underflow, as val will be * multiplied by 2). */ __sock_set_rcvbuf(sk, max(val, 0)); break; case SO_KEEPALIVE: if (sk->sk_prot->keepalive) sk->sk_prot->keepalive(sk, valbool); sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); break; case SO_OOBINLINE: sock_valbool_flag(sk, SOCK_URGINLINE, valbool); break; case SO_NO_CHECK: sk->sk_no_check_tx = valbool; break; case SO_PRIORITY: if ((val >= 0 && val <= 6) || ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) sk->sk_priority = val; else ret = -EPERM; break; case SO_LINGER: if (optlen < sizeof(ling)) { ret = -EINVAL; /* 1003.1g */ break; } if (copy_from_sockptr(&ling, optval, sizeof(ling))) { ret = -EFAULT; break; } if (!ling.l_onoff) sock_reset_flag(sk, SOCK_LINGER); else { #if (BITS_PER_LONG == 32) if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; else #endif sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; sock_set_flag(sk, SOCK_LINGER); } break; case SO_BSDCOMPAT: break; case SO_PASSCRED: if (valbool) set_bit(SOCK_PASSCRED, &sock->flags); else clear_bit(SOCK_PASSCRED, &sock->flags); break; case SO_TIMESTAMP_OLD: __sock_set_timestamps(sk, valbool, false, false); break; case SO_TIMESTAMP_NEW: __sock_set_timestamps(sk, valbool, true, false); break; case SO_TIMESTAMPNS_OLD: __sock_set_timestamps(sk, valbool, false, true); break; case SO_TIMESTAMPNS_NEW: __sock_set_timestamps(sk, valbool, true, true); break; case SO_TIMESTAMPING_NEW: case SO_TIMESTAMPING_OLD: if (val & ~SOF_TIMESTAMPING_MASK) { ret = -EINVAL; break; } if (val & SOF_TIMESTAMPING_OPT_ID && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) { if (sk->sk_protocol == IPPROTO_TCP && sk->sk_type == SOCK_STREAM) { if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) { ret = -EINVAL; break; } sk->sk_tskey = tcp_sk(sk)->snd_una; } else { sk->sk_tskey = 0; } } if (val & SOF_TIMESTAMPING_OPT_STATS && !(val & SOF_TIMESTAMPING_OPT_TSONLY)) { ret = -EINVAL; break; } sk->sk_tsflags = val; sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW); if (val & SOF_TIMESTAMPING_RX_SOFTWARE) sock_enable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); else sock_disable_timestamp(sk, (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); break; case SO_RCVLOWAT: if (val < 0) val = INT_MAX; if (sock->ops->set_rcvlowat) ret = sock->ops->set_rcvlowat(sk, val); else WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); break; case SO_RCVTIMEO_OLD: case SO_RCVTIMEO_NEW: ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD); break; case SO_SNDTIMEO_OLD: case SO_SNDTIMEO_NEW: ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD); break; case SO_ATTACH_FILTER: { struct sock_fprog fprog; ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); if (!ret) ret = sk_attach_filter(&fprog, sk); break; } case SO_ATTACH_BPF: ret = -EINVAL; if (optlen == sizeof(u32)) { u32 ufd; ret = -EFAULT; if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) break; ret = sk_attach_bpf(ufd, sk); } break; case SO_ATTACH_REUSEPORT_CBPF: { struct sock_fprog fprog; ret = copy_bpf_fprog_from_user(&fprog, optval, optlen); if (!ret) ret = sk_reuseport_attach_filter(&fprog, sk); break; } case SO_ATTACH_REUSEPORT_EBPF: ret = -EINVAL; if (optlen == sizeof(u32)) { u32 ufd; ret = -EFAULT; if (copy_from_sockptr(&ufd, optval, sizeof(ufd))) break; ret = sk_reuseport_attach_bpf(ufd, sk); } break; case SO_DETACH_REUSEPORT_BPF: ret = reuseport_detach_prog(sk); break; case SO_DETACH_FILTER: ret = sk_detach_filter(sk); break; case SO_LOCK_FILTER: if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool) ret = -EPERM; else sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool); break; case SO_PASSSEC: if (valbool) set_bit(SOCK_PASSSEC, &sock->flags); else clear_bit(SOCK_PASSSEC, &sock->flags); break; case SO_MARK: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { ret = -EPERM; break; } __sock_set_mark(sk, val); break; case SO_RXQ_OVFL: sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); break; case SO_WIFI_STATUS: sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); break; case SO_PEEK_OFF: if (sock->ops->set_peek_off) ret = sock->ops->set_peek_off(sk, val); else ret = -EOPNOTSUPP; break; case SO_NOFCS: sock_valbool_flag(sk, SOCK_NOFCS, valbool); break; case SO_SELECT_ERR_QUEUE: sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool); break; #ifdef CONFIG_NET_RX_BUSY_POLL case SO_BUSY_POLL: /* allow unprivileged users to decrease the value */ if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN)) ret = -EPERM; else { if (val < 0) ret = -EINVAL; else WRITE_ONCE(sk->sk_ll_usec, val); } break; #endif case SO_MAX_PACING_RATE: { unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val; if (sizeof(ulval) != sizeof(val) && optlen >= sizeof(ulval) && copy_from_sockptr(&ulval, optval, sizeof(ulval))) { ret = -EFAULT; break; } if (ulval != ~0UL) cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED); sk->sk_max_pacing_rate = ulval; sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval); break; } case SO_INCOMING_CPU: WRITE_ONCE(sk->sk_incoming_cpu, val); break; case SO_CNX_ADVICE: if (val == 1) dst_negative_advice(sk); break; case SO_ZEROCOPY: if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) { if (!((sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP) || (sk->sk_type == SOCK_DGRAM && sk->sk_protocol == IPPROTO_UDP))) ret = -ENOTSUPP; } else if (sk->sk_family != PF_RDS) { ret = -ENOTSUPP; } if (!ret) { if (val < 0 || val > 1) ret = -EINVAL; else sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool); } break; case SO_TXTIME: if (optlen != sizeof(struct sock_txtime)) { ret = -EINVAL; break; } else if (copy_from_sockptr(&sk_txtime, optval, sizeof(struct sock_txtime))) { ret = -EFAULT; break; } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) { ret = -EINVAL; break; } /* CLOCK_MONOTONIC is only used by sch_fq, and this packet * scheduler has enough safe guards. */ if (sk_txtime.clockid != CLOCK_MONOTONIC && !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) { ret = -EPERM; break; } sock_valbool_flag(sk, SOCK_TXTIME, true); sk->sk_clockid = sk_txtime.clockid; sk->sk_txtime_deadline_mode = !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE); sk->sk_txtime_report_errors = !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS); break; case SO_BINDTOIFINDEX: ret = sock_bindtoindex_locked(sk, val); break; default: ret = -ENOPROTOOPT; break; } release_sock(sk); return ret; } EXPORT_SYMBOL(sock_setsockopt); static const struct cred *sk_get_peer_cred(struct sock *sk) { const struct cred *cred; spin_lock(&sk->sk_peer_lock); cred = get_cred(sk->sk_peer_cred); spin_unlock(&sk->sk_peer_lock); return cred; } static void cred_to_ucred(struct pid *pid, const struct cred *cred, struct ucred *ucred) { ucred->pid = pid_vnr(pid); ucred->uid = ucred->gid = -1; if (cred) { struct user_namespace *current_ns = current_user_ns(); ucred->uid = from_kuid_munged(current_ns, cred->euid); ucred->gid = from_kgid_munged(current_ns, cred->egid); } } static int groups_to_user(gid_t __user *dst, const struct group_info *src) { struct user_namespace *user_ns = current_user_ns(); int i; for (i = 0; i < src->ngroups; i++) if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i)) return -EFAULT; return 0; } int sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; union { int val; u64 val64; unsigned long ulval; struct linger ling; struct old_timeval32 tm32; struct __kernel_old_timeval tm; struct __kernel_sock_timeval stm; struct sock_txtime txtime; } v; int lv = sizeof(int); int len; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; memset(&v, 0, sizeof(v)); switch (optname) { case SO_DEBUG: v.val = sock_flag(sk, SOCK_DBG); break; case SO_DONTROUTE: v.val = sock_flag(sk, SOCK_LOCALROUTE); break; case SO_BROADCAST: v.val = sock_flag(sk, SOCK_BROADCAST); break; case SO_SNDBUF: v.val = sk->sk_sndbuf; break; case SO_RCVBUF: v.val = sk->sk_rcvbuf; break; case SO_REUSEADDR: v.val = sk->sk_reuse; break; case SO_REUSEPORT: v.val = sk->sk_reuseport; break; case SO_KEEPALIVE: v.val = sock_flag(sk, SOCK_KEEPOPEN); break; case SO_TYPE: v.val = sk->sk_type; break; case SO_PROTOCOL: v.val = sk->sk_protocol; break; case SO_DOMAIN: v.val = sk->sk_family; break; case SO_ERROR: v.val = -sock_error(sk); if (v.val == 0) v.val = xchg(&sk->sk_err_soft, 0); break; case SO_OOBINLINE: v.val = sock_flag(sk, SOCK_URGINLINE); break; case SO_NO_CHECK: v.val = sk->sk_no_check_tx; break; case SO_PRIORITY: v.val = sk->sk_priority; break; case SO_LINGER: lv = sizeof(v.ling); v.ling.l_onoff = sock_flag(sk, SOCK_LINGER); v.ling.l_linger = sk->sk_lingertime / HZ; break; case SO_BSDCOMPAT: break; case SO_TIMESTAMP_OLD: v.val = sock_flag(sk, SOCK_RCVTSTAMP) && !sock_flag(sk, SOCK_TSTAMP_NEW) && !sock_flag(sk, SOCK_RCVTSTAMPNS); break; case SO_TIMESTAMPNS_OLD: v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW); break; case SO_TIMESTAMP_NEW: v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW); break; case SO_TIMESTAMPNS_NEW: v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW); break; case SO_TIMESTAMPING_OLD: v.val = sk->sk_tsflags; break; case SO_RCVTIMEO_OLD: case SO_RCVTIMEO_NEW: lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname); break; case SO_SNDTIMEO_OLD: case SO_SNDTIMEO_NEW: lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname); break; case SO_RCVLOWAT: v.val = sk->sk_rcvlowat; break; case SO_SNDLOWAT: v.val = 1; break; case SO_PASSCRED: v.val = !!test_bit(SOCK_PASSCRED, &sock->flags); break; case SO_PEERCRED: { struct ucred peercred; if (len > sizeof(peercred)) len = sizeof(peercred); spin_lock(&sk->sk_peer_lock); cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred); spin_unlock(&sk->sk_peer_lock); if (copy_to_user(optval, &peercred, len)) return -EFAULT; goto lenout; } case SO_PEERGROUPS: { const struct cred *cred; int ret, n; cred = sk_get_peer_cred(sk); if (!cred) return -ENODATA; n = cred->group_info->ngroups; if (len < n * sizeof(gid_t)) { len = n * sizeof(gid_t); put_cred(cred); return put_user(len, optlen) ? -EFAULT : -ERANGE; } len = n * sizeof(gid_t); ret = groups_to_user((gid_t __user *)optval, cred->group_info); put_cred(cred); if (ret) return ret; goto lenout; } case SO_PEERNAME: { char address[128]; lv = sock->ops->getname(sock, (struct sockaddr *)address, 2); if (lv < 0) return -ENOTCONN; if (lv < len) return -EINVAL; if (copy_to_user(optval, address, len)) return -EFAULT; goto lenout; } /* Dubious BSD thing... Probably nobody even uses it, but * the UNIX standard wants it for whatever reason... -DaveM */ case SO_ACCEPTCONN: v.val = sk->sk_state == TCP_LISTEN; break; case SO_PASSSEC: v.val = !!test_bit(SOCK_PASSSEC, &sock->flags); break; case SO_PEERSEC: return security_socket_getpeersec_stream(sock, optval, optlen, len); case SO_MARK: v.val = sk->sk_mark; break; case SO_RXQ_OVFL: v.val = sock_flag(sk, SOCK_RXQ_OVFL); break; case SO_WIFI_STATUS: v.val = sock_flag(sk, SOCK_WIFI_STATUS); break; case SO_PEEK_OFF: if (!sock->ops->set_peek_off) return -EOPNOTSUPP; v.val = sk->sk_peek_off; break; case SO_NOFCS: v.val = sock_flag(sk, SOCK_NOFCS); break; case SO_BINDTODEVICE: return sock_getbindtodevice(sk, optval, optlen, len); case SO_GET_FILTER: len = sk_get_filter(sk, (struct sock_filter __user *)optval, len); if (len < 0) return len; goto lenout; case SO_LOCK_FILTER: v.val = sock_flag(sk, SOCK_FILTER_LOCKED); break; case SO_BPF_EXTENSIONS: v.val = bpf_tell_extensions(); break; case SO_SELECT_ERR_QUEUE: v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE); break; #ifdef CONFIG_NET_RX_BUSY_POLL case SO_BUSY_POLL: v.val = sk->sk_ll_usec; break; #endif case SO_MAX_PACING_RATE: if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) { lv = sizeof(v.ulval); v.ulval = sk->sk_max_pacing_rate; } else { /* 32bit version */ v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U); } break; case SO_INCOMING_CPU: v.val = READ_ONCE(sk->sk_incoming_cpu); break; case SO_MEMINFO: { u32 meminfo[SK_MEMINFO_VARS]; sk_get_meminfo(sk, meminfo); len = min_t(unsigned int, len, sizeof(meminfo)); if (copy_to_user(optval, &meminfo, len)) return -EFAULT; goto lenout; } #ifdef CONFIG_NET_RX_BUSY_POLL case SO_INCOMING_NAPI_ID: v.val = READ_ONCE(sk->sk_napi_id); /* aggregate non-NAPI IDs down to 0 */ if (v.val < MIN_NAPI_ID) v.val = 0; break; #endif case SO_COOKIE: lv = sizeof(u64); if (len < lv) return -EINVAL; v.val64 = sock_gen_cookie(sk); break; case SO_ZEROCOPY: v.val = sock_flag(sk, SOCK_ZEROCOPY); break; case SO_TXTIME: lv = sizeof(v.txtime); v.txtime.clockid = sk->sk_clockid; v.txtime.flags |= sk->sk_txtime_deadline_mode ? SOF_TXTIME_DEADLINE_MODE : 0; v.txtime.flags |= sk->sk_txtime_report_errors ? SOF_TXTIME_REPORT_ERRORS : 0; break; case SO_BINDTOIFINDEX: v.val = sk->sk_bound_dev_if; break; default: /* We implement the SO_SNDLOWAT etc to not be settable * (1003.1g 7). */ return -ENOPROTOOPT; } if (len > lv) len = lv; if (copy_to_user(optval, &v, len)) return -EFAULT; lenout: if (put_user(len, optlen)) return -EFAULT; return 0; } /* * Initialize an sk_lock. * * (We also register the sk_lock with the lock validator.) */ static inline void sock_lock_init(struct sock *sk) { if (sk->sk_kern_sock) sock_lock_init_class_and_name( sk, af_family_kern_slock_key_strings[sk->sk_family], af_family_kern_slock_keys + sk->sk_family, af_family_kern_key_strings[sk->sk_family], af_family_kern_keys + sk->sk_family); else sock_lock_init_class_and_name( sk, af_family_slock_key_strings[sk->sk_family], af_family_slock_keys + sk->sk_family, af_family_key_strings[sk->sk_family], af_family_keys + sk->sk_family); } /* * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet, * even temporarly, because of RCU lookups. sk_node should also be left as is. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end */ static void sock_copy(struct sock *nsk, const struct sock *osk) { const struct proto *prot = READ_ONCE(osk->sk_prot); #ifdef CONFIG_SECURITY_NETWORK void *sptr = nsk->sk_security; #endif memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin)); memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end, prot->obj_size - offsetof(struct sock, sk_dontcopy_end)); #ifdef CONFIG_SECURITY_NETWORK nsk->sk_security = sptr; security_sk_clone(osk, nsk); #endif } static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority, int family) { struct sock *sk; struct kmem_cache *slab; slab = prot->slab; if (slab != NULL) { sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO); if (!sk) return sk; if (want_init_on_alloc(priority)) sk_prot_clear_nulls(sk, prot->obj_size); } else sk = kmalloc(prot->obj_size, priority); if (sk != NULL) { if (security_sk_alloc(sk, family, priority)) goto out_free; if (!try_module_get(prot->owner)) goto out_free_sec; sk_tx_queue_clear(sk); } return sk; out_free_sec: security_sk_free(sk); out_free: if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); return NULL; } static void sk_prot_free(struct proto *prot, struct sock *sk) { struct kmem_cache *slab; struct module *owner; owner = prot->owner; slab = prot->slab; cgroup_sk_free(&sk->sk_cgrp_data); mem_cgroup_sk_free(sk); security_sk_free(sk); if (slab != NULL) kmem_cache_free(slab, sk); else kfree(sk); module_put(owner); } /** * sk_alloc - All socket objects are allocated here * @net: the applicable net namespace * @family: protocol family * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * @prot: struct proto associated with this new sock instance * @kern: is this to be a kernel socket? */ struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern) { struct sock *sk; sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family); if (sk) { sk->sk_family = family; /* * See comment in struct sock definition to understand * why we need sk_prot_creator -acme */ sk->sk_prot = sk->sk_prot_creator = prot; sk->sk_kern_sock = kern; sock_lock_init(sk); sk->sk_net_refcnt = kern ? 0 : 1; if (likely(sk->sk_net_refcnt)) { get_net(net); sock_inuse_add(net, 1); } sock_net_set(sk, net); refcount_set(&sk->sk_wmem_alloc, 1); mem_cgroup_sk_alloc(sk); cgroup_sk_alloc(&sk->sk_cgrp_data); sock_update_classid(&sk->sk_cgrp_data); sock_update_netprioidx(&sk->sk_cgrp_data); sk_tx_queue_clear(sk); } return sk; } EXPORT_SYMBOL(sk_alloc); /* Sockets having SOCK_RCU_FREE will call this function after one RCU * grace period. This is the case for UDP sockets and TCP listeners. */ static void __sk_destruct(struct rcu_head *head) { struct sock *sk = container_of(head, struct sock, sk_rcu); struct sk_filter *filter; if (sk->sk_destruct) sk->sk_destruct(sk); filter = rcu_dereference_check(sk->sk_filter, refcount_read(&sk->sk_wmem_alloc) == 0); if (filter) { sk_filter_uncharge(sk, filter); RCU_INIT_POINTER(sk->sk_filter, NULL); } sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP); #ifdef CONFIG_BPF_SYSCALL bpf_sk_storage_free(sk); #endif if (atomic_read(&sk->sk_omem_alloc)) pr_debug("%s: optmem leakage (%d bytes) detected\n", __func__, atomic_read(&sk->sk_omem_alloc)); if (sk->sk_frag.page) { put_page(sk->sk_frag.page); sk->sk_frag.page = NULL; } /* We do not need to acquire sk->sk_peer_lock, we are the last user. */ put_cred(sk->sk_peer_cred); put_pid(sk->sk_peer_pid); if (likely(sk->sk_net_refcnt)) put_net(sock_net(sk)); sk_prot_free(sk->sk_prot_creator, sk); } void sk_destruct(struct sock *sk) { bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE); if (rcu_access_pointer(sk->sk_reuseport_cb)) { reuseport_detach_sock(sk); use_call_rcu = true; } if (use_call_rcu) call_rcu(&sk->sk_rcu, __sk_destruct); else __sk_destruct(&sk->sk_rcu); } static void __sk_free(struct sock *sk) { if (likely(sk->sk_net_refcnt)) sock_inuse_add(sock_net(sk), -1); if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk))) sock_diag_broadcast_destroy(sk); else sk_destruct(sk); } void sk_free(struct sock *sk) { /* * We subtract one from sk_wmem_alloc and can know if * some packets are still in some tx queue. * If not null, sock_wfree() will call __sk_free(sk) later */ if (refcount_dec_and_test(&sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sk_free); static void sk_init_common(struct sock *sk) { skb_queue_head_init(&sk->sk_receive_queue); skb_queue_head_init(&sk->sk_write_queue); skb_queue_head_init(&sk->sk_error_queue); rwlock_init(&sk->sk_callback_lock); lockdep_set_class_and_name(&sk->sk_receive_queue.lock, af_rlock_keys + sk->sk_family, af_family_rlock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_write_queue.lock, af_wlock_keys + sk->sk_family, af_family_wlock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_error_queue.lock, af_elock_keys + sk->sk_family, af_family_elock_key_strings[sk->sk_family]); lockdep_set_class_and_name(&sk->sk_callback_lock, af_callback_keys + sk->sk_family, af_family_clock_key_strings[sk->sk_family]); } /** * sk_clone_lock - clone a socket, and lock its clone * @sk: the socket to clone * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) */ struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority) { struct proto *prot = READ_ONCE(sk->sk_prot); struct sk_filter *filter; bool is_charged = true; struct sock *newsk; newsk = sk_prot_alloc(prot, priority, sk->sk_family); if (!newsk) goto out; sock_copy(newsk, sk); newsk->sk_prot_creator = prot; /* SANITY */ if (likely(newsk->sk_net_refcnt)) { get_net(sock_net(newsk)); sock_inuse_add(sock_net(newsk), 1); } sk_node_init(&newsk->sk_node); sock_lock_init(newsk); bh_lock_sock(newsk); newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; newsk->sk_backlog.len = 0; atomic_set(&newsk->sk_rmem_alloc, 0); /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */ refcount_set(&newsk->sk_wmem_alloc, 1); atomic_set(&newsk->sk_omem_alloc, 0); sk_init_common(newsk); newsk->sk_dst_cache = NULL; newsk->sk_dst_pending_confirm = 0; newsk->sk_wmem_queued = 0; newsk->sk_forward_alloc = 0; atomic_set(&newsk->sk_drops, 0); newsk->sk_send_head = NULL; newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; atomic_set(&newsk->sk_zckey, 0); sock_reset_flag(newsk, SOCK_DONE); /* sk->sk_memcg will be populated at accept() time */ newsk->sk_memcg = NULL; cgroup_sk_clone(&newsk->sk_cgrp_data); rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter != NULL) /* though it's an empty new sock, the charging may fail * if sysctl_optmem_max was changed between creation of * original socket and cloning */ is_charged = sk_filter_charge(newsk, filter); RCU_INIT_POINTER(newsk->sk_filter, filter); rcu_read_unlock(); if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) { /* We need to make sure that we don't uncharge the new * socket if we couldn't charge it in the first place * as otherwise we uncharge the parent's filter. */ if (!is_charged) RCU_INIT_POINTER(newsk->sk_filter, NULL); sk_free_unlock_clone(newsk); newsk = NULL; goto out; } RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL); if (bpf_sk_storage_clone(sk, newsk)) { sk_free_unlock_clone(newsk); newsk = NULL; goto out; } /* Clear sk_user_data if parent had the pointer tagged * as not suitable for copying when cloning. */ if (sk_user_data_is_nocopy(newsk)) newsk->sk_user_data = NULL; newsk->sk_err = 0; newsk->sk_err_soft = 0; newsk->sk_priority = 0; newsk->sk_incoming_cpu = raw_smp_processor_id(); /* Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.rst for details) */ smp_wmb(); refcount_set(&newsk->sk_refcnt, 2); /* Increment the counter in the same struct proto as the master * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that * is the same as sk->sk_prot->socks, as this field was copied * with memcpy). * * This _changes_ the previous behaviour, where * tcp_create_openreq_child always was incrementing the * equivalent to tcp_prot->socks (inet_sock_nr), so this have * to be taken into account in all callers. -acme */ sk_refcnt_debug_inc(newsk); sk_set_socket(newsk, NULL); sk_tx_queue_clear(newsk); RCU_INIT_POINTER(newsk->sk_wq, NULL); if (newsk->sk_prot->sockets_allocated) sk_sockets_allocated_inc(newsk); if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP) net_enable_timestamp(); out: return newsk; } EXPORT_SYMBOL_GPL(sk_clone_lock); void sk_free_unlock_clone(struct sock *sk) { /* It is still raw copy of parent, so invalidate * destructor and make plain sk_free() */ sk->sk_destruct = NULL; bh_unlock_sock(sk); sk_free(sk); } EXPORT_SYMBOL_GPL(sk_free_unlock_clone); void sk_setup_caps(struct sock *sk, struct dst_entry *dst) { u32 max_segs = 1; sk_dst_set(sk, dst); sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps; if (sk->sk_route_caps & NETIF_F_GSO) sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE; sk->sk_route_caps &= ~sk->sk_route_nocaps; if (sk_can_gso(sk)) { if (dst->header_len && !xfrm_dst_offload_ok(dst)) { sk->sk_route_caps &= ~NETIF_F_GSO_MASK; } else { sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM; sk->sk_gso_max_size = dst->dev->gso_max_size; max_segs = max_t(u32, dst->dev->gso_max_segs, 1); } } sk->sk_gso_max_segs = max_segs; } EXPORT_SYMBOL_GPL(sk_setup_caps); /* * Simple resource managers for sockets. */ /* * Write buffer destructor automatically called from kfree_skb. */ void sock_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; unsigned int len = skb->truesize; if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) { /* * Keep a reference on sk_wmem_alloc, this will be released * after sk_write_space() call */ WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc)); sk->sk_write_space(sk); len = 1; } /* * if sk_wmem_alloc reaches 0, we must finish what sk_free() * could not do because of in-flight packets */ if (refcount_sub_and_test(len, &sk->sk_wmem_alloc)) __sk_free(sk); } EXPORT_SYMBOL(sock_wfree); /* This variant of sock_wfree() is used by TCP, * since it sets SOCK_USE_WRITE_QUEUE. */ void __sock_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc)) __sk_free(sk); } void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; #ifdef CONFIG_INET if (unlikely(!sk_fullsock(sk))) { skb->destructor = sock_edemux; sock_hold(sk); return; } #endif skb->destructor = sock_wfree; skb_set_hash_from_sk(skb, sk); /* * We used to take a refcount on sk, but following operation * is enough to guarantee sk_free() wont free this sock until * all in-flight packets are completed */ refcount_add(skb->truesize, &sk->sk_wmem_alloc); } EXPORT_SYMBOL(skb_set_owner_w); static bool can_skb_orphan_partial(const struct sk_buff *skb) { #ifdef CONFIG_TLS_DEVICE /* Drivers depend on in-order delivery for crypto offload, * partial orphan breaks out-of-order-OK logic. */ if (skb->decrypted) return false; #endif return (skb->destructor == sock_wfree || (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree)); } /* This helper is used by netem, as it can hold packets in its * delay queue. We want to allow the owner socket to send more * packets, as if they were already TX completed by a typical driver. * But we also want to keep skb->sk set because some packet schedulers * rely on it (sch_fq for example). */ void skb_orphan_partial(struct sk_buff *skb) { if (skb_is_tcp_pure_ack(skb)) return; if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk)) return; skb_orphan(skb); } EXPORT_SYMBOL(skb_orphan_partial); /* * Read buffer destructor automatically called from kfree_skb. */ void sock_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; unsigned int len = skb->truesize; atomic_sub(len, &sk->sk_rmem_alloc); sk_mem_uncharge(sk, len); } EXPORT_SYMBOL(sock_rfree); /* * Buffer destructor for skbs that are not used directly in read or write * path, e.g. for error handler skbs. Automatically called from kfree_skb. */ void sock_efree(struct sk_buff *skb) { sock_put(skb->sk); } EXPORT_SYMBOL(sock_efree); /* Buffer destructor for prefetch/receive path where reference count may * not be held, e.g. for listen sockets. */ #ifdef CONFIG_INET void sock_pfree(struct sk_buff *skb) { if (sk_is_refcounted(skb->sk)) sock_gen_put(skb->sk); } EXPORT_SYMBOL(sock_pfree); #endif /* CONFIG_INET */ kuid_t sock_i_uid(struct sock *sk) { kuid_t uid; read_lock_bh(&sk->sk_callback_lock); uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID; read_unlock_bh(&sk->sk_callback_lock); return uid; } EXPORT_SYMBOL(sock_i_uid); unsigned long sock_i_ino(struct sock *sk) { unsigned long ino; read_lock_bh(&sk->sk_callback_lock); ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0; read_unlock_bh(&sk->sk_callback_lock); return ino; } EXPORT_SYMBOL(sock_i_ino); /* * Allocate a skb from the socket's send buffer. */ struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority) { if (force || refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) { struct sk_buff *skb = alloc_skb(size, priority); if (skb) { skb_set_owner_w(skb, sk); return skb; } } return NULL; } EXPORT_SYMBOL(sock_wmalloc); static void sock_ofree(struct sk_buff *skb) { struct sock *sk = skb->sk; atomic_sub(skb->truesize, &sk->sk_omem_alloc); } struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, gfp_t priority) { struct sk_buff *skb; /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */ if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) > sysctl_optmem_max) return NULL; skb = alloc_skb(size, priority); if (!skb) return NULL; atomic_add(skb->truesize, &sk->sk_omem_alloc); skb->sk = sk; skb->destructor = sock_ofree; return skb; } /* * Allocate a memory block from the socket's option memory buffer. */ void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) { if ((unsigned int)size <= sysctl_optmem_max && atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) { void *mem; /* First do the add, to avoid the race if kmalloc * might sleep. */ atomic_add(size, &sk->sk_omem_alloc); mem = kmalloc(size, priority); if (mem) return mem; atomic_sub(size, &sk->sk_omem_alloc); } return NULL; } EXPORT_SYMBOL(sock_kmalloc); /* Free an option memory block. Note, we actually want the inline * here as this allows gcc to detect the nullify and fold away the * condition entirely. */ static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, const bool nullify) { if (WARN_ON_ONCE(!mem)) return; if (nullify) kfree_sensitive(mem); else kfree(mem); atomic_sub(size, &sk->sk_omem_alloc); } void sock_kfree_s(struct sock *sk, void *mem, int size) { __sock_kfree_s(sk, mem, size, false); } EXPORT_SYMBOL(sock_kfree_s); void sock_kzfree_s(struct sock *sk, void *mem, int size) { __sock_kfree_s(sk, mem, size, true); } EXPORT_SYMBOL(sock_kzfree_s); /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. I think, these locks should be removed for datagram sockets. */ static long sock_wait_for_wmem(struct sock *sk, long timeo) { DEFINE_WAIT(wait); sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); for (;;) { if (!timeo) break; if (signal_pending(current)) break; set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) break; if (sk->sk_shutdown & SEND_SHUTDOWN) break; if (sk->sk_err) break; timeo = schedule_timeout(timeo); } finish_wait(sk_sleep(sk), &wait); return timeo; } /* * Generic send/receive buffer handlers */ struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order) { struct sk_buff *skb; long timeo; int err; timeo = sock_sndtimeo(sk, noblock); for (;;) { err = sock_error(sk); if (err != 0) goto failure; err = -EPIPE; if (sk->sk_shutdown & SEND_SHUTDOWN) goto failure; if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf)) break; sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); err = -EAGAIN; if (!timeo) goto failure; if (signal_pending(current)) goto interrupted; timeo = sock_wait_for_wmem(sk, timeo); } skb = alloc_skb_with_frags(header_len, data_len, max_page_order, errcode, sk->sk_allocation); if (skb) skb_set_owner_w(skb, sk); return skb; interrupted: err = sock_intr_errno(timeo); failure: *errcode = err; return NULL; } EXPORT_SYMBOL(sock_alloc_send_pskb); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode) { return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0); } EXPORT_SYMBOL(sock_alloc_send_skb); int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg, struct sockcm_cookie *sockc) { u32 tsflags; switch (cmsg->cmsg_type) { case SO_MARK: if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) return -EINVAL; sockc->mark = *(u32 *)CMSG_DATA(cmsg); break; case SO_TIMESTAMPING_OLD: if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32))) return -EINVAL; tsflags = *(u32 *)CMSG_DATA(cmsg); if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK) return -EINVAL; sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK; sockc->tsflags |= tsflags; break; case SCM_TXTIME: if (!sock_flag(sk, SOCK_TXTIME)) return -EINVAL; if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64))) return -EINVAL; sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg)); break; /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */ case SCM_RIGHTS: case SCM_CREDENTIALS: break; default: return -EINVAL; } return 0; } EXPORT_SYMBOL(__sock_cmsg_send); int sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct sockcm_cookie *sockc) { struct cmsghdr *cmsg; int ret; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_SOCKET) continue; ret = __sock_cmsg_send(sk, msg, cmsg, sockc); if (ret) return ret; } return 0; } EXPORT_SYMBOL(sock_cmsg_send); static void sk_enter_memory_pressure(struct sock *sk) { if (!sk->sk_prot->enter_memory_pressure) return; sk->sk_prot->enter_memory_pressure(sk); } static void sk_leave_memory_pressure(struct sock *sk) { if (sk->sk_prot->leave_memory_pressure) { sk->sk_prot->leave_memory_pressure(sk); } else { unsigned long *memory_pressure = sk->sk_prot->memory_pressure; if (memory_pressure && READ_ONCE(*memory_pressure)) WRITE_ONCE(*memory_pressure, 0); } } #define SKB_FRAG_PAGE_ORDER get_order(32768) DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); /** * skb_page_frag_refill - check that a page_frag contains enough room * @sz: minimum size of the fragment we want to get * @pfrag: pointer to page_frag * @gfp: priority for memory allocation * * Note: While this allocator tries to use high order pages, there is * no guarantee that allocations succeed. Therefore, @sz MUST be * less or equal than PAGE_SIZE. */ bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp) { if (pfrag->page) { if (page_ref_count(pfrag->page) == 1) { pfrag->offset = 0; return true; } if (pfrag->offset + sz <= pfrag->size) return true; put_page(pfrag->page); } pfrag->offset = 0; if (SKB_FRAG_PAGE_ORDER && !static_branch_unlikely(&net_high_order_alloc_disable_key)) { /* Avoid direct reclaim but allow kswapd to wake */ pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY, SKB_FRAG_PAGE_ORDER); if (likely(pfrag->page)) { pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER; return true; } } pfrag->page = alloc_page(gfp); if (likely(pfrag->page)) { pfrag->size = PAGE_SIZE; return true; } return false; } EXPORT_SYMBOL(skb_page_frag_refill); bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag) { if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation))) return true; sk_enter_memory_pressure(sk); sk_stream_moderate_sndbuf(sk); return false; } EXPORT_SYMBOL(sk_page_frag_refill); static void __lock_sock(struct sock *sk) __releases(&sk->sk_lock.slock) __acquires(&sk->sk_lock.slock) { DEFINE_WAIT(wait); for (;;) { prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_bh(&sk->sk_lock.slock); schedule(); spin_lock_bh(&sk->sk_lock.slock); if (!sock_owned_by_user(sk)) break; } finish_wait(&sk->sk_lock.wq, &wait); } void __release_sock(struct sock *sk) __releases(&sk->sk_lock.slock) __acquires(&sk->sk_lock.slock) { struct sk_buff *skb, *next; while ((skb = sk->sk_backlog.head) != NULL) { sk->sk_backlog.head = sk->sk_backlog.tail = NULL; spin_unlock_bh(&sk->sk_lock.slock); do { next = skb->next; prefetch(next); WARN_ON_ONCE(skb_dst_is_noref(skb)); skb_mark_not_on_list(skb); sk_backlog_rcv(sk, skb); cond_resched(); skb = next; } while (skb != NULL); spin_lock_bh(&sk->sk_lock.slock); } /* * Doing the zeroing here guarantee we can not loop forever * while a wild producer attempts to flood us. */ sk->sk_backlog.len = 0; } void __sk_flush_backlog(struct sock *sk) { spin_lock_bh(&sk->sk_lock.slock); __release_sock(sk); spin_unlock_bh(&sk->sk_lock.slock); } /** * sk_wait_data - wait for data to arrive at sk_receive_queue * @sk: sock to wait on * @timeo: for how long * @skb: last skb seen on sk_receive_queue * * Now socket state including sk->sk_err is changed only under lock, * hence we may omit checks after joining wait queue. * We check receive queue before schedule() only as optimization; * it is very likely that release_sock() added new data. */ int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb) { DEFINE_WAIT_FUNC(wait, woken_wake_function); int rc; add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); return rc; } EXPORT_SYMBOL(sk_wait_data); /** * __sk_mem_raise_allocated - increase memory_allocated * @sk: socket * @size: memory size to allocate * @amt: pages to allocate * @kind: allocation type * * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc */ int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind) { struct proto *prot = sk->sk_prot; long allocated = sk_memory_allocated_add(sk, amt); bool charged = true; if (mem_cgroup_sockets_enabled && sk->sk_memcg && !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt))) goto suppress_allocation; /* Under limit. */ if (allocated <= sk_prot_mem_limits(sk, 0)) { sk_leave_memory_pressure(sk); return 1; } /* Under pressure. */ if (allocated > sk_prot_mem_limits(sk, 1)) sk_enter_memory_pressure(sk); /* Over hard limit. */ if (allocated > sk_prot_mem_limits(sk, 2)) goto suppress_allocation; /* guarantee minimum buffer size under pressure */ if (kind == SK_MEM_RECV) { if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot)) return 1; } else { /* SK_MEM_SEND */ int wmem0 = sk_get_wmem0(sk, prot); if (sk->sk_type == SOCK_STREAM) { if (sk->sk_wmem_queued < wmem0) return 1; } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) { return 1; } } if (sk_has_memory_pressure(sk)) { u64 alloc; if (!sk_under_memory_pressure(sk)) return 1; alloc = sk_sockets_allocated_read_positive(sk); if (sk_prot_mem_limits(sk, 2) > alloc * sk_mem_pages(sk->sk_wmem_queued + atomic_read(&sk->sk_rmem_alloc) + sk->sk_forward_alloc)) return 1; } suppress_allocation: if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) { sk_stream_moderate_sndbuf(sk); /* Fail only if socket is _under_ its sndbuf. * In this case we cannot block, so that we have to fail. */ if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) return 1; } if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged)) trace_sock_exceed_buf_limit(sk, prot, allocated, kind); sk_memory_allocated_sub(sk, amt); if (mem_cgroup_sockets_enabled && sk->sk_memcg) mem_cgroup_uncharge_skmem(sk->sk_memcg, amt); return 0; } EXPORT_SYMBOL(__sk_mem_raise_allocated); /** * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated * @sk: socket * @size: memory size to allocate * @kind: allocation type * * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means * rmem allocation. This function assumes that protocols which have * memory_pressure use sk_wmem_queued as write buffer accounting. */ int __sk_mem_schedule(struct sock *sk, int size, int kind) { int ret, amt = sk_mem_pages(size); sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT; ret = __sk_mem_raise_allocated(sk, size, amt, kind); if (!ret) sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT; return ret; } EXPORT_SYMBOL(__sk_mem_schedule); /** * __sk_mem_reduce_allocated - reclaim memory_allocated * @sk: socket * @amount: number of quanta * * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc */ void __sk_mem_reduce_allocated(struct sock *sk, int amount) { sk_memory_allocated_sub(sk, amount); if (mem_cgroup_sockets_enabled && sk->sk_memcg) mem_cgroup_uncharge_skmem(sk->sk_memcg, amount); if (sk_under_memory_pressure(sk) && (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0))) sk_leave_memory_pressure(sk); } EXPORT_SYMBOL(__sk_mem_reduce_allocated); /** * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated * @sk: socket * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple) */ void __sk_mem_reclaim(struct sock *sk, int amount) { amount >>= SK_MEM_QUANTUM_SHIFT; sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT; __sk_mem_reduce_allocated(sk, amount); } EXPORT_SYMBOL(__sk_mem_reclaim); int sk_set_peek_off(struct sock *sk, int val) { sk->sk_peek_off = val; return 0; } EXPORT_SYMBOL_GPL(sk_set_peek_off); /* * Set of default routines for initialising struct proto_ops when * the protocol does not support a particular function. In certain * cases where it makes no sense for a protocol to have a "do nothing" * function, some default processing is provided. */ int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_bind); int sock_no_connect(struct socket *sock, struct sockaddr *saddr, int len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_connect); int sock_no_socketpair(struct socket *sock1, struct socket *sock2) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_socketpair); int sock_no_accept(struct socket *sock, struct socket *newsock, int flags, bool kern) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_accept); int sock_no_getname(struct socket *sock, struct sockaddr *saddr, int peer) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_getname); int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_ioctl); int sock_no_listen(struct socket *sock, int backlog) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_listen); int sock_no_shutdown(struct socket *sock, int how) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_shutdown); int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_sendmsg); int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_sendmsg_locked); int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) { return -EOPNOTSUPP; } EXPORT_SYMBOL(sock_no_recvmsg); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma) { /* Mirror missing mmap method error code */ return -ENODEV; } EXPORT_SYMBOL(sock_no_mmap); /* * When a file is received (via SCM_RIGHTS, etc), we must bump the * various sock-based usage counts. */ void __receive_sock(struct file *file) { struct socket *sock; int error; /* * The resulting value of "error" is ignored here since we only * need to take action when the file is a socket and testing * "sock" for NULL is sufficient. */ sock = sock_from_file(file, &error); if (sock) { sock_update_netprioidx(&sock->sk->sk_cgrp_data); sock_update_classid(&sock->sk->sk_cgrp_data); } } ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) { ssize_t res; struct msghdr msg = {.msg_flags = flags}; struct kvec iov; char *kaddr = kmap(page); iov.iov_base = kaddr + offset; iov.iov_len = size; res = kernel_sendmsg(sock, &msg, &iov, 1, size); kunmap(page); return res; } EXPORT_SYMBOL(sock_no_sendpage); ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page, int offset, size_t size, int flags) { ssize_t res; struct msghdr msg = {.msg_flags = flags}; struct kvec iov; char *kaddr = kmap(page); iov.iov_base = kaddr + offset; iov.iov_len = size; res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size); kunmap(page); return res; } EXPORT_SYMBOL(sock_no_sendpage_locked); /* * Default Socket Callbacks */ static void sock_def_wakeup(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_all(&wq->wait); rcu_read_unlock(); } static void sock_def_error_report(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_poll(&wq->wait, EPOLLERR); sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); rcu_read_unlock(); } void sock_def_readable(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI | EPOLLRDNORM | EPOLLRDBAND); sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); rcu_read_unlock(); } static void sock_def_write_space(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); /* Do not wake up a writer until he can make "significant" * progress. --DaveM */ if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) { wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND); /* Should agree with poll, otherwise some programs break */ if (sock_writeable(sk)) sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } static void sock_def_destruct(struct sock *sk) { } void sk_send_sigurg(struct sock *sk) { if (sk->sk_socket && sk->sk_socket->file) if (send_sigurg(&sk->sk_socket->file->f_owner)) sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI); } EXPORT_SYMBOL(sk_send_sigurg); void sk_reset_timer(struct sock *sk, struct timer_list* timer, unsigned long expires) { if (!mod_timer(timer, expires)) sock_hold(sk); } EXPORT_SYMBOL(sk_reset_timer); void sk_stop_timer(struct sock *sk, struct timer_list* timer) { if (del_timer(timer)) __sock_put(sk); } EXPORT_SYMBOL(sk_stop_timer); void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer) { if (del_timer_sync(timer)) __sock_put(sk); } EXPORT_SYMBOL(sk_stop_timer_sync); void sock_init_data(struct socket *sock, struct sock *sk) { sk_init_common(sk); sk->sk_send_head = NULL; timer_setup(&sk->sk_timer, NULL, 0); sk->sk_allocation = GFP_KERNEL; sk->sk_rcvbuf = sysctl_rmem_default; sk->sk_sndbuf = sysctl_wmem_default; sk->sk_state = TCP_CLOSE; sk_set_socket(sk, sock); sock_set_flag(sk, SOCK_ZAPPED); if (sock) { sk->sk_type = sock->type; RCU_INIT_POINTER(sk->sk_wq, &sock->wq); sock->sk = sk; sk->sk_uid = SOCK_INODE(sock)->i_uid; } else { RCU_INIT_POINTER(sk->sk_wq, NULL); sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0); } rwlock_init(&sk->sk_callback_lock); if (sk->sk_kern_sock) lockdep_set_class_and_name( &sk->sk_callback_lock, af_kern_callback_keys + sk->sk_family, af_family_kern_clock_key_strings[sk->sk_family]); else lockdep_set_class_and_name( &sk->sk_callback_lock, af_callback_keys + sk->sk_family, af_family_clock_key_strings[sk->sk_family]); sk->sk_state_change = sock_def_wakeup; sk->sk_data_ready = sock_def_readable; sk->sk_write_space = sock_def_write_space; sk->sk_error_report = sock_def_error_report; sk->sk_destruct = sock_def_destruct; sk->sk_frag.page = NULL; sk->sk_frag.offset = 0; sk->sk_peek_off = -1; sk->sk_peer_pid = NULL; sk->sk_peer_cred = NULL; spin_lock_init(&sk->sk_peer_lock); sk->sk_write_pending = 0; sk->sk_rcvlowat = 1; sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; sk->sk_stamp = SK_DEFAULT_STAMP; #if BITS_PER_LONG==32 seqlock_init(&sk->sk_stamp_seq); #endif atomic_set(&sk->sk_zckey, 0); #ifdef CONFIG_NET_RX_BUSY_POLL sk->sk_napi_id = 0; sk->sk_ll_usec = sysctl_net_busy_read; #endif sk->sk_max_pacing_rate = ~0UL; sk->sk_pacing_rate = ~0UL; WRITE_ONCE(sk->sk_pacing_shift, 10); sk->sk_incoming_cpu = -1; sk_rx_queue_clear(sk); /* * Before updating sk_refcnt, we must commit prior changes to memory * (Documentation/RCU/rculist_nulls.rst for details) */ smp_wmb(); refcount_set(&sk->sk_refcnt, 1); atomic_set(&sk->sk_drops, 0); } EXPORT_SYMBOL(sock_init_data); void lock_sock_nested(struct sock *sk, int subclass) { might_sleep(); spin_lock_bh(&sk->sk_lock.slock); if (sk->sk_lock.owned) __lock_sock(sk); sk->sk_lock.owned = 1; spin_unlock(&sk->sk_lock.slock); /* * The sk_lock has mutex_lock() semantics here: */ mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_); local_bh_enable(); } EXPORT_SYMBOL(lock_sock_nested); void release_sock(struct sock *sk) { spin_lock_bh(&sk->sk_lock.slock); if (sk->sk_backlog.tail) __release_sock(sk); /* Warning : release_cb() might need to release sk ownership, * ie call sock_release_ownership(sk) before us. */ if (sk->sk_prot->release_cb) sk->sk_prot->release_cb(sk); sock_release_ownership(sk); if (waitqueue_active(&sk->sk_lock.wq)) wake_up(&sk->sk_lock.wq); spin_unlock_bh(&sk->sk_lock.slock); } EXPORT_SYMBOL(release_sock); /** * lock_sock_fast - fast version of lock_sock * @sk: socket * * This version should be used for very small section, where process wont block * return false if fast path is taken: * * sk_lock.slock locked, owned = 0, BH disabled * * return true if slow path is taken: * * sk_lock.slock unlocked, owned = 1, BH enabled */ bool lock_sock_fast(struct sock *sk) { might_sleep(); spin_lock_bh(&sk->sk_lock.slock); if (!sk->sk_lock.owned) /* * Note : We must disable BH */ return false; __lock_sock(sk); sk->sk_lock.owned = 1; spin_unlock(&sk->sk_lock.slock); /* * The sk_lock has mutex_lock() semantics here: */ mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); local_bh_enable(); return true; } EXPORT_SYMBOL(lock_sock_fast); int sock_gettstamp(struct socket *sock, void __user *userstamp, bool timeval, bool time32) { struct sock *sk = sock->sk; struct timespec64 ts; sock_enable_timestamp(sk, SOCK_TIMESTAMP); ts = ktime_to_timespec64(sock_read_timestamp(sk)); if (ts.tv_sec == -1) return -ENOENT; if (ts.tv_sec == 0) { ktime_t kt = ktime_get_real(); sock_write_timestamp(sk, kt); ts = ktime_to_timespec64(kt); } if (timeval) ts.tv_nsec /= 1000; #ifdef CONFIG_COMPAT_32BIT_TIME if (time32) return put_old_timespec32(&ts, userstamp); #endif #ifdef CONFIG_SPARC64 /* beware of padding in sparc64 timeval */ if (timeval && !in_compat_syscall()) { struct __kernel_old_timeval __user tv = { .tv_sec = ts.tv_sec, .tv_usec = ts.tv_nsec, }; if (copy_to_user(userstamp, &tv, sizeof(tv))) return -EFAULT; return 0; } #endif return put_timespec64(&ts, userstamp); } EXPORT_SYMBOL(sock_gettstamp); void sock_enable_timestamp(struct sock *sk, enum sock_flags flag) { if (!sock_flag(sk, flag)) { unsigned long previous_flags = sk->sk_flags; sock_set_flag(sk, flag); /* * we just set one of the two flags which require net * time stamping, but time stamping might have been on * already because of the other one */ if (sock_needs_netstamp(sk) && !(previous_flags & SK_FLAGS_TIMESTAMP)) net_enable_timestamp(); } } int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type) { struct sock_exterr_skb *serr; struct sk_buff *skb; int copied, err; err = -EAGAIN; skb = sock_dequeue_err_skb(sk); if (skb == NULL) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto out_free_skb; sock_recv_timestamp(msg, sk, skb); serr = SKB_EXT_ERR(skb); put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee); msg->msg_flags |= MSG_ERRQUEUE; err = copied; out_free_skb: kfree_skb(skb); out: return err; } EXPORT_SYMBOL(sock_recv_errqueue); /* * Get a socket option on an socket. * * FIX: POSIX 1003.1g is very ambiguous here. It states that * asynchronous errors should be reported by getsockopt. We assume * this means if you specify SO_ERROR (otherwise whats the point of it). */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_getsockopt); int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int addr_len = 0; int err; err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, flags & ~MSG_DONTWAIT, &addr_len); if (err >= 0) msg->msg_namelen = addr_len; return err; } EXPORT_SYMBOL(sock_common_recvmsg); /* * Set socket options on an inet socket. */ int sock_common_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL(sock_common_setsockopt); void sk_common_release(struct sock *sk) { if (sk->sk_prot->destroy) sk->sk_prot->destroy(sk); /* * Observation: when sk_common_release is called, processes have * no access to socket. But net still has. * Step one, detach it from networking: * * A. Remove from hash tables. */ sk->sk_prot->unhash(sk); /* * In this point socket cannot receive new packets, but it is possible * that some packets are in flight because some CPU runs receiver and * did hash table lookup before we unhashed socket. They will achieve * receive queue and will be purged by socket destructor. * * Also we still have packets pending on receive queue and probably, * our own packets waiting in device queues. sock_destroy will drain * receive queue, but transmitted packets will delay socket destruction * until the last reference will be released. */ sock_orphan(sk); xfrm_sk_free_policy(sk); sk_refcnt_debug_release(sk); sock_put(sk); } EXPORT_SYMBOL(sk_common_release); void sk_get_meminfo(const struct sock *sk, u32 *mem) { memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS); mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk); mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf); mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk); mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf); mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc; mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued); mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc); mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len); mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops); } #ifdef CONFIG_PROC_FS #define PROTO_INUSE_NR 64 /* should be enough for the first time */ struct prot_inuse { int val[PROTO_INUSE_NR]; }; static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR); void sock_prot_inuse_add(struct net *net, struct proto *prot, int val) { __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); } EXPORT_SYMBOL_GPL(sock_prot_inuse_add); int sock_prot_inuse_get(struct net *net, struct proto *prot) { int cpu, idx = prot->inuse_idx; int res = 0; for_each_possible_cpu(cpu) res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx]; return res >= 0 ? res : 0; } EXPORT_SYMBOL_GPL(sock_prot_inuse_get); static void sock_inuse_add(struct net *net, int val) { this_cpu_add(*net->core.sock_inuse, val); } int sock_inuse_get(struct net *net) { int cpu, res = 0; for_each_possible_cpu(cpu) res += *per_cpu_ptr(net->core.sock_inuse, cpu); return res; } EXPORT_SYMBOL_GPL(sock_inuse_get); static int __net_init sock_inuse_init_net(struct net *net) { net->core.prot_inuse = alloc_percpu(struct prot_inuse); if (net->core.prot_inuse == NULL) return -ENOMEM; net->core.sock_inuse = alloc_percpu(int); if (net->core.sock_inuse == NULL) goto out; return 0; out: free_percpu(net->core.prot_inuse); return -ENOMEM; } static void __net_exit sock_inuse_exit_net(struct net *net) { free_percpu(net->core.prot_inuse); free_percpu(net->core.sock_inuse); } static struct pernet_operations net_inuse_ops = { .init = sock_inuse_init_net, .exit = sock_inuse_exit_net, }; static __init int net_inuse_init(void) { if (register_pernet_subsys(&net_inuse_ops)) panic("Cannot initialize net inuse counters"); return 0; } core_initcall(net_inuse_init); static int assign_proto_idx(struct proto *prot) { prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR); if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) { pr_err("PROTO_INUSE_NR exhausted\n"); return -ENOSPC; } set_bit(prot->inuse_idx, proto_inuse_idx); return 0; } static void release_proto_idx(struct proto *prot) { if (prot->inuse_idx != PROTO_INUSE_NR - 1) clear_bit(prot->inuse_idx, proto_inuse_idx); } #else static inline int assign_proto_idx(struct proto *prot) { return 0; } static inline void release_proto_idx(struct proto *prot) { } static void sock_inuse_add(struct net *net, int val) { } #endif static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot) { if (!twsk_prot) return; kfree(twsk_prot->twsk_slab_name); twsk_prot->twsk_slab_name = NULL; kmem_cache_destroy(twsk_prot->twsk_slab); twsk_prot->twsk_slab = NULL; } static void req_prot_cleanup(struct request_sock_ops *rsk_prot) { if (!rsk_prot) return; kfree(rsk_prot->slab_name); rsk_prot->slab_name = NULL; kmem_cache_destroy(rsk_prot->slab); rsk_prot->slab = NULL; } static int req_prot_init(const struct proto *prot) { struct request_sock_ops *rsk_prot = prot->rsk_prot; if (!rsk_prot) return 0; rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name); if (!rsk_prot->slab_name) return -ENOMEM; rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name, rsk_prot->obj_size, 0, SLAB_ACCOUNT | prot->slab_flags, NULL); if (!rsk_prot->slab) { pr_crit("%s: Can't create request sock SLAB cache!\n", prot->name); return -ENOMEM; } return 0; } int proto_register(struct proto *prot, int alloc_slab) { int ret = -ENOBUFS; if (alloc_slab) { prot->slab = kmem_cache_create_usercopy(prot->name, prot->obj_size, 0, SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT | prot->slab_flags, prot->useroffset, prot->usersize, NULL); if (prot->slab == NULL) { pr_crit("%s: Can't create sock SLAB cache!\n", prot->name); goto out; } if (req_prot_init(prot)) goto out_free_request_sock_slab; if (prot->twsk_prot != NULL) { prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name); if (prot->twsk_prot->twsk_slab_name == NULL) goto out_free_request_sock_slab; prot->twsk_prot->twsk_slab = kmem_cache_create(prot->twsk_prot->twsk_slab_name, prot->twsk_prot->twsk_obj_size, 0, SLAB_ACCOUNT | prot->slab_flags, NULL); if (prot->twsk_prot->twsk_slab == NULL) goto out_free_timewait_sock_slab; } } mutex_lock(&proto_list_mutex); ret = assign_proto_idx(prot); if (ret) { mutex_unlock(&proto_list_mutex); goto out_free_timewait_sock_slab; } list_add(&prot->node, &proto_list); mutex_unlock(&proto_list_mutex); return ret; out_free_timewait_sock_slab: if (alloc_slab && prot->twsk_prot) tw_prot_cleanup(prot->twsk_prot); out_free_request_sock_slab: if (alloc_slab) { req_prot_cleanup(prot->rsk_prot); kmem_cache_destroy(prot->slab); prot->slab = NULL; } out: return ret; } EXPORT_SYMBOL(proto_register); void proto_unregister(struct proto *prot) { mutex_lock(&proto_list_mutex); release_proto_idx(prot); list_del(&prot->node); mutex_unlock(&proto_list_mutex); kmem_cache_destroy(prot->slab); prot->slab = NULL; req_prot_cleanup(prot->rsk_prot); tw_prot_cleanup(prot->twsk_prot); } EXPORT_SYMBOL(proto_unregister); int sock_load_diag_module(int family, int protocol) { if (!protocol) { if (!sock_is_registered(family)) return -ENOENT; return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK, NETLINK_SOCK_DIAG, family); } #ifdef CONFIG_INET if (family == AF_INET && protocol != IPPROTO_RAW && protocol < MAX_INET_PROTOS && !rcu_access_pointer(inet_protos[protocol])) return -ENOENT; #endif return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK, NETLINK_SOCK_DIAG, family, protocol); } EXPORT_SYMBOL(sock_load_diag_module); #ifdef CONFIG_PROC_FS static void *proto_seq_start(struct seq_file *seq, loff_t *pos) __acquires(proto_list_mutex) { mutex_lock(&proto_list_mutex); return seq_list_start_head(&proto_list, *pos); } static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return seq_list_next(v, &proto_list, pos); } static void proto_seq_stop(struct seq_file *seq, void *v) __releases(proto_list_mutex) { mutex_unlock(&proto_list_mutex); } static char proto_method_implemented(const void *method) { return method == NULL ? 'n' : 'y'; } static long sock_prot_memory_allocated(struct proto *proto) { return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L; } static const char *sock_prot_memory_pressure(struct proto *proto) { return proto->memory_pressure != NULL ? proto_memory_pressure(proto) ? "yes" : "no" : "NI"; } static void proto_seq_printf(struct seq_file *seq, struct proto *proto) { seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s " "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n", proto->name, proto->obj_size, sock_prot_inuse_get(seq_file_net(seq), proto), sock_prot_memory_allocated(proto), sock_prot_memory_pressure(proto), proto->max_header, proto->slab == NULL ? "no" : "yes", module_name(proto->owner), proto_method_implemented(proto->close), proto_method_implemented(proto->connect), proto_method_implemented(proto->disconnect), proto_method_implemented(proto->accept), proto_method_implemented(proto->ioctl), proto_method_implemented(proto->init), proto_method_implemented(proto->destroy), proto_method_implemented(proto->shutdown), proto_method_implemented(proto->setsockopt), proto_method_implemented(proto->getsockopt), proto_method_implemented(proto->sendmsg), proto_method_implemented(proto->recvmsg), proto_method_implemented(proto->sendpage), proto_method_implemented(proto->bind), proto_method_implemented(proto->backlog_rcv), proto_method_implemented(proto->hash), proto_method_implemented(proto->unhash), proto_method_implemented(proto->get_port), proto_method_implemented(proto->enter_memory_pressure)); } static int proto_seq_show(struct seq_file *seq, void *v) { if (v == &proto_list) seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s", "protocol", "size", "sockets", "memory", "press", "maxhdr", "slab", "module", "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n"); else proto_seq_printf(seq, list_entry(v, struct proto, node)); return 0; } static const struct seq_operations proto_seq_ops = { .start = proto_seq_start, .next = proto_seq_next, .stop = proto_seq_stop, .show = proto_seq_show, }; static __net_init int proto_init_net(struct net *net) { if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops, sizeof(struct seq_net_private))) return -ENOMEM; return 0; } static __net_exit void proto_exit_net(struct net *net) { remove_proc_entry("protocols", net->proc_net); } static __net_initdata struct pernet_operations proto_net_ops = { .init = proto_init_net, .exit = proto_exit_net, }; static int __init proto_init(void) { return register_pernet_subsys(&proto_net_ops); } subsys_initcall(proto_init); #endif /* PROC_FS */ #ifdef CONFIG_NET_RX_BUSY_POLL bool sk_busy_loop_end(void *p, unsigned long start_time) { struct sock *sk = p; return !skb_queue_empty_lockless(&sk->sk_receive_queue) || sk_busy_loop_timeout(sk, start_time); } EXPORT_SYMBOL(sk_busy_loop_end); #endif /* CONFIG_NET_RX_BUSY_POLL */ int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len) { if (!sk->sk_prot->bind_add) return -EOPNOTSUPP; return sk->sk_prot->bind_add(sk, addr, addr_len); } EXPORT_SYMBOL(sock_bind_add);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DAX_H #define _LINUX_DAX_H #include <linux/fs.h> #include <linux/mm.h> #include <linux/radix-tree.h> /* Flag for synchronous flush */ #define DAXDEV_F_SYNC (1UL << 0) typedef unsigned long dax_entry_t; struct iomap_ops; struct iomap; struct dax_device; struct dax_operations { /* * direct_access: translate a device-relative * logical-page-offset into an absolute physical pfn. Return the * number of pages available for DAX at that pfn. */ long (*direct_access)(struct dax_device *, pgoff_t, long, void **, pfn_t *); /* * Validate whether this device is usable as an fsdax backing * device. */ bool (*dax_supported)(struct dax_device *, struct block_device *, int, sector_t, sector_t); /* copy_from_iter: required operation for fs-dax direct-i/o */ size_t (*copy_from_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* copy_to_iter: required operation for fs-dax direct-i/o */ size_t (*copy_to_iter)(struct dax_device *, pgoff_t, void *, size_t, struct iov_iter *); /* zero_page_range: required operation. Zero page range */ int (*zero_page_range)(struct dax_device *, pgoff_t, size_t); }; extern struct attribute_group dax_attribute_group; #if IS_ENABLED(CONFIG_DAX) struct dax_device *dax_get_by_host(const char *host); struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags); void put_dax(struct dax_device *dax_dev); void kill_dax(struct dax_device *dax_dev); void dax_write_cache(struct dax_device *dax_dev, bool wc); bool dax_write_cache_enabled(struct dax_device *dax_dev); bool __dax_synchronous(struct dax_device *dax_dev); static inline bool dax_synchronous(struct dax_device *dax_dev) { return __dax_synchronous(dax_dev); } void __set_dax_synchronous(struct dax_device *dax_dev); static inline void set_dax_synchronous(struct dax_device *dax_dev) { __set_dax_synchronous(dax_dev); } bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len); /* * Check if given mapping is supported by the file / underlying device. */ static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { if (!(vma->vm_flags & VM_SYNC)) return true; if (!IS_DAX(file_inode(vma->vm_file))) return false; return dax_synchronous(dax_dev); } #else static inline struct dax_device *dax_get_by_host(const char *host) { return NULL; } static inline struct dax_device *alloc_dax(void *private, const char *host, const struct dax_operations *ops, unsigned long flags) { /* * Callers should check IS_ENABLED(CONFIG_DAX) to know if this * NULL is an error or expected. */ return NULL; } static inline void put_dax(struct dax_device *dax_dev) { } static inline void kill_dax(struct dax_device *dax_dev) { } static inline void dax_write_cache(struct dax_device *dax_dev, bool wc) { } static inline bool dax_write_cache_enabled(struct dax_device *dax_dev) { return false; } static inline bool dax_synchronous(struct dax_device *dax_dev) { return true; } static inline void set_dax_synchronous(struct dax_device *dax_dev) { } static inline bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t len) { return false; } static inline bool daxdev_mapping_supported(struct vm_area_struct *vma, struct dax_device *dax_dev) { return !(vma->vm_flags & VM_SYNC); } #endif struct writeback_control; int bdev_dax_pgoff(struct block_device *, sector_t, size_t, pgoff_t *pgoff); #if IS_ENABLED(CONFIG_FS_DAX) bool __bdev_dax_supported(struct block_device *bdev, int blocksize); static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return __bdev_dax_supported(bdev, blocksize); } bool __generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors); static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return __generic_fsdax_supported(dax_dev, bdev, blocksize, start, sectors); } static inline void fs_put_dax(struct dax_device *dax_dev) { put_dax(dax_dev); } struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev); int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc); struct page *dax_layout_busy_page(struct address_space *mapping); struct page *dax_layout_busy_page_range(struct address_space *mapping, loff_t start, loff_t end); dax_entry_t dax_lock_page(struct page *page); void dax_unlock_page(struct page *page, dax_entry_t cookie); #else static inline bool bdev_dax_supported(struct block_device *bdev, int blocksize) { return false; } static inline bool generic_fsdax_supported(struct dax_device *dax_dev, struct block_device *bdev, int blocksize, sector_t start, sector_t sectors) { return false; } static inline void fs_put_dax(struct dax_device *dax_dev) { } static inline struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev) { return NULL; } static inline struct page *dax_layout_busy_page(struct address_space *mapping) { return NULL; } static inline struct page *dax_layout_busy_page_range(struct address_space *mapping, pgoff_t start, pgoff_t nr_pages) { return NULL; } static inline int dax_writeback_mapping_range(struct address_space *mapping, struct dax_device *dax_dev, struct writeback_control *wbc) { return -EOPNOTSUPP; } static inline dax_entry_t dax_lock_page(struct page *page) { if (IS_DAX(page->mapping->host)) return ~0UL; return 0; } static inline void dax_unlock_page(struct page *page, dax_entry_t cookie) { } #endif #if IS_ENABLED(CONFIG_DAX) int dax_read_lock(void); void dax_read_unlock(int id); #else static inline int dax_read_lock(void) { return 0; } static inline void dax_read_unlock(int id) { } #endif /* CONFIG_DAX */ bool dax_alive(struct dax_device *dax_dev); void *dax_get_private(struct dax_device *dax_dev); long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn); size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i); int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, size_t nr_pages); void dax_flush(struct dax_device *dax_dev, void *addr, size_t size); ssize_t dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops); vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t *pfnp, int *errp, const struct iomap_ops *ops); vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size, pfn_t pfn); int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index); int dax_invalidate_mapping_entry_sync(struct address_space *mapping, pgoff_t index); s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap); static inline bool dax_mapping(struct address_space *mapping) { return mapping->host && IS_DAX(mapping->host); } #ifdef CONFIG_DEV_DAX_HMEM_DEVICES void hmem_register_device(int target_nid, struct resource *r); #else static inline void hmem_register_device(int target_nid, struct resource *r) { } #endif #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _SCSI_SCSI_CMND_H #define _SCSI_SCSI_CMND_H #include <linux/dma-mapping.h> #include <linux/blkdev.h> #include <linux/t10-pi.h> #include <linux/list.h> #include <linux/types.h> #include <linux/timer.h> #include <linux/scatterlist.h> #include <scsi/scsi_device.h> #include <scsi/scsi_request.h> struct Scsi_Host; struct scsi_driver; /* * MAX_COMMAND_SIZE is: * The longest fixed-length SCSI CDB as per the SCSI standard. * fixed-length means: commands that their size can be determined * by their opcode and the CDB does not carry a length specifier, (unlike * the VARIABLE_LENGTH_CMD(0x7f) command). This is actually not exactly * true and the SCSI standard also defines extended commands and * vendor specific commands that can be bigger than 16 bytes. The kernel * will support these using the same infrastructure used for VARLEN CDB's. * So in effect MAX_COMMAND_SIZE means the maximum size command scsi-ml * supports without specifying a cmd_len by ULD's */ #define MAX_COMMAND_SIZE 16 #if (MAX_COMMAND_SIZE > BLK_MAX_CDB) # error MAX_COMMAND_SIZE can not be bigger than BLK_MAX_CDB #endif struct scsi_data_buffer { struct sg_table table; unsigned length; }; /* embedded in scsi_cmnd */ struct scsi_pointer { char *ptr; /* data pointer */ int this_residual; /* left in this buffer */ struct scatterlist *buffer; /* which buffer */ int buffers_residual; /* how many buffers left */ dma_addr_t dma_handle; volatile int Status; volatile int Message; volatile int have_data_in; volatile int sent_command; volatile int phase; }; /* for scmd->flags */ #define SCMD_TAGGED (1 << 0) #define SCMD_UNCHECKED_ISA_DMA (1 << 1) #define SCMD_INITIALIZED (1 << 2) #define SCMD_LAST (1 << 3) /* flags preserved across unprep / reprep */ #define SCMD_PRESERVED_FLAGS (SCMD_UNCHECKED_ISA_DMA | SCMD_INITIALIZED) /* for scmd->state */ #define SCMD_STATE_COMPLETE 0 #define SCMD_STATE_INFLIGHT 1 struct scsi_cmnd { struct scsi_request req; struct scsi_device *device; struct list_head eh_entry; /* entry for the host eh_cmd_q */ struct delayed_work abort_work; struct rcu_head rcu; int eh_eflags; /* Used by error handlr */ /* * This is set to jiffies as it was when the command was first * allocated. It is used to time how long the command has * been outstanding */ unsigned long jiffies_at_alloc; int retries; int allowed; unsigned char prot_op; unsigned char prot_type; unsigned char prot_flags; unsigned short cmd_len; enum dma_data_direction sc_data_direction; /* These elements define the operation we are about to perform */ unsigned char *cmnd; /* These elements define the operation we ultimately want to perform */ struct scsi_data_buffer sdb; struct scsi_data_buffer *prot_sdb; unsigned underflow; /* Return error if less than this amount is transferred */ unsigned transfersize; /* How much we are guaranteed to transfer with each SCSI transfer (ie, between disconnect / reconnects. Probably == sector size */ struct request *request; /* The command we are working on */ unsigned char *sense_buffer; /* obtained by REQUEST SENSE when * CHECK CONDITION is received on original * command (auto-sense). Length must be * SCSI_SENSE_BUFFERSIZE bytes. */ /* Low-level done function - can be used by low-level driver to point * to completion function. Not used by mid/upper level code. */ void (*scsi_done) (struct scsi_cmnd *); /* * The following fields can be written to by the host specific code. * Everything else should be left alone. */ struct scsi_pointer SCp; /* Scratchpad used by some host adapters */ unsigned char *host_scribble; /* The host adapter is allowed to * call scsi_malloc and get some memory * and hang it here. The host adapter * is also expected to call scsi_free * to release this memory. (The memory * obtained by scsi_malloc is guaranteed * to be at an address < 16Mb). */ int result; /* Status code from lower level driver */ int flags; /* Command flags */ unsigned long state; /* Command completion state */ unsigned char tag; /* SCSI-II queued command tag */ unsigned int extra_len; /* length of alignment and padding */ }; /* * Return the driver private allocation behind the command. * Only works if cmd_size is set in the host template. */ static inline void *scsi_cmd_priv(struct scsi_cmnd *cmd) { return cmd + 1; } /* make sure not to use it with passthrough commands */ static inline struct scsi_driver *scsi_cmd_to_driver(struct scsi_cmnd *cmd) { return *(struct scsi_driver **)cmd->request->rq_disk->private_data; } extern void scsi_finish_command(struct scsi_cmnd *cmd); extern void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count, size_t *offset, size_t *len); extern void scsi_kunmap_atomic_sg(void *virt); blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd); void scsi_free_sgtables(struct scsi_cmnd *cmd); #ifdef CONFIG_SCSI_DMA extern int scsi_dma_map(struct scsi_cmnd *cmd); extern void scsi_dma_unmap(struct scsi_cmnd *cmd); #else /* !CONFIG_SCSI_DMA */ static inline int scsi_dma_map(struct scsi_cmnd *cmd) { return -ENOSYS; } static inline void scsi_dma_unmap(struct scsi_cmnd *cmd) { } #endif /* !CONFIG_SCSI_DMA */ static inline unsigned scsi_sg_count(struct scsi_cmnd *cmd) { return cmd->sdb.table.nents; } static inline struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd) { return cmd->sdb.table.sgl; } static inline unsigned scsi_bufflen(struct scsi_cmnd *cmd) { return cmd->sdb.length; } static inline void scsi_set_resid(struct scsi_cmnd *cmd, unsigned int resid) { cmd->req.resid_len = resid; } static inline unsigned int scsi_get_resid(struct scsi_cmnd *cmd) { return cmd->req.resid_len; } #define scsi_for_each_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_sglist(cmd), sg, nseg, __i) static inline int scsi_sg_copy_from_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } static inline int scsi_sg_copy_to_buffer(struct scsi_cmnd *cmd, void *buf, int buflen) { return sg_copy_to_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, buflen); } /* * The operations below are hints that tell the controller driver how * to handle I/Os with DIF or similar types of protection information. */ enum scsi_prot_operations { /* Normal I/O */ SCSI_PROT_NORMAL = 0, /* OS-HBA: Protected, HBA-Target: Unprotected */ SCSI_PROT_READ_INSERT, SCSI_PROT_WRITE_STRIP, /* OS-HBA: Unprotected, HBA-Target: Protected */ SCSI_PROT_READ_STRIP, SCSI_PROT_WRITE_INSERT, /* OS-HBA: Protected, HBA-Target: Protected */ SCSI_PROT_READ_PASS, SCSI_PROT_WRITE_PASS, }; static inline void scsi_set_prot_op(struct scsi_cmnd *scmd, unsigned char op) { scmd->prot_op = op; } static inline unsigned char scsi_get_prot_op(struct scsi_cmnd *scmd) { return scmd->prot_op; } enum scsi_prot_flags { SCSI_PROT_TRANSFER_PI = 1 << 0, SCSI_PROT_GUARD_CHECK = 1 << 1, SCSI_PROT_REF_CHECK = 1 << 2, SCSI_PROT_REF_INCREMENT = 1 << 3, SCSI_PROT_IP_CHECKSUM = 1 << 4, }; /* * The controller usually does not know anything about the target it * is communicating with. However, when DIX is enabled the controller * must be know target type so it can verify the protection * information passed along with the I/O. */ enum scsi_prot_target_type { SCSI_PROT_DIF_TYPE0 = 0, SCSI_PROT_DIF_TYPE1, SCSI_PROT_DIF_TYPE2, SCSI_PROT_DIF_TYPE3, }; static inline void scsi_set_prot_type(struct scsi_cmnd *scmd, unsigned char type) { scmd->prot_type = type; } static inline unsigned char scsi_get_prot_type(struct scsi_cmnd *scmd) { return scmd->prot_type; } static inline sector_t scsi_get_lba(struct scsi_cmnd *scmd) { return blk_rq_pos(scmd->request); } static inline unsigned int scsi_prot_interval(struct scsi_cmnd *scmd) { return scmd->device->sector_size; } static inline unsigned scsi_prot_sg_count(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.nents : 0; } static inline struct scatterlist *scsi_prot_sglist(struct scsi_cmnd *cmd) { return cmd->prot_sdb ? cmd->prot_sdb->table.sgl : NULL; } static inline struct scsi_data_buffer *scsi_prot(struct scsi_cmnd *cmd) { return cmd->prot_sdb; } #define scsi_for_each_prot_sg(cmd, sg, nseg, __i) \ for_each_sg(scsi_prot_sglist(cmd), sg, nseg, __i) static inline void set_msg_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xffff00ff) | (status << 8); } static inline void set_host_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0xff00ffff) | (status << 16); } static inline void set_driver_byte(struct scsi_cmnd *cmd, char status) { cmd->result = (cmd->result & 0x00ffffff) | (status << 24); } static inline unsigned scsi_transfer_length(struct scsi_cmnd *scmd) { unsigned int xfer_len = scmd->sdb.length; unsigned int prot_interval = scsi_prot_interval(scmd); if (scmd->prot_flags & SCSI_PROT_TRANSFER_PI) xfer_len += (xfer_len >> ilog2(prot_interval)) * 8; return xfer_len; } #endif /* _SCSI_SCSI_CMND_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 /* SPDX-License-Identifier: GPL-2.0 */ /* * sysfs.h - definitions for the device driver filesystem * * Copyright (c) 2001,2002 Patrick Mochel * Copyright (c) 2004 Silicon Graphics, Inc. * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007 Tejun Heo <teheo@suse.de> * * Please see Documentation/filesystems/sysfs.rst for more information. */ #ifndef _SYSFS_H_ #define _SYSFS_H_ #include <linux/kernfs.h> #include <linux/compiler.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/kobject_ns.h> #include <linux/stat.h> #include <linux/atomic.h> struct kobject; struct module; struct bin_attribute; enum kobj_ns_type; struct attribute { const char *name; umode_t mode; #ifdef CONFIG_DEBUG_LOCK_ALLOC bool ignore_lockdep:1; struct lock_class_key *key; struct lock_class_key skey; #endif }; /** * sysfs_attr_init - initialize a dynamically allocated sysfs attribute * @attr: struct attribute to initialize * * Initialize a dynamically allocated struct attribute so we can * make lockdep happy. This is a new requirement for attributes * and initially this is only needed when lockdep is enabled. * Lockdep gives a nice error when your attribute is added to * sysfs if you don't have this. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC #define sysfs_attr_init(attr) \ do { \ static struct lock_class_key __key; \ \ (attr)->key = &__key; \ } while (0) #else #define sysfs_attr_init(attr) do {} while (0) #endif /** * struct attribute_group - data structure used to declare an attribute group. * @name: Optional: Attribute group name * If specified, the attribute group will be created in * a new subdirectory with this name. * @is_visible: Optional: Function to return permissions associated with an * attribute of the group. Will be called repeatedly for each * non-binary attribute in the group. Only read/write * permissions as well as SYSFS_PREALLOC are accepted. Must * return 0 if an attribute is not visible. The returned value * will replace static permissions defined in struct attribute. * @is_bin_visible: * Optional: Function to return permissions associated with a * binary attribute of the group. Will be called repeatedly * for each binary attribute in the group. Only read/write * permissions as well as SYSFS_PREALLOC are accepted. Must * return 0 if a binary attribute is not visible. The returned * value will replace static permissions defined in * struct bin_attribute. * @attrs: Pointer to NULL terminated list of attributes. * @bin_attrs: Pointer to NULL terminated list of binary attributes. * Either attrs or bin_attrs or both must be provided. */ struct attribute_group { const char *name; umode_t (*is_visible)(struct kobject *, struct attribute *, int); umode_t (*is_bin_visible)(struct kobject *, struct bin_attribute *, int); struct attribute **attrs; struct bin_attribute **bin_attrs; }; /* * Use these macros to make defining attributes easier. * See include/linux/device.h for examples.. */ #define SYSFS_PREALLOC 010000 #define __ATTR(_name, _mode, _show, _store) { \ .attr = {.name = __stringify(_name), \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode) }, \ .show = _show, \ .store = _store, \ } #define __ATTR_PREALLOC(_name, _mode, _show, _store) { \ .attr = {.name = __stringify(_name), \ .mode = SYSFS_PREALLOC | VERIFY_OCTAL_PERMISSIONS(_mode) },\ .show = _show, \ .store = _store, \ } #define __ATTR_RO(_name) { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = _name##_show, \ } #define __ATTR_RO_MODE(_name, _mode) { \ .attr = { .name = __stringify(_name), \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode) }, \ .show = _name##_show, \ } #define __ATTR_RW_MODE(_name, _mode) { \ .attr = { .name = __stringify(_name), \ .mode = VERIFY_OCTAL_PERMISSIONS(_mode) }, \ .show = _name##_show, \ .store = _name##_store, \ } #define __ATTR_WO(_name) { \ .attr = { .name = __stringify(_name), .mode = 0200 }, \ .store = _name##_store, \ } #define __ATTR_RW(_name) __ATTR(_name, 0644, _name##_show, _name##_store) #define __ATTR_NULL { .attr = { .name = NULL } } #ifdef CONFIG_DEBUG_LOCK_ALLOC #define __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) { \ .attr = {.name = __stringify(_name), .mode = _mode, \ .ignore_lockdep = true }, \ .show = _show, \ .store = _store, \ } #else #define __ATTR_IGNORE_LOCKDEP __ATTR #endif #define __ATTRIBUTE_GROUPS(_name) \ static const struct attribute_group *_name##_groups[] = { \ &_name##_group, \ NULL, \ } #define ATTRIBUTE_GROUPS(_name) \ static const struct attribute_group _name##_group = { \ .attrs = _name##_attrs, \ }; \ __ATTRIBUTE_GROUPS(_name) struct file; struct vm_area_struct; struct bin_attribute { struct attribute attr; size_t size; void *private; ssize_t (*read)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t, size_t); ssize_t (*write)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t, size_t); int (*mmap)(struct file *, struct kobject *, struct bin_attribute *attr, struct vm_area_struct *vma); }; /** * sysfs_bin_attr_init - initialize a dynamically allocated bin_attribute * @attr: struct bin_attribute to initialize * * Initialize a dynamically allocated struct bin_attribute so we * can make lockdep happy. This is a new requirement for * attributes and initially this is only needed when lockdep is * enabled. Lockdep gives a nice error when your attribute is * added to sysfs if you don't have this. */ #define sysfs_bin_attr_init(bin_attr) sysfs_attr_init(&(bin_attr)->attr) /* macros to create static binary attributes easier */ #define __BIN_ATTR(_name, _mode, _read, _write, _size) { \ .attr = { .name = __stringify(_name), .mode = _mode }, \ .read = _read, \ .write = _write, \ .size = _size, \ } #define __BIN_ATTR_RO(_name, _size) { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .read = _name##_read, \ .size = _size, \ } #define __BIN_ATTR_WO(_name, _size) { \ .attr = { .name = __stringify(_name), .mode = 0200 }, \ .write = _name##_write, \ .size = _size, \ } #define __BIN_ATTR_RW(_name, _size) \ __BIN_ATTR(_name, 0644, _name##_read, _name##_write, _size) #define __BIN_ATTR_NULL __ATTR_NULL #define BIN_ATTR(_name, _mode, _read, _write, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR(_name, _mode, _read, \ _write, _size) #define BIN_ATTR_RO(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_RO(_name, _size) #define BIN_ATTR_WO(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_WO(_name, _size) #define BIN_ATTR_RW(_name, _size) \ struct bin_attribute bin_attr_##_name = __BIN_ATTR_RW(_name, _size) struct sysfs_ops { ssize_t (*show)(struct kobject *, struct attribute *, char *); ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t); }; #ifdef CONFIG_SYSFS int __must_check sysfs_create_dir_ns(struct kobject *kobj, const void *ns); void sysfs_remove_dir(struct kobject *kobj); int __must_check sysfs_rename_dir_ns(struct kobject *kobj, const char *new_name, const void *new_ns); int __must_check sysfs_move_dir_ns(struct kobject *kobj, struct kobject *new_parent_kobj, const void *new_ns); int __must_check sysfs_create_mount_point(struct kobject *parent_kobj, const char *name); void sysfs_remove_mount_point(struct kobject *parent_kobj, const char *name); int __must_check sysfs_create_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns); int __must_check sysfs_create_files(struct kobject *kobj, const struct attribute * const *attr); int __must_check sysfs_chmod_file(struct kobject *kobj, const struct attribute *attr, umode_t mode); struct kernfs_node *sysfs_break_active_protection(struct kobject *kobj, const struct attribute *attr); void sysfs_unbreak_active_protection(struct kernfs_node *kn); void sysfs_remove_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns); bool sysfs_remove_file_self(struct kobject *kobj, const struct attribute *attr); void sysfs_remove_files(struct kobject *kobj, const struct attribute * const *attr); int __must_check sysfs_create_bin_file(struct kobject *kobj, const struct bin_attribute *attr); void sysfs_remove_bin_file(struct kobject *kobj, const struct bin_attribute *attr); int __must_check sysfs_create_link(struct kobject *kobj, struct kobject *target, const char *name); int __must_check sysfs_create_link_nowarn(struct kobject *kobj, struct kobject *target, const char *name); void sysfs_remove_link(struct kobject *kobj, const char *name); int sysfs_rename_link_ns(struct kobject *kobj, struct kobject *target, const char *old_name, const char *new_name, const void *new_ns); void sysfs_delete_link(struct kobject *dir, struct kobject *targ, const char *name); int __must_check sysfs_create_group(struct kobject *kobj, const struct attribute_group *grp); int __must_check sysfs_create_groups(struct kobject *kobj, const struct attribute_group **groups); int __must_check sysfs_update_groups(struct kobject *kobj, const struct attribute_group **groups); int sysfs_update_group(struct kobject *kobj, const struct attribute_group *grp); void sysfs_remove_group(struct kobject *kobj, const struct attribute_group *grp); void sysfs_remove_groups(struct kobject *kobj, const struct attribute_group **groups); int sysfs_add_file_to_group(struct kobject *kobj, const struct attribute *attr, const char *group); void sysfs_remove_file_from_group(struct kobject *kobj, const struct attribute *attr, const char *group); int sysfs_merge_group(struct kobject *kobj, const struct attribute_group *grp); void sysfs_unmerge_group(struct kobject *kobj, const struct attribute_group *grp); int sysfs_add_link_to_group(struct kobject *kobj, const char *group_name, struct kobject *target, const char *link_name); void sysfs_remove_link_from_group(struct kobject *kobj, const char *group_name, const char *link_name); int compat_only_sysfs_link_entry_to_kobj(struct kobject *kobj, struct kobject *target_kobj, const char *target_name, const char *symlink_name); void sysfs_notify(struct kobject *kobj, const char *dir, const char *attr); int __must_check sysfs_init(void); static inline void sysfs_enable_ns(struct kernfs_node *kn) { return kernfs_enable_ns(kn); } int sysfs_file_change_owner(struct kobject *kobj, const char *name, kuid_t kuid, kgid_t kgid); int sysfs_change_owner(struct kobject *kobj, kuid_t kuid, kgid_t kgid); int sysfs_link_change_owner(struct kobject *kobj, struct kobject *targ, const char *name, kuid_t kuid, kgid_t kgid); int sysfs_groups_change_owner(struct kobject *kobj, const struct attribute_group **groups, kuid_t kuid, kgid_t kgid); int sysfs_group_change_owner(struct kobject *kobj, const struct attribute_group *groups, kuid_t kuid, kgid_t kgid); __printf(2, 3) int sysfs_emit(char *buf, const char *fmt, ...); __printf(3, 4) int sysfs_emit_at(char *buf, int at, const char *fmt, ...); #else /* CONFIG_SYSFS */ static inline int sysfs_create_dir_ns(struct kobject *kobj, const void *ns) { return 0; } static inline void sysfs_remove_dir(struct kobject *kobj) { } static inline int sysfs_rename_dir_ns(struct kobject *kobj, const char *new_name, const void *new_ns) { return 0; } static inline int sysfs_move_dir_ns(struct kobject *kobj, struct kobject *new_parent_kobj, const void *new_ns) { return 0; } static inline int sysfs_create_mount_point(struct kobject *parent_kobj, const char *name) { return 0; } static inline void sysfs_remove_mount_point(struct kobject *parent_kobj, const char *name) { } static inline int sysfs_create_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns) { return 0; } static inline int sysfs_create_files(struct kobject *kobj, const struct attribute * const *attr) { return 0; } static inline int sysfs_chmod_file(struct kobject *kobj, const struct attribute *attr, umode_t mode) { return 0; } static inline struct kernfs_node * sysfs_break_active_protection(struct kobject *kobj, const struct attribute *attr) { return NULL; } static inline void sysfs_unbreak_active_protection(struct kernfs_node *kn) { } static inline void sysfs_remove_file_ns(struct kobject *kobj, const struct attribute *attr, const void *ns) { } static inline bool sysfs_remove_file_self(struct kobject *kobj, const struct attribute *attr) { return false; } static inline void sysfs_remove_files(struct kobject *kobj, const struct attribute * const *attr) { } static inline int sysfs_create_bin_file(struct kobject *kobj, const struct bin_attribute *attr) { return 0; } static inline void sysfs_remove_bin_file(struct kobject *kobj, const struct bin_attribute *attr) { } static inline int sysfs_create_link(struct kobject *kobj, struct kobject *target, const char *name) { return 0; } static inline int sysfs_create_link_nowarn(struct kobject *kobj, struct kobject *target, const char *name) { return 0; } static inline void sysfs_remove_link(struct kobject *kobj, const char *name) { } static inline int sysfs_rename_link_ns(struct kobject *k, struct kobject *t, const char *old_name, const char *new_name, const void *ns) { return 0; } static inline void sysfs_delete_link(struct kobject *k, struct kobject *t, const char *name) { } static inline int sysfs_create_group(struct kobject *kobj, const struct attribute_group *grp) { return 0; } static inline int sysfs_create_groups(struct kobject *kobj, const struct attribute_group **groups) { return 0; } static inline int sysfs_update_groups(struct kobject *kobj, const struct attribute_group **groups) { return 0; } static inline int sysfs_update_group(struct kobject *kobj, const struct attribute_group *grp) { return 0; } static inline void sysfs_remove_group(struct kobject *kobj, const struct attribute_group *grp) { } static inline void sysfs_remove_groups(struct kobject *kobj, const struct attribute_group **groups) { } static inline int sysfs_add_file_to_group(struct kobject *kobj, const struct attribute *attr, const char *group) { return 0; } static inline void sysfs_remove_file_from_group(struct kobject *kobj, const struct attribute *attr, const char *group) { } static inline int sysfs_merge_group(struct kobject *kobj, const struct attribute_group *grp) { return 0; } static inline void sysfs_unmerge_group(struct kobject *kobj, const struct attribute_group *grp) { } static inline int sysfs_add_link_to_group(struct kobject *kobj, const char *group_name, struct kobject *target, const char *link_name) { return 0; } static inline void sysfs_remove_link_from_group(struct kobject *kobj, const char *group_name, const char *link_name) { } static inline int compat_only_sysfs_link_entry_to_kobj(struct kobject *kobj, struct kobject *target_kobj, const char *target_name, const char *symlink_name) { return 0; } static inline void sysfs_notify(struct kobject *kobj, const char *dir, const char *attr) { } static inline int __must_check sysfs_init(void) { return 0; } static inline void sysfs_enable_ns(struct kernfs_node *kn) { } static inline int sysfs_file_change_owner(struct kobject *kobj, const char *name, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_link_change_owner(struct kobject *kobj, struct kobject *targ, const char *name, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_change_owner(struct kobject *kobj, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_groups_change_owner(struct kobject *kobj, const struct attribute_group **groups, kuid_t kuid, kgid_t kgid) { return 0; } static inline int sysfs_group_change_owner(struct kobject *kobj, const struct attribute_group *groups, kuid_t kuid, kgid_t kgid) { return 0; } __printf(2, 3) static inline int sysfs_emit(char *buf, const char *fmt, ...) { return 0; } __printf(3, 4) static inline int sysfs_emit_at(char *buf, int at, const char *fmt, ...) { return 0; } #endif /* CONFIG_SYSFS */ static inline int __must_check sysfs_create_file(struct kobject *kobj, const struct attribute *attr) { return sysfs_create_file_ns(kobj, attr, NULL); } static inline void sysfs_remove_file(struct kobject *kobj, const struct attribute *attr) { sysfs_remove_file_ns(kobj, attr, NULL); } static inline int sysfs_rename_link(struct kobject *kobj, struct kobject *target, const char *old_name, const char *new_name) { return sysfs_rename_link_ns(kobj, target, old_name, new_name, NULL); } static inline void sysfs_notify_dirent(struct kernfs_node *kn) { kernfs_notify(kn); } static inline struct kernfs_node *sysfs_get_dirent(struct kernfs_node *parent, const char *name) { return kernfs_find_and_get(parent, name); } static inline struct kernfs_node *sysfs_get(struct kernfs_node *kn) { kernfs_get(kn); return kn; } static inline void sysfs_put(struct kernfs_node *kn) { kernfs_put(kn); } #endif /* _SYSFS_H_ */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SEQLOCK_H #define __LINUX_SEQLOCK_H /* * seqcount_t / seqlock_t - a reader-writer consistency mechanism with * lockless readers (read-only retry loops), and no writer starvation. * * See Documentation/locking/seqlock.rst * * Copyrights: * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH */ #include <linux/compiler.h> #include <linux/kcsan-checks.h> #include <linux/lockdep.h> #include <linux/mutex.h> #include <linux/ww_mutex.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <asm/processor.h> /* * The seqlock seqcount_t interface does not prescribe a precise sequence of * read begin/retry/end. For readers, typically there is a call to * read_seqcount_begin() and read_seqcount_retry(), however, there are more * esoteric cases which do not follow this pattern. * * As a consequence, we take the following best-effort approach for raw usage * via seqcount_t under KCSAN: upon beginning a seq-reader critical section, * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as * atomics; if there is a matching read_seqcount_retry() call, no following * memory operations are considered atomic. Usage of the seqlock_t interface * is not affected. */ #define KCSAN_SEQLOCK_REGION_MAX 1000 /* * Sequence counters (seqcount_t) * * This is the raw counting mechanism, without any writer protection. * * Write side critical sections must be serialized and non-preemptible. * * If readers can be invoked from hardirq or softirq contexts, * interrupts or bottom halves must also be respectively disabled before * entering the write section. * * This mechanism can't be used if the protected data contains pointers, * as the writer can invalidate a pointer that a reader is following. * * If the write serialization mechanism is one of the common kernel * locking primitives, use a sequence counter with associated lock * (seqcount_LOCKNAME_t) instead. * * If it's desired to automatically handle the sequence counter writer * serialization and non-preemptibility requirements, use a sequential * lock (seqlock_t) instead. * * See Documentation/locking/seqlock.rst */ typedef struct seqcount { unsigned sequence; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } seqcount_t; static inline void __seqcount_init(seqcount_t *s, const char *name, struct lock_class_key *key) { /* * Make sure we are not reinitializing a held lock: */ lockdep_init_map(&s->dep_map, name, key, 0); s->sequence = 0; } #ifdef CONFIG_DEBUG_LOCK_ALLOC # define SEQCOUNT_DEP_MAP_INIT(lockname) \ .dep_map = { .name = #lockname } /** * seqcount_init() - runtime initializer for seqcount_t * @s: Pointer to the seqcount_t instance */ # define seqcount_init(s) \ do { \ static struct lock_class_key __key; \ __seqcount_init((s), #s, &__key); \ } while (0) static inline void seqcount_lockdep_reader_access(const seqcount_t *s) { seqcount_t *l = (seqcount_t *)s; unsigned long flags; local_irq_save(flags); seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_); seqcount_release(&l->dep_map, _RET_IP_); local_irq_restore(flags); } #else # define SEQCOUNT_DEP_MAP_INIT(lockname) # define seqcount_init(s) __seqcount_init(s, NULL, NULL) # define seqcount_lockdep_reader_access(x) #endif /** * SEQCNT_ZERO() - static initializer for seqcount_t * @name: Name of the seqcount_t instance */ #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } /* * Sequence counters with associated locks (seqcount_LOCKNAME_t) * * A sequence counter which associates the lock used for writer * serialization at initialization time. This enables lockdep to validate * that the write side critical section is properly serialized. * * For associated locks which do not implicitly disable preemption, * preemption protection is enforced in the write side function. * * Lockdep is never used in any for the raw write variants. * * See Documentation/locking/seqlock.rst */ /* * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot * disable preemption. It can lead to higher latencies, and the write side * sections will not be able to acquire locks which become sleeping locks * (e.g. spinlock_t). * * To remain preemptible while avoiding a possible livelock caused by the * reader preempting the writer, use a different technique: let the reader * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the * case, acquire then release the associated LOCKNAME writer serialization * lock. This will allow any possibly-preempted writer to make progress * until the end of its writer serialization lock critical section. * * This lock-unlock technique must be implemented for all of PREEMPT_RT * sleeping locks. See Documentation/locking/locktypes.rst */ #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT) #define __SEQ_LOCK(expr) expr #else #define __SEQ_LOCK(expr) #endif /* * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated * @seqcount: The real sequence counter * @lock: Pointer to the associated lock * * A plain sequence counter with external writer synchronization by * LOCKNAME @lock. The lock is associated to the sequence counter in the * static initializer or init function. This enables lockdep to validate * that the write side critical section is properly serialized. * * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex. */ /* * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t * @s: Pointer to the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated lock */ #define seqcount_LOCKNAME_init(s, _lock, lockname) \ do { \ seqcount_##lockname##_t *____s = (s); \ seqcount_init(&____s->seqcount); \ __SEQ_LOCK(____s->lock = (_lock)); \ } while (0) #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock); #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex); #define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex); /* * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t * * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t * @locktype: LOCKNAME canonical C data type * @preemptible: preemptibility of above locktype * @lockmember: argument for lockdep_assert_held() * @lockbase: associated lock release function (prefix only) * @lock_acquire: associated lock acquisition function (full call) */ #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \ typedef struct seqcount_##lockname { \ seqcount_t seqcount; \ __SEQ_LOCK(locktype *lock); \ } seqcount_##lockname##_t; \ \ static __always_inline seqcount_t * \ __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ { \ return &s->seqcount; \ } \ \ static __always_inline unsigned \ __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ { \ unsigned seq = READ_ONCE(s->seqcount.sequence); \ \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return seq; \ \ if (preemptible && unlikely(seq & 1)) { \ __SEQ_LOCK(lock_acquire); \ __SEQ_LOCK(lockbase##_unlock(s->lock)); \ \ /* \ * Re-read the sequence counter since the (possibly \ * preempted) writer made progress. \ */ \ seq = READ_ONCE(s->seqcount.sequence); \ } \ \ return seq; \ } \ \ static __always_inline bool \ __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ { \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ return preemptible; \ \ /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ return false; \ } \ \ static __always_inline void \ __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ { \ __SEQ_LOCK(lockdep_assert_held(lockmember)); \ } /* * __seqprop() for seqcount_t */ static inline seqcount_t *__seqprop_ptr(seqcount_t *s) { return s; } static inline unsigned __seqprop_sequence(const seqcount_t *s) { return READ_ONCE(s->sequence); } static inline bool __seqprop_preemptible(const seqcount_t *s) { return false; } static inline void __seqprop_assert(const seqcount_t *s) { lockdep_assert_preemption_disabled(); } #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock)) SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock)) SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock)) SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock)) SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL)) /* * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t * @name: Name of the seqcount_LOCKNAME_t instance * @lock: Pointer to the associated LOCKNAME */ #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ __SEQ_LOCK(.lock = (assoc_lock)) \ } #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define __seqprop_case(s, lockname, prop) \ seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s)) #define __seqprop(s, prop) _Generic(*(s), \ seqcount_t: __seqprop_##prop((void *)(s)), \ __seqprop_case((s), raw_spinlock, prop), \ __seqprop_case((s), spinlock, prop), \ __seqprop_case((s), rwlock, prop), \ __seqprop_case((s), mutex, prop), \ __seqprop_case((s), ww_mutex, prop)) #define __seqcount_ptr(s) __seqprop(s, ptr) #define __seqcount_sequence(s) __seqprop(s, sequence) #define __seqcount_lock_preemptible(s) __seqprop(s, preemptible) #define __seqcount_assert_lock_held(s) __seqprop(s, assert) /** * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: count to be passed to read_seqcount_retry() */ #define __read_seqcount_begin(s) \ ({ \ unsigned seq; \ \ while ((seq = __seqcount_sequence(s)) & 1) \ cpu_relax(); \ \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount_begin(s) \ ({ \ unsigned seq = __read_seqcount_begin(s); \ \ smp_rmb(); \ seq; \ }) /** * read_seqcount_begin() - begin a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define read_seqcount_begin(s) \ ({ \ seqcount_lockdep_reader_access(__seqcount_ptr(s)); \ raw_read_seqcount_begin(s); \ }) /** * raw_read_seqcount() - read the raw seqcount_t counter value * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_read_seqcount opens a read critical section of the given * seqcount_t, without any lockdep checking, and without checking or * masking the sequence counter LSB. Calling code is responsible for * handling that. * * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount(s) \ ({ \ unsigned seq = __seqcount_sequence(s); \ \ smp_rmb(); \ kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ seq; \ }) /** * raw_seqcount_begin() - begin a seqcount_t read critical section w/o * lockdep and w/o counter stabilization * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_seqcount_begin opens a read critical section of the given * seqcount_t. Unlike read_seqcount_begin(), this function will not wait * for the count to stabilize. If a writer is active when it begins, it * will fail the read_seqcount_retry() at the end of the read critical * section instead of stabilizing at the beginning of it. * * Use this only in special kernel hot paths where the read section is * small and has a high probability of success through other external * means. It will save a single branching instruction. * * Return: count to be passed to read_seqcount_retry() */ #define raw_seqcount_begin(s) \ ({ \ /* \ * If the counter is odd, let read_seqcount_retry() fail \ * by decrementing the counter. \ */ \ raw_read_seqcount(s) & ~1; \ }) /** * __read_seqcount_retry() - end a seqcount_t read section w/o barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() * barrier. Callers should ensure that smp_rmb() or equivalent ordering is * provided before actually loading any of the variables that are to be * protected in this critical section. * * Use carefully, only in critical code, and comment how the barrier is * provided. * * Return: true if a read section retry is required, else false */ #define __read_seqcount_retry(s, start) \ __read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) { kcsan_atomic_next(0); return unlikely(READ_ONCE(s->sequence) != start); } /** * read_seqcount_retry() - end a seqcount_t read critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * read_seqcount_retry closes the read critical section of given * seqcount_t. If the critical section was invalid, it must be ignored * (and typically retried). * * Return: true if a read section retry is required, else false */ #define read_seqcount_retry(s, start) \ read_seqcount_t_retry(__seqcount_ptr(s), start) static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start) { smp_rmb(); return __read_seqcount_t_retry(s, start); } /** * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_begin(s) \ do { \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ raw_write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void raw_write_seqcount_t_begin(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); } /** * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants */ #define raw_write_seqcount_end(s) \ do { \ raw_write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void raw_write_seqcount_t_end(seqcount_t *s) { smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_begin_nested() - start a seqcount_t write section with * custom lockdep nesting level * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @subclass: lockdep nesting level * * See Documentation/locking/lockdep-design.rst */ #define write_seqcount_begin_nested(s, subclass) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass); \ } while (0) static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass) { raw_write_seqcount_t_begin(s); seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); } /** * write_seqcount_begin() - start a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * write_seqcount_begin opens a write side critical section of the given * seqcount_t. * * Context: seqcount_t write side critical sections must be serialized and * non-preemptible. If readers can be invoked from hardirq or softirq * context, interrupts or bottom halves must be respectively disabled. */ #define write_seqcount_begin(s) \ do { \ __seqcount_assert_lock_held(s); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_disable(); \ \ write_seqcount_t_begin(__seqcount_ptr(s)); \ } while (0) static inline void write_seqcount_t_begin(seqcount_t *s) { write_seqcount_t_begin_nested(s, 0); } /** * write_seqcount_end() - end a seqcount_t write side critical section * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * The write section must've been opened with write_seqcount_begin(). */ #define write_seqcount_end(s) \ do { \ write_seqcount_t_end(__seqcount_ptr(s)); \ \ if (__seqcount_lock_preemptible(s)) \ preempt_enable(); \ } while (0) static inline void write_seqcount_t_end(seqcount_t *s) { seqcount_release(&s->dep_map, _RET_IP_); raw_write_seqcount_t_end(s); } /** * raw_write_seqcount_barrier() - do a seqcount_t write barrier * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * This can be used to provide an ordering guarantee instead of the usual * consistency guarantee. It is one wmb cheaper, because it can collapse * the two back-to-back wmb()s. * * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads * atomically, avoiding compiler optimizations; b) to document which writes are * meant to propagate to the reader critical section. This is necessary because * neither writes before and after the barrier are enclosed in a seq-writer * critical section that would ensure readers are aware of ongoing writes:: * * seqcount_t seq; * bool X = true, Y = false; * * void read(void) * { * bool x, y; * * do { * int s = read_seqcount_begin(&seq); * * x = X; y = Y; * * } while (read_seqcount_retry(&seq, s)); * * BUG_ON(!x && !y); * } * * void write(void) * { * WRITE_ONCE(Y, true); * * raw_write_seqcount_barrier(seq); * * WRITE_ONCE(X, false); * } */ #define raw_write_seqcount_barrier(s) \ raw_write_seqcount_t_barrier(__seqcount_ptr(s)) static inline void raw_write_seqcount_t_barrier(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; smp_wmb(); s->sequence++; kcsan_nestable_atomic_end(); } /** * write_seqcount_invalidate() - invalidate in-progress seqcount_t read * side operations * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * After write_seqcount_invalidate, no seqcount_t read side operations * will complete successfully and see data older than this. */ #define write_seqcount_invalidate(s) \ write_seqcount_t_invalidate(__seqcount_ptr(s)) static inline void write_seqcount_t_invalidate(seqcount_t *s) { smp_wmb(); kcsan_nestable_atomic_begin(); s->sequence+=2; kcsan_nestable_atomic_end(); } /* * Latch sequence counters (seqcount_latch_t) * * A sequence counter variant where the counter even/odd value is used to * switch between two copies of protected data. This allows the read path, * typically NMIs, to safely interrupt the write side critical section. * * As the write sections are fully preemptible, no special handling for * PREEMPT_RT is needed. */ typedef struct { seqcount_t seqcount; } seqcount_latch_t; /** * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t * @seq_name: Name of the seqcount_latch_t instance */ #define SEQCNT_LATCH_ZERO(seq_name) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ } /** * seqcount_latch_init() - runtime initializer for seqcount_latch_t * @s: Pointer to the seqcount_latch_t instance */ #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) /** * raw_read_seqcount_latch() - pick even/odd latch data copy * @s: Pointer to seqcount_latch_t * * See raw_write_seqcount_latch() for details and a full reader/writer * usage example. * * Return: sequence counter raw value. Use the lowest bit as an index for * picking which data copy to read. The full counter must then be checked * with read_seqcount_latch_retry(). */ static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) { /* * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). * Due to the dependent load, a full smp_rmb() is not needed. */ return READ_ONCE(s->seqcount.sequence); } /** * read_seqcount_latch_retry() - end a seqcount_latch_t read section * @s: Pointer to seqcount_latch_t * @start: count, from raw_read_seqcount_latch() * * Return: true if a read section retry is required, else false */ static inline int read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) { return read_seqcount_retry(&s->seqcount, start); } /** * raw_write_seqcount_latch() - redirect latch readers to even/odd copy * @s: Pointer to seqcount_latch_t * * The latch technique is a multiversion concurrency control method that allows * queries during non-atomic modifications. If you can guarantee queries never * interrupt the modification -- e.g. the concurrency is strictly between CPUs * -- you most likely do not need this. * * Where the traditional RCU/lockless data structures rely on atomic * modifications to ensure queries observe either the old or the new state the * latch allows the same for non-atomic updates. The trade-off is doubling the * cost of storage; we have to maintain two copies of the entire data * structure. * * Very simply put: we first modify one copy and then the other. This ensures * there is always one copy in a stable state, ready to give us an answer. * * The basic form is a data structure like:: * * struct latch_struct { * seqcount_latch_t seq; * struct data_struct data[2]; * }; * * Where a modification, which is assumed to be externally serialized, does the * following:: * * void latch_modify(struct latch_struct *latch, ...) * { * smp_wmb(); // Ensure that the last data[1] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[0], ...); * * smp_wmb(); // Ensure that the data[0] update is visible * latch->seq.sequence++; * smp_wmb(); // Ensure that the seqcount update is visible * * modify(latch->data[1], ...); * } * * The query will have a form like:: * * struct entry *latch_query(struct latch_struct *latch, ...) * { * struct entry *entry; * unsigned seq, idx; * * do { * seq = raw_read_seqcount_latch(&latch->seq); * * idx = seq & 0x01; * entry = data_query(latch->data[idx], ...); * * // This includes needed smp_rmb() * } while (read_seqcount_latch_retry(&latch->seq, seq)); * * return entry; * } * * So during the modification, queries are first redirected to data[1]. Then we * modify data[0]. When that is complete, we redirect queries back to data[0] * and we can modify data[1]. * * NOTE: * * The non-requirement for atomic modifications does _NOT_ include * the publishing of new entries in the case where data is a dynamic * data structure. * * An iteration might start in data[0] and get suspended long enough * to miss an entire modification sequence, once it resumes it might * observe the new entry. * * NOTE2: * * When data is a dynamic data structure; one should use regular RCU * patterns to manage the lifetimes of the objects within. */ static inline void raw_write_seqcount_latch(seqcount_latch_t *s) { smp_wmb(); /* prior stores before incrementing "sequence" */ s->seqcount.sequence++; smp_wmb(); /* increment "sequence" before following stores */ } /* * Sequential locks (seqlock_t) * * Sequence counters with an embedded spinlock for writer serialization * and non-preemptibility. * * For more info, see: * - Comments on top of seqcount_t * - Documentation/locking/seqlock.rst */ typedef struct { /* * Make sure that readers don't starve writers on PREEMPT_RT: use * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK(). */ seqcount_spinlock_t seqcount; spinlock_t lock; } seqlock_t; #define __SEQLOCK_UNLOCKED(lockname) \ { \ .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } /** * seqlock_init() - dynamic initializer for seqlock_t * @sl: Pointer to the seqlock_t instance */ #define seqlock_init(sl) \ do { \ spin_lock_init(&(sl)->lock); \ seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ } while (0) /** * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t * @sl: Name of the seqlock_t instance */ #define DEFINE_SEQLOCK(sl) \ seqlock_t sl = __SEQLOCK_UNLOCKED(sl) /** * read_seqbegin() - start a seqlock_t read side critical section * @sl: Pointer to seqlock_t * * Return: count, to be passed to read_seqretry() */ static inline unsigned read_seqbegin(const seqlock_t *sl) { unsigned ret = read_seqcount_begin(&sl->seqcount); kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ kcsan_flat_atomic_begin(); return ret; } /** * read_seqretry() - end a seqlock_t read side section * @sl: Pointer to seqlock_t * @start: count, from read_seqbegin() * * read_seqretry closes the read side critical section of given seqlock_t. * If the critical section was invalid, it must be ignored (and typically * retried). * * Return: true if a read section retry is required, else false */ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { /* * Assume not nested: read_seqretry() may be called multiple times when * completing read critical section. */ kcsan_flat_atomic_end(); return read_seqcount_retry(&sl->seqcount, start); } /* * For all seqlock_t write side functions, use write_seqcount_*t*_begin() * instead of the generic write_seqcount_begin(). This way, no redundant * lockdep_assert_held() checks are added. */ /** * write_seqlock() - start a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_seqlock opens a write side critical section for the given * seqlock_t. It also implicitly acquires the spinlock_t embedded inside * that sequential lock. All seqlock_t write side sections are thus * automatically serialized and non-preemptible. * * Context: if the seqlock_t read section, or other write side critical * sections, can be invoked from hardirq or softirq contexts, use the * _irqsave or _bh variants of this function instead. */ static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock() - end a seqlock_t write side critical section * @sl: Pointer to seqlock_t * * write_sequnlock closes the (serialized and non-preemptible) write side * critical section of given seqlock_t. */ static inline void write_sequnlock(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock(&sl->lock); } /** * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * _bh variant of write_seqlock(). Use only if the read side section, or * other write side sections, can be invoked from softirq contexts. */ static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_bh closes the serialized, non-preemptible, and * softirqs-disabled, seqlock_t write side critical section opened with * write_seqlock_bh(). */ static inline void write_sequnlock_bh(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_bh(&sl->lock); } /** * write_seqlock_irq() - start a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * _irq variant of write_seqlock(). Use only if the read side section, or * other write sections, can be invoked from hardirq contexts. */ static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); write_seqcount_t_begin(&sl->seqcount.seqcount); } /** * write_sequnlock_irq() - end a non-interruptible seqlock_t write section * @sl: Pointer to seqlock_t * * write_sequnlock_irq closes the serialized and non-interruptible * seqlock_t write side section opened with write_seqlock_irq(). */ static inline void write_sequnlock_irq(seqlock_t *sl) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irq(&sl->lock); } static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); write_seqcount_t_begin(&sl->seqcount.seqcount); return flags; } /** * write_seqlock_irqsave() - start a non-interruptible seqlock_t write * section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to write_sequnlock_irqrestore(). * * _irqsave variant of write_seqlock(). Use it only if the read side * section, or other write sections, can be invoked from hardirq context. */ #define write_seqlock_irqsave(lock, flags) \ do { flags = __write_seqlock_irqsave(lock); } while (0) /** * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write * section * @sl: Pointer to seqlock_t * @flags: Caller's saved interrupt state, from write_seqlock_irqsave() * * write_sequnlock_irqrestore closes the serialized and non-interruptible * seqlock_t write section previously opened with write_seqlock_irqsave(). */ static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { write_seqcount_t_end(&sl->seqcount.seqcount); spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqlock_excl() - begin a seqlock_t locking reader section * @sl: Pointer to seqlock_t * * read_seqlock_excl opens a seqlock_t locking reader critical section. A * locking reader exclusively locks out *both* other writers *and* other * locking readers, but it does not update the embedded sequence number. * * Locking readers act like a normal spin_lock()/spin_unlock(). * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * The opened read section must be closed with read_sequnlock_excl(). */ static inline void read_seqlock_excl(seqlock_t *sl) { spin_lock(&sl->lock); } /** * read_sequnlock_excl() - end a seqlock_t locking reader critical section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl(seqlock_t *sl) { spin_unlock(&sl->lock); } /** * read_seqlock_excl_bh() - start a seqlock_t locking reader section with * softirqs disabled * @sl: Pointer to seqlock_t * * _bh variant of read_seqlock_excl(). Use this variant only if the * seqlock_t write side section, *or other read sections*, can be invoked * from softirq contexts. */ static inline void read_seqlock_excl_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); } /** * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking * reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_bh(seqlock_t *sl) { spin_unlock_bh(&sl->lock); } /** * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking * reader section * @sl: Pointer to seqlock_t * * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ static inline void read_seqlock_excl_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); } /** * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t * locking reader section * @sl: Pointer to seqlock_t */ static inline void read_sequnlock_excl_irq(seqlock_t *sl) { spin_unlock_irq(&sl->lock); } static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl) { unsigned long flags; spin_lock_irqsave(&sl->lock, flags); return flags; } /** * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t * locking reader section * @lock: Pointer to seqlock_t * @flags: Stack-allocated storage for saving caller's local interrupt * state, to be passed to read_sequnlock_excl_irqrestore(). * * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t * write side section, *or other read sections*, can be invoked from a * hardirq context. */ #define read_seqlock_excl_irqsave(lock, flags) \ do { flags = __read_seqlock_excl_irqsave(lock); } while (0) /** * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t * locking reader section * @sl: Pointer to seqlock_t * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave() */ static inline void read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags) { spin_unlock_irqrestore(&sl->lock, flags); } /** * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader * @lock: Pointer to seqlock_t * @seq : Marker and return parameter. If the passed value is even, the * reader will become a *lockless* seqlock_t reader as in read_seqbegin(). * If the passed value is odd, the reader will become a *locking* reader * as in read_seqlock_excl(). In the first call to this function, the * caller *must* initialize and pass an even value to @seq; this way, a * lockless read can be optimistically tried first. * * read_seqbegin_or_lock is an API designed to optimistically try a normal * lockless seqlock_t read section first. If an odd counter is found, the * lockless read trial has failed, and the next read iteration transforms * itself into a full seqlock_t locking reader. * * This is typically used to avoid seqlock_t lockless readers starvation * (too much retry loops) in the case of a sharp spike in write side * activity. * * Context: if the seqlock_t write section, *or other read sections*, can * be invoked from hardirq or softirq contexts, use the _irqsave or _bh * variant of this function instead. * * Check Documentation/locking/seqlock.rst for template example code. * * Return: the encountered sequence counter value, through the @seq * parameter, which is overloaded as a return parameter. This returned * value must be checked with need_seqretry(). If the read section need to * be retried, this returned value must also be passed as the @seq * parameter of the next read_seqbegin_or_lock() iteration. */ static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) { if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl(lock); } /** * need_seqretry() - validate seqlock_t "locking or lockless" read section * @lock: Pointer to seqlock_t * @seq: sequence count, from read_seqbegin_or_lock() * * Return: true if a read section retry is required, false otherwise */ static inline int need_seqretry(seqlock_t *lock, int seq) { return !(seq & 1) && read_seqretry(lock, seq); } /** * done_seqretry() - end seqlock_t "locking or lockless" reader section * @lock: Pointer to seqlock_t * @seq: count, from read_seqbegin_or_lock() * * done_seqretry finishes the seqlock_t read side critical section started * with read_seqbegin_or_lock() and validated by need_seqretry(). */ static inline void done_seqretry(seqlock_t *lock, int seq) { if (seq & 1) read_sequnlock_excl(lock); } /** * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or * a non-interruptible locking reader * @lock: Pointer to seqlock_t * @seq: Marker and return parameter. Check read_seqbegin_or_lock(). * * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if * the seqlock_t write section, *or other read sections*, can be invoked * from hardirq context. * * Note: Interrupts will be disabled only for "locking reader" mode. * * Return: * * 1. The saved local interrupts state in case of a locking reader, to * be passed to done_seqretry_irqrestore(). * * 2. The encountered sequence counter value, returned through @seq * overloaded as a return parameter. Check read_seqbegin_or_lock(). */ static inline unsigned long read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq) { unsigned long flags = 0; if (!(*seq & 1)) /* Even */ *seq = read_seqbegin(lock); else /* Odd */ read_seqlock_excl_irqsave(lock, flags); return flags; } /** * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a * non-interruptible locking reader section * @lock: Pointer to seqlock_t * @seq: Count, from read_seqbegin_or_lock_irqsave() * @flags: Caller's saved local interrupt state in case of a locking * reader, also from read_seqbegin_or_lock_irqsave() * * This is the _irqrestore variant of done_seqretry(). The read section * must've been opened with read_seqbegin_or_lock_irqsave(), and validated * by need_seqretry(). */ static inline void done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags) { if (seq & 1) read_sequnlock_excl_irqrestore(lock, flags); } #endif /* __LINUX_SEQLOCK_H */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM writeback #if !defined(_TRACE_WRITEBACK_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_WRITEBACK_H #include <linux/tracepoint.h> #include <linux/backing-dev.h> #include <linux/writeback.h> #define show_inode_state(state) \ __print_flags(state, "|", \ {I_DIRTY_SYNC, "I_DIRTY_SYNC"}, \ {I_DIRTY_DATASYNC, "I_DIRTY_DATASYNC"}, \ {I_DIRTY_PAGES, "I_DIRTY_PAGES"}, \ {I_NEW, "I_NEW"}, \ {I_WILL_FREE, "I_WILL_FREE"}, \ {I_FREEING, "I_FREEING"}, \ {I_CLEAR, "I_CLEAR"}, \ {I_SYNC, "I_SYNC"}, \ {I_DIRTY_TIME, "I_DIRTY_TIME"}, \ {I_REFERENCED, "I_REFERENCED"} \ ) /* enums need to be exported to user space */ #undef EM #undef EMe #define EM(a,b) TRACE_DEFINE_ENUM(a); #define EMe(a,b) TRACE_DEFINE_ENUM(a); #define WB_WORK_REASON \ EM( WB_REASON_BACKGROUND, "background") \ EM( WB_REASON_VMSCAN, "vmscan") \ EM( WB_REASON_SYNC, "sync") \ EM( WB_REASON_PERIODIC, "periodic") \ EM( WB_REASON_LAPTOP_TIMER, "laptop_timer") \ EM( WB_REASON_FS_FREE_SPACE, "fs_free_space") \ EMe(WB_REASON_FORKER_THREAD, "forker_thread") WB_WORK_REASON /* * Now redefine the EM() and EMe() macros to map the enums to the strings * that will be printed in the output. */ #undef EM #undef EMe #define EM(a,b) { a, b }, #define EMe(a,b) { a, b } struct wb_writeback_work; DECLARE_EVENT_CLASS(writeback_page_template, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(pgoff_t, index) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(mapping ? inode_to_bdi(mapping->host) : NULL), 32); __entry->ino = mapping ? mapping->host->i_ino : 0; __entry->index = page->index; ), TP_printk("bdi %s: ino=%lu index=%lu", __entry->name, (unsigned long)__entry->ino, __entry->index ) ); DEFINE_EVENT(writeback_page_template, writeback_dirty_page, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DEFINE_EVENT(writeback_page_template, wait_on_page_writeback, TP_PROTO(struct page *page, struct address_space *mapping), TP_ARGS(page, mapping) ); DECLARE_EVENT_CLASS(writeback_dirty_inode_template, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, flags) ), TP_fast_assign( struct backing_dev_info *bdi = inode_to_bdi(inode); /* may be called for files on pseudo FSes w/ unregistered bdi */ strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->flags = flags; ), TP_printk("bdi %s: ino=%lu state=%s flags=%s", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), show_inode_state(__entry->flags) ) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_mark_inode_dirty, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode_start, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); DEFINE_EVENT(writeback_dirty_inode_template, writeback_dirty_inode, TP_PROTO(struct inode *inode, int flags), TP_ARGS(inode, flags) ); #ifdef CREATE_TRACE_POINTS #ifdef CONFIG_CGROUP_WRITEBACK static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return cgroup_ino(wb->memcg_css->cgroup); } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { if (wbc->wb) return __trace_wb_assign_cgroup(wbc->wb); else return 1; } #else /* CONFIG_CGROUP_WRITEBACK */ static inline ino_t __trace_wb_assign_cgroup(struct bdi_writeback *wb) { return 1; } static inline ino_t __trace_wbc_assign_cgroup(struct writeback_control *wbc) { return 1; } #endif /* CONFIG_CGROUP_WRITEBACK */ #endif /* CREATE_TRACE_POINTS */ #ifdef CONFIG_CGROUP_WRITEBACK TRACE_EVENT(inode_foreign_history, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned int history), TP_ARGS(inode, wbc, history), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, cgroup_ino) __field(unsigned int, history) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); __entry->history = history; ), TP_printk("bdi %s: ino=%lu cgroup_ino=%lu history=0x%x", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->cgroup_ino, __entry->history ) ); TRACE_EVENT(inode_switch_wbs, TP_PROTO(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb), TP_ARGS(inode, old_wb, new_wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(ino_t, old_cgroup_ino) __field(ino_t, new_cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(old_wb->bdi), 32); __entry->ino = inode->i_ino; __entry->old_cgroup_ino = __trace_wb_assign_cgroup(old_wb); __entry->new_cgroup_ino = __trace_wb_assign_cgroup(new_wb); ), TP_printk("bdi %s: ino=%lu old_cgroup_ino=%lu new_cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, (unsigned long)__entry->old_cgroup_ino, (unsigned long)__entry->new_cgroup_ino ) ); TRACE_EVENT(track_foreign_dirty, TP_PROTO(struct page *page, struct bdi_writeback *wb), TP_ARGS(page, wb), TP_STRUCT__entry( __array(char, name, 32) __field(u64, bdi_id) __field(ino_t, ino) __field(unsigned int, memcg_id) __field(ino_t, cgroup_ino) __field(ino_t, page_cgroup_ino) ), TP_fast_assign( struct address_space *mapping = page_mapping(page); struct inode *inode = mapping ? mapping->host : NULL; strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->bdi_id = wb->bdi->id; __entry->ino = inode ? inode->i_ino : 0; __entry->memcg_id = wb->memcg_css->id; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->page_cgroup_ino = cgroup_ino(page->mem_cgroup->css.cgroup); ), TP_printk("bdi %s[%llu]: ino=%lu memcg_id=%u cgroup_ino=%lu page_cgroup_ino=%lu", __entry->name, __entry->bdi_id, (unsigned long)__entry->ino, __entry->memcg_id, (unsigned long)__entry->cgroup_ino, (unsigned long)__entry->page_cgroup_ino ) ); TRACE_EVENT(flush_foreign, TP_PROTO(struct bdi_writeback *wb, unsigned int frn_bdi_id, unsigned int frn_memcg_id), TP_ARGS(wb, frn_bdi_id, frn_memcg_id), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) __field(unsigned int, frn_bdi_id) __field(unsigned int, frn_memcg_id) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); __entry->frn_bdi_id = frn_bdi_id; __entry->frn_memcg_id = frn_memcg_id; ), TP_printk("bdi %s: cgroup_ino=%lu frn_bdi_id=%u frn_memcg_id=%u", __entry->name, (unsigned long)__entry->cgroup_ino, __entry->frn_bdi_id, __entry->frn_memcg_id ) ); #endif DECLARE_EVENT_CLASS(writeback_write_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc), TP_STRUCT__entry ( __array(char, name, 32) __field(ino_t, ino) __field(int, sync_mode) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->sync_mode = wbc->sync_mode; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu sync_mode=%d cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, __entry->sync_mode, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DEFINE_EVENT(writeback_write_inode_template, writeback_write_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc), TP_ARGS(inode, wbc) ); DECLARE_EVENT_CLASS(writeback_work_class, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), TP_ARGS(wb, work), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_pages) __field(dev_t, sb_dev) __field(int, sync_mode) __field(int, for_kupdate) __field(int, range_cyclic) __field(int, for_background) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->nr_pages = work->nr_pages; __entry->sb_dev = work->sb ? work->sb->s_dev : 0; __entry->sync_mode = work->sync_mode; __entry->for_kupdate = work->for_kupdate; __entry->range_cyclic = work->range_cyclic; __entry->for_background = work->for_background; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: sb_dev %d:%d nr_pages=%ld sync_mode=%d " "kupdate=%d range_cyclic=%d background=%d reason=%s cgroup_ino=%lu", __entry->name, MAJOR(__entry->sb_dev), MINOR(__entry->sb_dev), __entry->nr_pages, __entry->sync_mode, __entry->for_kupdate, __entry->range_cyclic, __entry->for_background, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_WORK_EVENT(name) \ DEFINE_EVENT(writeback_work_class, name, \ TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work), \ TP_ARGS(wb, work)) DEFINE_WRITEBACK_WORK_EVENT(writeback_queue); DEFINE_WRITEBACK_WORK_EVENT(writeback_exec); DEFINE_WRITEBACK_WORK_EVENT(writeback_start); DEFINE_WRITEBACK_WORK_EVENT(writeback_written); DEFINE_WRITEBACK_WORK_EVENT(writeback_wait); TRACE_EVENT(writeback_pages_written, TP_PROTO(long pages_written), TP_ARGS(pages_written), TP_STRUCT__entry( __field(long, pages) ), TP_fast_assign( __entry->pages = pages_written; ), TP_printk("%ld", __entry->pages) ); DECLARE_EVENT_CLASS(writeback_class, TP_PROTO(struct bdi_writeback *wb), TP_ARGS(wb), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: cgroup_ino=%lu", __entry->name, (unsigned long)__entry->cgroup_ino ) ); #define DEFINE_WRITEBACK_EVENT(name) \ DEFINE_EVENT(writeback_class, name, \ TP_PROTO(struct bdi_writeback *wb), \ TP_ARGS(wb)) DEFINE_WRITEBACK_EVENT(writeback_wake_background); TRACE_EVENT(writeback_bdi_register, TP_PROTO(struct backing_dev_info *bdi), TP_ARGS(bdi), TP_STRUCT__entry( __array(char, name, 32) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); ), TP_printk("bdi %s", __entry->name ) ); DECLARE_EVENT_CLASS(wbc_class, TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), TP_ARGS(wbc, bdi), TP_STRUCT__entry( __array(char, name, 32) __field(long, nr_to_write) __field(long, pages_skipped) __field(int, sync_mode) __field(int, for_kupdate) __field(int, for_background) __field(int, for_reclaim) __field(int, range_cyclic) __field(long, range_start) __field(long, range_end) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(bdi), 32); __entry->nr_to_write = wbc->nr_to_write; __entry->pages_skipped = wbc->pages_skipped; __entry->sync_mode = wbc->sync_mode; __entry->for_kupdate = wbc->for_kupdate; __entry->for_background = wbc->for_background; __entry->for_reclaim = wbc->for_reclaim; __entry->range_cyclic = wbc->range_cyclic; __entry->range_start = (long)wbc->range_start; __entry->range_end = (long)wbc->range_end; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: towrt=%ld skip=%ld mode=%d kupd=%d " "bgrd=%d reclm=%d cyclic=%d " "start=0x%lx end=0x%lx cgroup_ino=%lu", __entry->name, __entry->nr_to_write, __entry->pages_skipped, __entry->sync_mode, __entry->for_kupdate, __entry->for_background, __entry->for_reclaim, __entry->range_cyclic, __entry->range_start, __entry->range_end, (unsigned long)__entry->cgroup_ino ) ) #define DEFINE_WBC_EVENT(name) \ DEFINE_EVENT(wbc_class, name, \ TP_PROTO(struct writeback_control *wbc, struct backing_dev_info *bdi), \ TP_ARGS(wbc, bdi)) DEFINE_WBC_EVENT(wbc_writepage); TRACE_EVENT(writeback_queue_io, TP_PROTO(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before, int moved), TP_ARGS(wb, work, dirtied_before, moved), TP_STRUCT__entry( __array(char, name, 32) __field(unsigned long, older) __field(long, age) __field(int, moved) __field(int, reason) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(wb->bdi), 32); __entry->older = dirtied_before; __entry->age = (jiffies - dirtied_before) * 1000 / HZ; __entry->moved = moved; __entry->reason = work->reason; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: older=%lu age=%ld enqueue=%d reason=%s cgroup_ino=%lu", __entry->name, __entry->older, /* dirtied_before in jiffies */ __entry->age, /* dirtied_before in relative milliseconds */ __entry->moved, __print_symbolic(__entry->reason, WB_WORK_REASON), (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(global_dirty_state, TP_PROTO(unsigned long background_thresh, unsigned long dirty_thresh ), TP_ARGS(background_thresh, dirty_thresh ), TP_STRUCT__entry( __field(unsigned long, nr_dirty) __field(unsigned long, nr_writeback) __field(unsigned long, background_thresh) __field(unsigned long, dirty_thresh) __field(unsigned long, dirty_limit) __field(unsigned long, nr_dirtied) __field(unsigned long, nr_written) ), TP_fast_assign( __entry->nr_dirty = global_node_page_state(NR_FILE_DIRTY); __entry->nr_writeback = global_node_page_state(NR_WRITEBACK); __entry->nr_dirtied = global_node_page_state(NR_DIRTIED); __entry->nr_written = global_node_page_state(NR_WRITTEN); __entry->background_thresh = background_thresh; __entry->dirty_thresh = dirty_thresh; __entry->dirty_limit = global_wb_domain.dirty_limit; ), TP_printk("dirty=%lu writeback=%lu " "bg_thresh=%lu thresh=%lu limit=%lu " "dirtied=%lu written=%lu", __entry->nr_dirty, __entry->nr_writeback, __entry->background_thresh, __entry->dirty_thresh, __entry->dirty_limit, __entry->nr_dirtied, __entry->nr_written ) ); #define KBps(x) ((x) << (PAGE_SHIFT - 10)) TRACE_EVENT(bdi_dirty_ratelimit, TP_PROTO(struct bdi_writeback *wb, unsigned long dirty_rate, unsigned long task_ratelimit), TP_ARGS(wb, dirty_rate, task_ratelimit), TP_STRUCT__entry( __array(char, bdi, 32) __field(unsigned long, write_bw) __field(unsigned long, avg_write_bw) __field(unsigned long, dirty_rate) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned long, balanced_dirty_ratelimit) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->write_bw = KBps(wb->write_bandwidth); __entry->avg_write_bw = KBps(wb->avg_write_bandwidth); __entry->dirty_rate = KBps(dirty_rate); __entry->dirty_ratelimit = KBps(wb->dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->balanced_dirty_ratelimit = KBps(wb->balanced_dirty_ratelimit); __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "write_bw=%lu awrite_bw=%lu dirty_rate=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "balanced_dirty_ratelimit=%lu cgroup_ino=%lu", __entry->bdi, __entry->write_bw, /* write bandwidth */ __entry->avg_write_bw, /* avg write bandwidth */ __entry->dirty_rate, /* bdi dirty rate */ __entry->dirty_ratelimit, /* base ratelimit */ __entry->task_ratelimit, /* ratelimit with position control */ __entry->balanced_dirty_ratelimit, /* the balanced ratelimit */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(balance_dirty_pages, TP_PROTO(struct bdi_writeback *wb, unsigned long thresh, unsigned long bg_thresh, unsigned long dirty, unsigned long bdi_thresh, unsigned long bdi_dirty, unsigned long dirty_ratelimit, unsigned long task_ratelimit, unsigned long dirtied, unsigned long period, long pause, unsigned long start_time), TP_ARGS(wb, thresh, bg_thresh, dirty, bdi_thresh, bdi_dirty, dirty_ratelimit, task_ratelimit, dirtied, period, pause, start_time), TP_STRUCT__entry( __array( char, bdi, 32) __field(unsigned long, limit) __field(unsigned long, setpoint) __field(unsigned long, dirty) __field(unsigned long, bdi_setpoint) __field(unsigned long, bdi_dirty) __field(unsigned long, dirty_ratelimit) __field(unsigned long, task_ratelimit) __field(unsigned int, dirtied) __field(unsigned int, dirtied_pause) __field(unsigned long, paused) __field( long, pause) __field(unsigned long, period) __field( long, think) __field(ino_t, cgroup_ino) ), TP_fast_assign( unsigned long freerun = (thresh + bg_thresh) / 2; strscpy_pad(__entry->bdi, bdi_dev_name(wb->bdi), 32); __entry->limit = global_wb_domain.dirty_limit; __entry->setpoint = (global_wb_domain.dirty_limit + freerun) / 2; __entry->dirty = dirty; __entry->bdi_setpoint = __entry->setpoint * bdi_thresh / (thresh + 1); __entry->bdi_dirty = bdi_dirty; __entry->dirty_ratelimit = KBps(dirty_ratelimit); __entry->task_ratelimit = KBps(task_ratelimit); __entry->dirtied = dirtied; __entry->dirtied_pause = current->nr_dirtied_pause; __entry->think = current->dirty_paused_when == 0 ? 0 : (long)(jiffies - current->dirty_paused_when) * 1000/HZ; __entry->period = period * 1000 / HZ; __entry->pause = pause * 1000 / HZ; __entry->paused = (jiffies - start_time) * 1000 / HZ; __entry->cgroup_ino = __trace_wb_assign_cgroup(wb); ), TP_printk("bdi %s: " "limit=%lu setpoint=%lu dirty=%lu " "bdi_setpoint=%lu bdi_dirty=%lu " "dirty_ratelimit=%lu task_ratelimit=%lu " "dirtied=%u dirtied_pause=%u " "paused=%lu pause=%ld period=%lu think=%ld cgroup_ino=%lu", __entry->bdi, __entry->limit, __entry->setpoint, __entry->dirty, __entry->bdi_setpoint, __entry->bdi_dirty, __entry->dirty_ratelimit, __entry->task_ratelimit, __entry->dirtied, __entry->dirtied_pause, __entry->paused, /* ms */ __entry->pause, /* ms */ __entry->period, /* ms */ __entry->think, /* ms */ (unsigned long)__entry->cgroup_ino ) ); TRACE_EVENT(writeback_sb_inodes_requeue, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->cgroup_ino = __trace_wb_assign_cgroup(inode_to_wb(inode)); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, (unsigned long)__entry->cgroup_ino ) ); DECLARE_EVENT_CLASS(writeback_congest_waited_template, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed), TP_STRUCT__entry( __field( unsigned int, usec_timeout ) __field( unsigned int, usec_delayed ) ), TP_fast_assign( __entry->usec_timeout = usec_timeout; __entry->usec_delayed = usec_delayed; ), TP_printk("usec_timeout=%u usec_delayed=%u", __entry->usec_timeout, __entry->usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_congestion_wait, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DEFINE_EVENT(writeback_congest_waited_template, writeback_wait_iff_congested, TP_PROTO(unsigned int usec_timeout, unsigned int usec_delayed), TP_ARGS(usec_timeout, usec_delayed) ); DECLARE_EVENT_CLASS(writeback_single_inode_template, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write ), TP_ARGS(inode, wbc, nr_to_write), TP_STRUCT__entry( __array(char, name, 32) __field(ino_t, ino) __field(unsigned long, state) __field(unsigned long, dirtied_when) __field(unsigned long, writeback_index) __field(long, nr_to_write) __field(unsigned long, wrote) __field(ino_t, cgroup_ino) ), TP_fast_assign( strscpy_pad(__entry->name, bdi_dev_name(inode_to_bdi(inode)), 32); __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->dirtied_when = inode->dirtied_when; __entry->writeback_index = inode->i_mapping->writeback_index; __entry->nr_to_write = nr_to_write; __entry->wrote = nr_to_write - wbc->nr_to_write; __entry->cgroup_ino = __trace_wbc_assign_cgroup(wbc); ), TP_printk("bdi %s: ino=%lu state=%s dirtied_when=%lu age=%lu " "index=%lu to_write=%ld wrote=%lu cgroup_ino=%lu", __entry->name, (unsigned long)__entry->ino, show_inode_state(__entry->state), __entry->dirtied_when, (jiffies - __entry->dirtied_when) / HZ, __entry->writeback_index, __entry->nr_to_write, __entry->wrote, (unsigned long)__entry->cgroup_ino ) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode_start, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DEFINE_EVENT(writeback_single_inode_template, writeback_single_inode, TP_PROTO(struct inode *inode, struct writeback_control *wbc, unsigned long nr_to_write), TP_ARGS(inode, wbc, nr_to_write) ); DECLARE_EVENT_CLASS(writeback_inode_template, TP_PROTO(struct inode *inode), TP_ARGS(inode), TP_STRUCT__entry( __field( dev_t, dev ) __field( ino_t, ino ) __field(unsigned long, state ) __field( __u16, mode ) __field(unsigned long, dirtied_when ) ), TP_fast_assign( __entry->dev = inode->i_sb->s_dev; __entry->ino = inode->i_ino; __entry->state = inode->i_state; __entry->mode = inode->i_mode; __entry->dirtied_when = inode->dirtied_when; ), TP_printk("dev %d,%d ino %lu dirtied %lu state %s mode 0%o", MAJOR(__entry->dev), MINOR(__entry->dev), (unsigned long)__entry->ino, __entry->dirtied_when, show_inode_state(__entry->state), __entry->mode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_lazytime_iput, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, writeback_dirty_inode_enqueue, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); /* * Inode writeback list tracking. */ DEFINE_EVENT(writeback_inode_template, sb_mark_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); DEFINE_EVENT(writeback_inode_template, sb_clear_inode_writeback, TP_PROTO(struct inode *inode), TP_ARGS(inode) ); #endif /* _TRACE_WRITEBACK_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * acpi_bus.h - ACPI Bus Driver ($Revision: 22 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> */ #ifndef __ACPI_BUS_H__ #define __ACPI_BUS_H__ #include <linux/device.h> #include <linux/property.h> /* TBD: Make dynamic */ #define ACPI_MAX_HANDLES 10 struct acpi_handle_list { u32 count; acpi_handle handles[ACPI_MAX_HANDLES]; }; /* acpi_utils.h */ acpi_status acpi_extract_package(union acpi_object *package, struct acpi_buffer *format, struct acpi_buffer *buffer); acpi_status acpi_evaluate_integer(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, unsigned long long *data); acpi_status acpi_evaluate_reference(acpi_handle handle, acpi_string pathname, struct acpi_object_list *arguments, struct acpi_handle_list *list); acpi_status acpi_evaluate_ost(acpi_handle handle, u32 source_event, u32 status_code, struct acpi_buffer *status_buf); acpi_status acpi_get_physical_device_location(acpi_handle handle, struct acpi_pld_info **pld); bool acpi_has_method(acpi_handle handle, char *name); acpi_status acpi_execute_simple_method(acpi_handle handle, char *method, u64 arg); acpi_status acpi_evaluate_ej0(acpi_handle handle); acpi_status acpi_evaluate_lck(acpi_handle handle, int lock); acpi_status acpi_evaluate_reg(acpi_handle handle, u8 space_id, u32 function); bool acpi_ata_match(acpi_handle handle); bool acpi_bay_match(acpi_handle handle); bool acpi_dock_match(acpi_handle handle); bool acpi_check_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 funcs); union acpi_object *acpi_evaluate_dsm(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4); static inline union acpi_object * acpi_evaluate_dsm_typed(acpi_handle handle, const guid_t *guid, u64 rev, u64 func, union acpi_object *argv4, acpi_object_type type) { union acpi_object *obj; obj = acpi_evaluate_dsm(handle, guid, rev, func, argv4); if (obj && obj->type != type) { ACPI_FREE(obj); obj = NULL; } return obj; } #define ACPI_INIT_DSM_ARGV4(cnt, eles) \ { \ .package.type = ACPI_TYPE_PACKAGE, \ .package.count = (cnt), \ .package.elements = (eles) \ } bool acpi_dev_found(const char *hid); bool acpi_dev_present(const char *hid, const char *uid, s64 hrv); #ifdef CONFIG_ACPI struct proc_dir_entry; #define ACPI_BUS_FILE_ROOT "acpi" extern struct proc_dir_entry *acpi_root_dir; enum acpi_bus_device_type { ACPI_BUS_TYPE_DEVICE = 0, ACPI_BUS_TYPE_POWER, ACPI_BUS_TYPE_PROCESSOR, ACPI_BUS_TYPE_THERMAL, ACPI_BUS_TYPE_POWER_BUTTON, ACPI_BUS_TYPE_SLEEP_BUTTON, ACPI_BUS_TYPE_ECDT_EC, ACPI_BUS_DEVICE_TYPE_COUNT }; struct acpi_driver; struct acpi_device; /* * ACPI Scan Handler * ----------------- */ struct acpi_hotplug_profile { struct kobject kobj; int (*scan_dependent)(struct acpi_device *adev); void (*notify_online)(struct acpi_device *adev); bool enabled:1; bool demand_offline:1; }; static inline struct acpi_hotplug_profile *to_acpi_hotplug_profile( struct kobject *kobj) { return container_of(kobj, struct acpi_hotplug_profile, kobj); } struct acpi_scan_handler { const struct acpi_device_id *ids; struct list_head list_node; bool (*match)(const char *idstr, const struct acpi_device_id **matchid); int (*attach)(struct acpi_device *dev, const struct acpi_device_id *id); void (*detach)(struct acpi_device *dev); void (*bind)(struct device *phys_dev); void (*unbind)(struct device *phys_dev); struct acpi_hotplug_profile hotplug; }; /* * ACPI Hotplug Context * -------------------- */ struct acpi_hotplug_context { struct acpi_device *self; int (*notify)(struct acpi_device *, u32); void (*uevent)(struct acpi_device *, u32); void (*fixup)(struct acpi_device *); }; /* * ACPI Driver * ----------- */ typedef int (*acpi_op_add) (struct acpi_device * device); typedef int (*acpi_op_remove) (struct acpi_device * device); typedef void (*acpi_op_notify) (struct acpi_device * device, u32 event); struct acpi_device_ops { acpi_op_add add; acpi_op_remove remove; acpi_op_notify notify; }; #define ACPI_DRIVER_ALL_NOTIFY_EVENTS 0x1 /* system AND device events */ struct acpi_driver { char name[80]; char class[80]; const struct acpi_device_id *ids; /* Supported Hardware IDs */ unsigned int flags; struct acpi_device_ops ops; struct device_driver drv; struct module *owner; }; /* * ACPI Device * ----------- */ /* Status (_STA) */ struct acpi_device_status { u32 present:1; u32 enabled:1; u32 show_in_ui:1; u32 functional:1; u32 battery_present:1; u32 reserved:27; }; /* Flags */ struct acpi_device_flags { u32 dynamic_status:1; u32 removable:1; u32 ejectable:1; u32 power_manageable:1; u32 match_driver:1; u32 initialized:1; u32 visited:1; u32 hotplug_notify:1; u32 is_dock_station:1; u32 of_compatible_ok:1; u32 coherent_dma:1; u32 cca_seen:1; u32 enumeration_by_parent:1; u32 reserved:19; }; /* File System */ struct acpi_device_dir { struct proc_dir_entry *entry; }; #define acpi_device_dir(d) ((d)->dir.entry) /* Plug and Play */ typedef char acpi_bus_id[8]; typedef u64 acpi_bus_address; typedef char acpi_device_name[40]; typedef char acpi_device_class[20]; struct acpi_hardware_id { struct list_head list; const char *id; }; struct acpi_pnp_type { u32 hardware_id:1; u32 bus_address:1; u32 platform_id:1; u32 reserved:29; }; struct acpi_device_pnp { acpi_bus_id bus_id; /* Object name */ int instance_no; /* Instance number of this object */ struct acpi_pnp_type type; /* ID type */ acpi_bus_address bus_address; /* _ADR */ char *unique_id; /* _UID */ struct list_head ids; /* _HID and _CIDs */ acpi_device_name device_name; /* Driver-determined */ acpi_device_class device_class; /* " */ union acpi_object *str_obj; /* unicode string for _STR method */ }; #define acpi_device_bid(d) ((d)->pnp.bus_id) #define acpi_device_adr(d) ((d)->pnp.bus_address) const char *acpi_device_hid(struct acpi_device *device); #define acpi_device_uid(d) ((d)->pnp.unique_id) #define acpi_device_name(d) ((d)->pnp.device_name) #define acpi_device_class(d) ((d)->pnp.device_class) /* Power Management */ struct acpi_device_power_flags { u32 explicit_get:1; /* _PSC present? */ u32 power_resources:1; /* Power resources */ u32 inrush_current:1; /* Serialize Dx->D0 */ u32 power_removed:1; /* Optimize Dx->D0 */ u32 ignore_parent:1; /* Power is independent of parent power state */ u32 dsw_present:1; /* _DSW present? */ u32 reserved:26; }; struct acpi_device_power_state { struct { u8 valid:1; u8 explicit_set:1; /* _PSx present? */ u8 reserved:6; } flags; int power; /* % Power (compared to D0) */ int latency; /* Dx->D0 time (microseconds) */ struct list_head resources; /* Power resources referenced */ }; struct acpi_device_power { int state; /* Current state */ struct acpi_device_power_flags flags; struct acpi_device_power_state states[ACPI_D_STATE_COUNT]; /* Power states (D0-D3Cold) */ }; /* Performance Management */ struct acpi_device_perf_flags { u8 reserved:8; }; struct acpi_device_perf_state { struct { u8 valid:1; u8 reserved:7; } flags; u8 power; /* % Power (compared to P0) */ u8 performance; /* % Performance ( " ) */ int latency; /* Px->P0 time (microseconds) */ }; struct acpi_device_perf { int state; struct acpi_device_perf_flags flags; int state_count; struct acpi_device_perf_state *states; }; /* Wakeup Management */ struct acpi_device_wakeup_flags { u8 valid:1; /* Can successfully enable wakeup? */ u8 notifier_present:1; /* Wake-up notify handler has been installed */ }; struct acpi_device_wakeup_context { void (*func)(struct acpi_device_wakeup_context *context); struct device *dev; }; struct acpi_device_wakeup { acpi_handle gpe_device; u64 gpe_number; u64 sleep_state; struct list_head resources; struct acpi_device_wakeup_flags flags; struct acpi_device_wakeup_context context; struct wakeup_source *ws; int prepare_count; int enable_count; }; struct acpi_device_physical_node { unsigned int node_id; struct list_head node; struct device *dev; bool put_online:1; }; struct acpi_device_properties { const guid_t *guid; const union acpi_object *properties; struct list_head list; }; /* ACPI Device Specific Data (_DSD) */ struct acpi_device_data { const union acpi_object *pointer; struct list_head properties; const union acpi_object *of_compatible; struct list_head subnodes; }; struct acpi_gpio_mapping; /* Device */ struct acpi_device { int device_type; acpi_handle handle; /* no handle for fixed hardware */ struct fwnode_handle fwnode; struct acpi_device *parent; struct list_head children; struct list_head node; struct list_head wakeup_list; struct list_head del_list; struct acpi_device_status status; struct acpi_device_flags flags; struct acpi_device_pnp pnp; struct acpi_device_power power; struct acpi_device_wakeup wakeup; struct acpi_device_perf performance; struct acpi_device_dir dir; struct acpi_device_data data; struct acpi_scan_handler *handler; struct acpi_hotplug_context *hp; struct acpi_driver *driver; const struct acpi_gpio_mapping *driver_gpios; void *driver_data; struct device dev; unsigned int physical_node_count; unsigned int dep_unmet; struct list_head physical_node_list; struct mutex physical_node_lock; void (*remove)(struct acpi_device *); }; /* Non-device subnode */ struct acpi_data_node { const char *name; acpi_handle handle; struct fwnode_handle fwnode; struct fwnode_handle *parent; struct acpi_device_data data; struct list_head sibling; struct kobject kobj; struct completion kobj_done; }; extern const struct fwnode_operations acpi_device_fwnode_ops; extern const struct fwnode_operations acpi_data_fwnode_ops; extern const struct fwnode_operations acpi_static_fwnode_ops; bool is_acpi_device_node(const struct fwnode_handle *fwnode); bool is_acpi_data_node(const struct fwnode_handle *fwnode); static inline bool is_acpi_node(const struct fwnode_handle *fwnode) { return (is_acpi_device_node(fwnode) || is_acpi_data_node(fwnode)); } #define to_acpi_device_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_device_node_fwnode = __fwnode; \ \ is_acpi_device_node(__to_acpi_device_node_fwnode) ? \ container_of(__to_acpi_device_node_fwnode, \ struct acpi_device, fwnode) : \ NULL; \ }) #define to_acpi_data_node(__fwnode) \ ({ \ typeof(__fwnode) __to_acpi_data_node_fwnode = __fwnode; \ \ is_acpi_data_node(__to_acpi_data_node_fwnode) ? \ container_of(__to_acpi_data_node_fwnode, \ struct acpi_data_node, fwnode) : \ NULL; \ }) static inline bool is_acpi_static_node(const struct fwnode_handle *fwnode) { return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &acpi_static_fwnode_ops; } static inline bool acpi_data_node_match(const struct fwnode_handle *fwnode, const char *name) { return is_acpi_data_node(fwnode) ? (!strcmp(to_acpi_data_node(fwnode)->name, name)) : false; } static inline struct fwnode_handle *acpi_fwnode_handle(struct acpi_device *adev) { return &adev->fwnode; } static inline void *acpi_driver_data(struct acpi_device *d) { return d->driver_data; } #define to_acpi_device(d) container_of(d, struct acpi_device, dev) #define to_acpi_driver(d) container_of(d, struct acpi_driver, drv) static inline void acpi_set_device_status(struct acpi_device *adev, u32 sta) { *((u32 *)&adev->status) = sta; } static inline void acpi_set_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp) { hp->self = adev; adev->hp = hp; } void acpi_initialize_hp_context(struct acpi_device *adev, struct acpi_hotplug_context *hp, int (*notify)(struct acpi_device *, u32), void (*uevent)(struct acpi_device *, u32)); /* acpi_device.dev.bus == &acpi_bus_type */ extern struct bus_type acpi_bus_type; /* * Events * ------ */ struct acpi_bus_event { struct list_head node; acpi_device_class device_class; acpi_bus_id bus_id; u32 type; u32 data; }; extern struct kobject *acpi_kobj; extern int acpi_bus_generate_netlink_event(const char*, const char*, u8, int); void acpi_bus_private_data_handler(acpi_handle, void *); int acpi_bus_get_private_data(acpi_handle, void **); int acpi_bus_attach_private_data(acpi_handle, void *); void acpi_bus_detach_private_data(acpi_handle); extern int acpi_notifier_call_chain(struct acpi_device *, u32, u32); extern int register_acpi_notifier(struct notifier_block *); extern int unregister_acpi_notifier(struct notifier_block *); /* * External Functions */ int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device); struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle); void acpi_bus_put_acpi_device(struct acpi_device *adev); acpi_status acpi_bus_get_status_handle(acpi_handle handle, unsigned long long *sta); int acpi_bus_get_status(struct acpi_device *device); int acpi_bus_set_power(acpi_handle handle, int state); const char *acpi_power_state_string(int state); int acpi_device_set_power(struct acpi_device *device, int state); int acpi_bus_init_power(struct acpi_device *device); int acpi_device_fix_up_power(struct acpi_device *device); int acpi_bus_update_power(acpi_handle handle, int *state_p); int acpi_device_update_power(struct acpi_device *device, int *state_p); bool acpi_bus_power_manageable(acpi_handle handle); int acpi_device_power_add_dependent(struct acpi_device *adev, struct device *dev); void acpi_device_power_remove_dependent(struct acpi_device *adev, struct device *dev); #ifdef CONFIG_PM bool acpi_bus_can_wakeup(acpi_handle handle); #else static inline bool acpi_bus_can_wakeup(acpi_handle handle) { return false; } #endif void acpi_scan_lock_acquire(void); void acpi_scan_lock_release(void); void acpi_lock_hp_context(void); void acpi_unlock_hp_context(void); int acpi_scan_add_handler(struct acpi_scan_handler *handler); int acpi_bus_register_driver(struct acpi_driver *driver); void acpi_bus_unregister_driver(struct acpi_driver *driver); int acpi_bus_scan(acpi_handle handle); void acpi_bus_trim(struct acpi_device *start); acpi_status acpi_bus_get_ejd(acpi_handle handle, acpi_handle * ejd); int acpi_match_device_ids(struct acpi_device *device, const struct acpi_device_id *ids); void acpi_set_modalias(struct acpi_device *adev, const char *default_id, char *modalias, size_t len); int acpi_create_dir(struct acpi_device *); void acpi_remove_dir(struct acpi_device *); static inline bool acpi_device_enumerated(struct acpi_device *adev) { return adev && adev->flags.initialized && adev->flags.visited; } /** * module_acpi_driver(acpi_driver) - Helper macro for registering an ACPI driver * @__acpi_driver: acpi_driver struct * * Helper macro for ACPI drivers which do not do anything special in module * init/exit. This eliminates a lot of boilerplate. Each module may only * use this macro once, and calling it replaces module_init() and module_exit() */ #define module_acpi_driver(__acpi_driver) \ module_driver(__acpi_driver, acpi_bus_register_driver, \ acpi_bus_unregister_driver) /* * Bind physical devices with ACPI devices */ struct acpi_bus_type { struct list_head list; const char *name; bool (*match)(struct device *dev); struct acpi_device * (*find_companion)(struct device *); void (*setup)(struct device *); void (*cleanup)(struct device *); }; int register_acpi_bus_type(struct acpi_bus_type *); int unregister_acpi_bus_type(struct acpi_bus_type *); int acpi_bind_one(struct device *dev, struct acpi_device *adev); int acpi_unbind_one(struct device *dev); struct acpi_pci_root { struct acpi_device * device; struct pci_bus *bus; u16 segment; struct resource secondary; /* downstream bus range */ u32 osc_support_set; /* _OSC state of support bits */ u32 osc_control_set; /* _OSC state of control bits */ phys_addr_t mcfg_addr; }; /* helper */ bool acpi_dma_supported(struct acpi_device *adev); enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev); int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, u64 *size); int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, const u32 *input_id); static inline int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr) { return acpi_dma_configure_id(dev, attr, NULL); } struct acpi_device *acpi_find_child_device(struct acpi_device *parent, u64 address, bool check_children); int acpi_is_root_bridge(acpi_handle); struct acpi_pci_root *acpi_pci_find_root(acpi_handle handle); int acpi_enable_wakeup_device_power(struct acpi_device *dev, int state); int acpi_disable_wakeup_device_power(struct acpi_device *dev); #ifdef CONFIG_X86 bool acpi_device_always_present(struct acpi_device *adev); #else static inline bool acpi_device_always_present(struct acpi_device *adev) { return false; } #endif #ifdef CONFIG_PM void acpi_pm_wakeup_event(struct device *dev); acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)); acpi_status acpi_remove_pm_notifier(struct acpi_device *adev); bool acpi_pm_device_can_wakeup(struct device *dev); int acpi_pm_device_sleep_state(struct device *, int *, int); int acpi_pm_set_device_wakeup(struct device *dev, bool enable); #else static inline void acpi_pm_wakeup_event(struct device *dev) { } static inline acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev, void (*func)(struct acpi_device_wakeup_context *context)) { return AE_SUPPORT; } static inline acpi_status acpi_remove_pm_notifier(struct acpi_device *adev) { return AE_SUPPORT; } static inline bool acpi_pm_device_can_wakeup(struct device *dev) { return false; } static inline int acpi_pm_device_sleep_state(struct device *d, int *p, int m) { if (p) *p = ACPI_STATE_D0; return (m >= ACPI_STATE_D0 && m <= ACPI_STATE_D3_COLD) ? m : ACPI_STATE_D0; } static inline int acpi_pm_set_device_wakeup(struct device *dev, bool enable) { return -ENODEV; } #endif #ifdef CONFIG_ACPI_SYSTEM_POWER_STATES_SUPPORT bool acpi_sleep_state_supported(u8 sleep_state); #else static inline bool acpi_sleep_state_supported(u8 sleep_state) { return false; } #endif #ifdef CONFIG_ACPI_SLEEP u32 acpi_target_system_state(void); #else static inline u32 acpi_target_system_state(void) { return ACPI_STATE_S0; } #endif static inline bool acpi_device_power_manageable(struct acpi_device *adev) { return adev->flags.power_manageable; } static inline bool acpi_device_can_wakeup(struct acpi_device *adev) { return adev->wakeup.flags.valid; } static inline bool acpi_device_can_poweroff(struct acpi_device *adev) { return adev->power.states[ACPI_STATE_D3_COLD].flags.valid || ((acpi_gbl_FADT.header.revision < 6) && adev->power.states[ACPI_STATE_D3_HOT].flags.explicit_set); } bool acpi_dev_hid_uid_match(struct acpi_device *adev, const char *hid2, const char *uid2); struct acpi_device * acpi_dev_get_first_match_dev(const char *hid, const char *uid, s64 hrv); static inline void acpi_dev_put(struct acpi_device *adev) { if (adev) put_device(&adev->dev); } #else /* CONFIG_ACPI */ static inline int register_acpi_bus_type(void *bus) { return 0; } static inline int unregister_acpi_bus_type(void *bus) { return 0; } #endif /* CONFIG_ACPI */ #endif /*__ACPI_BUS_H__*/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cfg80211 #if !defined(__RDEV_OPS_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __RDEV_OPS_TRACE #include <linux/tracepoint.h> #include <linux/rtnetlink.h> #include <linux/etherdevice.h> #include <net/cfg80211.h> #include "core.h" #define MAC_ENTRY(entry_mac) __array(u8, entry_mac, ETH_ALEN) #define MAC_ASSIGN(entry_mac, given_mac) do { \ if (given_mac) \ memcpy(__entry->entry_mac, given_mac, ETH_ALEN); \ else \ eth_zero_addr(__entry->entry_mac); \ } while (0) #define MAC_PR_FMT "%pM" #define MAC_PR_ARG(entry_mac) (__entry->entry_mac) #define MAXNAME 32 #define WIPHY_ENTRY __array(char, wiphy_name, 32) #define WIPHY_ASSIGN strlcpy(__entry->wiphy_name, wiphy_name(wiphy), MAXNAME) #define WIPHY_PR_FMT "%s" #define WIPHY_PR_ARG __entry->wiphy_name #define WDEV_ENTRY __field(u32, id) #define WDEV_ASSIGN (__entry->id) = (!IS_ERR_OR_NULL(wdev) \ ? wdev->identifier : 0) #define WDEV_PR_FMT "wdev(%u)" #define WDEV_PR_ARG (__entry->id) #define NETDEV_ENTRY __array(char, name, IFNAMSIZ) \ __field(int, ifindex) #define NETDEV_ASSIGN \ do { \ memcpy(__entry->name, netdev->name, IFNAMSIZ); \ (__entry->ifindex) = (netdev->ifindex); \ } while (0) #define NETDEV_PR_FMT "netdev:%s(%d)" #define NETDEV_PR_ARG __entry->name, __entry->ifindex #define MESH_CFG_ENTRY __field(u16, dot11MeshRetryTimeout) \ __field(u16, dot11MeshConfirmTimeout) \ __field(u16, dot11MeshHoldingTimeout) \ __field(u16, dot11MeshMaxPeerLinks) \ __field(u8, dot11MeshMaxRetries) \ __field(u8, dot11MeshTTL) \ __field(u8, element_ttl) \ __field(bool, auto_open_plinks) \ __field(u32, dot11MeshNbrOffsetMaxNeighbor) \ __field(u8, dot11MeshHWMPmaxPREQretries) \ __field(u32, path_refresh_time) \ __field(u32, dot11MeshHWMPactivePathTimeout) \ __field(u16, min_discovery_timeout) \ __field(u16, dot11MeshHWMPpreqMinInterval) \ __field(u16, dot11MeshHWMPperrMinInterval) \ __field(u16, dot11MeshHWMPnetDiameterTraversalTime) \ __field(u8, dot11MeshHWMPRootMode) \ __field(u16, dot11MeshHWMPRannInterval) \ __field(bool, dot11MeshGateAnnouncementProtocol) \ __field(bool, dot11MeshForwarding) \ __field(s32, rssi_threshold) \ __field(u16, ht_opmode) \ __field(u32, dot11MeshHWMPactivePathToRootTimeout) \ __field(u16, dot11MeshHWMProotInterval) \ __field(u16, dot11MeshHWMPconfirmationInterval) \ __field(bool, dot11MeshNolearn) #define MESH_CFG_ASSIGN \ do { \ __entry->dot11MeshRetryTimeout = conf->dot11MeshRetryTimeout; \ __entry->dot11MeshConfirmTimeout = \ conf->dot11MeshConfirmTimeout; \ __entry->dot11MeshHoldingTimeout = \ conf->dot11MeshHoldingTimeout; \ __entry->dot11MeshMaxPeerLinks = conf->dot11MeshMaxPeerLinks; \ __entry->dot11MeshMaxRetries = conf->dot11MeshMaxRetries; \ __entry->dot11MeshTTL = conf->dot11MeshTTL; \ __entry->element_ttl = conf->element_ttl; \ __entry->auto_open_plinks = conf->auto_open_plinks; \ __entry->dot11MeshNbrOffsetMaxNeighbor = \ conf->dot11MeshNbrOffsetMaxNeighbor; \ __entry->dot11MeshHWMPmaxPREQretries = \ conf->dot11MeshHWMPmaxPREQretries; \ __entry->path_refresh_time = conf->path_refresh_time; \ __entry->dot11MeshHWMPactivePathTimeout = \ conf->dot11MeshHWMPactivePathTimeout; \ __entry->min_discovery_timeout = conf->min_discovery_timeout; \ __entry->dot11MeshHWMPpreqMinInterval = \ conf->dot11MeshHWMPpreqMinInterval; \ __entry->dot11MeshHWMPperrMinInterval = \ conf->dot11MeshHWMPperrMinInterval; \ __entry->dot11MeshHWMPnetDiameterTraversalTime = \ conf->dot11MeshHWMPnetDiameterTraversalTime; \ __entry->dot11MeshHWMPRootMode = conf->dot11MeshHWMPRootMode; \ __entry->dot11MeshHWMPRannInterval = \ conf->dot11MeshHWMPRannInterval; \ __entry->dot11MeshGateAnnouncementProtocol = \ conf->dot11MeshGateAnnouncementProtocol; \ __entry->dot11MeshForwarding = conf->dot11MeshForwarding; \ __entry->rssi_threshold = conf->rssi_threshold; \ __entry->ht_opmode = conf->ht_opmode; \ __entry->dot11MeshHWMPactivePathToRootTimeout = \ conf->dot11MeshHWMPactivePathToRootTimeout; \ __entry->dot11MeshHWMProotInterval = \ conf->dot11MeshHWMProotInterval; \ __entry->dot11MeshHWMPconfirmationInterval = \ conf->dot11MeshHWMPconfirmationInterval; \ __entry->dot11MeshNolearn = conf->dot11MeshNolearn; \ } while (0) #define CHAN_ENTRY __field(enum nl80211_band, band) \ __field(u32, center_freq) \ __field(u16, freq_offset) #define CHAN_ASSIGN(chan) \ do { \ if (chan) { \ __entry->band = chan->band; \ __entry->center_freq = chan->center_freq; \ __entry->freq_offset = chan->freq_offset; \ } else { \ __entry->band = 0; \ __entry->center_freq = 0; \ __entry->freq_offset = 0; \ } \ } while (0) #define CHAN_PR_FMT "band: %d, freq: %u.%03u" #define CHAN_PR_ARG __entry->band, __entry->center_freq, __entry->freq_offset #define CHAN_DEF_ENTRY __field(enum nl80211_band, band) \ __field(u32, control_freq) \ __field(u32, freq_offset) \ __field(u32, width) \ __field(u32, center_freq1) \ __field(u32, freq1_offset) \ __field(u32, center_freq2) #define CHAN_DEF_ASSIGN(chandef) \ do { \ if ((chandef) && (chandef)->chan) { \ __entry->band = (chandef)->chan->band; \ __entry->control_freq = \ (chandef)->chan->center_freq; \ __entry->freq_offset = \ (chandef)->chan->freq_offset; \ __entry->width = (chandef)->width; \ __entry->center_freq1 = (chandef)->center_freq1;\ __entry->freq1_offset = (chandef)->freq1_offset;\ __entry->center_freq2 = (chandef)->center_freq2;\ } else { \ __entry->band = 0; \ __entry->control_freq = 0; \ __entry->freq_offset = 0; \ __entry->width = 0; \ __entry->center_freq1 = 0; \ __entry->freq1_offset = 0; \ __entry->center_freq2 = 0; \ } \ } while (0) #define CHAN_DEF_PR_FMT \ "band: %d, control freq: %u.%03u, width: %d, cf1: %u.%03u, cf2: %u" #define CHAN_DEF_PR_ARG __entry->band, __entry->control_freq, \ __entry->freq_offset, __entry->width, \ __entry->center_freq1, __entry->freq1_offset, \ __entry->center_freq2 #define SINFO_ENTRY __field(int, generation) \ __field(u32, connected_time) \ __field(u32, inactive_time) \ __field(u32, rx_bytes) \ __field(u32, tx_bytes) \ __field(u32, rx_packets) \ __field(u32, tx_packets) \ __field(u32, tx_retries) \ __field(u32, tx_failed) \ __field(u32, rx_dropped_misc) \ __field(u32, beacon_loss_count) \ __field(u16, llid) \ __field(u16, plid) \ __field(u8, plink_state) #define SINFO_ASSIGN \ do { \ __entry->generation = sinfo->generation; \ __entry->connected_time = sinfo->connected_time; \ __entry->inactive_time = sinfo->inactive_time; \ __entry->rx_bytes = sinfo->rx_bytes; \ __entry->tx_bytes = sinfo->tx_bytes; \ __entry->rx_packets = sinfo->rx_packets; \ __entry->tx_packets = sinfo->tx_packets; \ __entry->tx_retries = sinfo->tx_retries; \ __entry->tx_failed = sinfo->tx_failed; \ __entry->rx_dropped_misc = sinfo->rx_dropped_misc; \ __entry->beacon_loss_count = sinfo->beacon_loss_count; \ __entry->llid = sinfo->llid; \ __entry->plid = sinfo->plid; \ __entry->plink_state = sinfo->plink_state; \ } while (0) #define BOOL_TO_STR(bo) (bo) ? "true" : "false" #define QOS_MAP_ENTRY __field(u8, num_des) \ __array(u8, dscp_exception, \ 2 * IEEE80211_QOS_MAP_MAX_EX) \ __array(u8, up, IEEE80211_QOS_MAP_LEN_MIN) #define QOS_MAP_ASSIGN(qos_map) \ do { \ if ((qos_map)) { \ __entry->num_des = (qos_map)->num_des; \ memcpy(__entry->dscp_exception, \ &(qos_map)->dscp_exception, \ 2 * IEEE80211_QOS_MAP_MAX_EX); \ memcpy(__entry->up, &(qos_map)->up, \ IEEE80211_QOS_MAP_LEN_MIN); \ } else { \ __entry->num_des = 0; \ memset(__entry->dscp_exception, 0, \ 2 * IEEE80211_QOS_MAP_MAX_EX); \ memset(__entry->up, 0, \ IEEE80211_QOS_MAP_LEN_MIN); \ } \ } while (0) /************************************************************* * rdev->ops traces * *************************************************************/ TRACE_EVENT(rdev_suspend, TP_PROTO(struct wiphy *wiphy, struct cfg80211_wowlan *wow), TP_ARGS(wiphy, wow), TP_STRUCT__entry( WIPHY_ENTRY __field(bool, any) __field(bool, disconnect) __field(bool, magic_pkt) __field(bool, gtk_rekey_failure) __field(bool, eap_identity_req) __field(bool, four_way_handshake) __field(bool, rfkill_release) __field(bool, valid_wow) ), TP_fast_assign( WIPHY_ASSIGN; if (wow) { __entry->any = wow->any; __entry->disconnect = wow->disconnect; __entry->magic_pkt = wow->magic_pkt; __entry->gtk_rekey_failure = wow->gtk_rekey_failure; __entry->eap_identity_req = wow->eap_identity_req; __entry->four_way_handshake = wow->four_way_handshake; __entry->rfkill_release = wow->rfkill_release; __entry->valid_wow = true; } else { __entry->valid_wow = false; } ), TP_printk(WIPHY_PR_FMT ", wow%s - any: %d, disconnect: %d, " "magic pkt: %d, gtk rekey failure: %d, eap identify req: %d, " "four way handshake: %d, rfkill release: %d.", WIPHY_PR_ARG, __entry->valid_wow ? "" : "(Not configured!)", __entry->any, __entry->disconnect, __entry->magic_pkt, __entry->gtk_rekey_failure, __entry->eap_identity_req, __entry->four_way_handshake, __entry->rfkill_release) ); TRACE_EVENT(rdev_return_int, TP_PROTO(struct wiphy *wiphy, int ret), TP_ARGS(wiphy, ret), TP_STRUCT__entry( WIPHY_ENTRY __field(int, ret) ), TP_fast_assign( WIPHY_ASSIGN; __entry->ret = ret; ), TP_printk(WIPHY_PR_FMT ", returned: %d", WIPHY_PR_ARG, __entry->ret) ); TRACE_EVENT(rdev_scan, TP_PROTO(struct wiphy *wiphy, struct cfg80211_scan_request *request), TP_ARGS(wiphy, request), TP_STRUCT__entry( WIPHY_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; ), TP_printk(WIPHY_PR_FMT, WIPHY_PR_ARG) ); DECLARE_EVENT_CLASS(wiphy_only_evt, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy), TP_STRUCT__entry( WIPHY_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; ), TP_printk(WIPHY_PR_FMT, WIPHY_PR_ARG) ); DEFINE_EVENT(wiphy_only_evt, rdev_resume, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DEFINE_EVENT(wiphy_only_evt, rdev_return_void, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DEFINE_EVENT(wiphy_only_evt, rdev_get_antenna, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DEFINE_EVENT(wiphy_only_evt, rdev_rfkill_poll, TP_PROTO(struct wiphy *wiphy), TP_ARGS(wiphy) ); DECLARE_EVENT_CLASS(wiphy_enabled_evt, TP_PROTO(struct wiphy *wiphy, bool enabled), TP_ARGS(wiphy, enabled), TP_STRUCT__entry( WIPHY_ENTRY __field(bool, enabled) ), TP_fast_assign( WIPHY_ASSIGN; __entry->enabled = enabled; ), TP_printk(WIPHY_PR_FMT ", %senabled ", WIPHY_PR_ARG, __entry->enabled ? "" : "not ") ); DEFINE_EVENT(wiphy_enabled_evt, rdev_set_wakeup, TP_PROTO(struct wiphy *wiphy, bool enabled), TP_ARGS(wiphy, enabled) ); TRACE_EVENT(rdev_add_virtual_intf, TP_PROTO(struct wiphy *wiphy, char *name, enum nl80211_iftype type), TP_ARGS(wiphy, name, type), TP_STRUCT__entry( WIPHY_ENTRY __string(vir_intf_name, name ? name : "<noname>") __field(enum nl80211_iftype, type) ), TP_fast_assign( WIPHY_ASSIGN; __assign_str(vir_intf_name, name ? name : "<noname>"); __entry->type = type; ), TP_printk(WIPHY_PR_FMT ", virtual intf name: %s, type: %d", WIPHY_PR_ARG, __get_str(vir_intf_name), __entry->type) ); DECLARE_EVENT_CLASS(wiphy_wdev_evt, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT, WIPHY_PR_ARG, WDEV_PR_ARG) ); DECLARE_EVENT_CLASS(wiphy_wdev_cookie_evt, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie), TP_ARGS(wiphy, wdev, cookie), TP_STRUCT__entry( WIPHY_ENTRY WDEV_ENTRY __field(u64, cookie) ), TP_fast_assign( WIPHY_ASSIGN; WDEV_ASSIGN; __entry->cookie = cookie; ), TP_printk(WIPHY_PR_FMT ", " WDEV_PR_FMT ", cookie: %lld", WIPHY_PR_ARG, WDEV_PR_ARG, (unsigned long long)__entry->cookie) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_return_wdev, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); DEFINE_EVENT(wiphy_wdev_evt, rdev_del_virtual_intf, TP_PROTO(struct wiphy *wiphy, struct wireless_dev *wdev), TP_ARGS(wiphy, wdev) ); TRACE_EVENT(rdev_change_virtual_intf, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, enum nl80211_iftype type), TP_ARGS(wiphy, netdev, type), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY __field(enum nl80211_iftype, type) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; __entry->type = type; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", type: %d", WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->type) ); DECLARE_EVENT_CLASS(key_handle, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr), TP_ARGS(wiphy, netdev, key_index, pairwise, mac_addr), TP_STRUCT__entry( WIPHY_ENTRY NETDEV_ENTRY MAC_ENTRY(mac_addr) __field(u8, key_index) __field(bool, pairwise) ), TP_fast_assign( WIPHY_ASSIGN; NETDEV_ASSIGN; MAC_ASSIGN(mac_addr, mac_addr); __entry->key_index = key_index; __entry->pairwise = pairwise; ), TP_printk(WIPHY_PR_FMT ", " NETDEV_PR_FMT ", key_index: %u, pairwise: %s, mac addr: " MAC_PR_FMT, WIPHY_PR_ARG, NETDEV_PR_ARG, __entry->key_index, BOOL_TO_STR(__entry->pairwise), MAC_PR_ARG(mac_addr)) ); DEFINE_EVENT(key_handle, rdev_get_key, TP_PROTO(struct wiphy *wiphy, struct net_device *netdev, u8 key_index, bool pairwise, const u8 *mac_addr), TP_ARGS(wiphy, netdev, key_index, pairwise, mac_addr) ); DEFINE_EVENT(key